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DISCUSSION: FROM INDIVIDUALS TO ECOSYSTEMS; THE 
PAPERS OF SKELLAM, LINDEMAN AND HUTCHINSON 

1. Introduction. To many scientists, the inherently quantitative nature of 
ecology is self-evident. However, the debate between the mostly empirical field 
biologists vs theoreticians on the usefulness of mathematical models in ecology 
has a long history (Macintosh, 1985)--and it is hardly resolved today. The 
papers of Lindeman (1942), Hutchinson (1957), and Skellam (1951) were 
conceived during one of several periods in this century of renewed interest in 
quantifying ecological process.* 

Each paper deliberately imposed formal, mathematical structure on 
disciplines that the authors considered to be mired in controversies because 
they lacked quantification. In fact, Evelyn Hutchinson's entire career has been 
devoted to imposing formal theory on ecological musings; his own interests 
have been wide-ranging but always quantitative. Hutchinson mentored many 
famous students, who collectively represented his many facets and who made 
permanent impressions on the field of quantitative ecology. Although 
Lindeman was not his student, Hutchinson none the less shepherded 
Lindeman's landmark (and final) 1942 paper through negative reviews and saw 
that the paper was published posthumously. Hutchinson was also attracted to 
Skellam's quantitative approach and incorporated Skellam's results in the 1957 
paper discussed here. 

We review the three papers in separate sections. The three papers are tightly 
linked, despite treating disparate subjects. Each of the three demonstrates the 
success of a more reductionist approach to ecological problems. Lindeman's 
(1942) and Hutchinson's (1957) papers both represent watersheds in ecological 
research (ecosystem and community ecology, respectively) that produced 
volumes of brilliant work. Yet, each of these new directions in ecology 
ultimately stalled, we would argue, because they tried to explain higher-level 
patterns in ecosystems and communities without examining in sufficient detail 
what individuals and populations were doing. In contrast, Skellam (1951) 

* Hutchinson (1957, p. 416) wrote: "It is not  necessary in any empirical sense to keep an elaborate 
logicomathematical system always apparent,  any more than it is is necessary to keep a vacuum cleaner 
conspicuously in the middle of  a room at all times. When a lot of irrelevant litter has  accumulated the 
machine must  be brought  out, used and then put  away" and Skellam (1951, p. 196) wrote: "Nevertheless, 
biologists as a whole have been reluctant to develop the analytical as distinct from the purely s ta t i s t ica l . . . " .  
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D I S C U S S I O N :  T H E  K E R M A C K - M c K E N D R I C K  
E P I D E M I C  T H R E S H O L D  T H E O R E M  

The paper reviews the work of Kerrnack and McKendrick on the development of simple 
mathematical models of the transmission dynamics of viral and bacterial infectious agents within 
population of hosts. The focus of attention is centred on the notion of a threshold density of 
susceptible hosts to trigger an epidemic and recent extensions of this idea as expressed in the 
definition of a basic or case reproductive rate of infection. The main body of the paper examines 
recent developments of the basic Kermack-McKendrick model with an emphasis on 
deterministic models that describe various types of heterogeneity in the processes that determine 
transmission between infected and susceptible persons. Particular attention is given to the role of 
behavioural heterogeneity within the framework of a contact or mixing matrix which defines 
"who acquires infection from whom". 

Introduction. Human fascination with epidemics of infectious diseases and 
the associated patterns of mortality has a long history. The lists of epidemics 
compiled by the Chinese scholar, Ssu Kwong, who lived during the Sing 
Dynasty (AD 960-1279) in China, the "epidemics" of the Greek scholar 
Hippocrates (458-377 no) and the rudimentary medical statistics of John 
Grant (1620-74) and William Petty (1623-87), who studied the London Bills of 
Mortality in the seventeenth century, well illustrate this point. However, the 
scientific study of the epidemiology of infectious diseases did not begin in 
earnest until the development of the "germ theory of disease". 

In the earliest medical literature there are expressions of the idea that 
invisible living creatures might be responsible for disease. Such reference is 
found, for example, in the writings of Aristotle (387 BC) and of the Arabian 
physician, Rhazes (AD 860-938). However, reliable methods for the isolation 
and identification of such creatures ("microbes") were not developed until the 
nineteenth century. The work of three outstanding scientists, Pasteur 
(1827-75), Lister (1827-1912) and Koch (1843-1910), laid the foundations of 
modern microbiology and established a set of principles (often referred to as 
"Koch's postulates") for establishing the relationship between disease and the 
presence of an infectious agent within the host. 

The application of mathematics to the study ofinfectious disease appears to 
have been initiated by Daniel Bernoulli in 1760 by his use of a simple 
mathematical method to evaluate the effectiveness (in terms of an improvement 
in life expectancy) of the technique of variolation to protect against smallpox 
infection (Bernoulli, 1760). Since this early beginning developments have been 
many and varied, although it is probably fair to say that their impact on public 
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health policy and planning for the prevention of infection and associated 
disease has been rather limited (Fine, 1979; Anderson and May, 1982; Dietz 
and Schenzle, 1985). In part this is a consequence of the tendency for theory to 
have become rather detached from its empirical base. 

The origins of modern theoretical epidemiology owe much to the work of 
En'ko (1889), Hamer (1906), Ross (1908) and Kermack and McKendrick 
(1927). Hamer (1906) postulated that the course of an epidemic depends on the 
rate of contact between susceptibles and infectious individuals. This notion has 
become one of the most important concepts in mathematical epidemiology: it is 
the so called "mass action" principle of transmission for directly transmitted 
viral and bacterial infections. The principle is based on the idea that the net rate 
of spread of infection is proportional to the product of the densities of 
susceptible and infectious persons. The idea was originally formulated in a 
discrete-time model, but in 1908 Ronald Ross (celebrated as the discoverer of 
malaria transmission by mosquitoes) translated the problem into a continuous 
time framework in his pioneering work on the transmission dynamics of 
malaria (Ross, 1915; Ross and Hudson, 1917). The ideas of Hamer and Ross 
were extended and explored in more detail by Kermack and McKendrick 
(1927) and Soper (1928). 

The problem addressed by Kermack and McKendrick in their classic 1927 
paper was of great topical interest and the source of much controversy at that 
time. The "bell shaped geometry" of the epidemic curve was well understood 
(Fig. 1) but the controversy centred on the factor or factors that determined 
both the magnitude of the epidemic and its termination within a given 
population. 

Two explanations for the termination of an epidemic were most in favour 
amongst medical circles at that time, namely: (1) that the supply of susceptible 
people had been exhausted and (2) that during the course of the epidemic the 
virulence of the infectious agent had gradually (or rapidly) decreased. Kermack 
and McKendrick (1927) addressed this problem by formulating a simple 
deterministic model of the transmission of a directly (= contact) transmitted 
viral or bacterial agent in a closed population (no birth, death, immigration or 
emigration). In this model, they decribed the course of "sickness" in an 
individual and recovery or death by a set of "vital rates" denoting infectivity, 
recovery and death. The conclusions they arrived at are best summarized in 
their own words. 

" . . .  the course of an epidemic is not necessarily terminated by the exhaustion of the 
susceptible members of the community. It will appear that for each particular set of 
infectivity, recovery and death rates, there exists a critical or threshold density of 
population. If the actual population density be equal to (or below) this threshold value the 
introduction of one (or more) infected persons does not give rise to an epidemic, whereas if 
the population be only slightly more dense a small epidemic occurs. It will appear also that 
the size of the epidemic increases rapidly as the threshold density is exceeded, and in such a 
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Figure 1. The 1665 Plague epidemic in London. Weekly reports of deaths due to the 
plague are recorded in Daniel Defoe's journal (Brayley, 1722). 

manner that the greater the population density (of susceptibles) at the beginning of the 
epidemic, the smaller will it be at the end of the epidemic. In such a case the epidemic 
continues to increase so long as the density of the unaffected population is greater than the 
threshold density, but when this critical point is approximately reached the epidemic 
begins to wane and ultimately die out. This point may be reached when only a small 
proportion of the susceptible members of the community have been affected." 

Today this concept plays a central role in much of the mathematical theory 
of infectious disease epidemiology and it has very important implications for 
the design of control programmes based, for example, on mass immunization 
(see Anderson and May, 1983). In this paper, a brief review is presented of the 
published work of Kermack and McKendrick from 1927 to 1939. The major 
body of the paper addresses recent developments in this area with particular 
focus on the significance of heterogeneity in transmission induced by a wide 
variety of factors including genetic, spatial and behavioural processes. The 
article is written with the epidemiologist and ecologist in mind and technical 
details are kept to a minimum. Those interested in the techniques of model 
formulation and analysis are referred to the appropriate source references. 

The Kermack-McKendriek Model. In their 1927 paper, Kermack and 
McKendrick considered the following problem with directly (=contact)  
transmitted viral and bacterial agents in mind. One or more infected persons 
is/are introduced into a closed population (no birth, emigration or immigra- 
tion) of susceptible individuals and the infectious disease spreads from the 
affected to the unaffected by contact infection. Each infected individuals runs 
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through the course of his or her sickness and is finally removed by recovery or 
death. They considered the general case in which the rate of infectiousness, 
recovery or death depend on the duration (=stage) of infection in an 
individual. They assumed that the total population remained constant in size 
during the course of the epidemic, excepting modifications in size caused by 
deaths due to the disease, and that on recovery complete and lasting immunity 
was induced to the infectious agent under consideration. Their model was 
compartmental and deterministic in structure, where the total population at 
time t, N(t), was divided into susceptibles, infecteds (= infectious people) and 
recovereds denoted respectively by X(t), Y(t) and Z(t) at time t. Under the 
assumption that the "vital" rates of transmission (= infectivity) and recovery/ 
death are constant and independent of the duration of infection in an 
individual, the basic differential equations are of the form: 

dX/dt = - ~ X Y  (1) 

d Y / d t = ~ X Y - v Y  (2) 

dZ/dt=vY.  (3) 

Here fl denotes the transmission coefficient (recording infectiousness and the 
probability of contact between people) and v records the recovery/death rate in 
the infected class Y. If the disease does not induce mortality (v is the recovery 
rate) then the class Z denotes those who have recovered and are immune to 
reinfection. If v records mortality, then the class Z records the number of deaths 
induced by the epidemic. 

The existence of a critical threshold density of susceptibles for the occurrence 
of a major epidemic can be deduced in a heuristic manner, via inspection of the 
right-hand side of equation (2). Following the introduction of a few infecteds 
[ Y(0) at time t = 0] into a susceptible population [where X(0) ~- N(0)], the rate 
of increase in the density of infecteds will only be positive provided the term 
fiX> v, if a major epidemic is to occur. More formally, the critical density of 
susceptibles, Nr, is given by 

N r = v/~. (4) 

No epidemic can occur unless the population of susceptibles exceeds this value 
(the recovery rate, v, divided by the transmission coefficient, fl), and if it does 
exceed this value then the size of the epidemic (to a first approximation) is 
roughly equivalent to 2n times the degree to which the initial population 
density of susceptibles exceeds the critical value [n = N(0) -  Nr]. Thus at the 
end of the epidemic the density of susceptibles will be as far below the threshold 
density, as initially it was above (Kermack and McKendrick, 1927). 
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Embodied within the threshold density concept is a further idea of 
fundamental importance in epidemiology, namely, that of a basic or case 
reproductive rate of infection, R o, which records the average number of 
secondary cases of infection produced by one primary case in a totally 
susceptible population. The idea is directly analogous to Fisher's concept of a 
net reproductive rate which is widely used in the disciplines of population 
genetics, ecology and demography (Fisher, 1930). For an infectious agent to 
spread in a population it is intuitively obvious that 

R o/> 1. (5) 

If this condition is not satisfied the infection will die out (see Ross, 1915; 
Macdonald, 1957; Dietz, 1974; Anderson and May, 1979; May and Anderson, 
1979; Anderson, 1982). 

In the context of the simple Kermack-McKendrick model I-equations 
(1)-(3)] R o is defined as 

R o =flN/v. (6) 

Note that the concept of a threshold density of susceptible (N) for Ro to exceed 
unity in value is explicit in this definition. Although Kermack and McKendrick 
did not use the notion of a basic or case reproductive rate, the definition of R 0 is 
dearly detailed in their analyses of the behaviour of the simple model (i.e. see 
p. 716 of Kermack and McKendrick, 1927). In the 1927 paper, and subsequent 
ones, they also addressed the more general case where both infectivity and 
recovery are functions of the duration of infection in an individual (e.g. 
distributed infectious and recovery rates). If we denote fl and v as functions of 
the time s since infection then R o is defined as 

Hence the threshold density, Nr,  is given by 

(8) 

A further problem addressed by Kermack and McKendrick was the issue of 
what fraction of the population will be infected during the course of an 
epidemic in a closed population. If we denote this fraction as I then in the 
general case, where a small fraction I(0) is infected at time t = 0, 

I =  1 - (1 - I(0)) exp( -  RoD. (9) 

A Very clear discussion of the properties of this equation has recently been 
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presented by May (1990). It has one, and only one, solution corresponding to a 
finite value of I (Fig. 2). As explained by May (1990), this contrasts with the 
crisp distinction made earlier between the case R 0 < 1 (no epidemic) and R 0 > 1 
(an epidemic). This issue has caused some confusion, particularly in the 
epidemiological literature concerned with plant pathogens (Jeger, 1986). 
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Figure 2. The fraction infected, I, in a closed epidemic in a population of size N 
where a proportion I(0) are infected at time t =0. The graph records plots of the 
right and left hand sides of equation (9) in the main text for various values of I with 

Ro=2.0 and/(0)=0.05. See text for explanation. 

However, there is a very straightforward explanation of this situation which 
rests on the distinction between a small trickle of secondary cases ensuing from 
the introduction of infection into a susceptible population, and the occurrence 
of a major epidemic. Even if R o < 1 (and N <  NT) there will always be some 
subsequent infection leading to the total infected exceeding the original seed of 
infection, but this will be a decaying chain of infection events with no 
"runaway" chain reaction or epidemic. (It is interesting to note the similarity of 
the concept of chain infection events and R o with those employed in chemical 
chain reactions and, in particular, nuclear chain reactions.) Conversely if 
R o > 1, the chain of subsequent infection events expands rapidly to generate 
what is commonly called an "epidemic". The arguments above, of course, apply 
to the situation where I(0) is small--in other words when we are considering 
the introduction of a few infecteds into a largely susceptible population. 

In subsequent papers, Kermack and McKendrick (1927, 1932, 1933, 1937, 
1939) expand their simple theory to consider the question of endemicity of 
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infection, where the assumption of a closed population is relaxed, and to 
compare theoretical predictions with the patterns of infection recorded in a 
classic series of experiments on viral and bacterial diseases in mouse colonies 
carried out by Greenwood et al. (1936). The elegance of their work lies in part 
on their efforts to estimate parameters from data and compare prediction with 
observed pattern. 

The issue of what factors influence the endemic persistence of an infection has 
received much attention since the work of Kermack and McKendrick (e.g. for 
reviews see Anderson and May, 1979, 1985a; May and Anderson, 1979). For 
example, if we extend the simple closed epidemic model [equations (1)-(3)-] by 
the addition of a net immigration rate of new susceptibles, A, to the right-hand 
side of equation (1), and subtract mortality terms from each equation under the 
assumption of a constant per capita mortality rate,/~, then it can be shown that 
an endemic equilibrium is attained with the infection persisting in the 
population, provided 

A/Ia> N T (10) 

where N r is as defined in equation (4) with the addition of a term # to the 
denominator. Equation (10) simply states that the equilibrium population 
density in the absence of infection, A/p, must exceed the critical density of 
susceptibles required to initiate an epidemic (Anderson and May, 1979). These 
notions can be extended to consider the persistence of infection in a population 
subject to births and deaths (as opposed to immigration and death) and the 
ability of infectious agents to regulate the abundance of their host population 
(Anderson, 1979). 

As noted earlier, the simple model of Kermack and McKendrick and the 
threshold theorem derived from this model has played a pivotal role in 
subsequent developments in the study of the transmission dynamics of 
infectious diseases. In the following sections a series of recent developments are 
reviewed with an emphasis on the implications of theory for the control of 
infections by mass vaccination and the significance of various types of 
heterogeneity in the transmission process on patterns of infection within 
communities. 

Control by Mass Vaccination. Two central questions in the design of mass 
vaccination programmes for the control of childhood viral and bacterial 
infections are what proportion of the community must be immunized to 
interrupt or block transmission and what is the optimum age at which to 
administer the vaccine? These questions can be addressed via the use of simple 
mathematical models which are extensions of the basic Kermack-McKendrick 
equations. The developments necessary to crudely mirror the known 
properties of many common childhood infections, such as measles and rubella, 
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include further compartmentalization of the population to include a class of 
infants who are protected from infection by maternally derived antibodies and 
a latent class who are infected but not yet infectious, plus the inclusion of age 
structure (see Anderson and May, 1983, 1985a; Dietz and Schenzle, 1985). 

The central issue underlying control by mass vaccination is that of the 
threshold density of susceptibles necessary to ensure that the case reproductive 
rate, R o, is greater than unity in value. In broad terms the objective of mass 
vaccination is to reduce the density of susceptibles below this critical value 
(R o < 1). If infants are vaccinated at, or close to birth, then the critical 
proportion, p, that must be immunized to block transmission (i.e. the level of 
"herd irfimunity") is given by 

p > [ 1 - 1 / R o ]  (11) 

under the assumption that the "vital" rates (of infection, mortality recovery, 
etc.) are constant and independent of age (Dietz, 1974). In practical terms the 
magnitude of R o can be estimated approximately from age-stratified serologi- 
cal data (recording the proportion, by age class, who have experienced 
infection as judged by the presence of antibodies specific to the antigens of the 
infectious agent) by reference to the average age of infection A, where 

R o ~- L / A .  (12) 

Here L represents life expectancy. Note that this relationship only holds for 
developed countries where births approximately balance deaths in a popula- 
tion of constant size (May and Anderson, 1984). At equilibrium R o is als0 
related to the total fraction susceptible in the population, x, where 

x = 1/R o . (13) 

More generally, if maternally derived antibodies protect against infection and 
against effective vaccination for an average period of D years, and vaccination 
takes place at an average age of V years, then the critical proportion to be 
immunized, p, is given by (see Anderson and May, 1983) 

p>  [1 -- 1/Ro] [1 -- V/L] (14) 

where R o is now defined as 

R o = L / ( A - D  ). (15) 

These simple expressions [equations (14) and (15)] have enabled estimates to 
be derived of the levels of cohort immunization required to interrupt the 
transmission of a number of common childhood infections in both developed 
(Nokes and Anderson, 1988) and developing (May and Anderson, 1985; 
McLean and Anderson, 1988a,b) countries. In the United Kingdom, for 



DISCUSSION: EPIDEMIOLOGY 11 

example, the use of these equations in conjunction with parameter estimates 
derived from serological and demographic data suggest that between 90 and 
95% immunization of children by the age of 1-1.5 years (applied uniformly in 
all health districts) is required to block the transmission of the measles, mumps 
and rubella viruses and the bacterial agent responsible for pertussis (i.e. 
whooping cough). 

With respect to the optimum age at which to vaccinate, this depends on the 
net rate of infection (inversely related to the average age at infection: 2 = I/A), 
and the duration of protection provided by maternal antibodies. In developing 
countries A may be low, such that with an average duration of maternal 
protection of around 3-6 months, the "window" of susceptibility in which 
vaccine can be administered is very narrow. For example, Katzmann and Dietz 
(1984) have shown that for a one-stage vaccination programme in a 
community with intense transmission prior to control, the optimum age at 
which to vaccinate, T, is approximately given by 

T_ ~ [In(l /D)- ln(1/A)]/[1/D- I/A]. (16) 

In many urban centres in developing countries A for measles is often as low as 
1.5 years while D is around 0.5 years. In these circumstances, equation (16) 
suggests that T is around 10 months of age. The World Health Organization 
recommends immunization against measles at around 10 months to 1 year of 
age. 

Heterogeneity in Transmission. Much of the research in mathematical 
epidemiology in recent years has centred on the treatment of v~trious types of 
heterogeneity in transmission of infectious agents within and between 
communities of hosts. Such heterogeneities may arise, for example, via spatial 
factors, genetic variability (in both host and infectious agent) and differences in 
behaviour in various strata or groups of the host population. In this section a 
brief review is presented of the major areas of development over the past 
decade. 

I. Age-dependent mixing in human communities. For many (if not most) 
directly transmitted viral and bacterial infections, the per capita force or rate of 
infection tends to vary systematically with age. An example is presented in 
Fig. 3, which records the rate of infection with the measles virus in different age 
groups in England and Wales (Anderson and May, 1985b). 

Age dependency in transmission can be mirrored by one simple modification 
to the basic model of Kermack and McKendrick [equations (1)-(3)], namely, 
the replacement of the force of infection term 2(0 [where 2(t)=flY(t)] in 
equations (1) and (2) by a more general function 2(a, t). Under the assumption 
of a "mass action" form of transmission (see May and Anderson, 1984; 
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Figure 3. Age-dependent forces of infection [2(a)] for the measles virus in developed 
countries. Data from Table 2 in Anderson and May (1985a). 

Anderson and May, 1985b; Dietz and Schenzle, 1985) then the modification 
can be expressed as 

2(a, t)= fLo #(a', a)Y(a', t) da'. (17) 

Here L denotes life expectancy and the term/~(a', a) denotes the transmission 
coefficient ensuing from the contact of susceptibles of age a, with infectious 
individuals of age a'. The force of infection is therefore a composite parameter 
denoting the sum rates of contact of susceptibles within a given age class with 
infectiouspeople of all age classes. Any given value of the transmission 
coefficient fl(a, a') presents two components; namely, contact between two age 
classes and the likelihood that such contact (if it is between susceptible and 
infectious persons) will give rise to a new case of infection. Both components 
may be functionally related to age in different ways. However, in much of the 
published research in this area it has been assumed that behavioural contact 
patterns are the most important factor (empirical evidence is very limited with 
respect to both components). If this is the case the term fl(a, a') effectively 
denotes "who acquires infection from whom". If the age span from birth to life 
expectancy, L, is divided into a series of discrete age classes within which the 
values of fl(a, a') are constant, for each pair of age classes the transmission 
coefficients, the #i/s, form a "who acquires infection from whom" matrix of 
values ("WAIFW" matrix). 
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When mixing and contact depends on age the concept of a reproductive rate 
(and hence of a threshold density of susceptibles) requires modification. In 
essence we must now define an age-specific basic reproductive rate, Roi, for an 
infective in age class i where 

Roi = ~ Bij(a j -  a j _  1)" 
j = l  

(18) 

Here a j -  a j_  1 defines the age interval of a given class (n is the total number of 
age classes) and Bij is defined as 

B,j = ( N / v L  )fl,j (19) 

where 1Iv is the average duration of infectiousness, L is life expectancy and Nis 
population size (assumed constant). The term Roi defines the average number 
of secondary cases generated by a primary case in age class i in all other age 
classes in a "susceptible" population (Anderson and May, 1985b). For 
vaccination close to birth, the criterion for eradication by mass immunization 
now becomes 

P > 1 - 1 /Q (20) 

where Q is the dominant eigenvalue of the matrix whose elements are 
Bij(a j -  a j_  1). If we assume that the mixing matrix is symmetric ([3ij = [3jl ) then 
Q is the dominant eigenvalue of the matrix whose elements are given by the Roi 
of equation (18). 

Extensive studies have been carried out on the practical implications of age 
dependency in transmission of a number of common childhood infections (see 
Anderson and May, 1985b; Dietz and Schenzle, 1985; Nokes et al., 1986; 
Anderson et al., 1987; Grenfell and Anderson, 1989; McLean and Anderson, 
1988a,b). In all these studies, crude assumptions have had to be made on the 
structure of the mixing matrix, since empirical data on mixing patterns 
stratified by age are very limited. The only data available are those on age- 
related changes in the force or rate of infection (see Fig. 3) but the observed 
patterns could arise under many different assumptions concerning the 
structure of the mixing matrix. 

With these constraints on interpretation, the general conclusion to emerge 
from the incorporation of age dependency in mixing is that the estimated 
critical level of what vaccination is required to block transmission is a little less 
than that calculated on the basis of homogeneous mixing between age classes 
(see Anderson and May, 1985b). In practical terms the difference appears to be 
of little significance. However, more research of both an empirical and a 
theoretical nature is required in this area. 
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2. Heterogeneity in sexual behaviour. The emergence of AIDS (the 
Acquired Immune Deficiency Syndrome) over the past decade as an epidemic 
on a global scale has triggered much research on the dynamics of sexually 
transmitted diseases (STDs) (May and Anderson, 1987; Anderson and May, 
1988). Patterns of sexual behaviour as reflected, for example, by rates of sexual 
partner change, are very variable both within and between different human 
communities (Anderson and Johnson, 1990). As such, models of the 
transmission dynamics of STDs must take account of this observed 
heterogeneity in the formulation of the transmission term (Fig. 4). In general, 
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Figure 4. Claimed rate of sexual partner change in a group of 18-22-year-old 
heterosexual students sampled in England and Wales in 1987 (males and females 
combined). The graph records the number of students with different rates of sexual 
partner changes, defined for seven different time intervals (1 month to lifetime). 

the early models of STD transmission assume that the per capita rate of 
infection, 2, is determined by the probability of transmission per partner 
contact, fl, times the mean rate of acquiring new sexual partners, c (the rate of 
sexual partner change), times the proportion of infectious persons in the 
sexually active population (Y/N) (Hethcote and York, 1984; Anderson et al., 
1986). For example, for the spread of an STD in a male homosexual population 
the case reproductive rate, R o, is often defined as 

Ro= l~cV (21) 



D I S C U S S I O N :  E P I D E M I O L O G Y  15 

where V is the average duration of infectiousness of an infected person (May 
and Anderson, 1987). However, this formulation takes no account of 
heterogeneity in rates of sexual partner change. 

A more general approach is based on the stratification of the population on 
the basis of their rate of sexual partner change, i (Hethcote and York, 1984; 
Anderson et al., 1986; May and Anderson, 1987, 1988). Consider a closed 
population of homosexual males [in the context of the transmission of the 
aetiological agent of AIDS, the human immunodeficiency virus (HIV)], 
divided into sub-groups, N~, whose members on average acquire i new sexual 
partners per unit of time. Initially N~(0)= N(O)p(i), where p(i) is the initial 
probability distribution in rates of acquiring partners (Fig. 4). The rates of 
change in the numbers of susceptible and infected persons in group i, X~ and Y~ 
respectively, may be expressed as 

d X i / d t  = - i 2 X i  (22) 

d Yi /dt  - i2Xi - v Y i. (23) 

Here 2 is the per capita rate of infection and 1/v is the average duration of 
infectiousness. Under the assumption of "proportional mixing" where the 
sexual partners are chosen randomly weighted by their sexual activity i, the 
term 2 is 

2 = f  ~ iY~ /~  i N  i (24) 
i i 

where fl is as defined for equation (21). For this type of heterogeneous mixing 
model it can be shown that the basic reproductive rate R o is as presented in 
equation (21) but with c now defined as 

c = m + 0-2/m (25) 

where c is the mean rate of partner change and 0 -2 is the variance of the rate 
(May and Anderson, 1987, 1988). Note that the variance may dominate the 
magnitude of R o since empirical evidence suggests that it is typically a power 
function of the mean (0-2 = arab, where a and b are constants) with the power 
(the value of b) being of the order of 3 (Anderson and May, 1988). 

In other words, variability in sexual behaviour is a dominant feature of the 
pattern of spread and persistence of the infection, since those in the "tail" of the 
distribution of sexual activity are both more likely to acquire infection and to 
transmit it. Empirical evidence suggests that more than 70% of the total 
partnerships formed by a given community are centred on less than 30% of the 
population of sexually active individuals (Anderson, 1988). 
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In a closed epidemic (no recruitment of susceptibles) the overall fraction 
infected, I, is given by (May and Anderson, 1988) 

I = ~ [1 - exp( - iot)]Ni/N (26) 
i 

where N =  ~ N  i and 

ot=-(fl/v)lnIl-~iN~[1-exp(-ict)]/~iN~l. (27) 

It is assumed here that once an individual is infected he remains so for life. In 
the case where the coefficient of variation is zero, equations (26) and (27) reduce 
to the Kermack 'McKendr ick  result for a homogeneously mixing population 
[see equation (9)] when I(0) (the fraction initially infected) is extremely small. 
When mixing is heterogeneous, the epidemic essentially "burns" itself out in the 
highly sexually active groups, with the fraction of those in the low activity 
classes who escape infection being larger and larger as heterogeneity becomes 
more and more pronounced (the coefficient of variation large). This point is 
illustrated in Fig. 5, where I i s  plotted as a function of R o for various values of 
the coefficient of variation (CV) (May and Anderson, 1987). 
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Figure 5. Within a closed population of homosexual males, the fraction infected 
during an epidemic,/, is shown as a function of the basic reproductive rate, Re, of 
the infection. The distribution in rates of acquiring new sexual partners within the 
population is taken to be a gamma distribution, with the coefficient of variation CV=tr/m, having the values 0 (classic Kermack-McKendrick epidemic with 
homogeneous mixing), 0.7, 1, 1.4, 2 and 3.2 as shown. It is assured that 50% of those 
infected with HIV eventually die from AIDS (see text and May and Anderson, 

1988). 
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This simple model is very illuminating in the sense that it provides a 
qualitative understanding of how variability in sexual activity influences the 
magnitude of the epidemic. However, the assumption of proportional mixing 
(essentially random mixing weighted by sexual activity) is crude, given that it 
takes no account of"networks" of sexual contacts which define (as in the case of 
age dependency in transmission--see previous section) "who mixes with 
whom". Put another way, we ideally need to take account of the proportions of 
sexual partnerships made by individuals in a given activity group with 
individuals in the same and other activity classes. 

3. Contact networks. In relaxing the assumption of proportional mixing it 
is necessary to design a choice function which defines the proportion of the 
contacts of an individual in class i that are made with individuals in class j, 
p(i, j). In general terms the stratification into classes could be based on spatial 
location, behaviour or age. However, to continue the discussion in the previous 
section on HIV spread in male homosexual communities, we first consider 
stratifications by sexual activity (defined by the rate of acquiring new sexual 
partners per unit of time). To simplify matters, discrete classes are considered 
(with a constant rate of partner change within a given class) such that p(i,j) 
defines a mixing matrix. We retain the notation outlined in the previous section 
with respect to X i and Y~ (Nold, 1980). 

The net rate of infection of class i, 2(i) can be defined as 

n /tl 

2(i)=c,X~ ~ p(i,j) ~ fl, Yj.,/(Xj+ Yj). (28) 
i = 1  r = l  

Here n denotes the number of sexual activity classes, c i records the mean rate of 
sexual partner change in class i, Yj., is the number infected in infectious class r 
and sex activity class j and fl, is the transmission probability associated with 
infectious class r (the term is written in general form to provide the option of an 
infected person passing via a series of infectious classes). 

There are a series of constants on the elements of the mixing matrix [the 
p(i,j)s] as follows: 

1 <p(i,j)= 1 for all i,j combinations (29) 

~p(i, j) = 1 (30) 

ci(X i + Y~)p(i,j)= cj(Xj+ Yj)p(j, i). (31) 

The first two are trivial and obvious but the third [equation (31)] states an 
important property of the system; namely, that class i cannot in total have more 
or less sexual contacts with class j than class j can have with class i. This 
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property is of major importance when the infection (such as HIV) is a cause of 
mortality, since those in high activity classes will acquire infection more rapidly 
and hence die more rapidly than those in low activity classes. 

The distribution of sexual activity will therefore change through time as the 
epidemic develops and equations (29)-(31) must be satisfied for all values of 
time t. We will return to this point at a later stage. 

A very simple form of p(i, j)is obtained [which satisfies equations (29 }-(31)] 
if all sexual contacts are within group in character [p(i, i)= 1, p(i, jv~ 1)=0]. 
This has been termed restricted mixing (Jacquez et al., 1988; Anderson, 1989). 
More generally, the idea of restricted mixing is analogous to the notion of 
assortative mating in the fields of behavioural ecology and evolutionary 
biology (Gupta et al., 1990). 

Restricted mixing is unlikely to occur in practice since there are always likely 
to be cross-linkages between activity classes [or, more generally, different at 
risk groups such as male homosexuals and heterosexuals (via bisexual men), 
and intravenous drugs users and the general heterosexual population]. As 
noted earlier, the most widely employed assumption (because of mathematical 
convenience, not correspondence with observed pattern) is that of proportional 
mixing. Here the proportion of sexual contacts of people in class i that are made 
with people in class j is equal to the fraction of total contacts made by the 
population that are due to people in class j. A third option has been termed 
preferred mixing, which is a linear combination of restricted and proportional 
mixing. In this case a fractionf~ of the contacts of people in class i are "reserved" 
for within-class mixing. The remaining contacts are distributed in line with the 
proportional mixing assumption. Restricted, proportional and preferred 
mixing satisfy the constraints defined by equations (29)-(31). 

A fourth, and final, option is complex choice mixing, which is none of the 
above (i.e. proportional, preferred, restricted) but which satisfies equations 
(29)-(31) (Anderson, 1989; Gupta et al., 1990). To illustrate the relationship 
between a network of sexual contacts and the elements of the associated mixing 
matrix [the p(i, j)s], Fig. 6 records a simple example (hypothetical) of contacts 
between three sexual activity classes. The classes denote people with 1, 2 or 3 
different sexual partners per year and contains 10, 5 and 2 individuals 
respectively. Under complex choice mixing, one form of the p(i, j) matrix that 
satisfies equations (29)-(31) is as follows: 

0.4, 0.4, 0.2 ) 

p(i,j) = 0.4, 0.4, 0.2 . 

0.33, 0.33, 0.33 

(32) 

Numerical studies of models for HIV transmission in male homosexual 
communities that incorporate different assumptions concerning the structure 
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PARTNER CHOICE NETWORK 

SEX A C T I V I T Y  CLASS (PARTNERS PER YEAR) 

i PARTNER 2 PARTNERS ~ PARTNERS 

Figure 6. Partner choice network. A simple illustration of a partner choice network 
in which 17 individuals (male homosexuals) are distributed into three sexual activity 
classes (one, two or three partners per year). The network generates the choice 

probability matrix given in equation (32) in the text (Anderson, 1989). 

of the mixing matrix generate very different patterns of temporal change in the 
spread of HIV and the incidence of AIDS (Jacquez et al., 1988; Anderson, 1989; 
Gupta et al., 1990). Proportional mixing does not necessarily generate the 
epidemic of the greatest magnitude (as judged, say, by cumulative cases over a 
defined time period). In general, however, high degrees of within-group mixing 
tend to reduce the overall magnitude of the epidemic. An illustration of this 
point is provided in Fig. 7, in which temporal trajectories of the number of male 
homosexuals infected with HIV, generated by a deterministic transmission 
model (with six sexual activity classes, recruitment of susceptibles, three 
infectious classes and a distributed incubation period), with different mixing 
assumption are displayed. Four trajectories are recorded for proportional 
mixing, restricted mixing (with only the high activity classes 5 and 6 "seeded" 
with infection) and two forms of more complex choice. In complex 1, the matrix 
denotes high within-group contact and very low between-group contact. In 
complex 2, there is high within-group mixing only in the highest activity class 
(6) (see Gupta et al., 1990, for details). Note that complex epidemic curves can 
be generated with multiple peaks in the incidence of infection (HIV) or disease 
(AIDS). These multiple peaks reflect the spread of infection from one activity 
class to another (or risk group, i.e. male homosexuals, heterosexuals and 
intravenous drug users). High within-group mixing can generate an explosive 
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Figure 7. Simulations of temporal trends in the number of male homosexuals 
infected with HIV (population size of 500 000 at t = 0, 4% of the sexually active male 
population in England and Wales between ages of 16 and 46 years). The model 
employed to generate the trajectories is as described in Anderson et al. (1990b) and 
Gupta et al. (1990). The different trajectories record predictions under different 
assumptions concerning the mixing matrix. Four simulations are recorded for 
proportional mixing, restricted mixing and two types of complex mixing (high 

within-class mixing). 

epidemic in the highest sexual activity class where levels of infection rise from 
close to zero to 80% plus in the space of 4 years (as observed in the case of HIV 
in male homosexuals  in San Francisco in the early 1980s). 

This point  is illustrated more clearly in Fig. 8, in which temporal  changes in 
the propor t ion infected with HIV in each activity class are recorded for the 
proport ional  mixing simulation and the complex 1 assumption (high within- 
class mixing) simulation. These patterns are of practical significance with 
respect to the interpretation of current trends of AIDS and HIV infection in 
male homosexual  populat ions in many  developed countries. They caution 
against interpreting the current pattern of decline in the rate of reporting new 
cases of AIDS as necessarily indicating that  the epidemic is close to its peak. 
More precise interpretation of observed trends requires data to guide the 
choice of a suitable structure of the mixing matrix. This would require detailed 
information on networks of sexual contact,  which will be very difficult to 
acquire in practice. 

The above discussion glosses over one major  complicat ion in the 
formulation of dynamic models containing assumptions that  define the 
structure of the mixing matrix. As noted earlier, if the infectious disease induces 
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Figure 8. Temporal changes in the proportion of each of six sexual activity classes 
infected with HIV under the assumption of proportional mixing (top graph) and a 
complex choice matrix (bottom graph, high within-class mixing with classes 5 and 6 
seeded at t = 0) (Gupta et al., 1990). The six sexual activity classes have mean rates of 
sexual partner change set as follows: c(1) = 0.45, c(2)= 3.21, c(3)= 7.03, c(4) = 13.85, 
c(5)=43.22 and c(6)=81.31 (yr-1). The proportions in each class at t=0 were 
0.555, 0.145, 0.105, 0.0825, 0.0725 and 0.04, respectively, for classes 1-6. The overall 

mean rate per annum at t = 0 was 8.7 with variance 802. 

mortality (or lasting immunity to reinfection in cases other than HIV) then the 
distribution of sexual activity will change through time as the epidemic spreads 
and removes more rapidly those in high activity classes when compared with 
those in low activity groups. In these circumstances, as time progresses, it is 
likely that  imbalances will occur between the number of contacts required by 
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one activity class from another, and what are in fact available. When this 
occurs a series of assumptions must be made to ensure that the constraints 
defined in equations (29)-(31) are satisfied at all times during the course of the 
epidemic. In verbal terms we can define the general nature of these assumptions 
under the umbrella of a set of behavioural rules. These rules may be viewed as 
hierarchical in structure where a choice or decision at one level leads to a 
further set of rules to choose between at a lower level. For example, to cope with 
potential imbalances between sexual contacts required by one group and those 
available, we have to decide whether to change the structure of the mixing or 
choice matrix (from its initial state at time t = 0), or to change the mean rates of 
sexual partner change of the different groups to accord with availability, or to 
change both, to meet the constraints of equations (29)-(31). 

Once we have decided on one of the above three options we then have to 
decide precisely how such changes will occur. For instance, if we decide to 
change the group rates of sexual partner change, do those in high activity 
classes change their demand, do those in low activity groups change, or does 
change occur in proportion to the demands of each group? Many possible 
behavioural scenarios are possible, and unfortunately at present, there is little 
data available to guide the choice of one option vs another. The behavioural 
rules are clearly qualitative in character and once an assumption has been 
made, this must be translated into quantitative (algebraic) terms to meet the 
constraints defined in equations (29)-(31). 

Obviously, there are many possible numerical arrangements that will meet 
the constraints under the qualitative umbrella of a chosen set of behavioural 
rules. Data is urgently required in this area, but there is also much scope for 
further theoretical development with respect to the definitions of a spectrum of 
possible assumptions concerning the manner in which imbalances in supply 
and demand are catered for, with the help of a few parameters with clear 
definition in behavioural terms. The literature associated with behavioural 
ecology and evolutionary biology may be of help in this context. 

The problems outlined above are of somewhat greater magnitude and 
complexity once we move to finer stratification of the sexually active 
population. For example, in many developing countries HIV is spread by 
heterosexual contact and, to further complicate matters, there appear to be 
marked differences in rates of sexual partner change by age and sex, and in the 
probability of transmission of the virus from males to females and vice versa. In 
these circumstances we must define a more general sexual partner choice 
function, p(k, i, j, a, a') to denote the proportion of contacts of an individual of 
sex k (male or female), activity class i and age a, that are made with individuals 
of the opposite sex in activity class j and of age a'. Furthermore, the rates of 
sexual partner change must be formulated as functions of sex, k, and age, a, 
--Ci,k(a ). With appropriate notational changes, the constraints defined in 
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equations (29)--(31) still apply, and must be satisfied at all times as the age and 
sex structure of the population changes under the impact of the AIDS epidemic. 

Very little information is available to guide, even in the most qualitative of 
senses, our choice of a suitable mixing matrix and the assumptions to be made 
to deal with imbalances in the supply and demand of sexual partners. In one 
area, however, some information is available. In many societies in sub-Saharan 
African countries males appear, on average, to choose female sexual partners 
younger than themselves. Recent analytical and numerical studies have begun 
to address how such behavioural attitudes of a given population, in 
conjunction with unequal transmission probabilities between the sexes, might 
influence the potential long-term demographic impact of AIDS in Africa 
(Anderson et al., 1990a). 

An illustration of one such numerical study is presented in Fig. 9. Two 
simulations of the projected impact of AIDS in a population of 16.6 million 
people (at time t=0), a 3.8% annual growth rate in the absence of HIV 
infection and a 1:1 sex ratio are recorded. In one, sexual partner choice is 
restricted to within an age class, while in the other males, on average, choose 
female partners younger than themselves. Note that the latter assumption 
results in the greatest demographic impact (all other parameters being the 
same) due to the influence of infection and mortality in young females on the 
net fertility of the population (see Anderson et al., 1990a, for details). As in the 
case of assessing the importance of mixing matrices on the spread of infection in 
male homosexual populations, the problems lie not in model formulation but 
in the choice of behavioural rules and the assignment of values to the elements 
of the five-dimensional choice function. This area of research is likely to be the 
focus of much activity in the coming years. 

4. Spatial heterogeneity. The treatment of spatial heterogeneity in the 
distribution of people in a defined population is in many senses similar to the 
problems outlined above in the context of variability in transmission arising 
from heterogeneity in behaviours that determine contact between susceptible 
and infected persons. Conventional epidemiological models usually assume 
homogeneous spatial mixing, with susceptible and infected individuals 
mingling like the molecules in an ideal gas. In practice, however, spatial factors 
often play an important role in determining the net rate of transmission, 
whether at the fine scale of within and between households at a village level or 
at the broader scale of within and between cities and towns at a countrywide 
scale (May and Anderson, 1984). Mathematical models embodying such 
spatial heterogeneity have been explored by several authors in recent years 
(Hethcote, 1978; Murray and Cliff, 1975; Nold, 1980; Post et al., 1983). A 
simple approach is to consider n groups, with the population in the ith spatial 
location being N i, with births balancing deaths so that all Ni are constant. If we 
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Figure 9. The influence of different patterns of sexual contact between age classes of 
males and females on the predicted demographic impact of HIV-t in a developing 
country (Anderson et al., 1990a). The model incorporates epidemiological and 
demographic processes and the simulations show changes in population size from 
the introduction of HIV-1 at t=0 into a population of 16.6 million people. In the 
absence of HIV the population was set to grow at 4% per annum. The doubling time 
of the epidemic was set at 1.5 years in its yearly stages, the transmission probability 
from males to females was assumed to equal that from females to males, the 
efficiency of vertical transmission was set at 50% with a mean incubation period of 
AIDS of 8 years in adults and 2 years in infants. The two trajectories record 
predicted trends under the assumption of restricted mixing within age classes and a 
mixing pattern in which males, on average, have sexual contacts with females 

younger than themselves (Anderson et al., 1990a). 

define the transmission parameter fl~j to represent the probability that 
infectious individuals in group j will infect a susceptible in spatial location i, 
then the force of  infection in location i, 2 i, is given as 

2i= ~ flliYj (33) 
j=l  

under the Kermack-McKendr ick  "mass-action" assumption.  
One of  the practical problems associated with the spread and persistence of  

directly transmitted infections in spatially heterogeneous populations concerns 
the question of  what is the optimal immunizat ion policy to interrupt 
transmission in the total population.  For example,  is it best to vaccinate greater 
proportions in the densely populated location or is it best to vaccinate equal 
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proportions in all settings? To assess this problem it is important to be clear 
about the meaning of the word optimal. In most practical senses, it is simplest 
to define an optimal schedule as one which minimizes the total number of 
immunizations delivered per unit of time---consistent with the constraint of 
interrupting transmission in all spatial locations in the total population (May 
and Anderson, 1984). 

The eradication criteria for the Kermack-McKendrick model (with 
recruitment of susceptibles and stratified by spatial location) is given by the 
requirement that 

det[Au[ =0. (34) 

Here A u is the n x n matrix whose elements % are 

= [flljNj(1 - pj) _ 6u ] (35) 
au L (v + u) 

where p~ is the fraction of newly born infants in group i that are effectively 
immunized (essentially at birth), 1/v is the average infectious period, 1/# is the 
life expectancy and 6 u = 1 if i =j  and 6i~ = 0 if i :~j (May and Anderson, 1984). 
The fraction of the total population immunized, P, is 

P = ~ p ,N f f~  N~. (36) 

The optimal schedule is that which minimizes the value of P subject to the 
constraints set by equation (34) and the requirement that 1 I> pi ~> 0. 

May and Anderson (1984) have shown that in the case wh~re intragroup 
transmission rates systematically exceed intergroup transmission rates, the 
vaccination coverage required under an optimal population-based programme 
of immunization is lower than would be estimated assuming homogeneous 
mixing within the total population. The principal message emerging from their 
analysis (noting the simplicity of the model employed) is that, all other things 
being equal, attention should be differentially focused on the larger and high 
density groups. In many ways this conclusion is analogous to the message that 
emerges from heterogeneous mixing models of the transmission dynamics of 
sexually transmitted infections. The greatest impact with respect to slowing the 
spread of infection results if education to change sexual behaviour (e.g. rates of 
sexual partner change) is targeted at the groups with the highest levels of sexual 
activity (May and Anderson, 1987; Anderson and May, 1988; Anderson et al., 
1990b). 

5. Genetic heterogeneity. Although age-related, spatial and behavioural 
heterogeneities in host populations have received increasing attention in recent 
years, genetic heterogeneity--whereby some hosts may be more or less 
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resistant to infection than others--is a relatively neglected area in mathe- 
matical epidemiology. Those developments that have taken place in recent 
years tend to  fall into two distinct areas. 

The first concerns the importance of significantly different degrees of 
intrinsic susceptibility to infection among different host genotypes to the design 
of immunization programmes. As shown by Anderson and May (1984), such 
factors can seriously complicate the estimation of eradication criteria. In some 
sense the problem is linked to that of age-related changes in the rate of 
transmission. Observed patterns of change in this rate (see Fig. 3) show a 
decline in older age classes. This could rise either as a consequence of reduced 
contact between individuals or reduced susceptibility to infection as a 
consequence of increased age, or it could alternatively be that such apparent 
decline is simply because the relatively more susceptible genotypes have largely 
been infected at a much earlier age. If this is the case, then estimates of p (the 
eradication criterion) based on pre-immunization values of age-specific rates of 
infection will be too optimistic. As overall infection rates decline under an 
immunization programme, an increasing number of relatively more susceptible 
genotypes will move into the older age classes of susceptibles. A simple example 
illustrates the significance of this to the estimation of the critical level of 
vaccination, p, required to block transmission. In the context of the simple 
Kermack-McKendrick model we assume that the population (of size N) 
consists of a fixed proportion (1 - f )  of genotype A which is less resistant to a 
particular infection than is the remaining fraction f who are of genotype B. 
Specifically the transmission rate for susceptibles of genotype A is flA and for 
genotype B is fiB; we write flA = fl and fib = ~fl, where e < 1. 

The eradication criterion for this model is given by 

p > 1 - v/I-fiN[ 1 - f ( 1  - e)]]. (37) 

This condition is similar to that defined in equation (11) for a genetically 
homogeneous population, and reduces exactly to equation (11) when f - 0  and 

- 1. The important point with respect to this criterion [equation (37)1 is that if 
the apparent change in the force of infection (apparent in the sense that it is due 
to genetic heterogeneity as opposed to behavioural factors) is used to estimate 
the value of p we can arrive at an underestimate of the value that would be 
derived on the basis of a knowledge of genetic variation in susceptibility to 
infection (Anderson and May, 1984). The important practical issue to emerge 
from this type of analysis is that great care should be taken in ascertaining 
whether age-related changes in the observed rate of infection (derived from age- 
stratified profiles) arise as a result of genetic factors or the behavioural 
processes that influence the rate of contact between susceptible and infecteds. 
One approach to resolving this issue is to try to ascertain (i.e. by HLA typing) if 
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those seronegative (i.e. those who have not apparently experienced infection) in 
older age classes are genetically different from those who have experienced the 
infection. 

The second area in which the model of Kermack and McKendrick has been 
developed to assess genetic factors concerns attempts to meld the theories of 
infectious disease transmission and population genetics to monitor changes in 
host population abundance (i.e. of susceptibles and infecteds) and gene 
frequences (see May and Anderson, 1983). Of particular importance in this 
context is the use of models of transmission dynamics in the derivation of 
genetic fitness functions that capture both frequency- and density-dependent 
processes. Much of the recent work has centred only on frequency-dependent 
effects (see Gillespie, 1975) but the Kermack-McKendrick framework can be 
developed to consider a system with population abundance and gene frequency 
changes. 

For example, consider a host population in which two alleles (A and a) at a 
single locus determine susceptibility to different genetic strains of a haploid 
parasite. For a diploid host there will now be three genotypes of susceptibles, 
X~, labelled by the subscript i (i = 1, 2, 3 for AA, Aa, aa genotypes respectively). 
If the pathogen is haploid, there will be a population of hosts of genotype i 
infected with parasite genotype s (s = 1, 2), which are denoted by Y~,~ (assuming 
that concurrent infections cannot occur). Hence the total host population, 
N(t), is obtained by summing over these nine subpopulations. 

N= Z X, + E Y~,~ �9 (38) 
i=1 s=l  

The generalization of the Kermack-McKendrick equations (1)-(3) gives: 

dXi/dt=aN(1-N/K)+Oi-biXi-Xi[~j ~sfli,j,sYj,s] (39) 

d Yi,s/dt = X i ~ ~i,j,s Yj,s - -  (hi "~ ~ Yi,s. 
J 

(40) 

Here b i is the disease-free death rate ofgenotype i, ~i,s the disease-induced death 
rate of genotype i infected with parasite strain s (hosts are assumed not to 
recover from infection), and fll.j,s is the transmission coefficient for infection of 
host genotype i with parasite strain s by an infected host ofgenotypej. The birth 
rate is assumed to be logistic in form with the subscript + denoting that the 
birth rate is zero for N >  K. Random mating is assumed, so that newly born 
susceptibles are approportioned among the three genotyes in the proportions 
Oi=p 2, 2pq, q2 (q= 1 - p )  for i=  1, 2, 3 respectively. The gene frequency p of 
gene A is clearly 
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p = [X~ + �89 z + E(Yx,, + �89 Y2,~)]/N. (41) 

The study of equations (39) and (40) is a formidable task but some progress has 
been made by May and Anderson (1983), Beck (1984) and Beck et al. (1984). In 
a particularly elegant study, Beck (1984) has shown that to an excellent 
approximation the system of nine equations can be reduced to just two 
differential equations for p and q given certain constraints on parameter values. 
She showed that the system can exhibit fixation of either a particular parasite 
genotype or a particular host genotype, or both, or can exhibit stable limit 
cycles. The outcome tends to depend on the trade-offs between transmissibility 
and virulence for the parasite. Of particular interest is the ability of the system, 
for certain domains of parameter space, to show widely changing gene 
frequencies through time in a population of relatively constant size. Recently, 
similar patterns have been demonstrated for a model of macroparasite 
transmission in host communities, where selection induced by host immune 
defences or drug application acts on different parasite genotypes (Anderson et 
al., 1990b). One moral from these studies is that relatively simple models that 
incorporate frequency- and density-dependent processes, in a framework that 
takes account of population abundance and gene frequency changes, can 
exhibit very complicated patterns of non-linear behaviour. The modelling of 
population genetic and epidemiological theory is an important priority for 
future research on infectious disease transmission. The major problem lies in 
the need to simplify large systems of coupled equations with many parameters 
to simpler systems (amenable to analytic study) without the loss of biological 
detail. 

Conclusions. The choice of topics covered in this article is broad, but not in 
any sense comprehensive with respect to the development of epidemic theory 
since the publication of the Kermack-MeKendrick papers. Many areas of 
great interest have been omitted, not via any prejudice, but simply because of 
the limitations of space. One in particular, namely the development of 
stochastic models of epidemic processes, is of obvious importance with respect 
to the notions of threshold theorems and infectious disease persistence in 
communities of people. A very thorough treatment of this area is given in the 
book by Bailey (1975) and more recent developments are discussed by Ball 
(1983). Chance events in the chain of contacts between susceptibles and 
infecteds are clearly of importance in determining the likelihood of a major 
epidemic developing, particularly in small communities. Similarly, with respect 
to large communities, oscillatory fluctuation in incidence within recurrent 
epidemic cycles can result in "disease" fade out in communities below a certain 
size (and with low net birth rates) during the inter-epidemic phases. For 
example, this factor underpins the observation that the measles virus only 



DISCUSSION: EPIDEMIOLOGY 29 

tends to persistence endemically (with recurrent cycles in incidence) in 
communities of a certain total size (roughly, between 300 000 and 500 000 
people; see Bartlett, 1957; Black, 1966). In addition to the problems of 
persistence, stochastic models have an obvious role in the development of 
methods for parameter estimation (i.e. the incubation and infectious periods) 
and in understanding the frequency and perpetuation of epidemic cycles in 
disease incidence (Becker, 1989). 

The major aim of this present review has been to highlight recent 
developments of the deterministic theory, with particular emphasis on the 
treatment and significance of various forms of heterogeneity in the transmis- 
sion process. There are many similarities in the way in which the basic 
Kermack-McKendrick framework is further compartmentalized to handle 
spatial, behavioural and genetic heterogeneity. This is especially apparent in 
the definition of the transmission coefficient, fl, with respect to contact within 
and between different groups or classes in the total population (whether based 
on age, genotype, behavioural activity or spatial location). This coefficient can 
be partitioned into two separate components--one representing the likelihood 
of transmission following contact between a susceptible and an infected and the 
second denoting the probability of contact between individuals in different 
groups. The latter component is of particular interest at present, in the context 
of sexually transmitted infections such as HIV. The structure of the choice or 
contact function, which represents the probability of contact between different 
groups, has a major impact on the behaviour of any given model. This general 
observation highlights the need for better empirical studies on human (or host) 
behaviours that influence transmission events. In the case of HIV this implies 
sexual behaviour, which is a particulary difficult area for scientific study. Much 
research of an anthropological nature has examined human sexual behaviour 
but rather little of the published work is sufficiently quantitative in character to 
aid in model construction and parameter estimation. It is often argued that 
such behavioural patterns are impossible to quantify, on the grounds of 
varying understanding between individuals of the precise meanings of the 
terms that are often used in survey questionnaires to specify a particular type of 
behaviour (e.g. penetrative sexual intercourse, oral sex, etc.). In addition there 
are the obvious problems associated with assessing the accuracy, or 
truthfulness, of a person's responses to survey questions. However, these 
difficulties should not detract from the urgent need to acquire such information 
if a better understanding is required of the processes that shape infectious 
disease persistence and spread. In any field of research, a start must be made 
somewhere in data collection. What is required in the early stages of 
behavioural work in epidemiology is a clear appreciation of the limitations of 
the information and, concomitantly, great caution in the interpretation of 
recorded patterns. 
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