Skip to main content
Log in

Qualitative modeling of mechanoelectrical feedback in a ventricular cell

  • Published:
Bulletin of Mathematical Biology Aims and scope Submit manuscript

Abstract

Mechanical changes in the heart muscle can influence its electrical properties through a process called mechanoelectrical feedback (MEF). This feedback can operate via changes in calcium dynamics during the cross-bridge cycle or via mechanosensitive (stretch-activated) channels. We present a four-variable ordinary differential equation (ODE) system that caricatures the electrical and mechanical activity of a ventricular cell and their mutual interactions. A three-variable excitable system with restitution properties of the FitzHugh-Nagumo type is coupled to a fourth equation which describes changes in cell length during a lightly loaded contraction. The resulting four-variable system models MEF in a cell and can be incorporated into spatially distributed models for mechanoelectric behavior during wave propagation in the cardiac tissue.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  • Aliev, R. and A. Panfilov. 1996. A simple two-variable model of cardiac excitation.Chaos Solitons Fractals 7, 293–301.

    Article  Google Scholar 

  • Attali, B. 1996. A new wave for heart rhythms.Nature 384, 24–25.

    Article  Google Scholar 

  • Bass, B. 1975. Restitution of the action potential in cat papillary muscle.Am. J. Physiol. 228, 1717–1724.

    Google Scholar 

  • Ben-Tabou, S., E. Keller and I. Nussinovitch. 1994. Mechanosensitivity of voltage gated calcium currents in rat anterior pituiary cells.J. Physiol. 476, 29–39.

    Google Scholar 

  • Bennett, P., K. Yazawa, N. Makita and A. George. 1995. Molecular mechanism for an inherited cardiac-arrhythmia.Nature 376, 683–685.

    Article  Google Scholar 

  • Biktashev, V. and A. Holden. 1996. Reentrant activity and its control in a model of mammalian ventricular tissue.Proc. R. Soc. Lond. Ser. B 263, 1373–1382.

    Google Scholar 

  • Boyett, M. and B. Jewell. 1978. A study of the factors responsible for rate-dependent shortening of the action potential in mammalian ventricular muscle.J. Physiol. 285, 359–380.

    Google Scholar 

  • Curran, M., I. Splawski, K. Timothy, G. Vincent, E. Green and M. Keating. 1995. A molecular basis for cardiac arrhythmia: HERG mutations cause long QT syndrome.Cell 80, 795–803.

    Article  Google Scholar 

  • Day, K., A. Varghese, D. Noble and P. Kohl. 1996. Mechanical modulation of ion channel opening and intracellular calcium handling in a cardiomyocyte model: diastolic and systolic consequences.Journal of Physiology 497.P, 5P-6P.

    Google Scholar 

  • Doedel, E. 1986. AUTO:Software for Continuation and Bifurcation Problems in Ordinary Differential Equations. Pasadena, CA.

  • Elzinga, G., M. Lab, M. Noble, D. Papadoyannis, J. Pidgeon, A. Seed and B. Wohlfart. 1981. The action-potential duration and contractile response of the intact heart related to the preceding interval and the preceding beat in the dog and cat.J. Physiol. 314, 481–500.

    Google Scholar 

  • FitzHugh, R. 1961. Impulses and physiological states in theoretical models of nerve membrane.Biophys. J. 1, 445–466.

    Article  Google Scholar 

  • Franz, M. 1995. Stretch-activated arrhythmias. InCardiac Electrophysiology—From Cell to Bedside, D. Zipes and J. Jalife (Eds). Philadelphia: W. B. Saunders, pp. 597–606.

    Google Scholar 

  • Franz, M. 1996. Mechano-electrical feedback in ventricular myocardium.Cardiovasc. Res. 32, 15–24.

    Article  Google Scholar 

  • Hindmarsh, J. and R. Rose. 1982. A model of the nerve impulse using two first-order differential equations.Nature 296, 162–164.

    Article  Google Scholar 

  • Hodgkin, A. and A. Huxley. 1952. A quantitative description of membrane current and its application to conduction and excitation in nerve.J. Physiol. 177, 500–544.

    Google Scholar 

  • Hunter, P., M. Nash and G. Sands. 1997. Computational electro-mechanics of the heart. InComputational Biology of the Heart. A. V. Panfilov and A. V. Holden (Eds). New York: Wiley; pp. 345–407.

    Google Scholar 

  • Huxley, A. and R. Simmons. 1971. Proposed mechanism of force generation in striated muscle.Nature 233, 533–538.

    Article  Google Scholar 

  • Hyde, J., R. Winslow and J. Rice. 1997. Theoretical studies of effect of stretch activated currents in carrdiac cell models: two-dimensional networks.J. Theoret. Biol.

  • Kobayashi, Y. E. 1992. Cellular mechanisms of differential action potential duration restitution in canine ventricular muscle cells during single versus double premature stimuli.Circulation 86, 955–967.

    Google Scholar 

  • Kogan, B., W. Karplus, B. Billett, A. Pang, H. Karagueuzian and S. Khan. 1991. The simplified FitzHugh-Nagumo model with action potential duration restitution: effects on 2D wave propagation.Physica D 50, 327–340.

    Article  MATH  Google Scholar 

  • Kohl, P. 1995. Mechano-electric feedback: impact on heart rhythm.Futura 4, 240–252.

    Google Scholar 

  • Kohl, P. and D. Noble. 1996. Mechanosensitive connective tissue: potential influence on heart rhythm.Cardiovasc. Res. 32, 62–68.

    Article  Google Scholar 

  • Kruta, V. and P. Bravený. 1960. Potentiation of contractility in the heart muscle of the rat and some other mammals.Nature 187, 327–328.

    Article  Google Scholar 

  • Kubíček, M. and M. Marek. 1983.Computational Methods in Bifurcation Theory and Dissipative Structures. New York: Springer-Verlag.

    MATH  Google Scholar 

  • Lab, M. 1978. Mechanically dependent changes in action potentials recorded from the intact frog ventricle.Circ. Res. 42, 519–528.

    Google Scholar 

  • Lab, M. 1996. Mechanoelectric feedback (transduction) in heart: concepts and implications.Cardiovas. Res. 32, 3–14.

    Article  Google Scholar 

  • Lab, M., D. Allen and C. Orchard. 1984. The effects of shortening on myoplasmic calcium concentration and on the action potential in mammalian ventricular muscle.Circ. Res. 55, 825–829.

    Google Scholar 

  • Lab, M. and A. V. Holden. 1991. Mechanically induced changes in electrophysiology: implication for arrhythmia and theory. InTheory of the Heart, L. Glass, P. Hunter and A. McCulloch (Eds). New York: Springer, pp. 561–581.

    Google Scholar 

  • Lab, M., P. Taggart and F. Sachs. 1996. Special issue: Spotlight on mechano-electrical feedback.Cardiovasc. Res. 32.

  • Langton, P. 1993. Calcium channel currents recorded from isolated myocytes of rat basilar artery are stretch sensitive.J. Physiol. 471, 1–11.

    Google Scholar 

  • Morgan, J., D. Cunningham and E. Rowland. 1992. Electrical restitution in the endocardium of the intact human right ventricle.Br. Heart J. 67, 42–46.

    Google Scholar 

  • Murphy, C., S. Horner, D. Dick, B. Coen and M. Lab. 1996. Electrical alternans and the onset of rate-induced pulsus alternans during acute regional ischaemia in the anaesthetised pig heart.Cardiovasc. Res. 32, 138–147.

    Article  Google Scholar 

  • Murray, J. 1993.Mathematical Biology, 2nd ed. New York: Springer-Verlag.

    MATH  Google Scholar 

  • Nazir, S. and M. Lab. 1996a. Mechanoelectric feedback and atrial arrhythmias.Cardiovasc. Res. 32, 52–61.

    Article  Google Scholar 

  • Nazir, S. and M. Lab. 1996b. Mechanoelectric feedback in the atrium of the isolated guinea-pig heart.Cardiovasc. Res. 32, 112–119.

    Article  Google Scholar 

  • Noble, M. and W. Seed (Eds). 1992.The Interval-Force Relationship of the Heart: Bodwitch Revisited. New York: Cambridge University Press.

    Google Scholar 

  • Oxsoft. 1994.Oxsoft Heart Program Manual, v. 4.4.

  • Panfilov, A. 1997. Modeling of re-entrant patterns in an anatomical model of the heart. InComputational Biology of the Heart, A. V. Panfilov and A. V. Holden (Eds). New York: Wiley.

    Google Scholar 

  • Panfilov, A. and A. Holden. 1993. Computer-simulation of reentry sources in myocardium in 2 and 3 dimensions.J. Theoret. Biol. 161, 271–285.

    Article  Google Scholar 

  • Panfilov, A. and J. Keener. 1995. Reentry in 3-dimensional FitzHugh-Nagumo medium with rotational anisotropy.Physica D 84, 545–552.

    Article  MATH  Google Scholar 

  • Reiter, M. 1996. Effects of mechano-electrical feedback: potential arrhythmogenic influence in patients with congestive heart failure.Cardiovasc. Res. 32, 44–51.

    Article  Google Scholar 

  • Rinzel, J. 1985. Excitation dynamics: insights from simplified membrane models.Fed. Proc. 44, 2944–2946.

    Google Scholar 

  • Sachs F. 1991. Mechanical transduction by membrane ion channels: mini review.Mol. Cell. Biochem. 104, 57–60.

    Article  Google Scholar 

  • Sasaki, N., T. Mitsiuye and A. Noma. 1992. Effects of mechanical stretch on membrane currents of single ventricular myocytes of guinea-pig heart.Jpn. J. Physiol. 42, 957–970.

    Article  Google Scholar 

  • Smith, D. and S. Sicilia. 1987. The theory of sliding filament models for muscle contraction: I. The two-state model.J. Theoret. Biol. 127, 1–30.

    Article  MathSciNet  Google Scholar 

  • Taggart, P. 1996. Mechano-electric feedback in the human heart.Cardiovasc. Res. 32, 38–43.

    Article  Google Scholar 

  • Taggart, P., P. Sutton, M. Boyett, M. Lab and H. Swanton. 1996. Human ventricular action potential duration during short and long cycles: rapid modulation by ischemia.Circulation 94, 2526–2534.

    Google Scholar 

  • Taggart, P., P. Sutton, R. John, M. Lab and H. Swanton. 1992. Monophasic action potential recordings during acute changes in ventricular loading induced by the Valsalva manoeuvre.Br. Heart. J. 67, 221–229.

    Google Scholar 

  • Taggart, P., P. Sutton, T. Treasure, M. Labet al. 1988. Monophasic action potentials at discontinuation of cardiopulmonary bypass: evidence for contraction-excitation feedback in man.Circulation 77, 1266–1275.

    Google Scholar 

  • Tande, P., E. Mortensen and H. Refsum. 1991. Rate-dependent differences in dog epi- and endocardial monophasic action potential configuration in vivo.Am. J. Physiol. 261, H1387-H1391.

    Google Scholar 

  • Tseng, G. 1995. Potassium channels: their modulation by drugs. InCardiac Electrophysiology —From Cell to Bedside, D. Zipes and J. Jalife (Eds). Philadelphia: W. B. Saunders.

    Google Scholar 

  • Van Capelle, F. and D. Durrer. 1980. Computer simulation of arrhythmias in a network of coupled excitable elements.Circ. Res. 47, 454–466.

    Google Scholar 

  • Van Wagoner, D. 1993. Mechanosensitive gating of atrial ATP-sensitive potassium channels.Circ. Res. 72, 973–983.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Knudsen, Z., Holden, A.V. & Brindley, J. Qualitative modeling of mechanoelectrical feedback in a ventricular cell. Bltn Mathcal Biology 59, 1155–1181 (1997). https://doi.org/10.1007/BF02460106

Download citation

  • Received:

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF02460106

Keywords

Navigation