Skip to main content
Log in

Evolution of shape in oligocene and mioceneNotocarinovalva (Ostracoda, Crustacea): A multivariate statistical study

  • Published:
Bulletin of Mathematical Biology Aims and scope Submit manuscript

Abstract

Largely due to L. F. Bookstein, geometric morphometrics has been developed as an amalgamation of techniques drawn from mathematical statistics, non-Euclidean geometry and computer graphics, applied to labelled points (landmarks) and the biological images upon which they are registered. A tool of fundamental importance is the method of interpolation known as the thin-plate spline. Bookstein's sample-oriented procedure of relative warps, applied to data composed of coordinate pairs observed on eight landmarks on three samples of two species of fossil marine ostracods (bivalved microcrustacean),Notocarinovalva airella andN. yulecartensis, separated in time, is used to obtain weight matrices, which, when appropriately partitioned, constitute the familiar data matrices of multivariate statistical analysis. Standard multivariate statistical analysis of samples may be carried out in the tangent space to shape space at the Procrustes average shape. Linear discriminant function scores were used for assessing, approximately, the evolutionary relevance of shape change and change in size (based on standard distance measures) in the species from the upper and lower Oligocene and lower middle Miocene of Victoria, Australia. The findings indicate that a small, though consistent, change in non-uniform shape of the carapace has taken place. The analysis indicates that the evolution in shape of the carapace could have been caused by random genetic drift in moderately large populations, tempered by weak selection.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  • Berthelon, L. 1994. Les hétérochronies du développement chez les ostracodes. Thèse pour le diplôme de Doctorat à l'Université Montpellier II, Octobre 1994.

  • Blackith, R. E. and R. A. Reyment. 1971.Multivariate Morphometrics. Academic Press: London.

    Google Scholar 

  • Bookstein, F. L. 1987. Random walk and the existence of evolutionary rates.Paleobiology 13, 446–464.

    Google Scholar 

  • Bookstein, F. L. 1989. Principal warps: the thin-plate spline and the decomposition of deformations.IEEE Trans. Pattern Anal. Machine Intelligence 11, 567–585.

    Article  MATH  Google Scholar 

  • Bookstein, F. L. 1991.Morphometric Tools for Landmark Data: Geometry and Biology. New York: Cambridge University Press.

    Google Scholar 

  • Bookstein, F. L. 1995. The morphometric synthesis for landmarks and edge-elements in images.Terra Nova 7, 393–407.

    Google Scholar 

  • Bookstein, F. L. 1996. Combining the tools of geometric morphometrics. InProceedings of NATO Advanced Study Institute on Morphometrics (Il Ciocco, Italy, 1993), L. F. Marcuset al. (Eds).

  • Bookstein, F. L. and R. A. Reyment. 1989. Microevolution in MioceneBrizalina (Foraminifera) studied by canonical variate analysis and the analysis of landmarks.Bull. Math. Biol. 51, 657–679.

    Google Scholar 

  • Bulmer, M. G. 1980.The Mathematical Theory of Quantitative Genetics. London: Oxford University Press.

    Google Scholar 

  • Burnaby, T. P. 1966. Growth invariant discriminant functions and generalized distances.Biometrics 22, 96–110.

    Article  MATH  MathSciNet  Google Scholar 

  • Cheetham, A. H., J. B. C. Jackson and L. C. Hayek. 1993. Quantitative genetics of bryozoan phenotypic evolution. 1. Rate tests for random change versus selection in differentiation of living species.Evolution 47, 1526–1538.

    Article  Google Scholar 

  • Cheverud, J. M. 1988. A comparison of genetic and phenotypic correlations.Evolution 42, 958–968.

    Article  Google Scholar 

  • Ducasse, O. and L. Rousselle. 1979.Les Hammatocythere (ostracodes) de l'Oligocène aquitain.Bull. Inst. Géol. Bassin Aquitaine 25, 221–255.

    Google Scholar 

  • Duchon, J. 1976. Interpolation des fonctions de deux variables suivant la principe de la flexion des plaques minces.RAIRO Model. Math. Anal. Numér. 10, 5–12.

    MathSciNet  Google Scholar 

  • Falconer, D. S. 1981.Introduction to Quantitative Genetics, 2nd rev. ed. New York: Longmans.

    Google Scholar 

  • Gower, J. C. 1971. Statistical methods of comparing different multivariate analyses of the same data, InMathematics in the Archaeological and Historical Sciences, F. R. Hodson, D. G. Kendall and P. Tautu (Eds), pp. 138–149. Edinburgh: Edinburgh University Press.

    Google Scholar 

  • Haldane, J. B. S. 1949. Suggestions as to the quantitative measurement of rates of evolution.Evolution 3, 51–56.

    Article  Google Scholar 

  • Hartl, D. L. 1980.Principles of Population Genetics. Sunderland, MA: Sinauer.

    Google Scholar 

  • Havel, J. E., O. D. N. Hebert and L. D. Delorme. 1990. Genetics of sexual Ostracoda from a low Arctic site.J. Evol. Biol. 3, 65–84.

    Article  Google Scholar 

  • Hegmann, W. J. P. and J. C. De Vries. 1970. Are genetic and environmental correlations correlated?Nature 220 284–285.

    Article  Google Scholar 

  • Jolicoeur, P. 1963. The degree of generality of robustness inMartes americana.Growth 27, 1–27.

    Google Scholar 

  • Klein, F. 1925.Elementarmathematik vom höheren Standpunkt aus, Vol. II. Berlin: Verlag Julius Springer.

    Google Scholar 

  • Lande, R. 1976. Natural selection and random genetic drift in phenotypic evolution.Evolution 30, 314–334.

    Article  Google Scholar 

  • Lande, R. 1979. Quantitative genetic analysis of multivariate evolution, applied to brain: body size allometry.Evolution 33, 402–416.

    Article  Google Scholar 

  • Lande, R. 1980. The genetic covariance between characters maintained by pleiotropic evolution.Genetics 94, 203–215.

    Google Scholar 

  • Manly, B. F. J. 1985.The Statistics of Natural Selection. London: Chapman and Hall.

    Google Scholar 

  • McKenzie, K. G., R. A. Reyment and E. R. Reyment. 1991. Eocene-Oligocene Ostracoda from South Australia and Victoria, Australia.Revista Española de Paleontología 6, 135–175.

    Google Scholar 

  • Mourant, A. E., A. C. Kopec and K. Domaniewska-Sobczak. 1976.The Distribution of Human Blood Groups and Other Polymorphisms. London: Oxford University Press.

    Google Scholar 

  • Neil, J. V. 1994. Miocene Ostracoda of the Trachyleberididae and Hemicytheridae from the Muddy Creek area, south-western Victoria.Mem. Museum Victoria 54, 1–49.

    Google Scholar 

  • Penrose, L. S. 1954. Distance, size and shape.Annals of Eugenics 18, 337–343.

    Google Scholar 

  • Rao, C. R. 1952.Advanced Statistical Methods in Biometric Research. New York: Wiley.

    Google Scholar 

  • Rao, C. R. 1966. Discriminant functions between composite hypotheses and related problems.Biometrika 53, 339–345.

    Article  MATH  MathSciNet  Google Scholar 

  • Reyment, R. A. 1980.Morphometrical Methods in Biostratigraphy. London: Academic Press.

    Google Scholar 

  • Reyment, R. A. 1982a. Phenotypic evolution in a Cretaceous foraminifer.Evolution 36, 1182–1199.

    Article  Google Scholar 

  • Reyment, R. A. 1982b. Analysis of transspecific evolution in Cretaceous ostracods.Paleobiology 8, 293–306.

    Google Scholar 

  • Reyment, R. A. 1983. Phenotypic evolution in microfossils.Evolutionary Biology 16, 209–254.

    Google Scholar 

  • Reyment, R. A. 1991.Multidimensional Palaeobiology. London: Pergamon Press. (Includes an Appendix by L. F. Marcus.)

    Google Scholar 

  • Reyment, R. A. and K. G. Jöreskog. 1993.Applied Factor Analysis in the Natural Sciences. New York: Cambridge University Press. (Includes an Appendix by L. F. Marcus.)

    Google Scholar 

  • Reyment, R. A., R. E. Blackith and N. A. Campbell. 1984.Multivariate Morphometrics, 2nd ed. London: Academic Press.

    Google Scholar 

  • Rohlf, F. J. 1993. Relative warp analysis and an example of its application to mosquito wings. InContributions to Morphometrics, L. F. Marcus, E. Bello and A. García Valdecasas (Eds), pp. 131–159. Monografias, Museo Nacional de Ciencias Naturales, Madrid.

    Google Scholar 

  • Rohlf, F. J. and D. Slice. 1990. Extensions of the Procrustes method for the optimal superimposition of landmarks.Systematic Zoology 39, 40–59.

    Article  Google Scholar 

  • Teissier, G. 1938. Un essai d'analyse factorielle. Les variants sexuels deMaia squinada.Biotypologie 7, 73–96.

    Google Scholar 

  • Theisen, B. F. 1966. The life history of seven species of ostracods from Danish brackish water localities.Medd. fra Danmarks Fiskeri og Havsunders (Copenhagen) N.S. 4, 215–270.

    Google Scholar 

  • Thompson, D. W. 1917.On Growth and Form. New York: Cambridge University Press.

    Google Scholar 

  • Wright, S. 1931. Evolution in Mendelian populations.Genetics 16, 97–159.

    Google Scholar 

  • Wright, S. 1932. General, group and special size factors.Genetics 17, 603–619.

    Google Scholar 

  • Wright, S. 1968.Evolution and Genetics of Populations. I. Genetic and Biometric Foundations. Chicago: University of Chicago Press.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Reyment, R.A. Evolution of shape in oligocene and mioceneNotocarinovalva (Ostracoda, Crustacea): A multivariate statistical study. Bltn Mathcal Biology 59, 63–87 (1997). https://doi.org/10.1007/BF02459471

Download citation

  • Received:

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF02459471

Keywords

Navigation