Skip to main content
Log in

Adaptive superparasitism and host-parasitoid dynamics

  • Published:
Bulletin of Mathematical Biology Aims and scope Submit manuscript

Abstract

We consider a host-solitary parasitoid system with three categories of individuals: parasitoids, healthy hosts and parasitized hosts. Parasitoids are assumed to discriminate perfectly between the two kinds of hosts and they can reject those which are already parasitized. If parasitoids systematically accept or reject superparasitism or behave randomly, the system is always unstable. Using an optimal foraging model, we determine the behavior of parasitoids which leads to maximization of the instantaneous reproductive rate. When following this adaptive decision rule, parasitoids accept or refuse superparasitism according to the densities of both healthy and parasitized hosts. We study the dynamics of the system when parasitoids follow the optimal rule and show that under certain conditions it possesses a locally stable equilibrium point. In addition, our model predicts that at equilibrium parasitoids show partial preferences for superparasitism.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  • Bakker, K., J. J. M. van Alphen, F. H. D. van Battenburg, N. van der Hoeven, H. Nell, W. T. F. H. van Strien-van Liempt and T. J. Turlings. 1985. The function of host discrimination and superparasitism in parasitoids.Oecologia 67, 572–576.

    Article  Google Scholar 

  • Chesson, P. L. and W. W. Murdoch. 1986. Aggregation of risk: relationship among host-parasitoid models.American Naturalist 127, 696–715.

    Article  Google Scholar 

  • Colombo, R. and V. Křivan. 1993. Selective strategies in food webs.IMA Journal of Mathematics Applied in Medicine and Biology 10, 281–291.

    MATH  Google Scholar 

  • Comins, H. N. and M. P. Hassell. 1979. The dynamics of optimally foraging predators and parasitoids.Journal of Animal Ecology 48, 335–351.

    Article  Google Scholar 

  • Driessen, G. and M. E. Visser. 1993. The influence of adaptive foraging decisions on spatial heterogeneity of parasitism and parasitoid population efficiency.Oikos 67, 209–217.

    Google Scholar 

  • Filippov, A. F. 1988.Differential Equations with Discontinuous Right Hand Sides. Dordrecht: Kluwer.

    MATH  Google Scholar 

  • Godfray, H. C. J. 1994.Parasitoids: Behavioural and Evolutionary Ecology. Princeton: Princeton University Press.

    Google Scholar 

  • Godfray, H. C. J. and S. W. Pacala. 1992. Aggregation and population dynamics of parasitoids and predators.American Naturalist 140, 30–40.

    Article  Google Scholar 

  • Hassell, M. P. and R. M. May. 1973. Stability of insect host-parasite models.Journal of Animal Ecology 42, 693–726.

    Article  Google Scholar 

  • Hassell, M. P. and G. C. Varley. 1969. New inductive population model for insect parasites and its bearing on biological control.Nature 223, 1133–1137.

    Article  Google Scholar 

  • Holling, C. S. 1959. Some characteristics of simple types of predation and parasitism.Canadian Entomologist 91, 385–398.

    Article  Google Scholar 

  • Iwasa, Y., Y. Suzuki and H. Matsuda. 1984. Theory of oviposition strategy in parasitoids. I. Effect of mortality and limited egg number.Theoretical Population Biology 26, 205–227.

    Article  MATH  MathSciNet  Google Scholar 

  • Janssen, A. 1989. Optimal host selection byDrosophila parasitoids in the field.Functional Ecology 3, 469–479.

    Article  Google Scholar 

  • Kraaijeveld, A. R. and J. J. M. van Alphen. 1986. Host-stage selection and sex allocation byEpidinocarsis lopezi (Hymenoptera; encyrtidae), a parasitoid of the cassava mealybug,Phenacoccus manihoti (Homoptera; pseudococcidae).Med. Fac. Landbouww. Rijksuniv. Gent. 51, 1067–1078.

    Google Scholar 

  • Krebs, J. R. and R. H. McCleery. 1984. Behavioural adaptations and life history. InBehavioural Ecology, an Evolutionary Approach, J. R. Krebs and N. B. Davies (Eds), pp. 91–121. Oxford: Blackwell.

    Google Scholar 

  • Krebs, J. R., J. T. Erichsen, M. I. Webber and E. L. Charnov. 1977. Optimal prey selection in the great tit (Parus major).Animal Behaviour 25, 30–38.

    Article  Google Scholar 

  • Křivan, V. 1996. Optimal foraging and predator-prey dynamics.Theoretical Population Biology 49, 265–290.

    Article  MATH  Google Scholar 

  • Křivan, V. 1997. Dynamic ideal free distribution: effects of optimal patch choice on predator-prey dynamics.American Naturalist 149, 164–178.

    Article  Google Scholar 

  • Křivan, V. and E. Sirot. 1996. Searching for food or hosts: the influence of individual behaviour on host-parasitoid dynamics.Theoretical Population Biology, to appear.

  • Lea, S. E. G. 1979. Foraging and reinforcement schedules in the pigeon: optimal and non-optimal aspects of choice.Animal Behaviour 27, 875–886.

    Article  Google Scholar 

  • Mangel, M. 1989a. An evolutionary interpretation of the “motivation to oviposit.”Journal of Evolutionary Biology 2, 157–172.

    Article  Google Scholar 

  • Mangel, M. 1989b. Evolution of host selection in parasitoids: does the state of the parasitoid matter?American Naturalist 133, 688–705.

    Article  Google Scholar 

  • Mangel, M. and B. Roitberg. 1992. Behavioral stabilization of host-parasite population dynamics.Theoretical Population Biology 42, 308–320.

    Article  MATH  Google Scholar 

  • McNamara, J. M. and A. I. Houston. 1987. Partial preferences and foraging.Animal Behaviour 35, 1084–1099.

    Article  Google Scholar 

  • Murdoch, W. W. and A. Stewart-Oaten. 1975. Predation and population stability.Advances in Ecological Research 9, 1–131.

    Article  Google Scholar 

  • Murdoch, W. W. and A. Stewart-Oaten. 1989. Aggregation by parasitoids and predators: effects on equilibrium and stability.American Naturalist 134, 288–310.

    Article  Google Scholar 

  • Murdoch, W. W., R. M. Nisbet, S. P. Blythe, W. S. Gurney and J. D. Reeve. 1987. An invulnerable age class and stability in delay-differential parasite-host models.American Naturalist 129, 263–282.

    Article  Google Scholar 

  • Nur, N. 1984. Fitness, population growth rate and natural selection.Oikos 42, 413–414.

    Google Scholar 

  • Pacala, S. W., M. P. Hassell and R. M. May. 1990. Host-parasitoid associations in patchy environments.Nature 344, 150–153.

    Article  Google Scholar 

  • Rechten, C., M. Avery and A. Stevens. 1983. Optimal prey selection: why do great tits show partial preferences?Animal Behaviour 31, 576–584.

    Article  Google Scholar 

  • Salt, G. 1961. Competition among insect parasitoids.Symposium of the Society of Experimental Biology 15, 96–119.

    Google Scholar 

  • Sibly, R. M. 1991. The life-history approach to physiological ecology.Functional Ecology 5, 184–191.

    Article  Google Scholar 

  • Sirot, E. and C. Bernstein. 1996. Time sharing between host searching and food searching in parasitoids: state-dependent optimal strategies.Behavioral Ecology 7, 189–194.

    Google Scholar 

  • Sirot, E., H. Ploye and C. Bernstein. 1996. State dependent superparasitism in a solitary parasitoid: egg load and survival. Unpublished manuscript.

  • Snyderman, M. 1983. Optimal prey selection: partial selection, delay of reinforcement and self control.Behav. Anal. Lett. 3, 131–147.

    Google Scholar 

  • Speirs, D. G., T. N. Sherrat and S. F. Hubbard. 1991. Parasitoid diet: does superparasitism pay?Trends in Ecology and Evolution 6, 22–25.

    Article  Google Scholar 

  • Stenseth, N. C. 1984. Fitness, population growth rate and evolution in plant-grazer systems: a reply to Nur.Oikos 42, 414–415.

    Google Scholar 

  • Stephens, D. W. 1985. How important are partial preferences.Animal Behaviour 31, 667–669.

    Article  Google Scholar 

  • Stephens, D. W. and J. Krebs. 1986.Foraging Theory. Princeton, NJ: Princeton University Press.

    Google Scholar 

  • van Alphen, J. J. M. and M. E. Visser. 1990. Superparasitism as an adaptive strategy for insect parasitoids.Ann. Rev. Entomology 35, 59–79.

    Article  Google Scholar 

  • van Baaren, J., G. Boivin and J. P. Nenon. 1995. Intraspecific hyperparasitism in a primary hymenopteran parasitoid.Behavioral Ecology and Sociobiology 36, 237–242.

    Article  Google Scholar 

  • van der Hoeven, N. and L. Hemerik. 1990. Superparasitism as an ESS: to reject or not to reject, that is the question.J. Theor. Biol. 146, 467–482.

    Google Scholar 

  • van Dijken, M. J., M. Kole, J. C. van Lenteren and A. M. Brand. 1986. Host preference studies withTrichogramma evanescens Westwood (Hym., Trichogrammatidae) forMamestra brassicae, Pieris brassicae andPieris rapae.Journal of Applied Entomology 101, 64–85.

    Article  Google Scholar 

  • van Lenteren, J. C. 1981. Host discrimination by parasitoids. InSemiochemicals, Their Role in Pest Control, A. Nordlund, R. L. Jones and W. J. Lewis (Eds), pp. 153–179. New York: Wiley.

    Google Scholar 

  • Visser, M. E., J. J. M. van Alphen and L. Hemerik. 1992a. Adaptive superparasitism and patch time allocation in solitary parasitoids: an ESS model.Journal of Animal Ecology 61, 93–101.

    Article  Google Scholar 

  • Visser, M. E., B. Luyckx, H. Nell and G. J. H. Boskamp. 1992b. Adaptive superparasitism in solitary parasitoids: marking of parasitized hosts in relation to the pay-off from superparasitism.Ecological Entomology 17, 76–82.

    Article  Google Scholar 

  • Weisser, W. W. and A. I. Houston. 1993. Host discrimination in parasitic wasps. When is it advantageous?Functional Ecology 7, 27–39.

    Article  MATH  Google Scholar 

  • Yamamura, N. and E. Yano. 1988. A simple model of host-parasitoid interaction with host-feeding.Res. Popul. Ecol. 30, 353–369.

    Google Scholar 

  • Yozis, P. 1989.Introduction to Theoretical Ecology. Cambridge: Harper & Row.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to V. Křivan.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Sirot, E., Křivan, V. Adaptive superparasitism and host-parasitoid dynamics. Bltn Mathcal Biology 59, 23–41 (1997). https://doi.org/10.1007/BF02459469

Download citation

  • Received:

  • Revised:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF02459469

Keywords

Navigation