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Summary. In this note we estimate the rate of convergence in Mar-
cinkiewicz-Zygmung strong law, for partial sums S, of strong stationary
mixing sequences of random variables. The results improve the correspond-
ing ones obtained by Tze Leung Lai (1977) and Christian Hipp (1979).

1. Introduction

Let {X,}, be a sequence of random variables and let S,= ) X,. Baum and
k=1

Katz (1965) estimated the rate of convergence of the strong law for partial

sums S, of iid., showing that if a>1/2, pa>1 and assuming EX,=0 if ¢ <1

then

E|X,P<w (1.1
is equivalent to
2.2 P(max|S | > en®) < 0. (1.2)
n jEn

Motivated by applications to sequential analysis of time series, Lai (1977) ex-
tended this theorem from iid. case to other dependent cases namely for some
classes of ¢ and strong mixing sequences of random variables satisfying the fol-
lowing additional assumption: There exists f>1 and a positive integer m such
that as x— oo

(©) sgpP(lX1l>x,lXiI>X)=0(PB(IX11>X)).
The purpose of this note is to prove that the equivalence of (1.1) and (1.2)
holds for ¢ and p-mixing sequences without the additional assumption (C) and
under an improved mixing rate (logarithmic).

We shall denote the L, norm by |- |, the greatest integer contained in x by
[x], the indicator of A by I, and we shall use the Vinogradov symbol < in-
stead of 0. Denote §r=ag(X;;n<i<m).
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We shall use the following mixing coefficients:

|E(X —EX)(Y —EY)|
p(n)=sup :
m (XeLo@), YeLo@went | X —EX |, |Y —EY||,

and
¢(n)=sup sup |P(B|4) — P(B)|.
m  {AeBT, BEFs 1, P(A) * 0}
The sequence (X,;n=1) is said to be p-mixing or ¢-mixing, according to
p(n)—0 or ¢(n)—0. Bradley (1983) has shown that the p-mixing sequences are
equivalent with A-mixing where

) u |P(AnB)—P(A) P(B)|
n)=su S
v (ASHT, BeFHs m, P+, B0y [P(A)P(B)]'?

By Lemma (1.17) of [4], we have

p(n) <2412 (n) (1.3)
and by [2]
A< p(n). (1.4)

2. The Results

We shall establish the following result.

Theorem 1. Let {X.};, be a strong stationary p-mixing sequence of random vari-
ables, ap > 1, 0> 1/2 and assume that EX, =0 for a <1,

if
0 for 0<p<l1

Y p¥H2) <o where k= 2 for 1<p<2 (2.1)
i [oap —Df—1/2)]+1 for p22

then (1.1)=(1.2)

if

s _{2pa—1)/2—pa} 1<pa<4/3
Zi:p ()<oo  where m—{l paz4)3 (2.2)

then (1.2)=(1.1).

This theorem, (1.3) and Lemma (5), (ii) of [5] imply:

Theorem 2. Let {X,}; be a strict stationary ¢-mixing sequence of random vari-
ables, po>1,a>1/2.

Assume that EX,=0 for a<1, and X¢'2)< o0,

0 for 0<p<i
where k= 2 for 1Zp<2
[ap—1)c—1/2)]+1 for p=2

then (1.1)<=(1.2).
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In order to prove Theorems 1 and 2 we need the following:

Lemma 1. Suppose {X,}, is a stationary p-mixing sequence of random variables
and for some integer k22, E\X,|*< oo and Zp**(2)< co. Then, there exists a
positive constant K,, depending only on {p(n)}, and on k such that for every
nx1,

1S, 1S Keln I Xl n DX+ 0P X 40 EX ). (23)

Proof. We shall prove this Lemma by induction on k. For k=2 cf. [7] Lemma
(3.4) there exists a constant K, depending only on {p(n)}, such that

1S4, S Ko 21X |, +n|EX, ).

We assume (2.3) holds for any integer I,I<k. We shall show first that we can
find two positive constants C, and C, depending only on k, such that for every
nzlandmz=1,

1S 2ali S2VHA+ Cy o ) VIS N+ Co IS,y +2m ) X - (2.4)
_ 2n+m
Denote by S,= )  X,.From the equation
Jj=n+m+1
n+m _ 2n+m
S,,=S5,+ Z X;+S5,— z X;
j=n+l j=2n+1

we find that
IS5 allk 18,4 S,ll,+2m)I X, |, 2.5)

Obviously there exists a positive constant C, depending on k such that, by

stationarity,
k-1

EIS,+5,FS2EIS, '+ C ¥ EIS, 15,

i=1

Using Hélder inequality and then the definition of p-mixing we obtain for
iLk/2
ElS"li|§n|k—ig(ElSnlk/z|S_n|k/2)2i/k(El‘§nlk)172i/k
<LEIS 22 + plm) EIS, I HE]S, 191 =21
<pPMm)EIS 4 IS, IE IS, 12

Therefore:
[k/21

E[S,+5,[<21+kCp m) IS, Ik+2C X 115,12, 15,15

i=1

S +KC o m) IS, |+ 2 ClS, o) (2.6)

and (2.4) follows from (2.5) and (2.6). Taking now into account the induction
assumption, from (2.4) we deduce

1S5, S 241 + C, p> (m) S, 11

k—2
+OK | 3 e, oot nlEX, (| +2m X,
i=1
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Writing this inequality for n=2""1 and m=[n'*+"], and denoting
[1+ C, p**([27%+D])]*=q; we obtain

r—1

1S, < (H ai)(sz"nxluk

i=0
2

k
+ Zzﬂk[c Kk 1(2 r—j— 1)k~ L)HX Hk ;
+2r‘j—1|EXI[)+2X2(r~}f1)/(k+1)”Xlllk}

Therefore there exists a positive constant C depending only on k and {p(n)},
such that:

r—1 k—2
1S, = C (H a,.) (2'/k PANS> 2'/“‘—“1|X1nk_,-+2'|EX1|).

i=0 i=1

Since Y p**(2")< oo we have ] a;< co.
i i=1
Writing » in binary form we obtain from the preceding inequality that for
every n, the relation (2.3) holds.

We also need the following variant of Theorem 5 in [6]:
Lemma 2. Let r 2 1 be a given real. Suppose that
E|S, 'Smi"(m) forall m<n

where A(n) is a nondecreasing sequence of positive numbers. Then
{log; n]
E(maxlsir)@( > A2 D).

Proof of Theorem 1.

I. We prove first that (1.1) implies (1.2). Let us denote by
b,=P{k=<|X,|<k+1}. We note that

E|X,[F<oo<) kb, < 0.
k

1. We consider first the case p=1. Without loss of generality we may as-
sume that the random variables are centered at expectations for all a>1/2, be-
cause for o> 1, and n large enough we have

P(max|S;|>en”) <P (max Z (X;—EX))|>en"—nE|X,))
isn isn |j=1
<P (rnax Z(X —EX)) (s/Z)n"’).
iZn |j=1

Let k be an integer as in (2.1). Obviously k> p. For some > (1 +k)/(k—p) let
us define:
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X=X I x5y = EX T x5

X7 (2= XL x,1 <ngogampy — EXil x| <ustiogamiy
and
X713 = XL pesrog, mp <1x01 209 — EXi T ynj10g2m8 < 1X11 20

Let us put $7(j)= Y. X}(j) for j=1,2,3.
We note that =1

3

> nFr 2P(r‘nax IS;|>en)< Y Zn"“‘zP(max [SE() > (e/3)n%).

ji=1 n

i) We prove first that for every £¢>0, ) n?*~? P(max |S}(1)| > en®) =1 < 00.
n iZn

Indeed we have successively

[Se Y L E[XT()| e Yt Y (k+1)b,
n n 1

kzn*—

<e 1Y (k+1)b, nPe=t L <y (k4 1)Pb, < 0.
k k

n=(k+1)Ve

ii) We prove now that } n?*~ 2P(max 1S7(2)| > en*) =11 < o0, for every ¢>0.

Taking into account that the random variables X[(2) are centered, by Lem-
ma 1 we have for every m<n,

k—2 . k
EISLQFE (K, ¥ m01x501, )

i=0

k—2
Using Lemma 2 with A(m)=K, ). m"**=9|X%(2)|,_; we obtain that:
i=0

[logs r] k—2 x
E(max|S;’(2)|")§n{ D (Kk Y [tk HXq(z)Hk—i)}
i<n =0 ico
k—2 )
<n(log, n)* | XTIk + Y. A¥* 2 XTQ)[%_;.
Therefore =t
I1 <3 w7~ 2= E(max |S"(2)

k—Ipl—-1 .
<Zn““’"‘)‘2{"(logzn)an:(Z)n% 2 I,

i=1

k—2
+ Y nMEdy X {|p}:A+B+ C.

i=k—I[p]

By the definition of X}(2) we have

ALY n* =0 log, n)[n*/(log,n)' 1" < Y n~ " (log,ny* #&=»

which converges for the chosen value of g.
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The series obtained for 1 <i<k—2 appear only for p=2.
For 1<igk—[p]—1 we have

k—[p]-1 ’
B <Z Z nrx(p—k)—2+k/(k—1)+ak(k—l—p)/(k—l)

k—[p1—1
<Z Z nap—2+k(1*Pa)/(k—l)<Zn‘1—(mt*1)(k/(k—l)—1)’

n

which converge because pa>1.
For the series obtained for k —[p]<i<k —2 we have

C <Zna(p—k)A2+k/2
n

which converge by the definition of k.
iii) We prove that ) n?*~2 P(max|S}(3)|>en) =111 < o0.
By Lemma 1 we have )

n k—1
<Y nP 2P (Z |X{‘(3)|>3n"‘) <Y ppa2 ke 5 k=D
n i=1 n

i=0

X (EIXj()F e,
For i =0 we have successively

ancx 1-— kaElX"(3)lk ana 1 —ka z,]kb

jzn*

<z]kb Z nbe— 1— ka<Zpr < 00

nz ji/e

The proof of the fact that the series obtained for 1 <i<k—2 converge is similar
with the proof of the convergence of the series A and B which appear at the
point ii) of this proof. For i=k — 1 we have

ana~2—kank(E ‘X?(3)Dk <ana—2—ka+k((]0g2n)[}/na)k(p— 1)

<Y p 1= DEP=D(jog pfkr =1 < oo,
n
2. We consider now the case p<1. We have

S =

m

Ms

Xiljjx, cnyt Z XL (x5 umy = Sp+ S

i=1

We have

n i<n k<no

>.nP*" 2 P(max S} >en®) <e IZn”"‘ =N (k+1)b, <z (k+1)Pb, < 0.
We also have

2P P(max |S)|>en) e P2y pr 27N (k+ 172, <Y (k+1)7h, < 0.
n iZn n k

kzne—1
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We note that for 0 <p <1, (1.1)=>(1.2) was proved without mixing assumptions.

II. We prove now that (1.2) implies (1.1). This proof is inspired from Lem-
ma (5) of [5]. First we show that

nP(|X,|>en*)-0. 2.7
By (1.2) we have
Zn”“‘zP(max |X;|>en*) < oo
n iZn
for every ¢>0.
Then, as n— oo, we have

2n .
n?*~! P(max|X,|>en®)=0 (z k"“‘zP(max|Xj|>8(k/2)“)) -0, (2.8)
j<k

iZn k=n

If pa>2, (2.8) implies (2.7). If 1 <pa <2 we put g=n?*"*. Then

[n/q}
P(max|X,|>en")2 P (U | X, >sn"‘)
j<n i=1

In/q]
=) P(max|X,|<en’ |X, |>en%)
=1 s
[n/q]
> Y {P(max|X, |<en”) P(1X,|>en") —p(q) PY*(max | X, | > en®)
i jsi jsi

i=1

x PY2(1X,|>en%)}.

The last relation follows from (1.4), taking into account that
P(AnB)—P(A)P(B)=P(An CB)—P(A) P(CB).
Obviously P(max|X; | >en*) <iP(| X,|>en®). Therefore

jsi

P(max |X;|>en®) 2 [n/q] P(X,|>en”) {P(lfg%l} | X;|<en®)—[n/q]" p(q)}-

jZn

Because by (2.8) P(max |X;|<en*)—>1 and by (2.2) [n/q]"?p(¢9)—0 from this
1

<jsn
last inequality we deduce (2.7).
By condition (2.2), we also deduce that we can choose an integer r such
that

Zp(r <l. 2.9
By (1.4) we have l

P(max |X;|>en®)2[n/r1P( X |>en)— ) P(X,|>en|X,;|>en%)
j=n 1<j<iZn/r]
[n/r]
2 [n/r1P(X,|>en®)—[n/r]*P*(X,|>en®) —[n/r]1 P( X |>en") x ), p(ri)
i=1

13
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whence by (2.7) and (2.9) we obtain the existence of a constant K such that for
n sufficiently large

[n/r]P(1X,|>en") < KP(max|X;|>¢n”).

jZn

Therefore by (1.2) )" n?*~ ! P(|X,|>en*) < co, which implies (1.1).
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