Convergence Rates of the Strong Law for Stationary Mixing Sequences

Magda Peligrad
Department of Mathematics, University of Cincinnati, Cincinnati, Ohio 45221, USA

Abstract

Summary. In this note we estimate the rate of convergence in Mar-cinkiewicz-Zygmung strong law, for partial sums S_{n} of strong stationary mixing sequences of random variables. The results improve the corresponding ones obtained by Tze Leung Lai (1977) and Christian Hipp (1979).

1. Introduction

Let $\left\{X_{n}\right\}_{n}$ be a sequence of random variables and let $S_{n}=\sum_{k=1}^{n} X_{k}$. Baum and Katz (1965) estimated the rate of convergence of the strong law for partial sums S_{n} of i.i.d., showing that if $\alpha>1 / 2, p \alpha>1$ and assuming $E X_{1}=0$ if $\alpha \leqq 1$ then

$$
\begin{equation*}
E\left|X_{1}\right|^{p}<\infty \tag{1.1}
\end{equation*}
$$

is equivalent to

$$
\begin{equation*}
\sum_{n} n^{p \alpha-2} P\left(\max _{j \leq n}\left|S_{j}\right|>\varepsilon n^{\alpha}\right)<\infty . \tag{1.2}
\end{equation*}
$$

Motivated by applications to sequential analysis of time series, Lai (1977) extended this theorem from i.i.d. case to other dependent cases namely for some classes of ϕ and strong mixing sequences of random variables satisfying the following additional assumption: There exists $\beta>1$ and a positive integer m such that as $x \rightarrow \infty$

$$
\begin{equation*}
\sup _{i \geqq m} P\left(\left|X_{1}\right|>x,\left|X_{i}\right|>x\right)=O\left(P^{\beta}\left(\left|X_{1}\right|>x\right)\right) . \tag{C}
\end{equation*}
$$

The purpose of this note is to prove that the equivalence of (1.1) and (1.2) holds for ϕ and ρ-mixing sequences without the additional assumption (C) and under an improved mixing rate (logarithmic).

We shall denote the L_{p} norm by $\|\cdot\|_{p}$, the greatest integer contained in x by $[x]$, the indicator of A by I_{A} and we shall use the Vinogradov symbol \ll instead of O. Denote $\mathfrak{W}_{n}^{m}=\sigma\left(X_{i} ; n \leqq i<m\right)$.

We shall use the following mixing coefficients:

$$
\rho(n)=\sup _{m} \sup _{\left\{X \in L_{2}\left(\mathscr{F}_{1}^{m}\right), Y \in L_{2}(\mathfrak{F} \tilde{n}+m)\right\}} \frac{|E(X-E X)(Y-E Y)|}{\|X-E X\|_{2} \cdot\|Y-E Y\|_{2}}
$$

and

$$
\phi(n)=\sup _{m} \sup _{\left\{A \in \mathbb{\mho}_{1}^{m}, B \in \mathbb{F}_{n}^{n}+m, P(A) \neq 0\right\}}|P(B \mid A)-P(B)| .
$$

The sequence $\left(X_{n} ; n \geqq 1\right)$ is said to be ρ-mixing or ϕ-mixing, according to $\rho(n) \rightarrow 0$ or $\phi(n) \rightarrow 0$. Bradley (1983) has shown that the ρ-mixing sequences are equivalent with λ-mixing where

$$
\lambda(n)=\sup _{m} \sup _{\left\{A \in \mathbb{§}_{1}^{m}, B \in \tilde{\Psi}_{n+m}^{\infty}, P(A) \neq 0, P(B) \neq 0\right\}} \frac{|P(A \cap B)-P(A) P(B)|}{[P(A) P(B)]^{1 / 2}} .
$$

By Lemma (1.17) of [4], we have

$$
\begin{equation*}
\rho(n) \leqq 2 \phi^{1 / 2}(n) \tag{1.3}
\end{equation*}
$$

and by [2]

$$
\begin{equation*}
\lambda(n) \leqq \rho(n) \tag{1.4}
\end{equation*}
$$

2. The Results

We shall establish the following result.
Theorem 1. Let $\left\{X_{i}\right\}_{i}$ be a strong stationary ρ-mixing sequence of random variables, $\alpha p>1, \alpha>1 / 2$ and assume that $E X_{1}=0$ for $\alpha \leqq 1$, if

$$
\sum_{i} \rho^{2 / k}\left(2^{i}\right)<\infty \quad \text { where } k=\left\{\begin{array}{cc}
0 & \text { for } 0<p<1 \tag{2.1}\\
2 & \text { for } 1 \leqq p<2 \\
{[(\alpha p-1) /(\alpha-1 / 2)]+1} & \text { for } p \geqq 2
\end{array}\right.
$$

then (1.1) $\Rightarrow(1.2)$
if

$$
\sum_{i} \rho^{m}(i)<\infty \quad \text { where } m= \begin{cases}2(p \alpha-1) /(2-p \alpha) & 1<p \alpha<4 / 3 \tag{2.2}\\ 1 & p \alpha \geqq 4 / 3\end{cases}
$$

then $(1.2) \Rightarrow(1.1)$.
This theorem, (1.3) and Lemma (5), (ii) of [5] imply:
Theorem 2. Let $\left\{X_{i}\right\}_{i}$ be a strict stationary ϕ-mixing sequence of random variables, $p \alpha>1, \alpha>1 / 2$.

Assume that $E X_{1}=0 \quad$ for $\alpha \leqq 1$, and $\Sigma \phi^{1 / k}\left(2^{i}\right)<\infty$,
where $k=\left\{\begin{array}{cl}0 & \text { for } 0<p<1 \\ 2 & \text { for } 1 \leqq p<2 \\ {[(\alpha p-1) /(\alpha-1 / 2)]+1} & \text { for } p \geqq 2\end{array}\right.$
then $(1.1) \Leftrightarrow(1.2)$.

In order to prove Theorems 1 and 2 we need the following:
Lemma 1. Suppose $\left\{X_{i}\right\}_{i}$ is a stationary ρ-mixing sequence of random variables and for some integer $k \geqq 2, E\left|X_{1}\right|^{k}<\infty$ and $\Sigma \rho^{2 / k}\left(2^{i}\right)<\infty$. Then, there exists a positive constant K_{k}, depending only on $\{\rho(n)\}_{n}$ and on k such that for every $n \geqq 1$,

$$
\begin{equation*}
\left\|S_{n}\right\|_{k} \leqq K_{k}\left(n^{1 / k}\left\|X_{1}\right\|_{k}+n^{1 /(k-1)}\left\|X_{1}\right\|_{k-1}+\ldots+n^{1 / 2}\left\|X_{1}\right\|_{2}+n\left|E X_{1}\right|\right) \tag{2.3}
\end{equation*}
$$

Proof. We shall prove this Lemma by induction on k. For $k=2$ cf. [7] Lemma (3.4) there exists a constant K_{2} depending only on $\{\rho(n)\}_{n}$ such that

$$
\left\|S_{n}\right\|_{2} \leqq K_{2}\left(n^{1 / 2}\left\|X_{1}\right\|_{2}+n\left|E X_{1}\right|\right) .
$$

We assume (2.3) holds for any integer $l, l<k$. We shall show first that we can find two positive constants C_{1} and C_{2} depending only on k, such that for every $n \geqq 1$ and $m \geqq 1$,

$$
\begin{equation*}
\left\|S_{2 n}\right\|_{k} \leqq 2^{1 / k}\left(1+C_{1} \rho^{2 / k}(m)\right)^{1 / k}\left\|S_{n}\right\|_{k}+C_{2}\left\|S_{n}\right\|_{k-1}+2 m\left\|X_{1}\right\|_{k} . \tag{2.4}
\end{equation*}
$$

Denote by $\bar{S}_{n}=\sum_{j=n+m+1}^{2 n+m} X_{j}$. From the equation

$$
S_{2 n}=S_{n}+\sum_{j=n+1}^{n+m} X_{j}+\bar{S}_{n}-\sum_{j=2 n+1}^{2 n+m} X_{j}
$$

we find that

$$
\begin{equation*}
\left\|S_{2 n}\right\|_{k} \leqq\left\|S_{n}+\bar{S}_{n}\right\|_{k}+2 m\left\|X_{1}\right\|_{k} \tag{2.5}
\end{equation*}
$$

Obviously there exists a positive constant C, depending on k such that, by stationarity,

$$
E\left|S_{n}+\bar{S}_{n}\right|^{k} \leqq 2 E\left|S_{n}\right|^{k}+C \sum_{i=1}^{k-1} E\left|S_{n}\right|^{i}\left|\bar{S}_{n}\right|^{k-i}
$$

Using Hölder inequality and then the definition of ρ-mixing we obtain for $i \leqq k / 2$

$$
\begin{aligned}
E\left|S_{n}\right|^{i}\left|\bar{S}_{n}\right|^{k-i} & \leqq\left(E\left|S_{n}\right|^{k / 2}\left|\bar{S}_{n}\right|^{k / 2}\right)^{2 i / k}\left(E\left|\tilde{S}_{n}\right|^{k}\right)^{1-2 i / k} \\
& \leqq\left[\left(E\left|S_{n}\right|^{k / 2}\right)^{2}+\rho(m) E\left|S_{n}\right|^{2 i / k}\left(E \mid S_{n} k^{1-2 i / k}\right.\right. \\
& \leqq \rho^{2 i / k}(m) E \mid S_{n}+\left\|S_{n}\right\|_{k}^{k-2 i}\left\|S_{n}\right\|_{k-1}^{2 i} .
\end{aligned}
$$

Therefore:

$$
\begin{align*}
E\left|S_{n}+\bar{S}_{n}\right|^{k} & \leqq 2\left(1+k C \rho^{2 / k}(m)\right)\left\|S_{n}\right\|_{k}^{k}+2 C \sum_{i=1}^{[k / 2]}\left\|S_{n}\right\|_{k-1}^{2 i}\left\|S_{n}\right\|_{k}^{k-2 i} \\
& \leqq\left(2^{1 / k}\left(1+k C \rho^{2 / k}(m)\right)^{1 / k}\left\|S_{n}\right\|_{k}+2 C\left\|S_{n}\right\|_{k-1}\right)^{k} \tag{2.6}
\end{align*}
$$

and (2.4) follows from (2.5) and (2.6). Taking now into account the induction assumption, from (2.4) we deduce

$$
\begin{aligned}
\left\|S_{2 n}\right\|_{k} \leqq & 2^{1 / k}\left(1+C_{1} \rho^{2 / k}(m)\right)^{1 / k}\left\|S_{n}\right\|_{k} \\
& +C_{2} K_{k-1}\left[\sum_{i=1}^{k-2} n^{1 /(k-i)}\left\|X_{1}\right\|_{k-i}+n\left|E X_{1}\right|\right]+2 m\left\|X_{1}\right\|_{k}
\end{aligned}
$$

Writing this inequality for $n=2^{r-1}$ and $m=\left[n^{1 /(k+1)}\right]$, and denoting $\left[1+C_{1} \rho^{2 / k}\left(\left[2^{i /(k+1)}\right]\right)\right]^{1 / k}=a_{i}$ we obtain

$$
\begin{aligned}
\left\|S_{2 r}\right\|_{k} \leqq & \left(\prod_{i=0}^{r-1} a_{i}\right)\left(2^{r / k}\left\|X_{1}\right\|_{k}\right. \\
& +\sum_{j=0}^{r-1} 2^{j / k}\left[C _ { 2 } K _ { k - 1 } \left(\sum_{i=1}^{k-2} 2^{(r-j-1) /(k-i)}\left\|X_{1}\right\|_{k-i}\right.\right. \\
& \left.\left.+2^{r-j-1}\left|E X_{1}\right|\right)+2 \times 2^{(r-j-1) /(k+1)}\left\|X_{1}\right\|_{k}\right]
\end{aligned}
$$

Therefore there exists a positive constant C depending only on k and $\{\rho(n)\}_{n}$ such that:

$$
\left\|S_{2} r\right\|_{k} \leqq C\left(\prod_{i=0}^{r-1} a_{i}\right)\left(2^{r / k}\left\|X_{1}\right\|_{k}+\sum_{i=1}^{k-2} 2^{r /(k-i)}\left\|X_{1}\right\|_{k-i}+2^{r}\left|E X_{1}\right|\right)
$$

Since $\sum_{i} \rho^{2 / k}\left(2^{i}\right)<\infty$ we have $\prod_{i=1}^{\infty} a_{i}<\infty$.
Writing n in binary form we obtain from the preceding inequality that for every n, the relation (2.3) holds.

We also need the following variant of Theorem 5 in [6]:
Lemma 2. Let $r \geqq 1$ be a given real. Suppose that

$$
E\left|S_{m}\right|^{r} \leqq m \lambda^{r}(m) \quad \text { for all } m \leqq n
$$

where $\lambda(n)$ is a nondecreasing sequence of positive numbers. Then

$$
E\left(\max _{i \leqq n}\left|S_{i}\right|^{r}\right) \ll n\left(\sum_{j=0}^{\left[\log _{2} n\right]} \lambda\left(\left[n / 2^{j+1}\right]\right)\right)^{r} .
$$

Proof of Theorem 1.
I. We prove first that (1.1) implies (1.2). Let us denote by $b_{k}=P\left\{k \leqq\left|X_{1}\right|<k+1\right\}$. We note that

$$
E\left|X_{1}\right|^{p}<\infty \Leftrightarrow \sum_{k} k^{p} b_{k}<\infty
$$

1. We consider first the case $p \geqq 1$. Without loss of generality we may assume that the random variables are centered at expectations for all $\alpha>1 / 2$, because for $\alpha>1$, and n large enough we have

$$
\begin{aligned}
P\left(\max _{i \leqq n}\left|S_{i}\right|>\varepsilon n^{\alpha}\right) & \leqq P\left(\max _{i \leqq n}\left|\sum_{j=1}^{i}\left(X_{j}-E X_{j}\right)\right|>\varepsilon n^{\alpha}-n E\left|X_{1}\right|\right) \\
& \leqq P\left(\max _{i \leqq n}\left|\sum_{j=1}^{i}\left(X_{j}-E X_{j}\right)\right|>(\varepsilon / 2) n^{\alpha}\right) .
\end{aligned}
$$

Let k be an integer as in (2.1). Obviously $k>p$. For some $\beta>(1+k) /(k-p)$ let us define:

$$
\begin{aligned}
& X_{i}^{n}(1)=X_{i} I_{\left\{\left|X_{i}\right|>n^{\alpha}\right\}}-E X_{i} I_{\left\{\left|X_{i}\right|>n^{\alpha}\right\}} \\
& X_{i}^{n}(2)=X_{i} I_{\left\{\left|X_{i}\right| \leqq n^{\alpha} /\left(\log _{2} n\right)^{\beta}\right\}}-E X_{i} I_{\left\{\left|X_{i}\right| \leqq n^{\alpha} /\left(\log _{2} n\right)^{\beta}\right\}}
\end{aligned}
$$

and

$$
X_{i}^{n}(3)=X_{i} I_{\left\{n^{\alpha} /\left(\log _{2} n\right)^{\beta}<\left|X_{i}\right| \leqq n^{\alpha}\right\}}-E X_{i} I_{\left\{n^{\alpha} /\left(\log _{2} n\right)^{\beta}<\left|X_{i}\right| \leqq n^{\alpha}\right\}} .
$$

Let us put $S_{m}^{n}(j)=\sum_{i=1}^{m} X_{i}^{n}(j)$ for $j=1,2,3$.
We note that

$$
\sum_{n} n^{p \alpha-2} P\left(\max _{i \leqq n}\left|S_{i}\right|>\varepsilon n^{\alpha}\right) \leqq \sum_{j=1}^{3} \sum_{n} n^{p \alpha-2} P\left(\max _{i \leqq n}\left|S_{i}^{n}(j)\right|>(\varepsilon / 3) n^{\alpha}\right) .
$$

i) We prove first that for every $\varepsilon>0, \sum_{n} n^{p \alpha-2} P\left(\max _{i \leqq n}\left|S_{i}^{n}(1)\right|>\varepsilon n^{\alpha}\right)=I<\infty$. Indeed we have successively

$$
\begin{aligned}
& I \leqq \varepsilon^{-1} \sum_{n} n^{p \alpha-\alpha-1} E\left|X_{1}^{n}(1)\right| \leqq \varepsilon^{-1} \sum_{n} n^{p \alpha-\alpha-1} \sum_{k \geqq n^{\alpha}-1}(k+1) b_{k} \\
& \leqq \varepsilon^{-1} \sum_{k}(k+1) b_{k} \sum_{n \leqq(k+1)^{1 / \alpha}} n^{p \alpha-\alpha-1} \ll \sum_{k}(k+1)^{p} b_{k}<\infty .
\end{aligned}
$$

ii) We prove now that $\sum_{n} n^{p \alpha-2} P\left(\max _{i \leqq n}\left|S_{i}^{n}(2)\right|>\varepsilon n^{\alpha}\right)=H<\infty$, for every $\varepsilon>0$.

Taking into account that the random variables $X_{i}^{n}(2)$ are centered, by Lemma 1 we have for every $m \leqq n$,

$$
E\left|S_{m}^{n}(2)\right|^{k} \leqq\left(K_{k} \sum_{i=0}^{k-2} m^{1 /(k-i)}\left\|X_{1}^{n}(2)\right\|_{k-i}\right)^{k}
$$

Using Lemma 2 with $\lambda(m)=K_{k} \sum_{i=0}^{k-2} m^{i / k(k-i)}\left\|X_{1}^{n}(2)\right\|_{k-i}$ we obtain that:

$$
\begin{aligned}
E\left(\max _{i \leqq n}\left|S_{i}^{n}(2)\right|^{k}\right) & \leqq n\left\{\sum_{j=0}^{\left[\log _{2} n\right]}\left(K_{k} \sum_{i=0}^{k-2}\left[n / 2^{j+1}\right]^{i / k(k-i)}\left\|X_{1}^{n}(2)\right\|_{k-i}\right)\right\} \\
& \ll n\left(\log _{2} n\right)^{k}\left\|X_{1}^{n}(2)\right\|_{k}^{k}+\sum_{i=1}^{k-2} n^{k /(k-i)}\left\|X_{1}^{n}(2)\right\|_{k-i}^{k}
\end{aligned}
$$

Therefore

$$
\begin{aligned}
I I & \ll \sum_{n} n^{p \alpha-2-\alpha k} E\left(\max _{i \leqq n}\left|S_{i}^{n}(2)\right|\right)^{k} \\
& \ll \sum_{n} n^{\alpha(p-k)-2}\left\{n\left(\log _{2} n\right)^{k}\left\|X_{1}^{n}(2)\right\|_{k}^{k}+\sum_{i=1}^{k-[p]-1} n^{k /(k-i)}\left\|X_{1}^{n}(2)\right\|_{k-i}^{k}\right. \\
& \left.+\sum_{i=k-[p]}^{k-2} n^{k /(k-i)}\left\|X_{1}\right\|_{p}\right\}=A+B+C .
\end{aligned}
$$

By the definition of $X_{i}^{n}(2)$ we have

$$
A \ll \sum_{n} n^{\alpha(p-k)-1}\left(\log _{2} n\right)^{k}\left[n^{\alpha} /\left(\log _{2} n\right)^{\beta}\right]^{k-p} \ll \sum n^{-1}\left(\log _{2} n\right)^{k-\beta(k-p)}
$$

which converges for the chosen value of β.

The series obtained for $1 \leqq i \leqq k-2$ appear only for $p \geqq 2$.
For $1 \leqq i \leqq k-[p]-1$ we have

$$
\begin{aligned}
B & \ll \sum_{n} \sum_{i=1}^{k-[p]-1} n^{\alpha(p-k)-2+k /(k-i)+\alpha k(k-i-p) /(k-i)} \\
& \ll \sum_{n} \sum_{i=1}^{k-[p]-1} n^{\alpha p-2+k(1-p \alpha) /(k-i)} \ll \sum_{n} n^{-1-(p \alpha-1)(k /(k-1)-1)},
\end{aligned}
$$

which converge because $p \alpha>1$.
For the series obtained for $k-[p] \leqq i \leqq k-2$ we have

$$
C \ll \sum_{n} n^{\alpha(p-k)-2+k / 2}
$$

which converge by the definition of k.
iii) We prove that $\sum_{n} n^{p \alpha-2} P\left(\max _{i \leqq n}\left|S_{i}^{n}(3)\right|>\varepsilon n^{\alpha}\right)=I I I<\infty$.

By Lemma 1 we have

$$
\begin{aligned}
& I I \ll \sum_{n} n^{p \alpha-2} P\left(\sum_{i=1}^{n}\left|X_{i}^{n}(3)\right|>\varepsilon n^{\alpha}\right) \ll \sum_{n} n^{p \alpha-2-k \alpha} \sum_{i=0}^{k-1} n^{k /(k-i)} \\
& \quad \times\left(E\left|X_{1}^{n}(3)\right|^{k-i}\right)^{k /(k-i)} .
\end{aligned}
$$

For $i=0$ we have successively

$$
\begin{aligned}
\sum_{n} n^{p \alpha-1-k \alpha} E\left|X_{1}^{n}(3)\right|^{k} & \ll \sum_{n} n^{p \alpha-1-k \alpha} \sum_{j \leqq n^{\alpha}} j^{k} b_{j} \\
& \ll \sum_{j} j^{k} b_{j} \sum_{n \geqq j^{1 / \alpha}} n^{p \alpha-1-k \alpha} \ll \sum_{j} j^{p} b_{j}<\infty .
\end{aligned}
$$

The proof of the fact that the series obtained for $1 \leqq i \leqq k-2$ converge is similar with the proof of the convergence of the series A and B which appear at the point ii) of this proof. For $i=k-1$ we have

$$
\begin{aligned}
& \sum_{n} n^{p \alpha-2-k \alpha} n^{k}\left(E\left|X_{1}^{n}(3)\right|\right)^{k} \ll \sum_{n} n^{p \alpha-2-k \alpha+k}\left(\left(\log _{2} n\right)^{\beta} / n^{\alpha}\right)^{k(p-1)} \\
& \quad \ll \sum_{n} n^{-1-(k-1)(\alpha p-1)}\left(\log _{2} n\right)^{\beta k(p-1)}<\infty .
\end{aligned}
$$

2. We consider now the case $p<1$. We have

$$
S_{m}=\sum_{i=1}^{m} X_{i} I_{\left\{\left|X_{i}\right| \leqq n^{\alpha}\right\}}+\sum_{i=1}^{m} X_{i} I_{\left\{\left|X_{i}\right|>n^{\alpha}\right\}}=S_{m}^{n}+\bar{S}_{m}^{n}
$$

We have

$$
\sum_{n} n^{p \alpha-2} P\left(\max _{i \leqq n}\left|S_{i}^{n}\right|>\varepsilon n^{\alpha}\right) \leqq \varepsilon^{-1} \sum_{n} n^{p \alpha-\alpha-1} \sum_{k \leqq n^{\alpha}}(k+1) b_{k} \ll \sum_{k}(k+1)^{p} b_{k}<\infty .
$$

We also have

$$
\sum_{n} n^{p \alpha-2} P\left(\max _{i \leqq n}\left|\bar{S}_{i}^{n}\right|>\varepsilon n^{\alpha}\right) \leqq \varepsilon^{-p / 2} \sum_{n} n^{p \alpha / 2-1} \sum_{k \geqq n^{\alpha}-1}(k+1)^{p / 2} b_{k} \ll \sum_{k}(k+1)^{p} b_{k}<\infty .
$$

We note that for $0<p<1,(1.1) \Rightarrow(1.2)$ was proved without mixing assumptions.
II. We prove now that (1.2) implies (1.1). This proof is inspired from Lemma (5) of [5]. First we show that

$$
\begin{equation*}
n P\left(\left|X_{1}\right|>\varepsilon n^{\alpha}\right) \rightarrow 0 \tag{2.7}
\end{equation*}
$$

By (1.2) we have

$$
\sum_{n} n^{p \alpha-2} P\left(\max _{j \leqq n}\left|X_{j}\right|>\varepsilon n^{\alpha}\right)<\infty
$$

for every $\varepsilon>0$.
Then, as $n \rightarrow \infty$, we have

$$
\begin{equation*}
n^{p \alpha-1} P\left(\max _{j \leqq n}\left|X_{j}\right|>\varepsilon n^{\alpha}\right)=O\left(\sum_{k=n}^{2 n} k^{p \alpha-2} P\left(\max _{j \leqq k}\left|X_{j}\right|>\varepsilon(k / 2)^{\alpha}\right)\right) \rightarrow 0 . \tag{2.8}
\end{equation*}
$$

If $p \alpha \geqq 2$, (2.8) implies (2.7). If $1<p \alpha<2$ we put $q=n^{p \alpha-1}$. Then

$$
\begin{aligned}
& P\left(\max _{j \leqq n}\left|X_{j}\right|>\varepsilon n^{\alpha}\right) \geqq P\left(\bigcup_{i=1}^{[n / q]}\left|X_{i q}\right|>\varepsilon n^{\alpha}\right) \\
& =\sum_{i=1}^{[n / q]} P\left(\max _{j \leqq i}\left|X_{j q}\right| \leqq \varepsilon n^{\alpha},\left|X_{i q}\right|>\varepsilon n^{\alpha}\right) \\
& \geqq \sum_{i=1}^{[n / q]}\left\{P\left(\max _{j \leqq i}\left|X_{j q}\right| \leqq \varepsilon n^{\alpha}\right) P\left(\left|X_{1}\right|>\varepsilon n^{\alpha}\right)-\rho(q) P^{1 / 2}\left(\max _{j \leqq i}\left|X_{j q}\right|>\varepsilon n^{\alpha}\right)\right. \\
& \left.\quad \times P^{1 / 2}\left(\left|X_{1}\right|>\varepsilon n^{\alpha}\right)\right\} .
\end{aligned}
$$

The last relation follows from (1.4), taking into account that

$$
P(A \cap B)-P(A) P(B)=P(A \cap C B)-P(A) P(C B)
$$

Obviously $P\left(\max _{j \leqq i}\left|X_{j q}\right|>\varepsilon n^{\alpha}\right) \leqq i P\left(\left|X_{1}\right|>\varepsilon n^{\alpha}\right)$. Therefore

$$
P\left(\max _{j \leqq n}\left|X_{j}\right|>\varepsilon n^{\alpha}\right) \geqq[n / q] P\left(\left|X_{1}\right|>\varepsilon n^{\alpha}\right)\left\{P\left(\max _{1 \leqq j \leqq n}\left|X_{j}\right| \leqq \varepsilon n^{\alpha}\right)-[n / q]^{1 / 2} \rho(q)\right\}
$$

Because by (2.8) $P\left(\max _{1 \leqq j \leqq n}\left|X_{j}\right| \leqq \varepsilon n^{\alpha}\right) \rightarrow 1$ and by (2.2) $[n / q]^{1 / 2} \rho(q) \rightarrow 0$ from this last inequality we deduce (2.7).

By condition (2.2), we also deduce that we can choose an integer r such that

$$
\begin{equation*}
\sum_{i} \rho(r i)<1 \tag{2.9}
\end{equation*}
$$

By (1.4) we have

$$
\begin{aligned}
& P\left(\max _{j \leqq n}\left|X_{j}\right|>\varepsilon n^{\alpha}\right) \geqq[n / r] P\left(\left|X_{1}\right|>\varepsilon n^{\alpha}\right)-\sum_{1 \leqq j<i \leqq[n / r]} P\left(\left|X_{r i}\right|>\varepsilon n^{\alpha},\left|X_{r j}\right|>\varepsilon n^{\alpha}\right) \\
& \quad \geqq[n / r] P\left(\left|X_{1}\right|>\varepsilon n^{\alpha}\right)-[n / r]^{2} P^{2}\left(\left|X_{1}\right|>\varepsilon n^{\alpha}\right)-[n / r] P\left(\left|X_{1}\right|>\varepsilon n^{\alpha}\right) \times \sum_{i=1}^{[n / r]} \rho(r i)
\end{aligned}
$$

whence by (2.7) and (2.9) we obtain the existence of a constant K such that for n sufficiently large

$$
[n / r] P\left(\left|X_{1}\right|>\varepsilon n^{\alpha}\right) \leqq K P\left(\max _{j \leqq n}\left|X_{j}\right|>\varepsilon n^{\alpha}\right) .
$$

Therefore by (1.2) $\sum_{n} n^{p \alpha-1} P\left(\left|X_{1}\right|>\varepsilon n^{\alpha}\right)<\infty$, which implies (1.1).

References

1. Baum, L.E., Katz, M.: Convergence rates in the law of large numbers. Trans. Am. Math. Soc. 120, 108-123 (1965)
2. Bradley, C.: Equivalent measures of dependence. J. Multivariate Anal. 13, 167-176 (1983)
3. Hipp, C.: Convergence rates of the strong law for stationary mixing sequences. Z. Wahrscheinlichkeitstheor. Verw. Geb. 49, 49-62 (1979)
4. Iosifescu, M., Theodorescu, R.: Random processes and learning. New York: Springer 1969
5. Lai, T.L.: Convergence rates and r-quick versions of the strong law for stationary mixing sequences, Ann. Probab. 5, 693-706 (1977)
6. Moricz, F., Serfling, R.S., Stout, W.: Moment and probability bounds with quasisuradditive structure for the maximum of partial sum, Ann. Probab. 10, 1032-1040 (1982)
7. Peligrad, M.: Invariance principles for mixing sequences of random variables, Ann. Probab. 10, 4, 968-981 (1982)

Received February 1, 1982; in revised form September 15, 1984

