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Summary. It  is wel l -known that  if ~ is the class of rectangles 0~xl~al, 
0 <  x 2 < a  2 or  the class of circular discs then the normal ized  empirical  mea-  
sure on cg behaves  like a Brownian  bridge. Our  ma in  result shows that  for 
these two classes the distances between the normal ized  empir ical  measure  
and the nearest  Brownian  measure  have entirely different order  of magni-  
tudes. 

1. Introduction 

Let 2o(. ) denote  the restr ict ion of the d-dimensional  Lebesgue measure  to the 
unit cube I ~, i.e., 

2o(A ) = vo lume  (A c~ Ia). 

Let  X 1 , X  2 . . . .  , X  n be independent  identically dis tr ibuted r a n d o m  variables 
(i.i.d.r.v.'s) with distr ibution 2 o (that is, uniformly dis tr ibuted over  H). The  ran-  
d o m  empirical  measure  P,(.) is defined as follows: for any A clR~ let 

P~(A)=~ ~ 1. 
Xj~A 

Let v , =  nl/2(P~-2o) be the normal ized  empir ical  measure.  
It  is wel l -known that  if (d is some class of " r ea sonab le"  subsets of iRa then 

the stochast ic  process v, indexed by (d (i.e., the stochast ic  set funct ion 
vn(A),A~(d) behaves  like a Brownian  bridge indexed by cd, e.g., if ~ is the class 
of products  of intervals or the class of sets having sufficiently smoo th  bound-  
aries (see Dudley  [4]). 

The  a im of this paper  is to give lower bounds to the distance between the 
normal ized  empirical  measure  v,(A) and the Brownian  measure  B,(A) (the pre- 
cise meaning  of the lat ter  measure  will be formula ted  in Sect. 2) where A runs 
over  two fundamenta l  classes, namely  the classes 

BOX(d) = {[0, x l ]  x [0, X2]  X . . .  X [-0, Xd] : 0 ~ X l ,  X2,  . . .  , X d ~ 1} 
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(i.e., Car tes ian p roduc t  of intervals parallel  to the coordinate  axes) and 

BALL(d )  = {G c~ Id: G is an arb i t ra ry  d-dimensional  closed 

ball of radius r, r < 1 }, respectively. 

F r o m  now on ball means  closed ball. 
If  d =  1 then BOX( l )  and B A L L ( l )  represent  essentially the same class (i.e., 

intervals), and a r emarkab le  results of Komlds  et al. [51 complete ly  answers 
the question. 

Theorem A ([5]). Let  X1, X 2 ,  . . .  be an infinite sequence o f  i.i.d.r.v.'s uniformly 
distributed on [0, 11. Assume further  that the probability space is "rich enough". 
7hen one can construct a squence {B,}, n e N  of  Brownian bridges (B.b.'s) such 
that 

sup nl/2lVn([O , X]) - - B n ( [ O  , x ] )  I = O(log n) 
O_<x<_l 

with probability one (w.p.1). 

The  precise meaning  of " r ich  enough"  will not  be formula ted  each time, 
one can find it e.g. in [7], p. 729. 

Note  that  the right hand  side O(logn) is the best possible apar t  f rom con- 
stant factor  (see [5]). 

In contras t  to the case d = 1 for d = 2  the sequences 

inf sup Iv , (A)-Bn(A)I  and inf sup Iv , (A)-Bn(A)I  
Bn A~BOX(2) Bn A~BALL(2) 

have  entirely different order  of  magni tudes  as n--, + o0. First  we recall the fol- 
lowing theorem of Tusnfidy [111 (which is based on [51). 

Theorem B ([11]). Let  X 1 , X  2 . . . .  be an infinite sequence of  i.i.d.r.v.'s uniformly 
distributed over the unit square 12. Then one can construct a sequence {Bn} , h E N  
of  two-dimensional B.b.'s such that 

sup nl /2[vn(A) -B , (A)[=O( log2n  ) w.p.1. 
AEBOX(2) 

Our  main  result below yields that  for the class BALL(2 )  (i.e., circular discs) 
the analogous  error  t e rm is much  greater,  namely  greater  than  a constant  mul-  
tiple of  n 1/4. 

For  any  real co, 0 < co __< 1 we in t roduce 

BALL(d ,  co) = { G c~ U: G is an arb i t ra ry  d-dimensional  ball 

of radius r, co/2 < r < co}. 

Theorem 1. Let  X 1 , X 2 , . . . , X ,  be i.i.d.r.v.'s uniformly distributed over the unit 
cube I ~. Then for  any version B of  the d-dimensional B.b. 

Pr(for any real co, n 1/a<co<_l: sup nl/2Iv.(A)--B(A)] 
A~BA LL(d, ~)) 

> c l .  (ncoe)l/2-1/(2e)) > 1 - e - "  

where the positive constant c a = cl (d ) depends only on the dimension. 
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Note that using a modification of our method it is not hard to prove the 
existence of a ball contained in the unit cube I d with slightly weaker "er ror"  
term n 1/2-1/(2d)-~. 

Let SM(d)  be the class of sets Hc~I  d where the smooth set H e I R  d has d- 
times continuously differentiable boundary. Obviously B A L L ( d ) c S M ( d ) .  For  
the latter class R6v6sz [7, 8] has proved a strong approximation theorem. 

Theorem C ([8]). Let  X1, X 2 . . . .  be an infinite sequence of  i.i.d.r.v.'s uniformly 
distributed over the unit cube I d. Then one can f ind a sequence {B,}, n ~ N  of  d- 
dimensional B.b.'s such that 

sup nl/21v,(A)-B,(A)[=O(nl/Z-1/12(d+1)+~ ) w.p.1. 
A~SM(d) 

If  d > 2  and we are interested in the class BOX(d), then there is a tremen- 
dous gap in our knowledge. The best known strong approximation result is 
due to Cs6rg6 and R6v6sz [-3]. 

Theorem D ([3]). Let  X 1 , X  2 . . . .  be the same as in Theorem C. Then one can 
define a sequence {B,}, h e n  of  d-dimensional B.b.'s such that 

sup nl/Zlv,(A)--B,(A)l=O(nl/2-1/e(~+l) .( logn)3/2 ) w.p.1. 
AeBOX(d) 

In the opposite direction, Koml6s et al. [5] observed that a variant of 
B/trtfai's proof  [ lJ  might show the lower estimate c2.1ogn for d > l .  Tusnhdy 
[-11] raised the question of improving this lower bound as d ~  + ~ .  

Theorem 2. Let  X a , X  2 . . . . .  X ,  be i.i.d.r.v.'s uniformly distributed over the unit 
cube I a. Then Jor any version B of  the d-dimensional B.b. 

Pr( sup n l / Z l v , ( A ) - B ( A ) ] > c 3 . ( l o g n ) ( d - ~ ) / Z ) > l - e - "  
A~BOX(d) 

where c 3 = c3(d ) depends only on d(c 3 > 0). 

Clearly this estimate is an improvement  of c2.1ogn as d > 3  (since (d 
- 1 ) / 2 > 1  if d>3).  But the great open problem is to decide whether for an ap- 
propriate sequence {B,}, n ~ N  of d-dimensional B.b.'s 

sup n 1/2 [v , (A) -B , (A)[  = O((log n) c(a)) 
A~BOX(d) 

with some constant c(d) or not. 
Finally, let SEG(2) denote the class of sets which can be represented as the 

intersection of a halfplane and the unit square I z (i.e., segments). Combining 
the ideas of this paper and [2] it is not hard to prove the following result: Let 
X 1, X 2, ..., X n be i.i.d.r.v.'s uniformly distributed over the unit square. Then for 
any version B of the two-dimensional B.b. 

Hi/4 ) 
Pr \A~SEG(2) ( sup nl /Z lv , (A) -B(A) l>c4"( logn)7 /2  > l - e - ' .  
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2. Notations and the Probabilistic Part of the Proofs 

The  d-dimensional  Brownian  bridge B y )  is defined by 

B y )  = W ( _ x ) - 2 ~ ) .  W(1) 
d 

where 1 = (1, l, . . . ,  1), _x = (xi,  x 2 . . . . .  Xd), 0 < Xl, X:,..., X d < 1, 2(X) = 1~ Xj is the 
d j = l  

vo lume  of the box I ]  [0, xj] and W(x) is a d-dimensional  Wiener-process  (i.e., 
j = l  

a Gauss ian  process with independent  increments,  var iance equal  to the d-dimen- 
sional volume). 

Fo r  any integer k __> 0 and v e c t o r / =  (il, ... , id), 0 < ia, .. . ,  i d < 2 k let 

and 

i: i j +  1 } 
I ( k ; / ) =  (xa, ...,Xd)e~fl: fk<=Xj<~-- ,  j= l, ...,d 

For  any set A c I d and integer k > 0, let 

Ak= ~ I(k;_/) and Ak = ~ I(k;_/). 
i: l (k;  i) c A i: I(k;  i)c~ A 4- 0 

Given  a posit ive real M, let S~(M) be the class of  sets A c I d for which 
,~(Ak~Ak)<M.2 -k for any integer k > 0  where 2(-) is the d-dimensional  
Lebesgue measure.  

Fo r  any k_>_0 the Wiener "measure" W(I(k;O) is defined the usual inclusion- 
exclusion way, and  W ( A k )  c a n  be also defined by additivity. Fo r  any set 
A~Sd(M), we define 

W ( A ) =  lira W(Ak). 
k - ~ + ~  

It is quite easy to prove  that  this limit exists w.p.1. Observe  tha t  BALL(d) 
c Sd(2d),  hence the Wiener  measure  is defined on the class BALL(d). 

N o w  we are in the posi t ion to define the Brownian "measure". For  any 
A ~ Sd( M), let 

B(A) = W(A)-2(A) �9 W(!).  

In order  to avoid  the technical difficulties arising f rom the fact Sd(M) is not  
a a-algebra,  we introduce the following auxil iary r a n d o m  measure. Let m be the 
smallest  integer such that  2m/m>co(d)'n 2 where the posit ive constant  factor 
co(d ) will be specified later. For  any A = I  d let 

B*(A)= ~ B(I(m;i)). 
~: p(m; i )~A 

Clearly B*(.) is a r a n d o m  signed measure  (i.e., a-addit ive) on all subsets of I d. 
Let  fi(-) be a determinist ic  signed measure  defined on all subsets of I d. Let  

C > 4 be a real number  such that  the b inary  logar i thm of C.n is an integer and 
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is divisible by d. We say that  fl(.) satisfies property (d, n, C,*) if for any integer 
t > l ,  

where the integer l is defined by 2 v a =  C.n,  G is extended over  all balls in N a, 
and the posit ive constant  c*(d) (depending only on d) will be specified in 
Sect. 3. 

The  p roof  of  T h e o r e m  1 is based on the following purely determinist ic  lem- 
ma. 

L e m m a  1. Let fl(') be a signed measure defined on all the subsets of I a with 
finite total variation. Assume that fl satisfies property (d, n, C, *) with some C > 4. 
Furthermore, let there be given n points _zl,_z2,...,_z, EI a. Then for any 
co, n 1/a<co<_ 1 there must exist a ball GcP, .  a of radius r, o9/2_<r_<(o such that 

I ~ 1 - n -  2(a  c~I a) - n  1/2" fl(G ~Ia) l  > c s "(n" (oa) 1/2-1/(2a) 
j: z_jEG 

where the positive constant c 5 = cs(d, C) depends only on d and the value of C. 

We pos tpone  the p roof  to Sect. 3. 
Fo r  any integral vectors  _k = (k 1 . . . .  , k a )  , 0 ~ k I . . . . .  k d < + oe and i =  (i  I . . . .  , ia), 

0 < ij < 2 k~ (j = 1 . . . .  , d) let 

{ ij ijq-1 } 
I(_k;/)= (x 1 . . . .  ,xa)6Na: ~ k j X j < ~ - , j = l  . . . .  ,d . 

Let  ELL(d,k_) denote  the class of ellipsoids 

{ -XEIRa: j-~l 4kj(xj _y j )2  <=K} 

where _Y=(Yl . . . . .  ya)~N a and K is a posit ive real. 
Let  C >  8" rc d/z be a real n u m b e r  such that  the b inary  logar i thm of C ' n  is 

an integer. We say that  the signed measure  fi(-) satisfies property (d, n, C,**) if 
a 

for any integer t >__ 1 and integral  vector  l = (11 . . . . .  la) such that  H 2lj = C- n and 
lj>O, ~=1 

> < -- 
card  -/: AeELL(a,~)sup Ifl(A c~I(l_;i))l=e**(d).na/2 

where the posit ive constant  c**(d) (depending only on d) will be specified in 
Sect. 4. 

The  p roof  of T h e o r e m  2 is based on 

L e m m a  2. Let fl(.) be a signed measure defined on all the subsets of I e with 
finite total variation. Assume that fl satisfies property (d,n, C,**) with some 
C >= 8" rc d/2. Furthermore, let there be given n points _zl,... ,z_,~I a. Then 

sup I ~ 1--n '2(A)--nl /2"f l (A)l>c6"( logn)  (a-a)/2 
A~BOX(d) j:zjEA 

where the positive constant c 6 = c6(d, C) depends only on d and the value of C. 



294 J. Beck 

We postpone the proof  to Sect. 4. 
We remark that both Lemma 1-2 belong to the theory of irregularities of 

point distributions, a theory which was started by van der Corput  and Aarden- 
ne-Ehrenfest and which was brilliantly continued by K.F. Roth and W.M. 
Schmidt. Actually, Lemma 1 and Lemma 2 were motivated by the papers of 
Schmidt [10] and Roth [9], respectively. Our method is, however, different 
from theirs. The proofs are based on the fact that v, is a discrete process and 
B, is a continuous process. 

L e m m a  l ~ T h e o r e m  1. Let  B be an arbitrary version of  the d-dimensional 
Brownian bridge (B.b.). We need three further lemmas. 

Lemma 3. For any k >O the number o f  different sets {p(k;i):p_(k;i)EG} where G 
is extended over all balls in R e is less than 4d" 2 ka(a+a). 

Proof  Let S be an N-element subset of NJ. Let 

g(S) = card {G n S: G is an arbitrary ball in ~a} 
and 

Let 
h(S) = card{H n S: H is an arbitrary half-space in IRa}. 

g ( N , d ) = m a x g ( S )  and h ( N , d ) = m a x h ( S )  
S S 

where the maximum is taken over all S c Nd, card S = N. 
We claim 

g ( N , d ) < = N . h ( N - l , d ) .  (1) 

In order to prove (1) observe that in the definition of g(S) we may assume 
the surface of the ball G contains at least one point of S. Applying inversions 
with center at each _xES we obtain (1). 

Next we use 
h(N - 1, d) < 2 .= 

(For a proof  of (2), see p. 24 in G~inssler: Empirical processes, IMS - Lecture 
Notes - Monograph Series 1984.) 

Combining (1) and (2) we get 

g ( N , d ) < N  . h ( N -  l , d )<2(1  + d ) N .  Nd = 2(1 + d)N  a+l. (3) 

By substituting N = 2  ka in (3), we have 

g(N, d) < 2(1 + d). 2 k'a(a+ 1)< 4d. 2 ka~a+ 1) (4) 

and Lemma 3 follows. 
We recall that 2 I a =  C . n  and m is the least integer with 2m/m>co(d) .n  z. 

Lemma 4. The probability o f  the event that for k = 0  and l, for  any vector i 
= (i 1 . . . .  , ia), 0 < i I . . . . .  i a < 2 k and for any ball G ~ R a, 

[B(G c~ I(k;_/)) - B*(G c~ I (k; i_))L Gcv(d)" n 1/2" m a/2" 2 m/2 

is greater than 1 - - e  - n -  2.  
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Proof We follow the a rgument  of  the p roof  of L e m m a  2 in R6v6sz [7]. Let  
G(k;_/) = G c~I(k; i). By definition, we have 

B(G(k; i)) - B* (G(k; i)) = ~ B(I(m ;j)) 
j :  l (m; j) ~ G(k; i) 

+ ~ B(Gt+l(k;i)\Gt(k;i_))-  ~ S(I(m;j)) 
t = m j: p(rn; j)~G(k; 0 

= ~ B(Gt+l (k ; i ) \Gt (k ; i ) ) -  ~ B(I(m;j)) 
t =  m jEJ(G,m,k,i) 

where J(G,m,k,i_)={j:p(m;j)~G(k;i) but  I(m;j)~:G(k;i)} (we recall that  for any 
A = I d, A t = ~ I(t ;j)). 

j:  l(t;j) c A  

Therefore (the parameters  q > O, qt > O, t = m, m + 1 . . . .  will be fixed later) 

Pr suplB(G(k;i))-B*(G(k;i)) l> q+ ~ qt 
t=m / 

< P r ( s u p l  ~ B(I(m;j))l>=q)+ ~ Pr(suplB(Gt+l(k;i3\Gt(k;i))l>q3. (5) 
G jeJ(G,m,k,i_) -- t=m G 

Simple geometric considerat ion shows that  

card J(G, m, k, i) < 2 d. 2 (m- k)(d- 1) 
and 

Since for 
-2(A)) ,  by (5)-(7) and L e m m a  3 we obtain 

(6) 

card {j: I( t  + 1 ;j) c G t + 1 (k; i) \ G t(k; _/)} < 2 d. 2 ~' + 1 - k)(d- 1) (7) 

any A~Sd(M), B(A) has normal  distr ibution with variance 2(A)'(1 

oo 

< 4 d .  2 ~"- k)a(d+ 1) �9 2(1 -cb(q. 2('n+k(d--1)--d)/2)) 

+ ~ 4d.  2 "+1 -k)a~a+l). 2(1 -- ~b(q t . 2 (t+l +k~a-1)-d)/2)) 
t=m 

where r is the unit normal  distribution function. 
Let q = cs(d ) �9 n 1/2 . m 1/z. 2 -On+k(a-1)-d)/2, 

q ,=  cs(d ). n 1/2" ( t-I-  1)  1 /2"  2 - ( t +  1 + k ( d -  1 ) - d ) / 2 ,  

Then f rom (8) we see by some elementary calculation 

t > m  and n>nl(e  ). 

(8) 

Pr(sup IB( G(k; i)) - B*( G(k; i_))l >= cT(d)" n 1/2" m 1/2" 2 -m/2) 
G 

< P r  s B* = - , -  t 
t 

< e - n - 2  ~41 ~ e n - 2  1 e - n - 2  

= 4 . 2 k e  2,+l)e <~ 2k'd t = m  
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Consequent ly ,  

P r (max  max  sup ]B(G(k;i)) -B*(a(k;i))L > eT(d ) " n 1/2" m 1/2" 2 -m/2) 
k=O,l i G 

~= ~ 2 kd" Pr(sup IB(G(k; i)) -B*(G(k; i))1 ~ cT(d)" nl/2" m112" 2-"/2)  
k = 0 , 1  G 

< • 2 k 'e .1  e - " - 2  
k=o,/ 2 2 k'a =e-n-2' 

which completes  L e m m a  4. 
N o w  we show that  for some sufficiently large constant  c 9 = c9(d), 

Pr(the r a n d o m  measure  B*(-) satisfies p rope r ty  (d, n, C=c  9, .))> 1 - e  -"-1. (9) 

In order  to verify it we need 

L e m m a  5. For any q > 0 we have 

Pr(sup I W(G mld)l > q) < c 1 o(d) - exp( - q2/3) 
G 

where W(') is a Wiener measure and G is extended over all balls in Re. 

For  d = 2 this l e m m a  is a par t icular  case of  T h e o r e m  1 in R6v6sz [7]. Since 
R6v6sz's a rgument  works  in higher dimensions  wi thout  any modificat ion,  we 
omit  the proof.  

F r o m  L e m m a 5  immedia te ly  follows that  for any vector  _/=(il . . . .  ,id), 
0 ~ i  I . . . . .  i e < 2  l, 

Pr(sup [ W(G c~ I(l; _/))l > q '  2 -~d/2) < Clo(d)" exp( -q2 /3 ) .  (10) 
G 

Let  E(*) denote  the event tha t  for some integer t__> 1, 

card{i_:suplW(GrmI(1;i))l> t } n  
- =2c.(d).nX/2 >t3/2 '  

Then  using (10) and the independence of the events we obta in  via some elemen- 
tary  calculat ion that  

Pr(E(,))  _< ~" 
t = l  R>=j>r 

< e  , - 3  

(R)  ' ( q  o" exp( -- q2/3))J" (1 -- (c10- exp( - q2/3))R- j 

(11) 

where q=t .  C1/2/(2c*(d)), R=2Zd=C.n ,  r = n . t  -3/2, C=c9(d ) and c9(d ) is suf- 
ficiently large. 

Since IW(l_)l~C'nl/Z/(4c*(d)) with probabi l i ty  > l - e  - n - 2  if C=c9(d ) is 
sufficiently large, by L e m m a  4 we conclude that  if 2m/m~co(d )'n 2 
= (4cv(d) �9 c*(d)) 2" n 2 (it defines co(d)) then 
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max  sup [B*(G c~ I(1; i)) - W ( G  c~ I(1; t_')) ] 
t 6 

< m a x  sup ]B*(G ~ I(1;/)) - B ( G  ~ I(1;/))[ 
i G 

+ max  sup ]B(G ~ I(I; i)) - W ( G  n I(I;/))] 
i G 

< cT(d)-n 1/2. m 1/2" 2 -m/2 + l W ( 1 ) l . 2 ( I ( l ; i ) )  

C .  n 1/2 
< cT(d)" n ~/2" m ~/2" 2 - " /2  -4 2(1(1;/)) 

4c*(d) 

1 1 1 
< 

n 1/2 <=2c* d n 1/2 = 4 c * ( d ) '  n 1/2 q-4c*(d)' ( )- 
(12) 

with probabi l i ty  > 1 - e -  " -  2 - -  e -  n- 2 .  

Combin ing  (11) and (12) we conclude (9). 
By means  of (9) and L e m m a  1 we obta in  (note that  __zl,...,_z, are the actual  

values of the r.v.'s X 1 . . . .  , X,) 

Pr(for  any real ~,n-1/d~o)~ 1: sup nl /2[v , (A)  - B * ( A ) L  
AeBALL(d,o~) 

> cs (d ) . (n ,  con)1/2-1/(2d)) > 1 --e  - " -1 .  (13) 

Again by L e m m a  4, 

1 - e - " - Z < P r (  sup [ B . ( A ) _ B ( A ) [ < = c v ( d ) . n l / Z . m l / 2 . 2  m/Z) 
AeBALL(d) 

 Pr( sup ,14  
\AsBALL(d) 

Finally, (13) and (14) complete  the deduct ion of T h e o r e m  1 f rom L e m m a  1. 

L e m m a  2 ~ Theorem 2. This deduct ion is quite similar to the previous one. 
Let  B be an arbi t rary  version of the d-dimensional  Brownian  bridge (B.b.). 

d 

Since 2m> C . n =  l~  2zj if n > n z ( d ,  C), we see that  any cell I(_/;_/) can be per- 
j - - 1  

fectly filled by some cubes 1(re;j) without  gap whenever  n > n 2 ( d ,  C). F r o m  now 
on we assume n > nz(d, C). 

We need 

L e m m a  6. The probabi l i ty  o f  the event  that for  k = 0 - - ( 0  . . . . .  0) and for  any  _k=l_ 
d 

= (l 1 . . . . .  Id) with I~  21j = C .  n, lj >_= 0 integers,  f o r  any  i = ( i l , . . . ,  id) with 0 <= ij < 2 kj, 
j = l  

j = l  . . . .  ,d, 

sup [ B ( A c ~ I ( k ; i ) ) - B * ( A ~ l ( k ; i ) ) [ < c 1 1 ( d ) ' n ~ / 2 " m ~ / Z ' 2 - m / 2  
AeELL(d,k) u BOX(d) 

is greater  than 1 - e  - n - 2  (n>n2(d ,  C)). 
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We omit  the p r o o f  since it proceeds along the same lines as that  of  Lem-  
m a  4 (note tha t  applying a suitable l inear t r ans fo rmat ion  an ellipsoid becomes  
a ball). 

Exactly the same p roof  as tha t  of  L e m m a  5 yields that  for a n y / = ( l l  . . . .  , Id) 
d 

with l~  2zj = C" n, lj > 0 integers, and any i = (i 1 . . . . .  id) with 0 < ij < 2 l J, j = 1 . . . .  , d, 
j = l  

N o w  we show tha t  for some sufficiently large constant  c13 =c13(d ), 

Pr(the r a n d o m  measure  B* (.) satisfies p roper ty  (d, n, C = c t 3, **)) > 1 - e - " -  1. 

Let  E(**) denote  the event that  for some integer t >  1 and  for some vector  / 
d 

=(/1,  "",le) with l-I 2tj = C . n ,  lj>_O, 
j = l  

> > card _/: sup [W(Ac~I ( l ; i ) ) l=2c**(d) .n l /2  
AegLL(d,l_) 

Then  using (15) and  the independence of the events we obta in  via some elemen- 
tary  calculat ion tha t  

Pr(E(**))=< ~ ~ (  _>~>_ (R)(c~2.exp(- -q2/a))J(1--c12.exp(- -q2/3))R- i )<--_e-"-3  
t = l  _ R r 

where 
t .  C 1/2 d t'l 

R =  1-] 2b, r =  C=c13(d  ) 
q = 2c**(d) ' j= 1 t3 /2 '  

and c13(d ) is sufficiently large. 
F r o m  now on we can straightly follow the a rgument  of the previous deduc- 

t ion but  we have  to apply  L e m m a  6 instead of L e m m a  4. 

3. Proof  of L e m m a  1 

In  the p roof  we shall employ  the Four ier  t rans form technique. First  we in- 
t roduce  two measures.  Fo r  any A c 1U denote  by Z(A)  = ~ 1 how m a n y  of the 

z jeA 
given points_zp_z z . . . . .  __z. lie in A. Fo r  any  measurab le  A c ~  a let 

#(A ) = n . 2(A c~ I d) + nl/2 . fi(A c~ I a) (16) 

where 2(.) is the Lebesgue measure  (i.e., the d-dimensional  volume).  
Let  G~,r)={Ye~(e:~=I ( x j - - Y j ) 2 ~ r 2 } ,  
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and denote by Z~ the characteriristic function of the ball G(0, r) (i.e., Z~(y) = 1 if 
d \ \ 

E Y~ < r  2 and 0 otherwise}. 
j = l  ! 

Now consider the function 
F~=Z, �9 (dZ - d # )  (17) 

where �9 denotes the convolution operation. 
More explicitly (see (16)) 

F ~ ) =  5 Z r ~ - y ) ( d Z - d # ) ( y ) =  ~ 1-/~(G~,r))  
~ a  zjEG(x,r)  

= ~ 1-n'2(G(_x,r)nla)-nl/2"fi(G(x_,r)~Ia).  
zjeG(x,r) 

By Parseval-Plancherel identity (see (21) below) 

(18) 

p p 

5 (5 F~2~)d-x) dr= 5 (5 LF~(t-)lZdO dr (19) 
p/2 ~a p/2 ~a 

where ~ denotes the Fourier transform of F~. 
We recall some well-known facts from Fourier analysis. Given a function 

f~L2(~a),  we denote by 
f ( t )  =n-a/2 5 e-i~'~f(-x-) d-x 

the Fourier transform of f ( i = 1 / - 1  and x. t is the Euclidean inner product). 
We shall use the following identities 

f ,  g = f .  r (where �9 is the convolution operation) (20) 

5 [f(z)l 2d-x= 5 If(OI2dt-" (21) 

By (17), (20) and (19) we have (0 < p < 1) is a parameter) 

~(p)=2_ i (I ~(~)a~)ar 
P p/2 ~a 

= 5 IZr(t-)12dr)'l(dZ-d#)(t)l - 5 h(p, lt-l)'l~(t-)l 2dr- (22) 
~a p/2 ~a 

where h(p, It L)= 2- i I~rIt)l 2at and + = (a-k-Z~-a,), i.e., 
P p/2 

O(t_) = n -a/2 5 e-'-~~( d z  -d#)(x) .  
Ra 

First we investigate h(p, lt_l). For the sake of brevity, let t=[t_l (Euclidean 
length) and g(r, t) = 2~(0. 
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By definition, 

g(r,t)=n -a/2 ~ e-i-~t-'Z,(~)d_x=rc-a/2 ~ e-i-~t-d_x 
TR a G(O_, r) 

=c14(d ) '  i e - i t y "  ( r2 __y2)(a-1)/2 "dy 
- - r  

+1 
=c14(d )" r d' ~ cos(t 'r 'u) '(1 -u2) (a-1)/2" du. (23) 

--1 

On the other hand, the classical Bessel function Jk(X) has the following integral 
representation (Poisson's integral, see e.g. in [6], p. 241) 

1 "~lCOS(X'U)'(1--u2)k-1/2"du (k> -1 /2 ) .  (24) Jk(X) = n 1/2" F(k + 1/2) 

Hence, by (23) and (24) we get the following explicit form of g(r, t), 

By Hankel's asymptotic expansion (see e.g. in [6], p. 133), 

cos(x -d ' rc /4-n/4)"  ~ ( -  1) j A2j(d/2) 
Jd/2(X) ~ \ n X  ] j= 0 x2J  

+o~ . A z j + l ( d / 2 )  \ 
- s i n ( x - d . n / 4 - n / 4 ) . ~ ( - 1 )  ~. ~ } i f x ~ + o o  

j=O X l 
where 

(d 2 - 1 2 ) ( d 2  - 3 2 ) . . . ( d  2 - ( 2 j  - 1)  2) 
Aj(d/2)-  J! 8j 

(26) 

and 

g(r,  r(d-1)/2 -- n/4) < g ' c l 6 ( d  ) r(d-1)/2 
t) -- c16(d ) ~ cos(r" t - d n / 4  t(a+a)/2 

for r '  t > c 17 (d, e) (where c 17 > 0 is a "large" constant) 

Ig(r, t) - c i  s(d ) �9 rd[ < e" c18(d ) �9 r d 

for r" t < c 1 9 ( d , g  ) (where c19>0 is a "small" constant). 

has 
ready uniformly large. 

(27) 

(28) 

Although g(r, t) has the form of a slightly perturbed cosine-function (and so 

infinitely many zeros), the quadratic average h(p,t)= ~- i gZ(r,t) dr is al- 
P p12 

The asymptotic expansion (26) says that if x is sufficiently large depending on d 
then Ja/z(X) has essentially the form of x -1/2" c o s ( x - d - n / 4 - n / 4 ) .  On the other 
hand, from formula (24) it is easy to see that if x is sufficiently small depending 
on d then Jd/2(X) almost equals n -1/2. F-l( (d+ 1)/2)-21-a/2" X a/2. Consequently, 
with (25) we obtain that for any e > 0, 
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Using (27) and (28) one can easily obtain the following inequality: 

h ( c o ,  t )  (~)d- 1 
h(p,t~>C2o(d), uniformly for every t__>0 and 0<p<co_<l .  (29) 

Next we investigate A(p) for small values of p. Let Po =2-~-* (we recall that 
2 l.a= C'n), and assume re [p o/2, P o]. Let f (x,r)= ~ 1. Then clearly 

_zyeG(x,r) 

f (x, r) d_x = n' 2(G(0, r)) >__ n' 2(G(0, Po/2)) - c21 (d) (30) 
~a C 

Since the ball G(x,r) intersects < 2  a cubes I(l,i), by property (d,n, C,*) we know 

+co 2k+l  n 

I [fi(G(_x,r)nld)[dx<_2d.k~_o~ c,(d).nX/Z 23k/2 2-l.a 
~xct 

]f2 . 2d+x ' 1 c21(d ) (31) 
= l f 2 - 1  c*(d). C-n 1/2 - 4 .  C. n a/2 

if e*(d) = ] /2  2 n+3 
- -  (see (30)). 

1/5-1 c2,(d) 
Let 

d ( r )  = {_xERe: f(_x, r) > 2n 1/2 [fl(G~, r) c~Ia)]}. 
Obviously 

f~ , r )d-x= S f(-x,r)d-x- ~ f~,r)d_x> S f(_x,r)d_x 
ag (r) R a ~ a \ ~  (r) ~ a  

- 2 n  '/2 ~ [fl(G(-x,r)c~ld)ld_x>= ~ f(_x,r)d_x-2n 1/2 ~ 1fi(G~,r)c~Ia)[d_ x, 
Ra\~al(r) ~a  ~a  

and by (30) and (31), 

f(~,r)dx>= ~ f ( x , r ) d x - 2 n  1/~- ~ ]fi(G(x,r)~Id)[dx>�89 ~ f(_x,r)dx. (32) 

1 1 
Since 2(G(x,r)c~Ia)<2(G(O, Po))<2 -~'a- < - -  (note that C>4),  and since 

= _ = - C . n = 4 n  
f ~ , r ) =  ~ 1 has only integral values we conclude that for any_xe~g(r) 

z j~G(x,r)  

f ~,  r) -- n 1/2 fl(G~, r) c~ I a) - n" 2(G(x, r) c~ I a) >= �89 (x, r) - �88 (x, r) = �88 ~,  r). (33) 

Thus by (18), (33), (32) and (30) (po/2 _< r < Po) 

F,,. 2 ~)  d_x = ~ ( f  ~ ,  r) - n' 2(G(x, r) c~ I a) - n 1 / 2 .  fi(G~, r) c~ id))2 d_x 

>= ~e(~)S ( f  (-s"r)-n" 2(G~'r)c~Ie)-nt/2" fi(G(z'r)&Ia))2 d-x >=~2 d !~) f 2(~'r)d-x 

1 1 c21(d ) 
>-55 ~ f~ , r )dx>_- -  ~ f~_,r)dx> (34) 
- 4 ~ , ~ )  - - 32 ~ - = 3 2  C ' 
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Summarizing, by (34) and (22) 

__2 ~o (~ Fr2(..x)dx)dl. C21(d ) (35) 
A(P~ o ~d - - 32C 00/2 

Now we are ready to end the proof. Combining (22), (29) and (35) we see 

A(co)--= ~ h(co, It_l)" [~b(t_)12 at_ 

>=C2o(d)" I po z "~ h(po, lt_3"lq~(t_)12dt_ 

=~o(a)" ~Po~ "A(P~176 lPo~ 32C 
= r  C)"  (r/" (Dd) 1 - i / d  (36) 

(we recall that P0 = 2-  ~- 1 = (C.n/2)-l/d). 
Since Fr  whenever 0 < r < l  and xr  a, from (18), (22) and 

(36) it follows that  

sup I ~  1 - n . 2 ( G ~ I a ) - n l / 2 . ~ ( G n l a ) l  
G~BALL(d, og) zj~G 

(5 - a .  A (co))U2 ~ c23(d ,  C) �9 (n �9 o)d) i/2 -1/(2d), 

which completes the proof of Lemma 1. 

4. Proof of Lemma 2 

We shall again use the Fourier  analysis. Similarly as in Sect. 3, let Z(A)= ~ 1, 
z j~A 

A ~ N d and #(A) = n" 2o(A ) + n 1/2. ,go(A) where 2o(A ) = 2(A ~ I a) and /r =/3(A 
n I a) for any Lebesgue measurable set A c lRa. 

For  any positive function Q~),  xe lR  a and for any real e, 1/2 < ~ < 1 let Q~(.) 
be defined by Q , ~ ) =  Q~/oO, xz~,. a. Consider the function 

1/2.a o). (373 

By Parseval-Plancherel identity (21), (37) and (20) 

1 1 
A(Q)=2 j (~ F2(Q,~;x)dx)d~=2 J (J IP(Q,~ do~ 

1/2 ]R d 1/2 F. d 

= j [(~(t_)12d~ " ] ( ~ ) ( t _ ) i 2 d t _  = J h(Q;t_)'i(p(t_)12dt_ (38) 
~d 2 ~a 

1 
where h(Q;t_)=2 j [(~(t_)12d~ and 4~=(dZ-d/-~). 

1/2 
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Let ~( '={ -/= (ll . . . .  ' le):f l2tJ=C'n'l j>=Ointegers} "F~ j=l 

{ t 2 x e N  d. Then, as it is well-known, =exp - ~ 4  tj.xj , 
j = l  

Q(1-;t-)=(j~=12-li)'exp{-j~=14-tJ't~}. 

Clearly 
1 + ~ z  

Q(/;_x)d_x=~2{_xelR": Q(1; x)> R} dR= ~ 2{xeNe: Q(l_;_x)> e-~} . 2r. e-r~ dr 
lla 0 0 

+;{ } = 2 xelRa: ~4li'xZ<=r 2 .2r .e-~dr .  
0 j = l  

Since the level-set {_x~a: Q(1;_x)>=e -~} is an ellipsoid and belongs to 
ELL(d,/), and furthermore 

sup card{/: max Q(/;_x -y)>e -~} <(2r+  1) d, 
x r a y ~ I ( l ; ~ )  - -  

by property (d, n, C, **) we obtain for any e, 1/2 < e < 1, 

(~ Q~(_/;_x-y Idflo(y)l)ds< I (2 r+ l )  a. n 
F.a ~.a - - 0 k c * * ( d ) ,  n 1 /2  "2 3~/2" H 2-1J 

j = l  ) 

�9 2r. e -r2 d r -  c24(d) 
c**(d). C" H 1/2' 

d 
In the last step we used 1~ 2~j = C. n. 

j = l  
Let /e5r  and eE [1/2, 1] be fixed. Let 

L(~;/) = ~ G(_/;-~ -_z j) 
zj 

(we recall that__zl,_z 2 . . . . .  __z. are the given points in Ia), and let 

d(~,  I) = {_x61Ra: f~(x;!) > 1/2}�9 

Then we have (see the definition of Q(_/;x)) 

f~(s_;l)dx>n" 1/2"2{Q1/z(1;y)> l/2} c25(d) 
d(a,t_) 

Choosing c**(d) = c24(d) , from (39) and (40) it follows that 
4czs(d) 

Let 

na/2(~ Q=(l;_x-y)ld[3o(y)l)d_x~ 1 ~ s 
R a  ~ a  o~r (~, l_) 

~(~,/-)= {-x~d(~,/):f~G;/3> 2nl/2 ~ Q~(l_;-x-y)[dfio(Y)[}. 

(39) 

(40) 

(41) 
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Then from (41) one can easily deduce the inequality 

f~(_S;/)d_x> 1 ~ f~(s,/)d_x. (42) 
o~7(~,/) ~r 

Since 
d l d ' 2  1 1 

Q~(_/;x-y)d2o(y)<= ~ Q~(l;y)dy<= I Q(1;y)dy =~a/2" l-[ 2- J=Tr / "(C'n)- <=Sn 
~d ~a ~a j=  1 

(note that C>8.rd/2) ,  and since f~(x;/)> 1/2 whenever _x~d(c~,l_) we conclude 
for any _xe~(a,_/) 

f~(.x;/)--n 1/2 ~ Q~(/ ;x -y)df io (y) -n  ~ Q~;_x-y)d2o(y ) 
~ d  --  - -  IR d - -  

1 . 1 . 1 . > 7f~(_x, l) -~f,(_x,/) = Z f~(_x, _/). (43) 

Let (see (37)) 
F(ct,/;_x) = F(Oq; "), a;x). 

Thus by (37), (43), (42) and (40), 

FZ(~,/;_x)dx= y ( f ~ G ; l ) - n  1/2 y Q,( / ;_x-y)dflo(y)-n ~ Q~(/;_x-y_)d2o(y))ad_x 
~,d ~ a  F.d p.d 

> 1  [~ f Z ~ ; l ) d x >  l [. 2x" _ 3 2 ~ , z f  ~ (~ ,l_)dx = 4  

1 1 1 c25(d ) (44) 
>3~r C 

Summarizing, by (38) and (44) 

, c64 ? A(!)=A(O(!; 9 ) = 2  ~ (S F2(~,!;-x)d-x) d=>= (45) 
1 / 2  ]~d 

for a n y / ~ 5  ~ 
Next let (see (38)) 

h(1;_t)=h(Q(1;');!) and h(Ia;!)=h(zi~;t) 

where ZI~ denotes the characteristic function of the unit cube I a. Clearly 

d 

h(1;!) < c26(d)" IQ(_/; t)l 2 = c26(d)" I1 (2-'J. exp{ -4- ' J - t}})  2, 
j = l  

and so we have 
d 

~, h(/; t) < c26(d ) �9 2 H (2-tJ. exp{ - 4 -tj. t~}) 2 
l~,g ~ lc,L -a j =  1 

d 

=<c26(d)" Z 1-I (2-ZJ'exp{-4-zJ ' t~}) 2 
l:lj>-O j = l  i <=f<-d 

=c26(d"[I{ f~=?(2-"exp{-4-" t2})2}  (46) 
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It is easy to see that for some positive absolute constant M0, 

+ c o  

( 2 - t ' e x p { - 4 - l - t 2 } ) 2 <  M~ for everyreal telR. 
t=o - - l + t  2 

Thus by (46), 

t. t for all 
/eL a~ j ~ 1 \ ,~-t j  I 

On the other hand, 

j/zJ~ dc~> 1 h(Ia;t-) = 2  TC1/2 ~ ~ : C 2 7 ( d ) "  1-I " 
1/2 - j / j = l  

Therefore, by (47) and (48) we see 

(47) 

(48) 

h(Ia;t_)>C2s(d) . ~ h(/;_t) uniformly for all tMR ~. (49) 
le ' l  

Now we are in the position to end the proof. Let A(I'~)=A(zId). Combining 
(38), (45) and (47) we get 

A(Id) = S hUe;t)" 149(t-)12dt>czs(d)'~ ~ h(_/;t). [~b(t)[2d_t 
R a le,.~ ~ d  

= C 2 8 ( d ) ' l ~  ~A(/)~C28(d)" ~ . ~ ' c a r d ~ = c 2 9 ( d '  C ) ' ( l ogY/ )d -1 .  (5O) 

In the last step we used the trivial fact that the cardinality of ~ is greater than 
a positive constant multiple of (log n) d-~ 

Since F(ZI~,~;_x)=0 whenever _xr  a and 1/2<c~<1 (see (37)), from 
(37), (38) and (50) it follows that 

sup I ~ 1--n'2(A)-nl/2.fl(A)l=>(3 -~.A(Ia)) 1/2 
A~INT(d) z j~A 

> C3o(d, C)-(logn) (d-1)/2 (51) 

where 1NT(d) denotes the class of products of intervals c [ 0 ,  1] with sides 
parallel to the coordinate axes. 

Finally, using the inclusion-exclusion formula we obtain 

sup ] ~  1-n.2(A)-nl/2. f i (A)l  
AeBOX(d) z_j~A 

> 2  -d. sup [ ~  1-n-2(A)-nl/2-fl(A)[>=c31(d,C).(logn) r 
AeINT(d) z_jeA 

which completes the proof of Lemma 2. 
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