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Summary. Let o ~ denote the convolution semigroup of probabili ty distri- 
butions on the real line. We prove that no element of ~ is prime in the 
sense that given an F s o  ~ one can always find two distributions G, H e o ~  
such that F is a convolution factor of G , H  but neither of G nor of H. In 
contrast, o~ is known to possess many irreducible elements. 

1. Introduction 

Let o ~ denote the convolution semigroup of probabili ty distributions on the 
real line. For  F, G ~  we write FLG and say that F is a divisor or a factor of G 
if G = F * H  for some H (which is, in general, not uniquely determined, see e.g. 
Lukacs [10], p. 104). 

Let us restate the customary definition of irreducible and prime elements for 
this special case. 

(1.1) Definition. A distribution F is irreducible (indecomposable) if F = G , H  
implies that either G or H is degenerate, but F itself is not. (Degenerate 
distributions play the role of units.) 

(1.2) Definition. A nondegenerate distribution F is prime if F[G*H implies FIG 
or FIH. 

Note that usually (e.g. in Lukacs [10], and Heyer [6]) the term prime is 
used for the first named notion. In nice cases (such as the natural numbers) 
these concepts coincide, but generally they do not. Their coincidence is (rough- 
ly) equivalent to the unicity of decomposition (of decomposable elements). The 
existence of a decomposition is not trivial at all. It is a deep theorem of Hin~in 
(see e.g. Linnik and Ostrovkii [9]) that every F has a decomposition of the 
form 

F=Q,PI*P2* .... 

where P1, P2 . . . .  are irreducible (there can be a finite or infinite number  of 
them) and Q is "anti-irreducible", i.e. has no irreducible factor at all (usually 
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called class Io). Observe that this is not a decomposition in the algebraic sense, 
as it contains infinite products, which makes sense only if we have also a 
topology. The anti-irreducible distributions are known to be infinitely divisible. 
The converse does not hold, but e.g. the normal and Poisson laws are anti- 
irreducible, by the results of Cram6r and Raikov (see e.g. Lukacs [10]). 

This fundamental decomposition is known not to be unique; hence we can 
conclude that not every irreducible distribution is prime. We make a step 
further in this direction. 

Theorem 1. No element of ~ is prime in the sense (1.2). 

Remark. In a certain sense our assertion justifies the usual confusion of irredu- 
cibility and primary, showing that one of them is void. 

2. Primes and Homomorphisms 

The existence of primes in Y is closely related to the existence of homomor-  
phisms of ~ into the additive group Z of integers, as the following statement 
shows. 

(2.1) Lemma.  I f  P ~  is a prime, then 

~0(F) = max {n: P*"iF} 

defines a homomorphism of ~ into Z. 

Proof First observe that q~(F) is finite for every F e ~ .  If F1,F2e~ and ~o(F1) 
+ ~0(F2)= n, then F 1 *F 2 = P*"*F,  where P XF, thus it is sufficient to show that 

(2.2) P*~"+I)~/P*"*F if PXF. 

Suppose indirectly that P,~F but 

(2.3) P*" , F = P*("+ I) , G 

for some G e ~ .  
We shall use F to denote the characteristic function of any distribution F 

and write F-<G if every root o f f  is a root of G as well. 
(2.3) implies that P"(F-PG)=O, thus if PMH, then / t ( F - P G ) = 0 ,  H*F 

= H , P , G ,  hence PiH*F. By the assumption P~/F, P prime we can now 
conclude PIH, i.e. if P is any prime satisfying equation (2.3) and not dividing 
F, then PMH always implies PIH. 

Now if P has no root, then (2.3) obviously yields F = G , P ,  a contradiction 
to the assumption PXF, thus we may suppose that P has at least one root. 
Write 

e = m i n  {t:t >0,  P(t)=0}.  

Let Ta(a>0 ) be the distribution whose characteristic function is the "triangle 
function": 1-ltl/a for t<a and 0 otherwise. Let further Ta. b ( b > a > 0 )  be the 
distribution whose characteristic function is 1-1t l /a  for I t l<a,  0 for te[a, b] 
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and periodic with period a+b .  If b > a > c ,  then P~,Ta.Tc,  b, which implies (by 
the above considerations) that P Ta. T c b, thus P] T, o r P ]  T~, b. But P,~T~ if a > c ,  
since ~,(c)~:0=P(c),  and P~/Tc, b if ' [P (c+b) l< l=T~ ,b (C+b  ), which can be 
achieved by a suitable choice of b. 

By this lemma our Theorem 1 follows from the next assertion. 

Theorem 2. There is no nontrivial homomorphism of  ~ into Z. 

Remark  1. Lemma (2.1) sounds so natural that at first we did not realize that it 
needs to be proved at all. There are, however, semigroups where this function 
q~ is always finite but is not always a homomorphism. 

Remark  2. In the multiplicative semigroup of integers there are many primes 
(even a unique factorization), but there is no homomorphism into Z because of 
the zero-element. In fact this phenomenon occurs even in cancellative semi- 
groups. Let A c R  2 consist of pairs (x, y) such that x > 0  and if x = 0 ,  then y is a 
nonnegative integer, the operation being the addition. Here the element (0, 1) is 
prime and the reader can easily check that the only homomorphism of A into 
Z is the trivial one. 

It would be interesting to obtain a result in the reverse direction. Of course, 
from a single homomorphism we cannot conclude anything, but perhaps the 
existence of "many"  nonnegative-valued homomorphisms may have some con- 
sequence on the arithmetical structure. 

Remark 3. We proved (Ruzsa-Sz6kely [12]) that there are nontrivial homomor-  
phisms of ~ into R, the additive group of reals; moreover, a homomorphism 
can coincide with the expectation for all distributions for which it is finite; the 
crucial point is that Z is not divisible. 

G. Halfisz proved that there is no nontrivial continuous homomorphism of 
endowed with the weak topology into R endowed with the usual topology 

(or into any topological group; unpublished, oral communication). 

3. The Quotient Group of 

The problem of existence of a homomorphism from a semigroup can be 
reduced to the problem of homomorphisms between groups. Let S be a 
commutative semigroup; a group G o and a homomorphism ~: S ~ G  o can be 
constructed so that if G is an arbitrary Abelian group and q~: S ~ G a homo- 
morphism, then q~=~OoOtr for some homomorphism ~Oo: G O ~ G .  If we impose 
the natural requirement that ~c(S) generates Go, then G o is unique up to an 
isomorphism: if (Go, to') is another such system, then K'=to~c with an isomor- 
phism z: G o ~ G~. 

This G o is called the quotient group of S; in case of a cancellative semi- 
group it reduces to the ordinary quotient group (cf. Chevalley [2], Ch. 2, Th. 20 
or Lang [8], I w 9.). Since we need not only the existence but some particular 
properties of this group, we briefly describe its construction. 

(3.1) Definition. Call two element sl ,  s2ES sisters and write s 1 ~ s  2 if there is 
an s e S  such that ss 1 = s s  2. 
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If sl, s 2 are sisters and ~o is any homomorphism of S into a group (or 
cancellative semigroup), then, of course, ~0(s0=~o(s2). Hence it is natural to 
consider the factor semigroup S o = S / ~  (~  is evidently a congruence relation). 
It is easy to see that S o is cancellative, thus it can be embedded into its 
(ordinary) quotient group G o , which will do also for our purposes. 

Theorem 3. The quotient group of ~ is a divisible torsionJree group of cardinality 
continuum (and therefore it is isomorphic to the additive group of real numbers). 

Theorem 3 obviously implies Theorem 2: from a divisible group no nontri- 
vial homomorphism goes into Z. Two distribution functions F~ and F 2 a r e  

sisters if and only if their characteristic functions #a and #2 coincide in a 
neighbourhood of 0. Namely if F 1 , F = F z , F ,  then 1~11~:F2/~ and hence /71(0 
=F2(t  ) whenever/?(t):t:0, which surely holds for small t. On the other hand, if 
ffl(t)=Fz(t) for Itl<a, then F1 ,Ta=F1 ,T  a with the same distribution Ta as in 
Sect. 2. 

It is easy to see that the distributions of bounded variables are "only 
children" i.e. they have no sisters (the characteristic function is analytic, and if 
two analytic functions coincide on an interval, they are identic, i.e. the 
equivalence classes of these distributions have cardinality 1). 

Concerning Theorem 3 we note that it is evident that this quotient group is 
torsionfree and of cardinality continuum; its divisibility will be proved in the 
next section. That  these assertions imply isomorphism to the additive group of 
reals follows from the structure theorem of divisible groups, see e.g. Fuchs [-5], 
Ch. 3, w 19. 

4. The Divisibility of ~ and a Wiener-L@vy Type Theorem 

To prove the divisibility of the quotient group of ~ means, according to the 
considerations at the end of the previous section, that for any characteristic 
function/~ and natural number n two characteristic functions/~1 and #2 can be 
found such that 

(4.1) F(t) = (F 1 (t)/F 2 (t))" 

in a neighbourhood of 0. We shall obtain a bit more general result. 

Theorem 4. Let 1~ be a characteristic function and f a function, analytic in a 
neighbourhood of 1 and satisfying f ( 1 ) =  1. Then one can find two characteristic 
functions F1 and F2 such that 

(4.2) f (_# (t)) = F 1 (t)/#z(t) 

holds in a neighbourhood of O. 

(4.1) follows by setting f ( x ) = x  1/". Our main tool is 

(4.3) Lemma. Let Z be a Fourier-transform of a function from L l ( - O o ,  oo) and 
f a function, analytic in a neighbourhood of X(0). Then there is another h~L 1 
whose Fourier-transform ~b coincides with f(z(t))  in a neighbourhood of O. 



No Distribution is Prime 267 

This is a Wiener-L6vy type theorem due to  Ditkin [4]. For  a proof, history 
and generalizations see Reiter [11], p. 7 or Ahiyezer [1]. 

We need the following lemma. 

(4.4) Lemma. Suppose heL 1, ~ h(t)dt>O. One can find a nonnegative gsLl ,  
- - o o  

g ~ 0  such that h , g  is also nonnegative. 

(Note that in the usual inaccurate way we use the same symbol �9 to form 
the density function of a sum from density functions and to form the distribu- 
tion from distributions, though formally they are two different operations on 
real functions.) 

We could not decide whether this lemma has been known (several mathe- 
maticians asserted to have seen it, but we could not get any exact reference). A 
more general version is proved in Ruzsa-Sz6kely [13]. 

Proof of Theorem 4. Let 
0 for [tl>2, 

q(t) = 1 for It] ~ 1, 

( 2 - t  for l_<lt]=<2. 

t/is a Fourier-transform of a function from L1, therefore so is Xq. Applying 
Lemma (4.3) we obtain a h6L 1 whose Fourier-transform 0 satisfies 

(t) = f (X (t) t/(t)) = f ()~ (t)) 

for small t. This h satisfies the requirement of Lemma (4.4), since 

h(t)dt = ~(0) = f (Z(0)) = 1. 
- - o o  

Lemma (4.4) provides us a nonnegative g; we may assume it is a density 
function, since this can be achieved by a constant factor, and then 

(h* g) = (~ h)(.f g) = 1, 
thus so is gl = h , g .  

Denoting the Fourier-transform of g and gl by F e and F 1, for small values 
of t we have 

if2 (t) f (F" (t)) =_F2 (t) O (t) = t7" 1 (t) 
as wanted. 

5. Further Problems 

(i) Squarefree distributions. Call a distribution F squarefree if FIG .2 implies 
FIG. (This concept is often called "weak prime"; however, for integers this is 
the well-known notion of a squarefree number, thus we considered this name 
to be more appropriate.) Are there nondegenerate squarefree distributions at 
all? A negative answer would be, of course, stronger than the nonexistence of 
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primes. From Theorem 3 one can easily deduce that the distribution of a 
bounded variable cannot be squarefree. 

(ii) Prime Ideals. Another possible generalization of prime elements is the 
notion of prime ideal. J c ~  is an ideal if for every F E ~  and G s J  we have 
F*GeJ;  it is a prime ideal if its complementer  forms a semigroup. 

Problem. Characterize the prime ideals of o ~.  In these terms the famous 
theorems of Cram6r and Raikov (see e.g. Lukacs [10]) state that the set of 
non-normal,  resp. the set of non-Poisson distributions are prime ideals. Anoth- 
er class of prime ideals is obtained by regarding those distributions whose 
characteristic function vanishes at a given real number. (Our Theorem 1 shows 
that there is no principal prime ideal.) 

(iii) Decomposition of ~ .  Take the factor semigroup ~-* of o~ with respect to 
the set o~0 of degenerate distribution (i.e. we identify distributions which are 
translates of each other). Is this semigroup simple? We think it is; the sim- 
plicity would evidently imply the nonexistence of primes. (Our result quoted at 
the end of Sect. 2 shows that ~ is the direct product of ~o and o~*.) 

(iv) Coprime Distributions. Call two distributions F and G coprime if FIH, GIH 
implies F*GIH. Are there nondegenerate coprime distributions at all? We can 
prove that distributions of two bounded variables cannot be coprime. 

(v) Generalizations. Analogous problems can be investigated concerning the 
semigroup of distributions on a commutat ive topological group, or even more 
generally, a Borel group. In this generality unexpected difficulties may arise, 
e.g. the convolution of two distributions may not exist. This can be avoided by 
restricting ourselves to measures which are in some sense regular, cf. Csiszfir 
[3]. 

Among the distributions over some commutat ive groups there can be 
primes. The complete list of prime distributions on locally compact  (Hausdorff) 
Abelian groups will be published in Ruzsa-Sz6kely [14]. 

Finally we note that Hinbin's theorem can be extended to Delphic semi- 
groups (see Kendall  [7]) thus the existence of primes in these semigroups may 
also be interesting. We plan to return to such generalizations in another paper. 
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