Binary Sequences Derived from ML-Sequences over Rings I: Periods and Minimal Polynomials*

Zong-Duo Dai
Department of Mathematics, Royal Holloway and Bedford New College, University of London, Egham Hill, Egham, Surrey TW20 0EX, England

Communicated by Rainer A. Rueppel

Received 8 May 1991 and revised 29 November 1991

Abstract

We derive pseudorandom binary sequences from maximal length sequences over the integral residue rings. We prove that these derived binary sequences have guaranteed large periods, and we also obtain upper bounds on their minimal polynomials in the sense of the partial order defined by divisibility.

Key words. Maximal length sequences, Integral rings, Periods, Minimal polynomials.

1. Introduction

The so-called integral residue ring $Z_{2^{e}}$ is the set of 2^{e} integers $\left\{0,1,2, \ldots, 2^{e}-2\right.$, $\left.2^{e}-1\right\}$ with arithmetic operations (addition, subtraction, and multiplication) carried out modulo 2^{e}. Any element b belonging to $Z_{2^{\circ}}$ has a binary decomposition as $b=\sum_{i=0}^{e-1} b_{i} 2^{i}, b_{i} \in\{0,1\}$, where b_{i} is called the i th level bit of b, and b_{e-1} the highest level (or the most significant) bit of b. Note that b is odd if $b_{0}=1$. If a_{t} is an element in Z_{2} e with the binary decomposition $a_{t}=\sum_{i=0}^{e-1} a_{t, i} 2^{i}$, then the sequence $\alpha=\left\{a_{t}\right\}_{0}^{\infty}$ of elements in $Z_{2^{e}}$ has a binary decomposition $\alpha=\sum_{i=0}^{e-1} \alpha_{i} 2^{i}$, where $\alpha_{i}=\left\{a_{t, i}\right\}_{t=0}^{\infty}$ is a binary sequence called the i th level component of α.

We start by considering a maximal length (ML-) sequence (which is defined in the next section) of elements in $Z_{2^{e}}$, and we may then derive a binary sequence by picking up the bits at its highest level, or by mixing the bits at the highest level with the bits at the lower levels. This can provide a convenient way of generating pseudorandom binary sequences on general-purpose microprocessors when e is chosen as the processor word length. Now as regards the cryptologic security: the generator is a linear congruential generator and cryptanalytic techniques are avail-

[^0]able at least when the coefficients are known [2]. These techniques suppose that the output sequence is truncated down to the bits at a certain number of higher levels and it seems unlikely that they are practicable when only the highest bits or its mixture with the lower ones are available. There is always the worry that we may obtain a dangerously short period or small linear complexity. In this paper we show that the derived binary sequences have guaranteed large periods, and we also present upper bounds (in the sense of the partial order defined by divisibility) on their minimal polynomials [1, p. 201], [4, p. 419], [5, p. 26], from which upper bounds to their linear complexities [5, pp. 32, 182] (or linear equivalences [1, p. 199]) can be found. Computer results demonstrate that the upper bounds are tight in simple cases. We leave the lower bounds of their linear complexities and some other issues to be discussed in later papers.

2. ML-Sequences and Primitive Polynomials Over \boldsymbol{Z}_{2}.

The periods of the linear recursion sequences over $Z_{2^{\circ}}$ were studied by Ward [6]. In this section we have a brief review on Ward's work, and then introduce the so-called ML-sequences and primitive polynomials over Z_{2}.

In the following, the equation $a(x)=b(x)\left(\bmod g(x), 2^{r}\right)$ means that there exist two polynomials $h_{1}(x)$ and $h_{2}(x)$ with integer coefficients such that $a(x)-b(x)=$ $h_{1}(x) g(x)+h_{2}(x) 2^{r}$, and the notation $Z_{2} \cdot[x]$ is the set of all polynomials with a variable x and coefficients in Z_{2}.

Let $\alpha=\left\{a_{t}\right\}_{t=0}^{\infty}$ be a sequence of elements in $Z_{2^{\circ}}$, obeying the linear recursion of the form $a_{t+n}=-\sum_{j=0}^{n-1} c_{j} a_{t+j}\left(\bmod 2^{e}\right), \forall t \geq 0$, with $\left(a_{0}, a_{1}, \ldots, a_{n-1}\right)$ specifying the initial condition, and with c_{j} constants. As usual, we say that the polynomial $f(x)=x^{n}+\sum_{j=0}^{n-1} c_{j} x^{j}$ is a characteristic polynomial of α, and α is a linear-recursion sequence of degree n over Z_{2}. generated by $f(x)$. Let $c_{j}=\sum_{i=0}^{e-1} c_{j, i} i^{i}$ be the binary decomposition of c_{j}; then $f(x)$ has the binary decomposition $f(x)=\sum_{i=0}^{e=1} f_{i}(x) 2^{i}$, where $f_{i}(x)=\sum_{j=0}^{n} c_{j, i}(x) x^{j}$ is called the i th level component of $f(x)$.

It was proved [6] that the least period of the linear recursion sequence α of degree n over $Z_{2^{\text {e }}}$, denoted by $\operatorname{per}(\alpha)$, is a factor of $2^{e-1} \operatorname{per}\left(f_{0}(x)\right)$; here $\operatorname{per}\left(f_{0}(x)\right)$, called the period (or exponent) of the polynomial $f_{0}(x) \in Z_{2}[x]$, is defined to be the least positive integer T satisfying $x^{T+t_{0}}=x^{t_{0}}\left(\bmod f_{0}(x), 2\right)$ for some nonnegative integers t_{0}. The period per (α) is upper bounded by $2^{e-1}\left(2^{n}-1\right)$, and the upper bound $2^{e-1}\left(2^{n}-1\right)$ is attained only if $f_{0}(x)$ is primitive over the binary field Z_{2}. Moreover, if it is assumed that $f_{0}(x)$ is primitive over Z_{2}, then the upper bound $2^{e-1}\left(2^{n}-1\right)$ is attained if and only if at least one of the initial n elements $a_{0}, a_{1}, \ldots, a_{n-1}$ is odd (or equivalently, $\alpha_{0} \neq 0$, where 0 denotes the null sequence), and $f(x)$ satisfies the following condition:

$$
f_{1}(x) \neq \begin{cases}q(x)^{-1} r(x) & \left(\bmod f_{0}(x), 2\right) \tag{1}\\ q(x)^{-1}(r(x)+1) & \text { if } e=2 \\ \left(\bmod f_{0}(x), 2\right) & \text { if } e \geq 3\end{cases}
$$

where $q(x)$ and $r(x)$ are polynomials with integer coefficients such that

$$
\begin{equation*}
x^{2^{n}-1}-1=f_{0}(x) q(x)+2 r(x) \quad\left(\bmod 2^{e}\right) \tag{2}
\end{equation*}
$$

For later use it is convenient to notice that condition (1) on $f(x)$ is equivalent to

$$
\Delta_{f}(x) \neq 0 \quad\left(\bmod f_{0}(x), 2\right),
$$

where $\Delta_{f}(x)$ is the polynomial with binary coefficients of degree less than n determined by

$$
\Delta_{f}(x)=\left\{\begin{array}{lll}
h_{f}(x) & \left(\bmod f_{0}(x), 2\right), & e=2, \tag{3}\\
h_{f}(x)\left(h_{f}(x)+1\right) & \left(\bmod f_{0}(x), 2\right), & e \geq 3
\end{array}\right.
$$

and $h_{f}(x)$ is the polynomial with binary coefficients of degree less than n determined by

$$
h_{f}(x)=r(x)+q(x) f_{1}(x) \quad\left(\bmod f_{0}(x), 2\right) .
$$

We call $h_{f}(x)$ the half-discriminant of $f(x)$, and $\Delta_{f}(x)$ the discriminant of $f(x)$. A linear-recursion sequence α of degree n over $Z_{2}{ }^{\circ}$ is called an $M L$-sequence if its period attains the upper bound $2^{e-1}\left(2^{n}-1\right)$; and a monic polynomial $f(x)$ (i.e., with the leading coefficient 1) of degree n over $Z_{2^{\circ}}$ is called a primitive polynomial if $f_{0}(x)$ is primitive over the binary field Z_{2}, and $\Delta_{f}(x) \neq 0\left(\bmod f_{0}(x), 2\right)$. When $e=1$, these two introduced concepts become just the well-known concepts of MLsequence and primitive polynomial over the binary field Z_{2}, respectively. It is clear that if $f(x)$ is primitive over Z_{2}, then $\sum_{i=0}^{r=1} f_{i}(x) 2^{i}$ is primitive over $Z_{2^{r}, 1} \leq r \leq e$.

Ward's results can be rewritten as follows.
Proposition 1 [6]. Let $f(x) \in Z_{2^{\circ}}[x]$ be monic of degree n with binary decomposition $f(x)=\sum_{i=0}^{e=1} f_{i}(x) 2^{i}$, and let α be a sequence generated by $f(x)$ over Z_{2} e with binary decomposition $\alpha=\sum_{i=0}^{e=1} \alpha_{i} 2^{i}$. Then

1. α is an $M L$-sequence of degree n if and only if $f(x)$ is primitive over $Z_{2^{\circ}}$, and $\alpha_{0} \neq 0$.
2. If α is an $M L$-sequence of degree n, then $\sum_{i=0}^{r-1} \alpha_{i} 2^{i}, 1 \leq r \leq e$, is also an $M L$-sequence of degree n over $Z_{2^{r}}$, generated by $\sum_{i=0}^{r=1} f_{i}(x) 2^{i}$.

A large number of ML-sequences over Z_{2}. can be generated. In fact from Proposition 1 we have

Corollary 1.

1. For any given primitive polynomial $f(x)$ of degree n over $Z_{2^{\text {e }}}$, the total number of $M L$-sequences over Z_{2}. generated by $f(x)$ is $2^{(n-1)(e-1)}$. The $M L$-sequences generated by $f(x)$, with randomly chosen initial n elements (with the restriction that at least one of $a_{0}, a_{1}, \ldots, a_{n-1}$ is odd), will be cyclicly inequivalent with the probability equal to $1-2^{-(n-1)(e-1)}$.
2. Any two $M L$-sequences generated by two different primitive polynomials over Z_{2} o will be different.
3. Given a primitive polynomial $f_{0}(x)$ of degree n over Z_{2}, the total number of primitive polynomials over $Z_{2^{2}}$ with $f_{0}(x)$ being its 0 th component is $2^{n}-1$ if $e=2$, and $2^{n(e-2)+1}\left(2^{n-1}-1\right)$ if $e \geq 3$.

3. Polynomial Operators

Let $\beta=\left\{b_{t}\right\}_{t=0}^{\infty}$ be a sequence over $Z_{2^{\sigma}}$, let $f(x)=\sum_{i=0}^{n} c_{i} x^{i}$ be a polynomial with coefficients in $Z_{2^{e}}$, and define $f(x) \beta=\sum_{i=0}^{n} c_{i} x^{i} \beta\left(\bmod 2^{e}\right)$, where $x^{i} \beta$ is the translate of β by i steps, i.e., $x^{i} \beta=\left\{b_{i+t}\right\}_{i=0}^{\infty}$, and the sequence multiplication with constants c_{i} and sequence addition are performed component by component. Now applying $f(x)$ on β, we get a sequence $f(x) \beta$, which is the corresponding linear combination of the translates of β, specified by $f(x)$. Hence polynomials become operators on sequences, which is convenient in studying linear recursion sequences.

In the following, for any sequence $\beta=\left\{b_{t}\right\}_{1=0}^{\infty}$ and $\gamma=\left\{c_{t}\right\}_{t=0}^{\infty}$ over $Z_{2^{2}}$, the equation $\beta=\gamma\left(\bmod 2^{e}\right)$ means $b_{t}=c_{t}\left(\bmod 2^{e}\right) \forall t$. With the polynomial operators, the fact that α is generated by $f(x)$ over Z_{2}, can be expressed as $f(x) \alpha=0\left(\bmod 2^{e}\right)$.

The minimal polynomial of a binary sequence γ, which is denoted by $m(\gamma, x)$, is defined to be the characteristic polynomial of the least possible degree. The following lemma concerning the minimal polynomials could be proved easily by means of the introduced polynomial operators; where by the notation $c^{a}(x) \mid d(x)$ we mean that $d(x)$ is divisible by $c^{a}(x)$, and by the notation $c^{a}(x) \| d(x)$ we mean that $d(x)$ is divisible by $c^{a}(x)$, but not by $c^{a+1}(x)$.

Lemma 1. Let β, γ be two sequences over Z_{2}, let $g(x) \in Z_{2}[x]$, and let $g(x) \beta=\gamma$ $(\bmod 2)$, moreover let $p(x) \in Z_{2}[x]$ be irreducible and $p(x) \mid m(\gamma, x)$, where $m(\gamma, x)$ is the minimal polynomial of γ. If $p^{b}(x) \| m(\gamma, x)$ and $p^{a}(x) \| g(x)$, then $p^{b+a}(x) \| m(\beta, x)$.

Proof. Omitted.

4. Periods of $\boldsymbol{\alpha}_{r}$

In this section let $f(x)$ be a primitive polynomial of degree n over $Z_{2 \mathrm{e}}$ with binary decomposition $f(x)=\sum_{i=0}^{e-1} f_{i}(x) 2^{i}$, and let α be an ML-sequence generated by $f(x)$ over Z_{2} e with binary decomposition $\alpha=\sum_{i=0}^{e=1} \alpha_{i} i^{i}$. It follows from Proposition 1 that for any $r, 0 \leq r<e$, the sequence $\sum_{i=0}^{r} \alpha_{i} 2^{i}$ is an ML-sequence generated by $\sum_{i=0}^{r} f_{i}(x) 2^{i}$ over $Z_{2^{r+1}}$. Hence $\operatorname{per}\left(\sum_{i=0}^{r} \alpha_{i} 2^{i}\right)$ equals $2^{r}\left(2^{n}-1\right)$, and in particular $\operatorname{per}\left(\alpha_{r}\right)$ divides $2^{r}\left(2^{n}-1\right)$. In this section it will be proved that $\operatorname{per}\left(\alpha_{r}\right)$ attains the maximal possible value $2^{r}\left(2^{n}-1\right)$. We start with some lemmas.

Lemma 2.

$$
m\left(\alpha_{0}, x\right)=m\left(h_{f}(x) \alpha_{0}, x\right)=m\left(\Delta_{f}(x) \alpha_{0}, x\right)=f_{0}(x),
$$

where $m\left(\alpha_{0}, x\right)$ is the minimal polynomial of α_{0} and so on.
Proof. We have

$$
f(x) \alpha=0 \quad\left(\bmod 2^{e}\right),
$$

hence

$$
f_{0}(x) \alpha_{0}=0 \quad(\bmod 2) .
$$

We know from Proposition 1 that $\alpha_{0} \neq 0$, and $f_{0}(x)$ is primitive over Z_{2}, so $m\left(\alpha_{0}, x\right)=f_{0}(x)$. We see also from Proposition 1 that $\Delta_{f}(x) \neq 0\left(\bmod f_{0}(x), 2\right)$, and then from (3) $h_{f}(x) \neq 0\left(\bmod f_{0}(x), 2\right)$, so $m\left(h_{f}(x) \alpha_{0}, x\right)=m\left(\Delta_{f}(x) \alpha_{0}, x\right)=f_{0}(x)$.

Lemma 3.

$$
\left(x^{2^{r-1}\left(2^{n}-1\right)}-1\right) \alpha_{r}=\left\{\begin{array}{lll}
h_{f}(x) \alpha_{0} & (\bmod 2), & r=1 \\
\Delta_{f}(x) \alpha_{0} & (\bmod 2), & r \geq 2
\end{array}\right.
$$

Proof. We have from (2) that

$$
\begin{align*}
x^{2 n-1} & =1+f_{0}(x) q(x)+2 r(x) \\
& =1+\left[f_{0}(x)+2 f_{1}(x)\right] q(x)+2\left[r(x)-f_{1}(x) q(x)\right] \\
& =1+2 h_{f}(x) \quad\left(\bmod f(x), 2^{2}\right) \tag{4}
\end{align*}
$$

Applying both sides to α we obtain

$$
x^{2 n-1} \alpha=\alpha+2 h_{f}(x) \alpha \quad\left(\bmod 2^{2}\right)
$$

which leads to $x^{2^{n-1}} \alpha_{0}=\alpha_{0}(\bmod 2)$, and hence to $x^{2^{n-1}} \alpha_{0}=\alpha_{0}$. So we have

$$
\begin{aligned}
\left(x^{2^{n}-1}-1\right) \alpha_{1} 2 & =\left(x^{2^{n}-1}-1\right)\left(\alpha_{0}+\alpha_{1} 2\right) \\
& =\left(x^{2^{n-1}}-1\right) \alpha \\
& =2 h_{f}(x) \alpha \\
& =2 h_{f}(x) \alpha_{0} \quad\left(\bmod 2^{2}\right)
\end{aligned}
$$

which, after cancellation of the factor 2 , leads to the first equation in this lemma.
Squaring both sides of (4) we get

$$
\begin{aligned}
x^{2\left(2^{n}-1\right)} & =1+2^{2} h_{f}(x)\left[h_{f}(x)+1\right] \\
& =1+2^{2} \Delta_{f}(x) \quad\left(\bmod f(x), 2^{3}\right)
\end{aligned}
$$

and, by continuing the squaring processes, we get, in general for any $r \geq 2$,

$$
x^{2^{r-1}\left(2^{n-1}\right)}=1+2^{r} \Delta_{f}(x) \quad\left(\bmod f(x), 2^{r+1}\right)
$$

As above, applying both sides on α we obtain

$$
x^{2^{r-1}\left(2^{n-1}\right)} \alpha=\alpha+2^{r} \Delta_{f}(x) \alpha \quad\left(\bmod 2^{r+1}\right)
$$

which leads to

$$
x^{2^{r-1}\left(2^{n-1}\right)} \sum_{j=0}^{r-1} \alpha_{j} 2^{j}=\sum_{j=0}^{r-1} \alpha_{j} 2^{j} \quad\left(\bmod 2^{r}\right)
$$

and hence to

$$
x^{2^{r-1}\left(2^{n-1}\right)} \alpha_{j}=\alpha_{j}, \quad j<r
$$

and then to

$$
\begin{aligned}
\left(x^{2^{r-1}\left(2^{n}-1\right)}-1\right) \alpha_{r} 2^{r} & =\left(x^{2 r^{-1}\left(2^{n}-1\right)}-1\right) \sum_{j=0}^{r} \alpha_{j} 2^{j}=\left(x^{2^{r-1}\left(2^{n}-1\right)}-1\right) \alpha \\
& =2^{r} \Delta_{f}(x) \alpha=2^{r} \Delta_{f}(x) \alpha_{0} \quad\left(\bmod 2^{r+1}\right)
\end{aligned}
$$

which, by cancelling the factor 2^{r}, leads to the second equation in this lemma.
Since $f_{0}^{2 r-1}(x) \|\left(x^{2 n-1}-1\right)^{2^{r-1}}$ it follows from Lemmas $1-3$ that
Corollary 2. The minimal polynomial $m\left(\alpha_{r}, x\right)$ of α_{r} is divisible by $f_{0}^{1+2^{r-1}}(x)$, but not by $f_{0}^{2+2^{r-1}}(x)$, i.e., $f_{0}^{1+2^{r-1}}(x) \| m\left(\alpha_{r}, x\right)$.

We see from Corollary 2 that $\operatorname{per}\left(f_{0}^{1+2^{r-1}}(x)\right) \mid \operatorname{per}\left(m\left(\alpha_{r}, x\right)\right)$, since $\operatorname{per}\left(m\left(\alpha_{r}, x\right)\right)=$ $\operatorname{per}\left(\alpha_{r}\right)$, so it follows that $\operatorname{per}\left(f_{0}^{1+2^{r-1}}(x)\right) \mid \operatorname{per}\left(\alpha_{r}\right)$. Since $\operatorname{per}\left(f_{0}^{1+2^{r-1}}(x)\right)=2^{r}\left(2^{n}-1\right)$ we have $2^{r}\left(2^{n}-1\right) \mid \operatorname{per}\left(\alpha_{r}\right)$, which together with $\operatorname{per}\left(\alpha_{r}\right) \mid 2^{r}\left(2^{n}-1\right)$ leads to

Theorem 1. $\operatorname{per}\left(\alpha_{r}\right)=2^{r}\left(2^{n}-1\right), 0 \leq r<e$, where $\operatorname{per}\left(\alpha_{r}\right)$ is the least period of α_{r}.

5. Upper Bounds on the Minimal Polynomial $m\left(\alpha_{r}, x\right)$ of α_{r}

In this section let $f(x)$ be a primitive polynomial of degree n over $Z_{2^{e}}$ with binary decomposition $f(x)=\sum_{i=0}^{e-1} f_{i}(x) 2^{i}$, and let α be a sequence (not necessarily an ML-sequence) generated by $f(x)$ over $Z_{2^{e}}$ with binary decomposition $\alpha=\sum_{i=0}^{e-1} \alpha_{i} 2^{i}$. An upper bound $G_{r}(x)$ of $m\left(\alpha_{r}, x\right)$ and an improved one $G_{r}^{*}(x)$ will be given, in the sense of the partial ordering defined by divisibility.

5.1. Carry Sequences

In this subsection we show how α_{r} is defined iteratively in terms of the so-called carry sequences $\beta_{r, j}$ which is defined in the following lemma.

Lemma 4. With its initial elements $a_{0}, a_{1}, \ldots, a_{n-1}$, the binary component sequences $\alpha_{r}, 0 \leq r \leq e-1$, of α can be defined alternatively in the following way.

First α_{0} can be deduced by the equation $f_{0}(x) \alpha_{0}=0(\bmod 2)$. In general, assume that $\beta_{i, j}, 0 \leq i<r, 0 \leq i+j<e$, and $\alpha_{i}, 0 \leq i \leq r$, have been defined, and let $\beta_{r, j}$, $0 \leq j<e-r$, be the binary sequences defined by

$$
\begin{equation*}
\sum_{0 \leq i \leq r} f_{r-i}(x) \cdot \alpha_{i}+\sum_{0 \leq i<r} \beta_{i, r-i}=\sum_{0 \leq j<e-r} \beta_{r, j} 2^{j}\left(\bmod 2^{e-r}\right) \tag{5}
\end{equation*}
$$

Then α_{r+1} can be deduced by the following equation:

$$
\begin{equation*}
f_{0}(x) \alpha_{r+1}=\sum_{0 \leq i<r+1} f_{r+1-i}(x) \alpha_{i}+\sum_{0 \leq i<r+1} \beta_{i, r+1-i}(\bmod 2) . \tag{6}
\end{equation*}
$$

Proof. The equation for α_{0} came from Lemma 2. We claim, for $r, 0 \leq r<e$, that

$$
\begin{equation*}
\sum_{l>r}\left[\sum_{0 \leq i \leq l} f_{l-i}(x) \alpha_{i}+\sum_{0 \leq i \leq r} \beta_{i, l-i}\right] 2^{l}=0 \quad\left(\bmod 2^{e}\right) \tag{7}
\end{equation*}
$$

and hence

$$
\left[\sum_{0 \leq i \leq r+1} f_{r+1-i}(x) \alpha_{i}+\sum_{0 \leq i \leq r} \beta_{i, r+1-i}\right] 2^{r+1}=0\left(\bmod 2^{r+2}\right),
$$

which, by cancelling the factor 2^{r+1}, leads to (6).
We prove (7) by induction on r. For $k=0$, (7) is obtained as follows:

$$
\begin{aligned}
\sum_{l>0}\left[\sum_{0 \leq i \leq l} f_{l-i}(x) \alpha_{i}+\beta_{0, l}\right] 2^{l} & =f_{0}(x) \alpha_{0}+\sum_{l>0} \sum_{0 \leq i \leq l} f_{l-i}(x) \alpha_{i} 2^{l} \\
& =f(x) \alpha=0 \quad\left(\bmod 2^{e}\right) .
\end{aligned}
$$

Assume (7) is true for $r=k-1$; then substituting (5) with $r=k$ into (7) with $r=k-1$ we obtain

$$
\begin{aligned}
0= & {\left[\sum_{0 \leq i \leq k} f_{k-i}(x) \alpha_{i}+\sum_{0 \leq i \leq k-1} \beta_{i, k-1}\right] 2^{k} } \\
& +\sum_{i>k}\left[\sum_{0 \leq i \leq l} f_{l-i}(x) \alpha_{i}+\sum_{0 \leq i \leq k-1} \beta_{i, l-i}\right] 2^{l} \\
= & \sum_{0 \leq j<e-k} \beta_{k, j} 2^{k+j}+\sum_{l>k}\left[\sum_{0 \leq i \leq l} f_{l-i}(x) \alpha_{i}+\sum_{0 \leq i \leq k-1} \beta_{i, l-i}\right] 2^{l} \\
= & \sum_{i>k}\left[\sum_{0 \leq i \leq l} f_{l-i}(x) \alpha_{i}+\sum_{0 \leq i \leq k} \beta_{i, l-i}\right] 2^{l}\left(\bmod 2^{e}\right),
\end{aligned}
$$

which shows that (7) is true for $r=k$.
In order to describe $\beta_{r, j}$ by operations modulo 2 we need the following lemma.
Lemma 5 [5]. If $c_{i} \in\{0,1\}, 1 \leq i \leq N$, and $b_{j} \in\{0,1\}, 0 \leq j<e$, and

$$
\begin{equation*}
\sum_{i=1}^{N} c_{i}=\sum_{j \geq 0} b_{j} 2^{j}\left(\bmod 2^{e}\right), \tag{8}
\end{equation*}
$$

then

$$
b_{j}=\sum_{1 \leq i_{1}<i_{2}<\cdots<i_{2} j \leq N} c_{i_{1}} c_{i_{2}} \cdots c_{i_{2} j}(\bmod 2) .
$$

For the sake of convenience, let I_{k} be the index set such that $f_{k}(x)=\sum_{j \in I_{k}} x^{j}$, and let

$$
\begin{equation*}
S_{r}=\left\{\beta_{i, r-i} \mid 0 \leq i<r\right\} \quad \bigcup_{0 \leq i \leq r}\left\{x^{j} \alpha_{i} \mid j \in I_{r-i}\right\} ; \tag{9}
\end{equation*}
$$

then we have

$$
\sum_{0 \leq i \leq r} f_{r-i}(x) \cdot \alpha_{i}+\sum_{0 \leq i<r} \beta_{i, r-i}=\sum_{\gamma \in S_{r}} \gamma\left(\bmod 2^{e-r}\right) ;
$$

hence (5) becomes

$$
\begin{equation*}
\sum_{\gamma \in S_{r}} y=\sum_{0 \leq j<e-r} \beta_{r, j} j^{j}\left(\bmod 2^{e-r}\right), \tag{10}
\end{equation*}
$$

which is a counterpart of (8) for sequences. Since the sequence additions and products are performed component by component, we have from Lemma 5 and (10) that

Lemma 6.

$$
\beta_{r, j}=\sum_{S_{r}} \gamma_{1} \gamma_{2} \cdots \gamma_{2^{j}}(\bmod 2)
$$

where by using the notation $\sum_{s_{r}}$ we mean that the term $\gamma_{1} \gamma_{2} \cdots \gamma_{2^{j}}$ runs over all distinct 2^{j} th-order products of sequences in S_{r}.

5.2. Product Sequences

In this subsection we briefly review the products of binary sequences. Let $a(x)$ and $b(x)$ be two polynomials over Z_{2}, and denote by $\Omega(a(x))$ the set of all sequences over Z_{2} generated by $a(x)$. It is clear that $\Omega(a(x))$ is closed under sequence addition and the polynomial operators. It is known [1, p. 200], [4, p. 424] that $\Omega(a(x)) \subseteq$ $\Omega(b(x))$ if and only if $a(x) \mid b(x)$, and a binary sequence β belongs to $\Omega(b(x))$ if and only if $m(\beta, x) \mid b(x)$, where $m(\beta, x)$ is the minimal polynomial of β. Define

$$
\Omega(a(x)) \Omega(b(x))=\left\{\sum_{i=1}^{m} \beta_{i} \gamma_{i} \mid \beta_{i} \in \Omega(a(x)), \gamma_{i} \in \Omega(b(x)), m \geq 1\right\}
$$

which is a space spanned on the products of the sequences in $\Omega(a(x))$ and $\Omega(b(x))$. We quote the results [7] on product sequences for later use.

Proposition 2 [7]. Let $A(x)$ and $B(x)$ be two polynomials over Z_{2}, then

$$
\Omega(A(x)) \Omega(B(x))=\Omega(A(x) * B(x))
$$

where $A(x) * B(x)$ is a polynomial determined by $A(x)$ and $B(x)$ as follows:

1. If $A(x)$ and $B(x)$ are both square free, assume R_{A} and R_{B} are the root sets of $A(x)$ and $B(x)$ respectively, and $R_{A} \times R_{B}=\left\{\rho \mid \rho=\sigma \tau, \sigma \in R_{A}, \tau \in R_{B}\right\}$, then

$$
A(x) * B(x)=\prod_{\rho \in R_{A} \times R_{B}}(x-\rho) .
$$

2. If $A(x)=a^{1+\lambda}(x)$ and $B(x)=b^{1+\mu}(x)$, where $a(x)$ and $b(x)$ are square free, if $\lambda=\sum_{k \geq 0} \lambda_{k} 2^{k}$ and $\mu=\sum_{k \geq 0} \mu_{k} 2^{k}$ are the binary decompositions of λ and μ, respectively, if k_{0} is the least subscript such that $\lambda_{k}+\mu_{k} \leq 1, \forall k \geq k_{0}$, and if $\lambda * \mu$ is defined by $2^{k_{0}}-1+\sum_{k \geq k_{0}}\left(\lambda_{k}+\mu_{k}\right) 2^{k}$, then

$$
A(x) * B(x)=(a(x) * b(x))^{1+\lambda * \mu}
$$

3. In general, if

$$
A(x)=\operatorname{lcm}\left\{a_{i}^{1+\lambda_{i}}(x) \mid 1 \leq i \leq M\right\} \quad \text { and } \quad B(x)=\operatorname{lcm}\left\{b_{i}^{1+\mu_{j}}(x) \mid 1 \leq j \leq N\right\}
$$

where $a_{i}(x)$ and $b_{j}(x)$ are square free, and lcm represents the least common multiple, then

$$
A(x) * B(x)=\operatorname{lcm}\left\{\left(a_{i}(x) * b_{j}(x)\right)^{1+\lambda_{i} * \mu_{j}} \mid 1 \leq i \leq M, 1 \leq j \leq N\right\}
$$

5.3. Upper Bounds $G_{r}(x)$ of $m\left(\alpha_{r}, x\right)$

First we define a set of polynomials $g_{w}(x)$ and a function $\delta(i)$, which is used in Theorems 2 and 3 . Let θ be a root of $f_{0}(x)$, and define

$$
g_{w}(x)=\prod_{\substack{1 \leq a \leq 2^{n}-1 \\ 1 \leq w(a) \leq w}}\left(x-\theta^{a}\right)
$$

where the integer $w(a)=\sum_{i=0}^{n-1} a_{i}$ is derived from the binary decomposition $a=$ $\sum_{i=0}^{n-1} a_{i} 2^{i}$. It is easy to see that

$$
g_{w_{1}}(x) * g_{w_{2}}(x)=g_{w_{1}+w_{2}}(x), \quad w_{1} \geq 1, \quad w_{2} \geq 1
$$

For $i \geq 0$ define $\delta(i)=2 i-w(i)$. It is not difficult to see that $\delta(i)$ is an increasing function, and that $\delta(i)+\delta(j) \geq \delta(i * j)$.

Theorem 2 (Upper Bounds $G_{r}(x)$). Define

$$
\begin{equation*}
G_{0}(x)=f_{0}(x), \quad G_{r}(x)=\operatorname{lcm}\left\{g_{2^{r-\delta(i)}}^{1+i}(x) \mid 0 \leq i \leq 2^{r-1}\right\} \tag{11}
\end{equation*}
$$

then

1. $G_{r+1}(x)=f_{0}(x)\left(G_{r}(x) * G_{r}(x)\right), r \geq 0$.
2. The minimal polynomial $m\left(\alpha_{r}, x\right)$ of α_{r} is a factor of $G_{r}(x)$, i.e., $m\left(\alpha_{r}, x\right) \mid G_{r}(x)$.
3. $G_{r}(x)=f_{0}(x) \prod_{0 \leq i<2^{r-1}} g_{1+r+\delta(i)}(x)$.

Proof. 1. Put

$$
D_{0}(x)=1, \quad D_{r}(x)=\operatorname{lcm}\left\{g_{2^{r-\delta(i)}}^{1+i}(x) \mid 0 \leq i<2^{r-1}\right\}
$$

It is not difficult to see that $G_{r+1}(x)$ and $f_{0}(x) D_{r+1}(x)$ divide each other, so that

$$
G_{r+1}(x)=f_{0}(x) D_{r+1}(x), \quad r \geq 0
$$

So we need only prove

$$
\begin{equation*}
D_{r+1}(x)=G_{r}(x) * G_{r}(x), \quad r \geq 0 \tag{12}
\end{equation*}
$$

For any $i, j, i \leq 2^{r-1}, j \leq 2^{r-1}$, we have $i * j<2^{r}$ and

$$
g_{2^{r-\delta(i)}}^{1+i}(x) * g_{2^{r-\delta(j)}}^{1+j}(x)=g_{2^{r+1}-[\delta(i)+\delta(j)]}^{1+i * j}(x) \mid g_{2^{r+1}-\delta(i * j)}^{1+i * j}(x),
$$

which leads to

$$
\begin{equation*}
G_{r}(x) * G_{r}(x) \mid D_{r+1}(x) \tag{13}
\end{equation*}
$$

On the other hand, for any $i, 0 \leq i<2^{r}$, if we write

$$
i=i_{0}+i_{1} 2^{r-1}, \quad 0 \leq i_{0}<2^{r-1}, \quad 0 \leq i_{1}<2
$$

then we have

$$
\delta(i)=\delta\left(i_{0}\right)+\delta\left(i_{1} 2^{r-1}\right), \quad i=i_{0} * i_{1} 2^{r-1}
$$

Hence it follows that

$$
\begin{aligned}
g_{2^{r+1}-\delta(i)}^{1+i}(x) & =g_{\left[2^{r}-\delta\left(i_{0}\right)\right]+\left[2^{\left.r-\delta\left(i_{1} 2^{r-1}\right)\right]}\right.}^{1+i_{0} * i_{1} 2^{r-1}}(x) \\
& =g_{2^{r-\delta\left(i_{0}\right)}}^{1+i_{0}}(x) * g_{2^{r}-\delta\left(i_{1} 2^{r-1}\right)}^{1+i_{1} 2^{r-1}}(x) \mid G_{r}(x) * G_{r}(x)
\end{aligned}
$$

Thus we have

$$
D_{r+1}(x) \mid G_{r}(x) * G_{r}(x),
$$

which together with (13) proves (12).
2. We have

$$
\begin{equation*}
G_{i}(x)\left|G_{r}(x)\right| G_{r}(x) * G_{r}(x), \quad i<r, \tag{14}
\end{equation*}
$$

and

$$
\begin{equation*}
\underbrace{G_{r}(x) * G_{r}(x) * \cdots * G_{r}(x) \mid}_{2^{j}} \mid G_{r+j-1}(x) * G_{r+j-1}(x), \tag{15}
\end{equation*}
$$

where (14) is an easy consequence of the definition of $G_{r}(x)$, and (15) can be proved by induction based on (14). We prove

$$
\left.\alpha_{r} \in \Omega\left(G_{r}(x)\right) \quad \text { (i.e., } m\left(\alpha_{r}, x\right) \mid G_{r}(x)\right)
$$

together with

$$
\begin{equation*}
\beta_{r, j} \in \Omega\left(G_{r+j-1}(x) * G_{r+j-1}(x)\right) \tag{16}
\end{equation*}
$$

by induction on r. Assume it is true for $r \leq k$. Set

$$
S_{k+1}^{*}=\left\{\beta_{i, k+1-i} \mid 0 \leq i<k+1\right\} \bigcup_{0 \leq i<k+1}\left\{x^{j} \alpha_{i} \mid j \in I_{k+1-i}\right\},
$$

and then we have from the induction assumption and (14) that

$$
\beta_{i, k+1-i} \in \Omega\left(G_{k}(x) * G_{k}(x)\right), \quad i \leq k,
$$

and

$$
x^{j} \alpha_{i} \in \Omega\left(G_{i}(x)\right) \subseteq \Omega\left(G_{k}(x)\right) \subseteq \Omega\left(G_{k}(x) * G_{k}(x)\right), \quad 0 \leq i \leq k
$$

So we have

$$
S_{k+1}^{*} \subseteq \Omega\left(G_{k}(x) * G_{k}(x)\right)
$$

Now we have from (6) that

$$
\begin{aligned}
f_{0}(x) \alpha_{k+1} & =\sum_{0 \leq i<k+1} f_{k+1-i}(x) \alpha_{i}+\sum_{0 \leq i<k+1} \beta_{i, k+1-i} \\
& =\sum_{\gamma \in S_{k+1}^{*}} \gamma(\bmod 2) \\
& \in \Omega\left(G_{k}(x) * G_{k}(x)\right),
\end{aligned}
$$

which leads to

$$
\alpha_{k+1} \in \Omega\left(f_{0}(x)\left(G_{k}(x) * G_{k}(x)\right)\right)=\Omega\left(G_{k+1}(x)\right) .
$$

Similarly we have

$$
S_{k+1} \subseteq \Omega\left(G_{k+1}(x)\right),
$$

where S_{k+1} is defined in (9). Then it follows from Lemma 6 and from (15) that

$$
\begin{aligned}
\beta_{k+1, j} & =\sum_{S_{k+1}} \gamma_{1} \gamma_{2} \cdots \gamma_{2 j}(\bmod 2) \\
& \in \Omega \underbrace{\left(G_{k+1}(x) * G_{k+1}(x) * \cdots * G_{k+1}(x)\right)}_{2^{j}} \\
& \subseteq \Omega\left(G_{k+j}(x) * G_{k+j}(x)\right) .
\end{aligned}
$$

Part 3 (for its proof, see Appendix 1) is an easy fact in algebra.

5.4. Improved Upper Bounds $G_{r}^{*}(x)$ of $m\left(\alpha_{r}, x\right)$

An improved upper bound of $m\left(\alpha_{r}, x\right)$ is obtained by taking the greatest common divisor of $G_{r}(x)$ and some auxiliary characteristic polynomials of α_{r}. The following lemma, which comes from [3] with some modification, is used in deducing these auxiliary characteristic polynomials.

Lemma 7 [3]. For $r>k \geq 2$, we have

$$
\left(x^{2^{n-1}}-1\right)^{2^{r-2}+2^{r-3}+\cdots+2^{k-1}} \alpha_{r}=\varepsilon \alpha_{k}+\gamma,
$$

where $\varepsilon=\Delta_{f}(x) \alpha_{0}$ and γ is a binary sequence in $\Omega\left(f_{0}(x) * G_{1}(x)\right)$.

Proof. See Appendix 2.
Note that

$$
\left[\Delta_{f}(x) \alpha_{0}\right] \alpha_{k} \in \Omega\left(f_{0}(x) * G_{k}(x)\right) \quad(\bmod 2)
$$

and that

$$
\gamma \in \Omega\left(f_{0}(x) * G_{1}(x)\right) \subseteq \Omega\left(f_{0}(x) * G_{k}(x)\right),
$$

so it follows that

$$
\varepsilon \alpha_{k}+\gamma \in \Omega\left(f_{0}(x) * G_{k}(x)\right)
$$

and then it is easy to get, from Lemma 7,
Corollary 3. $m\left(\alpha_{r}, x\right) \mid\left[f_{0}(x) * G_{k}(x)\right] \cdot\left(x^{2 n-1}-1\right)^{2 r-1-2^{k-1}}, 2 \leq k \leq r-1$.
Theorem 3 (Improved Upper Bounds $G_{r}^{*}(x)$). For $r \geq 3$, define

$$
G_{r}^{*}(x)=\operatorname{gcd}\left\{\left[f_{0}(x) * G_{k}(x)\right]\left(x^{2 n-1}-1\right)^{2 r-1-2^{k-1}}, G_{r}(x) \mid 2 \leq k \leq r-1\right\} ;
$$

then $m\left(\alpha_{r}, x\right) \mid G_{r}^{*}(x)$, where $m\left(\alpha_{r}, x\right)$ is the minimal polynomial of α_{r}, and

$$
\begin{equation*}
G_{r}^{*}(x)=f_{0}(x) g_{4}(x) g_{5}(x)\left[\prod_{\substack{3 k \leq r-1 \\ 2^{k-2} \leq i_{k}<2^{k-1}}} g_{2+k+\delta\left(i_{k}\right)}(x)\right] \prod_{2^{r-2} \leq i<2^{r-1}} g_{1+r+\delta(i)}(x) . \tag{17}
\end{equation*}
$$

Proof. It is evident from Theorem 2 and Corollary 3 that $m\left(\alpha_{r}, x\right) \mid G_{r}^{*}(x)$. Equality (17) is an easy fact in algebra (for its proof, see Appendix 2).

6. Mixed Sequences

We now consider a binary sequence formed by mixing the highest component α_{e-1} with the lower ones as follows:

$$
\begin{equation*}
\gamma=k_{e-1}(x) \alpha_{e-1}+K\left(k_{0}(x) \alpha_{0}, k_{1}(x) \alpha_{1}, \ldots, k_{e-2}(x) \alpha_{e-2}\right), \tag{18}
\end{equation*}
$$

where $k_{i}(x) \in Z_{2}[x], k_{e-1}(x) \neq 0, \operatorname{deg} k_{e-1}(x)<n, K\left(x_{0}, x_{1}, \ldots, x_{e-2}\right)$ is a polynomial of $e-1$ variables of degree less or equal to 1 with respect to each of the variables $x_{i}(0 \leq i \leq e-2)$, and $K(0,0, \ldots, 0)=0$. For example, taking $e=8$, $n=5, k_{0}(x)=x^{4}+x, k_{2}(x)=1, k_{6}(x)=x^{2}, k_{7}(x)=x^{3}+1$, and $K\left(x_{0}, x_{1}, \ldots, x_{6}\right)=$ $x_{0} x_{2}+x_{6}$, then

$$
\gamma=\left(x^{3}+1\right) \alpha_{7}+\left[\left(x^{4}+x\right) \alpha_{0}\right] \alpha_{2}+x^{2} \alpha_{6}
$$

From Theorem 2 it is not difficult to see that $K\left(k_{0}(x) \alpha_{0}, k_{1}(x) \alpha_{1}, \ldots, k_{e-2}(x) \alpha_{e-2}\right) \in$ $\Omega\left(G_{e-2}(x) * G_{e-2}(x)\right) \subseteq \Omega\left(G_{e-1}(x)\right)$. Hence from Theorems 1 and 2 we get

Theorem 4. Let $f(x)$ be a primitive polynomial of degree n over $Z_{2^{e}}$ with the 0 th component $f_{0}(x)$, let α be an $M L$-sequence generated by $f(x)$, and let γ be any mixed sequence from α as in (18), then we have

1. $\operatorname{per}(\gamma)=2^{e-1}\left(2^{n}-1\right)$,
2. $m(\gamma, x) \mid G_{e-1}(x)$, where $G_{e-1}(x) \in Z_{2}[x]$ is defined as in Theorem 2.

Acknowledgements

The author thanks the Department of Mathematics, RHBNC, and Professor Fred Piper for their hospitality as she visited RHBNC, University of London, from July 1990 to June 1991, during which this paper was completed. The author also thanks Z. H. Liu for the communication about her discovery in her data driven study on periods of ring sequences. Thanks are also due to the referees for their interest in the paper and their helpful remarks.

Appendix 1

We say the polynomials $a_{j}(x), 0 \leq j<N$, form a decreasing (or an increasing) chain, if $a_{j+1}(x) \mid a_{j}(x)\left(\right.$ or $\left.a_{j}(x) \mid a_{j+1}(x)\right) \forall j$.

Lemma 8. If the polynomials $a_{j}(x)$ and $a_{k, j}(x), 1 \leq k \leq M, 0 \leq j<N$, are all square free, then we have

1. If $a_{j}(x), 0 \leq j<N$, form a decreasing chain, then

$$
\operatorname{lcm}\left\{a_{j}^{j+1}(x) \mid 0 \leq j<N\right\}=\prod_{0 \leq j<N} a_{j}(x)
$$

2. If $a_{k, j}(x), 0 \leq j<N$, form a decreasing (or an increasing) chain for each k, then

$$
\operatorname{gcd}\left\{\prod_{0 \leq j<N} a_{k, j}(x) \mid 1 \leq k \leq M\right\}=\prod_{0 \leq j<N} \operatorname{gcd}\left\{a_{k, j}(x) \mid 1 \leq k \leq M\right\}
$$

Proof. We prove only part 1 ; part 2 can be proved similarly. It is clear that the two sides of part 1 have the same roots. It is enough to show that each of the roots has the same multiplicity in these two sides. In fact, let ρ be one of the roots. Take it to be a root of $a_{j}(x)$ but not of $a_{j+1}(x)$. Then ρ has multiplicity $1+j$ in both sides.

Lemma 9. If the polynomials $a(x)$ and $a_{j}(x)$ are square free, and $a_{j}(x), 0 \leq j<N$, form a decreasing (or an increasing) chain, then we have

$$
a(x) *\left[\prod_{0 \leq j<N} a_{j}(x)\right]=\prod_{0 \leq j<N}\left[a(x) * a_{j}(x)\right] .
$$

Proof. Without loss of generality we may assume that the $a_{j}(x), 0 \leq j<N$, form a decreasing chain. It is not difficult to see from Proposition 2 that the polynomials $a(x) * a_{j}(x), 0 \leq j<N$, form a decreasing chain. Then we have from item 1 of Lemma 8 and Proposition 2 that

$$
\begin{aligned}
a(x) * \prod_{0 \leq j<N} a_{j}(x) & =a(x) * \operatorname{lcm}\left\{a_{j}^{j+1}(x) \mid 0 \leq j<N\right\} \\
& =\operatorname{lcm}\left\{a(x) * a_{j}^{j+1}(x) \mid 0 \leq j<N\right\} \\
& =\operatorname{lcm}\left\{\left(a(x) * a_{j}(x)\right)^{j+1} \mid 0 \leq j<N\right\} \\
& =\prod_{0 \leq j<N} a(x) * a_{j}(x) .
\end{aligned}
$$

Proof of Part 3 of Theorem 2. Note that $g_{2^{r-\delta(i)}}(x), 0 \leq i \leq 2^{r-1}$, form a decreasing chain, and so we have

$$
\begin{aligned}
G_{r}(x) & =\operatorname{lcm}\left\{g_{2^{r-\delta(i)}}^{1+i}(x) \mid 0 \leq i \leq 2^{r-1}\right\} \\
& =\prod_{0 \leq i \leq 2^{r-1}} g_{2^{r-\delta(i)}}(x) \\
& =f_{0}(x) \prod_{0 \leq i<2^{r-1}} g_{2^{r-\delta(i)}}(x) \\
& =f_{0}(x) \prod_{0 \leq i<2^{r-1}} g_{1+r+\delta(i)}(x)
\end{aligned}
$$

where the first equality comes from the definition in Theorem 2, the second from Lemma 8 , and the fourth by the substitution $j=2^{r-1}-1-i$ and $r+1+\delta(i)=$ $2^{r}-\delta(j)$.

Appendix 2

Lemma 10.

1. Let $c_{1}, c_{2}, b_{0}, b_{1}$ be integers equal to 0 or 1 , and let $c_{1}-c_{2}=b_{0}+b_{1} 2\left(\bmod 2^{2}\right)$, then $b_{0}=c_{1}+c_{2}(\bmod 2), b_{1}=b_{0} c_{2}(\bmod 2)$.
2. Let $\gamma_{1}, \gamma_{2}, \beta_{1}, \beta_{2}$ be binary sequences, and let $\gamma_{1}-\gamma_{2}=\beta_{0}+\beta_{1} 2\left(\bmod 2^{2}\right)$, then $\beta_{0}=\gamma_{1}+\gamma_{2}(\bmod 2), \beta_{1}=\beta_{0} \gamma_{2}(\bmod 2)$.

Proof. Part 1 can be checked directly. Since the sequence additions and products are performed component by component, part 2 is just a direct consequence of part 1.

Lemma 11. Let $r \geq 2$, and let ε_{1} be the binary sequence defined by

$$
\varepsilon_{1}=\left(x^{(2 n-1) 2^{r-2}}-1\right) \alpha_{r}+\varepsilon_{0} \alpha_{r-1} \quad(\bmod 2),
$$

where $\varepsilon_{0}=\Delta_{f}(x) \alpha_{0}(\bmod 2)$. Then $\varepsilon_{1} \in \Omega\left(G_{1}(x)\right)$.
Proof. We have

$$
\begin{aligned}
\left(x^{\left(2^{n-1}\right) 2^{r-2}}-1\right) \alpha & =\left[\left(x^{\left(2^{n-1}\right) 2^{r-2}}-1\right)\left(\alpha_{r-1}+\alpha_{r}\right)\right] 2^{r-1} \\
& =\left[\left(x^{\left(2^{n-1) 2} 2^{r-2}\right.} \alpha_{r-1}-\alpha_{r-1}\right)+\left(x^{\left(2^{n-1}\right) 2^{r-2}}-1\right) \cdot \alpha_{r} 2\right] 2^{r-1} \\
& =\left[\varepsilon_{0}+\varepsilon_{0} \alpha_{r-1} 2+\left(x^{\left.\left(2^{n-1) 2^{r-2}}-1\right) \alpha_{r} 2\right] 2^{r-1}}\right.\right. \\
& =\left(\varepsilon_{0}+\varepsilon_{1} 2\right) 2^{r-1} \quad\left(\bmod 2^{r+1}\right),
\end{aligned}
$$

where the first equality is based on the fact that $\operatorname{per}\left(\alpha_{i}\right) \mid 2^{r-2}\left(2^{n}-1\right), \forall i<r-1$, and the third one based on Lemmas 3 and 10. Applying $f(x)$ to the first and last terms of the above equations we get

$$
0=f(x)\left(x^{\left(2^{n}-1\right) 2^{r-2}}-1\right) \alpha=f(x) \cdot\left(\varepsilon_{0}+\varepsilon_{1} 2\right) 2^{r-1} \quad\left(\bmod 2^{r+1}\right) .
$$

Hence we obtain

$$
f(x)\left(\varepsilon_{0}+\varepsilon_{1} 2\right)=0 \quad\left(\bmod 2^{2}\right)
$$

which means the sequence $\varepsilon_{0}+\varepsilon_{1} 2$ is generated by $f(x)$ over $Z_{2^{2}}$. Then we get from Theorem 2 that $\varepsilon_{1} \in \Omega\left(G_{1}(x)\right)$.

Proof of Lemma 7. We prove it by induction with r decreasing. From Lemma 11, we have

$$
\left(x^{\left(2^{n-1}\right) 2^{r-2}}-1\right) \alpha_{r}=\varepsilon_{0} \alpha_{r-1}+\varepsilon_{1}(\bmod 2),
$$

where $\varepsilon_{1} \in \Omega\left(G_{1}(x)\right) \subseteq \Omega\left(f_{0}(x) * G_{1}(x)\right)$, hence Lemma 7 is true for $k=r-1$. Assume it is true for $k \geq l, 3<l<r$, in particular we have

$$
\begin{equation*}
\left(x^{2^{n-1}}-1\right)^{2 r-2+22^{r-3}+\cdots+2^{l-1}} \alpha_{r}=\varepsilon_{0} \alpha_{l}+\gamma, \tag{19}
\end{equation*}
$$

where $\varepsilon_{0} \in \Omega\left(f_{0}(x)\right)$ and $\gamma \in \Omega\left(f_{0}(x) * G_{1}(x)\right) \subseteq \Omega\left(x^{2\left(2^{n-1)}\right.}-1\right)$. Then we have

$$
x^{\left(2^{n-1}\right) 2^{1-2}} \varepsilon_{0}=\varepsilon_{0} \quad \text { and } \quad\left(x^{\left(2^{n-1}\right) 2^{1+2}}-1\right) \gamma=0 .
$$

Now, applying the operator $\left(x^{2 n-1}-1\right)^{2 l-2}=x^{\left(2^{n-1) 2}-2\right.}-1(\bmod 2)$ on the two sides of (19), we get

$$
\begin{aligned}
\left(x^{2^{n-1}}-1\right)^{2 r-2+2^{r-3}+\cdots+2^{l-1}+2^{l-2}} \alpha_{r} & =\left(x^{\left(2^{n-1}\right) 2^{l-2}}-1\right)\left(\varepsilon_{0} \alpha_{l}+\gamma\right) \\
& =\varepsilon_{0}\left[x^{\left(2^{n-1}\right) 2^{2-2}} \alpha_{\alpha}\right]-\varepsilon_{0} \alpha_{l} \\
& =\varepsilon_{0}\left[\left(x^{\left(2^{n-1)} 2^{l-2}\right.}-1\right) \alpha_{l}\right] \\
& =\varepsilon_{0}\left(\varepsilon_{0} \alpha_{l-1}+\varepsilon_{1}\right) \\
& =\varepsilon_{0} \alpha_{l-1}+\varepsilon_{0} \varepsilon_{1}(\bmod 2),
\end{aligned}
$$

where the fourth equality comes from Lemma 11. It is clear that

$$
\varepsilon_{0} \varepsilon_{1} \in \Omega\left(f_{0}(x) * G_{1}(x)\right)
$$

and thus Lemma 8 is true for $k=l-1$.
Proof of Equality (17) in Theorem 3. Put

$$
H_{r, k}(x)=\left[f_{0}(x) * G_{k}(x)\right]\left(x^{2 n-1}-1\right)^{2^{r-1}-2^{k-1}}
$$

We have

$$
\begin{aligned}
f_{0}(x) * G_{k}(x) & =f_{0}(x) *\left[f_{0}(x) \prod_{0 \leq i<2^{k-1}} g_{1+k+\delta(i)}(x)\right] \\
& =\left[f_{0}(x) * f_{0}(x)\right] \prod_{0 \leq i<2^{k-1}}\left[f_{0}(x) * g_{1+k+\delta(i)}(x)\right] \\
& =g_{2}(x) \prod_{0 \leq i<2^{k-1}} g_{2+k+\delta(i)}(x)
\end{aligned}
$$

where the first equality comes from Theorem 2 and the second from Lemma 9. Therefore $H_{r, k}(x)$ has the following increasing chain expression:

$$
\begin{equation*}
H_{r, k}(x)=g_{2}(x) \prod_{0 \leq i<2^{r-1}} g_{k, i}(x) \tag{20}
\end{equation*}
$$

where

$$
g_{k, i}(x)= \begin{cases}g_{2+k+\delta(i)}(x), & 0 \leq i<2^{k-1} \\ x^{2^{n-1}}-1, & 2^{k-1} \leq i\end{cases}
$$

Now, based on the increasing chain expressions (part 3 of Theorem 2 and (20)) of $G_{r}(x)$ and $H_{r, k}(x), 2 \leq k<r$, respectively, and Lemma 8 , it is not difficult to get the expression (17) of their greatest common divisor $G_{r}^{*}(x)$, but we omit the details.

References

[1] H. Beker and F. Piper, Cipher Systems, Northwood Books, London, 1982.
[2] A. M. Frieze, J. Hastad, R. Kannan, J. C. Lagarias, and A. Shamir, Reconstructing Truncated Integer Variables Satisfying Linear Congruences, SI AM J. Comput., 17, 262-280 (1988).
[3] M. Q. Huang, Analysis and Cryptology Evaluation on Primitive Sequences, Ph.D. Dissertation, Department of Mathematics, Graduate School, Academia Sinica, Beijing, 1988.
[4] R. Lidl and H. Niederreiter, Finite Fields, Encyclopaedia of Mathematics and Its Applications, Vol. 20, Addjson-Wesley, Reading, MA, 1983.
[5] R. A. Rueppel, Analysis and Design of Stream Ciphers, Springer-Verlag, Berlin, 1986.
[6] M. Ward, The Arithmetical Theory of Linear Recurring Series, Trans. Amer. Math. Soc., 35, 600-628 (July 1933).
[7] N. Zierler and W. H. Mills, Products of Linear Recursive Sequences, J. Algebra, 27, 147-157 (1973).

[^0]: * This research was supported by SERC Grant GR/F 72727. The author is on leave from the Department of Mathematics, Graduate School, Academia Sinica, 3908 Beijing, People's Republic of China.

