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Abstract. We derive pseudorandom binary sequences from maximal length se- 
quences over the integral residue rings. We prove that these derived binary 
sequences have guaranteed large periods, and we also obtain upper bounds on 
their minimal polynomials in the sense of the partial order defined by divisibility. 
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1. In tr o d u c t i o n  

The so-called integral residue ring Z2. is the set of 2" integers {0, 1, 2 . . . . .  2" - 2, 
2" - 1 } with arithmetic operations (addition, subtraction, and multiplication) carried 
out  modulo  2 e. Any element b belonging to Z2. has a binary decompos i t ion  as 
b X'"-l~,2i bie{O , 1},wherebiiscalledtheithlevelbitofb, andbe_ 1 theh ighes t  l.ui=o ,-'i , 
level (or the mos t  significant) bit of  b. Note  that  b is odd if bo = 1. If  at is an  element 

v . - 1  a 2 i in Z2. with the binary decomposi t ion  at = z.i=o t,~ , then the sequence ~ = {at}~ 
of  elements in Z2. has a binary decomposi t ion  ct = ~ 2 ~  oh2 ~, where e~ = {at,i}~'= o 
is a binary sequence called the ith level component of cc 

We start by considering a maximal  length (ML-) sequence (which is defined in 
the next section) of elements in Z2.,  and we may  then derive a binary sequence by 
picking up the bits at its highest level, or  by mixing the bits at the highest level with 
the bits at the lower levels. This can provide a convenient way of generat ing 
pseudorandom binary sequences on general-purpose microprocessors  when e is 
chosen as the processor word  length. N o w  as regards the cryptologic security: the 
generator  is a linear congruential  generator  and cryptanalytic techniques are avail- 
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able at least when the coefficients are known [2]. These techniques suppose that 
the output sequence is truncated down to the bits at a certain number of higher 
levels and it seems unlikely that they are practicable when only the highest bits or 
its mixture with the lower ones are available. There is always the worry that we 
may obtain a dangerously short period or small linear complexity. In this paper we 
show that the derived binary sequences have guaranteed large periods, and we also 
present upper bounds (in the sense of the partial order defined by divisibility) on 
their minimal polynomials [1, p. 201], [4, p. 419], [5, p. 26], from which upper 
bounds to their linear complexities [5, pp. 32, 182] (or linear equivalences [1, 
p. 199]) can be found. Computer results demonstrate that the upper bounds are tight 
in simple cases. We leave the lower bounds of their linear complexities and some 
other issues to be discussed in later papers. 

2. ML-Sequenees and Primitive Polynomials Over Z 2. 

The periods of the linear recursion sequences over Z2. were studied by Ward [6]. 
In this section we have a brief review on Ward's work, and then introduce the 
so-called ML-sequences and primitive polynomials over Z2.. 

In the following, the equation a(x) = b(x) (mod 9(x), 2') means that there exist 
two polynomials ha(x ) and hz(x) with integer coefficients such that a(x) - b(x) = 
hl(x)9(x) + hz(x)2", and the notation Z2.[x] is the set of all polynomials with a 
variable x and coefficients in Z2.. 

Let ~ = {a,},%o be a sequence of elements in Z2., obeying the linear recursion of 
the form a, +, = - Y'.TS-~ c~at +J (mod 2"), Vt > 0, with (ao, ax . . . . .  a,_l) specifying the 
initial condition, and with c s constants. As usual, we say that the polynomial 

~ , - 1  ...-s is a characteristic polynomial of ~, and 0c is a linear-recursion f (x )  = x" + ~i=o ~s~ 
X-',-1 - 2 i sequence of  degree n over Z z. generated by f(x).  Let c# =/_.a=o c#,~ be the binary 

, - - 1  i decomposition of cs; then f (x)  has the binary decomposition f (x)  = ~i=o fi(x)2, 
where fi(x) = ~7=o cs,~(x)xi is called the ith level component off(x).  

It was proved l'6] that the least period of the linear recursion sequence cc of degree 
n over Z2., denoted by per(~), is a factor of 2 "-1 per(fo(X)); here per(fo(x)), called 
the period (or exponent) of the polynomial fo(X) e Z21'x], is defined to be the least 
positive integer Tsatisfying x r+'° = x t° (mod fo(x), 2)for some nonnegative integers 
to. The period per(~) is upper bounded by 2"-1(2 " -  1), and the upper bound 
2"-1(2" - 1) is attained only iffo(x) is primitive over the binary field Z 2. Moreover, 
if it is assumed that fo(x) is primitive over Z2, then the upper bound 2"-1(2" - 1) 
is attained if and only if at least one of the initial n elements ao, az . . . .  , a._ 1 is odd 
(or equivalently, ~o ~ 0, where 0 denotes the null sequence), and f (x )  satisfies the 
following condition: 

~q(x)-Zr(x) (mod fo(x), 2) if e = 2, 
fz (x) ~ [q(x)_l(r(x) + 1) (mod fo(x), 2) if e >__ 3, (1) 

where q(x) and r(x) are polynomials with integer coefficients such that 

x 2"-z - 1 = fo(x)q(x) + 2r(x) (mod 2"). (2) 
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For later use it is convenient to notice that condition (1) on f (x)  is equivalent to 

A:(x) 4:0 (mod fo(x), 2), 

where A:(x) is the polynomial with binary coefficients of degree less than n determined 
by 

~h:(x) (mod fo(x), 2), e = 2, 
A:(x) = [h:(x)(h:(x) + 1) (mod fo(x), 2), e > 3, (3) 

and h:(x) is the polynomial with binary coefficients of degree less than n determined 
by 

h:(x) = r(x) + q(x)A(x) (rood fo(x), 2). 

We call h:(x) the half-discriminant of f(x), and A:(x) the discriminant of f(x). A 
linear-recursion sequence a of degree n over Z 2. is called an ML-sequence if its 
period attains the upper bound 2~-1(2" - 1); and a monic polynomial f (x )  (i.e., with 
the leading coefficient 1) of degree n over Z2, is called a primitive polynomial if 
fo(x) is primitive over the binary field Z 2, and A:(x) 4:0 (rood fo(x), 2). When e = 1, 
these two introduced concepts become just the well-known concepts of ML- 
sequence and primitive polynomial over the binary field Z2, respectively. It is clear 
that if f (x) is primitive over Z2,, then ~-~f~(x)2  i is primitive o v e r  Z 2 , , 1  <__ r ~ e. 

Ward's results can be rewritten as follows. 

Proposition 1 [6]. Let f ( x )  E Z2e[X ] be monic of degree n with binary decomposition 
x ~ - i  :lx~2 i and let a be a sequence generated by f(x)  over Z2. with binary f(x)  = ~i=oJit , , 

decomposition ~ = ~ - ~  ~i2 i. Then 

1. a is an ML-sequence of degree n i f  and only i f  f (x)  is primitive over Z 2~, and 
ao~O.  

2. I f  a is an ML-sequence of degree n, then ~ - ~  ai2 i, 1 < r < e, is also an 
ML-sequence of degree n over Z2r, generated by ~---~ f/(x)2 i. 

A large number of ML-sequences over Z 2. can be generated. In fact from 
Proposition 1 we have 

Corollary I. 

1. For any given primitive polynomial f(x)  of degree n over Z2~ , the total number 
of ML-sequences over Z z. generated by f(x)  is 2 ('-1)re-I). The ML-sequences 
generated by f(x), with randomly chosen initial n elements (with the restriction 
that at least one of a o, al, . . . ,  an_ 1 is odd), will be cyclicly inequivalent with the 
probability equal to 1 - 2 -t"-l)te-1). 

2. Any two ML-sequences generated by two different primitive polynomials over 
Z2e will be different. 

3. Given a primitive polynomial fo(x) of degree n over Z2, the total number of 
primitive polynomials over Z2. with fo(x) being its Oth component is 2" - 1 i f  
e = 2, and 2"(~-2)+1(2 "-1 - 1) i re  >_ 3. 
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3. Polynomial Operators 

Let fl = {b,}~°=o be a sequence over Z2., let f (x )  = ZT=o ci xi be a polynomial with 
coefficients in Z2e, and define f(x)fl  = ZT=o cixifl (mod 2e), where xifl is the translate 
of fl by i steps, i.e., x~fl = {b~ +t}~°=o, and the sequence multiplication with constants 
c~ and sequence addition are performed component by component. Now applying 
f (x )  on r ,  we get a sequence f(x)fl,  which is the corresponding linear combination 
of the translates of r ,  specified by f(x).  Hence polynomials become operators on 
sequences, which is convenient in studying linear recursion sequences. 

In the following, for any sequence fl = {b,},~o and 7 = {ct},%o over Z2. , the 
equation fl = V (mod 2 ~) means b, = c, (mod 2 ~) Vt. With the polynomial operators, 
the fact that a is generated by f (x )  over Z 2. can be expressed as f (x )a  = 0 (mod 2~). 

The minimal polynomial of a binary sequence 7, which is denoted by m(7, x), is 
defined to be the characteristic polynomial of the least possible degree. The following 
lemma concerning the minimal polynomials could be proved easily by means of the 
introduced polynomial operators; where by the notation c~(x)ld(x) we mean that 
d(x) is divisible by c°(x), and by the notation c"(x)lld(x) we mean that d(x) is divisible 
by c*(x), but not by c°+X(x). 

Lemma 1. Let fl, 7 be two sequences over Z 2, let g(x) ~ Z2[x] ,  and let g(x)fl = 7 
(mod 2), moreover let p(x) e Z2[x]  be irreducible and p(x)lm(7, x), where m(7, x) is 
the minimal polynomial of 7. I f  pb(x)[]m(7, x) and pa(x)llg(x), then pb+a(x)[lm(fl, x). 

Proof. Omitted. [ ]  

4. Periods of a, 

In this section let f (x )  be a primitive polynomial of degree n over Z2. with binary 
x~e-1 ¢~x~2 ~ and let a be an ML-sequence generated by f ( x )  decomposition f (x )  = ~i=o Jzt J , 

e-1 over Zzo with binary decomposition a = ~i=o a, 21. It follows from Proposit ion 1 
~ "  a 2 ~ is an ML-sequence generated by that for any r, 0 < r < e, the sequence/.~=o 

~,'.=of~(x)2 i over Z2 .... Hence p e r ( ~ =  o ai2 i) equals 2"(2 n -  1), and in particular 
per(a,) divides 2~(2 n - 1). In this section it will be proved that per(a,) attains the 
maximal possible value 2'(2 ~ - 1). We start with some lemmas. 

Lemma 2. 

m(ao, x) = m(hy(x)ao, x) = m(Ay(x)a o, x) = fo(x), 

where m(a o, x) is the minimal polynomial of  a o and so on. 

Proof. We have 

hence 

f (x )a  = 0 (mod 2e), 

fo(X)ao = 0 (mod 2). 
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We know f rom Propos i t ion  1 that  % :~ 0, and fo(x) is primitive over  Z 2, so 
m(%, x) = fo(x). We see also f rom Propos i t ion  1 tha t  A:(x) # 0 (modfo(x) ,  2), and 
then f rom (3) h:(x) ~ 0 (modfo(X), 2), so m(h:(x)%, x) = m(A:(X)~o, x) = fo(x). [] 

L e m m a  3.  

(x 2"-=(2"-1) -- 1)~r = ~h:(x)% (mod 2), r = 1, 
[ A : ( x ) %  (mod 2), r > 2. 

Proof.  We have f rom (2) that  

x 2"-1 = 1 + fo(x)q(x) + 2r(x) 

= 1 + [fo(X) + 2fl(x)]q(x) + 2[r(x) - f l (x)q(x)]  

= 1 + 2h:(x) (mod f(x),  22). 

Applying bo th  sides to g we obta in  

x2n-lo~ -~- O~ "~ 2h:(x)~ (mod 22), 

which leads to x2"-1% -- % (mod 2), and hence to x2"-1~ o = %.  So we have 

(x 2"-1 - 1)~12 = (x 2"-1 - 1)(~o + 0q2) 

= ( x  2"-1  - -  1)0c 

= 2h:(x)a 

= 2h:(x)% (mod 22), 

which, after cancellat ion of the factor  2, leads to the first equat ion  in this lemma.  
Squar ing bo th  sides of (4) we get 

x 2(2"-1) = 1 + 22h:(x)[hr(x) + 1] 

= 1 + 22A:(x) (mod f(x),  23), 

and,  by cont inuing the squaring processes, we get, in general for any r > 2, 

x 2"-1(z"-1~ = 1 + 2"A:(x) ( m o d f ( x ) ,  2'+1). 

As above,  apply ing  both  sides on 0t we obtain  

X2r-l(2"-l)0~ ~--- O~ "l" 2"A:(x)0c 

which leads to 

and hence to 

(mod 2r+1), 

r - 1  r - 1  

x 2"-1(2"-1) ~ cti2s= ~ o92s 
j=o j=o 

(mod 2"), 

x2"-'(2"-l)~j = as, j < r, 

(4) 
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and then to 

(X 2 r - l ( 2 n - 1 )  - -  1)~,2' = ( x  2 r - l ( 2 n - 1 )  - 1) ~ ccs2s = ( x  2 r - l ( 2 n - 1 )  - 1)~ 
j = 0  

= 2'A:(x)ct = 2'A:(x)~t o (mod 2"+1), 

which, by cancelling the factor 2", leads to the second equation in this lemma. []  

Since fo2"-'(x)]l(x 2"-z - 1) 2"-1 it follows from Lemmas 1-3 that 

Corollary 2. The minimal polynomial m(ct,, x) of ct, is divisible by fo 1+2"-' (x), but not 
by fo2+2"-'(x), i.e., f~+ z'-l(x)l]m(ct,, x). 

We see from Corollary 2 that per(fol+Z'-'(x))lper(m(~,, x)), since per(m(~,, x)) = 
per(or,), so it follows that per(fo 1+ 2,-1 (x))lper(0t,). Since per(fo t+ 2--* (x)) -- 2'(2" - I) 
we have 2'(2" - 1)lper(~,), which together with per(~,)12"(2" - 1) leads to 

Theorem 1. per(~t,) = 2"(2" - 1), 0 _< r < e, where per(~,) is the least period of o~,. 

5. Upper Bounds on the Minimal Polynomial m(~,, x) of a¢, 

In this section let f (x)  be a primitive polynomial of degree n over Z 2. with binary 
e - 1  i decomposition f ( x ) =  ~i=of / (x)2 ,  and let ~ be a sequence (not necessarily an 

ML-sequence) generated by f (x)  over Z2~ with binary decomposition ~ = ~i=oV'-i cti,.'~i. 
An upper bound G,(x) of m(~,, x) and an improved one G*(x) will be given, in the 
sense of the partial ordering defined by divisibility. 

5.1. Carry Sequences 

In this subsection we show how ct, is defined iteratively in terms of the so-called 
carry sequences fl,,s which is defined in the following lemma. 

Lemma 4. With its initial elements ao, a l , . . . ,  a,_z, the binary component sequences 
~,, 0 < r < e - 1, of ~t can be defined alternatively in the following way. 

First ot o can be deduced by the equation fo(X)O~o = 0 (mod 2). In general, assume 
that fli.i, 0 < i < r, 0 < i + j < e, and o~i, 0 < i < r, have been defined, and let fl,.i, 
0 < j < e - r, be the binary sequences defined by 

f,_,(x)'~xi+ ~ fl,,,_i= ~ fl,.j2 j (mod2e- ') .  (5) 
O<i<_r 0 _ < i < r  O < j < e - r  

Then ~,+1 can be deduced by the following equation: 

fo(X)~,+z = ~ f,+1-1(x) g, + ~ fl,.,+z-, (mod 2). (6) 
O _ < i < r + l  0 ~ i < r + l  

Proof. The equation for a o came from Lemma 2. We claim, for r, 0 < r < e, that 

~ I  -<~-< f~_,(x)cq+ ~ fli . ,_~12t=0 (mod2e), (7) 
I>r 0 l O<i<_r 
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and hence 

R l~,+,  2,+~), o<~,+1 f,+,_i(x)a, + oL, e,,,+,-ij'- =0 (mod 

which, by cancelling the factor 2 '+x, leads to (6). 
We prove (7) by induction on r. For k = 0, (7) is obtained as follows: 

E ~< fz-i(x)ai+ f l ° "12 '= f ° ( x )a°+  ~ ~-' f~_,(x)~ti2' 
1>0  0 l 1 > 0 0 < i ~ l  

= f(x)a = 0 (mod 2~). 

Assume (7) is true for r = k - 1; then substituting (5) with r = k into (7) with 
r = k -  l w e o b t a i n  

o = [o E + fli, k-1] 2k 
O < i < k - - 1  

l>k O<<_i~l O ~ i ~ k - 1  

O ~ j < e - k  l>k 0 1 

: >~kE _<~/_< f t - i (x)a i+ ~ t  o t O<_,<_k fli"-i] 2z (m°d2~)' 

which shows that (7) is true for r = k. 

fli, l-~ 1 21 
O < i ~ k - I  

[] 

In order to describe fl,.j by operations modulo 2 we need the following lemma. 

Lemma 5 [5]. 

then 

I f  c, ~ {0, 1}, i < i < N, and bj ~ {0, 1}, 0 < j  < e, and 
N 

E ci= E bJ 2j (mod2*), 
i=1  j > O  

bj= ~ ci ci ""ci2 ~ (mod 2). 
1--<il <i2 <"'<i2J<--N 

(8) 

For the sake of convenience, let Ik be the index set such that fk(X) = ~j~  I~ X J, and 
let 

Sr = {fl,.r-il0 ~ i < r} U {xJailJE l,_i}; (9) 
O ~ i ~ r  

then we have 

~, f ,-i(x)'ai + ~_, fl~,,-~ = ~ ? (modZe-');  
O~_i~_r O~_i<r 7 ~ S r  

hence (5) becomes 

? = ~ fl,,s2 j (mod 2e-~), 
?~S  r O < j < e - r  

(10) 
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which is a counterpart of (8) for sequences. Since the sequence additions and 
products are performed component by component, we have from Lemma 5 and (10) 
that 

Lemma 6. 
flr,j = E ]/172"" "721 (mod 2), 

Sr 

where by using the notation ~sr we mean that the term 7 x 72"" 72./runs over all distinct 
2Jth-order products of sequences in S,. 

5.2. Product Sequences 

In this subsection we briefly review the products of binary sequences. Let a(x) and 
b(x) be two polynomials over Z 2, and denote by f~(a(x)) the set of all sequences 
over Z2 generated by a(x). It is clear that f~(a(x)) is closed under sequence addition 
and the polynomial operators. It is known [1, p. 200], [4, p. 424] that ~(a(x)) c_ 
~)(b(x)) if and only if a(x)lb(x), and a binary sequence fl belongs to f~(b(x)) if and 
only if m(fl, x)lb(x), where m(fl, x) is the minimal polynomial of ft. Define 

fl(a(x))f~(b(x)) = ~ ~ fliY,tfl, e fl(a(x)), 7i e fl(b(x)), m >__ 1}, 
( i=l 

which is a space spanned on the products of the sequences in f2(a(x)) and •(b(x)). 
We quote the results [7] on product sequences for later use. 

Proposition 2 [7]. Let A(x) and B(x) be two polynomials over Z2, then 

n(A(x))n(B(x)) = n(A(x), B(x)), 

where A(x) * B(x) is a polynomial determined by A(x) and B(x) as follows: 

1. I f  A(x) and B(x) are both square free, assume R A and R s are the root sets 
of A(x) and B(x) respectively, and R A x RB = {PiP = ev, cre R~, z e RB}, 
then 

A(x),  B(x) = H ( x - p )  
o~RA×RB 

2. I f  A(x) = al+~(x) and B(x) = bl+~(x), where a(x) and b(x) are square free, i f  
2 = ~k>_0 )'k 2k and It = 2k>_OItk 2k are the binary decompositions of ). and It, 
respectively, i f  k o is the least subscript such that ~t k q- Itk ~ 1, Vk ~ ko, and i f  
2*It  is defined by 2 k° - 1 + Zk>ko(Ak "~ Itk)2 k, then 

A(x) * B(x) = (a(x) * b(x)) l+a*". 

3. In general, i f  

A(x) = lcm{a~+Z'(x)ll <_ i <_ M} and B(x) = lcm{bl+UJ(x)]l _<j _< N}, 

where ai(x) and bi(x) are square free, and lcm represents the least common 
multiple, then 

A(x)* B(x) = lcm{(a~(x)*b~(x))X+z'*u./ll < i <<_ M, 1 < j <_ N}. 
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5.3. Upper Bounds G,(x) of  m(~,, x) 

First we define a set of polynomials  gw(x) and a function 6(0, which is used in 
Theorems 2 and 3. Let 0 be a roo t  offo(x) ,  and define 

gw(X)  = I-'[ (X - -  oa), 
1 N a _ < 2 n - 1  
l <w(a)<w 

where the integer w(a) = ~7-~  ai is derived from the binary decomposi t ion  a = 
~ , - 1  _ 2 / /=o ui • It  is easy to see that  

g~l(x)* gw2(x) = gw,+~2(x), wl >__ 1, w 2 >_ 1. 

For  i > 0 define 6(0 = 2i - w(i). It  is not  difficult to see that  6(0 is an increasing 
function, and that  6(0 + ~(j)  > 3 ( i , j ) .  

Theorem 2 (Upper  Bounds  G,(x)). Define 

Go(x ) = fo(x), G,(x) = lcm{g~,+'_~(0(x)10 < i < 2"-~}, ( I I )  

then 

1. G,+l(x) = fo(x)(6 , (x)*  G,(x)), r > O. 
2. The minimal polynomial m(ct,, x) of  ~, is a factor of  G,(x), i.e., m(e,, x)lG,(x). 

3. G,(x) = fo(X) I-[o~i<z--I gl+,+~(o(x) • 

Proof. 1. Put  

Do(x ) 1, O,(x) 1+i 0 _ 2 r-1 }. = = lcm{g2~_a(i)(x)l < i < 

It is not  difficult to see that G,+l(x) and fo(x)D,+l(x) divide each other, so that  

G,+I(x ) = fo(x)D,+l(x), r > O. 

So we need only prove 

O,+l(x ) = G,(x) * G~(x), r >_ O. (12) 

For  any  i,j, i < 2"-1, j  < 2 "-1, we have i * j  < 2" and 

1 + i  z x ,  l + j  - x l + i * j  [x'll,71+i*j {X" I 
~2~-~(i)( X] f f 2 ~ - t ~ ( j ) ( X )  ---~ g 2  ~+~ -[ ,~(i)+6(j)] ' ,  ;1 .~2 ~+~-,~( i*j)~ .', 

which leads to 

G,(x) * G,(x)lO~+x (x). (13) 

On  the other  hand, for any i, 0 _< i < 2', if we write 

i = i o + i ~ 2  ' -1 ,  0 < i  o < 2  ~-1, 0 < i ~ < 2 ,  

then we have 
3(i) = 6(io) + ~(i12"-~), i = i o • il 2"-1. 

Hence it follows that 

1+ i  " \ ~ 1 + i 0 " 1 1 2  r - I  1 ~  
g 2 ~ + t - ~ ( i ) (  X] ~- ~[2r_~(io)]+[2r_~(i12r-l)]t.~,] 

1+io  - , , , 1 + h 2 ~ - *  tx ~lGcx~*G~(x). 
= g 2 . - a ( i o ) [ X ) * v 2 ~ - a ( i t 2 ~ - , ) ~  p~ r~ J 
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Thus we have 

O,+dx)lG,(x)* G,(x), 

which together with (13) proves (12). 
2. We have 

Gi(x) IGRx)IG,(x) * G,(x), 

and 

i < r ,  

G,(x)* 6,(x) , - "  * 6,(x)l a ,+ j_dx)  * G, +s-1 (x), 
k .... -/ .¢  

2 J 
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(14) 

(15) 

which leads to 

Now we have from (6) that 

fo(x)°tk+l = Z fk+l-i(x)~i + ~ /3,.k+1-, 
O ~ i < k + l  O ~ i < k + l  

= ~ ? (mod2) 

~(Gk(x)* Gk(x)), 

x~ i  ~ f~(G~(x)) =_ f~(G~(x)) =_ f~(Gk(x)* Gk(x)), 

S~+l ~ ~(Gk(x)* Gk(x)). 

Similarly we have 

O < i < k .  

~k+l ~ n( fo(x)(Gk(x) ,  6~(x))) = n(G~+l(x)). 

&+1 =- f~(Gk+l(X)), 

(16) 

So we have 

and 

p,,j ~ n(6,+~_1 (x) • G, +i-1 (x)) 

by induction on r. Assume it is true for r < k. Set 

S~'+1 = {/~i,k+l-,10 < i < k + 1} [,.) {X/O~iJj E/k+l-i}, 
O _ < / < k + l  

and then we have from the induction assumption and (14) that 

fl~,k+l-i ~ ~(Gk(x) * Gk(x)), i < k, 

together with 

where (14) is an easy consequence of the definition of G,(x), and (15) can be proved 
by induction based on (14). We prove 

or, ~ ~(G,(x)) (i.e., m(~,, x)lG,(x)) 
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where Sk+~ is defined in (9). Then  it follows from Lemma 6 and from (15) tha t  

flk+loj = Z ]11])2"''~)2J (mod2)  
~k+l 

ta(G~ +dx)* Gk+l(x) * ' " *  G~+1(x)) 
,¢ 
2 ~ 

=_ ta( Gk + i(x) , G~ + }x )  ). 

Par t  3 (for its proof,  see Appendix 1) is an easy fact in algebra. [] 

5.4. Improved Upper Bounds G*(x) of  m(~,, x) 

An improved upper  bound  of m(~,, x) is obta ined by taking the greatest  c o m m o n  
divisor of G,(x) and some auxiliary characteristic polynomials  of ~,. The  following 
lemma, which comes from [3] with some modification, is used in deducing these 
auxiliary characterist ic polynomials.  

Lemma 7 [3]. For r > k > 2, we have 

(x 2"-1 - 1)2r-2+2r-3+"'+2k-10~r = /~k q- ]~, 

where e = Ai(x)~ o and 7 is a binary sequence in f~(fo(x) * Gl (x)). 

Proof. See Appendix 2. [] 

Note  that  

and that 

so it follows that  

[Ar(X)~o]~k e ~(fo(X)* Gk(x)) (mod 2) 

~, ~ f2(fo(x) * 61(x)) =- ta(fo(x) * 6~(x)), 

e~k + ~ E f~(fo(x)* Gk(x)), 

and then it is easy to get, from Lemma  7, 

Corollary 3. re(err, x)l[fo(x)* Gk(X)] "(X 2"-1 -- 1) 2 . . . .  2~-~, 2 < k < r -- 1. 

Theorem 3 ( Improved Upper  Bounds  G*(x)). For r > 3, define 

G*(x) = gcd{[fo(X)* Ok(X)](x 2"-a -- 1) 2 . . . .  2k-,, G,(x)]2 _< k ~ r - 1}; 

then re(a,, x)[G* (x), where m(ar, x) is the minimal polynomial of ~,, and 

G*(x) = f°(x)g4(x)gs(x)[ 3___k_<r-lI-I g2+k+gJtik)(X)] 2"-2<i<2 " - t l - I  gl+,+a(i)(X)" 
2k-2.<ik <2k-I 

(17) 

Proof. It is evident from Theorem 2 and Corol lary 3 that  m(~r, x)[ G*(x). Equal i ty  
(17) is an easy fact in algebra (for its proof,  see Appendix 2). [ ]  
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6. Mixed Sequences 

We now consider  a b inary  sequence formed by mixing the highest c o m p o n e n t  ~e-1 
with the lower  ones as follows: 

y = ke_x(X)~e_ 1 + K(ko(x)ct o, k l (x)cq, . . . ,  ke_2(x)ae_2) , (18) 

where ki(x ) E Z 2 [ x  ], k~_l(x) ~ O, deg k~_l(x) < n, K(xo, xl  . . . . .  Xe-2) is a poly-  
nomial  of  e -- I variables of  degree less or  equal  to 1 with respect to each of  the 
variables xi (0 < i < e - 2), and K(0, 0 , . . . ,  0) = 0. Fo r  example,  t ak ing  e = 8, 
n = 5, ko(x ) = x 4 + x, k2(x ) = 1, k6(x ) = x 2, kT(x ) = x 3 -J- 1, and K(xo, xl  . . . . .  X6) = 

XoX2 + x6, then 

y = (X 3 -1- 1)0~ 7 -t- [-(X 4 -I- X)~0"]0~ 2 31- X2~6 . 

F r o m  T h e o r e m  2 it is no t  difficult to see that  K(ko(x)~o, kl(x)~ ~ . . . . .  k,e_2(x)O~e_2) 
f l (Ge_2(x  ) • Ge_2(x)) ~ f l(Ge_1(x)).  Hence f rom Theorems  1 and 2 we get 

Theorem 4. Let f (x)  be a primitive polynomial of degree n over Z2, with the 0th 
component fo(x), let ~ be an ML-sequence generated by f(x), and let y be any mixed 
sequence from ct as in (18), then we have 

1. per(v ) = 2 e-1 (2 n _ 1), 
2. re(y, x)[Ge_l(X ), where Ge_l(X) e Z 2 [ x ]  is defined as in Theorem 2. 
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Appendix 1 

We say the po lynomia l s  aj(x), 0 < j < N, form a decreasing (or an increasing) chain, 
if aj+x(x)laj(x) (or aj(x)laj+l(x)) Vj. 

L e m m a  8. I f  the polynomials aj(x) and ak.i(X), 1 < k < M, 0 < j < N, are all square 
free, then we have 

1. I f  aj(x), 0 < j < N, form a decreasing chain, then 

lcm{a]+a(x)lO < j < N} = 1-I aj(x). 
O<j<N 

2. I f  ak.i(X ), 0 < j < N, form a decreasing (or an increasing) chain for each k, then 

g c d { o  <_~j<N ak'j(x)ll < k  < M }  = o<_j<Nl--I gcd{ak.j(x)tl < k  < M } .  
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Proof. We prove only part 1; part 2 can be proved similarly. It is clear that the 
two sides of part 1 have the same roots. It is enough to show that each of the roots 
has the same multiplicity in these two sides. In fact, let p be one of the roots. Take 
it to be a root of aj(x) but not of aj+l(x). Then p has multiplicity 1 + j  in both 
sides. []  

Lemma 9. I f  the polynomials a(x) and aj(x) are square free, and aj(x), 0 <_ j < N, 
form a decreasing (or an increasing) chain, then we have 

Proof. Without loss of generality we may assume that the aj(x), 0 _< j < N, form 
a decreasing chain. It is not difficult to see from Proposition 2 that the polynomials 
a(x) • aj(x), 0 < j < N, form a decreasing chain. Then we have from item 1 of  Lemma 
8 and Proposition 2 that 

a (x ) .  1-I 
O<j<N 

Proof of Part 3 of Theorem 2. 
chain, and so we have 

aj(x) = a(x)* lcm{a]+l(x)lO <_j < N} 

= lcm{a(x)*a]+l(x)lO < j  < N} 

= lcm{(a(x).ai(x))~+llO <_j < N} 

= I-I a(x)*aj(x). [] 
O<_j<N 

Note that g2._,~(O(g), 0 ~ i < 2"-X, form a decreasing 

G,(x) = lcm{g{~+/a,~(x)[0 _< i < 2 "-1 } 

= 1-] g2, -~ .~(x)  
O<_i< 2r-t 

= fo(x) l-[ gz~-o~i)(x) 
O_<i<2r-t 

= )Co(x) 1--[ gl+r+t~i)(x), 
O<i<2r-~ 

where the first equality comes from the definition in Theorem 2, the second from 
Lemma 8, and the fourth by the substitution j = 2 "-~ - 1 - i and r + 1 + 6(i) = 
2 ~ - 5(j). [] 

Appendix 2 

Lemma 10. 

1. Let  cl,  c2, bo, bl be integers equal to 0 or 1, and let c I - c 2 = b o + b 12 (mod 22), 
then bo = cl + c2 (mod 2), bl = boc2 (mod 2). 

2. Let  ]1a, 72, ill, f12 be binary sequences, and let ]11 - ]12 : flO Jr fll 2 (mod 22), 
then flo = ]11 + ]12 (mod 2), fll = flo]12 (mod 2). 

Proof. Part 1 can be checked directly. Since the sequence additions and products 
are performed component by component, part 2 is just a direct consequence of 
part 1. []  
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Lemma 11. Let  r >_ 2, and let e x be the binary sequence defined by 

e I = (X (2n-1 )2" -2  - -  1)~, + eo~,_ i ( m o d  2), 

where e o = As(x)~t o ( m o d  2). Then e 1 e f~(Gx(x)). 

Proof. W e  h a v e  

(x (2"-1)2"-2 - 1)g = [ (x  (2"-1)2"-~ - 1)(ct,_ 1 + ~tr2)]2 " - I  

= [ ' (X(2n-1 )2 r -zGt r_ l  - -  (Xr_I )  + (X ( 2 " - 1 ) 2 " - 2  - -  1) '0t ,212"-1 

= [e 0 + eo~ , -12  + (x(2"-1) 2"-~ _ 1 ) ~ 2 1 2  ' - x  

= (Co + e12)2 "-1 ( rood  2"+t), 

whe re  the  f i rs t  e q u a l i t y  is b a s e d  o n  the  fact  t h a t  per(~q)[2"-2(2" - 1), Vi < r - 1, a n d  
the  t h i r d  o n e  b a s e d  o n  L e m m a s  3 a n d  10. A p p l y i n g  f ( x )  t o  the  first  a n d  las t  t e r m s  
of  the  a b o v e  e q u a t i o n s  we get  

0 = f ( x ) ( x  (2"-1)2"-" -- 1)a = f ( x ) ' ( eo  + e12)2 " - I  ( m o d  2"+1). 

H e n c e  we o b t a i n  
f (x)(eo + e12) = 0 ( m o d  22), 

wh ich  m e a n s  the  sequence  e o + ex 2 is g e n e r a t e d  by  f ( x )  o v e r  Z2~. T h e n  we ge t  f r o m  
T h e o r e m  2 t h a t  e 1 e f~(Gx(x)). [ ]  

W e  p r o v e  it b y  i n d u c t i o n  wi th  r dec reas ing .  F r o m  L e m m a  11, Proof  of  Lemma 7. 
we have  

(X ( 2 " - 1 ) 2 r - 2  - -  1)0~ r = e O ~ r _  1 -[- E 1 (mod 2), 

where  el e f~(Gl(x))  _ f~(fo(x) * Gl(x)) ,  hence  L e m m a  7 is t rue  for  k = r - 1. A s s u m e  
it  is t r ue  for  k > l, 3 < l < r, in  p a r t i c u l a r  we have  

(x 2"-x - 1 )2" -2+2"-3+ '+2H~,  = eo~l + ~, (19) 

w h e r e  e 0 e f~(fo(X)) a n d  y e f2(fo(x ) • Gx(x)) ~_ f~(x 2(2"-1) - 1). T h e n  we h a v e  

x~2"-i}2~-~eo = eo a n d  (x ( 2 " - 1 ) 2 ' - 2 -  1)~ = 0. 

N o w ,  a p p l y i n g  the o p e r a t o r  (x 2"-1 - 1) 2'-2 = x (2"-1)2'-~ - 1 ( m o d  2) o n  the  t w o  

s ides  of  (19), we get  

(x2, -1  _ 1)2,-=+2,-3+...+2,-1 +2,-2 , = (x (2 . -1 )21 -2  - -  1)(eOOCl _{_ ~) 

= eo[-X(2n-1)2 ' -2Ctl"  ] __ eoO~ l 

= / ~ o l ' ( x  { 2 " - 1 ) 2 ' - 2  - -  l ) (~ l ]  

= eo(~oal-1 + e l )  

= eo~z-1 + eoel  ( rood 2), 
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where the fourth equality comes  f rom L e m m a  11. It  is clear that  

eoel E ~( fo(x)* GI(x)), 

and thus L e m m a  8 is true for k = l - 1. 

Proof of Equality (17) in Theorem 3. Put  

H,.k(x) = [fo(x) * Gk(X)] (X 2"-1 -- 1) 2 . . . .  2k-, 

We have 
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[ ]  

(2O) 

fo(x) * G*(x) = fo(X) * I fo(X) o<i~<2k_t gl+k +~o~(x) ] 

= [fo(x) * fo(x)]  I-I [fo(x) * #t+k +,~0(x)] 
O<i<2k- t  

= g2(X) 1"I g2+k+n(i)(X) ' 
0 < i < 2 k - I  

where the first equali ty comes  f rom Theorem 2 and the second from L e m m a  9. 
Therefore  H,.k(x) has the following increasing chain expression: 

n,.k(x) = 02(x) I-[ #k.i(x), 
0 ~ i < 2  r - I  

where 

[g2+k+~(i)(X), 0 < i < 2 k- t  
gk.i(x) = IX2 . -  1 _ 1, 2 k-1 < i. 

Now,  based on the increasing chain expressions (part 3 of  Theorem 2 and (20)) 
of  G,(x) and  H,.k(X), 2 < k < r, respectively, and L e m m a  8, it is not  difficult to 
get the expression (17) of  their greatest  c o m m o n  divisor G*(x), but  we omit  the 
details. [ ]  
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