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Summary. We consider two special models of interacting diffusion pro- 
cesses, and derive in the limit, as the number of different processes tends to 
infinity and the interaction is rescaled in a suitable ("moderate") way, a law 
of large numbers for the empirical processes. As limit dynamics we obtain 
certain nonlinear diffusion equations. 

I. Introduction 

In the present paper we study the asymptotic behaviour of the time evolution 
of the empirical distribution of moderately interacting diffusion processes. To 
explain the term "moderate  interaction" and its connections to other forms of 
interaction used in the modelling of diffusion processes, it seems to be best to 
begin at once with the introduction of the first of two special models consid- 
ered in this paper. 

For  each N e N  we have N R < v a l u e d  diffusion processes JZ~(t) . . . .  ,JfuU(t), 
0 < t < o% which satisfy 

- - 1 N _ _ 

/=i, ...,N; O=<t< oo, (I.I) 

where Wz=(Wt(t))t~0, IEN, are independent ~d-valued Brownian motions, 
~ ( N e N ,  / = I , . . . , N )  are IRa-valued random variables, and the functions VN: 
R d ~ I R +  and F: h a x R +  ~ R  d are continuous and satisfy 

i) VN(x)=z~ V l(zNx) for some continuous probabil i ty density 
V 1 on 1t a, (1.2) 

ii) zN=NP/a, fie(O, 1), (1.3) 
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iii) ]F(x,p)] ~Cl (xelRd, peI(+) (1.4) 

IpF(x,p)-p 'F(x ' ,p ' ) l+lF(x,p)-F(x ' ,p ' ) l<=c2(lx-x ']+lp-p' l ) .  (1.5) 

Here and in the sequel we denote by cl, c2 . . . .  positive finite constants. If such 
a constant ck depends on certain parameters a, b, ... we sometimes write 
ck(a, b . . . .  ). 

The empirical process XN=(XN(t))t>_o of the processes )(~(t), /=1  . . . .  ,N, is 

defined as the probability measure valued process X ( t ) = ~  (Jx~(t), where 
l=1  6, is the Dirac measure concentrated at a. 

Our interest lies in the investigation of the behaviour of the dynamics of 
the processes t~xN( t )  in the limit N ~ o o .  For that aim we need to study for 
any f~C2(IR ~) (=space  of all bounded continuous functions f :  p d ~ N  with 
bounded continuous partial derivatives of first and second order) the processes 
t ~ ( X N ( t ) , f ) =  Sf(x)XN(t)(dx). The dynamics of those processes is obtained 

Na 

from (1.1) and Ito's Formula. Using the abbreviations 

1 
VN (x - X~(t))= (XU (t), VN (x - .)) 

gN(x, t ) = ~  k = 1 

-- (XN(t) �9 VN)(x) (1.6) 
and 

( # , f )  = Sf(x)  #(dx) 
N a 

for any measure # on Na and f e  Q(IR a) we have 

t 

( xN( t ) , f )  -- (XN(O),f) -- ~ (XN(s), F(., gN(., S)). V f +  �89 f )  ds 
0 

N Vf(X~(s)) dWds), 
l = l  0 

feC~(l(d), te l0 ,  oo). (1.7) 

The right side of (1.7) is a martingale, and so we obtain from Doob's In- 
equality 

7] 
<= 4 E V f (JZ~ (s)). d VVk(s) 

k 1 

4 
_-<~ rll Vfr] 2. (1.8) 

Therefore in the limit N ~ o %  we can neglect this term, and it suffices to study 
the behaviour of the terms on the left side of (1.7) only. 
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To get some insight into the structure of the possible limits X ~ =(X~(t))t>=o 
of the empirical processes XN(t), and the differences, that appear, when we 
make another choice for ZN than that in (1.3), we proceed on a heuristic level. 

First we note, that the "strength of the interaction" between two processes 

X~(t), l+k,  is measured by N VN(X~(t)-X~(t))" Let us now xN(t) and consider 

the case fl=0,  i.e. ZN= N o=  1. Then the strength of the interaction between any 
two processes is of order 1/N, while the number of different processes )(~(t) 
interacting with one fixed process )(N(t) is of order N. In analogy with physics 
[13], we speak in that situation of "weakly" interacting processes X~(t), l 
= 1, . . . ,N. For such processes the asymptotic behaviour in the limit N ~ o o  has 
been studied extensively in the literature (e.g. [1, 9, 10, 14]). 

We get the dynamics of the limit process X~(t)  by making the formal limit 
in (1.7). 

t 
( X  ~ (t) , f)  - ( X  ~ (0),f} - ~ ( X  ~ (s), F(. ,  ~ V 1 (. - y) X ~ (s)(dy)). V f +  �89 A f )  d s = 0 

0 F, d 

feC2(~d) ,  0 < t <  oo. (1.9) 

Another important case of interest is f i = l ,  i.e. ZN=N 1/d, where different pro- 
cesses only interact, when their distance is of order N -l/a, but then the 
strength of their interaction is ~ 1. Therefore here we may speak of "strongly" 
interacting processes. The investigation of the limit N ~  presumably will 
provide similar difficulties as the study of the so-called "hydrodynamic limit" 
[12]. 

Our case ZN=N ~/d, fie(O, 1), obviously describes a situation lying between 
the "weakly" and "strongly" interacting cases, so that the name "moderate" 
interaction seems appropriate. Heuristically we can obtain the limit dynamics 
as follows. 

1 ~ v'(~F(t) Let us fix some process t~X~( t )  and look at the expression Nk=l  

--)(~v(t)), which describes the interaction of )(N(t) with the other processes 
XU(t) (k~:l). Obviously the volume of the "domain of interaction" with xN(t), 
i.e. of that region of space, where the presence of a process ATN(t) has an 
influence on the motion of X:~(t), or where VN(XIN(t)--X~(t))z~O, is of order 
) / J .  If we assume, that all the processes x:N(t) are distributed "smoothly" over 
space, then the number of those processes being in the domain of interaction 

1 N 
with _~( t ) i s  ~ N z J = N  1-~. This means, that ~k~vN(Z~(t)--X~(t))=I consists 

1 
of many (N l-p) nonvanishing summands, each being small of order -~ZN 
=_N ~- 1 

Therefore we presume, that in case fie(0,1) a "Law of Large Numbers" 

holds for 1 vN(xN(t)--X~(t)) (l fixed), i.e. that 
N k = l  k=l 

the limit N ~  behaves more and more deterministically. This fact would 
imply, that as N--*~ the processes _~(t), l=  1 . . . .  , N, evolve independently with 
deterministic drift vector and diffusion matrix. A look at (1.1), (1.2) and (1.3), 
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which imply 

lim VN(.)=6o (in the sense of distributions), (1.10) 

shows that the drift vector should be equal to F(x,g~(x,t)), where g~~ is 
the density of the limit X~( t )=  lira XN(t) of the empirical distributions. More 

N ~ o o  

precisely, by (1.7) we expect X~ to be absolutely continuous with a density 
g~ (x, t), such that 

t 

( X ~ (t),f) - ( X ~ (O),f) - S ( X~ (s), F(., gO (., s)). V f +  �89 A f )  ds = O, 
0 

f6cg(IRa), 0 < t <  ~ ,  (1.11) 
holds. 

Such formal arguments of course are possible in the case of weak in- 
teraction (ZN= 1) too, and would lead to (1.9) for the limit dynamics. However 
the situation drastically changes in the strongly interacting case (zN=N1/d). 
Argueing as above, we conclude that the mean number of processes )(~(t) 
interacting with a fixed process )(~(t) is of order 1 and the strength of that 
interaction is ~ 1 too. In contrast to the weakly or moderately interacting case 
local fluctuations in the particle density now have a considerable effect on the 

1 ~ VN(R~(t)_~(t)), and we no longer can expect that a law of expression ~ k= 1 

large numbers for this expression holds. It seems that the evolution of a fixed 
process t~X~(t) in the limit N ~  looks like that of a process in a rapidly 
varying random environment. 

An essential difference between the weakly and the moderately interacting 
cases lies in the possible forms of the limit dynamics for the empirical pro- 
cesses. In the weak case the interaction is "nonlocal" uniformly in N~IN, and 
this nonlocality is preserved in the limit, so that the equation describing the 
time evolution of the limit X~(t) of the empirical distributions XN(t) is a 
nonlinear diffusion equation with an integral term providing the nonlinearity 
(cf. (1.9)). 

In contrast to that, the interaction in the moderately interacting case gets 
more and more local, and we expect as limit dynamics a nonlinear partial 
differential equation (cf. (1.11), which is a weak form of such a PDE) and no 
integro-differential equation. Therefore as far as the limit dynamics is con- 
cerned, the moderately interacting case resembles the strongly interacting case, 
since of course in that situation one also expects a PDE as limit dynamics, 
provided it exists. 

The second model for moderately interacting processes describes a 
"gradient-system" of diffusions. We assume now, that the processes )(~(t), l 
= 1,2, ..., N, satisfy 

1 N 

aXe( t ) -  2N kZ=l vvN(xT(t)-g~(t))at+dW~ (t), 

2(~ (0)= ~jv, (1.12) 
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where the function V N is supposed to be of the form 

VN(x)=z~ V I(ZNx) for some symmetric probability density 

V aec~(lR ~) on Nd, 

0 d Xtc= Nm, flE ( , ~+-~) . 

(1.13) 

(1.141 

In this situation the empirical process XN(t) is described by 
t 

(XU(t),f) - (XU(O),f) -�89 (XU(s), ( -  VgU(., s)). V f +  A f )  ds 
o 

1 u 
=-N k~= l o i Vf (J(~(s))'dWk(s)' faC2(Nd)' t >O. (1.15/ 

where gN(.,.) is defined by (1.6). 
Let us now use some heuristics to derive in this situation too an equation 

for X~(t )= lim XU(t). Again by (1.8) the right side of (1.15) can be neglected in 
N ~ o o  

the limit N~oo .  The third expression on the left side of (1.15) represents the 
interaction between the different processes. Formally we get by (1.101 

(XU(t), Vg~(., t). Vf )  = I I XN(t)(dx) XN(t)(dY) V VU(x- y). Vf (x) 
Ra Ra 

(N~oo--~ ~ ~ X~176176 Vb(x-y) .  Vf(x) 
Rd N a 

= I g~ x, t) Vg~(x, t). Vf(x)dx (1.16) 

(for the density gOO(., t) of X~~ with respect to Lebesgue measure). 
Combining (1.8), (1.15) and (1.16) we formally obtain for X~ (resp. its 

density g~(x, t)) the following dynamics. 

t 

(g~176 t ) , f )  - (g~( . ,  O),f) --�89 (g~(.,s),(-- V g~176 �9 Vf + A f )  ds=O, 
0 

feC~(lRe), t~O. (1.17) 

This equation is a weak form of 

3 
gTg~176 t)=�89 v. [(1 + g~176 t)) vg~(x, t)]. (1.181 

As in the case of (1.11) for the first model, (1.18) indeed describes the limit 
dynamics of the density g~(., t) of X~~ 

Let us discuss now the choice (1.14) for ft. 
Similarly as in the first model fl= 0 defines a situation of weak interaction. 

To understand the cases f l>0  let us assume for the moment, that at some time 
t > 0 the processes Jfu(t), k = 1,2, ..., N, do not "conglomerate" at any point in 
N d. For simplicity let us even assume, that the Jf~(t) are i.i.d, with some 
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s 1 s 
smooth density p(.,t). Then obviously the "force" Vg (x,t)=~k~,IVVN(x__ 
--Jf~(t))  at some point x e N  a has mean = 

v v N (x - y) p (y, t) d y = V ( v " ( . )  �9 p (., t)) (x) 

and variance ~d 

1 N 
g 2 ~ (~ IVVN(x-y)lap(y, t)dy-(~ ggU(x-y)p(y,t)dy) 2) 

k = 1 ~.d ~,a 

= l  (~ zZd + 21V V' (ZN(x -- Y))I 2 P(Y, t) d y - (V(VN(.) * p(., t)) (x)) 2) 

=~ ( ~ y / +  2 Iv v*  (z)l 2 p(~ + z~ 1 z) z ;  ~ d~ - ( V ( V N ( . )  �9 p(., t))(x)) 2) 

_ .  ~d+2 
=O(N_IzdN+2)=O(N l + f l - ~  ), 

which vanishes as N ~ ,  if and only if (1.14) is satisfied. So it seems that for 
d + 2  

f l < ~  the processes )(~(t) asymptotically will move in a deterministic "force 
d 

field", whereas for fi-->d+2 the force field asymptotically will have nonvanish- 

ing random fluctuations, whose effect is not clear at present. Thus the value fl 
d 

= d  +~ in this gradient system corresponds to fl = 1 in the first model. 

There is a close relationship between the model (1.12) and the situation 
studied in [12]. N diffusion processes interacting via (1) (in [12]) and rescaled 
according to (4) (in [12]), where e=N -l/d, obey our Eq. (1.12) with f i= l .  
Indeed it was that relationship, which motivated the present paper. By elim- 
inating some features providing mathematical difficulties (e.g. asymptotic im- 
portance of local fluctuations of particle density), we are able to construct 
models for interacting diffusions, which inherit certain properties of (1.12) with 
fl= 1 (e.g. asymptotic locality of the interaction) and additionally allow the 
computation of a limit dynamics for the empirical processes. 

Let us finally point at an essential difference between the models (1.1) and 
(1.12). In both cases the interaction between the different components of xN(t) 
comes in through a nonlinear drift in the dynamics of XN(t), but whereas in the 
first model this nonlinearity remains a part of the drift in the limit, in the other 
case we obtain asymptotically a nonlinearity in the diffusion coefficient, namely 
�89 which is quite different from the diffusion constant �89 of the 
Brownian motions governing the N-particle-dynamics. 

A c k n o w l e d g e m e n t .  I would like to thank W. Alt, R. Lang and H. Rost  for numerous  valuable 
discussions on these topics. 

II. The Main  Results  

Let us first explain some additional notation, which is needed in the sequel. 
For some topological space S we denote by Cb(S) the space of continuous 

bounded real valued functions on S and by Q ( S ; N  d) the space of all bounded 



Moderately Interacting Diffusion Processes 285 

continuous IRa-valued functions on S. Both spaces are equipped with the 
supremum norm. 

~(S)  is the space of probability measures on S. This space is equipped with 
the usual weak topology, i.e. lim #k = # if and only if 

lim ~f(x)#k(dx)=~f(x)#(dx) VfeCb(S). 
k ~  S S 

On the space ~'(]R a) the weak topology is generated by the complete metric 

Ill#-vllll= sup ( (# , f ) - ( v , f ) ) ,  
f e ~ l  

where ~ is the set of all f~Cb(Ra), which are bounded by 1 and Lipschitz 
continuous with constant 1 (cf. Theorem 18, [-4]). 

For any S-valued random variable Ywe denote by Lf(Y)~(S) its distribution. 
For some Te(0, ~) ,  which is held fixed throughout the rest of the paper, 

cg([0, T],~(IRa)) is the space of all continuous functions X=X(t), O<t<_T 
from [0, T] to ~(lRa), equipped with the metric 

p(X,X')= sup IIIX(t)-X'(t)lll. 
O<_t<_T 

Note that the empirical processes t~XN(t), O<t<T, are random elements of 
cg([O,T],~(Na)), so that the distributions ~ ( X  N) of those processes can be 
considered as elements of ~(cg([-O, T], ~(lRa))). 

If some # ~ ( R  a) has a density g(x) with respect to Lebesgue measure we use 

( # , f )  = ( g ( . ) , f )  = ~f(x)#(dx) for f~C~(IRa). 
Rd 

Moreover we use the brackets ( . , . )  to denote by ( f g ) =  ~f(x)g(x)dx the 
scalar product in L2(IRa). For  feL2(IR a) we denote by ~d 

[11a/2 
f(2)=l . i .m.  \ ~ 1  I dzXf(x)dx 

a~oo {[xl<a} 
its Fourier transform. 

In connection with Fourier transforms we shall use the relations 

~ f(x) g(x) dx = ~.?(2) ~(2) d2 
Na Ra 

f*"-g (2) = (2 rc)a/2f(2) ~(2) 

V'~(2) = - i2/(2)  

(f, geL2(Nd)), (2A) 

(f ,  g e L 2 (lRa)), (2.2) 

( fe  W 1 (Na)) (2.3) 

(W~ (~a)= {f~L2 (lRa): ~ (1 + I~12) [f(;OI ~ d ~ =  JI f l l  2 2 + 11 v f l r  2 < ~}). 
Rd 

Occasionally we will use %(x)= (2rcp) -a/2 exp (-xZ/2p).  
Similar to the definition of VU(.) (resp. gN(., .)) let 

W~(x) = z~ w ~ (zNx) 
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and 
g'/(x, t)= 5 wN( x -Y)XN(t)(dY)= (X"(t), W~(x-.)> 

Ra 

when W 1 satisfies (2.4) below. 
For  simplicity we assume, that all our  processes and r andom variables are 

defined on some c o m m o n  probabili ty space (f2, ~ ,  (4 )o  =<t=< r, IP). 
Let us formulate now our  results. 

1 N 
Theorem 1. Let X~(t) be defined by (1.1) and X N ( t ) = ~ k ~ a  CSXZ(t ) be the empiri- 
cal process of X~(t) , . . . ,  X~(t). 

Assume that (1.2)-(1.5) hold, and moreover that 

i) v x ( x ) = ( w  1 �9 wl)(x)=S W l ( x - y )  W~(y)dy 
Rd 

for some probability density W 1 on R a, (2.4) 

ii) S [Wl(2)[z( 1 + [2[~) d 2 <  ~ for some cr (2.5) 
Ra 

iii) lira s in ~(~(Rd)) ,  (2.6) 

iv) supIE[S [x[XU(O)(dx)] < ~ .  (2.7) 
NeN p.d 

Then the sequence ~(XN), Ne]N, converges as N--*~ to the Dirac measure 
6~e~(cg([0, T],~(P~a))) concentrated at the uniquely determined #=#(t) ,  
0-< t -< T, e(d([0, T], ~(Ra))  satisfying 

a) #(t), 0 <  t <= T, is absolutely continuous with respect to Lebesgue 
measure on R a with density p(x, t), 

t 

b) ( p ( . , t ) , f ) - ( # o , f ) -  ~(p(. ,s) ,F(. ,p(. ,s)) .  V f  + � 8 9  ds=O, 
feC2(R~),  O<t<=T o (2.8) 

For  the "gradient-system" we have 

Theorem2.  Let X~(t), k = l , 2 , . . . , N ,  now be defined by (1.12) and let, as in 
Theorem 1, XN(t) be the empirical process. 

Assume the validity of (1.13), (1.14), and (2.4), where 

i) W 1 (.) is symmetric (i.e. W 1 (x) = W 1 ( - x)) 
and has compact support, and (2.9) 

ii) ~ (1 + 1212) IW'~ (2)1 z d2 < ~ ,  (2.10) 
IRa 

i.e. W 1 is differentiable in the L2-sense. 

Next  suppose, that in addition to (2.6) and (2.7) we have 

iii) /to has a density Po(.) with respect to Lebesgue measure which 
has bounded HOlder continuous (with exponent h) partial 
derivatives of first and second order, (2.11) 

iv) sup lE[~  Ig~(x,O)[Zdx] =supIE[-l[g~(.,0)ll~ ] < ~ .  (2.12) 
NeN Ra NeN 

Then the sequence .La(XN), N ~ N ,  converges as N--->c~ to the Dirac measure 
8 u ~ ( ~ ( I - O , T ] , ~ ( R a ) ) )  concentrated at the uniquely determined #=#( t ) ,  
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O<t<T, which has for any t~[0,  T]  a density p(.,t)eH2+h'a+h/2(Nax[O,T]) 
with respect to Lebesgue measure satisfying 

0 
~-~ p (x, t) = �89 V. [(1 + p (x, t)) V p (x, t)] (2.13 ) 

p (x, 0) -- po (x). (2.14) 

(For the definition of HZ +h't +h/Z(Ra • [0, T])  see Remark b below.) 

Remark a. By (2.4) and (2.2) we have 

V ~ (2) = (2 =)a/2 W 1 (2)2. (2.15) 

(2.15) and (2.5) yield for ] x - y l  < l 

J V* (x) - V* (Y)I = [ 5 ( e x p ( -  i2x) - e x p ( -  i2y)) W ~ (2) 2 d2[ 
Rd 

< S 12] I x -y[  [W'-~(2)]2 d2 + 2  5 ] W'"~(A)f 2d2 
{Izl _-< Ix-yl- 1} {[zl > Ix-yl- 1} 

<=Ca ix--y] =, (2.16) 

i.e. V ~ is H61der cont inuous with exponent  ~. 
If addit ionally (2.9) is satisfied, then 

V ''~ (2) = (2 re) d/2 W'~ (2) 2 > 0, (2.17) 

since by symmetry  W 1 is real valued. Next  (2.10) implies 

V 1 (.)~ C2(]Rd), (2.18) 

0 2 
because by (2.3) 

- -  V 1 (x) = - S e x p ( -  i2x) 2k2j W 1 (,~)2 d2 
0xk 0xj  ~d 

is absolutely convergent.  This representat ion and (2.17) imply that  the matr ix 

VI(0) is negative definite. This means, that  the "force" between 
l <k,jNd 

tWO different processes is "repelling", at least if the processes approach suf- 
ficiently close. 

Remark b. By Theorem 8.1, page 494 [8], (2.13), (2.14) has a unique classical 
solution in the space H 2 +h,a+h/2(Ndx [-0, T]), where we denote by 
H2+h'l+h/Z(•ax[O,T]) the set of all bounded  real valued functions on R d 
x [0, T]  having bounded H61der cont inuous partial  derivatives of first and 

second order  with respect to the spatial variable x and of first order  with 
respect to the time variable t, such that  the H61der exponents  are h (with 
respect to x) and h/2 (with respect to t). 

Remark c. The result of Theorem 2 would also be true, if W 1 is a positive 
function with ~ W ~ ( x ) d x = K <  oe. In that  case in (2.13) we would obtain the 

ll.a 

expression "1 + K 2 p (x, t)" instead of "1 + p (x, t) ' .  
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Remark d. The proofs of both theorems essentially can be divided into three 
parts. 

(i) Relative compactness of the sequence ~c,v(XN), N~N.  

(ii) Identification of the dynamics of the limit process. All possible limits 
X~~176176 O<t<=T, are shown to be almost surely a solution of a certain 
deterministic equation. 

(iii) Uniqueness of the solution of the deterministic equation. 

But since the models are so different, there are only in (i) and (ii) some 
parallel steps in both proofs. 

Quite different methods are used for (iii). Both proofs have in common the 
use of L2-techniques, especially in (ii), where Fourier transforms are used to 
study the properties of the functions (x , t )~gN(x , t )  as random elements of 
L2(]Rd x [0, T]). In both cases part (iii) provides many difficulties, since (ii) does 
not yield enough information (e.g. regularity properties) on the limit processes. 
Consequently we could not use existing results on nonlinear diffusion equa- 
tions very effectively. 

Remark e. It should be possible to show, that the limit processes (2.8), resp. 
(2.13), (2.14) can be obtained in the same way as in [2], where Calderoni and 
Pulvirenti derived "Burgers Equation". Namely we first could replace the N- 
dependent potential VN(.) in (1.2) or (1.13) by VK(.), where K~(0, oo) is some 
fixed number, which is independent of N. By making the limit N ~  c~ for each 
fixed K, which is a limit of a system of weakly interacting processes, we obtain 
a family X~'K=X~176 O < t < T ,  KE(O, cr.~), of deterministic measure valued 
processes satisfying 

(X~ - ( # o , f )  
t 

- -S (X~ 'K(s ) ,F ( . ,  ~ V K ( . - y ) X ~ ' K ( s ) ( d y ) )  . V f  + � 8 9  d s=O 
0 ~.a 

resp. 
( X ~ ' K ( t ) , f )  - - ( # o , f )  

t 

- I (X~176 �89 ~ V V K ( . -  y)X~'K(s)(dy))  �9 V f  + �89 A f )  ds=O, 
0 N. a 

f 6  C 2 (]Re), 0 N t <_ T. 

Then we may conclude, that lira sup lllX~'K(t)-p(.,t)H[1 =0, where p(.,.) is the 
K ~ o o  t < T  

solution of (2.8), resp. (2.13), (2.14). Thus the results in this paper show, how 
one can let K and N simultaneously tend to infinity. 

Remark f (2.8) is a weak form of the following PDE 

8 
~t p(x, t) = - V~(x, t). F (x, F(x, t)) - ~(x, t) V. F (x, ~(x, t)) + �89 A ~(x, t). (2.19) 

The solution p(.,.) of (2.8) is an element of H2+h*'I+h*/2(]RaX [0;T]) for some 
h* > 0 ( H  2+h*'l+h*/2(]Rd x [0, T]) is defined in Remark b), and therefore a classi- 
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cal solution of (2.19), if #0 has a density p(.,0) with respect to Lebesgue 
measure having bounded and H61der continuous partial derivatives of first 
and second order, and if the function (x,p)--,F(x,p) in addition to (1.2), (1.3) 
has H61der continuous partial derivatives of first order. 

To prove this we can first use the technique of Propositions 3.4 and 3.5 to 
show, that p(.,.) is bounded and HSlder continuous uniformly in R e x  [0, T], 
and then apply Theorem 5.1, page 320 [8]. 

An example for (2.19) is Burgers Equation, which is studied as a special 
application at the end of Chap. III. 

IlL Proof  of Theorem 1 

A. We begin with the main line of the proof, and present the proofs of several 
propositions needed there in part B of this chapter. 

As the first point we need 

Proposition 3.1. The sequence ~(XN), NeN,  is relatively compact in 
(eft ([0, r ] ,  ~ (Rd))). 

This proposition can be proved by now well-known methods, where the 
most elegent technique seems to be that of A.S. Sznitman [14]. Nevertheless 
for completeness we later present another proof. Moreover some partial results 
of that proof are needed in the sequel. 

Proposition 3.1 implies the existence of a subsequence Jg'={Nk: 
Na<N2<.. .}_~N, such that the sequence ~~ keN,  converges in 
~(~([0 ,  r ] ,~(Re)))  to some limit ~ * = ~ ( X ~ 1 7 6  which is the distribution of 
some process X~176 O<=t<T, with trajectories in c~([0, T],~(Ra)). Since 
we shall be concerned with the properties of the possible limits X ~, especially 
such properties, which characterize X ~ uniquely, we may assume for simplicity 
that >V'=N. Furthermore by a theorem of Skorokhod (Theorem 2.7, p. 9 [7]), 
we are allowed, eventually after choosing a suitable probability space (f2, Y, IP), 
where all our random variables can be defined, to assume 

lim suplllxN(t)-xoo(t)llll=0 IP-a.s. (3.1) 
N ~ o o  t<= T 

In the case of weak interaction ()/N= 1) the convergence of Proposition 3.1, or 
more precisely of (3.1), is sufficient for characterizing the limit process X~(t). 

Indeed by (1.8), (3.1) and since v l e C b ( R  e) in that situation Eq. (1.7) con- 
verges to (1.9) in probability as N~oo .  But in the case of moderate interaction 
(3.1) is too weak, since we get no control over the asymptotic behaviour of 

t 

~(XN(s), F(., gN(., s)). Vf)  ds. 
o 

To obtain some information about such expressions we need to study the 
"smoothness-properties" of the functions (x,t)~g~(x,t)=(xN(t),WN(x--.)),  
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N~N,  resp. the moments of its Fourier transforms 

g~()~,t)=(2rc)-a/2 ~ g~(x,t)ela'~ dx= ( 1  ~ ix.x~(o) ~'N(2 ) 
N d k = l  e / 

= (xN(t), e iz') WN(),). 

The following proposition provides a first useful result in this direction. 

Proposition 3.2. For any C~lS [0, ( 1 -  B)A ~) and t > 0  we have 
N 

supIE [ f (1 +121 ~1) Ig~(2, t)l 2 d23 < c4(t -(a+ 1)/z + 1). (3.2) 
N ~ N  ~ d  

Now from (3.2) and 

lim sup sup I(XN(t),eiZ')--(xN'(t),eZ~')l=O V K > 0  lP-a.s., (3.3) 
N , N '  ~ o o  t < T  I ; q < K  

which follows from (3.1), we obtain for any 6 > 0  

lim IE I f [g~(x,t)-g~'(x,t)[ 2dxdt  
N,N'~o~ L di ~tlfl 

= lim IE I Ig~(2,t)-g~'(s 2d2dt (by (2.1)) 
N , N " ~ oo ~.,d 

< lim 113 I [g~(2, t)-g~'(A,t)[ 2d2dt 
N,N' ~ oo {I,~I_<K} 

+ 2  lim l E [ i  ~ ~" ] f (Ig~(2,t)lZ+lgf'(2, t)12)d2dt 
N , N ' ~  oo L ~  {l~.l > K} 

< lim IE L~[i ~ Kxn(t),eiZ') -(XN'(t),e/z')12d2dt] 
N , N "  ~ ~ {I,tl__<g} 

+4(1 +K'~)- a suplE Ig~(2, t)lZ(l+121")d2dt (since IwN(2)I < 1) 
NE~! L 6 ~.  

__< 4c,(1 + K'I) - ~(6 -(d+ ~)/z + 1) T. (3.4) 

Since for fixed f i>0 this can be made smaller than any given e>0,  we have 
proved the existence of a positive (random) function gT (x, t) with 

l ] lim lie g~'(x,t)-g~ = 0  V6>0.  (3.5) 
N ~  L 6 ~ d  

By (3.1) and (1.10) we have 

lim ~f(x)g~(x,t)dx= ~f(x)X~(t)(dx), feC2(iRd), O<_t<_T ]P-a.s., (3.6) 
N ~  ~ ~ d  gla 

and so by (3.5) we conclude, that X~~ is absolutely continuous with respect 
to Lebesgue measure with density g~(.,t) for almost all te(0, T] lP-a.s. 

Let /g/~ be the set of IRe-valued measures (set functions) on IRdx [0, T] of 
finite total variation, equipped with the weak topology. Then we can prove the 
following corollary of the proof of Proposition 3.1. 
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Proposition 3.3. The distributions Le(vN), NsN,  of the Jgd-valued random vari- 
ables v N, which are defined by 

T T 

~f (x, t). v N(d x, d t) = I ~f  (x, t)- F(x, gN(x, t)) X N (t)(dx) d t, 
IRa 0 IRa 0 

f e  C b ( R  a X [ 0 ,  T];I(a)  
are relatively compact in ~(jgd). 

Similarly as in (3.1), we can assume, that the sequence v u, N e N ,  satisfies 

T T 

lim I lf(x,t) 'vN(dx, dt)= I If(x,t)'v~176 dt), 
N ~ oo IRa 0 IRa 0 

feCb(l(  a x [0, T];IR d) IP-a.s. (3.7) 

for some jgTd-Valued random variable v ~ 
Since for any f~  Cb (Rd X [0, T] ; R d) 

t)" = lim f(x,  t). vS(dx, 
IRa 0 N ~ oo 

T 

< lira ~ ~lf(x,t)lclXN(t)(dx)dt (by (1.4)) 
N ~  IRa O 

T 

=ClS ~lf(x,t)lX~(t)(dx)dt IP-a.s. (by (3.1)), 
IRa0 

we may conclude, that v~ dt)r  IP-a.s., and that there exists a 
random function F ~176 : ~d  • [0, T] ~ d  with 

and 

sup IF~(x,t)]<cl (3.8) 
t ~ T , x E I R  d 

T T 

~f(x, t). v~(dx, dt)= ~ I f (x ,  t). F~(x, t)X~(t)(dx) dt, 
NdO R~O 

f e  Cb(N d X [0, T];IR a) IP-a.s. (3.9) 

Let Iv| be the variation of the Rd-valued measure v ~. Then by (3.9) Iv~ 
x {t})=0 gte[0 ,  r ] ,  and therefore by (3.7) 

lim i (XN(s), F(., gS(., s)). Vf)  ds 
N ~ o o  0 

= lim i ~ Vf(x). vN(dx, ds) 
N ~ oo 0 IR a 

-} - I Vf(x). v~176 ds) 
O IR a 

=i(X|  feCZ(Nd), O<t<T lP-a.s. (3.10) 
0 
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(3.10), (2.6), (3.1), (1.7) and (1.8) yield 

(X~(t) , f> -<#o, f> - i  (X*(s) , F~( ", s) . Vf +�89 A f> ds=O, 
0 

f ~ C~(]Ra), O<-t< T lP-a.s., (3.11) 

Le. the limit process t~X~( t )  of the sequence X~(t), N ~ N ,  is IP-a.s. a solution 
of the system (3.11) of integral equations. To obtain more information about 
X~ O<t<=T, we now investigate systems like (3.11), which obviously is a 
weak form of a diffusion equation with drift vector F~ t) and the identity 
matrix as diffusion matrix. 

Proposition 3.4. Let FI: F,~ax [0, T ] ~  a be bounded and measurable, #o~(IRa). 
Then any solution t ~ X ( t ) ~ ( l R d ) ,  O<t< T, of the system 

t 

(X(t) , f> - <#o,f> - ~  <X(s), FI(., s). Vf +�89 ds=O, 
0 

f e C~(]Rd), O<=t<= T, (3.12) 

has for any t > 0 a density g(x, t) with respect to Lebesgue measure on ~d, which 
satisfies 

IIg(., t)ll ~ <cs(t -el2 § 1) (3.13) 

[g(y, t)-g(y' ,  t)[ < c6(t -(d+ 1)/2 -/- 1 ) ly -y ' l  1/2 (3.14) 

[g(y, t ) -  g(y, s)[ < cT((t A S) -(a+ 1)/2 + 1)It --S[ 1/5. (3.15) 

By (3.11) and this proposition X~(t) has a density g~(x, t) with respect to 
Lebesgue measure for all t > 0, which in any set 

N. d x [6, T], 6 > 0, is uniformly bounded and H61der continuous 

with exponent 1/5 lP-a.s. (3.16) 

By (3.6) and (3.16) we can assume for the sequel 

g~ 'r a, VtE(0, T] IP-a.s. (3.17) 

Let us fix now O<s<-t<-T and f ~  C2(IRd). Then 

lIE (XN(u),F(.,gN(.,U)) �9 Vf>du-~<XU(u),F(. ,(g~(. ,u)* WN)(.)) �9 Vf>du 
s 

[! ] <IE <XN(u), c2 I(g~(., u) .  WN)(.)-(g~176 u) ,  WN)(.)I IVfl>du 

(by (1.5) and since gN(., u)=(g~(.,  u)* WN)(.)) 

<=c21, Vfll~IE [! <~d WN(Y-")XN(u)(dY)' 'g~(" u)-g~ u)l)du]  

t 

<=c211VNII~IE I Igg(x,u)12dxdu) 1/~ IIg~(x,u)-g~(x,u)l ~dxdu) ] 
Na F.a 
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with g~(x,t)=(XN(t) ,  WN(.--x)).  Since ~ ( 2 ,  0 = ( X N ( 0 ,  e ~x') W~(2) and 

g~(2, t)=~XN(t), e i~') WN(2) we have JigS(., 011z = t{g~(., 0112, t>0 .  Therefore 
and by (3.2), (3.5) and (3.17) we obtain 

lim IE <XN(u), F(., gN(., u)). Vf) du 
N ~  oO 

--i<XN(u), F(., (g~O(., u)* WN)(.)) - Vf) du ] =0 ,  
s - I  

O<s<_t<- T, f e C~(iRd). (3.t8) 

(1.5), (3.1) and (3.16) imply 

t 

lim ~ ( X  N (u), F (., (g~ (., u) �9 W N) (.))" V f )  du 
N ~ o O  s 

i - ( X ~ ( u ) ,  F ( . ,  g~O(., u)).  Vf) du, 
S 

0 < s < t _ < T ,  f e  C~(IR a) IP-a.s. (3.19) 

Furthermore we have 

Ig (X|176176174 f(., go~(., u)). Vf +�89 
8 

IE [ l (  X ~ (t), f )  - ( X  N (t), f ) [  + I ( X  o~ (s), f )  - ( X  N (s), f ) [  < 

+�89176176 Af>--<XN(u), A f ) ldu+ <X~176 F(., gO~(., u)). Vf)du 
5 

' WN)(.)).Vf)du - ~ <XN(u), F ( . ,  (g~ ( . ,  u) * 
X 

+ !(XN(u), F(., (g~(., u)* WN)(.)) - Vf)du 

t Vf) du -5 ( XN(u), f(.,  gN(., u)). 
8 

(xN(t), t ] + f )  - (XN(s), f )  -- ~ (XU(u), F(., gN(., u)) . Vf + �89 A f )  du . 
s J 

By (1.7), (1.8), (3.1), (3.18), (3.19) and Lebesgue's Bounded Convergence Theo- 
rem the left side of this inequality tends to 0 as N ~ o o  for all O<s<t<_T and 
f e  Cb z (IRa). Therefore 

t 

(X~176176 V(., goo(., u)). Vf +�89 du=O IP-a.s. 
s 

O<s<_t<__ T, f s C~(IR d) (3.20) 

(3.20), (2.6), (1.4), and the fact, that 

t -*X ~ (t) ~ (d([0, T], ~(iRa)), 
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imply 
t 

( X ~ ( t ) , f ) - Q ~ o , f ) -  ~ (X~(s), F(., g~(., s)). Vf + �89 A f )  ds=O, 
0 

feC2(lRd), O < t < T  IP-a.s., (3.2l) 

i.e. IP-almost all trajectories t~X~ are solutions of (2.8). So to finish the 
proof of the theorem, we only need 

Proposition 3.5. The system (2.8) of integral equations has a unique solution. 

B. We finish the proof of Theorem 1 by proving Propositions 3.1 3.5. 

a) Proof of Proposition 3.1. We essentially follow the lines of the proof of the 
compactness result in [10]. 

First we note, that by (1.7) for O<_s<t<_ T and any positive function q0(.) in 
C 2 (R e) with 

qo(x)=lx[ for [x ]> l  and ][Vq}Ho~+llAq)No~<oo (3.22) 

we have 

[! ] IE[(XN(t), qo)l~]  =(XN(s), ~o> +IE (XN(v), F(. ,  gN(., v)). Vq}+�89 d v [ ~  

- t  

-- (XN(s), q}) +ca(t-s). 

This means, that the process 

t~(XN(t),  99) - c8 t is a supermartingale. (3.24) 

Similar to (3.23) we obtain 

IE[(X~(t), ~0) I~]  >__ (X~(s), (,o)-c8(t-s), 

so that we obtain 

the submartingale property of t-+(XN(t), qo)+ c8t. (3.25) 

Using the semimartingales of (3.24) and (3.25) we get for any set B~ 
={x~Na :  [xl>2}, 2>1  and 6 > 0  

IP [sup ( X  N (t), 11B~ ) > 8] _-< IP [sup ((X N (t), ~o} + ca t) > 2 8] 
t<=T t < T  

1 
_-<~ IE[(XN(T), (p) + c8 T] 

(by Doob's Inequality and (3.25)) 

1 
<--IE[(XW(0),  ~o) +2ca  T] (by (3.23)) 
=28  

<=c9/28 (by (2.7)). (3.26) 

(by (1.4) and (3.22)) 

(3.23) 
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Let us take now e>0  and two sequences #k and 6k of positive numbers such 
c~ 

that k=l #k=e and 6k"~O. Let ).k=#k6~OO. Then (3.26) yields 

lP[sup<XN(t), llB~k)~b k for any k e N ]  
t<T 

<= ~ ID[sup<XN(t), ]lBeAk) ~tSk] 
k = l  t<=T 

~--- 2 r  __ 

k = l  ~ktSk k = l  # k = F ~ "  
(3.27) 

By Prohorov's Theorem we know, that the set 

Q= {#e ~(1Rd): <#, ~B~)<'~k VkeN} 

is compact in ~(IRe). So (3.27) implies: 
For all ~>0 there exists a compact set K~-c~(N d) with 

inf IP[XU(t)e K~ V te  [0, T]] > 1 - ~. 
NeN 

Furthermore we have for 0 < s < t < T 

(3.28) 

IIIX~(t)- XN(s)][[1 = sup (<XN(t), f )  - <XN(s), f))r 

= sup (f(X~(t))-f(X~(s))) 
f e,k~t~ k= 1 

=< [xN(t) -- xN (S)[ 
k = l  

i N 
<=~ 2 Lzf(tl-s ~ 

k = l  

1 F(s gN(J(~(u) u))du+ dWk(U) (by (1.1)) 
X k = l  s 

<=C,o F(~f(u), g~(s u))du +1 Y~ I ~ ( t ) -  ~(s) l  ~ . 
k = l  k = l  

Therefore 

m[IlfXN(t)--XN(s)III~]<Cll(c~It--sl~+ 3ft--sl 2) (by (1.4)) 
<clz  I t -s l  2. (3.29) 

From (3.28), (3.29) and [5] (Chap. VI, w we conclude the validity of Proposi- 
tion 3.1. 

b) Proof of Proposition 3.2. We begin with an estimate for IE [ S [gZ[( x, t)12 dx], 
which by (2.1) equals IE [ ~ Ig'~(2, t)l 2 d 2 ] .  ~d 

N.a 
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By Ito's Formula  for all 2 ~ ~ e  and T' < T the process 

t ~l< XN (t), eiZ'>12 e~2(,- w ') 

)2 e i~" \ 

o - ~  / 

+(XN(s) ,e  i~.> XN(s) ,F( . ,gN( . , s ) ) . ( - - i ) ` )e - i~ ' - - - -e  -ix" e~2(s -T') 
2 

+KXN(s), eiX.)[a)`2e~=(s_r, )+ N1 )`2 " ' e ~ ( ~  T) t ds 

= [<XN(t), ei~.)12 eZ2(t- T') 

-- i  ((<xN( S)' e- iX ' )  <XN(s), F(.,  gU(., s))" (i2)ela'> 
0 

+ ( XN (s), eia" ) < XU (s), F (., gU(., S)). (--i )`)e-ia" > )e a2(*- r') 

1 ) + ~  )`2e~2(~-r') ds (3.30) 

is a martingale. 
Setting r ' = t + h  and K#()`, t)=KXN(t), eiZ')121 wN()`)I 2 e -z:h we obtain from 

that  martingale property 

~[~#()`, t)] =m,[~L~()`, o)] 
' [  +~IE <XN(s), e-i~')(XN(s),  F(. ,  gN(., s)). (i)`)e iz') 
0 t_ 

+ < X N (s), e ~ ~" ) < X N (s), F (., gN (., s))- ( - i 2) e-  ~z. ) + N- 

. e-X=(t+h-~)lWN(2)l 2 ds 

___m[~L~()`, o)] 
t 

+ y(lEE2 (l<X~(s), dx'>l e- ~('+ 1,-s)/31WN()`)D 
0 

�9 (l<XN(s), F( . ,  gN(., s))dx'>l e-X2(~+h-s)/31WN()`)l)] 

�9 I)` l( t+h-s)  1/2 e -;~2(t+h s ) / 3 ( t§  1/2 

1 2 ~,2(t + h s + ~ ) `  e-  - '  ~()`)12)ds.  (3.31) 

Noting that  for b, d > 0 

(I)`1 tl/2) d e- z~t/b < sup lyl a e -yz/b = Ca 3 (b, d) < oo (3.32) 
y ~ EI. d 
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we obtain after integrating over 2 

< ~ m [d+~(~, o)] d;~ 
t 

+caa I ( t - t -h - s ) -  l/2lE[ [. (l<XN(s),da'>le -z="+h-~)/3 IW~(,~)l) 
o R a 

�9 (I<XN(s), F(.,  gN(., s ) )dz ' ) le  Zz('+h-~)/3IwN(2)I ) dR] ds 

+~7 ~ 22[WN(2)12 ~, e-z=(t+h-~)ds d2 
z, ~,a ',0 

N i IE [K~+h(J., 0 ) ] d 2  
IRa t 
+ Cl4 I (t + h -  s ) -  l/2IE [( i l< XN(s), ei'~" )121WN()c)12 e -  2a2( t+h s)/3 d 2)l/2 

0 R a 

�9 ( ~ I<XN(s), F(. ,  gN(., s))eia.>121 w~(,~)l 2 e-2Z2(t+h-s)/3 d2)1/2] ds 
N.a 

1 "~  ~2 + ~  I R21WN(A)12 e-a~h dR. 

The last term in (3.34) is less than 

1 [. IWN(2)I2d2 = I [W~(s I Iwe(#)lZd# c~5<c~5 
N ma ~a 2~ Na = N 

(by (2.5) and (1.3)). 
Moreover we have 

j" I<X~(s), F(.,  gU(., s)) ei~')121 wU(,~)l = e -2~('+h-~)/3 d2 
IRa 

(3.33) 

(3.34) 

(3.35) 

~a F,.a TRa TRa 

(by (2.2)) 

= ~ [~. ~, F(y, gN(y, s))WN(x-yla2,+h_s)/3(z--x)XN(s)(dy)dxl2dz 

(by (2.1)) 

-- y I<XU(s), F(.,  gN(., s)l(W N , az(t+h_~)/3l(z-- .))12 dz, 
N.a 

~. I f. S ~ F(y, gN(y,s)) WN(x- y)a2(t+h_s)/3(z- y)eiZzxN(S)(dy)dxdz[2 d2 

(3.36) 

since av (x) = (2 n v)- d/2 e-  x2/2 v is the inverse Fouriertransform of e-  ~2 v/2 (2 70- all2. 

Since WN(x)>O and av(x)>O for all x s l R  d and by (1.4) the right side of 
(3.36) is less than 

c~ ~ I<xN(s), ( w  N �9 ,~2(,+h-s)/3)(x- .)>12 dx 

=c 2 ~ I<XN(s), eiZ'>121WN(2)I 2 e -2~2(t+h-s)/s d), 

= c 2 ~. ~,+h-s)/3(2, S) d2. (3.37) 
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Therefore we obtain from (3.34), (3.35) and 

tr 0)d2_-< ~ e-Z2(t+h)d2<=ci6(t+h) =a/z (3.38) 
IR a IRa 

the inequality 

IE [~:hU(2, t)] d 2 < cl 6(t + h)-a/2 + cl v i (t + h -  s) -1/2 
IRa O 

�9 N [x/(t+h-s)/3(2, s)] d2)ds+c~5. (3.39) 
IRa 

Using (3.39) we give by some iteration procedure increasingly better estimates 
for ~ lE[~c~(2, t)]d2. As a first crude estimate we obtain from (3.34), (3.35) and 

Ra 

(3 .38)  

j lE t)]  d 2  
Rd 

<=ca6(t +h) a/2 +cl8 i (t + h - s ) - i / 2 (  I e-2~2(t+h-s)/3 d2)ds+ci5  
0 IRa 

<=ci6(t +h)-a/2 +ci9 i (t + h - s ) - i / 2 ( t  +h-s ) -a /2  dS+Cl5 
0 

<C2o((t+h) a/Z+h-(a-i)/z+(~a,i Iloghl + 1). (3.40) 

We insert (3.40) into (3.39), thus obtaining an improvement of (3.40), where 
"improvement" means, that the exponent of 1/h is less. 

1E [tChN()., t)] d)~ <=c16(t + h) -a/2 + c 1 5  
IRa 

+c2i  i (t + h -  s)- i/2((s + 2(t + h -  s)/3) -a/2 
0 

+(t +h_s) - (a-  1)/2 jv (~d, 1 Ilog(t +h- s ) l  + 1)ds 

<=Cz2((t +h)-d/2( 1 + T1/2) + i (t + h - s )  -a/2 ds+ T 1/3 + 1) 
o 

~ c23((t + h) -d/2 + h-(d- 2)/2 + (~d, 2 [log hi + 1). (3.41) 

We may insert this improvement of (3.40) into (3.39) to get another improve- 
ment of (3.41). Continuing in this way, we reduce step by step the exponent of 
h-1 in (3.41), until finally 

S IE[~hV( 2, t)]dZ<=c24((t+h) -d/2+l) (uniformly in h>0).  (3.42) 
IRa 

In the limit h ~ 0  we obtain from (3.42) the desired estimate for 

5 IE [Ig~(A, 012] d 2 =  S IE [l<XN(t), e'Z')121WN(2)I 2] d2 
~d Rd 

= S t ) ]  
IRa 
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namely 
115 JigS(2, t)[ 2] d2 _< cz4(t-d/2 + 1). (3.43) 

Na 

Using (3.43) it is easy to finish the proof of Proposition 3.2. From the mar- 
tingale (3.30) we obtain analogously to (3.31) 

E t)3 
__< IE [~ct~2 (2, t/2)] 

+ 21E [(l(XrC(s), eix')IIWN(2)I)(I(XN(s), F(., gN(., s))ega'>l IWN(2)I)] 
t/2 

�9 IRle-~2(t-,)ds 

i 1 22e_,~2(t_~)lW,-'N(R)lZds. + 
t/2 ~ 

We multiply both sides with (1 + ]2]'0 and take into account (3.32) to obtain 

(1 + 12,1 ~) IF_, V~c0u(,~, t)] 

< (1 + I,~1 ~) IE Peg2 (2, t/2)] 
t 

+ j" 21E I-(l<X~(s), e~a'>llW~(,~)l)(l(XN(s), F(., gN(., s))da.>llW~(2)l)] 
#2 

. C25( t - -S)  - (1+~0/2 d s  

1 
+ ~- I WN(,~)I2(1 + I~1~,). 

Integrating over 2 we get 

j" (a + I,~1 ~*) ~E E~:oN(,~, t)] d~ 

=< ~ (1 + I,~1=0 IE [~c~2(,~, t/2)3 d~, 
N a 

+ i 2c25 ( t - s )  -(1 +~1)/: IE [(~ I(XN(s), ei~')121W'-~(,~)I ~ d,~) lj~ 
t/2 R a 

�9 (~ I(XN(s), F(. ,  gU(., s))e iz" )l 21W-'N(2)I 2 d2) 1/23 ds 

lla 
(3.44) 

By (3.37) we have 

j" I<XN(s), F(.,  gN(., S))dz'>121WN(A)l 2 d~ 

<c~ z j" I(XS(s), eiX-)12 IWN(2)I2d2. 
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Furthermore 

1 j. iW,--~(;012(l+121~gd2 
NF.a  

1 ~ IW1(2/ZN)[2(1+I21=,)dZ = - -  
N ~a 

1 I IWX(#)I2(I+IzN#I~Oz~d# 
NR~ 
Z~ + ~,~ 

< 5 I W'~ (#)12(1 + I#1=1) d# < c26 
= N ~d 

Therefore (3.44) implies 

IE [ 5 (1 + I~.1=1)1 g~(2, t)l 2 d,~] 

= 5 (1 +l~.l=0IE[~g(~., t)]d2 
N a 

< ~ (1 + I~1 ~) lg [l(XN(t/2), e~')12 ] I WN(,t)I 2 e - ~ / 2  d,~ 
N a 

(by (1.3) and (2.5)). (3.45) 

+ i C27(t - -  S)-(1 +Gs ( f l E  [ ] ( X N ( s ) ,  eiX'>J 2] I w~'~(~)l ~ d~) ds + C26 
t/2 R a 

]ll.a 

[2a/2 + 1) ds+ (by (3.43)) + i c27(t-s)-~ \t~7 ~ / c26 
t/2 

< C2s (t -(a+ 2)/2 + 1). 

This finishes the proof of Proposition 3.2. 

Remark. An essential point in the proof of Proposition 3.2 are the estimates 
1 

(3.35) and (3.45). The term ~ ~ (1 + [2[~')[WN(2)[ 2 d2 would not be bounded for 
~.a 

any 41 > 0  as N--+oo if zN>N 1/a. This corresponds to the observation made in 
the introduction, that in that case local fluctuations of the particle density have 
a considerable effect on the dynamics of XN(t) in the limit N--+oo. 

c) Proof of Proposition 3.3. We use the same notation as in the proof of 
Proposition 3.1. Let [v[ be the variation of v e J / r  a. 

By (3.26) and (1.4) we have 

IP 5lvNl(dx, dt)>=6 <=lp IqXN(tl(dxldt>=6 
0 0 a 

> (~ < c g e l T  
- -<IP[ :up(XN(t ) '~" '~)=c~T]  = 26 (3.46) 
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From (3.46) we conclude as in the proof of (3.27), that for any e>  0 there exist 
sequences 6k"~O and 2k~ o% such that 

IP SlvNl(dx, dt)>=~k for a n y k e N  __<e. (3.47) 
t, 0 

(3.47), the fact, that JvNI(IRa x [0, T])<clT, V N ~ N ,  and Prohorov's Theorem 
imply Proposition 3.3. 

The next Propositions 3.4 and 3.5 would be fairly standard, if we could 
consider "classical" solutions of (3.12) resp. (2.8). But since these equations are 
"weak", we have to do additional work. 

d) Proof of Proposition 3.4. Let t~X(t) be any solution of (3.12) with 
X(t)eC~(Ra), Vt<__ T. Obviously (3.12) implies, that for any (pc C2(lRa x [0, r ] )  

(x ( t ) ,  ~o(., t)5 - ( # o ,  ,p(., o)5 

-i(X(s),Fl(.,s).V~o(.,s)+�89 O<t<T. (3.48) 
0 

For any 7 e D (lRa), t e [0, T], and h > 0 the function (x, s) ~(~, �9 ~t + h- s) (X) is in 
Cb a (R e x [0, t]), and therefore (3.48), and 

# 
~ssas-�89 s > 0  (3.49) 

yield the equation 
t 

(X(t), ah * 75 --(#o, Crt+h * Y) --S(X(s), FI(., s). V(at+h-s * Y)5 ds=O. (3.50) 
0 

(3.50) implies 

I(X(t), ah*7)l 

<=(X(t), ~h * lyl) 

<@0,  ~t+h* lYl) 

'( ( +! X(s),c29 (2rc(t+h-s))-a/2 ~ I . -Yl  
~d t + h - s  

�9 e x p (  ( ' - y ) z  ] lT (Y) ldy ) )ds  
2(t+h-s)]  

-< ~ #o(dx) (~ 17(y)[(2~(t+h)) a/2 exp ( ~ t ~ ) ) ]  

+! X(s),c29 (2~(t+h-s))-e/2~(t+h_s)l/2 exp 4(t+h-s)]  

4(t + h - s) ! 17(Y)] dy]  / (t + h - s)- 
1 / 2  ds �9 e x p  

/ t \ 

ti + , , , +  1 
(by (3.32)). (3.51) 
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Now we continue in a similar way as in the proof of Proposition 3.2 after 
(3.39). 

In a first step we obtain from (3.51) 

(X(t) ,  Crh * [yl)=<C31 (t + h) -d/2 IlYlll + ~ (X(s), ~ lT(y)ldy)(t  +h- s ) - (a+  t)/2 ds 
o R d 

< c32117lJl ((t + h)- a/2 + h-ca- 1)/2 + 6a, ~ ]log hi + 1). (3.52) 

Inserting (3.52) into (3.51) we obtain 

(S(t) ,  ah * lyl) =C3o (( t+h) -d/2 IIYII 1 

t 
+j" c32 II~ll l((s + 2(t + h - s ) )  -dIN +(2(t + h - s ) )  -~d- 1t/2 

0 

+ ~a,1 Ilog(t + h -  s)l + l )(t + h -  s) -1/2 ds)  

<c35 II~ll ~((t+h) -a/2 + h-(d-2)/2 +~a,2 Ilog hi + 1). (3.53) 

Since the exponent of 1/h is less, this is an improvement of (3.52). We may 
continue by inserting (3.53) into (3.51) to improve (3.53), etc. Finally we get 

I(X(t), ~rh * ~)1 _--< (X(t), ~h * lYl) 

C36 ]] ~)H1 ( ( t  "q- h) -d/2 + 1) 

<c36 [lTNl(t-a/2+l) (uniformly in h>0).  (3.54) 

Since l i m X ( t ) * a h = X ( t )  in ~ ( R  d) we obtain from (3.54) for any open set G 
h ~ O  

_~IR d with finite Lebesgue measure [G[ 

(X(t) ,  ~ )  <= lim inf(X(t)  �9 ah, ~G) 
h ~ O  

= lim inf (X(t), lla * ah) < c36(t -a/2 -+- 1)[G}. (3.55) 
h ~ 0  

This proves the absolute continuity of X(O, t>0 ,  with respect to Lebesgue 
measure. Let g(., t) be the density of X(t). For es(0, 1) let 

B~,t= {x e lRa: g(x, t) > c36(t -a/2 + 1)(1 +~)}. 

There exists, if IB~,tl >0,  an open set A, such that 

A~_B~,, and IA\B~,,I<IAIe/2. (3.56) 

The contradiction 

]A] c36(t -a/2 k- 1) < ]A[ C36(t -d/2 + 1)(1 + e)(1 -e /2)  

= c36(t -a/2 + 1)(1 + e)([A[- [a] e/2) 

<c36(t-a/Z+l)(l+e)(IAI--IALB,,~I) (by (3.56)) 

= c36(t -~/2 + 1)(1 +e)IB,,tl < ~ g(x, t ) d x <  ~ g(x, t )dx 
B~, t A 

< c36(t -d/z + 1)IAI (by (3.55)) 
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proves, that g(., t)eL| a) for any t>0, and 

Ilg(', t)}! oa <= C36( t-dJ2 + 1). (3.57) 

Then we obtain from (3.48) and (3.49) for O<p=t/2, y,y'EIR ~, with 
8=ly-y ' l<lAt  

�9 exp ( 

�9 exp ( 

Since 

I (g ( . ,  t), ,r~(. - y ) ) - ( g ( . ,  t), ,*d.  - y ' ) ) l  ~ 

= ( g ( . ,  p), ,r,_ ~+~(. - y ) )  - ( g ( . ,  p), ,r,_ ~+, ( .  - y ' ) )  

+pi(\g(', s), Fa (., s). ( t~-~h~_ exp ( 2-~+--~-s)/(" _y)2 

+('-Y') exp( ( _y,)2 ,},~ ) [2 t+h-s  2~-~hZs)]/(2rc(t+h-s)) -ale ds 

_-< ( l (g ( . ,  p), ff~-,+h(- - y)> - ( g ( . ,  p), ~ , -p+  h(. - y'))[2 

(i~( s '-~I2jl(t_g-h~sil/2('-y) exp (_ ( ' - v ) Z  
) 

+ , 

( (2rc(t +h-s)) -a/2 exp ( (._ y)2 ~ \ ,  ,~2 
4(t+h-s)] . . . .  as (t 

(-( ( ) + I g(',s),}Ft(',s)l( t+h-s)-~/2 I.-Y'I (._/)2 (t ; ~_~xj ~ exp 8(t+h-s) 
(" -Y')~ ]l ('-Y)~ 

"(2rc(t+h-s))-a/eexp(-8(t+--hZ--s) ! l exp(4( t+h-s ) )  

4(t+h-s) 

+(tSa g(.,s),}Fl(.,s)[(t+h-s)-l/2 { -\(t+h_s)t/2~-y[ exp( 4(t+h-s)]('-Y)2 ,~ 

( _y)2 ) )--Y'I 
4(t+h-s) 4 (t+h_s)l/2 

4(t +h-s)]  4(t+h-s) 

Ifft+h_p(Z)--~rt+h_p(Z/)[ ~ C38 IZ-- Z t] (t--p)-(d+ 1)/2 

Ize-~21g-z' e-~'2/41 <=c39 Iz-z'l, 
le-Z~/4- e-='2/41 < C ,o [z- z'[, 

sup S (2nr)~a/2exp(-x2/~lr)dx<c41(al), 
r>O ~.a 



304 K. Oelschl~iger 

and because of (3.57) and (3.32) the last expression is less than 

(7 l y -  y'[2 + l y -  y'[ (t + h -  s) -1 

+ (t!~(t +h-s) - l /2  ds)2) c42(t-(a+ l)/2 +1) 2 

< ([y - y'l 2 (1 + (log 5) z) + c~) c43 (t-(a+ 1)/2 + 1)2 

< ly-Y'I r 1)/2 + 1)2. 

This estimate holds for any fixed t > 0 uniformly in h > O, and therefore is valid 
for the weak limit of the functions y~(g( . ,  t) ,  O-h)(Y), h~O, namely y~g(. ,  t), 
too, i.e. 

Ig(y, t ) -  g(y', t)l -< ly - y'l 1/2 c44(t-(a+ 1)/2 + 1). (3.58) 

We still have to study the continuity properties of g(x, t) with respect to t. 
For O<s<t< T and h=[t-s[ 4/5 we obtain 

Ig(y, t ) -g (y ,  s)l <=lg(y, t ) - (g ( . ,  t), o-h(. - y ) ) l  

+ [(g(., t), ah(. - y ) } -  (g(. ,  s), oh(. -Y)SI 

+ I(g(., s), ah(. --y)} --g(y, S)I =Ia  +12 +13. 

11<(2rch) -d/2 d(g(y , t ) - -g(x , t ) )exp(  ( x ~ ) Z ) d x  

IR a 

hi~4 c44(s-(a+ 1)/2 + 1). 

(by (3.58)) 

Similarly we obtain 

Furthermore 

13 <h 1/4 c44(s -(a+ 1)/2 + 1). 

t 

t2 =~(g(.,  u), FI(., u). VGh(. -- y)+{A o-h(. -Y)5 & 

<c36( s-a/2 + 1)It-sic46( h-1/2 +h-a)(Zlrh) -a/2 S exp ( (x -Y)2)dx  
IRa _ 4h 

(by (3.57) and (3.32)) 

<= I t -  sl c47 h- 1 (s-(a+ 1)/2 + 1). 

From the estimates for 11,12, and 13 we infer (3.15). This concludes the proof 
of Proposition 3.4. 
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e) Proof of Proposition 3.5. The system (2.8) satisfies the assumptions of 
Proposition 3.4. Therefore for t > 0  any two solutions #a(t), /22(t) of (2.8) possess 
densities gl(. ,  t), gZ(., t) with respect to Lebesgue measure which satisfy (3.13), 
(3.14), and (3.15). Then from (2.8) and (3.50) we obtain for t~(0, T] any yeIRa 

(3.59) 

Now we take the convolution of both sides of this equation with the function 
O'h(.), h>0.  This gives the inequality 

Iga (y, t )-gZ(y,  t)l ah(X - y) d y 
~a 

t 
<~ I ~ Igl( z, s)F(z, gl(z, S))--gz(z, s)F(z, gZ(z, s))[ Iz--Yl 

0 It.a ~tla t -  S 

�9 a t_s(z-  y) ah(X-- y) dz dy ds 

~ C 2 i I ~ I g l ( z , S ) _ _ g 2 ( Z , S ) I ( t _ _ S ) - I / 2  I z - Y l  ( ( z -  Y)2 ~ 
o ~d R" (t_s)l/~ exp ~(t S~s) ] 

�9 (2re(t-s)) -d/z exp ( ( z -y )2 ]  ~ s ) !  t rh (x -y )dzdyds  (by (1.5)) 

<=c48i ~ [gl(z,s)--g2(z,s)l(t--s)-a/2 a2tt-s)+h(Z--x)d zds (by (3.32)). 
oNa 

In other words, with 

S [gl( z, s ) -g2(  z, s)l ap(z -y )dz=Q(p ,  s, y) 
~.a 

this means 
t 

Q(h, t, x) < c4s ~ (t--S) -1/2 Q(2( t -  s) + h, s, x) ds. (3.60) 
0 

Similarly as in the proof of Propositions 3.2 and 3.4 this inequality can be used 
in an iteration procedure to estimate the quantity Q(p, s, y). As starting point 
we use 

Q (h, s, y) <= c,9 h - a/2. (3.61) 

Inserted into (3.60) this gives 

t 
Q(h, t, x) <=c4s c49 ~ ( t -  s)- a/2(2(t- s) + h)-d/Z ds 

0 

<C5o (-~h(t--s)-'d+a)/Zds+ i (t--s)-l/Zh-a/2ds) 
\ 0 t--h 

<=C51(h-ld- 1)/2 +ha ,  1 [log hi + 1) 

(uniformly in t e (0, T], x ~ IR a) (3.62) 
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(3.62) is an improvement of (3.61) and if we insert this improvement into (3.60) 
we obtain 

Q(h, t, x)~c52(h -(d- 2)/2 -~-(~d, 2 [log hi + 1) 

(uniformly in t e (0, T], x ~ Nd). 

Continuing in this way we finally obtain 

Q(h, t, x)<cs3 (uniformly in h>0 ,  ts(O, T], xelRd). 

Since by (3.14) 

this yields 

lira Q (h, t, x) = If 1 (x, t) - g2 (x, t) l, 
h~0 

sup [gl(  X, t)-gZ(x, t)l < ow. (3.63) 
x~lRa,  t~ (O,  T] 

Furthermore we obtain from (3.59) and (1.5) for t ~ (0, T'] 

t)-g2(y, t)l =<i c2 sup Igl(z, v)-g2(z, v)l ((t-s)-l/2(2rc(t-s)) -a/2 Igl(y, 
0 z ~ N a ,  O < v < T  ' \ 

t 

=<c~ sup Ig~(~, v)-g~(z,v)II(t-s)-'2ds (by (3.32)) 
z ~ ' .  a, 0 < v <- T '  0 

<c55 sup Igl(z, v)-gZ(z, v)l I / T  7 

uniformly in t ~ (0, T'],  y c IR d, and therefore 

sup [gl(z,t)-g2(z,t)l<=c55]/r 7 sup [gl(z,v)-g2(z,v)[. 
z e N  d z ~ a , O < v < T "  

O<t<=T ' 

For T ' <  c~52 this yields by (3.63) 

sup Iga(z, t ) -g2(z,  t)l =0.  
zE~-fl 

O<t<=T ' 

Iteration of the above argument in the interval [T',2T'], etc. provides the 
desired result, namely 

sup tgl(z, t)--gZ(z, t ) l=0 
z ~ a 

O<t<=T 

and Proposition 3.5 is proved. 

C. Example 

To conclude this chapter, we show, how the (one dimensional) "BurGers Equa- 
tion" 

0 u(x , t )+u(x ,  t) 0 1 0 2 
~ ~x u(x, t) = ~ ~ u(x, O, 

u(x, O)= Uo(X) (3.64) 
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appears as limit dynamics of the empirical distributions of certain moderately 
interacting diffusions. Obviously (3.64) can be written in a weak form as 

t 

( u ( . , t ) , f ) - ( U o ( . ) , f ) - S ( u ( . , s ) , � 8 9 1 8 9  f~cz(IR).  (3.65) 
0 

The solution of (3.64) is explicitely given by 

e x ,  

(cf. [3]). 
This representation shows, 

may rewrite (3.65) in the form 

(3.66) 

that Ilu(.,t)ll~lluolloo for t>0 .  Therefore we 

(u(. ,  t ) , f> - (Uo( . ) , f )  

}(u(.,s),F2(u(., ))f z f  )ds=O, __ S ,+i ,, 

0 

f e C2(1R), (3.67) 

where F2(.)eC~,(IR+) satisfies F2(P)=�89 for p__< Iluoll~. (3.67) is of the form 
(2.8), so that we have proved: 

Suppose d = l ,  F(x,p)=Fa(p), and lim~Cp(XN(0))=cSu;, with u*(dx) 
= Uo(X)dx for some u0 ~ Cb(IR). ~o~ 

Then the density p(., t) of the limit #(t), appearing in Theorem 1, is the 
solution (3.66) of Burgers Equation (3.64). 

For other derivations of Burgers Equation as limit of the empirical distri- 
butions of interacting diffusion processes see [2, 6] and [11]. 

IV. Proof of Theorem 2 

As in the proof of Theorem 1 we begin by showing the relative compactness of 
the sequence s N e N, of the distributions ~ ( X  N) of the processes XN(t), 
0 < t < T ,  in the space ~(:g([0, T],~(IRa))). Similar to (3.30) we obtain from 
(1.12) and Ito's Formula for any 2 e lR a the martingale property of the process 

t--~( XN (t), e iz. > ( XN (t), e -iz. > 

-i/�89 ei*> <xN(st, {- sl)" 2(_i) e -ia. ~ ~ 2 ~ 

0 t 

+ �89 e-'i'> (XN(s), ( -  VgN(., s))-2ie 'a" - 2 2 e  ix'> 

+ l  (XS(s),(i2).(-i2) eiX" e- i i ' )}  ds. 
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Therefore for 0 _< s < t_< T 

IE [l(XN(t), dZ')l  2 IG] :I(XN(s), eiX')12 

' [  +lIE �89 e ix') (XN(u), ( -  VgN(., u)). 2 ( - i ) e  - ix ' )  
$ 

+ �89 e -ix') (X~(u), ( -  VgN(., u)). 2ie ix') 

1411 

Now we multiply both sides of (4.1) with VN(2)/(2n) d/2= I WN(2)l 2 and integrate 
over 2 e IR d. 

j" IE [l(XN(t), dx.)l  2 I ~ ]  [ WN(2)I 2 dR 
Ra 

~- ~ I( XN (s), eiX" )121WN(2)12 d2 
N a 

+�89 e -ix') VN(2)(i2) (XN(u), ( -  VgN(., u)) dz ' ) / (2n)  e/2 

"-~ l (7~(2)(2~)_d/21~]d2)du - ,? I( XN (u), elX" )121WN (2)12 + ~ 22 (4.2) 

(4.2), (2.1), (2.2) and (2.3) yield 

IE[ I IglN(2, t )12d2l~] -- ~ Ig~/(2, s)12d2 
Nd Na 

+SIE - VgN(., u)(2)(VgN(., u)XN(u))(,~)d2 
s 

- �89 [. vg ~(., u)(2)(Vg ~(., u) x N(u))(,~) d2 

1 f 42 V,'N(2)(2n)_a/2d21o~] du - ~dl IVg{(., u)(2)12 d2 + ~  ~d 

o r  

m [llg~(., t)ll2 I ~ l  = Hg~(., s)H 2 

- i 1E [(XN(u), I VgN(., u)l 2) + II Vgf(., u) ll ~ r~] d u 
s 

t - s  c 22 N ~ -  ~, VU(2)(2n)-d/2 d2. (4.3) 

The application of relations (2.1) or (2.2) to a measure like XU(t), which is not 
in L2(I(~), can be justified by replacing XU(t) by (XU(t)* ~h)(.), then applying 
the above relations, and finally letting h tend to 0. Note, that by (2.10) and 
(2.18) for any fixed N ~ N  all terms in (4.3) are well defined. 
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By (1.13), (1.14), (2.4) and (2.10) the last term in (4.3) equals 

t - s  I 'z2 Vl('VZN)(2r0 -d/2d'z= ~ Vl(~)(2~)-d/~Z~d~ 

t - - S  
= ~ -  ZdN+ 2 C56=(t--s) NB(d+ 2/d)- l C56 �9 (4.4) 

In the case fl~ , ~  the expression (4.4) asymptotically vanishes. This fact 

essentially corresponds to 
lim Var (VgN(x, t)) = 0, 

N ~ o o  

which has been derived in the introduction on a heuristic level. 
With the definition 

AN(t) = i ((XN(s), IVgN( ", s)12> + II Vg~(., s)ll~)ds 
0 

(4.3) and (4.4) mean, that the process 

t--, I[ g~V(., t)ll 2 + AN(t) _ c5 6 tNB(d+ 2/d)- 1 

is a martingale. Consequently 

t--,llg~(., t)ll~ + AN(t) 

is a submartingale. Therefore we obtain from Doob's Inequality 

IP [sup (11 g~(., t) lb 22 + AN(t)) > K] 
t < T  

1 
-<--IEEIIgg(., T)II~ + AN(T)] 
- K  

1 
=~- IE [I[ g~(., 0)[I 2 + c56 TNe(e+ 2/a)- 1] 

<=c57/K (uniformly in N 6 N )  (4.5) 

(by (2.12) and (1.14)). 
Let r ~ = i n f { t > 0 :  IIg~(., t)II2+AN(t)>K}. (4.5) implies, that 

lim inf IP [ ~  > T] = 1. (4.6) 
K ~ o o  N~N 

(4.5) shows, that the functions gS(.. .) and g~(., .) in a certain L2-sense behave 
"regular" uniformly in N. Of course (4.5) is a consequence of the very special 
form of our model (1.12). 

Because of (4.6) it suffices, to prove for any fixed K > 0  the relative com- 
pactness of the distributions ~ ( X  N'K) of the processes t~XmK( t )=  xN(t/X Z~), 
O<t<--T, N e N .  
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By (1.12) we have for O<s<-t<-T 

[ I tx  N, K( t )  - -  X ~,  K (s)lll  a 

1 u 
= sup ~ ~ (f(xN'K(t))--f(X~'K(S))) 0{~'~(t)=X~(t AZg)) 

f ~-YV1 l = 1 

<-- Ik{~,K(t)-- X~,~(s)I 
- - N / = 1  

1 ~ t^z~(__�89 K(bl), .fN) = ~  ~ u))du+Wl(tAz~)-Wz(sA 
1=1 s ^ r  K 

tAZ~ N 

sAz~ l= 

__<(t-s) ~/~ �88 I VgN(., u)l~) dup/~ 
\ 0 

1 N 
+ ~  2 [Wt(t/x z~) -  Wz(s/x "CKN)I 

l = l  

1 n 
< ((t-  s) K/4) 1/2 +X7 ~ I Wl(t/x z~ ) -  Wl(s/x z~)l. 

~ / = 1  

This implies 
IE [IIIxU'K(t)-- XN'K(S)II[~] < C5s(t-- s) z. (4.7) 

Now let qo(x) be any positive function in C2(R ~) satisfying (3.22). 
For such a function we obtain from (1.15) 

I- t "1 

~(~), ~> I~l--< x.(s~, ~> + ~ [! <~-(~), (-~ ~ ~(., ~))~ ~ + ~ ~ >  ~ l ~  l IE[(  

[! ] < (XN(s), ~0) + c59 IE (NN(u), I VgN(., U)l 2 + 1) dulls 

< ( X  N(s), q~) + c59 (IE [AN(t) I ~ ]  -- AN(S)) + c59 (t -- S). 

Therefore the process 
t - - ~ x N ( t ) ,  ( p )  - -  C 5 9 AN( t ) -  C5 9 ~ 

is a supermartingale. Similarly the process 

t--*( XN (t), q~) q-c59AN (Q + C59 t 

is a submartingale. 
Similar as in the proof of Proposition 3.1 (cf. (3.24), (3.25) and (3.29)) we 

may use these semimartingales and (4.7) to prove the relative compactness of 
the sequence s N~N,  K fixed, in ~(cg([0, T], ~(Ra))). By the remark 
following (4.6) we therefore also have proved the relative compactness of the 
sequence Zg(XN), N~N. 



Moderately Interacting Diffusion Processes 311 

As in the proof of Theorem 1 (cf. (3.1)) we may assume by the Theorem of 
Skorokhod, that there exists some process X~=X~( t ) ,  O<t<=T, with trajecto- 
ries in cg([0, T], NORa)), such that 

lim supl[lXN(t)-X~(t)]][l=O lP-a.s. (4.8) 
N ~ o o  t<~T 

As next point we need the description of the dynamics governing the time 
evolution of the possible limit processes X ~ =  X ~176 (t), 0_< t _< T. 

For that aim we first remark, that there exists a positive (random) function 
g~ (x, t) with 

lira IE [ i , , g { ( x , t ) - g ~ ( x , t ) , 2  dxdt]=O.  (4.9) 

(4.9) is proved completely analogous to (3.5) by using 

IE ~ ~12]2lg~(R,t)lZdAdt =IF, IIVg~(.,t)]L2dt <co 
L 0 ~.d 

(uniformly in N), which follows from (4.5), instead of Proposition 3.2. 
Since by (4.8), (1.13) and (1.14) 

lira suplllglN(.,t)-X~(t)lllx=0 lP-a.s., (4.10) 
N ~  t < T  

we have by (4.9) 

T T 

S f(x , t )X~176 ~ f (x , t )g~(x , t )dxdt ,  
0 g{a 0 II. d 

feC2(lR d x [0, r ] )  IP-a.s. (4.11) 

Therefore the measure X~176 on lRdx [0, T] is absolutely continuous 
with respect to Lebesgue measure and has the density 

gf(., .)eL2(lRdx [0, T]) IP-a.s. 

Having established this regularity property of X~(t), we can identify its dy- 
namics, and show, that X~(t) satisfies the following weak form of (2.13), (2.14). 

t 

( X  ~ (t),f) - (#o , f )  - �89 (g~ (., s), "1 +1 oo, ( ~gl t . ,s))Af)ds=O, 
0 

feC2(Rl_e), O<_t<_ T IP-a.s. (4.12) 

We have for fixed f~  C 2 (P, fl) 

IE ( X ~ ( t ) , f ) - ( # o , f ) - � 8 9  1 ~ +7g l  ( . , s ) )Af)ds  
0 

=< IE [KX ~176 (t),f) - (XN(t),f)1] + IE [ l (#o , f )  - (xN(o), f ) l]  
t 
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+ �88 [il<gT(.,s),gT(.,s) A f>-<g~(.,s),g~(.,s)A f> I ds] 

+�89 [ i((g~(.,s), Vg~(.,s). Vf>--(XN(s), VgU(.,s) - Vf>)ds ] 

+ IE [ l k~l i V f (X~ (s)) " dWk(S) ] 

[ +IF, (XN(t),f>--(XN(O),f> --}~(XN(s),( - VgN(.,S)) �9 Vf + A f> ds 
0 

N Vf(J(~(s)). dWk(S) 
k = l  

7 

= Z F/(t). 
j = l  

(In I~(t) we used integration by parts: 

(gaU(., s), g~(s) A f> = -2(gU( . ,  S), Vg)'(., s). Vf>.) 

Let us estimate the terms on the right side of (4.13). 
By (1.15) 

1~ (t)  = o ,  
and by (1.8) 

l~ (t) <= 2 T 1/2 [I V f I1 ~/Na/2. 

[i ] I~(t)=�89 (XN(s),WN *(Vg~(.,s). Vf)--(WN * Vg~(.,s)). Vf)ds 

(by (2.9)) 

(4.13) 

(4.14) 

(4.15) 

] = �89 ~ [ ~ ( S x ~  (s)(d xl S WN (x - yt v g~ (y, s). (Vf (yl - v f  (~)) d Yt d s 
L I O  B d ~d 

~_~lC60Z~r ~ ILD2fll ~IE <XN(s), W N, I Vgf(.,s)l>ds 

(C6o = diam(supp W t (.)), II DZf I] ~o = sup lr 32f P[ oo) 
i,j<d 

~c60z~ (IE [i '[g~(.,s)l,2 ds])t/Z (IE [i],Vg~(.,s)"2 ds]) 1/2 

= < C61X/V 1 

(by (4.5)I. 
T 

INt*~< 1 oo S lE  4w=al lAf l l  [~ Ig~(x,t)--g~ IgZ[(x,t)+g~(x,t)ldx]dt 
0 ~.a 

I T  -1\1/2 
<�88 IE ~ ~ lg~(x,t)-g~(x,t)12dxdt]) 

LO Ra 
T 

\ L 0 ~d 

(4.16) 
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By (4.5) and (4.9) we obtain from this inequality 

lim 12 (t) = 0. 
N + o o  

(2.6) and (4.8) yield 
3 

lim Z ISY(t)=0. 
N ~ o o  j = l  

(4.13)-(4.18) imply 
t 

( X  ~o ( t ) , f )  - ( # o , f )  - �89 ~ (g~ (., s), (1 + �89 (., s)) A f )  d s = 0 
0 

/ e  c~ (~.d), 0_<t_< T. 

IP-a.s., 

(4.17) 

(4.18) 

(4.19) 

Finally (4.19), the fact, that X~176 T],~(IRa)), and the continuity of 

t 

C 2 (iRa) x [0, T] 3(f, t)--+~ <god (., s), (1 +1 _oo, z~,a t . , s ) ) A f ) d s ,  
0 

which follows from 
g]O (., .)6L2 (iRa • [0, T]), (4.20) 

imply the validity of (4.12). 
To finish the proof of Theorem 2 we now have to show, that any solution 

X~176 T],~(IRd)) of (4.12) for some function g~(.,.) satisfying (4.11) and 
(4.20) has for any fixed t~[-0, T] the density p(. , t)  with respect to Lebesgue 
measure, where the function p(.,.) is the unique classical solution of (2.13), 
(2.14) (cf. Remark b). But to obtain this, we first need some regularity results for 
the function god(.,.). 

Let us remark, that (2.11) and (4.12) imply for any f ~ c Z ( i R a x  IR a) 

S S X oo (t)(d x) X o~ (t)(d y) f (x ,  y) 
~ d ~ x a  

t 

- �89  ~ g~(x , s ) ( l  + � 8 9  
0 ~.d Ip.d 

t 
q_ l ~ool. --�89 ~ g~(x,s)god(y,s)(1 7~,a ty, s ) ) A y f ( x , y ) d x d y ) d s  

0 p.a F.d 

= j" ~ p o ( x ) p o ( y ) f ( x , y ) d x d y .  (4.21) 
R d R d  

(Ax (resp. Ay) is the Laplace operator with respect to x (resp. y)). 
Next let 

q r ( x , y ) = q r ( x - y ) ,  r>0 ,  
defined by 

q, (x) = ~ -  (( Ga (I x [) - Ga (r)) v O) = q a (x/r)/re, (4.22) 
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where Ga(.) is the Greens function of the Laplace operator in Nd, i.e. 

[ - � 8 9  if d = l  

Gd(U)= I -2~ log (u )  if d = 2  

tdO)d(d_2)u if d=>3. 

(COd=~d/2/F(d2 ~ 2 )  volume of the unit ball in lRe). 

Note, that q,(x)>= 0 for all xelR d, and that 

~q~(x)dx=l for all r>0 .  (4.23) 
p,a 

It is easy to conclude from the definition of q~(.) the validity of the following 
equations in the sense of distributions. 

2d d A q~(x) = r ~  (#~ (x) -- ~o (x)), (4.24) 

l imqr( . ) -  6o(.), 
r ~ O  

where the distribution #~(.) is defined by 

~ # ~ ( ~ ) ~ ( x ) d ~ =  S ~(OOdO, 
Rd S d 1 

~0 e 5P(F..d), 

(4.25) 

where dO is the normalized uniform distribution on the surface S d- 1 of the unit 
ball in N ~, i.e. #](.) is the normalized uniform distribution on the surface of the 
sphere with radius r. 

Let us define now for any 0 < 6 < r/2 and e > 0 

1 r+~ 
qr, ~,~ (x) = ~ r -~  (~dq,.. (x - y) as (y) d y) d r/. (4.26) 

From (4.24) we conclude 
1 ~+~ 9 d  Aq~,~,~(x)=~r~ Y~(~ #~(x- z)a~(z)dz-a~(x))dr I. (4.27) 

Next we have 

0r(2) = -]21-  2 (27c)-d/2 5 ( _ 22) eiaXqr(x ) dx 
Dla 

= - l ,Zl-  2 (2 ~)-- d/2 5 (A e iax) qr(X) dx 

-- - I X l -  z(2 ~)-d/z S eiaX(A q,(x)) dx 
l l a  

=--[21-2(2rc)-d/Z2d ~ (ei~~ (by(4.24)) 
S d - 1 

=-121-2(2~) d/22d ~ (cos(2Or)-l)r-2dO>=O. 
S d -  1 

(4.28) 
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(2.2), (4.23), (4.25), (4.26) and (4.28) yield 

1 r+a 
0 <__ ~ ~ ~'~ (2) exp( - 22 e/2) d 1/= q~,"~, ~ (2) =< (2 zr)- d/2, 

and 
lim q~,~,'~(2) = qr"'(2), 

e , 6 ~ O  

resp. 
lim ~'f~(2) = (27Z) -a /2 .  
r~O 

(4.29) 

(4.30) 

(4.31) 

sup ~ ~po(x)po(y)q~,6,~(x-y)dxdy 
r , h , e >  0 ~.a R a  

sup (2n) ~/2~ ~ 2 = Ipo(~)l q,,~,~(2) d2 
r , 6 , e  > O R a  

ff I~ (~) lZd2= IlPo(.)ll 2. (4.34) 
Ra 

Inserting (4.26), (4.27) into (4.21) we obtain 

~ X o~ (t)(d x) X o0 (t)(d y) qr,o,~ (x - y) 

t 

--~( ~ ~ (gT(x,s)+�89 y)g~ ds 
0 Rla Kla 

= ~ ~ X~(t)(dx)X~176 
~ d  Rd  

- i  ( I I (gT(x, sl+ �89 
0 \ R  a R a 

�9 1 r + a  2d 

= I I po(x)po(y)qr,~,~(x-y)dx dy. (4.32) 
Ra  ~.a 

We shall finally let e and 6 in (4.32) go to 0, but begin with rewriting (4.32) in 
the following way 

r "d r+6 ) 
�89 ~ gT(x,s)ag~(x-y,s)a~(y)dxdy) ds (~ ~ r]-2drl 

0 ~ x d ~ x  d \ r - - 6  

= ~ ~po(x)po(y)qr,~,~(x-y)dxdy 
Ra  R a  

- I ~ X~176 
R a  R a  

.+_ 1 _ o o l  X + I ( g ~ ( x ,  s) 791 t ,S) 2) 
Ra 

d ~+~ _ dOdrl) dx " (~r~6. 2s~ gT(x--y+Otl, S) a~(y ) dy)ds 

T / , 4  r + 6  

-~(~ ~gT(x,s)g~(x-y,s)a~(y)dxdy)ds{~ ~ rl-2drl~. (4.33) 
0 I (  a HI- d \ ~  r--t5 / 

By (2.11) po(.)EL2(~ a) and therefore by (2.1), (2.2) and (4.29) 
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Since gT(.,t) is a probability density for almost all t6[0, T] (by (4.11)) and by 
(4.20), the third term on the right side of (4.33) is for fixed r, 6 uniformly in 
e > 0 less than 

T 
+ 1 _co l X C(r,~)~( ~ (g?(X,S) ~ g l  ~ ,S) ~) 

O F .  a 

�9 (~ ~ g ~ ( z - y , s ) a ~ ( y ) d z d y ) d x ) d s < o o .  (4.35) 
R a m a  

By (4.34) and (4.35), and since the second and the fourth term on the right side 
of (4.33) are strictly negative, we have (by fixing r, 6) uniformly in e > 0  

T 

;(  ; ; g~O (X, S) 2 gT (X - -  y, s) at(y) dx  dy) d s < ag. (4.36) 
0 ~ a  ~.a 

Let g~ (x, t) = ~ g~ (x - y, t) at(y) dy. Since 
R a  

T 

lim ~ ~ I g ~ ( x , t ) - g ~ ( x , t ) 1 2 d x d t = O ,  
t -§  0 0 ~ a  

(4.37) 

there exists a subsequence e~ > e2 >. . . ,  lim ek-----0, such that 
k ~  

X lim g~ ( , s) = g~ (x, s) (4.38) 
k---~ oo 

for almost all (x, s)elRd x [O, T] with respect to Lebesgue measure d x d t  and 
with respect to g~(x, 02 d x d t ,  and so by Fatou's Lemma 

T T 

~ g~ d x d s = S  ~ (l imgt~(x,s))g~(x,s)Z d x d s  
0 ~ a  0 ~r~a k ~ o ~  

T 

<liminfS ~ g~(x ,s )g~(x ,s )  a d x d s <  co 
k ~ o ~  0 ~.a 

(by (4.36)), i.e. 

By 

g]~ (., .)~L3(~ d x [0, T]). 

i I g~(x,s)3dxds=i ~ (~ gT(x-y,s)at(y)dypdxds 
0 R a 0 ~ a  ~ a  

t 

<I J Sg~(x-y,s)~'~Zvldxdy as 
0 ~ a  ~,a 

t 

=~ IgT(x,s?dxds<~ 

(4.39) 

(4.40) 

(by (4.39)) the functions g~(.,.) are bounded uniformly in ek (and therefore 
weakly compact) in the space L3(lRax[0,t]). Therefore and by (4.38) their 
product with g~(.,.)2, which by (4.39) is an element of the dual space L3/2(~ ~ 
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x [0, t]) converge as follows 

lim i f 5 g~(x,s)2gT(x-y,  sla~k(y)dxdy ds 

-i _ 5g~(x,s)3dxds. (4.41) 
0~1. a 

Using (4.39) we may show in quite a similar way as (4.41) 

l i m i  5 5(g~ +7.~ltl~'x,s) 2) 
k-+ oo 0 ~.a ~.d 

�9 5 r1-2 5 g~(x+Oq-y,s)a~(y)dOdrl dxdyds 
r - - 6 k  S a -  j- 

+ l_~,x 2d 5 g~(x +Or, s)dO dxds (4.42) =5 5 (g~(x,s) ~g~ t ,st ~1 T~ _ 
O ~.d 1 

for suitable sequences 6~, 32, ..., l im6k=0 ,  and el, e2, ..., l imek=0,  which can 
k ~ c e  k ~ o o  

be assumed to be the same as (4.41). N o w  we conclude from (4.32), (4.34), 
(4.37), (4.41) and (4.42), that  

limsup 5 5 X~ (t)(d x) X ~ (t)(dy) q~,~k,~,(x - y) 
k ~  F,,a Na 

t / 2 d  . ~ ) 
-- 5o an5 (g~ sl+ �89 2) [r~s)_ (gl (x +Or, s)-g~(x,s))dO dxds 

_-< il po (.)1122. (4.43) 

It is easily seen, that 

t ) 
+a_~o, x [2d f (g~(x+Or, s)-g~(x,s))dO dxds -5o~dS (g~(x,s) ~gl t ,s) 2) \r 2 sd-, 

d t 
= + ~ 5 (  5 5 (g~(x+Or, s)-g~(x,s))ZdxdO) ds 

t 0 s d - I ~ ,  a 

d t 
+ 2~rZ !(s ~ R~5 (gT(x +Or's)+g~(x's))(g~ +Or's)-g~(x's))Z dxdO)ds 

=dS(  5 5 ( l + g ~ ( x , s ) )  (g~(x+Or, s)-g~(x,s))2dxdO)ds>O. 
0 s a - l R  a 

Therefore we obtain from (4.43) 

liminf limsup 5 5 X~176 (t)(d x) X ~ (t) (d y) % a .... (x - y) 
r ~ O  k ~ o o  ~ a  ]~d 

+l iminf  dS( 5 5r-2(g~(x+Or, s)-gT(x,s))2dxdO) ds 
u  \ 0 S d - I N  d 

+ Iiminf d 5gT(x,s)r-2(gT(x+Or, s)-gT(x,s))2dxdO)ds 
r ~ O  1 Rd 

__< lipo(.)ll 2. (4.44) 
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This inequality first yields 

HPo(-)]] 2 2 > liminflimsup ~ ~ X ~ (t)(dx)X ~ (t)(dy) q~,a .... (x - y) 
r ~ O  k ~ o o  Htall.a 

= liminf limsup ~ IX ~ (t~)(2)[ 2 ~k(2)(2 ~)a/2 d 2 
r ~ O  k ~  ~.a 

(by (2.1) and (2.2)) 

> ~ [XF'~')(2)[2(liminfliminf~k(2))(2~) d/2 d2 
N.a r ~ O  k~oo  

(by Fatou's Lemma and (4.29)) 

= d 2  (4.45) 

(by (4.30) and (4.31)). 

This implies, that for any fixed te[0, T] X~ has a density g~(.,t)eLZ(~ d) 
with respect to Lebesgue measure, such that 

I[g ~ (., 011 = < Ilpo(.)lk 2. (4.46) 

Therefore we may choose now 

g•(x,t)=g~176 x e ~  a, 0<t_<T. (4.47) 

We will continue now by searching lower bounds for the remaining "liminf's" 
on the left side of (4.44). 

At first we have 

) liminf d~( ~ ~r-2(g~176 s)-g~176 
r ~ O  \ 0 S a-1RI, a 

=liminf d! s~-l~d~lg~ e - i ~  " - 1  2d2dO ds 

(by (2.2)) 

>liminf d~( ~ ~ 2)lz(Lo212-r)d2dO)ds 
r ~ O  \ 0 S a - I  {[;q<r -1/4} 

(since e-i~ r -  I 2 ) > 1 0 2 1 2  - - 1 0 2 1 4 r 2  > 1 0 2 1 2  - - F  for 12] =<r- 1/4 
2 

t 

=d~( I ~lg~(-,s)(2)1210212d2d0) ds 
0 S a - I T R  a 

(by (4.20) and (4.47)) 

=i(I 212L2 e2)es. 
o ~ ( 4 . 4 8 )  

Here we used the formula 

d ~ [2.012d0=[212, 2~1( a. (4.49) 
S a - 1 
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(4.48) and (2.3) show the existence of (x,t)~Vg~~ as a L2( l ( ax [0 ,  t]) - 
funct ion with 

>=i(~ IVg~176 x,s)12dx)ds, O<_t<_T. (4.50) 
ORa 

Let  us study now the second "l iminf" in (4.44). By Fatou 's  L e m m a  we have 

o e > l i m i n f  d~( ~ I g~176176 +Or, s)--g~176 dxdO)ds 
r ~ O  \ 0 S a - t g l  a 

> d  S liminf Ig~(x,s)r-2(g~176 s)-g~(x,s))Zdxds dO. (4.51) 
S a - 1 ~la  

Consequent ly  for almost all OeS a- 1 

l iminf ( i r ~ o  ~d~g~(x's)r 2(g~176 s)-g~ 

and so we may take now for a fixed O~S a-~ some sequence rl > r 2 >  ... >0 ,  such 
that  the above "l iminf" is the limit for this sequence. Then  the sequence of 
functions 

(x,s)->l-(g~(x+Or,,s)-g~(x,s)), i =  1,2, ... 
rl 

is weakly relatively compac t  in the space I~(lRax[O,t];g~(x,s)dxds) of all 
functions f :  lRdx [0, t]--*]R, which are square integrable with respect to the 
measure  gO~ (x, s) d x d s. 

Any weak limit (x,s)~v(x, s) of that  sequence satisfies 

i [.g~176 ~axcls 
0 ~ 1 .  a 

< l i m i  S g~(x,s) l (goO(x +Ori, s)_gOO(x,s))2 dxds. (4.52) 
i ~  0 N a li 

To identify v(., .) we take some ge C2(IRax [0, t]). Then  

t 

~ ( ~ g~176 r- l(g~(x + Or, s)-g~(x,s))g(x,s)dx)ds 
o N a  

t 
1 =~[. (f (g~176 +Or, s)+g~176 l(g~(x +Or, s)-g~(x,s))g(x,s)dx)ds 

O ~ a 

t 

-�89 I r-l(g~~ +Or, s)-g~176 g(x,s)dx)ds 
0 ~,  a 

= A (1, r) + A (2, r). (4.53) 
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For  the first term A(1,r) we have 

t 

1 (gOO(x+Or, s)Z_gOO(x,s)Z)g(x,s)dx)ds A ( 1 , r ) = ~ I ( 5  r -1 
0 1 R  d 

t 

=�89 5 g~(x,s)  2 r- l (g(x-Or ,  s)-g(x,s))dxds.  
o ~ d  

By (4.20) and (4.47) this expression tends as r ~ 0  to 
t 

- �89  5 g~176 2 Vog(x,s)dxds 
O F .  a 

(Vo g (x, s) = O. V g (x, s) is the derivative o f x --+g (x, s) in direction 0) 

-i - 5 g~176 Fog~176 dxds  (4.54) 
0 ~  a 

(by (4.50)). 
The absolute value of the second term A(2,r) in (4.53) can be estimated by 

r t 

5 ILg(.,.)lloo5 5 r-a(g~176 s)-g~(x,s)) 2dxds  
o ~ a  

r t [ g%'~. ,  s)( - 12 =-2 IIg(.,.)H ~5 5 ~)12 e-'~ d~ds 
O]Ra r 

t 

_<r llg(.,.)lLo~5 5 Ig~(',s~)(2)l 2 ]2[ 2d~ds" 
- 2  O ~ . a  

By (4.50) we therefore have 

lim IA(2, r)[ =0.  (4.55) 
r ~ O  

(4.54) and (4.55) show, that for fixed O~S a-1 the weak limit of the functions 
(x,s)~ri-l(g~(x+Orl, s)-g~(x,s)) in L2(]Rd• [0, t];g~(x,s)dxds) is the function 
(x,s)-+O, V g~176 

So we obtain from (4.51) and (4.52) 

liminf d g~(x,s)r-Z(g~(x +Or, s)-g~(x,s))Z dxdO)ds 
! 

-i - 5g~(x,s)lVg~(x,s)lZdxds (4.56) 

(by (4.49)). 
(4.44), (4.45), (4.50) and (4.56) imply 

Hg~ 2 <  Ilpo(.)ll2-i j" [Vg~176 
o ~ . a  

- i S gOO (x, s) [ Vg ~~ (x, s)l 2 dx ds. (4.57) 
O N a  
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(4.50), i.e. the fact, that  (x, t )~  V g ~176 (x, t)eL 2 (lRdx [0, r ] )  allows us to write (4.12) 
in the following "less weak" form 

t 

(g~(. ,  t ) , f )  - ( P o ( . ) , f )  +S�89 + g~ (., s), Vg~(.,s) �9 Vf )  ds=O, 
0 

feC~(~d),  O<t< T, 

or slightly generalized 

( (g~  �89176176 1, Vg~176 Vf(. ,s))  
v 

-Ig~176 f~CI (Nex[O,T] ) ,  O<_t<_T. (4.58) 

Let us consider now the function U(x, t )=g~(x , t ) -p(x , t ) ,  where p(., .) is the 
classical solution of (2.13), (2.14). (4.58) and (2.13) imply 

t 

(g~(. , t) ,p(. , t ))--(po(.) ,po(.))  + �89 l + g~ Vg~176 �9 V p(.,s)) 
0 

+ ( 1  + p(.,s), V p(.,s). V g~(.,s)) )ds=O, (4.59) 
and 

t 

(p(., t), p(., t)) - (Po(.), Po(.)) + ~(1 + p(., s), Vp(., s). Vp(., s)) ds = 0. (4.60) 
0 

(4.57), (4.59) and (4.60) yield 

( U (., t), U (., t)) = (g  o0 (., t), g oo (., t)) - 2 (g  00 (., t), p (., t)) + (p  (., t), p (., t)) 
t 

< - j ' ( ( 1  +g~176 Vg~176 s). Vg~176 
0 

-<1 +gOO(.,~), Vg~(.,~) Vp(.,~)> 
- (  l + p(.,s), V p(.,s). Vg~176 s)) 

+ ( 1  + p(.,s), Vp(.,s). Vp(.,s)))ds 
t 

= - ~ ( ( 1  +g~176176176 Vp(.,s)) 2) 
0 

+ ( V g~176 - V p(.,s),(g~176 p(.,s)) V p(. ,s)))ds 
z 

< -~(<1 + g~(.,  s),(vg~(.,  s ) -  ~7p(., s))~> 
0 

-<Vg~~ Vp(.,s), vg~(.,s)- Vp(.,s)> 

- <g~ (., s ) - p ( . ,  s), g~( . ,  s ) - p ( . ,  s))  II Vpll ~)ds, 
i.e. 

t 

il v( . ,  t)il~ < II Vpll~5 II v( . ,  s)N ~ ds 
0 
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G r o n w a l l ' s  L e m m a  yie lds  I I U ( . , t ) l [ 2 = 0  for all  t s [ 0 ,  T] .  This  shows,  t ha t  for 
f ixed t~[O,T]g~(x, t)=p(x, t)  for  a l m o s t  all  xelR d, a n d  the re fo re  the  p r o o f  of  

T h e o r e m  2 is f inished.  
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