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Summary. Blackwell and Freedman [2] proved that the exchangeable a-field 
C of a homogeneous recurrent Markov chain is atomic. If the chain is 
finite, the atoms can be found explicitly by means of an algorithm given 
below. The approach in [23 cannot be extended to a non-homogeneous 
chain, but a description of g can be obtained in this case by using coupling 
methods, provided the chain is finite and satisfies certain conditions. 

Introduction 

Let (S ~, 6 ~176 be the usual product space and product a-field of countably many 
factors (S, Q. Let S be the class of permutations n on the nonnegative integers 
N that leave all but finitely many integers unchanged. A set Aso  ~ is called 
exchangeable if nA =A for all neS; the collection of all exchangeable sets is 
the exchangeable a-field g. Given a sequence of random variables Xi: 
(O, ~)-~(S,  Q, one defines the exchangeable a-field of the process X = {Xi}, i~N, 
as the collection C(X) of events of the form {XeA} with Aeg.  

The earliest result concerning g(X) is the Hewitt-Savage 0-1 law (see [33), 
which states that if X is a sequence of i.i.d.'s the a-field d(X) is trivial. Aldous 
and Pitman gave in [-1] a full account of this a-field when X is a sequence of 
independent, not necessarily identically distributed variables. The study of g(X) 
in the case when X is a recurrent homogeneous countable Markov chain was 
carried out by Blackwell and Freedman in [2]; they proved that in this context 
g(X) is atomic, the atoms being sets of the form {X0~I }, where I is a certain 
subset of S. Grigorenko ([5]), independently of the results in [2], gave a 
description of g(X) in the same context of homogeneous recurrent chains using 
a graph-theoretical approach, whose only advantage is that it enables one to 
find by hand the subsets of states I in the atoms mentioned above; in fact, in 
the first section of this work we give an algorithm which performs this task. 

The proofs in [23 and [53 depend basically on this fact: in a homogeneous 
recurrent chain, the sequences of states between consecutive visits to a fixed 
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state are i.i.d.'s. This property is obviously not shared by general non-homo- 
geneous chains, and thus the approach in [2] cannot be extended to these 
latter chains. In Sect. 2 we give a description of 8(X) for a non-homogeneous 
chain whose state space S is finite; the main tool here is a coupling argument 
which is derived from that of Aldous and Pitman in [1]. 

It is well known that d~(X) contains the tail a-field J-(X). It is also known 
(see [4]) that for a finite Markov  chain, J ' (X)  is atomic and the number of 
atoms is bounded by the number  of states; the example given at the end of this 
introduction shows that nothing of this sort can be expected to hold for g(X), 
which can be rather complicated. However, the conditions we impose on the 
transition probabilities in our theorems are sufficient for g(X) to be trivial or 
atomic. 

Example. Let X1, X2, X 3 . . . .  be a sequence of independent 0-1 valued random 
variables on some probabili ty space and ~ = a ( X 1 , X z , X  3 . . . .  ). Consider the 
sequence Y1, Y2, I13 . . . . .  where Yk = X ,  for 2"- 1 < k < 2", n = 1,2, 3 . . . . .  Then { I1,} 
is a Markov Chain for which J ( Y )  is trivial and E(Y) is the full a-field 

To see this, a(Y2.,Yz.+I,...)=a(Xn+I, Xn+2,...) and ~ 6(Yzn, Yzn+l .... ) 
n=0 

= (~ a ( X , + I , X , +  2 . . . .  )=trivial  by Kolmogorov's  0-1 law. Hence, J--(Y)= 
n=0 

trivial. 
Let us now remark that in general, if Z a , Z z , Z  3 ... .  is a sequence of 

random variables, the exchangeable a-field g(Z)  generated by these variables 
can be described as the a-field of those events that, for any n, depend on the 
knowledge of the first n variables up to a permutat ion and the knowledge of 
the rest of the variables Z,+a, Z ,+  2 . . . .  in order. n 

Since our Yi's are 0-1 valued, if we write S , =  ~ Yi, knowing S n is the same 
i=1 

as knowing I11 . . . . .  I1, up to a permutation, and we can write: 

r  ~ a(S., Y,+~, Yn+ 2, "")" (1) 

Furthermore,  in this particular example we have that Y2--~ = X ,  implying 
n--1 

S2n-1 Z i = 2 Xi+x, so that we can determine X 1 . . . . .  X,  from the binary expan- 
i=O 

sion of $ 2 . 1 ,  implying: 

a(S2.-~, Y2,, Y2-+1, "" )= f f (X l , X 2 , ; " , Xn ,  Y2", Y2"+~ .. . .  ) = ~  (2) 
and since 

~) a(gn, Yn+l ,  Yn+2 . . . .  ) :  (~  a ( S 2 n - 1 ,  Y2 n, Y2n+l . . . .  ) 
n = l  n = l  

then g ( Y ) = f f  follows from (1) and (2). 

1. Homogeneous Case 

Let X =  {Xi}, iEN be a homogeneous Markov chain and let P =  {p(i,j)}, i ,j~S 
be its transition matrix. A sequence of states ?=(il ,  i 2 .. . .  , i.) is called a path if 
n--1 

I~ P(ih, ih+0 >0 '  
h = l  
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Let i,j~S; say i ~ j  if there are paths 7, 6 and kES such that iv is a 
permutation of j6  and iTk and j3k  are paths. The relation ,-, is an equivalence 
relation and S can be split into equivalence classes, which are called exchange- 
able classes. 

For the statement of Theorem 1.2, take ~2=S ~, Y = ~  and consider the 
shift T: S ~ S  ~176 defined by T(i 1, i2, i3, ...)=(i2, i3, i4, ...). The results of Black- 
well and Freedman, and Grigorenko can now be given, respectively, as follows: 

Theorem 1.1 (see [2]). If X is a recurrent homogeneous Markov chain then ~(X) 
= a({Xo~Ie}), where I~ is an exchangeable class. 

Theorem 1.2 (see [5~). I f  X is a recurrent homogeneous Markov chain then #(X) 
= T(~(Xo) • ~(XO). 

The connection between Theorems 1.1 and 1.2 is this: { X ~ A }  is an atom 
of a(Xo)C~a(Xa) if and only if A is an exchangeable class, i.e., if and only if 
{Xo~A } is an atom of d~(X). Once the connection is made, we can give the 
procedure to find the exchangeable classes: 

Algorithm 1.3. Begin by constructing a symbolic transition matrix, whose entry 
(i,j) is 0 unless p(i,j)>O in which case we write X or any other sign. For 
illustration consider a 6 x 6 matrix with X's in the entries (1,3), (1,6), (2,1), (3,1), 
(3,2), (3,4), (4,3), (4,6), (5,2), (5,4), (6,5) and O's elsewhere. 

Step 1: Choose an arbitrary entry (io, Jo) with an X and circle it. 
Step 2: Circle all entries (is, Jo) and (i o, Jr), 0 < s < n, 0 <_ t <- n, in row i o and 
column Jo bearing an X.  
Step 3: Circle all X-entries in the row and column of each of  the entries in step 
2. 

Step 4. Continue the circling procedure until there are no new X-entries to circle. 
When this happens, we will have gotten: 

(i) One atom of a(Xo) c~ ~r(X O. Namely, if we consider 

A = {i: (i,j) was selected in steps 1-4} and 

B =  {j: (i,j) was selected in steps I-4}, then {Xo~A } = { X I E B  }. 

(ii) One exchangeable class, namely the set B, and ergo, one atom of  
~(X): {XoeB }. 

In our example, suppose we choose (2,1); after step 2 we get (3,1); after step 3 
we get (3,2), (3,4); after step 4 we get (5,2), (5,4). So, {Xo~{2, 3, 5}}={Xle{1, 2, 
4}} is an atom of a(Xo)~  a(X1), (1, 2, 4} is an exchangeable class, and {Xoe{1, 
2, 4}} is an atom of g(X). 

Step 5: I f  there are X-entries which have not been circled yet, choose one such 
entry and repeat steps 1-4 to get another atom of  8(X). Clearly this algorithm 
terminates in a finite number of  steps. 

In our example we restart step 1 with, say, entry (1,3), that we mark with a 
square, and at the end of step 4 we have marked with squares the entries (1,3), 
(1,6), (4,6), (4,3), so another atom of g(X) is {Xo~{3, 6}}. 

Finally we are left with entry (6,5) so the other atom of g(X) is {X o = 5}, and 
that's it. 
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Remarks. A sufficient condition for g(X) to be trivial is that the transition 
matrix be irreducible, to ensure the recurrence of the chain, and have one row 
with all entries positive, so that all states belong to the same exchangeable 
class. Another simple sufficient condition is that the matrix be irreducible and 
for all i, p(i, i)>0. In fact, we can do better than that if we define, for any 
subset I of the state space S={1,  ...M}, F(I) to be the set of indices jeS such 
that p(i,j)>O for some iel  (set F(0)=r and define a nonnegative M x M  
matrix P to be connected in case (i) it is irreducible and (ii) for any proper 
nonempty subset I of S, F(I)c~F(U)+O. This definition of a connected matrix 
differs slightly from Seneta's (see [7], p. 70). There, (i) is replaced by the 
condition that P have no zero row or column. Connected matrices are used by 
Seneta in the estimation of nonnegative matrices from marginal totals, and 
with our definition it is not hard to prove that $(X) is trivial if and only if the 
transition matrix P is connected. It is also readily seen that (i) a connected 
matrix P is also primitive, i.e., there is a positive integer t such that U > 0 ,  (ii) if 
P is connected then all powers of P are connected, implying that if g(X) is 
trivial, so is the exchangeable a-field generated by the sequence Xo, X,,  X2, , 
X 3 . . . . .  for all n (compare with Corollary2.1.2. in [4]), and (iii) if P is 
connected then its transpose is also connected, implying that if g(X) is trivial, 
so is the exchangeable a-field associated to the "reversed" chain J(, with 
transitions satisfying }(i,j) > 0 iff p(j, i) > 0. For all these details see [6]. 

2. Nonhomogeneous Case 

Let X={X,}  be a nonhomogeneous Markov chain with finite state space S 
={1,2 .. . .  ,M}, transition probability matrices (t.p.m.) P,={p,(i,j)}, i,jeS and 
initial distribution rc={n(i)}, ieS determining the Markov measure P on 
(~2, ~-). Let P~ be the Markov measure determined by the same t.p.m, and initial 
distribution concentrated on the state i. 

Consider a bivariate process X = {3?,} = {(X, 1, X,Z)} on the space (5, ~ ) ,  the 
usual product of (~2, Y)  by itself. The new state space is S = S x S. The diagonal 
of S is O={(s,s): s~S}. Let T D be a random time on (~),~) and define 5"  
= {(Oe~: TD(C~) < ~ and 37,(~)~D for all n >  TD} , ~ = { c ~ :  TD(~ ) = oo}. 

Let i,jeS and let ~j be a distribution for X on ((2,~). We say that the 
process )~ is a coupling for X (or/5//j is a coupling for Pi and P) in case: 

(i) ~j(. • (2) = P~(.) and ~j(~2 • -) = Pi~(') 
(ii) ~j(~* + f]~o) = 1 

for any two starting points i,j. We say the coupling is successful if ~ j (~*)= 1. 
Condition (i) states that the marginal processes {X~}, {X, 2} are copies of the 
given chain started at i and j respectively; condition (ii) requires that {3?,} 
remain on the diagonal after TD; we do not rule out the case that T D might be 
infinite (i.e., the coupling might not be successful). T D is not necessarily the first 
time that the marginal processes meet. 

Define the modified measure PT, m e n  on (~2,~) as the Markov measure 
started at j with t.p.m. {Q,}, where Q,=P,+m. That is, Pj" is the distribution of 
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(Xm, Xm+l,Xrn+2 . . . .  ) given that Xm=  j. Now we can give the statement of the 
following lemma whose proof can be found in [4]. 

Lemma 2.1. I f  for every m, i, j there is a successful coupling ~m Pij for Pi "~ and Pff 
(i.e., ~ m Pij (To < ~ )  = 1), then the tail a-field Y(X) is trivial. 

To state another important  lemma we need to introduce some more no- 
tation. If X is the given Markov chain, the augmented chain Y={Y,}, h e n  is 
defined by Y,(co)=(m,(o), X,((o)), where m, is the occupation vector of  X until 
time n which keeps track of the states visited until time n and is defined as a 
vector in N M whose i-th coordinate is the integer q iff the state i appears 
exactly q times in the list {X0(~o),Xt(o) . . . .  ,X,(~o)}. The state space of the 
augmented chain is S ' = N M x S ,  and we can think of {Y,} as the coordinate 
process on f2', the product space of countably many identical copies of S'. Call 
~ '  the corresponding product a-field. In this setup we have the following 
lemma ([1] Lemma 4.6): 

Lemma 2.2. The tail a-field of  the process Y, 3--(Y), is equal to the exchangeable 
a-field of  the process X ,  g(X). 

We will try to apply Lemma 2.1 to the augmented chain {Y,} next. We will 
need, then, to construct a successful coupling/~" for the bivariate process (v, i), (w, Jt 
{~,}={(y1, y2)} started at an arbitrary time m at the places (v,i) and (w,j) 
where i , j~S, and v=(v l ,  v 2 . . . .  , VM) and w=(w 1, w z .. . .  ,WM) are the occupation 
vectors of two paths of length m with v i>0 and w j>0 .  We will call such 
occupation vectors v and w, permissible for m, i and j. 

With this notation we have the following: 

Lemma 2.3. N(X) is trivial if  conditions (a) and (b) are met: 

a) For all i , j~S and m e n  there is a successful coupling Pii~" of  the ordinary 
chain. 

b) For all i t S ,  m~]N and v,w occupation vectors permissible for i and m, 
there is a successful coupling P~i of  the ordinary chain with both marginals 
started at i, such that the occupation vectors o f  the marginal processes satisfy: 

m , ( X  1) _ m , (X  ~) = w - v 

for all n sufficiently large. 

Proof  By Lemma 2.2 we reduce the problem of proving de(X)= trivial, to that 
of proving Y ( Y ) =  trivial, and this latter problem in turn is reduced by Lemma 
2.1 to finding couplings for the augmented chain. 

Let us start with arbitrary i , j~S, m ~ N  and v,w, permissible for i,j,m. First 
we will define the distribution p"jm of the process X as follows: Allow X, to 
evolve according to ~7 until the marginal processes meet for the first time, i.e., 
define: 

/~ + 1 1 2  ..... ,20; 2~r 1 < i<n) :  = P/7(Wn+I I Wn . . . .  , [7//o) , 

where ITV is the coupling for X under the measure P/~. By (a), X, reaches the 
diagonal D in a finite time. Assume that the marginals meet at time N at the 
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state k; then miv(X1)=mN(W1)=v ', say, and mN(X2)=mN(W2)=W ', and v+v' 
and w+w' are permissible for m + N  and k. N o w  let the process 37, evolve 
according to the coupling 15,,+N i.e., define ~ k k  ' 

/ 

(2N+~{2N+,_~, ...,Xo; XiCD, 1 <_i<-N 

- ~  (z, lz~_, ..... 2o), 

where Z is the coupling for X under the measure Pk~ +" mentioned in (b). 
By (b), the occupat ion  vectors of the marginals will satisfy: m~(Z ~) --mr(Z 2) 

= w + w' - ( v  + v') for all r sufficiently large. 
Once the distribution @ of X is defined in the manner  described above, we 

~t ~ t  define on (Q, 2 ), the product  of (g?', ~ ' )  by itself, the distribution ~" Pw,o,(w,j) of 
as follows: 

Define -~ - - " " P~,oxw,j)(Yo - ((v, O, (w,j))) = 1 and 

P((~,i),(w,j)(~r.+ l ~-~-((Vn+l, i.+ a), (W.+ l,j.+ O){ ~'. = ((V., i.),(w.,j.))) 

/ P/a~-(J(.+ a =(i.+,,j.+,)IX,,=(i.,j,,)) in case: ~v.+ 1 =Vn+ei.+, 

: {Wn+I. = w n + e j . + ,  

----- tO otherwise 
for all n > 0 

(e k is the vector  in IN M whose entries are 0 except the k-th, which is 1). 
Then, by construct ion:  

i) The marginals of ~0,(w,j) are P(m0, and P(~,j), where the latter probabili- 
ties are the distributions of (Y,,, Y,,+I, Ym+z . . . .  ) condit ional  on Ym equal to (v,i) 
and (w,j) respectively. In other words, P(v~O,(w,j) is a coupling for the augmented 
chain. 

ii) ~" P(v,i),(w,j, is successful because ~ is successful (i.e., (X1,,XZ,) eventually 
stays in the diagonal D), and o " als we have under P(v,o,(,~,J) that mn(X 1) --mN(X 2) 
=W--V for all n sufficiently large, or mN(X1)+v=mN(X2)+w:=v, for all suf- 
ficiently large n; or, in other words, Y. stays eventually in the diagonal 
D'= {(s',s'} : deS'}. 

The next simple result will be essential when construct ing couplings: 

L e m m a  2.4. I f  # is a probability on a countable space S and #(xa)>=6, #(x2)>5,  
then there exists a pair of  S-valued random variables (Y,Z) such that both Y and 
Z have # as distribution and: 

P(Y=xa,  Z=x2)=5;  P ( Y = x 2 , Z = x O = 6 ;  P ( Y = Z ) = I - 2 &  

Proof. Define the joint  distr ibution as follows: 

P ( Y = X l , Z = x 2 ) = ~ ;  P ( Y = N 2 , Z = x O = ~ ;  

e ( Y = Z = x 2 ) = p ( x 2 )  -c~; P(Y=Z=xi)=la(x , )  

P ( Y = Z = X l ) ~ - t l ( x O - a ;  

for i>3 .  
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Lemma 2.5 and Theorem 2.6 below yield conditions for J ( X )  and 8(X) to be 
trivial; these conditions are generalizations of this simpler condition: all entries 
of all matrices are greater than a fixed positive number. The proof  of Lemma 
2.5 can be found in [4]; here the idea is to use what Griffeath calls "the 
classical coupling", due in its original form to W. Doeblin. 

Lemma  2.5. I f  {X,} is a Markov Chain with 6,=min{p.+l(i, j)  } satisfying ~ (5, 
= ~ ,  then Lemma 2.1 applies, and Y(X) is trivial, i,j .= o 

Theorem2.6. I f  {X,} is a Markov Chain with 6,=min{Pn+a(i,j)pn+2(j,s)} , n 
i , j ,s 

= O, 1, 2 .... satisfying ~ 6, = o% then Lemma 2.3 applies and g(X) is trivial. 
n 

Proof Since min{p,(i,j)}>min{p,(i,j)p,+l(j,s)}, n=1 , 2 , 3  . . . . .  Lemma2.5  ap- 
i , j  i , j ,s 

plies and condition (a) of 2.3 is met. 
Let k~S, m~N,  and v,w permissible for k,m. Let u , = m , ( X l ) - m , ( X Z ) - v  

+w;  u,=(u~,u~ ... .  ,uM). We are going to show that (b) of 2.3 is also satisfied. 

For  notational convenience, we will denote ) ( ,  = { X1)- \X2, i '  so that (X , , 2 , +  0 is 

to be read as X~ X.+I ]  X 2 2 , etc. 
Xn+l! 

Step I: Look at the smallest t for which u~:#0. Look at the states t and M (the 
choice of this latter is arbitrary; any other state would work) and define the 

distribution of (22n+1,XZ,+Z) given that 2 1 , = ( 2 )  as follows for n joint 

--0, 1,2,...  and seS arbitrary: Apply Lemma 2.4 with # being the distribution 
of the pair (X~+zn+I, X~+2,+2 ) conditional on Xm+z,=S, and x I and x 2 
being, respectively (t, M) and (M, M), i.e., 

Pk~ (('2n+1,'~2n+2) ~-- ( ;  M) ~2n= ( : ) )  =(~m+2n, 

M 7~ = 

~"~ ( ( f ( 2 n + l , f ( Z n +  2 ) E D  x D f ( 2 n  = (~))= 1-26m+zn. 
Notice that the probabilities thus defined do not depend on s. Now we take 

~m ~ ~ 
p k k ( X 2 n + l , X 2 n + 2 ] X 2 n , ~ 2 n _ l ,  " ~ ~ __ ~m ~ ~ ~ . . ,  x l ,  x0) - ~k (x2.+~, x2 .+  21 x~,). 

In other words, in step I, the behavior of X under ~]' is this: 
If 1 1 (X2, + 1, X2, + 2) = (t, m), then (X~, + i, X~, + 2) is forced to be either (t, M) 

(X2,+~,Xz,+z) takes a value (i,j) different from either (t,M) or (M, M), and if i 1 
or (M,M), then (y2 X 2 ~ takes the same value (i,j). ~x~ 2n+l, 2n+2! 
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Define now for n = 1, 2, 3,. . .  

otherwise 

and  consider the vectors  u, every two steps, that  is: define d , = u 2 ,  for n 
= 0 ,  1,2 . . . .  and  look at their t-th coordinates  dr, for n = 0 ,  1,2 . . . . .  It is clear 
that  t t , , d N - d o + Z I + Z 2 + Z a + . . . + Z ,  and the Z , s  are independent  r .v.s on 
(f2, ~-) with dis tr ibut ion:  

e~k(Z.--1)=e~k(Z.-- --1)=~m+2., ~'(Z.=0)=l--Z~m+2.. 

By Borel-Cantelli,  Pkk ~"(Z. = 1 1.O.)' =Pkk(Z,~" ---- --1 i .o.)= 1, SO that  if we look at 
the sequence dr,, n = 0 , 1 , 2  . . . .  only when the Zn's j u m p  to Z ~ + I  or Z , - 1  we 
have a symmetr ic  simple r a n d o m  walk that  hits zero in a finite t ime with 
probabi l i ty  1, so that  the t-th coordinate  of u~ equals 0 in a finite t ime T 1. In  

t --1 _ U  t - - 0 .  fact, u~rl =u2ra . . . .  = U T 1  - -  T 1 -  

Step 11. N o w  look at  the smallest  r> t  for which u~=t=0, and define the joint  
dis t r ibut ion of the next pairs after t ime 7"1 as in step I, subst i tut ing the state t 
by  the state r; this will make  the r-th coord ina te  and all the preceding 
coordinates  of  u. equal to zero in a finite t ime T a. Repea t  this procedure  until 
all coordinates  of  u. are 0 at the finite t ime T 9. 

Step III. Once u. = (0 ,0  . . . .  ,0), force both marginal  processes to evolve together. 
Define: 

X , =  =p,+, , ( j , i )  for all n>_T D. 
i 

Remark. As ment ioned  before, T h e o r e m  2.6 applies when p~(i,j)> c~ > 0 for all i, 
j, n but  does not  work  for instance when p,(i,j)=O for all n for a fixed entry  
(i,j). However ,  we can extend the ideas in the p roo f  of 2.6 to the case when all 
t ransi t ion matr ices  have the same symbolic  matr ix ,  which is connected (see 
r emark  after Algor i thm 2.3) and  for all entries (i,j) either p,(i,j)=O for all n or 
p,(i,j)>c~>O for all n. In  fact we can go a bit farther as the next theorem 
shows. 

Theorem 2.7. Assume all transition matrices have the same symbolic connected 
matrix. Let L = 4 M Z - 2 M - 1  and Q,=P~P,+a...P~+L. Let ~5,=min{q,(i,j)}. As- 
sume that ~ 6, = oo. ~'J 

n 

Then 6~(X) -- trivial. 

Sketch of P r o o f  Since the symbol ic  matr ix  is connected,  it is pr imit ive (see 
remarks  in Sect. 1), and according to Wielandt ' s  theorem (see [7] p. 58) all the 
matr ices  Q, are posit ive; that  means  that  it is possible to go f rom any state to 



The Exchangeable Sigma-Field of Markov Chains 185 

any other state in L steps, and thus the same idea in 2.6 works here mutatis 
mutandis, i.e.: the classical coupling is successful when we look at the chain 
Xo,  XL, X2L . . . .  , and therefore (a) of 2.3 is satisfied. 

To prove that (b) of 2.3 is also satisfied, we modify the technique in 2.6 to 
construct a successful coupling as follows: we force the two copies of the chain 
to move in L-step jumps either along the same path or different paths that 
amount  to an eventual equalization of the coordinates of u, to zero by the 
simple random walk argument. The choice of these L-long paths goes like this 
in case we want to make ut,, the t-th coordinate of u,, equal to zero: because 
the symbolic matrix is connected (and so there is only one exchangeable class), 
given the states t and M, there are paths e, il and a state k such that t ek  and 
Milk  are paths that are permutations of one another and by a simple com- 
binatorial argument (see [6]) can be shown to have length 2M 2 - M .  Because 
the transpose of the matrix is also connected, for the same t and M, there are 
paths c~ and g and a state l such that tS1 and Mgl are paths of length 2 M  2 - M  
which are permutat ions of one another. If we reverse the hatted paths we get 
that 71=l(St~k and 72=l~Mflk  are paths of length L which are permutations 
of one another except that t appears once more in ~1 than it does in 72 and M 
appears once more in 72 than it does in 71 and thus, if we force the marginals of 
the chain to move along these paths as in step I of 2.6 we will get ut, = 0  in a 
finite time. 

The argument used in the proof of 2.7 is valid only if the symbolic matrix is 
connected. If we weaken that hypothesis and require only that the symbolic 
matrix be irreducible (this would imply recurrence in the homogeneous case), 
we need to strengthen the assumptions on the transition probabilities in order 
to be able to use the same coupling ideas. In this connection we have the 
following 

Theorem 2.8. Assume all transition matrices have the same symbolic irreducible 
matrix and for every entry (i,j) either p,(i,j)=O or p,(i,j)>=5>O for all n. Then 
o~(X) is trivial under the probability Pi for all i. 

Sketch of Proof Fix ieS. We decompose the state space into communicating 
classes that in turn are decomposed into cyclically moving subclasses. (These 
concepts depend only on the existence of appropriate paths and can be used in 
our nonhomogeneous setup.) Without loss of generality, we assume that there 
is only one communicating class parti t ioned into d subclasses. Then the chain 
X o = i  , X d ,  X z d  , ... is a chain for which 2.5 applies, i.e., the classical coupling is 
successful and thus (a) of 2.3 holds. 

To prove that (b) of 2.3 also holds, suppose that we start both marginals in 
some state k. We force the marginals to evolve together until they hit the state 
i at some time n. Then, since the underlying measure is P~, we find two paths 
71, 72 of length, say, L whose endpoints are the state i and such that they are 
composed of the same states visited by the respective marginals up to time n. 
After that we force both copies of the chain to move in L-long jumps either 
together or in such a way that if one of them goes along 71 the other goes 
along 72 and vice versa. A random walk argument like that of 2.6 and 2.7 
finishes the proof. 
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Corollary. With the hypothesis of 2.6 8 ( X )  is a t o m i c ,  n a m e l y  ~(X)=a({Xode} ) 
w h e r e  I e represents the exchangeable classes of the symbolic matrix. 

Proof. A d a p t  t h e  a r g u m e n t  o n  p. 1294 o f  [2 ]  to  t h i s  n o n h o m o g e n e o u s  se tup .  
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