Mean curvatures of a subspace in a Finsler space.

Memoria di M. Y. Zuane (a Chekiang, Cina).

Sunto. - I contenuto del presemie lavoro trovasi riassunio nel seguente capoverso.

In a recent paper (‘) the author has generalized CaroNeHI’s theorem (%),
concerning the mean curvature of a surface in ordinary space, to a three-
dimensional FINSLER space. The geometrical definition of the mean curvature
thus obtained is independent of the choice of the element of support of the
space. The object of the present paper is to give an extension to an
m-dimensional subspave F,, of an n-dimensional FINSLER space F,. For
clearness, we shall begin by investigating the mean curvature of a hyper-
surface, and then consider the general case.

1. The mean curvature of a hypersurface F,_, in F,.
Let F, be an n-dimensional FINSLER space with the element of support
{=, '), along which the contravariant components of the unit vector are
denoted by /¢ (i=1, 2,.., n). Let g, (&, ) (¢, k=1, 2,.., n) be the
covariant components of the metric tensor. We consider a hypersurface F, _,
of equations
xb = of(u}) :

hereafter Latin-indices ¢, j, k,.. are in the range 1, 2,..., » and Greek
indices A, p, v,.. in the range 1, 2,..., »—1. For a temsor in F,_, of
components Ti}, the components in F, are given by the equafions

T; = Ti59Y,
where

i oxt N
= 8—10,% W = gug} .

We assume that all the functions throughout the following discussion are
analytic.

(1) Zuaxe Mixe Yng, Die mittlere Kriimmung einer Fliche im dreidimensionalen
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(1930), 554-558.
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It is known that the normal ocurvature N of a curve in F,_, at a
point P with the tangent vector ¥ is given by

(1) N=w2ie 7% — 9 pp

where D denotes covariant differentiation, s is the arc-length of the curve
and #* is the normal vector of F,_,. Then the mean curvature M of F,_,
at P is

(2) M = gQ,,Q}.

In particular, when the direction of the element of support (x, x)
coincides with #f or with the tangential direction of F,_,, we obfain the
mean curvature of CARTAN (%) or that of BERWALD (‘) respectively.

Consider in F,_, a variable closed hypersurface F,_, containing P and
denote by #¥Q) the contravariant components of the normal unit vector
of F,_, in F,_, at a generic point @ of F,_,. If n¥(¢/P) are the components
of the vector obtained from (@) by a parallel displacement with respect
to F, from @ to P, along an arbitrary arc C in F,_,, and the complementary
of the angle between n%(Q/P) and #P) is taken as the angle 6 between #¥Q)
and the tangential hyperplane E,_, of F,_, at P, then we have the following
theorem :

THEOREM 1. - The mean curvature M of F,_, at P is given by

18dz, .,
F
M= lim 22
Fpg— P fd‘t"-—s
R

ni

where R,_, denotes the domain of Fu_, enclosed by Fu_,, and dt._, and dta_,
denote the volume elements of Rn_, and F, _, respectively.

PRroOF. - Without loss of generality, we can assume that the coordinates
of P and @ in F,_, are (0, 0,.., 0) and (!, u* .., ") respectively.
Denoting the infinitesimal vector on C by 3xf= %;3u*, oriented by the sense

(3) B. Carran, Les espace de Finsler, « Actualités scientifiques et industrielles», 79
{(1984), Hormannt& Cie., Paris.

() L. BerRWALD, iiber die Kauptkrimmungen einer Fliche im dreidimensionalen
Finslerschen Rawm, « Monatsh. {. Math, u. Phys. »,’43 (1936), 1-14.
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from @ to P, we have

P
* .

@) wi{QP) = mi(Q) — ] f, ooy, oo

Q
P

— f Ai:k(w, )iz, x)w*
Q
S P
* .,
= wy(P) — [ a—:)-i Sk — f Dnf, ®)wx, «)8c*
Q Q
P
- [ L, @)wifx, o)w*
9

P
=1 ’m,(P) —-+- [Dmi(m, ao’),
¢
where we have placed
wi(P)=wi(Q) — [ s 5k, b= DIk,

Since F, is of a Euclidean connection, wj{¢Q/P) remain the covariant
components of a unit vector. Hence from (3) it follows that

P
{4) sin 8 = n{(P)wi(Q/ P) = n"(P)kw;(P) + ! Dm;: .

Moreover, w;(P) is a covariant vector in F,_,, so that
n{Pi(P) =0, ni(P)DwylP)= — wy{P)DnP).
From (1) it is clear that

— 3a'Dm; = Q, Surdur = Q) Sudaids,
and consequently

— Dy = 9, 3w,
so we get from (4)

P P
(5) sin 6 = J i P)Dw; = [ wDw; + O(u?)
¢

P P
= J w;Dnt + Oud) = f&?;wﬁw* -+ O(u?)
Q

= Qy(Qmi(Qu> + O(w?) (u*—0).
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Now suppose that I,_, is defined by

ut = uHv?) (=1, 2,.., n—2);
then
6) &, = Vg dv'de? ... v,
where

- du? Sur
g = det (g,g), Gap = gkp%; JoE (@, $=1,2,...,n—2)

By changing the coordinates

{7) w=v7, w=(—1p""w, uf=0P (o < 2 < B),
x A A

A being not summed, we get

" — au“___w aw_o
2T dmy, YT
\
ou’ ouv

Wg = W,y oy == W, x—— = 0
2 ’9?;513 Yokt T 7

. ouw’ . :
since — are the contravariant components of a vector in F,_,, and w, the

dy>

covariant components of a normal unit vector to F,_,. Thus we are led to
the relation

. Ve
8 Wy = e = A not summed

where g, g and g denote the transformed expression of g, g and g = det (g;,)
Loa s '

respectively, as it is easily seen from the assumption

gPw ., = gy =1 (A not summed).
o2 Iy

Therefore from (6), (7) and (8) we deduce

Wld‘t,, g == wx\/;d'vidv* e QU"*
= (— 1~ Vg du'du? ... dw'—" dui+" ... du™—"
A O S § s A A

= (— 1p—t Vg du'du® ... dw—* dur+* ... du".
Aoa % A x A
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By applying the generalized GREEN’S integral theorem, we obtain from
(5) and (9) that

j bdr, _, = [ Qﬁwwxdr,,_g + 0" ™)
Fn-*% Fn—z

nw—1 —
= f T QusVgl— 1p—du'du® ... dw—"'dur+" ... du™* + O(u" ™)
# =1 A A A A )‘,

n-:g

—1 -
="z / Q&uﬂ\/g(duidu” v QU™ — dutdut .. du"2du
Rl # S S S A i

A A x
n-2
+ o+ (= 1Pp'dutdu’ ... dud—tduitt L dunt
Aok i A *
e (= 1) 2ducdud . du” ) + O )
TR A
w1
="z / Qidr,_ + O™
= Ién“*i
= Q}(P) [ dr,,_, + O™, ut—0.
R,

Thus we have completed the proof.

9. Mean curvatures of an m—dimensional subspace F,, in F., .

There is n . difficulty in extending the same arguments to the general
case where an m-dimensional subspace F,, is considered instead of F, ,.
For a normal vector 7;,, to F,,, we can similarly define the mean curvature
M, of F,, at a point P. Denote, in fact, by F,_, a variable closed hypersur-
face in F,, containing P and by 0, the angle between the normal vector w,
to F,, , in F,, and the tangential {n — 1)-dimensional affine space E,,, ,._,
orthogonal to n,,. Then we have

TrEOREM 2. — The mean curvature M, of Fn at P corresponding fo '
is given by

ff)gd'cm_1
M,= lim Tm=t_
Fm—'i'—’ [d’im
Rm
where R, denotes the domain of ¥, enclosed by Fy_,. and dz, and dry .,
denote the volume elements of Ry and ¥y _, respectively.

CorOLLARY 1. - If, .in particular, F, is «gespannt», i. e., if the
{n — m)-dimensional affine space E, ™ orthogonal to E,, at a point P of F,,
can be determined uniquely, then there exists a normal vector #, which we
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shall call the mean curvature normal, such that the mean curvature M
of F,, at P for n is given by the equation

f&d’tm._.,
. Foy. it 2
M= lim =2t = Z M,,
Fm_i——vP /d‘tm a=m-+1
R

m

where 6 denotes the angle between w; and the tangential affine space H,_,
orthogonal to », and the components of »n are

*»
W= X lgsllpglmclir
independent of the choice of the orthogonal ennuple { T, ], so that n has
the length M.

We shall call M the mean curvature of the « gespanni» subspace F,,.

COROLLARY 2. - If F,, is « gespannt », then its mean curvature is zero
if its mean curvature for any normal vector is zero.

COROLLARY 3. - The mean curvature of a «gespanni»> subspace F,,
for any normal vector orthogonal to the mean curvature mnormal, is zero.

These corollaries are evident generalizations of some known results in
Riemannian geometry (*).

The author wishes to express his thanks to Prof. B. Su for the sugges-
tions during the preparation of this paper.

(%) Cf, for example, Li. P. HISENHART, Riemannian geomelry, < Princeton Univ. Press. »,
(1925), 169-170. .




