Mean curvatures of a subspace in a Finsler space.

Memoria di M. Y. Zhang (a Ohekiang, Cina).

Sunto. - Il contenuto del presente lavoro trovasi riassuntóo nel seguente capoverso.
In a recent paper (${ }^{1}$) the author has generalized CalongHis theorem ("), concerning the mean curvature of a surface in ordinary space, to a threedimensional Finsler space. The geometrical definition of the mean curvature thus obtained is independent of the choice of the element of support of the space. The object of the present paper is to give an extension to an m-dimensional subspace F_{m} of an n-dimensional Finsler space F_{n}. For clearness, we shall begin by investigating the mean curvature of a hypersurface, and then consider the general case.

1. The mean curvature of a hypersurface F_{n-1} in F_{n}.

Let F_{n} be an n-dimensional Finsler space with the element of support $\left(x, x^{\prime}\right)$, along which the contravariant components of the unit vector are denoted by $l^{i}(i=1,2, \ldots, n)$. Let $g_{i k}\left(x, x^{\prime}\right)(i, k=1,2, \ldots, n)$ be the covariant components of the metric tensor. We consider a hypersurface F_{n-1} of equations

$$
x^{i}=x^{i}\left(u^{\lambda}\right):
$$

hereafter Latin indices i, j, k, \ldots are in the range $1,2, \ldots, n$ and Greek indices $\lambda, \mu, \nu, \ldots$ in the range $1,2, \ldots, n-1$. For a tensor in F_{n-1} of components T_{μ}^{λ}, the components in F_{n} are given by the equations

$$
T_{j}^{i}=T_{\mu}^{\lambda} q_{\lambda}^{i} v_{j}^{\mu},
$$

where

$$
\vartheta_{\lambda}^{i}=\frac{\partial x^{i}}{\partial u^{2}}, \quad \vartheta_{j}^{\mu}=g_{i k} g^{\lambda \mu} \vartheta_{\lambda}^{k} .
$$

We assume that all the functions throughout the following discussion are analytic.

[^0]It is known that the normal curvature N of a curve in F_{n-1} at a point P with the tangent vector t^{i} is given by

$$
\begin{equation*}
N=n^{i} \frac{D t_{i}}{d s}=-t_{i} \frac{D n^{i}}{d s}=\Omega_{\lambda \mu} t^{\lambda} t^{\mu} \tag{1}
\end{equation*}
$$

where D denotes covariant differentiation, s is the arc-length of the curve and n^{i} is the normal vector of F_{n-1}. Then the mean curvature M of F_{n-1} at P is

$$
\begin{equation*}
M=g^{\lambda \mu} \mathbf{Q}_{\lambda_{\mu}} \mathbf{Q}_{\lambda,}^{\lambda} \tag{2}
\end{equation*}
$$

In particular, when the direction of the element of support (x, x) coincides with n^{i} or with the tangential direction of F_{n-1}, we obtain the mean curvature of Cartan (${ }^{3}$) or that of Berwald (${ }^{4}$) respectively.

Consider in F_{n-1} a variable closed hypersurface F_{n-2} containing P and denote by $w^{i}(Q)$ the contravariant components of the normal unit vector of F_{n-2} in F_{n-1} at a generic point Q of F_{n-2}. If $w^{i}(Q / P)$ are the components of the vector obtained from $w^{i}(Q)$ by a parallel displacement with respect to F_{n} from Q to P, along an arbitrary arc C in F_{n-1}, and the complementary of the angle between $w^{i}(Q / P)$ and $n^{i}(P)$ is taken as the angle θ between $w^{i}(Q)$ and the tangential hyperplane E_{n-1} of F_{n-1} at P, then we have the following theorem :

Theorem 1. - The mean curvature M of $\mathrm{F}_{\mathrm{n}-1}$ at P is given by

$$
M=\lim _{F_{n \rightarrow 2} \rightarrow P} \frac{\rho \theta d \tau_{n-2}}{\int_{n-2} d \tau_{n-1}}
$$

where $\mathrm{R}_{\mathrm{n}-1}$ denotes the domain of $\mathrm{F}_{\mathrm{n}-1}$ enclosed by $\mathrm{F}_{\mathrm{n}-2}$, and $\mathrm{d} \tau_{\mathrm{n}-1}$ and $\mathrm{d} \tau_{\mathrm{n}-2}$ denote the volume elements of $\mathrm{R}_{\mathrm{n}_{-1}}$ and $\mathrm{F}_{\mathrm{n}-2}$ respectively.

Proof. - Without loss of generality, we can assume that the coordinates of P and Q in F_{n-1} are $(0,0, \ldots, 0)$ and $\left(u^{1}, u^{2}, \ldots, u^{n-1}\right)$ respectively. Denoting the infinitesimal vector on C by $\delta x^{i}=\mathfrak{y}_{i}^{i} \delta u^{\lambda}$, oriented by the sense
(${ }^{3}$ E. Cartan, Les espace de Finsler, «Actualites scientifiques et industrielles *, 79 (1934), Hermann ${ }_{3}^{*} \&$ Oie., Paris.
(4) L. Berwald, Über die Kauptkrümmungen einer fläche im dreidimensionalen Finslerschen Raum, © Monatsh. f. Math. n. Phys. ", 43 (1986), 1-14.
from Q to P, we have

$$
\begin{align*}
w_{i}(Q / P)= & w_{i}(Q)-\int_{Q}^{P} \stackrel{*}{\Gamma}_{i k}^{j}\left(x, x^{\prime}\right) w_{j}\left(x, x^{\prime}\right) \delta x^{k} \tag{3}\\
& -\int_{Q}^{P} A_{i k}^{j}\left(x, x^{\prime}\right) w_{j}\left(x, x^{\prime}\right) \omega^{k} \\
= & w_{i}(P)-\int_{Q}^{P} \frac{\partial w_{i}}{\partial x^{k}} \delta x^{k}-\int_{Q}^{P} \stackrel{*}{\Gamma}_{i h}^{j}\left(x, x^{\prime}\right) w_{j}\left(x, x^{\prime}\right) \delta x^{k} \\
& -\int_{Q}^{P} A_{i k}^{j}\left(x, x^{\prime}\right) w_{j}\left(x, x^{\prime}\right) w^{k} \\
= & w_{i}(P)+\int_{Q}^{P} D w_{i}\left(x, x^{\prime}\right)
\end{align*}
$$

where we have placed

$$
w_{i}(P)=w_{i}(Q)-\int_{Q}^{P} \frac{\partial w_{i}}{\partial x^{k}} \delta x^{k}, \quad \omega^{h}=D l^{k}
$$

Since F_{n} is of a Euclidean connection, $w_{i}(Q / P)$ remain the covariant components of a unit vector. Hence from (3) it follows that

$$
\begin{equation*}
\sin \theta=n^{i}(P) w_{i}(Q / P)=n^{i}(P)\left\{w_{i}(P)+\int_{Q}^{P} D w_{i}\right\} \tag{4}
\end{equation*}
$$

Moreover, $w_{i}(P)$ is a covariant vector in F_{n-1}^{\prime}, so that

$$
n^{i}(P) w^{i}(P)=0, \quad n^{i}(P) D w_{i}(P)=-w_{i}(P) D n^{i}(P)
$$

From (1) it is clear that
and consequently

$$
-\delta x^{i} D n_{i}=\Omega_{\lambda \mu} \delta u^{\lambda} \delta u^{\mu}=\Omega_{\lambda \mu} \delta u^{\lambda} \delta x^{i} \vartheta_{i}^{\mu}
$$

$$
-D n_{i}=\Omega_{\lambda \mu} \delta u_{i}^{\lambda} \vartheta_{i}^{\mu}
$$

$$
\begin{align*}
\sin \theta & =\int_{Q}^{P} n^{i}(P) D w_{i}=\int_{Q}^{P} n^{i} D w_{i}+O\left(u^{\lambda}\right) \tag{5}\\
& =-\int_{Q}^{P} w_{i} D n^{i}+0\left(u^{\lambda}\right)=\int_{Q}^{P} Q_{\mu}^{\lambda} w_{\lambda} \delta u^{\mu}+O\left(u^{\lambda}\right) \\
& =\Omega_{\mu}^{\lambda}(Q) w_{\lambda}(Q) u^{\mu}+O\left(u^{\lambda}\right)
\end{align*}
$$

$$
\left(u^{\lambda} \rightarrow 0\right)
$$

Now suppose that F_{n-2} is defined by
then

$$
u^{\lambda}=u^{2}\left(v^{\alpha}\right) \quad(\alpha=1,2, \ldots, n-2) ;
$$

$$
\begin{equation*}
d \tau_{n-2}=\sqrt{\bar{g}} d v^{1} d v^{2} \ldots d v^{n-2} \tag{6}
\end{equation*}
$$

where

$$
\bar{g}=\operatorname{det}\left(g_{\alpha \beta}\right), \quad g_{\alpha \beta}=g_{\lambda \mu} \frac{\partial u^{\lambda}}{\partial v^{\alpha}} \frac{\partial u^{\mu}}{\partial v^{\beta}} \quad(\alpha, \beta=1,2, \ldots, n-2) .
$$

By changing the coordinates

$$
\begin{equation*}
u_{\lambda}^{u^{\lambda}=v^{\alpha}, \quad u_{\lambda}^{\lambda}=(-1)^{\lambda-1} u^{\lambda}, \quad u_{\lambda}^{\beta}=v^{p-1} \quad(\alpha<\lambda<\beta), ~} \tag{7}
\end{equation*}
$$

λ being not summed, we get

$$
\begin{aligned}
& {\underset{\alpha}{\alpha}}_{w_{\alpha}}=w_{v} \frac{\partial u^{\nu}}{\partial u_{\alpha}}=w_{v} \frac{\partial u^{\nu}}{\partial v^{\alpha}}=0, \\
& {\underset{\alpha}{\beta}}^{w_{\beta}}=w_{v} \frac{\partial u^{\nu}}{\partial u^{\beta}}=w_{v} \frac{\partial u^{\nu}}{\partial v^{\beta-1}}=0,
\end{aligned}
$$

since $\frac{\partial u^{\nu}}{\partial v^{\alpha}}$ are the contravariant components of a vector in F_{n-2}, and w_{v} the covariant components of a normal unit vector to F_{n-2}. Thus we are led to the relation

$$
\begin{equation*}
\underset{\lambda}{w_{\lambda}}=\frac{1}{\sqrt{g_{\lambda}^{\lambda \lambda}}}=\frac{\sqrt{\bar{g}}}{\sqrt{\bar{g}}} \tag{8}
\end{equation*}
$$

(λ not summed),
where $g^{\mu \nu}, \bar{g}$ and g denote the transformed expression of $g^{\mu \nu,}, \bar{g}$ and $g=\operatorname{det}\left(g_{\mu \mu}\right)$ respectively, as it is easily seen from the assumption

$$
g_{\lambda}^{g_{\lambda}^{\mu \nu} w_{\mu} v_{\lambda}}=g_{\lambda}^{\mu \lambda} w_{\lambda}^{2}=1 \quad \quad(\lambda \text { not summed })
$$

Therefore from (6), (7) and (8) we deduce

$$
\begin{aligned}
& w_{2} d \tau_{, \ldots-2}=w_{\lambda} \sqrt{\bar{g}} d v^{1} d v^{2} . . . d v^{n-2} \\
& =(-1)^{\lambda-1} w_{\lambda} V_{\lambda}^{-} d u_{\lambda}^{-} d u_{\lambda}^{2} \ldots d u_{\lambda}^{\lambda-1} d u_{\lambda}^{\lambda+1} \ldots d u^{n-1} \\
& =(-1)^{\lambda-1} \underset{\lambda}{\operatorname{g}} d u_{\lambda}^{1} d u_{\lambda}^{2} \ldots d u_{\lambda}^{\lambda-1} d u_{\lambda}^{\lambda+1} \ldots d u_{\lambda}^{n-1} \text {. }
\end{aligned}
$$

By applying the generalized Greme's integral theorem, we obtain from (5) and (9) that

$$
\begin{aligned}
& \int_{F_{n-2}} \theta d \tau_{n-2}=\int_{F_{n-2}} \mathbf{Q}_{\mu}^{\lambda} u \mu^{\mu} v_{\lambda} d \tau_{n-2}+0\left(\boldsymbol{u}^{n-1}\right) \\
& =\int_{F_{n=2}} \sum_{\lambda=1}^{n-1} Q_{\mu}^{\lambda} u^{\mu} v \underset{\lambda}{V}(-1)^{\lambda-1} d u_{\lambda}^{1} d u_{\lambda}^{2} \ldots d u_{\lambda}^{\lambda-1} d u_{\lambda}^{\lambda+1} \ldots d u_{\lambda}^{n-1}+0\left(u^{\lambda^{n-1}}\right) \\
& =\sum_{\lambda=1}^{n-1} \int_{F_{n \rightarrow 2}} \mathbb{Q}_{n}^{\lambda} u^{\mu} \underset{\lambda}{ } \sqrt{g}\left(d u_{\lambda}^{1} d u_{\lambda}^{2} \ldots d u_{\lambda}^{n-2}-d u_{\lambda}^{1} d u_{\lambda}^{2} \ldots d u_{\lambda}^{n-3} d u_{\lambda}^{n-1}\right. \\
& +\ldots+(-1)^{2-1} d u_{\lambda}^{1} d u_{\lambda}^{2} \ldots d u_{\lambda}^{\lambda-1} d u_{\lambda}^{\lambda+1} \ldots d u_{\lambda}^{n-1} \\
& \left.+\ldots+(-1)^{n-2} d u_{\lambda}^{2} d u_{\lambda}^{3} \ldots d u_{\lambda}^{n-1}\right)+0\left(u^{n-1}\right) \\
& =\sum_{\lambda=1}^{n-1} \int_{\boldsymbol{F}_{n-1}} \boldsymbol{\Omega}_{\lambda}^{\lambda} d \tau_{n-1}+0\left(\boldsymbol{u}^{\lambda^{n-1}}\right) \\
& =\Omega_{\lambda}^{\lambda}(P) \int_{R_{n-1}} d \tau_{n-1}+0\left(u^{\lambda^{n-1}}\right), \\
& u^{2}-0 .
\end{aligned}
$$

Thus we have completed the proof.
2. Mean curvatures of an m-dimensional subspace F_{m} in F_{n}.

There is n. difficulty in extending the same arguments to the general case where an m-dimensional subspace F_{m} is considered instead of $F_{n \cdot 1}$. For a normal vector $\vec{n}_{\sigma 1}$ to \vec{F}_{m}, we can similarly define the mean curvature M_{σ} of F_{m} at a point P. Denote, in fact, by F_{m-1} a variable closed hypersur. face in F_{m} containing P and by θ_{σ} the angle between the normal vector w_{i} to F_{m}, in F_{m} and the tangential $(n-1)$-dimensional affine space $E_{\sigma, n-1}$ orthogonal to $\vec{n}_{\sigma 1}$. Then we have

Theorem 2. - The mean curvature M_{σ} of F_{m} at P corresponding to $\overrightarrow{\mathrm{n}}_{\sigma}$ is given by

$$
M_{\sigma}=\lim _{F_{m-1} \rightarrow P} \frac{\int_{F_{m-1}} \theta_{0} d \tau_{m-1}}{\int_{R_{m}} d \tau_{m}},
$$

where R_{m} denotes the domain of F_{m} enclosed by $\mathrm{F}_{\mathrm{m}-1}$, and $\mathrm{d} \tau_{\mathrm{m}}$ and $\mathrm{d} \tau_{\mathrm{m}-1}$ denote the volume elements of R_{m} and $\mathrm{F}_{\mathrm{m}-1}$ respectively.

Corollary 1. - If, in particular, F_{m} is «gespannt», i. e., if the $(n-m)$-dimensional affine space E_{n}^{n-m} orthogonal to E_{m} at a point P of F_{m} can be determined uniquely, then there exists a normal vector \vec{n}, which we
shall call the mean curvature normal, such that the mean curvature M of F_{m} at P for \vec{n} is given by the equation

$$
M=\lim _{F_{m-1} \rightarrow P} \frac{\int \theta d \tau_{m-1}}{\int_{R_{m-1}} d \tau_{m}}=\sqrt{\sum_{\sigma=m+1}^{n} M_{\sigma}^{2}}
$$

where θ denotes the angle between w_{i} and the tangential affine space E_{n-1} orthogonal to \vec{n}, and the components of \vec{n} are

$$
n^{i}=\sum_{\sigma=m+1}^{n} \Phi_{\sigma 1 \lambda_{1}} g^{\lambda \mu} n_{\sigma 11^{2}}
$$

independent of the choice of the orthogonal ennuple $\left\{\vec{n}_{\sigma_{1}}\right\}$, so that \vec{n} has the length M.

We shall call M the mean curvature of the «gespannt, subspace F_{m}.
Corollary 2. - If F_{m} is «gespannt», then its mean carvature is zero if its mean curvature for any normal vector is zero.

Corollary 3. - The mean curvature of a «gespannt» subspace F_{m}, for any normal vector orthogonal to the mean curvature normal, is zero.

These corollaries are evident generalizations of some known results in Riemannian geometry (${ }^{5}$).

The author wishes to express his thanks to Prof. B. So for the suggestions during the preparation of this paper.
(5) Cf, for example, L. P. Eisenhart, Riemamian geometry, a Princeton Univ. Press. \quad, (1925), 169-170.

[^0]: (1) Zhang Ming Yng, Die mittlere Krummung einer Flache im dreidimensionalen Finslerschen Raum, \& Science Record, Academia Sinica *, new series, vol. 1 (1950), n. 1.
 (${ }^{2}$) M. Calonghi, Sulla curvatura media delle superficie, Rendic. dei Lincei», (6) 11 (1930), 554.558.

