On a Certain Class of Set Theoretic Properties.

Memoria di PavrL A, WaiTE (a Los Angeles, California, U. 8. A (¥).

Sammary, - One of the most useful results in introductory topology is the theorem thai if S
is connected and C is a connected subset such that 8 — C=XUY, separate (<« U » means
union), then XUC and Y UC are connected. In this paper a study is made of other
set properties satisfying a similar theorem. That is, if PC 8 both have a property 8
and S ~P=XUY separate, then PUX and PUY have this property. Furthermore,
many properties have corresponding localizations, for example local connectedness, and
it is determined under what conditions the corresponding local property satisfies the
above theorem if the original property does.

Throughout the paper we assume the sets to be imbedded in a space
that is at least HAUSDORFF. In those theorems involving homology properties,
we shall assume the space is compact and that the cycles are those defimed
by CecH.

THEOREM A. - If PCCS, P and S both have the proprty 8 aud S —P=X{JY
separate, then X {J P and Y [J P both have 3.

DrrpiniTioN. - 8 is said to be locally $(18) if for every point p &S and
open set U relative to S, p & U, there exists an open set V relative to S; such
that p e VCU, and V has 8.

DerFINITION. - § is said to be strongly locally 8(sl8) if for every PC S
such that P has § and open set U relative to S such that P U, there exists
an open set V relative to § such that P VC U, and such that V has §.

DEFINITION. - Any property &§ that is enjoyed by every set consisting of
a single point, is called a poini property.

The following theorem is clear from the definitions.

THEOREM 1. - If 8 is a point property, and S is 818, then S is 13.

THEOREM 2. - If S is 18, 518, and § satisfies theorem A, then 18 satisfies
theorem A.

Proof. Consider P < § where P and S are I8, and S — P = X |J Y sepa-
rate. Suppose xeX |J P and peUC X |J P where U is open in X {J P. There
exists an open set U’ relative to S such that U=U'[N1 (X J P). If p ¢ x. there
exists an open set V' U’ such that pe V"X |J P since X is separate from Y.
Since § is I§ there exists an open set W’ of S such that pe W' C V' and W’
has 8. Next suppose peP, and let U” = P ) U'. Since P is I8, there exists

(*) Pervenuta in redazione il 13 aprile 1950.
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an open set V' of P such that p s V" U”, V" has §, and there exists a
set V' open in § such that V"= P[] V'. We can suppose V' U’ since
PRV =PNQ(V'}U) where V'[] U’ is the required open set. Since §
is 88 and V'V, there exists a set W’ open in § such that pe V' WV’
and W has 8. Furthermore V"= V'[1 P implies V'=W' (1 P. If WX | P,
we have found the desired set. If Wez=X {J P, then W' — V"= W,/ U W,/
separate, where W, = W' (1 X, W,/ = W'[] Y. Since § satisfies theorem A,
and W' and V” bave &, it follows that V" (J W, and V" {J W, have 8.
But W, U Vi=(WNHNX)UW QP)y=W (XUP); thas W,'|J V" is open
in X | P and has 8. Since the same arqument holds for p ¢ ¥, we have
shown that I8 satisfies theorem A.

QoROLLARY 2.1. - If S is s1& were 8 is « point properly satisfying theo-
rem A, then 18 satisfies theorem A,

COROLLARY 2.2. = If 8 is a property satisfied only by open sets, and 3
satisfies theorem A, then 18 satisfies theorem A.

Proof. S is automatically sI§ for if PCC U has &, then P must be open
and V=P is an open set vith § such that P VC U, and the result follows
from the theorem. Finally we note that it is possible for such a property &
to satisfy theorem A, since if P and S are both open, then X J P and Y P
are open (this is stated in theorem ).

The following is a list of fundamental properties which have meaningful
local properties. For the meaning of any property not defined here see
G. T, WHYBURN, -Analytic Topology, « Colloquium Series ».

8 1. To be connected.

2 2. To have a closure that is compact (i. e. every covering by open sets
has a finite subcovering). (We state the property in terms of the closure so
that the local property will have meaning).

To have a boundary that is compact.

To consist of a finite number of points.

To consist of an at most countably infinite number of points.

To consist of an uncountable number of points.

To have a boundary consisting of a finite number of points.

. To have a boundary consisting of an at most countably infinite
number of points.

8 9. To have a particular point p as a non-cut point.

8 10. To consist entirely of non-cut points.

8 11. To be arc-wise connected.

$ 12. To be an open connected set whose closure is a dendrite (a den-
drvite is a locally connected continuum that contains no simple closed curve.
Again we state the property so that the local property is significant).

THEOREM 3. - All of the properties §1 to 8 12 listed above satisfy theorem A.

Proof. The resnlt is well known for 1. It follows for 2 and 3 trivially,

Q9 eH &) €9 9 &Y
I R R
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since any closed subset of a compact set is countably compact. The result is
obvious for 4, 5, and 6.

The result follows for 7 and 8 as follows. Let I and § both have either
property 7 or 8 and be such that § — P=X {J Y separate. It is readily shown
that B(X |J P) B(S) U B(P) where B(4) = the boundary of 4 relative to a
universal imbedding space; thus if B(S) and B(P) are both finite or at most
countably infinite, then B(X J P) enjoys the same property.

To prove the result for 9, we consider a particular point p € S and PC S
such that p is a non-cut point of P and of S, and such that S—P=X{J Y
separate. Suppose p is a cut point of X P, i.e. (X P)—p =X, |J X, sepa-
rate. Since P — p is connected, we can suppose P— pC X, and thus X,CX.
Now S -p=X,U(X,UY) is a separation which contradicts p’s being a
non-cut point of §; therefore, p is a non-cut point of X |J P and likewise
of YU P. The result now follows for 10 by repeated application of 9.

To show the vesult for 11, let P and S be arc-wise connected, where
PSS and S— P=XU Y secparate. Consider the points x, and x, € X{J P
and any arc 4 of § with end points x, and «,. Let p, & 4 be the last point
on A such that the open subarc from w, to p, lies in X. Either p, ¢ X or P,
since no point of Y is a limit point of X. If p, £ P (¥} then it follows from its
definition that there exists a point g, in the arc from p, to x, such that
q, € P, and arc pq T XCP. If p & p, define q, = p,, then in either case
the arc «, to ¢, lies in X |J P. Similary there exists a point ¢, € P such
that the arc x, to ¢, lies in X |J P. Since P is arcwise connected, there exists
in P an arc from g, to ¢,. We can now extract an arc in X |J P from the
union of the three arcs x, to q,, ¢, to ¢,, and «, to g, which all lie in X |J P.
Thus X |{J P and similary, Y |J P are arc-wise connected.

To show the result for 12, we observe that X |JP is an open connected

The I8 properties corresponding to the 12 properties listed above are as
follows:

I8 1. To be locally connected.

I8 2, To be locally compact.

I§ 3. To be locally peripherally compact (this is a concept introduced
by R. L. WiLDER).

I8 4. To be locally finite.

I8 5. To be locally countable infinite.

I8 6. To consist entirely of condensation points.
{8 7. To be regular curve.

I8 8. To be a rational curve.

{€) means « not contained iu ».
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18 9. To have a particular point p as a local non-cut point.

I8 10. To consist entirely of local non-cut points.

I8 1. To be locally arc-wise connected.

I8 12. To be locally a dendrite.

THEOREM 4. - If S is 18, it is sl§ for each of the above 12 properties.

Proof. Let P be a subset having § of § having {8 and le: U be an open
set relative to S such that P U. Cover P with open sets {V,} such that V,
has 8 and V, C U '

Proof. for 1. Let V=1,V,, then PCCVC U, where V is open and con-
nected.

2. There exists a finite subcovering | V;} since P is compact and
V=i, V, is an open set < U such that V is compact.

3. There exists a finite subcovering { V;} of B(P) (the boundary}. since
B(P) is compact and V= )iy V)U PDP is an open set CC U such that
B(Vyc Uf=: B(Vy). Thus B(V) is compact since it is a closed subset of a
compact set.

4. There are only a finite number of | V,} since P is finite; therefore,
Ut V; is an open finite set — U.

5. There are at most a countable number of sets { V, | since P is coun-
table ; therefore, (Jiz: V; is an open countable set C U.

6. V=, V, D P is uncountable since P is an open subset of U.

7. Since B(P) is finite, there exists a finite sub-covering of it. Now
V=(Utt V) U P U is an open set D P with a finite boundary, since
< (7.1 B|V,)==a {inite set.

8. Since B(P) is countable, there exists a countable subcovering of it.
Now V= (Ui V)U P Uis an open set D P with a countable boundary.

9. This property implies local connectedness, for corresponding to each ¢
(whether = p or not) an open set UDgq, there exists and open set V such
that ¢ VC U and such that p is not a cut point of V. Thus in any case
{(even if p & V), V must be connected. Thus V=1,V,DP is connected
and Vo U. Suppose V —p is disconnected, then since P—p is conneeted
and C V — p, it lies in one component V, of V - p. Now V, —p is connected
and V,= "V, V,DP is an open connected subset of U V,—p=(V,—p)UV,
is connected since p is a limit point of V,; thus (V, —p) f} V,==0.

10. This follows by sueccessive application of number 9.

11. Let V=, V, > P, then V is a connected subset of U. Now consider
points ¢ and r e V, then there exists a finite chain chosen from {7V}
joining ¢ to r; i e {V,} é=1,.., n such that ge V,, &V, and
Vi) Vix,==0. Choose gi & Vil Vi, for i=1,.., n— 1, then there exist
arcs joining g to g, in V,, g, to ¢, in V,, ..., qn tO ¥ in V,,. We can now
extract a subare from ¢ to r in V from the union of these ares; thus V is
arc-wise connected.
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12. Let V={i.1 Vi be a finite subcovering of the boundary of P,
then P VCC U is an open connected set such that P V is a dendrite.

TrEOREM b. - The properties 18; (i=1, ..., 12) satisfy theorem A.

Proof. This follows directly from theorem 2 after applying theorems 3
and 4.

The following is a list of fundamental properties which either have no
meaningfal corresponding local property or one that does not satisfy theorem 4.

8 13. To be closed (relative to some fixed space S’ in which both P
and S of theorem 4 are imbedded).

8 14 To be open (relative to some fixed space S’ in which both P
and § are imbedded).

8 15. To be countably compact (i. e. every infinite subset of S has a
limit point in S).

8 16. To be compact.

8 17. To be complete.

8 18. To be everywhere dense.

3 19. To be nowhere dense.

8 20. To be perfect,

& 21. To be separable (i. e. to have a countable dense subset).

8 22. To be perfectly separable (i. e. to have a countable number of
open sets equivalent to the collection of all open sets).

8 23. To have (MENGER-URYSOHN) dimension #n,

8 24. To be cyclicly connected.

& 25. To be a linear graph (i. e. the union of a finite number of arcs

having at most end points in common).

THEOREM 6. The properties 8§ 13 fo 8 25 satisfy theorem A.

Proof. The result follows for § 13 to § 20 with little or no proof.

For & 21 let D and E be the countable dense subset of S and P
respectively, where §— P = X{J Y, separate, Let D, =D (X U P} and
consider » & X if # & D, then xeD Now XY= Oxmphes xecD,, and
if « ¢ P, then z ¢ E. Thus D, D UEDXU P and D, J E is a countable dense
subset of X U P

The result is trivial for § 22 since any subset of a perfectly separable
set is perfectly separable.

The result follows for & 23 since X JPC S implies dim (X J P)< n
and dim P = » implies dim (X | P) =mn.

To prove the result for § 24, consider points 2, and 2, ¢ X {J P, and a
simple closed curve of SDw, and x,. Let 4 and B be the two arcs from ,
to «, which make up S. Now we can apply the argument of theorem 3 used
in connection with & 11 (arc-wise-connectedness) to each of the arcs 4
and B. This gives sub-arcs x,p,q, and x,p,q, of 4 and sub-arcs x,p,/q and
©,p,'q,’ of B, where no two arcs have points in common, ¢,, g,, g/, and ¢,/ € P,
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and p,, p,, p/, p, are defined as before. Since P in cyclicly connected,
there exists a simple closed curve in P through ¢, and q,. Let r, and r, be
the first points on ares p,q, and p,q, that lie on this simple closed curve,
then there exist arcs R, and R, from r, to r, lyitg in (4 U §) [} P having
only », J 7, in common. Now let B be the one of the arcs R , R, that does
not pass through either p,’ or p,’ if such exists. If this is not possible,
then E, must pass through p/ but not p, and R, must pass through p,,
but not p,, or visa versa, and in either case, of course, p,/ and p,/ € P
(arc x,p,) —p, < X, (arc xz,p,) — p,, &Y. Now the arcs », to r, r, to p,
on R,, p, to =z, join to form an arc «, to x, that is disjoint except for z,
and x, from the one formed by joining the arcs w, to r,, r, to p,’ on R,
and p,/ to x,. Thus we have a simple closed curve in X J P through x,
and x,. Next consider B defined above and let 4" = the are from @, to w,
in X|J P formed by joining the ares x, to r,, R, and 7, to x,. E may
intersect arc p,’ to g, or p,’ to g,” or both, but since p/, p,’ & B, hence & R,
there exist points »#, ¢ P on arc p, to ¢ and #,/ € P on arc p,’ fo ¢,/ such
that ares «, to », and «, to »,/ do not intersect E. Since P is cyclicly
connected, there exists a simple closed curve through », and r,’ consisting
of the arcs ¢ and D from r, to r,’. Let s and ¢ be the first and last points,
respectively, on the arc 4’ from w, to x, that lie on G U D. If s and ¢ both
lie on C {or D), then the arc formed by joining the ares @, to s on 4', s to ¢
on O, and ¢ to x, on 4’ is disjoint except for x, and x, from the arc formed
by joining the ares @, to r/, D, and #, to «,. Thus we have a simple closed
curve through x, and z, in X J P. If s lies on C and ¢ on D (or visa versa),
then the arc formed by joining the arcs @, to s on 4', s to »,/ on (, and r,
to x, is disjoint except for x, and w, from the arc formed by joining the
arcs x, to 7./, v,/ to t on D, and ¢ to «x, on A" Thus in every case we obtain
a simple closed curve in X {J P through x, and w,.

The result follows immediately for & 25 since any closed connected
subset of a linear graph is another graph.

We shall now consider some higher dimensional properties involving
OpceE cycles and homology. As previously stated, we shall apply fthese
propertes only to compact spaces. For a statement of most of the concepts
connected with CECH cycles to be used here see, for example, E. G. BEGLE,
Locally Connected Spaces and Generalized Manwifolds, « American Journal of
Mathematics », vol. 64 (1940), pp. 553-574. Before stating these properties,
we give five lemmas that will appear in R. L. WiLDER' s Colloquium book
that will be useful in the following.

Lemma 7. - If L is o closed subset of S (compact) and Of is o covering
of S, then there exists a covering W, a refinement of U, such that if the
nucleus of a cetl (the intersection of the open sels which are it vertices) ofs U
meets both L and S — L, then it meets F(L), the boundary of L.
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LeEMMA 8. - If z* is a cycle mod K on M, then collection {3z°(U)} is an
{r — V)-cycle on K, which we denote by 0z*. Evidently 3z* >0 on M.

Teuma 9. - If 2 is a cycle on K such that z:c>0 on M, then lhere
exists a cycle z** mod K on M such that ¢z**cozt.

Lemma 40. - If 2* is a cycle mod K on M such that 02" >0 on M, then
there exists a cycle y* on M such that z*coy* mod K.

LemMa 11, « If 27 is o cycle mod K such that z¥ o0 mod M, then there
exists a cycle y* mod K on M such that z* oo y* mod K.

8 26. To be simply-i-connected; i. e. S has § 26 if every i-dimensional

Cecu oycle on S is «©0 on §. (§ is also compact by the above stated
assumption).

8 27. To have the point p. as a non-i-cut point relative to S: i. e. every
i-dimensional cycle on a closed subset of S — p is 0 on a closed subset
of S—p (where p does not necessarily bslong to S; i. e if p e §, this
means that § is simply-i-connected).

8 28. To consist entirely of non-i~cut points.

8 29. To be locally~i-connected at a point p; i.e. corresponding to every
open est U such that p € U, there exists an open set V suchthat pe VC U
and such that every i-cycle on V is co0 on U. (Again p need not belong
to S, in which case the condition is vacuously satisfied since no U exists
with p ¢ U).

& 30. To be locally~i~connected ; i. e. to be locally-i-connected at each
point.

8 31. To have a point p as a local non-i-cut point; i. e. corresponding
to every mneighborhood U such that p & U, there exists an open set V such
that p ¢ VCC U and such that every i-cycle on a closed subest of V—p is
0 on a closed subset of U— p.

8 32. To consist entirely of non-i-cut points.

8 33- To be co-locally-i-connected at p; i. e. corresponding to any open
set U such that p ¢ U, there exists an open set V such that p € VT U and
such that if 2! is any i-cycle mod S — U, then 2¢co0 mod S — V.

8 34. To be co-locally-i-connected ; i. e. to be co-locally-i-connected at
each point.

8 35. To have local i-betti number 1 af a point p of the interior of S
(relative to some fixed imbedding space S§'); i. e. § is not co-locally-i-con.
nected at p, and corresponding to any open set U such that p ¢ U, there
exists an open set V such that p ¢ VU and such that if 2! and 2, are
cycles mod §— U on §, then there exist integers #, and #,, not both 0, such
that n,2,fconz, mod S— V on S. ‘

& 86. To have local i-betti number 1 at such interior point.

Annali di Matematica 1
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& 37. To be the closure of an open generalized-n-manifold (imbedded is
a space S'); i. e. is the closure of an open generalized-n-manifold if
1) dim S=mn
2) § is locally-i~connected (0 <14 < n)
3. § is co-locally-i~connected (0 <i<m — 1)
4) § has local n-betti number 1 at every point p interior to S relative
to S'.
(This definition has more significance if we require S’ to be a space with
respect to which § has interior points althongh this is not necessary in the
following proof.) (see E. G. BEaLE, Duality Theorems for Generalized Mawmfolds,
« American Journal of Mathematics », vol. 67 (1945), pp. 59-70).
TagorEM 12. - The properties § i (i==26,..., 37) satisfy theorem A.
Proof. & 26. Consider P C § each with property § 26 such that
S — P=X ) Y, separate. Let 2' be any é-cycle on X (J P, then z'co0 on 8.
By lemma 9, there exists a cycle #/+* mod (X {J P) on § such that d*!cozt,
By lemma 7 we can construct a cofinal family of coverings with the property
that if the nucleus of any cell formed from one of these coverings intersects
both Y and S — Y, then it intersects. F(Y). We shall confine the coordinates
of all chains to this family. Let &' () ==2, 4 + 2, (&) for each
covering 9f, such that z,'*'() is the collection of cells of 2*'(@f) on ¥
and 2,/+(Qf) is the remainder of **+(@f); hence 2,** () ison X|J P=S—7.
Now 22, +40f) = y{©) is a cycle on Y since 2,/+'(%f) is on Y. By lemma 8,
{32/ (O%) ) is a cycle on X |J P; hence z,'*'(U) = 3**+'(U) - 3,4 Is
on X |J P=S8—Y. The choice of the cofinal family then implies that y*(°f)
is on F(Y) for all ©f of the family. To show that {y{%)}] is a CmcmH-cycle,
we recall that z¢+' is a CEcH cycle mod X |J P; i. e. for any & > ) there
exists COF+49)) such that 30 (Y) = ﬁggz‘*’(ﬁlﬁ)—-z““‘(@))—%—y"*“(@)) where
yi*H(@) is on X {J P. This gives 3C"() = ﬁgézz““(@li) — 2,7 ) +
+ ﬂgjzz{‘“(%} — 2,7 D) + v} where the last three terms of the right
hand side are all on X P. Let Ct¥®) = C, D) + C,'*(®V) where
C,**(®)) consists of the cells of C***(®) on Y and C,"*) of those not on Y
(hence in §— Y). This leads to the following: 3C,"**(®) — (moye, (@) —
— 2, (D) = — 30, (D) + (UM ~ 2, (@) + 7D where the left
hand side is on Y and the right hand side is on S8 — Y ; thus both sides = a
chain X**4(®) on F(Y). By taking boundaries, we obtain 3X**(®)) = 90 (O)) —
— (n D0, Q) — B, D)), or — X)) = mgpy (W) — yHD); thus,
1 yti@f) | is a OmoH cycle on F(Y)C P. Since P has 8 26, " o0 on P;
hence, there exists a chain 2,/ () on P for each @f such that 32,*"(U) =
= 7H(Of) = 02, **(9U). It follows that /()= et (@A) = 22, ) + 2,7 (L)) =
= 3, O +- 2,7HOU)); 1. e. 200 on X J P. From this we conclude that
X UP aund similarly YU P both have § 26.
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8 27. The proof for & 27 is entirely analogous to that for § 26. Here
we consider a cycle 28 on C,, a closed subset of (XU P)—p. O, is also a
closed subset of S—p; hence, 22cc0 on C,, a closed subset of S—p. The
cycle yi is now established on F(Y)N €, which is a closed subest of P — p
and is 0 on C,, a closed subset of P — p. Finally we show that z'co0
on C,N(XUPUC,, which is a closed subset of (XU P) — p. This shows
that XU P and similarly Y U P have § 27.

8 28. The result follows by repeated application of the result for § 27.

8 29. Let U be any open set in XU P containing p (if one exists).
UN P is an open set in P; hence, since P has § 29, there exists an open
set V& UNP such that p € V and such that every i-cycle on V is 0
on UNP. We can find an open set V' of § such that V=V NP, and the
choice can be made such that V"N (XUP)C U. Since S has § 29, there
exists an open set W' of S such that pe W V' and such that every
i~cycle on W is co0 on V. {Of course if p & X, then W can be chosen at
once without first choosing V). Let W= W N(XU P), then W is open in
XU P. Now consider any i-cycle 2z on W. Since WO W' #fcc0 on V' and
there exists a cycle 2 on V' mod W such that 9" cozi on W. As in the
proof for § 26 we can choose a cofinal family of coverings, such that 2}
intersects V' QA F(P)DV in a cycle yi. Now yico0 on UNP and we can use
the chains in this homology, the part of #*' on XU P, and the chains in the
homology between 22*' and # to form chains on U bounded by 2*; thus,
22co0 on U and XU P has 8§ 29.

8 30. The result follows by repeated application of the result for § 29.

& 31. The proof is almost exactly like that for § 29. Here V is chosen
so that every d-cycle on a closed subset of V-—p is o0 on a closed
subset of V-—p is co0 on a closed subset of (UN P} —p. Similarly W’ is
chosen so that every i-cycle on a closed subset of W —p is c0 on a
closed subset of V' — p. Now an i-cycle on a closed subset of W-—p is
chosen and the procedure previously followed leads to an homology on a
closed subset of U — p; thus p is a local non-i-cut point of X U P.

& 32. The result follows by repeated application of the result for 31.

& 33. Suppose Pc S, both P and S have § 30 relative to p, and
§—P=XUY separate. Suppose p € XUP and let U be any open set of
XUP such that pe U. There exists an open set U’ of S such that
UN(XUP)=U. Since S has & 30, there exists an open set V' of S such
that p € V' U’ and such that every i-cycle mod § — U’ is cv 0 mod S— V"
Now consider an i-cycle z' of X U P wod (X UP)— U; 2 is also a cycle of S
mod S— U’ and is, therefore, ~0 on S mod §— V. By lemma 11, there
exists a cycle y! mod (XUP)—U on §—V’ such that zicoy! mod (XUP)— U
on 8. As before we will use lemma 7, which allows us to restrict the coor-
dinates of all cycles to coverings with the property that a cell on both ¥
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and §—Y is on F(Y). Let @f be any such covering, then 2{9f)— y*@) +-
+ 2 () =30 (®f) where x'(M) is on (XU P)— U and C**+'9f) is on S,
Let Ct*+'(@Qf) = C,**4Of) + 0,'+' (@) where C,"*'{®f) consists of all cells of
Ct*'(@f) on Y and C/*49) is the remainder; hence, on § — X. Similary we
can write YY) = v,4(U) + v,4U) where 7v,4®f) consists of the cells on ¥
and y,%%) consists of the remainder of y/(Q). Since 3C* () =3C, ") +
+ 20,7 () = 2'(U) — 1,4 U) -~ 1.,(U) + x{2f), we can write 9C,TO) +
+ 1, ) = — 1,4) +- 1) + 2{U) — 20, (6U) where the left side ison ¥
and the right side is on §— Y. Thus each side is on F(Y) and we will let
1HOU) = 3C, () + 1,(@) for all f. We will show that {v,{(U)+v," ()}
is a eycle mod (XUP)—U on XUP, for consider any 9 > 9f. We have
gl () -1, () — (1, 49) +1,4() = m (D) — £(U) + mga(D) — () —
-—3(7:66%0‘“‘(@) — C,"'()), but #(Qf) is a eycle on XU P mod (XU P)—T,
{#(@f)] is on (XUP)— U, and =i, +(®)— C,/*@f) is on XUP. These
combined facts tell us that the left side is ~»0 on XU P mod (XUP—T.
Finally 3(y,(O%) + v,(8) = 3=HOU) + «i(@f) — 30,7 (U)) = 3(WU) + ' (U)
which is on (XU P)— U. We also note that (v -+ y,%), which we shall now
call 4 is co#’ mod (XUP)— U on XUP. This follows since 2H(f)—
— (Y HO4) + 1,4 OU)) + xi(Of) = 30," (@) for all O where 2/ ) is on (XUP)—T
and C""'(Q) is on XU P. We must now consider two cases.

Case 1). If p € X, then V’ could have been chosen such that V'C X,
then 1,9 is on F(Y)C (X P— V' for all . Also v/) is on §—V’
and on X J P; therefore, it is on (X |J P} — V'. This shows that v is on
(XU P)— V'; hence # is co0 mod (X J P)— V' on XU P since #coy,’
mod (XU P)—UlC[(XUP)— V]on XU P.

Case 2). If pe P, then let V == V'[} P and there exists an open get W
on P such that p & WV and such that every i-cycle mod P—V on P
is 0 mod P— W on P. Let W’ be an open set in V] P such that
pe WV and such that W () P=W. We now show that {v,(2)} is a
cycle mod P— V on P. We first ‘recall that v,(9f) was shown to be on
F(Y)< P tor all @f. Furthermore 3y,(@f =23@C, (%) + 1.4 (0)) = 3y, (),
where v,O) is part of vi(@4) on S— V'; thus, 3v,i) is on both P and
S— V' and, thus, on PN S—PJ V' =P— V. Since {y,(U) -+ 1,(W)} is a
eyole on XU Pmod (X P)— U, we have for any V>>U that mb(r (V) 1H(V) —
— (1,5@0) + 7,4O) + H(OU) = 2K (@), where () is on (XUP)—U and
K@) is on XU P. Let K%)= K""(U) + K, *%9f) where K,"“'(U) is
on V' and K, ") is on (X JP)—V". Then 3K (U) = KT (O) + 0K, ) =
— Ly (V) — 7))+ (r Sy, HD) — 14O + 9700); hence 3K T(U) —
— (w2, HOD) — 7,1) — gO0) = mr D) — 1,() — B, H(9) where the left
hand side is on (X J P)— V' and the right hand side is on P. This tells us
that the right hand side is on [(XUPj—V]1P =P~V (if we restrict
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ourselves by lemma 7 to a suitable cofinal family of coverings) and is, the-
refore, equal to a chain k) on P—V; thus, (nggysi(@))m vAHu) — E) =
= 3K,""(f) which implies mayy,()co1,(f) mod (P—7V) on P. This completes
the proof that {v,42f)} = v, is a cycle on P mod P— V. By the choice of W,
Y30 mod P— W on P; hence by lemma 11 there exists a cycle y,fmod P—V
on P— W such that yjicoy,’ mod P— V on P. By an entirely analogous
argument, we can show that |y, *af)} is a cycle on (X ) — V' mod (XU P)—U;
thus v, +y,' is a relative cycle and it is on (X |J P) — W'. Since #icoy,’ + 71,
mod (XU P)— U on X{JP and y,fcoy,’ mod P—Von P, we bave zicoy,+ v,
mod (X {J P) — V' on X|J . Putting these facts together, we conclude that
#co0 mod X{JP) - W

8 34. The result follows by repeated application of the result for & 33.

8 35. Consider P S 8’ such that S — P=X|J Y separate and ps X J P.
Since § is not co~locally connected at p, there exists an open set U such
that for any open set V such that p ¢ VU there exists a cycle 2t mod S— U
on § not 0 mod S—V on S. If p e X, we can suppose UC X. If pe P,
then p is in the inferior of P and of § relative to S’; hence, we can sup-
pose UCC P. In either case, VCC UC X |J P. There is no loss in assuming z?
is on U, then #' is not co0 mod (X | P}— X on X |J P since it is not 0
on the larger set §— V. This tells us that (X {J P) is not co-locally connected
at p. To show the second part of the definition holds on X (J P, we apply
the argument of 8 35 to n,x,? — n,x,* were z,? and 2,/ are cycles mod (X [ P)— U
and obtain an open set W U sunch that %2, — n,2,:c00 or n,2‘conez,’ mod
XUP\— Won XU P.

8 36. The result follows by repeated application of the result for & 35.

8 37. Let P and S be the closures of open generalized-n~manifolds
imbeded in -S" such that PCCS and S— P=X|J Y separate. We see that
X P and Y U P are also both closures of open generalized-n-manifolds by
applying theorem A for the properties § 23, 30, 34, and 36.

DEerFINITION. ~ We shall say that a property § Safisfies theorem A streng-
thened by 8, if in the hypothesis of theorem A, we require I’ to have §, as
well as & while § still just has 8.

The following properties satisfy theorem A strengthened by certain other
properties.

38. To be-semi-i-conmected at p; i. e. corresponding to any open set U
such that p ¢ U, there exists an apen set V such that p € VU and that
such that every i-cycle on V is >0 on S.

39. To be i-avoidable at p; i. e. corresponding to any open set U such
that p € U, there exists an open set V such that p ¢ V& U and such that
every i—cycle on F(U} is o0 on S — V.

40. To be locally-i-avoidable at p; i. e. corresponding to any open set U
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such that p e U, there exist open sets V and W such that p 8 W Vo U,
and auch that every i-cycle on F(V) is co0 on §— W,

41. To be completely-i~avoidable al p; i. e. corresponding to any open
set U such that pe U, there exists open sets V and W such that pe W VU,
and such that every é-cycle on F(V) is 0 on U— W.

THEOREM 13. - Properties § 38, 39. and 40 satisfy theorem A strengthened
by simple-i-connectedness and & 37 salisfies theorem A strengthened by
semi-i-connectedness.

Proof for § 38. Let U be any open set of X [J P such that p € U. There
exists an open set U’ of § such that U' N1 (X U P)= U. Since § has § 38,
there exists an open set V' of S such that p € VT U’ and such that every
cycle 28 on V' is o0 on 8. Let #* be any cycle of X{JP on V=V' N1 (XU P),
then ## >0 on S. By lemma 9, there exists a cycle #*' mod V on § such
that 3%'"'co# on V. By methods entirely analogous to ones previously used,
we can show that #*? intersects F(Y) in a cycle y on P which is c00 on P.
This allows us to replace 2! by a chain vy on X {J P such that dy'*'coz;
on V; hence #ico0 on X [J P, and X |J P is semi-i-connected at p.

8 39. Let U be any open set such that p ¢ U, let U’ be open is S such
that U' N (X U P)==U. Since S has 8 39 at p, there exist V' such that
pe VU and such that every é-oycle on F(U') is c©0 on S— V. Let
V=V (XU P) and # be any cycle of X|JP on F(U), then 2¢co0 on
S— V. It pe X, we can assume UCX and the method of § 38 leads to
an homology #co0 on (X |J P)— V. If p € P, we proceed as in & 38 obtain-
ing v on P co0 on P. However this homology may intersect V; therefore,
we let V"=V {] P and choose W”, open in P, such that p s W'T V" and
such that every i-cycle on F(V") is co0 on P— W". Now the homology yico0
on P intersects F(V”) in a cycle y,* which is o0 on P— W". If we choose
an open set W of X |J P such that W[} P= W" and p € WV, then pie-
cing these homologies together gives #'co0 on (X U P)-— W.

§ 40. This is proved by an argument entirely analogous to the one used
in & 39,

8 41. Consider the case where p € P and let U be any open set of
X | P such that p & U. There exists an open set V' of P such that pe V'
and soch that any i-cycle of P on V' is co0 on P. Let ¥ be any open set
of S such that V) (X U P)= U, and such that p & V. Since § has & 41 at p,
there exist open sets W and @ of S such that p € QC WCV and such that
any i-cycle of S on F(W) is c00 on V— @. Since P has § 41 at p, there
exist open sets R and 7 of (X |J P) such that p ¢ TC RC QT (X U P) and
such that any i~cycle of 2P on F(R-[} P} is 0 on (@1 P}— (T [ P). Now
any i-cycle of X J P on FIW[1 (XU P)] is o0 on U — [T N (X U P). This
follows from a proof entirely analogous to the ones above. The case p & X
is also handled as before.




