

Mouse V_k gene classification by nucleic acid sequence similarity

Robert Strohal, Arno Helmberg, Guido Kroemer, and Reinhard Kofler

Institute for General and Experimental Pathology, University of Innsbruck Medical School, Innsbruck, Austria

Abstract. Analyses of immunoglobulin (Ig) variable (V) region gene usage in the immune response, estimates of V gene germline complexity, and other nucleic acid hybridization-based studies depend on the extent to which such genes are related (i. e., sequence similarity) and their organization in gene families. While mouse Igh heavy chain V region (V_{H}) gene families are relatively wellestablished, a corresponding systematic classification of Igk light chain V region (V_k) genes has not been reported. The present analysis, in the course of which we reviewed the known extent of the V_k germline gene repertoire and V_{i} gene usage in a variety of responses to foreign and self antigens, provides a classification of mouse V_k genes in gene families composed of members with >80% overall nucleic acid sequence similarity. This classification differed in several aspects from that of V_H genes: only some V_k gene families were as clearly separated (by >25% sequence dissimilarity) as typical V_H gene families; most V_k gene families were closely related and, in several instances, members from different families were very similar (>80%) over large sequence portions; frequently, classification by nucleic acid sequence similarity diverged from existing classifications based on amino-terminal protein sequence similarity. Our data have implications for V_k gene analyses by nucleic acid hybridization and describe potentially important differences in sequence organization between V_H and V_k genes.

Introduction

The ability of the immune system to recognize virtually any antigen is mediated by the enormous sequence variability in the amino-terminal region of immunoglobulin (Ig) heavy and light chains. Among other mechanisms, this diversity is generated by somatic juxtaposition of gene segments that are separated in the germline, termed variable (V), diversity (heavy chain only), and joining (J) gene segments (reviewed by Tonegawa 1983, Alt et al. 1986). V genes contribute all residues of the first and second complementarity determining region (CDR) of both heavy and light chains, as well as part of the light chain CDR-3, and hence contribute the majority of antigen contact residues (Kabat et al. 1987). In mice, several hundred V_H and V_k (over 90% of all serum Ig is of the Igk isotype) gene segments exist in the germ line (Brodeur and Riblet 1984, Livant et al. 1986, Cory et al. 1981, Kofler et al. 1989). These genes can be very similar or may differ by over 40% nucleotides, and V region classifications based on nucleic and/or amino acid sequence similarity have been proposed (Brodeur and Riblet 1984, Dildrop 1984, Potter et al. 1982). Thus, mouse V_H genes have been grouped in 11 V_H gene families in which members generally share >80% of their nucleic acid sequence within, and <70-75% between, families (Brodeur and Riblet 1984, Winter et al. 1985, Kofler 1988, Reininger et al. 1988). Individual members of a given family cross-hybridize in nucleic acid hybridization assays only with members of their own family. These V_H gene families correspond well with a V_H region classification based on similarities at the protein level (Dildrop 1984). Understanding V_H gene relatedness on the nucleic acid sequence level has greatly facilitated studies regarding the expression of different V_H gene families during ontogeny (Yancopoulos et al. 1984, Perlmutter et al. 1985) and in response to foreign and self antigens (Manser et al. 1987b, Kofler et al. 1987a). These studies have thus provided an important insight into B-cell repertoire generation.

 V_k classifications reported to date are confined to the protein level. One attempt to systematically classify V_k proteins was based on the partial amino acid sequence up to the invariant cysteine in position 23 (Cys23), leading to 26 V_k subgroups, designated V_k Cys (Potter 1977). A

Address correspondence and offprint requests to: Dr. Reinhard Kofler, Institute for General and Experimental Pathology, Fritz-Pregl-Straße 3, A-6020 Innsbruck, Austria.

modified classification, based on the length and similarity of the amino termini up to the invariant tryptophan 35 (Trp35) of 79 V_k proteins, was introduced in 1982 (V_k Trp subgroups; Potter et al. 1982). Four of the V_k Cys subgroups were condensed and two new groups were added, resulting in a total of 24 V_k subgroups, six of which are still defined only by sequences up to Cys23. This classification has now been generally accepted and, although an extended comparison at the nucleic acid level has never been reported, the corresponding V_k protein subgroups have been widely used synonymously with V_k gene families. More recently, we have performed a detailed restriction fragment length polymorphism (RFLP) analysis with DNA probes corresponding to 16 V_k protein subgroups, and obtained evidence that such protein groups may not necessarily correspond to gene families analogous to those described for V_H genes (Kofler et al. 1989). Since a large number of full-length V_k nucleic acid sequences has been reported, it is now possible to address, by direct sequence comparison, the matter of whether V_k genes can be organized into gene families, as has been accomplished with V_H genes, and how such V_k gene families relate to the existing Vk protein groups. This issue is of considerable interest for V_k gene usage determinations, repertoire estimates, genomic mapping, and similar studies using nucleic acid hybridization, since such procedures depend on relatedness between V_k groups, gene families, and corresponding DNA probes.

We compiled 248 full-length V_k nucleic acid sequences from the literature and several databases, and assigned them to existing V_k protein classifications with subsequent grouping into gene families comprised of members with >80% overall nucleic acid sequence similarity. Our analysis revealed that the current classification in V_k protein groups or subgroups frequently did not reflect relatedness on the nucleic acid sequence level. Furthermore, V_k gene family organization differed in important aspects from that of V_H gene families; only some of the V_k gene families were clearly separated by sequence dissimilarity of > 25%, as is usually observed in V_H gene families. The remaining families were more similar to each other and, in several instances, large portions of genes from different families shared >80% of their sequences, leading to cross-hybridization between those families in hybridization analyses. In addition, although ancillary to the primary aim of this study, we reviewed the specificities encoded by the various V_k gene families and estimated their germline gene complexity.

Methods and nomenclature

 V_k nucleic acid sequence bank. A database was constructed consisting of V_k nucleic acid sequences from the Genetic Sequence Data Bank (GenBank, Los Alamos, New Mexico), E. A. Kabat's collection (Kabat et al. 1987), and other publications. Only sequences encoding the entire mature V_k protein were included in the database. If applicable, sequence portions encoding untranslated region, leader sequence, introns, or J segments were removed prior to comparisons. This primary database of 248 full-length V_k sequences was then condensed to a final database of 109 (Fig. 1) by deleting duplicate sequences and those differing by only 1 to 4 base pairs (bp).

 V_k protein groups and subgroups. All nucleic acid sequences were translated into amino acids and organized into V_k protein groups and subgroups. Assignment to V_k protein groups (labeled I to VII) was based on the length of the amino-terminal sequence up to the invariant Trp35 (41, 40, 39, 36, 35, 34, and 33 residues, respectively; Kabat et al. 1987). Organization into V_k protein subgroups was based on <13 substitutions up to Trp35 (V_k Trp subgroups; Potter et al. 1982). Sequences meeting assignment criteria for more than one subgroup were assigned to the subgroup with the best match.

 V_k gene families. Analogous to V_H gene families, we defined a " V_k gene family'' as a group of nucleic acid sequences that exhibit > 80% overall sequence similarity with every member of this family, and < 80% with V_k genes from other families. In nucleic acid hybridization analyses under defined stringency conditions (Brodeur and Riblet 1984), all members of a gene family can be expected to cross-hybridize with each other. The V_k gene family nomenclature proposed in this study was adjusted as far as possible to that used for V_k protein subgroups, in order to minimize confusion in the literature; when Vk protein subgroups and $V_{\rm k}$ gene familes corresponded to each other (e.g., V_k21), the V_k subgroup designation was used for the V_k gene family as well. V_k gene families comprising two or more V_k protein subgroups were given the designation of the respective subgroups (e.g., the $V_k 4/5$ gene family comprised V₄ and V₅ protein subgroups). Addition of capital letters to the designation indicates that a Vk protein subgroup included members from two distinct V_k gene families (e.g., the V_k9 protein subgroup comprised members from two distinct V_{k} gene families, termed $V_k 9A$ and $V_k 9B$, respectively). $V_k RF$ and (tentatively) $V_k 38C$ were two new gene families that could not be related unambiguously to any Vk protein subgroup and, hence, were named after a prototypic sequence.

Organization of mouse V_k sequences on the protein and nucleic acid level

The major goal of this study was to investigate the organization of mouse V_k genes in terms of nucleic acid sequence similarity, and to determine the relationship of such organization to existing V_k protein classifications. To this end, we first compiled 109 distinct (i. e., >4 bp different), full-length V_k nucleic acid sequences that were used as a database for subsequent analyses (Fig. 1). The sequences were translated into amino acids (Fig. 2) and assigned to protein groups and subgroups (Table 1).

Classification into protein groups was based on the number of residues up to the invariant Trp35 and, hence, was unambiguous in all instances. However, this classification was of limited practical value, since it frequently did not reflect structural relatedness (i. e., sequence similarity) between V_k sequences. For example, group V included members of several, sometimes quite dissimilar, V_k gene families (V_k23 , $V_k12/13$, V_kRF , V_k11 , V_k9A , V_k9B , V_k10 , V_k38C , $V_k19/28$). On the other hand,

Α	FR1	CDR1
001	10 20 30 40 50 60	
001		AGAGCCAGTGAAAGTGTTGATAGTTAT
002	GACATTGTGCTGACACAACACCTCCTCCCTCCCTCCCCCCACCACCACCACC	AGGGCCAGCAAAAGTGTCAGTACATCT
004	GACATTGTGCTAACACAGTCTCCTGCTTCCCTTAGCTGTATCTCTCGGGGCAGAGGGGCCACCATCTCATGC	AGGGCCAGCCAAAGTGTCAGTACATCT
005	GACATTGTGCTGACCCAATCTCCAGCTTCTTTGGCTGTGTCTCTAGGACAGAGAGCCACTATCTTCTGC	AGAGCCAGCCAGAGTGTCGATTATAAT
006	GACATTGTGCTGACCCAATCTCCAGGATCTTTGGCTGTGTCTCTAGGGCAGAGGGCCACCATATCCTGC	AGAGCCAGTGAAAGTGTTGAAAGTTCT
007	AAAATTGTGCTGACCCAATTTCCAGCTTCTTTGGCTGTGTCTCTAAGGCAGAGGGCCACCATATCCTGC	AGAGCCAGTGAAAGTGTTGATAGTTAT
008	GACATTGTGCTCACCCAATCTCCAGCTTCTTTGGCTGTGTCTCTAGGGCAGAGTGTCACCATCTCCTGC	AGAGCCAGTGAAAGTGTTGAATATTAT
009	GACATTGTGCTGACACAGTTTCCTGCTTCCTTAGCTGTATCTCTGGGGCCAGGGGCCACCATCTCATAC	AGGGCCAGCAAAAGTGTCAGTACATCT
010	GACATCTTGCTGACTCAGTCTCCAGCCATCCTGTCTGTGAGTCCAGGAGAAAGAGTCAGTTTCTCCTGC	AGGGCCAGTCAGAGC
011	GACATCTTGCTGACTCAGTCTCCAGCCATCCTGTCTGTGAGTCCAGGAGAAAGAGTCAGTTTCTCCTGC	AGGGCCAGTCAGAGC
012	GACATCTTGCTGACTCAGTCTCCAGCCATCCTGTCTGTGAGTCCAGGAGAAAGAGTCAGTTTCTCCTGC	AGGGCCAGTCAGAGC
013	GATATTGTGCTAACTCAGTCTCCAGCCACCCTGTCTGTGACTCCAGGAGATAGCGTCAGTCTTTCCTGC	AGGGCCAGCCAAAGT
014	GATATTGTGCTAACTCAGTCTCCAGCCACCCTGTCTGTGACTCCAGGAGATAGCGTCAGTCTTTCCTGC	AGGGCCAGCCAAAGT
015	GATATTGTGCTAACTCAGTCTCCAGCCACCCTGTCTGTGACTCCAGGAGATAGCGTCAGTCTTTCCTGC	AGGGCCAGCCAAAGT
016	GATATTGTGCTAACTCAGTCTCCAGCCACCCTGTCTGTGACTCCAAGAGATAGCGTCAGTCTTTCCTGC	AGGGCCAGCCAAAGT
017	CAAATTGTTCTCACCCAGTCTCCAGCAATCATGTCTGCATCTCCTGGGGAGAAGGTCACCATGACCTGC	AGTGCCAGATCAAGTGTA
018	GAAAATGTGCTGACCCAGTCTCCAGCAATCATGGCTGCATCTCCAGGGGAGAAGGTCACCATGACCTGC	AGTGCCAGCTCAAGTGTA
019	GAAAATGTGCTCACCCAGTCTCCAGCAATAATGGCTGCCTCTCTGGGGCAGAAGGTCACCATGACCTGC	AGTGCCAGCTCAAGTGTA
020	GAAAATGTGCTCACCCAGTCTCCAGCAATAATGGCTGCCTCTCTGGGGGAGAAGGTCACCATGACCTGC	AGTGCCAGCTCAAGTGTA
021	CANATTGTTCTCACCCAGTCTCCAGCAATCATGTCTGCCTCTCCAGGGGAGAAGGTCACCATGACCTGC	AGTGCCAGCTCAAGTGTA
022	CAAATTGTTCTCACCCAGTCTCCAGCAATCATGTCTGCATCTCCTGGGGAACGGGTCACCATGACCTGC	AGTGCCAGCTCAAGTGTA
023	GAAATTGTGCTCACCCAGTCTCCAACCACCATGGCTNNATCTCCCGGGGAGAAGATUACTATCACCTGC	AGTGCCAACTCAAGTATA
024	GAAAATGTGCTCACCCAGTCTCCAGCAATCATGTCTGCATCTCCAGGGNAAAAGGTCACCATGACCTGT	AGGGCCAGCTCAAGTGTA
025	GAAATTGTGCTCACCCAGTCTCCAACCACCATGGCTGCATCTCCCCGGGGAGAAGATCACTATCACCTGC	AGTGCCAGCTCAAGTATA
026	GAAATTGTGCTCACCCAGTCTCCAGCACTCATGGCTGCATCTCCAGGGGAGAAGGTCACCATTACCTGC	AGTGTCAGCTCAAGTATA
027	CAAATTGTTCTCACCCAGTCTCCAGCATTCATGTCTGCATCTCTAGGGGAACGGGTCACCATGACCTGC	ACTGCCAGGTCAAGTGTA
028	GAAATTTTGCTCACCCAGTCTCCAGCAATCATAGCTGCATCTCCTGGGGAGAAGGTCACCATCACCTGC	AGTGCCAGCTCA
029	CAAATTGTTCTCACCCAGTCTCCAGCAATCATGTCTGCATCTCCAGGGGAGAAGGTCACCATGACCTGC	AGTGCCAGCTCA
030	GAAAATGTGCTCACCCAGTCTCCAGCAATCATGTCTGCATCTCTAGGGGAGAAGGTCACCATGAGCTGC	AGGGCCAGCTCA
031	GGAATTGTGCTCACCCAATCTCCAACAACCATGACTGCATTTCCAGGGGAGAATGTCACCATCACCTGC	AGTGCCAGCTCA
032	CAAATTGTTCTCACCCAGTCTCCAGCAATCATGTCTGCATCTCCAGGGGAGAAGGTCACCATGACCTGC	AGTGCCAGCTCA
033	CAAATTGTTCTCACCCAGTCTCCAGCAATCATGTCTGCATCTCCAGGGGAGAAGGTCACCATATCCTGC	AGTGCCAGCTCA
034	GAAATTGTGCTCACTCAGTCTCCAGCCATCACAGCTGCATCTCTGGGGCAAAAGGTCACCATCACCTGC	
035		
036		
037		AGTGCCAGCTCA
038		ACCCCCACCTCA
0.39		
041		AGGGCCAGCTCA
041		AGTGCCAGCTCA
042		AGTGCCAGCTCA
043		AGTGCCAGCTCA
045	CARACTOTOTOTOTOTOTOTOTOTOTOTOTOTOTOTOTOTOTO	AGTGCCAGTTCA
045	CAAATTGTTCTCACCAGTCTCCCAGCAATCATGTCTGCATCTCCAGGGGAGAAGGTCACCATGACCATG	AGTGCCAGCTCA
047	CAAATTGTTCTCACCCAGTCTCCCAGCAATCATGTCTGCATCTCCAGGGGAGAAGGTCACCATGACCATG	AGTGCCAGCTCA
048	CAAATTGTTCTCATACAGTCTCCCAGNAATCATGTCTGCATCTCCAGGGGNGAAGGNCACCATGACCTGC	AGTGCCAGCTCA
049	CARATTGTTCTCACCCAGTCTCCACCAATCATGTCTGCCTCTCCAGGGGAGAAGGTCACCATGACCTGC	AGTGCCAGCTCA
050	CAAATTGTTCTCACCCAGTCTCCAGCAATCATGTCTGCATCTCCAGGGGAGAAGGTCACCATGACCTGC	AGTGCCAGTTCA
051	CAAGTTGTTCTCACCCAGTCTCCAGNAATCATGTCTGCATCTCCAGGGNAGAAGGTCACCATGACCTGC	AGTGCCAGCTCA
052	CNAATTGTTCTCTCCCAGTCTCCAGCAATCCTGTCTGCATCTCCAGGGGGAGAGGGGTCACATTGACTTGC	AGGGCCAGCTCA
053	CAAATTGTTCTCACCCAGTCTCCAGNAATCATGTCTGCATCTCCAGGGGAGAAGGTCACCATGACCTGC	AGTGCCAGCTCA
054	CAAATTGTTCTCTCCCAGTCTCCAGCAATCCTGTCTGCATCTCCAGGGGAGCAGGTCACAATGACTTGC	AGGGCCAGCTCA

R			- 602			CDB2	C B 3
	110 120	130	140	150	160	170 180	190 200
001	GGCAATAGTTTTATGCAC	TGGTACCAGCAGAAAC	CAGGACAGCC	ACCCARACT	CCTCATCTAT	CTTGCATCCAACCTAGAATCT	GGGGTCCCTGCCAGG
002	GGCAATAGTTTTATGCAC	TGGTACCAGCAGAAAC	CAGGACAGCC	ACCCANACT	CCTCATCTAT	CGTGCATCCAACCTAGAATCT	GGGATCCCTGCCAGG
003	GGCTATAGTTATATGCAC	TGGTACCAACAGAAAC	CAGGACAGCCI	ACCCAAACT	CCTCATCTAT	CTTGCATCCAACCTAGAATCT	GGGGTCCCTGCCAGG
004	AGCTATAGTTATATGCAC	TGGTACCAACAGAAAC	CAGGACAGCC	CCCAAACT	CCTCATCAAG	TATGCATCCAACCTAGAATCT	GGGGTCCCTGCCAGG
005	GGAATTAGTTATATGCAC	TGGTTCCAACAGAAAC	CAGGACAGCC	ACCCAAACT	CCTCATCTAT	GCTGCATCCAACCTAGAATCT	GGGATCCCTGCCAGG
006	GGCAATAATTTTATCCAC	TGGCACCAGCAGAAAC	CAGGACAGCC	ACCONAACT	CCTCATCTAT	CGTGCATCCAACCTAGCATCT	GGGATCCCTGCCAGG
007	GGCAATAGTTTTATGTAC	TGGTACCAGCAGAAAC	CAGGACAGCC	ACCCAAACT	CCTCATCTAT	CGTGCATCCAACCTAGAATCT	GGGGTCCCTGCCAGG
800	GGCAGTAGTTTAATGCAG	TGGTACCAACAGAAAC	CAGGACAGCC	ACCCARACT	CCTCATCTAT	GGTGCATCCAACGTAGAATCT	GGGGTCCCTGCCAGG
009	GGCTATAGTTATATGCAC	TGGAACCAACAGAAAC	CAGGACAGCC	ACCCAGACT	CCTCATCTAT	CTTGTATCCAACCTAGAATCT	GGGGTCCCTGCCAGG
010	ATTGGCACAAGCATACAC	TGGTATCAGCAAAGAA	CAAATGGTTC	rccaagget	TCTCATAAAG	TATGCTTCTGAGTCTATCTCT	GGGATCCCTTCCAGG
011	ATTGGCACAAGCATACAC	TGGTATCAGCAAAGAA	CAAATGGTTC	rccaaggct	TCTCATAAAG	AATGCTTCTGAGTCCATCTCT	GGGATCCCTTCCAGG
012	ATTGGCACAAGTCTTCAC	TGGTATCAACAAAGAA	CAAATGGTTC	CCAAGGCT	TCTCATAAAG	TATGCTTCTGAGTCTATCTCT	GGGATCCCTTCCAGG
013	ATTATCAACAACCTACAC	TTATATCGATAAAAAT	CACATGAGTC	ICCAAGGC1	TCTCATCAAA	TATGCTTCCCAGTCCATCTCT	GGGATCCCCTCTAGG
014	ATTAGCAACAACCTACAC	TGGTATCAACAAAAAT	CACATGAGTC	rccaagget	TCTCATCAAT	TATGCCTCCCAGTCCATGTCT	GGGATCCCCTCCAGG
015	ATTAGCAACAACCTACAC	TGGTATCAACAAAAAT	CACATGAGTC	rccaaggct	TCTCATCAAG	TATGCTTCCCAGTCCATCTCT	GGGATCCCCTCCAGG
016	ATTAGCAACAACCTACAC	TGGTATCAACAAAAAT	CACATGAGTC	rccaaggct	TCTCATCAAA	TATGCTTCCCAGTCCATCTCT	GGGATCCCCTCTAGG
017	AGTTCCAGCTACTTGTAC	TGGTACCAGCAGAAGC	CAGGATCCTC	CCCAAACT	CTGGATTTAT	AGCACATCCAACCTGGCTTCT	GGAGTCCCTGCTCGC
018	AGTTCTAGTAACTTGCAC	TGGTACCAGCAGAAGT	CAGGCACTTC	FACCAAATT	CTGGATTTAT	AGGACATCCAACCTGGCTTCA	GAAGTCCCAGCTCCC
019	AGTTCCAGTTACTTGCAC	TGGTACCAGCAGAAGT	CAGGCGCTTC	CCCAAAACC	CTTGATTCAT	AGGACATCCAACCTGGCTTCT	GGAGTCCCAGCTCGC
020	AGTTCCAGCTACTTGCAC	TGGTACCAGCAGAAGT	CAGGCACTTC	CCCCAAACT	CTGGATTTAT	GGCACATCCAACCTGGCTTCT	GGAGTCCCAGCTCGC
021	AGTTCCAAATACTTGAAC	TGGTACCAGCAGAGGT	CAGGAGCCTCO	CCCAAAACT	CTGGATTTAT	GGCACATCCAACCTGGCTTCT	GGAGTCCCTGCTCGC
022	AGTTCCAGCTACTTGTAC	TGGTACCAGCAGAAGC	CAGGATCCTC	CCCAAACT	ATGGATTTAT	AGCACATCCAACCTGGCTTCT	GGAGTCCCTGCTCGC
023	AGTTCCAATTACTTGCAT	TGGTATCAGCAGAAGC	CAGGATTCTC	CCTARACT	CTTGATTTAT	AGGACATCCAATCTAGCTTCT	GGAGTCCAAGCTCGC
024	AGTTCCAGTTACTTGCAC	TGGTACCAGCAGAAGT	CAGGTGCCTC	CCCCAAACI	CTGGATTTAT	AGCACATCCAACCTGGCTTCT	GGNGTCCCTGCTCGC
025	AGTTCCAATTACTTGAAT	TGGTTTCAGCAGAAGO	CAGGATTCTC	CCCTAAACI	CTTGATTTAT	AGGACATCCAATCTGGCTTCT	GGAGTCCCAGATCGC
026	AGTTCCAGCAACTTGCAC	TGGTACCAGCAGAAGT	CAGAAACCTC	CCCAAATO	CTTGGATTTAT	GGCACATCCAACCTGGCTTCT	GGAGTCCCTGTTCGC
027	AGTTCCAGTTACTTCCAC	TGGTACCAGCAGAAGO	CAGGATCCTC	CCCAAACI	CTGGATTTAT	AGCACATCCAACCTGGCTTCT	GGAGTCCCAACTCGC
028	AGTGTAAGTTACATGAAC	TGGTACCAGCAGAAA	CAGGATCCTC	CCCAAAAT	TATGGATTTAT	GGTATATCCAACCTGGCTTCT	GGAGTTCCTGCTCGC
029	AGTATAAGTTACATGCAC	TGGTACCAGCAGAAGO	CAGGCACCTC	CCCAAAAAC	GATGGATTTAT	GACACATCCAAACTGGCTTCT	GGAGTCCCTGCTCGC
030	AGTGTAAATTACATGTAC	TGGTACCAGCAGAAGT	CAGATGCCTC	CCCAAACI	TATGGATTTAT	TACACATCCAACCTGGCTCCT	GGAGTCCCAGCTCGC
031	AGTATAAATTACATTCAC	TGGTACCAGCAGAAGT	CAGGAAATAC	CCCAAACA	ATGAATTTAT	AAGACATCCGACCTGCCTTCT	GGAGTCCCAACTCTC
032	AGTGTAAGTTACATGCAC	TGGTACCAGCAGAAGI	CAGGCACCTC	CCCAAAAA	GATGGATTTAT	GACACATCCAAACTGGCTTCT	GGAGTCCCTGCTCGC
033	AGTGTAAGTTACATGTAC	TGGTACCAGCAGAAGO	CAGGATCCTC	CCCAAACO	CTGGATTTAT	CGCACATCCAACCTGGCTTCT	GGAGTCCCTGCTCGC
034	AGTGTAAGTTACATGCAC	TGGTACCAGCAGAAG1	CAGGCACCTC	CCCAAACO	CATGGATTTAT	GAAATATCCAAACTGGCTTCT	GGAGTCCCAGCTCGC
035	AGTGTAAGTTACATGTAA	TGGTTCCAGCAGAAGO	CAGGATCCTC	CCCAAACI	CTGGATTTAT	AGCATATCCAACCTGGCTTCT	GGAGTCCCTGCTCGC
036	AGTGTAAGTTACATGCAC	TGGTACCAGCAGAAGC	CAGGATCCTC	GCCCAAACO	CTGGATTTAT	GACACATCCAACCTGGCTTUT	GGATTCCCTGCTCGC
037	AGTGTAAGTTACATGTAC	TGGTACCAGCAGAAG	CAAGATCCTC	CCCAAACC	CTGGATTTAT	CTCACATCCAACCTGGCTTCT	GGAGTCCCTGCTCGC
038	AGTGTAAGTTTCATGAAC	TGGTACCAGCAGAAG	CAGGATCCTC	CCCAAACO	CTGGATTTAT	GCCACATCCAATTTGGCTTCT	GAGTTCCCTGGTCGC
039	AGTGTAAGTTACATGCAC	TGGTACCAGCAGAAG	TTGGATCCTC	CCCAAACO	CATGGATTTAT	GCCACATCCAACCTGGCTTCT	GGAGTCCCTGCTCGC
040	AGTGTAAATTACATGCAC	TGGTACCAGCAGAAG	TAGGATCCTC	CCCAAACI	CTGGATTTAT	GACACATCCAAACTGGCTCCT	GGAGTCCCTGCTCGC
041	AGTGTAAGTTACATGCAC	TGGTACCAGCAGAAG	CAGGATCCTC	CCCAAACO	CTGGATTTAT	GCCCCATCCAACCTGGCTTCT	GGAGTCCCTGCTCGC
042	AGTGTAAGTTACATGTAC	TGGTACCAGCAGAAG	CAGGATCCTC	CCCCAGACI	CCTGATTTAT	GACACATCCAACCTGGCTTCT	GGAGTCCCTGTTCGC
043	AGTGTAAGTTACATGCAC	TGGTACCAGCAGAAG	CAGGCACCTC	CCCAAAAA	GATGGATTTAT	GACACATCCAAACTGGCTTCT	GGAGTCCCTGCTCGC
044	AGTGTAAGTTACATGCAG	TGGTTCCAGCAGNAG	CAGGCACCTC	CCCCAAAAA	GATGGATTTAT	GACACATCCAAGCTGGNTTCT	GGNGTCCCTACTCGC
045	AGTGTAAGGTACATGAAC	TGGTTCCAACAGAAGI	TCAGGCACCTC	CCCAAAAA	GATGGATTTAT	GACACATCCAAACTGTCTTCT	GGAGTCCCTGCTCGC
046	AGTGTAAGTTACATGAAC	TGGTTCCAGCAGAAGT	TCAGGCACCTC	CCCAAAAA	GATGGATTTAT	GACACATCCAAACTGTCTTCT	GGAGTCCCTCCTCGC
047	ATTGTAAGTTACGTGCAG	TGGTTCCAGCAGAAG	CAGGCACCTC	CCCCAAAAA	GATGGATTTCT	GACACATCCAAACTGCCTTCT	GGAGTCCCTGCTCGC
048	AGTGTAAGTTATATGAAC	TGGTACCAGCAGAAG	CAGGCACCTC	CCCAAAAA	GATGGATTTAT	GACACATCCAAACTGGCTTCT	GGAGTCCCTGCTCGC
049	AGTGTAAGTTACTTGCAG	TGGTTCCAGCAGAAG	CAGGCACCTC	CCCCAAAAA	ATGGATTTAT	GACACATCCAAACTGGATTCT	GGNGTCCCTGCTCGC
050	AGTGTTAGTTACATGAAC	TGGTTCCAGCAGAAG	CAGGCACCTC	CCCAAAAA	ATGGGTTTTT	GCCACATCCAAACTGGNTTCT	GGAGTCCCTGCTCGC
051	AGTGTAAGTTACATGCAG	TGGTTCCAGCAGAAG	CAGGCACCTC	CCCCABABA	SATTGATTTT	TACACATCCAAACTGACTTCT	GGAGTCCCTGCTCCC
052	AGTGTAAGTTACATTCAG	TGGTTCCAGCAGAA	CAGGATCCTC	000000000000000000000000000000000000000	CTGGATTCAT	GCCACATCCAAGNTGGCTTCT	GGAGTCCCTGCTCGC
053	AGTGTAAGTTTCATGCAG	TGGTACCAGCAGAA	CAGGCACCTC	CCCABBBA	ATGGATTTAT	CACACATCCAAACTGGCTTCT	GGAGTCCCTGCTCCC
054	AGTGTAAGTTACATCCAG	TGGTACCACCACAAA	CAGGATCOTO		CTGCATTAN	GCCACATCCAACNTGGCTTCT	GGAGTCCCNGCTCGC
~~~		. So Inconsciencies				comment connent tooci i ci	-0

478

С		CDR3
	210 220 230 240 250 260 270 280	290 300
001	TTCAGTGGCAGTGGGTCTAGGACAGACTTCACCCTCACCATTGATCCTGTGGAGGCTGATGATGCTGCAACCTATTACTGT	CAGCAAAATAATGAGGATCCT
002	TTCAGTGGCAGTGGGTCTAGGACAGACTTCACCCTCACCATTAATCCTGGGAGGCTGATGATGTTGCAACCTATTACTGT	CAGCAAAGTAATGAGGATCCT
003	TTCAGTGGCAGTGGGTCTGGGACAGACTTCACCCTCAACATCCATC	CAGCACAGTAGGGAGCTTCCT
004	TTCAGTGGCAGTGGGTCTGGGACAGACTTCACCCTCAACATCCATC	CAGCACAGTTGGGAGATTCCT
005	TTCAGTGGCAGTGGGTCTGGGACAGACTTCACCCTCAACATCCATC	CAGCAAAGTATTGAGGATCCT
006	TTCAGTGGCAGTGGGTCTATGACAGACTTCACCCTCACCATTAATCCTGGGAGGCTGATGATGTTGCAACATATTACTGT	CAGCAAAGTAATGAGGATCCA
007		CAGCAAAATAATGAGGATCCG
008		CAGCAAAGTAGGAAGGTTCCT
009		CAGCACATTAGGGAGCT
010		CAACAAAGTAATAGCIGGCCA
011		CAACAAAGTTATAGGTGGCCA
012		CAACAAACTAATAGCTGGCCG
013		CAACAGAGTAACAACTGGCCT
016		CAACAGAGTAACAGCTGGCCT
015		CAACAGAGTAACAGCTGGCCT
017		CAGCAGTACAGTGGTTACCCA
018	TTChOTOGCHOTOGOTOTOGOHOTOTOTTACTCTCTTACA ATCACCACCTCCA ACATCCTCCCACCTCCA ACATCCTCCCACCTCCACCTCCCACCTCTCTCCCACCTCCCACCTCCACCTCCCACCTCCCACCTCCCACCTCCCACCTCCCACCTCCCACCTCCCACCTCCCACCTCCCACCTCCCACCTCCCACCTCCCACCTCCCACCTCCCACCTCCCACCTCCCACCTCCCACCTCCCACCTCCCACCTCCCACCTCCCACCTCCCACCTCCCACCTCCCACCTCCCACCTCCCACCTCCCACCTCCCACCTCCCACCTCCCACCTCCCACCTCCCACCTCCCACCTCCCACCTCCCACCTCCCACCTCCCACCTCCCACCTCCCACCTCCCACCTCCCACCTCCCACCTCCCACCTCCCACCTCCCACCTCCCACCTCCCACCTCCCACCTCCCACCTCCCACCTCCCACCTCCCACCTCCCACCTCCCACCTCCCACCTCCCACCTCCCACCTCCCACCTCCCACCTCCCACCTCCCACCTCCCACCTCCCACCTCCCACCTCCCACCTCCCACCTCCCACCTCCCACCTCCCACCTCCCACCTCCCACCTCCCACCTCCCACCTCCCACCTCCCACCTCCCACCTCCCACCTCCCACCTCCCACCTCCCACCTCCCACCTCCCACCTCCCACCTCCCACCTCCCACCTCCCACCTCCCACCTCCCACCTCCCACCTCCCACCTCCCACCTCCCACCTCCCACCTCCCACCTCCCACCTCCCACCTCCCACCTCCCACCTCCCACCTCCCACCTCCCACCTCCCACCTCCCACCTCCCACCTCCCACCTCCCACCTCCCACCTCCCACCTCCCACCTCCCACCTCCCACCTCCCACCTCCCACCTCCCACCTCCCACCTCCCACCTCCCACCTCCCACCTCCCACCTCCCACCTCCCACCTCCCACCTCCCACCTCCCACCTCCCACCTCCCACCTCCCACCTCCCACCTCCCACCTCCCACCTCCCACCTCCCACCTCCCACCTCCCACCTCCCACCTCCCACCTCCCACCTCCCACCTCCCACCTCCCACCTCCCACCTCCCACCTCCCACCTCCCACCTCCCACCTCCCACCTCCCACCTCCCACCTCCCACCTCCCACCTCCCACCTCCCACCTCCCACCTCCCACCTCCCACCTCCCACCTCCCACCTCCCACCTCCCACCTCCCACCTCCCACCTCCCACCTCCCACCTCCCACCTCCCACCTCCCACCTCCCACCTCCCACCTCCCACCTCCCACCTCCCACCTCCCACCTCCCACCTCCCACCTCCCACCTCCCACCTCCCACCTCCCACCTCCCACCTCCCACCTCCCACCTCCCACCTCCCACCTCCCACCTCCCACCTCCCACCTCCCACCTCCCACCTCCCACCTCCCACCTCCCACCTCCCACCTCCCACCTCCCACCTCCCACCTCCCACCTCCCACCTCCCACCTCCCACCTCCCACCTCCCACCTCCCACCTCCCACCTCCCACCTCCT	CAGCAGTGGAGTGGTTACCCA
010		CAGCAGTGGAGTGGTTACCCA
020	TTCAGTCGCCAGTCGCGCTCGCGATCTCTTACTCTCTCACAATCACCCACC	CAGCAGTGGAGTGGTTACCCA
021	TTCAGTGGCAGTGGGGTCTGGGACCTCTTACTCTCTACAATCAGCAGCGTGGAGGCTGAAGATGCTGCCACTTATTACTGC	CAGCAGTATCATAGTGACCCA
022	TTCAGTCGCAGTCGCGATCTCGCGACCTCTTATTCTCTCACAATCAGCAGCACGCTGAAGATCCTCCCACTTATTACTGC	CAGCAGTACAGTGGTTACCCA
023	TTCAGTGGCAGTGGGNNTGTGACCTCTTACTCTCTCACAATTGGCACCATGGAGGCTNAAGATNTTGCCACTTACTACTGC	CAGCAGGGTAGTAGTATACCG
024	TTCAGTGGCAGTGGGGTCTGGGACCTCTTACTCTCCACAATCAGCAGTGTGGAGGCTGAAGATGCTGCCACTTATTACTGC	CAGCAGTACAGTGGTTACCCA
025	TTCAGTGGNAGTGGGTCTGGNACCTCTTACTCTCTCACAATTGGCACCATGGAGGCTGAAGATGTTGCCACTTACTACTGC	CAGCAGGGTAGTAGTATACCG
026	TTCAGTGGCAGTGGATCTGGGACCTCTTATTCTCTCACAATCAGCAGCAGGGCGGGGGGGG	CAACAGTGGAGTAGTTACCCA
027	TTCAGTGGCAGTGGGGTCTGGGACCTCTTACTCTCTCACAATCAGCAGCATGGAGGCTGAAGATGCTGCCACTTATTACTGC	CACCAGTATCATCGTTCCCCA
028	TTCAGTGGCAGTGGGTCTGGGACATCTTTCTCTTTCACAATCAACAGCATGGAGGCTGAAGATGTTGCCACTTATTACTGT	CAGCAAAGGAGTAGTTACCCA
029	TTCAGTGGCAGTGGGTCTGGGACCTCTTATTCTCTCACAATCAGCAGCATGGAGGCTGAAGATGCTGCCACTTATTACTGC	CATCAGCGGAGTAGTTACCCA
030	TTCAGTGGCAGTGGGTCTGGGAACTCTTATTCTCTCACAATCAGCAGCATGGAGGGTGAAGATGCTGCCACTTATTACTGC	CAGCAGTTTACTAGTTCCCCA
031	TTCAGTGGCAGTGGGTCTGGGACCTCTTACTCTCTCACAATCAGCAGTGTGGAGGCTGAAGATGCTGCCACTTATTACTGC	CAGCAGTGGAGTGGTTACCAA
032	TTCAGTGGCAGTGGGGTCTGGGACCTCTTACTCTCTCACAATCAGCAGCATGGAGGCTGAAGATGCTGCCACTTATTACTGC	CAGCAGTGGAGTAGTAACCCA
033	TTCAGTGGCAGTGGGTCTGGGACCTCTTACTCTCTCACAATCAGCAGCATGGAGGCTGAAGATGCTGCCACTTATTACTGC	CAGCAGTATCATAGTTACCCA
034	TTCAGTGGCAGTGGGTCTGGGACCTCTTACTCTCTCACAATCAGCAGCATGGAGGCTGAAGATGCTGCCATTTATTACTGC	CAGCAGTGGAATTATCCTCTT
035	TTCAGTGGCAGTGGGTCTGGGACCTCTTATTCTCTCACAATCAGCAGCGTGAAGGCTGAAGATGCTGCCACTTATTACTGC	CAGCAGTGGAGTAGTTCCCCA
03 <del>6</del>	TTCAGTGGCAGTGGGTCTGGGACCTCTTACTCTCTCATAATCAGCAGCATGGAGGCTGAAGATGCTGCCACTTATTACTGC	CATCAGCGGAGTAGTTACCCA
037	TTCAGTGGCAGTGGGGTCTGGGACCTCTTACTCTCTCACAATCAGCAGCATGGAGGCTGAAGATGCTGCCACTTATTACTGC	CAGCAGTGGAGTAGTAACCCA
038	TTCAGTGGCGAGTGGTCTGGGACCTCTTACTCTCGCAATCAGCAGAGTGGAGGCTGAAGATGCTGCCACTTATTACTGC	CAGCAGTGGAATAGTAACCCA
039	TTCAGTGGCAGTGGGGTCTGGGACCTCTTACTCTCTCACAATCAGCAGAGGGGGGGG	CAGCAGTGGAGTAGTAACCCA
040	<b>TTCAGTGGCAGTGGGTCTGGGACCTCTTACTCTCTCACAATCAGCAGGAGGGCTGAAGATGCTGCCTCTTATTTCTGC</b>	CATCAGTGGAGTAGTTACCCG
041	TTCAGTGGCAGTGGGGTCTGGGACCTCTTACTCTCTCACAATCAGCAGAGTGGAGGCTGAAGATGCTGCCACTTATTACTGC	CAGCAGTGGAGTTTTAACCCA
042	TTCAGTGGCAGTGGGGTCTGCGACCTCTTACTCTCTCACAATCACCCGAATGCAGGCTGAAGATGCTGCCACTTATTACTGC	CAGCAGTGGAGTAGTTACCCA
043	TTCAGTGGCAGTGGGGTCTGCGACCTCTTACTCTCTCACAATCACCAGCATGCAGGCTGAAGATGCTGCCACTTATTACTGC	CAGCAGTGGAGTAGTAACCCG
044	TTCAGTGGNAGTGGGGTCTGGGACCNCTTACTCTCTCACAATCAGCAGGATGGAGGGCTGAGGATGCTGCCACTTATTACTGC	CAGCAGTOGAGTAGTAATCCA
045	TTNAGTGGCAGTGGGTCTGGGACCTCTTNCTCTCTCACAATCAGCAGCATGGAGGNNGAAGATGNNGCCACTTATTACTGC	CAGCAGTGGAGTAGTAATCCA
046	TTCAGTGGCAGTNGGNCTGGGACCTCTTACTCTCACAATCAGCAGCATGGAGGCTGAAGATGCTGCCACTTATTACTGT	CAGCAGTGGAATAGTAACCCA
047	TTCAGTGGCAGTGGGGTCTGGGACCTCTTACTCTCTCACAATCAGCAGCATGGAGGCTGAAGATGCTGCCACTTATTACTGC	CAGCAGTGGACTAGTAACCCA
048	TTCAGTGGCAGTGGGGTCTGGGACCTCTTACTCTCTCACAATCAGCAGCATGGAGGCTGAAGATGCTGCCACTTATTACTGC	CAGCAGTGGAATAGTAACCCG
049	TTCAGTGGNAGTGGGTCTGGGACCTCTTACTCTCTCACAATCAGCAGGAGGGCTGAAGATGCTGCCACTTATTACTGC	CAGCAGTGGACTAGTAACCCG
050	TTCAGTGGCAGTGGGANCTGGGACCTCTTACTCTCACAATCAGCAGGAGGGCTGAAGATGCTGCCACTTATTACTGC	CAGCAGTGGAGTAGTAACCCA
051	TTCAGTGGNAGTGGGNNTGGGACCTCTTACTCTCTCACAATCAGTAGCATGGAGGCTGAGGATGCTGCCACTTATTACTGC	CAGCAGTGGAGTAGTAATCCA
052	TTCAGTGGCAGTGGGTCTGGGACCTCTTACTCTCTCACAATCAGCAGAGGGGGGGG	CAGCAGTGGAGTAGTAACCCG
053	TTCAGTGGNAGTGGGTNTGGGACCTCTTACTCTCTCACAATCACCAGCATGGAGGCTGAAGATGCTGCCACTTATTACTGC	CAGCAGTNGAGTGGNAATCCA
054	TTCAGTGGCAGTGGGTCTGGGACCTCTTACTCTCTCACAATCAGCAGAGTGGAGGCTGAAGATGCTGCCACTTATTACTGC	CAGCAGTGGAGTAGTAACCCA

D										0001	
	10	20	30	40	50	60		70	80	90	100
055	GAAAATGTTCTCAC	CCAGTCTCC	AGNAATCAT	GTCTGNATC	ICCNGGGGNAA	AGGTCACO	CATGACCTGC	AGTGCCAGG	TCA		• • • • • • • • • • •
056	CAAATTGTTCTCTC	CCAGTCTCC	GCAATCCT	GTCTGCATC	<b>FCCAGGGGAGA</b>	AGGTCAC	AATGACTTGC	AGGGCCAGC	TCA	•••••	•••••
057	CAAATTGTTCTCTC	CCAGTCTCC	AGCAATCCT	GTCTGCATC	ICCAGGGGAGA	AGGTCAC	AATGACTTGC	AGGGCCAGC	TCA	•••••	
058	GACATCCAGATGAC	TCAGTCTCC	AGCCTCCCT	ATCTGCATC	IGTGGGTGAAA	CTGTCAC	CATCACATGT	CGAGCAAGT	GGG		
059	GACATCCAGATGAC	TCAGTCTCC	AGCCTCCCT	ATCTGTATCO	CGTGGGAGAAA	CTGTCAC	CATCACATGT	CGAGCAAGT	GAG	• • • • • • • • • • •	AAT
060	GACATCCAGATGAC	TCAGTCTCC	AGCCTCCCT	ATCTGCATC	IGTGGGAGNAA	CTGTCAC	CATCACATGT	CGAGCAAGT	GAG	• • • • • • • • • •	
061	GACATCCAGATGAC	GCAGTCTCC	AGCCTCCCT	ATCTGCATC	IGTGGGAGNAA	CTGTCAC	CATCACATGT	CGAGCAAGT	GAA	• • • • • • • • • •	AAT
062	GATGTCCAGATAAC	CCAGTCTCC	ATCTTATCT	TGCTGCATC	FCCTGGAGAAA	CCATTAC	FATTAATTGC	AGGGCAAGT	AAG		AGC
063	GATGTTCAAATGAC	CCAGTCTCC	ATCCTCCCT	GTCTGCATC	TTTGGGAGAAA	GAGTCTC	CCTGACCTGC	CAGGCAAGT	CAG	• • • • • • • • • •	
064	GACATCCAGATGAC	CCAGTCTCC	ATCCTCCTT	ATCTGCCTC	ICTGGGAGAAA	GAGTCAG	TCTCACTTGT	CGGGCAAGT	CAG	• • • • • • • • • •	GAC
065	GACATCCAGATGAC	CCAGTCTCC	ATCCTCCTT	ATCTGCCTC	ICTGGGAGAAA	GAGTCAG	ICTCACTTGC	CGGGCAAGT	CAG	••••••	GAC
000	GACATCCAGATGAC	CCAGTCTCC	ATCCTCCTT.	ATCTGCCTC	ICTGGGAGAAA	GAGTCAG	TCTCACTTGT	CGGGCAAGT	CAG	• • • • • • • • • • •	GAA
067	GACATCCAGATGAT	TCAGTCTCC	ATCGTCCAT	GTTTGGCTC'	ICTGGGAGACA	GAGTCAG	ICTCTCTTGC	CGGGCTAGT	CAG	•••••	GGC
068	GACATCAAGATGAC	CCAGTCTCC	ATCTTCCAT	GTATGCATC'	ICTAGGAGAGA	GAGTCACT	TATCACTTGC	AAGGCGAGT	CAG	• • • • • • • • • •	GAC
009	GACATCAAGATGAC	CCAGTCTCC	ATCTTCCAT	GTATGCATC'		AGAGTCAC	TATCTCTTGC	AAGGCGAGT	CAG.	• • • • • • • • • • •	GAC
070	GACATCAAGATGAC	ACAGTCTCC/	ATCCTCCAT	GTATGCATC	GCTGGGAGAGA	GAGTCAC	TATCACTTGC	AAGGCGAGT	CAG		GAC
071	GATATCCAGATGAC	ACAGACTAC	TUCTUCUT	GTCTGCCTC	PCTGGGAGACA	AGAGTCACU	CATCAGTTGC	AGGGCAAG1	CAG	• • • • • • • • • •	GAC
072	GATATCCAGATGAC	ACAGACTAC	ATCUTCUUT	GTCTGCCTC	PCCGGGGAGACA	AGAGTCACC	CATCAGTIGC	AGGACAAGT	CAG	• • • • • • • • • • •	GAC
073	GACATCCAGATGAC	ACAGICICC	TOCTCACT	GTUTGUATU	PCTGGGAGGCA	AAGTCAC	LATCACTTGC	AAGGCAAGC	CAA	• • • • • • • • • •	GAC
075	CARATCCAGATGAC	CCACCAGIUTUC	ATCCTCACT	GTCTGCATC	PCTGGGAGGCA	AAGTCAC	LATCACTTGC	AAGGCAAGC	CAG		GAC
075	GATATTGTGATAAC	CCAGGATGA	ACTUTUCAA	TCCTGTCAC	ITCTGGAGAAI	TCAGTTTCC	LATCTCCTGC	AGGTCTAGT	AAGAG	TCTCCTATAT	TAAGGAT
070	GATATTGTGATGAC	GCAGGUTGU	ATTCTCCAA	TCCAGTCAC	ICTIGGAACA1	rcagette	ATCTCCTGC	AGGTCTAGT	AAGAG	TETEETGEAU	AGTAGT
077	GATATTGTGATGAC	GCAGGCTGC	ATTCTCCAA	ICCAGTCAC	ICTTGGAACA1	CAGCTTCO	LATCTCCTGC	AGGTCTAGT	AAGAG	ICTCCTACA1	TAGTAAT
078	GATATTGTGATGAC	TUAGGUTGU	ACCUTCTGT	ATCTGTCAC	ICCTGGAGAGI	TCAGTATTO	CATCTCCTGC	AGGTCTAGI	'AAGAG'	ICTCCTGCAT	TAGTAAT
079	GATATTGTGATGAC	TCAGGCTAC	ACCCTCTGT	ATCTGTCAC	ICCTGGAGAGI	ICAGTATT(	CATCTCCTGC	AGGTCTAGI	AAGAG	ICTCCTGTAT	TATTAAT
080	GATATTGTGATGAC	TCAGGCTGC	ACCCTCTGT	ACCTGTCAC	ICCTGGAGAGI	CAGTATC	CGTCTCCTGC	AGGTCTAGT	'AAGAG'	TCTCCTGCAT	TAGTAAT
081	GATATTGTGATGAC	GCAGGCTGC	CTTCTCCAA	TCCAGTCAC	ICTTGGAACAT	CAGCTTCO	CATCTCCTGC	AGGTCTAGT	AAGAA	ICTCCTACAT	AGTAAT
082	GATGTTGTGATGAC	CCAAACTCC	ACTCTCCCT	GCCTGTCAG	TCTTGGAGATO	CAAGCCTCO	CATCTCTTGC	AGATCTAGI	CAGAGO	CCTTGTACAC	CAGTAAT
083	GATGTTTTGATGAC	CCAAACTCC	ACTCTCCCT	GCCTGTCAG	TCTTGGAGATO	CAAGCCTC	CATCTCTTGC	AGATCTAGI	CAGAGO	CATTGTACAT	AGTAAT
084	GATGCTGTGATGAC	CCAAACTCC	ACTCTCCCT	GCCTGTCAG'	ICTTGGAGATC	CAAGCCTCO	CATCTCTTGC	AGGTCTAGI	CAGAGO	CCTTGAAAAC	AGTAAT
085	GATGTTGTGGTGAC	TCAAACTCC	ACTCTCCCT	GCCTGTCAG	CTTTGGAGATC	CAAGTTTC	PATCTCTTGC	AGGTCTAGT	CAGAGI	TCTTGCGACC	CAGTCAT
080	GATGTTGTGATGAC	CCAAACTCC	ACTCTCCCT	GCCTGTCAG	CCTGGGAGATC	CAAGCCTCC	CATCTCTTGC	AGATCTAGT	CAGAGO	CATTGTACAC	AGTAAT
087	GATGCTGTGATGAC	CCAAACTCC	ACTCTCCCT	GCCTGTCAG	ICTTGGAGATC	CAAGCCTCO	CATCTCTTGC	AGGTCTAGI	CAGAGO	CATTGAAAAC	CAGTAAT
000	GATATTGTGATGAC	CCAAACTCC	ACTUTCCCT	GCCTGTCAG	FCTTGGAGATC	CAAGCCTCO	CATCTCTTGC	AGATCTAGI	CAGAGO	CATTGTAATC	AGTAAT
089	GATGTTGTGATGAC	CCAGACTCC	ACTCACTTT	GTCGGTTAC	CATTGGACAAC	CAGCCTCO	CATCTCTTGC	AAGTCAAGT	CAGAGO	CTCTTAGAT	AGTGAT
090	GACATTGTGATGAC	ACAGTCTCC	ATCCTCCCT	GGCTATGTC		AGGTCAC	TATGAGCTGC	AAGTCCAGT	CAGAGO	CTTTTAAAT	AGTAGCAAT
002	GGCATTGTGATGTC	ACAGTUTUC	ATCCTCCCT.	AGCTGTGTC	AGTTGGAGAGA	AGGTTACT	PATGAGCTGC	AAGTCCAGI	CAGAGO	CONTINUE	AGTAGCAAT
092	GACATIGIGATGAC		ATCUTCUUT	GACTGTGAC		AGGTCAC	TATGAGCTGC	AAGTCCAGT	CAGAG	TCTGTTAAAC	AGTGGAAAT
093	AACATTATCATCAC	ACAGECTO		GAGIGIGIC		AGGICAC	INTERGETEC	AAGICCAGI			AGIGGAAAT
094	CACCUTCATCATCAC	ACAGICGCC	ATCATCICI	GGCTGTGTC	IGCAGGAGAAA	AGGTCAC	TATGAGCTGT	AAGICCAGI	CARAGI		AGTICAAAT
005	GNCATTGTGATGTC					ACCTCAC	TOTOAGCTOC	AACTCCACT	CAGAGI		ACTIONACEC
090	GACATTGTGATGAC	TCAGTCTCC		TCCTCTCAC		ACCTCAC	ATTACTTCC	ACTOCNTO	CAGAGI		ACCANACAC
097	ACTATION CALCAL	CCACACTCC		COMPONING		AGGICAC	CATTAGTIGE	ACTOCNICI	GAGAG		AGCAAACAC
090	AGTATTGTCATCAC	CCACACTCC		CCCTGTATC		AGGGIIACU	CATAACCIGC	AAGGCCAGI	CAG		ACT NOT
100	GACATTGTGATGAC	CCAGTCTC		CTCCACATC		CCCTCAC	CATCACCIGC	AAGGCCAGI	CAG	•••••	Cam
101	GACATTGTGATGATCAC	CCAGTCICA		GICCACATC.		AGGG I CAG	CATCACCIGC	AAGGCCAGI	CAG	• • • • • • • • • • •	GA1
102	GACATIGIGAIGAC	CCACTCICA		CTCCACATC			CTCACCIGC	AAGGCCAGI	CAG	• • • • • • • • • •	
102	CACATTGTCATCAC	CCAGTOTOR		GICCACATC			TATCACCTCC	AACCCCACT	CAC	• • • • • • • • • • •	
104	CACATTOROALOAC	CCACTCOCA	CAAATTCAT	GTCCACATC	ACTACCACACA	ACCOMONO	CTCACCICC	AACCCCACT	сло	• • • • • • • • • • •	
104	GACATTO IGATGAC	CCACECTUR	LAAA I I'LAT	GIULACATC.	NGTAGGAGACA	ACCOMONO	CONCACCINCO	ANGGOGAGI	CAG.	• • • • • • • • • • •	AAT
105	CACATTOTONICAC	COAGECTON	CALLER CALL	GICCACATC:			CATCACCTOC	AACCCCACT	CAC		
107	CACATTOTOALOAC	CCAGECECA	CARAL FUAT	GICCACATC:			CARCACORCO	AACCCCACT	CAG	• • • • • • • • • •	Cam
100	AACATTCTA ATCAL	CCAAmomoo		CHCCCHCATC/			CHICACCTOC	AACCCCACT	CAG	• • • • • • • • • • •	GAT
100	AACATTGTAATGAC	CCAATCACC	CAAATCCAT	GTCCATGTC	AGTAGGAGAGA	10001CAC	TTTGACCIGC	AACCCCACT	GAC .	• • • • • • • • • • •	

F			0000	
	110 120	130 140 150 160	170 180	190 200
055	AGTATAAGTTACATGCAC	TGGTACCAGCAGNAGTCAAGCACCTCCCCNAAACTCTGGATTTAT	GACACATCCAAANTGGCTTCT	GGNGTCCCTGCNCGN
056	AGTGTAAGTTACATACAG	TGGTTCCAGCAGAAGCCAGGATCCTCCCCCAAACCCTGGATTTCT	GTCACATCCAACCTGGCTTCT	GGAGTCCCTGCTCGC
057	AGTGTAAGTTACATACAC	TGGTACCAGCAGAAGCCAGGATCCTCCCCCAAACCCTGGATTTAT	GCCACATCCAACCTGGCTTCT	GGAGTCCCTGTTCGC
058	ATTCACAATTATTTAGCA	TGGTATCAGCAGAAACAGGGAAAATCTCCTCAGCTCCTGGTCTAT	AATGCAAAAACCTTAGCAGAT	GGTGTGCCATCAAGG
059	ATTTACAGTAATTTGGCA	TGGTTATTCAGCAGAAACAGGGAAAACCCCCCCAGCTTGGTCTAT	GCTGCAACAAACTTAGCAGAT	GGTGTGCCATCAAGG
060	ATTTACAGTTATTTAGCA	TGGTATCAGCAGAAACAGGGAAAATCTCCTCAGCTCCTGGTCTAT	AATGCAAAAACCTTAGCAGAA	GGTGTGCCATCAAGG
061	ATTTACAGTTATTTAGCA	TGGTATCAGCAGAAACAGGGAAAATCTCCTCAGCTCCTGGTCTAT	AATGCAAAAACCTTACCAGAA	GGTGTGCCATCAAGG
062	ATTAGCAAATATTTAGCC	TGGTATCAAGAGAAACCTGGGAAAACTAÁTAAGCTTCTTATCTAC	TCTGGATCCACTTTGCAATCT	GGAATTCCATCAAGG
063	аттаасааттттттаааа	TGGTTTCAGCAAACACTGGGGAAAACTGCTAGGCTCTTGATCTAT	GGTGCAAACAAATTGGAAGAT	GGGGTCCCTTCAAGG
064	ATTGGTAGTAGCTTAAAC	TGGCTTCAGCAGGAACCAGATGGAACTATTAAACGCCTGATCTAC	GCCACATCCAGTTTAGATTCT	GGTGTGCCCAAAAGG
065	ATTCATGGTTATTTAAAC	TTGTTTCAGCAGAAACCAGGTGAAACTATTAAACACCTGATCTAT	GAAACATCCAATTTAGATTCT	GGTGTCCCAAAAAGG
066	ATTAGTGGTTACTTAAGC	TGGCTTCAGCAGAAACCAGATGGAACTATTAAACGCCTGATCTAC	GCCGCATCCACTTTAGATTCT	GGTGTCCCAAAAAGG
067	ATTAGAGGTAATTTAGAC	TGGTATCAGCAGAAACCAGGTGGAACTATTAAACTCCTGATCTAC	TCCACATCCAATTTAAATTCT	GGTGTCCCATCAAGG
068	ATTAATAGCTATTTAAGC	TGGTTCCAGCAGAAACCAGGGAAATCTCCTAAGACCCTGATCTAT	CGTGCAAACAGATTGGTAGAT	GGGGTCCCATCAAGG
069	ATTAATAGCTATTTAACC	TGGTTCCAGCAGAAACCAGGGAAGTCTCCTAAGACCCTGCTCTAT	CGTACAAAGAGATTGGTAGAT	GGGGTCCCATCAAGG
070	ATTAAAAGCTATTTAAGC	TGGTACCAGCAGAAACCATGGNAATCTCCTAAGACCCTGATCTAT	TATGCAACAAGCTTGGCAGAT	GGGGTCCCATCAAGA
071	ATTAGCAATTATTTAAAC	TGGTATCAGCAGAAACCAGATGGAACTGTTAAACTCCTGATCTAC	TACACATCAAGATTACACTCA	GGAGTCCCATCAAGG
072	ATTAGCAATTTTTTATAC	TGGTTTCAGCAGAAATCAGATGGAACTGTTAAACTCCTGATCTAC	TACACCTCAAGATAACACTCA	GGAGTCCCATCAAGG
073	ATTAACAAGTATATAGCT	TGGGACCAACACAAGCCTGGAAAAGGTCCTAGGCTGCTCATACAT	TACACATCTACAATAGAGCCA	GGCATCCCATCAAGG
074	ATTAACAAGTATTTAGCT	TGGTACCAACACAAGCCTGGAAAAGGTCCTAGGCTGCTCATACAT	TACACATCTACATTACAGCCA	GGCATCCCATCAAGG
075	GGGAAGACATACTTGAAT	TGGTTTCTGCAGAGACCAGGACAATCTCCTCAGCTCCTGATCTAT	TTGATGTCCACCCGTGCATCA	GGAGTCTCAGACCGG
076	GGCAACACTTACTTGTAT	TGGTTCCTGCAGAAGCCAGGCCAGTCTCCTCAGCTCCTGATATAT	TATATCTCCAACCTTGCCTCA	GGAGTCCCAGACAGG
077	GGCATCACTTATTTGTAT	TGGTATCTGCAGAAGCCAGGCCAGTCTCCTCAGCTCCTGATTTAT	CAGATGTCCAACCTTGCCTCA	GGAGTCCCAGACAGG
078	GGCAACACTTACTTGTAT	TGGTACCTACAGAGGCCAGGCCAGTCTCCTCAGCTCCTGATATAT	CGGATGTCCAACCTTGCCTCA	GGAGTCCCAGACAGG
079	GGCAACACTTACTTGTAT	TGGTACCTACAGAGGCCAGGCCAGTCTCCTCAACTCCTGATATAT	CGGATGTCCTACCTTGCCTCA	GGAGTCCCAGACAGG
080	GGCAACACTTACTTGTAT	TGGTTCCTGCAGAGGCCAGGCCAGTCTCCTCAGCTCCTGATATAT	CGGATGTCCAACCTTGCCTCA	GGAGTCCCAGACAGG
081	GGCATCACTTTTTTATAT	TGGTATCTCCAGAGGCCAGGCCAGTCTCCTCAGCTCCTGATATAT	CGGGTGTCCAATCTGGCCTCA	GGAGTCCCAAACAGG
082	GGAAACACCTATTTACAT	TGGTACCTGCAGAAGCCAGGCCAGTCTCCAAAGCTCCTGATCTAC	AAAGTTTCCAACCGATTTTCT	GGGGTCCCAGACAGG
083	GGAAACACCTATTTAGAA	TGGTACCTGCAGAAACCAGGCCAGTCTCCAAAGCTCCTGATCTAC	AAAGTTTCCAACCGATTTTCT	GGGGTCCCAGACAGG
084	GGAAACACCTATTTGAAG	TGGTACCTCCAGAAACCAGGCCAGTCTCCACAGCTCCTGATCTAC	AGGGTTTCCAACCGATTTTCT	GGGGTCCTAGACAGG
085	GGGATCACCTATTTGTCT	TGGTACCTGCACAAGCCTGGCCAGTCTCCACAGCTCCTCATCTAT	GGGATTTCCAACAGATTTTCT	GGGGTGCCAGACAGG
086	GGAAACACCTATTTATAT	TGGTACCTGCAGAAACCAGGCCAGTCTCCAAAGCTCCTGATCTAC	AGGGTTTCCAACCGATTTTCT	GGGGTCCCAGACAGG
087	GGAAACACCTATTTGAAC	TGGTACCTCCAGAAACCAGGCCAGTCTCCCAGGCTCCTGATCTAC	AGGGTTTCCAACCGATTTTCT	GGGGTCCTAGACAGG
088	GGGTTCACCTATTTAGAA	TGGTACCTGCAGAAACCAGGNNNNNNNNAAAGCTCCTGATATAT	GGGATTTCCAACCGATTTTCT	GGGGTCCCAGACAGG
089	GGAAAGACATATTTGAAT	TGGTTGTTACAGAGGCCAGGCCAGTCTCCAAAGCGCCTAATCTAT	CTGGTGTCTAAACTGGACTCT	GGAGTCCCTGACAGG
090	CAAAAGAACTATTTGGCC	TGGTACCAGCAGAAACCAGGACAGTCTCCTAAACTTCTGGTATAC	TTTGCATCCACTAGGGAATCT	GGGGTCCCTGATCGC
091	CAAAAGAACTCTTTGGCC	TGGTACCAGCAGAGACCAGGGCAGTCTCCTAAACTGCTGATTTAC	TGGGCATCCACTAGGGAATCT	GGGGTCCCTGATCGC
092	CCGAAGAACTACTTGACC	TGGTACCAGCAGAAACCAGGGCAGCCTCCTAAACTGTTGATCTAC	TGGGCATCCACTAGGGAATCT	GGGGTCCCTGATCGC
093	CAAAAGAACTACTTGGCC	TGGTACCAGCAGAAACCAGGGCAGCCTCCTAAACTGTTGATCTAC	GGGGCATCCACTAGGGAATCT	GGGGTCCCTGATCGC
094	CAGAAGAACTACTTGGCC	TGGTACCAGCAGAAACCAGGGCAGTCTCCTAAACTGCTGATCTAC	TGGGCATCCACTAGGGAATCT	GGAGTCCCTGATCGC
095	GAAAGAAGCTACTTGGCT	TGGTACCAGCAGAAACCAGGGCAGTCTCCTAAACTGCTGATCTAC	TGGGCATCCACTAGGGAATCT	GGGGTCCCTGATCGC
096	AAAAGAACTAACTTGGCC	TGGTACCANAAGAAACCAGGGCAGCCTCCNAAACTGTTGATCTCC	GTGGATGCGCGACCCNCACAC	GGAGTCCCTGATCGC
097	AAGGTGCACTACTTGGCT	TGGTACCAGAAGAAACCAGAGCAATCTCCTAAACTGCTGATATAC	GGGGCATCCAACCGATACATT	GGGGTCCCTGATCGC
098	GTGAGTAATGATGTAGCT	TGGTACCAACAGAAGCCAGGGCAGTCTCCTAAACTGCTGATATAC	TATGCATCCAATCGCTACACT	GGAGTCCCTGATCGC
099	GTGGGTAATAATGTAGCC	TGGTACCAACAGAAGCCAGGACAGTCTCCTAAACTGCTGATATAC	TATGCATCCAATCGCTACACT	GGAGTCCCTGATCGC
100	GTGGGTGCTGCTATAGCC	TGGTATCAACAGAAACCAGGACAATCTCCTAAACTACTGATTTAC	TGGGCATCCACCCGGCACACT	GGAGTCCCTGATCGC
101	GTGGGTACTGCTGTAGCC	TGGTATCAACAGAAACCAGGACAATCTCCTAAACTACTGATTTAC	TCGGCATCCAATCGGTACACT	GGAGTCCCTGATCGC
102	GTGGTCACTAATGTAGCC	TGGTATCAACAGACACCAGGACAATCTCCTAAAGCACTGATTTAC	TCGGCATCCTACCGGTACAGT	GGAGTCCCTGATCGC
103	GTTCGTACTGCTGTTGCC	TGGTATCAACAGAAACCAGGGCAGTCTCCTAAAGCACTGATTTAC	TTGGCATCCAACCGGTACACT	GGAGTCCCTGATCGC
104	GTGGGTACTAATGTAGCC	TGGTATCAACAGAAACCAGGGCAATCTCCTAAAGCACTGATTTAC	TCGGCATCCTACCGGTACAGT	GGAGTCCCTGATCGC
105	GTGGGTACTAATGTAGCC	TGGTATCAGCAGAAACCAGGGCAATCTCCTAAAGCACTGATTTAC	TCGGCATCCTACCGGTACAGT	GGAGTCCCTGATCGC
106	GTGAGTACTACTGTGGCC	TGGTATCAGCAGAAACCAGGGCAATCTCCTAAACTACTGATTTAT	TCGGCATCCTACCGGTACACT	GGAGTCCCTGATCGC

GTGAGTACTGCTGTAGCC TGGTATCAACAGAAACCAGGACAATCTCCTAAACTACTGATTTAC TCGGCATCCTACCGGTACACT GGAGTCCCTGATCGC 108 GTGGTTACTTATGTTTCC TGGTATCAACAGAAACCAGAGCAGTCTCCTAAACTGCTGATATAC GGGGCATCCAACCGGTACACT GGGGTCCCCCGATCGC 109 GTGGGTACTTATGTATCC TGGTATCAACAGAAAACCAGAGCAGTCTCCTAAAACTGCTGATATAC GGGGCATCCAACCGGTACAACT GGGGTCCCCCGATCGC

R. Strohal et al.: Mouse  $V_k$  gene classification

F	FR3	CDR3
• 055	210220230240250260270280TTCAGTGGNAGTGGGNCTGGNAACTCTTACTCTCTCCACGATCAGCAGCATGGAGGCNGAAGATGTTGCCACTTATTACTGT	290 300 TTTCNGGGGAGTGGGTACCCA
056	${\tt TTCAGTGGNAGTGGGTCTGGGACCTCTTACTCTCACAATCAGCAGAGTGGAGGCTGAAGATGCTGCCACTTATTACTGC}$	CAGCAGTGGAGGAGTAACCCA
057	${\tt TTCAGTGGAAGTGGGTCTGGGACCTCTTACTCTCACAATCAACAGAGTGGAGGCTGAAGATGCTGCCACTTATTACTGC}$	CAGCAGTGGAGTAGTAACCCA
058	${\tt TTCAGTGGCAGTGGATCAGGAACACAATATTCTCTCAAGATCAACAGCCTGCAGCCTGAAGATTTTGGGAGTTATTACTGT}$	CAACATTTTTGGAGTACTCCT
059	TTCAGTGGCAGTGGATCAGGAACACAATATTCTCTCAAGATCAACAGCCAGC	CAACATTTTTGGAGTGCTCCT
060	TTCAGTGGCAGTGGATCAGGCACACAGTTTTCTCTGAAGATCAACAGCCTGCAGCCTGAAGATTTTGGGAGTTATTACTGT	CAACATCATTATGTTACTCCG
061	TTCAGTGGCAGTGGATCAGGCACACAGTTTTCTCTGAAGATCAACAGCCTGCAGCCTGAAGATTTTGGGAGTTATTACTGT	CAGCATCATTATGGTCCTCCG
062	TTCAGTGGCAGTGGATCTGGTACAGATTTCACTCTCACCATCAGTAGCCTGGAGCCTGAAGATTTTGCAATGTATTACTGT	CAACAGCATAATGAATACCCG
063	TTCAGTGGAACTGGATATGGGACAGATTTCACTTTCACCATCAGCAGCCAGGAGGAAGAAGATGTGTCAACTTATTTCTGT	CTACAGCATAGGTATCTCCCT
064	TTCAGTGGCAGTAGGTCTGGGTCAGATTATTCTCTCACCATCAGCAGCCTTGAGTCTGAAGATTTTGTAGACTATTACTGT	CTACAATATGCTAGTTCTCCT
065	TTCAGTGGCAGTAGGTCTGGGTCAGATTATTCTCTCATTATCGGCAGCCTTGAGTCTGAAGATTTTGCAGACTATTACTGT	CTACAATATGCTAGTTCTCCT
066	TTCAGTGGCAGTAGGTCTGGGTCAGATTATTCTCTCACCATCAGCAGCCTTGAGTCTGAAGATTTTGCAGACTATTACTGT	CTACAATATCTTAGTTATCCG
067	TTCAGTGGCAGTGGGTCTGGGTCAGATTATTCTCTCACCATCAGCAGCCTAGAGTCTGAAGATTTTGCAGACTATTACTGT	CTACAGCGTAATGCGTATCCG
068	TTCAGTGGCAGTGGATCTGGGCAAGATTATTCTCTCACCATCAGCAGCCTGGAGTATGAAGATATGGGAATTTATTATTGT	CTACAGTATGATGAGTTTCCT
069	TTCAGTGGCAGTGGATCTGGGCAAGAATATTCTCTCACCATCAGCAGCCTGGAGTATGAAGATATGGGAATTTATTT	CTTCAGTATGATGAATTTCTT
070	TTCAGTGGCAGTGGATCTGGGNAAGATTATTCTCTAACCATCAGCAGCCTGGAGTCTGACGATACAGCAACTTATTACTGT	CTACAGCATGGTGAGAGCCCT
071	TTCAGTGGCAGTGGGTCTGGAACAGATTATTCTCTCACCATTAGCAACCTGGAGCAAGAAGATATTGCCACTTACTT	CAACAGGGTAATACGCTTCCT
072	TTCAGTGGCAGTGGGTCTGGAACAGATTATTCTTTCACCATTAACAACCTGGAGTAAGAAGATGTCGCCACTTATTCTTGA	CAACAGGGTATATT
073	TTCAGTGGAAGTGGGTCTGGGAGAGATTATTCCTTCAGCATCAGCAACCTGGAGCCTGAAGATATTGCAACTTATTATTGT	CTACAGTATGATAATCTGTAC
074	TTCAGTGGAAGTGGGTCTGGGAGAGATTATTCCTTCAGCATCAGCAACCTGGACGCGGAAGAGATTGCAACTTATTATTGT	CTACAGTATGATAGTCTGTAC
075	TTTAGTGGCAGTGGGTCAGGAACAGATTTCACCCTGGAAATCAGTAGAGGTGAAGGCTGAGGATGTGGGTGTGTATTACTGT	CAACAACTTGTAGAGTATCCT
076	${\tt TTCAGTGGCAGTGGGGTCAGGAACTGATTTCACACTGAGAATCAGTAGAGTGGAGGCTGAGGATGTGGGTGTTTATTACTGT}$	ATGCAAGGTCTAGAATATCCT
077	TTCAGTAGCAGTGGGTCAGGAACCGACTTCACACTGAGAATCAGCAGAGTGGGAGGCTGAGGATGTGGGTGTTTATTACTGT	GCTCAAAATCTAGAACTTCCT
078	TTCAGTGGCAGTGGGTCAGGAACTGCTTTCACACTGAGAATCAGTAGAGTGGAGGCTGAGGATGTGGGTATTTATT	ATGCAACATCTAGAATATCCT
079	TTCAGTGGCAGTGGGTCAGGAACTGCTTTCACACTGAGAATCAGTAGAGTGGGGGGGG	ATGCAACATCTAGAATATCCT
080	TTCAGTGGCAGTGGGTCAGGAACTGCTTTCACACTGAGAATCAGTAGAGTGGAGGCTGAGGATGTGGGTGTTTATTACTGT	ATGCAACATCTAGAATATCCG
081	TTCAGTGGCAGTGAGTCAGGAACTGATTTCACACTGAGAATCAGCAGAGTGGAGGCTGAGGATGTGGGTGTTTATTACTGT	GCTCAACTGCTAGAACTCCC
082	${\tt TTCAGTGGCAGTGGATCAGGGACAGATTTCACACTCAAGATCAGCAGAGTGGAGGCTGAGGATCTGGGAGTTTATTTCTGC}$	TCTCAAAGTACACATGTTCCT
083	TTCAGTGGCAGTGGATCAGGGACAGATTTCACACTCAAGATCAGCAGAGTGGAGGCTGAGGATCTGGGAGTTTATTACTGC	TTTCAAGGTTCACATGTTCCT
084	TTCAGTGGTAGTGGATCAGGGACAGATTTCACACTGAAAATCAGCAGAGTGGAGGCTGAGGATTTGGGAGTTTATTTCTGC	CTCCAAGTTACACATGCTCCT
085	TTCAGTGGCAGTGGTTCAGGGACAGATTTCACACTCAAGATCAACACAATAAAGCCTGAGGACTTGGGAATGTATTACTGC	TTACAAGGTTCACATCAGCCG
086	TTCAGTGGCAGTGGATCAGGGACAGATTTCACACTCAATATCAGCAGAGTGGAGGCTGAGGATATGGGAGTTTATTACTGC	TTTCAAGGTACACATGTTCCT
087	TTCAGTGGTAGTGGATCAGGGACAGATTTCACACTGAAAATCAGCAGAGTGGAGGCTGAGGATTTGGGAGTTTATTTCTGC	CTCCAAGTTACACATGTCCCG
088	TTCAGTGGCAGTGGATCAGGGACAGATTTCACACTCAAGATCAGCAGAGTGGAGGCTGAGGATGTAGGAATTTATTACTGT	TTTCAAGGTATACATGTTCCG
089	TTCACTGGCAGTGGATCAGGGACAGATTTCACACTGAAAATCAGCAGAGTGGAGGCTGAGGATTTGGGAGTTTATTATTGC	TGGCAAGGTACACATTTTCCT
090	TTCATAGGCAGTGGATCTGGGACAGATTTCACTCTTACCATCAGCAGTGTGCAGGCTGAAGACCTGGCAGATTACTTCTGT	CAGCAACATTATAGCACTCCG
091	TTCACAGGCAGTGGATCTGGGACAGATTTCACTCTCACCATCAGCAGTGTGAAGGCTGAAGACCTGGCAGTTTATTACTGT	CAGCAATATTATAGCTATCCG
092	TTCACAGGCAGTGGATCTGGAACAGATTTCACTCTCACCATCAGCAGTGTGCAGGCTGAAGACCTGGCAGTTTATTACTGT	CAGAATGATTATAGTTATCCG
093	TTCACAGGCAGTGGATCTGGAACCGATTTCACTCTTACCATCAGCAGTGTGCAGGCTGAAGACCTGGCACTTTATTACTGT	CAGAATGATCATACTTATCCG
094	TTCACAGGCAGTGGATCTGGGACAGATTTTACTCTTACCATCAGCAGTGTACAAGCTGAAGACCTGGCAGTTTATTACTGT	CATCAATACCTCTCCTCG
095	TTCACGGGCAGTGGATCTGGGACAGATTTCACTCTCACCATCAGCAGTGTGCGGGGCTGAAGACCTGGCAGTTTATTACTGC	AAGAATCTTATGGATCTTCCC
096	TTCACAGGAAGTGGTTCTGGGAGNGATTATACTCTCACAGTCAGCAGTGTGAAGGCTGAAGACCTGGCACTTTACTACTGT	CAACAACATTATAGNTATCCG
097	TTCACAGGCAGTGGATCTGGGACAGATTTCACTCTGACCATCAGCAGTGTACAGGTTGAAGACCTCACACATTATTACTGT	GCACAGTTTTACAGCTATCCT
098	TTCACTGGCAGTGGATATGGGACGGATTTCACTTTCACCATCAGCACTGTGCAGGCTGAAGACCTGGCAGTTTATTTCTGT	CAGCAGGATTATAGCTCTCCT
099	TTCACTGGCAGTGGATCTGGGACAGATTTCACTTTCACCATCAGCAGTGTGCAGGTTGAAGACCTGGCAGTTTATTTCTGT	CAGCAGCATTATAGCTCTCCG
100	TTCACAGGCAGTGGATCTGGGACAGATTTCACTCTCACCATTAGCAATGTGCAGTCTGATGACTTGGCAGATTATTTCTGT	CAACAATATAGCGGGTATCCT
101	TTCACAGGCAGTGGATCTGGGACAGATTTCACTCTCACCATCAGCAATATGCAGTCTGAAGACCTGGCAGATTATTTCTGC	CAGCAATATAGCAGCTATCCT
102	TTUTCAGGCAGTGGATCTGGGACAGATTTCACTCTCACCATCAGCAATGTGCAGTCTGGGAGACTTGGCAGGAGTATTTCTGT	CAGCAATATAACAGCTATCCT
103	TTUAUAGGUAGTGGATCTGGGACAGATTTCACTCTCACCATTACCAATGTGCAATCTGAAGACCTGGCAGATTATTTCTGT	CTGCAACATTGGAATTATCCG
104	TTUAUAUGUAGTGGATCTGGGACAGATTTCACTCTCACCATCAGCAATGTGCAGTCTGAAGACTTGGCAGAGTATTTCTGT	CAGCAATATAACAGCTGTCCA
105	TTUAUAGGUAGTGUGATUTGUGAUGGATTTCACTCTCACCATCAGCAATGTGCAGTCTGAAGACTTGGCAGTGTATTTCTGT	CAGCAATATAACAGCTATCCG
100	TTUAUTGGUAGTGGGATCTGGGACGGATTTCACTTTCACCATCAGCAGTGTGCAGGCTGAAGACCTGGCAGTTTATTACTGT	CAGCAACATTATAGTACTCCT
107	TTUALTOOLAGUGGATUTGOGALGGATTTUALTTTUALCATCAGCAGTGTGCAGGCTGAAGACCTGGCAGTTATTACTGT	CAGCAACATTATAGTACTCCG
100		GGACAGGGTTACAGCTATCCG
103	II CALAGUMATCIGUAICIGUAACAGATTTCAUTCTGAUCATCAGCAGTGTGCAGTCTGAAGACCTTGCAGATTATTTCTGT	GGACAGAGTTACAGCTATCCC

482

similar members from a single  $V_k$  gene family ( $V_k4/5$ ) were present in different groups (IV and VI).

Organization of  $V_k$  proteins into subgroups using < 13 mismatches up to Trp35 as a criterium (Potter et al. 1982) better reflected primary structure similarities, although such organization frequently led to multiple assignments, in which cases only a single assignment for the sequence representing the best match was included (Table 1). Moreover, as will be shown below, this classification repeatedly failed to adequately reflect overall similarity at the nucleic acid sequence level. Finally, some sequences (discussed below) could not be assigned unambiguously to any existing V_kTrp subgroup.

We then determined whether  $V_k$  nucleic acid sequences could be organized into gene families (analogous to  $V_H$  genes), and how such families related to  $V_k$  protein groups and subgroups. For this purpose, all  $V_k$  genes in the data bank were arranged in groups of >80% sequence similarity, which were termed  $V_k$  gene families. The characteristics of these families and their relationship to  $V_k$  protein groups and subgroups are detailed below. A quick summary outlining how the different classifications correspond to each other is presented in Table 2.

 $V_k21$  gene family. All  $V_k21$  genes fulfilled the criteria for a typical V gene family, i.e., all members were >80%similar (mostly >90%) and differed from all other  $V_k$ sequences by at least 25%. This gene family corresponded completely to protein subgroup  $V_k 21$  which, in turn, coincided with V_k protein group III. Five germline genes have been cloned (Heinrich et al. 1984) and approximately ten expressed sequences have been published.  $V_{k}21$  genes were used in response to influenza hemagglutinin (Clarke et al. 1985, Meek et al. 1989) and major histocompatibility complex class II antigens (Devaux et al. 1985), and encoded some lupus-associated autoantibodies (Shlomchik et al. 1987c). The P3-X63-Ag8.653 myeloma line, a derivative of the MOPC21 myeloma that has lost the ability to express Ig heavy and light chain proteins and is frequently used in hybridoma technology (Kearney et al. 1979), also expressed a non-functional V_k21 mRNA (Strohal et al. 1987). With the exception of an MRLlpr/lpr rheumatoid factor (RF, anti-Ig)  $V_k$  sequence (AM12; Shlomchik et al. 1987c), which differed from all known  $V_k21$  germline genes by >30 bp and may have derived from an unknown germline gene, all other expressed sequences were very similar to, and hence probably derived from, known  $V_k21$  germline genes. RFLP (Kofler et al. 1989) and gene cloning analyses (Heinrich et al. 1984) suggested an estimated 6 to 13  $V_k21$  germline genes in the genome of most inbred strains of mice.

Finally, an incomplete  $V_k 21$  sequence (VM201, Meek et al. 1989), which was therefore not included in our data bank, should be mentioned as it lacked two codons in CDR-1 in comparison to other  $V_k 21$  sequences. Unless caused by somatic events, this would make the corresponding germline gene the only  $V_k$  gene with 37 codons up to Trp35.

 $V_k23$  gene family. Similar to  $V_k21$ ,  $V_k23$  sequences were well separated from all other  $V_k$  sequences, and formed a gene family that corresponded entirely to its protein counterpart, the  $V_k23$  subgroup (protein group V). One germline gene has been reported (Pech et al. 1981) that was subsequently observed in RFs from BALB/c mice (Shlomchik et al. 1987a), and that probably encoded an (NZB × NZW)F₁ RNA-specific autoantibody (Eilat et al. 1988).

Additional  $V_k23$  genes, more distant from the above germline gene but closely related to each other, possibly derived from a second  $V_k23$  germline gene and encoded nitrophenyl-specific anti-idiotypes (Sablitzky and Rajewsky 1984) and a creatine-kinase-specific antibody (Buckel et al. 1987). A nonfunctional  $V_k23$  member was cloned from an MRL/n RF-producing hybridoma and might correspond to another  $V_k23$  (pseudo) gene (Kofler et al. 1989). Our previous RFLP analyses suggested the presence of four to eight  $V_k23$  germline genes in the genome of most inbred strains of mice. However, this may represent an over-estimate due to cross-hybridization of the more conserved 3' portion of the  $V_k23$  probe with  $V_k1$  sequences (Kofler et al. 1989, and below).

**Fig. 1.** Nucleic acid sequences of 109  $V_k$  genes contained in the  $V_k$  database. *Dots* have been introduced to maximize homology; N, undetermined nucleotides; CDR, complementarity determining region; FR, frame work region (according to Kabat et al. 1987). Codes of  $V_k$  genes:  $1 = V_k 21B$ ,  $2 = V_k 21C$ ,  $3 = V_k 21E$ ,  $4 = V_k 1.6kb$ ,  $5 = V_k 18kb$ , 6 = H37-85, 7 = AM10, 8 = AM12, 9 = Ag8.653k-, 10 = L7, 11 = T2, 12 = D444, 13 = MRL/n-RF33B, 14 = A8/4, 15 = A20/44, 16 = MAK33, 17 = H1, 18 = R11, 19 = R1, 20 = L8, 21 = MRL-Histone 7, 22 = MRL-DNA22,  $23 = NQ10 \cdot 4.6.1$ ,  $24 = NQ11 \cdot 1.18$ ,  $25 = NQ22 \cdot 87.1$ , 26 = A9, 27 = 37A4, 28 = R2, 29 = R9, 30 = R13, 31 = H2, 32 = H3, 33 = H4, 34 = H6, 35 = H8, 36 = H9, 37 = H13, 38 = L6, 39 = 70Z/3, 40 = AM1, 41 = 2H7,  $42 = NQ2 \cdot 6.1$ ,  $43 = NQ2 \cdot 48.2.2$ ,  $44 = NQ10 \cdot 12.4.6$ ,  $45 = NQ10 \cdot 12.5$ ,  $46 = NQ10 \cdot 15.3$ ,  $47 = NQ11 \cdot 7.12$ ,  $48 = NQ11 \cdot 8.1$ ,  $49 = NQ22 \cdot 15.18$ ,  $50 = NQ22 \cdot 18.7$ ,  $51 = NQ22 \cdot 61.1$ ,  $52 = NQ22 \cdot 17.18$ ,  $53 = NQ19 \cdot 2.4$ ,  $54 = NQ18 \cdot 36.44$ ,  $55 = NQ16 \cdot 38.18$ ,  $56 = NQ10 \cdot 11.1$ ,  $57 = NQ10 \cdot 2.12.8$ , 58 = K2, 59 = K3, 60 = A25.9.7, 61 = A31.90,  $62 = MRL \cdot RF24$ , 63 = PC6684K-, 64 = MOPC41, 65 = M173B, 66 = GLOOP1, 67 = BXW-DNA16, 68 = L6,  $69 = 40 \cdot 140$ , 70 = CP5,  $B5 \cdot 3$ ,  $71 = V_kARS$ , 72 = PC3386, 73 = 38C13, 74 = VM113,  $75 = V_k167$ ,  $76 = V_k24A$ ,  $77 = V_k24B$ , 78 = AM28, 79 = AM29, 80 = A15,  $81 = 25 \cdot 39$ ,  $82 = K5 \cdot 1$ , 83 = K1A5,  $84 = K18 \cdot 1$ , 85 = W3129, 86 = LXIX 27, 87 = JV3, 88 = HP9, 89 = BXW-DNA14,  $90 = V_k139$ , 91 = GLOOP5, 92 = AM13, 93 = VS3, 94 = A17, 95 = JV10, 96 = PY102, 97 = S107A,  $98 = V_kSer$ , 99 = MRL-RF28,  $100 = CEA66 \cdot E3$ ,  $101 = V \cdot TNP$ , 102 = B6.2, 103 = CEM231.6.7, 104 = A23, 105 = A34, 106 = RF49, 107 = RF49B, 108 = RF34, 109 = AM16.

Δ						
	FR1	CDR1	FR2	CDR2-	FR3	CDR3~
001	NIVLTQSPASLAVSLGQRATISC	30 RASESVDSYGNSFMH	40 S WYQQKPGQPPKLLIY	LASNLES	60 70 80 GVPARFSGSGSRTDFTLTIDPVEADDAATYYC	90 QQNNEDP
002	DIVLTOSPASLAVSLGORATISC	RASESVDSYGNSFMH	WYQQKPGQPPKLLIY	RASNLES	GIPARFSGSGSRTDFTLTINPVEADDVATYYC	QQSNEDP
003	DIVLTOSPASLAVSLGORATISC	RASKSVSTSGYSYMH	WYQQKPGQPPKLLIY	LASNLES	GVPARFSGSGSGTDFTLNIHPVEEEDAATYYC	QHSRELP
004	DIVLTQSPASLAVSLGQRATISC	RASQSVSTSSYSYMH	WYQQKPGQPPKLLIK	YASNLES	GVPARFSGSGSGTDFTLNIHPVEEEDTATYYC	QHSWEIP
005	DIVLTOSPASLAVSLGORATIFC	RASOSVDYNGISYMH	WFOOKPGOPPKLLIY	AASNLES	GIPARFSGSGSGTDFTLNIHPVEEEDAATYYC	QQSIEDP
006	DIVLTQSPGSLAVSLGQRATISC	RASESVES SGNNFIH	WHOOKPGOPPXLLIY	RASNLAS	GIPARFSGSGSMTDFTLTINPVEADDVATYYC	QQSNEDP
007	KIVLTQFPASLAVSLRQRATISC	RASESVDS YGNSFMY	WYOOKPGOPPKLLIY	RASNLES	GVPARFSGSGSRTDFTLTIDPVEADDGATYYC	QQNNEDP
008	DIVLTQSPASLAVSLGQSVTISC	RASESVEY YGSSLMQ	WYQQKPGQPPKLLIY	GASNVES	GVPARFSGSGSGTDFSLNIHPVEEDDIAVYFC	QQSRKVP
009	DIVLTOFPASLAVSLGORATISY	RASKSVST SGYSYMH	WNQQKPGQPPRLLIY	LVSNLES	GVPARFSGSGSGTDFTLNIHPVEEEDAATYYC	QHIREXX
010	DILLTQSPAILSVSPGERVSFSC	RASQSIGTSIH	WYQQRTNGSPRLLIK	YASESIS	GIPSRFSGSGSGTDFTLSINSVESEDIADYYC	QQSNSWP
011	DILLTQSPAILSVSPGERVSFSC	RASQSIGTSIH	WYQQRTNGSPRLLIK	NASESIS	GIPSRFSGSGSGTDFTPSINSVESEDIAEYYC	QQSYRWP
012	DILLTOSPAILSVSPGERVSFSC	RASQSIGTSLH	WYQQRTNGSPRLLIK	YASESIS	GIPSRFSGSGSGTDFTLSINSVESEDVADYYC	QQTNSWP
013	DIVLTQSPATLSVTPGDSVSLSC	RASQSIINNLH	LYRUKSHESPRLLIK	YASQSIS	GIPSRFSGSGSGTDFTLSINSVETEDFGMYFC	QQSNSWP
014	DIVLTQSPATLSVTPGDSVSLSC	RASQSISNNLH	WYQQKSHESPRLLIN	YASQSMS	GIPSRFSGSGSGTDFTLSINSVETEDFGMYFC	QQSNNWP
015	DIVLTQSPATLSVTPGDSVSLSC	RASQSISNNLH	WYQQKSHESPRLLIK	YASQSIS	GIPSRFSGSGSGTDFXLIINNVETEDFGMYFC	QQSNSWP
016	DIVLTQSPATLSVTPRDSVSLSC	RASQSISNNLH	WYQQKSHESPRLLIK	YASQSIS	GIPSRFSGSGSGTDFTLSINSVETEDFGMYFC	QQSNSWP
017	QIVLTQSPAIMSASPGEKVTMTC	SARSSVSSSYLY	WYQQKPGSSPKLWIY	STSNLAS	GVPARFSGSGSGSGTSYSLTISSMEAEDAATFYC	QQYSGYP
018	ENVLTQSPAIMAASPGEKVTMTC	SASSSVSSSNLH	WYQQKSGTSTKFWIY	RTSNLAS	EVPAPFSGSGSGTSYSLTISSVEAEDAATYYC	QQWSGYP
019	ENVLTQSPAIMAASLGQKVTMTC	SASSSVSSSYLH	WYQQKSGASPKPLIH	RTSNLAS	GVPARFSGSGSGTSYSLTISSVEAEDDATYYC	QQWSGYP
020	ENVLTQSPAIMAASLGEKVTMTC	SASSSVSSSYLH	WYQQKSGTSPKLWIY	GTSNLAS	GVPARFSGSGAGISYSLTISSMEAENDATYYC	QQWSGYP
021	QIVLTQSPAIMSASPGEKVTMTC	SASSSVSSKYLN	WYQQRSGASPKLWIY	GTSNLAS	GVPARFSGSGSGTSYSLTISSVEAEDAATYYC	QQYHSDP
022	QIVLTQSPAIMSASPGERVTMTC	SASSSVSSSYLY	WYQQKPGSSPKLWIY	STSNLAS	GVPARFSGSGSGTSYSLTISSMEAED.ATYYC	QQYSGYP
023	EIVLTQSPTTMAXSPGEKITITC	SANSSISSNYLH	WYQQKPGFSPKLLIY	RTSNLAS	GVQARFSGSGXVTSYSLTIGTMEAXDXATYYC	QQGSSIP
024	ENVLTQSPAIMSASPGXKVTMTC	RASSSVSSSYLH	WYQQKSGASPKLWIY	STSNLAS	XVPARFSGSGSGTSYSLTISSVEAEDAATYYC	QQYSGYP
025	EIVLTQSPTTMAASPGEKITITC	SASSSISSNYLN	WFOOKPGFSPKLLIY	RTSNLAS	GVPDRFSXSGSXTSYSLTIGTMEAEDVATYYC	OOGSSIP
026	EIVLTQSPALMAASPGEKVTITC	SVSSSISSSNLH	WYOOKSETSPKSWIY	GTSNLAS	GVPVRFSGSGSGTSYSLTISSMEAEDAATYYC	QQWSSYP
027	QIVLTQSPAFMSASLGERVTMTC	TARSSVSSSYFH	WYOOKPGSSPKLWIY	STSNLAS	GVPTRFSGSGSGTSYSLTISSMEAEDAATYYC	HOYHRSP
028	EILLTQSPAIIAASPGEKVTITC	SASSSVSYMN	WYOOKPGSSPKIWIY	GISNLAS	GVPARFSGSGSGTSFSFTINSMEAEDVATYYC	QQRSSYP
029	QIVLTQSPAIMSASPGEKVTMTC	SASSSISYMH	WYOOKPGTSPKRWIY	DTSKLAS	GVPARFSGSGSGTSYSLTISSMEAEDAATYYC	HORSSYP
030	ENVLTQSPAIMSASLGEKVTMSC	RASSSVNYMY	WYQQKSDASPKLWIY	YTSNLAP	GVPARFSGSGSGNSYSLTISSMEGEDAATYYC	QQFTSSP
031	GIVLTQSPTTMTAFPGENVTITC	SASSSINYIH	WYQQKSGNTPKQUIY	KTSDLPS	GVPTLFSGSGSGTSYSLTISSVEAEDAATYYC	QQWSGYP
032	QIVLTQSPAIMSASPGEKVTMTC	SASSSVSYMH	WYQQKSGTSPKRWIY	DTSKLAS	GVPARFSGSGSGTSYSLTISSMEAEDAATYYC	QQWSSNP
033	QIVLTQSPAIMSASPGEKVTISC	SASSSVSYMY	WYQQKPGSSPKPWIY	RTSNLAS	GVPARFSGSGSGTSYSLTISSMEAEDAATYYC	QQYHSYP
034	EIVLTQSPAITAASLGQKVTITC	SASSSVSYMH	WYQQKSGTSPKPWIY	EISKLAS	GVPARFSGSGSGTSYSLTISSMEAEDAAIYYC	QQWNYPP
035	QIVLTQSPAILSASPGEKVTMTC	SASSSVSYMU	WFQQKPGSSPKLWIY	SISNLAS	GVPARFSGSGSGTSYSLTISSVKAEDAATYYC	QQWSSSP
036	QILLTQSPAIMSASPGEKVTMTC	SASSSVSYMH	WYQQKPGSSPKPWIY	DTSNLAS	GFPARFSGSGSGTSYSLIISSMEAEDAATYYC	HORSSYP
037	QIVLTQSPALMSASPGEKVTMTC	SASSSVSYMY	WYQQKPRSSPKPWIY	LTSNLAS	GVPARFSGSGSGTSYSLTISSMEAEDAATYYC	QQWSSNP
038	QIVLSQSPAILSASPGEKVTLTC	RASSSVSFMN	WYQQKPGSSPKPWIY	ATSNLAS	EFPGRFSGEWSGTSYSLAISRVEAEDAATYYC	QQWNSNP
039	QIVLSQSPAILSASPGEKVTMTC	RASSSVSYMH	WYQQKLGSSPKPWIY	ATSNLAS	GVPARFSGSGSGTSYSLTISRVEAEDAATYYC	QQWSSNP
040	QIVLTQSPAIMSASPGQKVTITC	SASSSVNYMH	WYQQKLGSSPKLWIY	DTSKLAP	GVPARFSGSGSGTSYSLTISSMEAEDAASYFC	HQWSSYP
041	QIVLSQSPAILSASPGEKVTMIC	RASSSVSYMH	WYQQKPGSSPKPWIY	APSNLAS	GVPARFSGSGSGTSYSLTISRVEAEDAATYYC	QQWSFNP
042	QILLTQSPAIMSASPGQKVTMTC	SASSSVSYMY	WYQQKPGSSPRLLIY	DTSNLAS	GVPVRFSGSGSATSYSLTITRMQAEDAATYYC	QQWSSYP
043	QILLTQSPAIMSASPGQKVTMTC	SASSSVSYMH	WYQQKSGTSPKRWIY	DTSKLAS	GVPARFSGSGSATSYSLTITSMQAEDAATYYC	QQWSSNP
044	QNVLNQSPXIMSXSPGEKVTMTC	SASSSVSYMQ	WFQQXSGTSPKRWIY	DTSKLXS	XVPTRFSXSGSGTXYSLTISSMEAEDAATYYC	QQWSSNP
045	QIVLTQSPXIMSXSPGEKVTMTC	SASSSVRYMN	WFQQKSGTSPKRWIY	DTSKLSS	GVPARXSGSGSGTSXSLTISSMEXEDXATYYC	QQWSSNP
046	QIVLTQSPAIMSASPGEKVTMTC	SASSSVSYMN	WFQQKSGTSPKRWIY	DTSKLSS	GVPPRFSGSXXGTSYSLTISSMEAEDAATYYC	QQWNSNP
047	<b>QIVLTQSPAIMSASPGEKVTMTC</b>	SASSIVSYVQ	WFQQKSGTSPKRWIS	DTSKLPS	GVPARFSGSGSGTSYSLTISSMEAEDAATYYC	QOWTSNP
048	QIVLIQSPXIMSASPGXKXTMTC	SASSSVSYMN	WYQQKSGTSPKRWIY	DTSKLAS	GVPARFSGSGSGTSYSLTISSMEAEDAATYYC	QQWNSNP
049	QIVLTQSPPIMSASPGEKVTMTC	SASSSVSYLQ	WFQQKSGTSPKRWIY	DTSKLDS	XVPARFSXSGSGTSYSLTISSMEAEDAATYYC	QQWTSNP
050	QIVLTQSPAIMSASPGEKV' MTC	SASSSVSYMN	WFQQKSGTSPKRWVF	ATSKLXS	GVPARFSGSGXGTSYSLTISSMEAEDAATYYC	QQWSSNP
051	QVVLTQSPXIMSASPGXKVTMTC	SASSSVSYMQ	WFQQKSGTSPKRLIF	YTSKLTS	GVPARFSXSGXGTSYSLTISSMEAEDAATYYC	QQWSSNP
052	QIVLSQSPAILSASPGERVTLTC	RASSSVSYIQ	WFQQKPGSSPKPWIH	ATSKXAS	GVPARFSGSGSGTSYSLTISRVEAEDAATFYC	QQWSSNP
053	QIVLTQSPXIMSASPGEKVTMTC	SASSSVSFMQ	WYQQKSGTSPKRWIY	HTSKLAS	GVPARFSXSGXGTSYSLTITSMEAEDAATYYC	QQXSXNP
054	QIVLSQSPAILSASPGEQVTMTC	RASSSVSYMH	WYQQKPGSSPKPWIY	ATSNXAS	GVXARFSGSGSGTSYSLTISRVEAEDAATYYC	OOWSSNP

484

B		0				
	10 20	CDR1	40 FR2		FR3	
055	ENVLTOSPXIMSXSXGXKVTMTC	SARSSISYMH	WYQQXSSTSXKLWIY	DTSKXAS	XVPXXFSXSGXXNSYSLTISSMEXEDVATYYC	FXGSGYP
056	QIVLSQSPAILSASPGEKVTMTC	RASSSVSYIQ	WFQQKPGSSPKPWIS	VTSNLAS	GVPARFSXSGSGTSYSLTISRVEAEDAATYYC	QQWRSNP
057	QIVLSQSPAILSASPGEKVTMTC	RASSSVSYIH	WYQQKPGSSPKPWIY	ATSNLAS	GVPVRFSGSGSGTSYSLTINRVEAEDAATYYC	QQWSSNP
058	DIQMTQSPASLSASVGETVTITC	RASGNIHNYLA	WYQQKQGKSPQLLVY	NAKTLAD	GVPSRFSGSGSGTQYSLKINSLQPEDFGSYYC	QHFWSTP
059	DIQMTQSPASLSVSVGETVTITC	RASENIYSNLA	WLFSRNRENPPSLVY	AATNLAD	GVPSRFSGSGSGTQYSLKINSQQPEDFGSYYC	QHFWSAP
060	DIQMTQSPASLSASVGXTVTITC	RASENIYSYLA	WYQQKQGKSPOLLVY	NAKTLAE	GVPSRFSGSGSGTOFSLKINSLOPEDFGSYYC	OHHYVTP
061	DIOMTOSPASLSASVGXTVTITC	RASENIYSYLA	WYOOKOGKSPOLLVY	NAKTLPE	GVPSRFSGSGSGTOFSLKINSLOPEDFGSYYC	QHHYGPP
062	DVQITQSPSYLAASPGETITINC	RASKSISKYLA	WYOEKPGKTNKLLIY	SGSTLOS	GIPSRFSGSGSGTDFTLTISSLEPEDFAMYYC	OOHNEYP
063	DVQMTQSPSSLSASLGERVSLTC	QASQSINNFLK	WFQQTLGKTARLLIY	GANKLED	GVPSRFSGTGYGTDFTFTISSQEEEDVSTYFC	LQHRYLP
064	DIQMTQSPSSLSASLGERVSLTC	RASQDIGSSLN	WLQQEPDGTIKRLIY	ATSSLDS	GVPKRFSGSRSGSDYSLTISSLESEDFVDYYC	LQYASSP
065	DIQMTQSPSSLSASLGERVSLTC	RASQDIHGYLN	LFQQKPGETIKHLIY	ETSNLDS	GVPKRFSGSRSGSDYSLIIGSLESEDFADYYC	LQYASSP
066	DIQMTQSPSSLSASLGERVSLTC	RASQEISGYLS	WLOOKPDGTIKRLIY	AASTLDS	GVPKRFSGSRSGSDYSLTISSLESEDFADYYC	LQYLSYP
067	DIQMIQSPSSMFGSLGDRVSLSC	RASQGIRGNLD	WYOOKPGGTIKLLIY	STSNLNS	GVPSRFSGSGSGSGSDYSLT I SSLESEDFADYYC	LORNAYP
068	DIKMTQSPSSMYASLGERVTITC	KASQDINSYLS	WFOOKPGKSPKTLIY	RANRLVD	GVPSRFSGSGSGODYSLTISSLEYEDMGIYYC	LOYDEFP
069	DIKMTQSPSSMYASLGERVTISC	KASQDINSYLT	WFOOKPGKSPKTLLY	RTKRLVD	GVPSRFSGSGSGSGSGSGSGSGSGSGSGSGSGSGSGSGSGSGS	LOYDEFL
070	DIKMTOSPSSMYASLGERVTITC	KASQDIKSYLS	WYOOKPWXSPKTLIY	YATSLAD	GVPSRFSGSGSGSGXDYSLTISSLESDDTATYYC	LOHGESP
071	DIQMTQTTSSLSASLGDRVTISC	RASODISNYLN	WYOOKPDGTVKLLIY	YTSRLHS	GVPSRFSGSGSGTDYSLTISNLEOEDIATYFC	OOGNTLP
072	DIOMTOTTSSLSASPGDRVTISC	RTSODISNFLY	WFOOKSDGTVKLLIY	YTSRUHS	GVPSRFSGSGSGSGTDYSFTINNLEUEDVATYSU	OOGI
073	DIOMTOSPSSLSASLGGKVTITC	KASODINKYIA	WDOHKPGKGPRLLIH	YTSTIEP	GIPSRESGSGSGSGRDYSESISNLEPEDIATYYC	LOYDNLP
074	DIQMTQSPSSLSASLGGKVTITC	KASODINKYLA	WYOHKPGKGPRLLIH	YTSTLOP	GIPSRFSGSGSGSGRDYSFSISNLDAEEIATYYC	LOYDSLY
075	DIVITODELSNPVTSGESVSISC	RSSKSLLYK, DGKTYLN	WELORPGOSPOLLIY	LMSTRAS	GVSDRFSGSGSGSGTDFTLEISRVKAEDVGVYYC	OOLVEYP
076	DIVMTQAAFSNPVTLGTSASISC	RSSKSLLHS, SGNTYLY	WELOKPGOSPOLLIY	VISNLAS	GVPDRESGSGSGTDFTLRISRVEAEDVGVYYC	MOGLEYP
077	DIVMTOAAFSNPVTLGTSASISC	RSSKSLLHS, NGITYLY	WYLOKPGOSPOLLTY	OMSNLAS	GVPDRESSSGSGTDETLRISRVEAEDVGVYYC	AONLELP
078	DIVMTOAAPSVSVTPGESVFISC	RSSKSLLHS, NGNTYLY	WYLORPGOSPOLLTY	RMSNLAS	GVPDRFSGSGSGSGTAFTLRISRVEAEDVGIYYC	MOHLEYP
079	DIVMTOATPSVSVTPGESVFISC	RSSKSLLVI NGNTVLV	WYLORPGOSPOLLTY	RMSVLAS	GUDDRESGSGSGTAFTLRISRVEAEDVGIYYC	MOHLEYP
080	DIVMTOAAPSVPVTPGESVSVSC	RSSKSLLHS NGNTYLY	WELORPGOSPOLLIX	RMSNLAS	CVPDPFSCSCSCTAFTLRISRVEAEDVC/11C	MOHLEVP
081	DIVMTOAAFSNPVTLGTSASISC	RSSKNLLHS NGITELY	WYLORPCOSPOLLTY	RUSHLAS	CUPNERSCSESCEDETLEISPUEAEDVOVITC	AOLLEL
082	DVVMTOTPLSLPVSLGDOASISC	RSSOSLVHS NONTVLH	MATORBCOGDALL IA	KUCNDEC	CURDESCSCSCTDETLKISRVEAEDLCVYEC	COSTUUD
083	DVLMTOTPLSLPVSLCDOASISC	RSSOSIVES NONTYLE	WATOR BCOS BRITIA	KUCNDEC		FOCSHUD
084	DAVMTOTPLSLEVSLGDQASISC	RSSOSLENS NONTYLE	WYLOKPGOSPOLLTY	RUSHRES	CVI DRESCSCSCTDETLKISRVEAEDLCVVFC	LOVTHAD
085	DVWTOTELSLEVSECDOVSISC	RSSOSLATE HOITVIC	MILDÓKLOÓSLÖTTII	CTENDES	CURRENCESCSCENERT KINTIKEDI CMYYC	LOCCHOR
086	DVVMTOTPLSLPVSLCDOASISC	RSSOSIVHS NONTYLY	MATURACOS BRITTA	DUCNDES	CURDRESCSCSCTDETLNISRVEAEDMCVYVC	FOCTHUR
087	DAVMTOTPLSLPVSLCDOASISC	RSSOSTENS NONTVLN	WYLOKPCOSPELLIY	DUCNDEC	CVI DESCSCSCTDETLE ISPUEAEDI CVVFC	LOVTHUD
088	DIVMTOTPLSLPUSLCDOASISC	RSSOSIUIS NORTHER	WILCKPOUSPREETT	CIENDES		FOCTHOR
000		KSSQSIVIS.NOTITLE	WILDERCOODERI IN	GISNRFS		WOCTUFD
000	DIVMTOSPSSI. MSVCOKUTMSC	KSSOSLI NSSNOKNVLA	MUDOKEGOSEKITUY	FACTORS	CURRENT COSCILLE TIMES CONFEL ADVEC	
091	GIVMSOSPSSI.AUSVGEKUTMSC	KSSOSI.FYSSNOKNSLA	MAUOBBCOG BRITIA	WACTORS	CUPDEFICSCSCTDEFI TISSVQADDADITC	OUAAEAD
091	DIVMTOSPSSLTVTAGEKVTMSC	KSSOST LNCUDKNVLT	WYOOKDCODDKILIY	WASINES	CUPDETCSCSCTDETLTISSVAEDLAVIC	ONDACAD
092	DIVMTOSPSSI.SVSAGEKVTMSC	KSSOSLINSCNOKNYLA	MICOKICODERTTIA	CASTRES	CURDEFTCSCSCTDEFTLTISSUCAEDLAVITC	ONDUTYD
093	NIMMTOS PSSIAUSAGEKUTMSC	KSSOSVI VSSNOKNYLA	MAUORDCOGDKIIIA	WASTRES	CUPDETCSCSCTDETLTISSUCAEDLAVY/C	NUALES
094	NUMBORDSSI.AVSAGEKVAVSC	KSSQSVLISSNQKNILA	WIQOKPOOSPKILIY	WASINGS	CUDDETCSCSCTDETLTISSUBAEDLAVIIC	NUL MOL D
095	XIVMTOSXXSLSVSAGXKVTMSC	KSSQSLSIVEPERSILA	MAARKBCODAKIIIG	UDADDYU		OOUVVVD
090	DIVMTOS DTFLAVTASEKUTISC	TYCECI VCCKUKUUVI N	WYOKKPEOCOKIIIS	CACNEVI		AUEAGAD
097	CIUMTOTOKELLUSACEDUTITO		WIOKKECOSPKIII	VACNOVT		OODVCCD
090	SIVMICIPAL DUSAGERVIIIC	KASO SUCNAVA	MIQOKECOG DELLIN	VACNOVT		QUI 33F
100	DIVATORIKEMSTRUCDBURITC	KASQSYGNNYA	WYOOKPOOSPKILIY	UNCTIDUT		QUIISSP
100	DIVINGONEMSTEVEDEVELTC	KASQDVORALA	WYOOKBCOG DKILLY	CACNEVT		QQ1301F
102	DIVMIUSURMSISVODRUSIIC		WYOOTBCOCEVALLY	CACVEVC		OOVNEVD
102	DIVMIUSURMSISVODRUSVIC		WIQQIFGQSPKALII	JACNEVE		LOWWARD
103	PINMOCREENSBOODDOCHAS	NUSA MOUNTA	HIGGERGALIY	CACUDUC	CADDELCCCCOUPERT BICKROCEDT FLAC	DOMPICOL DAUMINALS
104	DIVATUSAREASTSVGDRVSVTC		WIQUEFOUSPEALIY	SASIRIS	CUDDRETCCCCCODET TLEISNUGEDI NUTC	QUINSCP
102	DIVMIQUENEMENEUCOBUEIMO	KASO DUCIMUN	WYOOKDCOCDUITTY	CACUDUM	CUDDETCSCSCTDETETTSCUCAEDI AUTOC	QUINSTP
100	DIVMTUSHAPMSTSVGDAVSITC	KASO DUSTIVA	WYOOKDCOCDUITTY	SASIKIT	CUPDETCSCSCTDETETISSVQAEDLAVYYC	QURISTP
107	DIVMTUSHAPMSTSVGDRVSITC	KASE MUNICIPAL	WYOOKPEOCOWIT	SASTRIT	CUDDEFCCCC ANDERT MICCUCAPEL AVYYC	QUHISTP
108	NI VATUSPASASVSVGERVTLTC	NAGENVVTYVS	WIQUAREQSPELLIY	GASNRIT	CUDDDETCOCS ADDET TLTISSVQAEDLADYHC	GUGISIP
103	NIVMTUSPRSMSMSVGERVTLSC	MASENVGTYVS	WIQOKPEQSPKLLIY	GASNRYT	GVPDRFTG5G5ATDFTLT155VQ5EDLADYFC	GUSISYP

Fig. 2. Amino acid sequences deduced from 109  $V_k$  nucleic acid sequences contained in the  $V_k$  database. Dots have been introduced to maximize homology; X, undetermined amino acids. Remainder of legend as for Figure 1.

Table 1. V_k nucleic acid sequence database*

001-005 ≥1     III     21     G     BALB/c     I;G     (1)       007,00     IF     MLD/cr     I;G     (3)       009     IF     MLD/cr     I;G     (3)       010     23     V     23     G     BALB/c     N/A     (6)       011     IF     NRA     (NZE ×WF;     I;G     (7)     (7)       013     IF     NRA     (NZE ×WF;     I;G     (1)       013     IV     4,5     G     BALB/c     N/A     (1)       016     IV     A,5     G     BALB/c     N/A     (1)       021     I     IV     4,5     G     BALB/c     N/A     (1)       023     O24     IV     A     G     BALB/c     I;G     (1)       023     VI     4     G     BALB/c     I;G     (1)       023     VI     4     G     BALB/c     I;G     (2)       024     VI     A <td< th=""><th>Code[†]</th><th>$V_k^{\pm}$</th><th>Group*</th><th>Subgroup*</th><th>Spec^{li}</th><th>Strain[§]</th><th>Class</th><th>Ref[#]</th></td<>	Code [†]	$V_k^{\pm}$	Group*	Subgroup*	Spec ^{li}	Strain [§]	Class	Ref [#]
D06     FAA     BALB/c     IgG     (2)     (3)       007,008     r     BALB/c     N/A     (4)       010     23     V     23     G     BALB/c     N/A     (5)       011     r     RNA     (NZE×W)F,     IgG     (7)       013     rf     MRL/n     N/A     (6)       014,015     Anti-ID     CSTBL/6     IgG     (9)       016     CK     BALB/c     N/A     (10)       021     IV     4,5     G     BALB/c     N/A     (11)       020     IV     4,5     G     BALB/c     N/A     (11)       021     IV     A     G     BALB/c     N/A     (11)       023     VI     A     G     BALB/c     IgG     (16)       023-032     VI     4     G     BALB/c     IgG     (21)       033-033     VI     4     OX     BALB/c     IgG     (21)       034-042	001-005	21	ш	21	G	BALB/c	N/A	(1)
00/.008 mR ² mRL/ <i>lpr</i> IgG 3.4   009 23 V 23 G BALB/c N/A (4)   010 23 V 23 G BALB/c N/A (6)   011 nf N/R N/A (6) (7) nf MRL/n N/A (6)   014.015 nf mRNA (NZB×W)F ₁ IgG (7) (7) (11)   020 (7) nf MRL/n N/A (8) (11)   021 V 4.5 G BALB/c N/A (12)   021 I Anti-ID CSTB/c IgG (7)   022 IV 4.5 G BALB/c N/A (12)   023 VI 4 G BALB/c IgG (16)   024 VI 4 G BALB/c IgG (17)   027 ALP BALB/c IgG (20) (20)   040 F MRL/pr IgM (3)   041 C C20 BALB/c IgG (21)   042.043 /5 VI 4 OX BALB/c IgG (22)	006				HA	BALB/c	IgG	(2)
nin   BALB/c   N/A   (4)     010   23   V   23   G   BALB/c   N/A   (5)     011   N/R   N/A   (S)   nf   N/R   N/A   (6)     012   N/R   N/A   (S)   ndi-ID   C/A   (G)   N/A   (8)     014.015   Anti-ID   CSTBL/6   IgG   (10)   (11)   (11)   (11)   (11)   (11)   (11)   (11)   (11)   (11)   (11)   (11)   (11)   (11)   (11)   (11)   (11)   (11)   (11)   (12)   (11)   (11)   (11)   (12)   (12)   (13)   (12)   (13)   (12)   (12)   (13)   (12)   (12)   (13)   (12)   (13)   (12)   (13)   (11)   (11)   (11)   (11)   (11)   (11)   (11)   (11)   (11)   (11)   (11)   (11)   (11)   (11)   (11)   (11)   (11)   (11)   (11)   (11)   (11)   (11)   (11)   (11)   (11)   (11)   (11)   <	007,008				RF	MRL/lpr	IgG	(3)
0.10 2.3 V 2.3 G BALB/C N/A (3)   011 nf N/R N/A (6)   012 nf MRA (NZE×W)F, IgG (7)   013 nf MRL/n N/A (6)   014,015 Anti-ID CSTBL/6 IgG (9)   017-019 4/5 IV 4,5 G BALB/C N/A (11)   022 IV 4,5 G BALB/C N/A (11)   021 I Image Image Image Image (13)   022 VI 4,5 G BALB/C N/A (11)   023 VI 4 G BALB/C IgG (16)   025 VI 4 G BALB/C IgG (17)   027 ALP BALB/C IgG (17) (20)   033 Image Image IgG (20) (3)   041,043 VI 4 OX BALB/C IgG (21)   042,043 VI 4 OX BALB/C IgG (21)   042,043 VI 4 OX BALB/C IgG <t< td=""><td>009</td><td>22</td><td>v</td><td>22</td><td>nt</td><td>BALB/C</td><td>N/A</td><td>(4)</td></t<>	009	22	v	22	nt	BALB/C	N/A	(4)
012   III   INA   INZ   N/A   (NZ   N/A   (R)     014   015   III   NA   (NZ   N/A   (R)   (	010	23	v	25	0 nf	DALB/C	N/A N/A	(5)
$\begin{array}{c c c c c c c c c c c c c c c c c c c $	012				ni RNA	N/K	IN/A InC	(0)
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	012				nf	$(NZD \times W)F_1$	IgO N/A	(1)
016     CK     BALB/c     IgG     (10)       017-019 4/5     IV     4,5     G     BALB/c     N/A     (11)       020     CR     BALB/c     N/A     (11)     (11)       021     DNA     MRL/lpr     IgG     (13)       022     DNA     MRL/lpr     IgM     (14)       023,024     OX     BALB/c     IgG     (15)       025     OX     BALB/c     IgG     (16)       026     RF     BALB/c     IgG     (17)       037-038     UL     ALP     BALB/c     IgG     (20)       033-038     UN     ALP     BALB/c     IgG     (21)       033-038     UN     ALP     CAAg     BALB/c     IgG     (22)       041     CC20     BALB/c     IgG     (22)     (3)       041     CC20     BALB/c     IgG     (15)       055     VI     4     OX     BALB/c     IgM     (4)       050,061	014.015				Anti-ID	C57BL/6	IvG	(9)
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	016				CK	BALB/c	IøG	(10)
020   G   BALB/c   N/A   (12)     021   histone   MRL//pr   IgG   (13)     022   DNA   MRL//pr   IgG   (15)     023, 024   OX   BALB/c   IgG   (16)     025   YI   4   G   BALB/c   IgG   (16)     028-032   VI   4   G   BALB/c   IgG   (11)     033-038   CAAg   BALB/c   IgG   (20)   (11)   (33)     033-034   K   CAAg   BALB/c   IgG   (21)   (20)     040   KF   BALB/c   IgG   (22)   (22)   (44-048)   OX   BALB/c   IgG   (22)     044-048   VI   4   OX   BALB/c   IgG   (15)   (15)     057   VI   4   OX   BALB/c   IgM   (16)   (15)     058   D1/13   V   12-13   G   BALB/c   N/A   (24)     060,061   Mabiguous   RF   MRL//pr   IgM   (13)   (15)	017-019	4/5	IV	4,5	G	BALB/c	N/A	(11)
021   bistone   MRL/(pr)   IgG   (13)     022   DNA   MRL/(pr)   IgM   (14)     023, 024   OX   BALB/c   IgG   (16)     025   X   BALB/c   IgG   (16)     026   RF   BALB/c   IgG   (17)     027   ALP   BALB/c   IgG   (19)     023-038   VI   4   G   BALB/c   IgG   (11)     03-038   VI   4   G   BALB/c   IgG   (21)     040   RF   MRL/(pr)   IgM   (3)   (3)     041   CD20   BALB/c   IgG   (22)     044-048   OX   BALB/c   IgG   (16)     055   V   A   OX   BALB/c   IgG   (16)     056   OX   BALB/c   IgG   (16)   (16)   (16)     057   OX   BALB/c   IgG   (16)   (16)   (16)   (16)   (16)   (16)   (16)   (16)   (16)   (16)   (16)   (16) </td <td>020</td> <td></td> <td></td> <td></td> <td>G</td> <td>BALB/c</td> <td>N/A</td> <td>(12)</td>	020				G	BALB/c	N/A	(12)
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	021				histone	MRL/lpr	IgG	(13)
023   OX   BALB/c   IgG   (15)     025   OX   BALB/c   IgG   (15)     026   RF   BALB/c   IgG   (17)     027   ALP   BALB/c   IgG   (18)     028-032   VI   4   G   BALB/c   IgG   (19)     039   unknown   BALB/c   IgG   (20)   (40)   (20)     040   RF   MRL/lpr   IgG   (21)   (20)     041   CaAg   BALB/c   IgG   (21)     042-043   VI   4   OX   BALB/c   IgG   (22)     044-048   OX   BALB/c   IgG   (21)   (22)   (24)   (44)   OX   BALB/c   IgG   (16)     055   OX   BALB/c   IgG   (15)   (15)   (15)   (16)   (15)   (16)   (16)   (16)   (16)   (16)   (16)   (16)   (16)   (16)   (16)   (16)   (16)   (16)   (16)   (16)   (16)   (16)   (16)   (16) <t< td=""><td>022</td><td></td><td></td><td></td><td>DNA</td><td>MRL/lpr</td><td>IgM</td><td>(14)</td></t<>	022				DNA	MRL/lpr	IgM	(14)
025 OX BALB/c IgG (16)   026 RF BALB/c IgM (17)   027 ALP BALB/c IgG (18)   028-032 VI 4 G BALB/c IgG (17)   039 unknown BALB/c IgG (20)   040 RF MRL/pr IgM (3)   041 CD20 BALB/c IgG (22)   042,043 4/5 VI 4 OX BALB/c IgG (22)   044-048 OX BALB/c IgG (16) (16)   055 OX BALB/c IgG (15) (16)   055 OX BALB/c IgM (13)   040-054 OX BALB/c IgM (16)   056 OX BALB/c IgM (16)   056 OX BALB/c N/A (24)   060,061 Anti-ID CSTBL/6 IgG (19)   063 11 V 11 nf NZB N/A (25)   064 9A V 9 G BALB/c N/A (26)   065 G BALB/c <td>023,024</td> <td></td> <td></td> <td></td> <td>OX</td> <td>BALB/c</td> <td>IgG</td> <td>(15)</td>	023,024				OX	BALB/c	IgG	(15)
$ \begin{array}{c c c c c c c c c c c c c c c c c c c $	025				OX	BALB/c	IgG	(16)
$\begin{array}{c c c c c c c c c c c c c c c c c c c $	026				RF	BALB/c	IgM	(17)
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	027		¥.7T		ALP	BALB/c	IgG	(18)
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	028-032		VI	4	G	BALB/C	N/A	(11)
$ \begin{array}{c c c c c c c c c c c c c c c c c c c $	033-038				unknown	BALB/C	IgG IaM	(19)
$\begin{array}{c c c c c c c c c c c c c c c c c c c $	040				RE	MRI //nr	IgM	(20)
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	041				CD20	BALB/c	IgG	(21)
$\begin{array}{c c c c c c c c c c c c c c c c c c c $	042,043	4/5	VI	4	OX	BALB/c	IgG	(22)
$\begin{array}{c c c c c c c c c c c c c c c c c c c $	044-048				OX	BALB/c	IgG	(23)
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	049-054				OX	BALB/c	IgG	(16)
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	055				OX	BALB/c	IgM	(16)
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	056				OX	BALB/c	IgG	(15)
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	057	10/10	.,		ox	BALB/c	IgM	(15)
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	058,059	12/13	v	12-13	G Anti ID	BALB/C	N/A	(24)
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	067	RE	v	ambimous	Anu-1D DE	C3/BL/0	Igu IaM	(9)
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	063	11	v	11	nf	NZB	N/A	(25)
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	064	9A	v	9	G	BALB/c	N/A	(26)
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	065				G	BALB/c	N/A	(27)
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	066				lysozyme	BALB/c	IgG	(28)
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	067				DNA	$(NZB \times W)F_1$	IgM	(14)
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	068	9B	v	9	G	BALB/c	N/A	(5)
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	069				digoxin	A/J	IgG	(29)
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	070	10	v	10	BrRBC		IgM	(30)
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	072	10	v	10	0 nf	A/J NZB	N/A N/A	(31)
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	073	38C	v	ambiguous	unknown	C3H/HeN	IoM	(23)
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	074				HA	BALB/c	IgG	(33)
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	075	24/25	II	24	G	BALB/c	N/A	(34)
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	076,077				G	BALB/c	N/A	(35)
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	078,079				RF	C3H/lpr	IgA	(3)
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	080				RF	BALB/c	IgM	(17)
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	081				GAC	A/J	IgG	(36)
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	082-084	1	11	1	G	BALB/c	N/A	(37)
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	085				dextran	BALB/C	lgA L-C	(38)
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	087				RE	BALB/C	IgG IgM	(39)
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	088				Anti-ID	BALB/c	IgM	(40)
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	089	2	II	2	DNA	$(NZB \times W)F_{1}$	IgM	(14)
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	090	8	I	8	DNP	BALB/c	IgA	(41)
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	091				HEL	BALB/c	IgG	(28)
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	092				RF	MRL/lpr	IgA	(3)
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	093,094				RF	BALB/c	IgM	(17)
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	095				RF	129/Sv	IgM	(17)
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	096	12		22	HA	BALB/c	IgG	(33)
Ope     Invasive     Zes     G     BALB/c     IN/A     (43)       099     RF     MRL/lpr     IgM     (8)       100     14-15-19     CEA     BALB/c     IgG     (44)       101     TNP     BALB/c     IgM     (45)       102     CASA     N/R     IgG     (46)       103     CEA     N/R     IgG     (47)       104-108     RF     BALB/c     IgM     (17)       109     RF     MRL/lpr     IgG     (3)	097	10/28	V	22	PC G	BALB/C	IgA N/A	(42)
Interpretation     IgG     (44)       100     14-15-19     CEA     BALB/c     IgG     (44)       101     TNP     BALB/c     IgG     (44)       102     CASA     N/R     IgG     (45)       103     CEA     N/R     IgG     (46)       104-108     RF     BALB/c     IgM     (17)       109     RF     MRL/lpr     IgG     (3)	099	17720	v	20	RE	MR1 //nr	In/A	(43)
101     TNP     BALB/c     IgM     (45)       102     CASA     N/R     IgG     (46)       103     CEA     N/R     IgG     (47)       104–108     RF     BALB/c     IgM     (17)       109     RF     MRL/lpr     IgG     (3)	100			14-15-19	CEA	BALB/c	IgG	(44)
102     CASA     N/R     IgG     (46)       103     CEA     N/R     IgG     (47)       104-108     RF     BALB/c     IgM     (17)       109     RF     MRL/lpr     IgG     (3)	101				TNP	BALB/c	IgM	(45)
103     CEA     N/R     IgG     (47)       104-108     RF     BALB/c     IgM     (17)       109     RF     MRL/lpr     IgG     (3)	102				CASA	N/R	IgG	(46)
104-108     RF     BALB/c     IgM     (17)       109     RF     MRL/lpr     IgG     (3)	103				CEA	N/R	IgG	(47)
RF MRL/lpr IgG (3)	104-108				RF	BALB/c	IgM	(17)
					KF	MKL/lpr	IgG	(3)

 $V_{\rm h}4/5$  gene family. V_hTrp subgroups V_h4 (groups IV and VI) and  $V_{k}5$  (group IV) were encoded by highly similar (around 90%) genes forming a gene family, termed  $V_{\rm L}4/5$ , that was separated from all other V_L sequences by >25% of their nucleotides. This was the largest  $V_{k}$  gene family, composed of approximately 25-50 members, as deduced from RFLP (Kofler et al. 1989) and gene cloning (Even et al. 1985) studies. Fourteen germline genes (ten  $V_{1}4$  and four  $V_{1}5$  genes) have been isolated thus far (Even et al. 1985, Höchtl et al. 1982).  $V_k 4/5$  genes were found in antibodies specific for galactan (Heller et al. 1987), oxazolone (Kaartinen and Maekelae 1987, Berek and Milstein 1987), dextran (Sikder et al. 1985, Akolkar et al. 1987), the lymphocyte surface marker CD20 (Liu 1987b), alprenolol (Nahmias et al. 1988), red blood cells (Pennell et al. 1988), and DNA, histone, and Ig self antigens (Shlomchik et al. 1987c, Kofler et al. 1987b, Kofler et al. 1988a, Shlomchik et al. 1987b).

 $V_k 12/13$  gene family. The sequences encoding  $V_k 12-13$  proteins (group V) formed another well-defined family that corresponded to all  $V_k 12-13$  subgroup proteins (Kabat et al. 1987, Potter et al. 1982). Two germline genes have been published (Nishioka and Leder 1980, Seidman et al. 1978), one of which (*K*2) may be involved in the nitrophenyl-specific anti-idiotypic response (Sablitzky and Rajewsky 1984). A more distant  $V_k 12/13$  gene encoded anti-idiotypic light chains in the GAT

^{*} Only sequences encoding the entire mature  $V_k$  region and differing by >4 bp are contained in this database (see Methods).

⁺ Codes of  $V_k$  genes are given in legend to Figure 1.

^{*}  $V_k$ ,  $V_k$  gene family (this report); Group,  $V_k$  protein groups (Kabat et al. 1987); bigroup, V, Trp35 subgroups (Potter et al. 1982).

Abbreviations: Spec, specificity; Ref, references; G, germline sequence; N/A, not applicable: HA, influenza hemagglutinin; RF, rheumatoid factor; nf, non-functional; N/R, not reported, Anti-ID, idiotype-specific antibody; CK, creatine kinase; OX. 2-phenyloxazolone; ALP, alprenolol; CaAg, carbohydrate antigen on human carcinoma cells; CD20, lymphocyte surface marker; BrRBC, bromelain-treated red blood cells; GAC, group A carbohydrate; GAT, Glu⁶⁰ Ala³⁰ Tyr¹⁰ polypeptide; DNP, dinitrophenyl; HEL, hen egg lysozyme; CEA, carcino-embryonal antigen; TNP, trinitrophenyl; CASA, cancer-associated surface antigen.

⁸ Strains and their Igk haplotypes (Kofler et al. 1989): Igk^a: MRL/lpr, MRL/n; Igk^b: NZB; Igk^c: BALB/c, C57BL/6, A/J, C3H, CBA/J, 129/Sv, NZW.

^{*}References: 1, (Heinrich et al. 1984); 2, (Clarke et al. 1985); 3, (Shlomchik et al. 1987c); 4, (Strohal et al. 1987); 5, (Pech et al. 1981); 6, (Altenburger et al. 1980); 7, (Eilat et al. 1988); 8, (Kofler et al. 1989); 9, (Sablitzky and Rajewsky 1984); 10, (Buckel et al. 1987); 11, (Even et al. 1985); 12, (Höchtl et al. 1982); 13, (Kofler et al. 1987b); 14, (Kofler et al. 1988); 15, (Berek et al. 1985); 16, (Berek et al. 1987); 17, (Shlomchik et al. 1987a); 18, (Nahmias et al. 1988); 19, (Liu et al. 1987); 20, (Parslow et al. 1984); 21, (Liu 1987); 22, (Kaartinen et al. 1983); 23, (Griffiths et al. 1984); 24, (Seidman et al. 1978); 25, (Kelley et al. 1985); 26, (Seidman et al. 1979); 27, (Max et al. 1980); 28, (Darsley and Rees 1985); 29, (Near and Haber 1989); 30, (Reininger et al. 1987); 31, (Sanz and Capra 1987); 32, (Campbell 1987); 33, (Meek et al. 1989); 34, (Selsing and Storb 1981); 35, (Joho et al. 1984); 36, (Lutz and Davie 1988); 37, (Corbet et al. 1987); 38, (Borden and Kabat 1987); 39, (Schiff et al. 1983); 40, (Ollier et al. 1985); 41, (Riley et al. 1986); 42, (Kwan et al. 1981); 43, (Boyd et al. 1986); 44, (Cabilly et al. 1984); 45, (Hawley et al. 1982); 46, (Sahagan 1986); 47, (Beidler et al. 1988).

**Table 2.** Correlation between  $V_k$  gene families and  $V_k$  protein groups and subgroups*.

$V_k$ gene family	V _k Cys subgroup	V _k Trp subgroup	V _k protein group
21	21	21	III
23	23	23	v
4/5	4	4	IV, VI
475	5	5	IV
12/13	12, 13	12-13	v
RF	ambiguous as	signment	v
11	11	11	v
9A	9	9	V
9B	9	9	v
10	10	10	v
38C	ambiguous as	signment	v
24/25	24	24	II
24/25	25	25	II, I
1	1,3,26	1	II
2	2	2	II
8	8	8	I
22	22	22	I
10/00	-	28	v
19/28	14, 15, 19	19	v

* Relatedness between  $V_k$  gene families and  $V_k$ Trp subgroups 20 and 27, and  $V_k$ Cys subgroups 6, 7, 16, 17, and 18 (for which only partial protein sequences are known), could not be determined.

(Glu⁶⁰ Ala³⁰ Tyr¹⁰) system (Ollier et al. 1985). In RFLP analyses, two strongly and several weakly hybridizing restriction fragments were observed (Kofler et al. 1989). Whether the latter corresponded to additional, more distant,  $V_k 12/13$  germline genes or are due to high similarity (>80%) in portions of the probe with other  $V_k$  genes (particularly those of  $V_k$  gene families 9A, 9B, 10, and 11) remains to be determined.

 $V_k RF$  gene family. The MRL-RF24 V_k protein (Kofler et al. 1987b), a member of the large protein group V, had 12 mismatches up to Trp35 from two V_k12-13 proteins (K2 and MOPC129), but differed from the remaining  $V_k$ 12-13 proteins (and all other  $V_k$  proteins) by >12 residues. Thus, this protein could not be unambiguously assigned to known Vk subgroups. Its nucleic acid sequence differed from all  $V_k$  sequences by >25%, thus forming a distinct  $V_k$  gene family, termed  $V_k RF$ . Used as a probe, this gene identified a single restriction fragment that was absent in haplotype  $Igk^{f}$  (Kofler et al. 1989). The corresponding (as yet uncloned) germline gene probably also encoded a BALB/c (Bruck et al. 1986) and a C57BL/6 (Sablitzky and Rajewsky 1984) idiotypespecific antibody, as well as an  $(NZB \times NZW)F_1$  DNAspecific autoantibody (Eilat et al. 1988).

 $V_k11$ , 9A, 9B, 10, and 38C gene families. The  $V_k$  gene families discussed thus far were clearly separated from all other  $V_k$  genes by >25% overall sequence

dissimilarity and in this respect resembled  $V_H$  gene families. The following five gene families, distantly related to  $V_k 12/13$  and  $V_k RF$ , were less well separated from one another.

 $V_k I1$  gene family. For this gene family with four to six germline genes by RFLP analysis (Kofler et al. 1989), a single nucleic acid sequence corresponding to a nonfunctional rearrangement from an NZB myeloma (Kelley et al. 1985) was present in the data bank. This sequence fulfilled protein assignment criteria for  $V_k$  protein subgroups 9, 10, and 11; however, it best matched  $V_k 11$  proteins. Comparisons with the entire data bank (including some  $V_k 9$  and  $V_k 10$  sequences) revealed matches of only 76% or less at the nucleic acid level, making this sequence the prototype for the  $V_k 11$  gene family.  $V_k 11$  proteins were observed in the beta 2, 1 fructosan response (Kabat et al. 1987).

 $V_k9A$  gene family. The V_k9 protein subgroup, another member of the large protein group V (Potter et al. 1982), comprised sequences that, at the nucleic acid level, fell into two distinct gene families, termed  $V_k9A$  and  $V_k9B$ . The  $V_k9A$  gene family included two germline genes (Seidman et al. 1979, Max et al. 1980), one of which may be expressed in hen egg lysozyme antibodies (Darsley and Rees 1985). Another expressed  $V_k9A$  gene from an NZB × NZW F₁ anti-DNA IgM (Kofler et al. 1988) was only 88% similar to the other germline gene and probably derived from an unknown  $V_k9A$  germline gene. In addition,  $V_k9A$  genes have been observed in GAT- idiotypespecific antibodies (Ollier et al. 1985).

 $V_k9B$  gene family. The T1 sequence and its germline counterpart, V-L6 (Pech et al. 1981), both assigned to the V_k9 protein subgroup (Potter et al. 1982), differed from V_k9A (and all other V_k) nucleic acid sequences by >20% and, hence, formed a separate family, termed V_k9B. Genes from this family encoded antibodies specific for digoxin (Panka and Margolies 1987, Near and Haber 1989) and *Escherichia coli* (Pennell et al. 1988), and bromelain-treated red blood cell autoantibodies from lupus and normal mice (Reininger et al. 1987).

 $V_k10$  gene family. This family corresponded to the V_k10 subgroup (protein group V). RFLP data suggested two to three  $V_k10$  germline genes (Kofler et al. 1989), one of which has been cloned (Sanz and Capra 1987, Wysocki et al. 1987) and probably encoded arsonate (Manser et al. 1987a, Meek et al. 1987), oxazolone (Berek et al. 1985), oligosaccharide (Matsuda and Kabat 1989), bromelain-treated red blood cell (Pennell et al. 1988) and RF-like (Shlomchik et al. 1987c) antibody responses. A more distant V_k10 sequence, with multiple in-frame stop codons, has been observed as a nonfunctional allele of an

NZB myeloma (Kelley et al. 1985), and might correspond to one of the uncloned  $V_k 10$  germline genes.

 $V_k38C$  gene family (tentative). The very similar (97%) sequences encoding the 38C13 lymphoma (Campbell 1987) and the VM113 anti-hemagglutinin hybridoma (Meek et al. 1989) light chains, respectively, were >20%different from all other  $V_k$  nucleic acid sequences in the database and, hence, could not be assigned to any  $V_k$ gene family; the closest matches (77-78%) were observed with a  $V_{\nu}10$  germline gene (Sanz and Capra 1987, Wysocki et al. 1987). At the amino acid level, members of four  $V_k$ Trp subgroups ( $V_k$ 9,  $V_k$ 10,  $V_k$ 11, and  $V_k$ 12/13) exhibited equally distant relatedness (nine and more residues difference in the N-terminal 35 amino acids), making unambiguous assignment at the protein level impossible. Whether these sequences were the representatives of a new  $V_k$  gene family or corresponded to highly mutated  $(V_k 10)$  genes remains to be determined.

 $V_k24/25$ ,  $V_k1$ , and  $V_k2$  gene families. The next three families were grouped together based on sequence similarity of up to 78% between  $V_k24/25$  members and  $V_k1$  and  $V_k2$  genes, respectively, and because the overall similarity between  $V_k2$  and some  $V_k1$  genes exceeded 80%. The latter observation, i. e., similarity of >80% between some, but not all, members of two gene families, obviously constitutes a problem in this type of  $V_k$  gene classification (see below).

 $V_{\rm h}24/25$  gene family. Originally, only a single  $V_{\rm h}24$ germline gene (involved in the phosphocholine response; Malipiero et al. 1987, Gearhart and Bogenhagen 1983) had been reported (Selsing and Storb 1981). Other investigators have cloned this, a related pseudogene, and two additional  $V_{\mu}24$  germline genes (Joho et al. 1984). The latter were only about 82–83% similar to the  $V_k 24$ prototype and may have encoded Streptococcus group A carbohydrate antibody light chains previously assigned to the V_k25 subgroup (Lutz and Davie 1988). Hence, these two VkTrp subgroups (protein group II) were probably encoded by distant members of a single  $V_k$  gene family. In addition to the four cloned  $V_{\mu}24/25$  germline genes, evidence was obtained for the presence of at least two more germline genes in this family: firstly, RFs from autoimmune and normal mice (Shlomchik et al. 1987a, 1987c) expressed  $V_k 24$  genes very similar to each other, but >30 bp different from the closest  $V_k 24$  germline gene, suggesting an additional germline gene; secondly, since all cloned  $V_k 24/25$  genes had 40 codons up to Trp35, the germline gene encoding Hy2.5.13 with 41 Nterminal amino acids (Kabat et al. 1987) has yet to be isolated.

 $V_kl$  and  $V_k2$  gene families. Protein subgroups  $V_k1$  (already previously condensed with Cys23 subgroups

 $V_k3$  and  $V_k26$ ; Potter et al. 1982) and  $V_k2$  were encoded by sequences that, using a stringent family definition, precluded classification into either a single, or two distinct, gene families; all  $V_k1$  nucleic acid sequences were >80% similar, yet the three almost identical  $V_k2$ nucleic acid sequences reported (Akolkar et al. 1987, Kofler et al. 1988, Panka et al. 1988) shared up to 81.7% similarity with some, but only about 75% with other,  $V_k1$ members. Moreover, sequence similarity in the 3' portion of several  $V_k1$  and  $V_k2$  genes was around 90%. These two "gene families" were, therefore, partially overlapping. However, for reasons of clarity, we have retained them as separate  $V_k$  gene families.

Three  $V_{kl}$  germline genes (Corbet et al. 1987) and approximately 40 expressed  $V_k1$  sequences have been reported. With the exception of an anti-dextran  $V_k$  gene (W3129; Borden and Kabat 1987) with >15% differences from any known  $V_k l$  gene, all expressed sequences were highly homologous to one of the above germline genes, suggesting that the total  $V_k l$  germline gene number may not exceed four. A more direct complexity estimate in our previous RFLP analysis was hampered by crosshybridization of the  $V_k 1$  probe to non- $V_k 1$  genes due to >80% sequence similarity in the 3' region of  $V_k I$  and other  $V_k$  genes (see below and Kofler et al. 1989).  $V_k I$ genes were used in a variety of responses to foreign and self antigens (reviewed by Schiff et al. 1988, Kofler et al. 1987a).  $V_{12}$  germline genes have not yet been reported; the three expressed sequences encoded antibodies to dextran (Akolkar et al. 1987), digoxin (Panka et al. 1988), and DNA (Kofler et al. 1988).

 $V_k 8$ ,  $V_k 22$ , and  $V_k 19/28$  gene families. The following three gene families were separated from each other by >20%, and from all other  $V_k$  genes by >25%, overall sequence similarity; however, large portions (codons 35 to 94) of their genes had between 80% and 89% common nucleotides, leading to extensive cross-hybridizations (Kofler et al. 1989).

 $V_k 8$  gene family. All sequences encoding  $V_k Trp$  subgroup  $V_k 8$  (protein group I) were around 90% similar and shared up to 78% of their nucleotides with  $V_k 19/28$  and  $V_k 22$  genes. Similarity in codons 35–94 was even higher, reaching 87% with  $V_k 28$  genes. The complexity of this gene family was difficult to assess by RFLP analyses due to possible cross-hybridization, however, at least half of the 13–20 fragments hybridizing to a  $V_k 8$  probe probably belonged to this large family (Kofler et al. 1989).  $V_k 8$  genes encoded antibodies to phosphocholine (Malipiero et al. 1987), dinitrophenyl (Riley et al. 1986), and hen egg lysozyme (Darsley and Rees 1985), as well as RF-like (Shlomchik et al. 1987a, 1987c) and DNA-specific (Eilat et al. 1988) autoantibodies.

R. Strohal et al.: Mouse  $V_k$  gene classification

 $V_{\rm k}22$  gene family. The only two, almost identical,  $V_{\rm k}22$ (protein group I) sequences available for comparison, S107A (Kwan et al. 1981) and HPCA97 (Berek 1984), revealed between 80% and 89% similarity with a large portion (codons 35 to 94) of all  $V_{\nu}19/28$  genes. The remaining nucleotides were, however, only < 70% similar, resulting in an overall similarity of 72%-75%, thus refuting assignment of  $V_k 22$  and  $V_k 19/28$  genes to a common gene family. Similarity with  $V_k 8$  genes was in the range of 75%-77% and mismatches were distributed evenly over the entire gene. RFLP analyses suggested one to two  $V_{22}$  germline genes; additional weak restriction fragments hybridizing to a  $V_k22$  probe on Southern blots probably corresponded to genes from the  $V_k 19/28$  and  $V_k$ 8 families (Kofler et al. 1989).  $V_k$ 22 genes encoded phosphocholine antibodies (Malipiero et al. 1987).

 $V_k 19/28$  gene family. Sequences encoding  $V_k$ Trp subgroups 19 (comprising  $V_k$ Cys14 and 15 sequences) and 28 were > 80% similar among each other and differed from all other  $V_k$  genes (except  $V_k 8$  and  $V_k 22$ , see above) by >25%. Thus, they were combined to a single  $V_k$  gene family, which was termed  $V_k 19/28$ . However, this  $V_k$ gene family (like some other  $V_k$  gene families, see below) behaved atypically in nucleic acid hybridization studies as compared to  $V_H$  gene families: different DNA probes from this family, i. e., a  $V_k 19$  and a  $V_k 28$  probe, did not hybridize to an identical, but to an overlapping, set of restriction fragments (Kofler et al. 1989). This could be explained by cross-hybridization of the  $V_k 28$ , but not the  $V_k 19$ , probe with  $V_k 8$  genes.

RFLP data suggested four to six  $V_k 19/28$  germline genes (Kofler et al. 1989), one of which, a  $V_k 28$  germline gene, also known as  $V_k Ser$ , from haplotypes Igk- $VSer^a$ , Igk- $VSer^b$ , Igk- $VSer^c$ , and Igk- $VSer^d$ , has been cloned (Boyd et al. 1986, Ponath et al. 1989).  $V_k 19/28$  genes encoded antibodies to trinitrophenyl (Hawley et al. 1982), carcinoembryonic antigen (Cabilly et al. 1984, Beidler et al. 1988), human breast/lung/colon cancer cells (Sahagan 1986), influenza hemagglutinin (Meek et al. 1989), and an RNA-specific (Eilat et al. 1988) and some RF-like autoantibodies (Kofler et al. 1989, Shlomchik et al. 1987a, 1987c).

# Relatedness between $V_k$ gene families and implications for nucleic acid hybridization assays with $V_k$ probes

Figure 3 shows the relatedness between different  $V_k$  gene families as reflected by overall nucleic acid sequence similarity. A significant difference from  $V_H$  gene families was apparent, since the latter are generally more distantly

	Vk21	Vk23	Vk4/5	Vk12/13	VkRF	Vk11	Vk9A	Vk9B	Vk10	Vk38c	Vk24/25	Vk1	Vk2	Vk8	Vk22
Vk23	65-67														
Vk4/5	62-71	61-64													
Vk12/13	62-64	60-62	60-64												
VkRF	63-66	65-67	59-63	67-70											
Vk11	61	63	58-62	69-71	71										
Vk9A	61-67	61-70	63-67	70-71	69-73	69-72									
Vk9B	63-67	61-65	62-67	70-73	71-72	74-76	73-76								
Vk10	57-67	63-66	60-68	65-71	71-73	71-72	74-77	71-75							
Vk38c	60-65	64-65	59-64	66-70	71	69	69-72	73	72-77						
Vk24/25	63-67	59-60	57-65	57-61	60-62	57	58-63	59-61	58-60	58~59					
Vk1	62-68	62-67	58-62	59-61	59-62	57-62	57-64	58-65	57-63	58-61	70-78				
Vk2	63-66	61	56-60	56-58	61	60	59-61	60-63	58-59	57	74-76	73-81			
Vk8	64-70	61-65	62-66	60-63	65-66	61-63	63-65	65	60-61	61-62	62-68	63-69	64-67		
Vk22	64-65	61-62	60-66	58-60	61	58	60-61	60-62	57-59	58	60-63	62-64	63	75-77	8
Vk19/28	65-67	62-66	63-70	58-62	62-66	63-65	62-67	65-70	60-66	59-64	58-65	60-66	60-65	72-78	72-75

Fig. 3. Sequence similarity between different  $V_k$  gene families; comparison of known germline genes and derivatives of putative germline genes (i. e., sequences differing from known germline genes by > 10% and primarily of the IgM isotype). Indicated are the highest and lowest percentages of nucleic acid sequence similarity between members from two families; single percentage resulted from comparisons yielding identical percentages. Shading intensities highlight increased overall similarity between the respective families.

related by sequence similarity. Obviously, if members from different families are only a few percent less similar than those from within a family, cross-hybridizations might occur, particularly if these differences are not evenly distributed over the entire sequence. As described above, large sequence portions with high degrees of similarity were indeed observed in genes from families 8, 22, and 19/28, and thus explain the previously observed cross-hybridizations between those families. Closer scrutiny of the similarities between portions of  $V_k$  sequences from different families revealed that the 3' region (particularly codons 57-88, corresponding to frame work region 3) were generally more closely related than the remaining sequence, and this portion might precipitate unexpected cross-hybridizations, even between otherwise distant  $V_k$  gene families. For example,  $V_k 10$  and  $V_k 9A$ genes had a 135 bp 3' sequence with 83% similarity, and  $V_k RF$  and  $V_k 9B$  genes shared 84% of 103 nucleotides at the 3' end. As a further complication, different genes from a given family may exhibit more or less cross-hybridizations with genes from other families.

Because of the differences in the organization of  $V_H$ and  $V_k$  genes, nucleic acid sequence hybridization assays with  $V_k$  DNA probes require particular care in the selection of probes and in data interpretation. While in general any member of a  $V_H$  gene family used as a probe will recognize its entire family, but will not cross-hybridize with other families, our previous RFLP analyses and the current study strongly suggest that  $V_k$  probes may often behave differently. As a rule, probes devoid of the more "promiscuous" 3' sequences will be more specific; however, such probes may not always hybridize to all members of their gene families, and therefore require the use of two or more genes to probe the entire family.

### $V_k$ germline gene complexity

Another question addressed in this study regards the total number of  $V_k$  genes in the genome of inbred mice. We estimated the complexity of known  $V_k$  gene families by using RFLP criteria (Kofler et al. 1989) and by taking into account expressed and germline genes identified for each family. Regarding expressed sequences, we assumed that IgM sequences with >6, and IgG sequences with >30 mismatches from known germline genes. Allelic differences were also considered, however this was a minor concern as the majority of sequences in the database (91/109) derived from the same haplotype (*Igk*^c).

This approach led to a total of about 70–140 genes (Table 3). Obviously, such estimates need to be taken with caution due to the peculiarities of  $V_k$  gene probes discussed above, and to inherent limitations of the RFLP technique (discussed by Kofler et al. 1989). Furthermore,

Table 3.  $V_k$  germline gene complexity*

$V_k$ gene family	Germline genes					
	Cloned	Estimated				
V,21	5	6-13				
V,23	1	2-4				
$\hat{V_{i}}4/5$	14	25-50				
Ŷ ₁ 12/13	2	2-8				
Ŷ, RF	-	0-1 ⁺				
Ŷ ₄ 11	_	4-6				
V,9A	2	4-9				
<i>V_µ9B</i>	1	2				
$\hat{V_{t}}10$	1	2-3				
Ŷ ₄ 38C	_	?				
V,24/25	4	6				
$\tilde{V_k}$	3	4-6				
$\tilde{V_{k}2}$	-	1-6				
<i>V</i> _{<i>k</i>} 8	-	5-16				
V,22	-	1-2				
V _k 19/28	_	4-6	;			
Total	35	66-136	-			

* References to cloned  $V_k$  germline genes are given throughout the text. ⁺ The one-member  $V_k RF$  family is deleted in haplotype  $Igk^f$  mice (Kofler et al. 1989).

possible additional, as yet uncloned,  $V_k$  genes and gene families in the mouse genome have not been included. However, although evidence for some additional  $V_k$ genes exists, their number might be limited. For two  $V_{\rm k}$ Trp subgroups,  $V_{\rm k}$ 27 (group I) and  $V_{\rm k}$ 20 (group VII), nucleic acid sequences have not been identified, but the corresponding  $V_k$  gene families may be small since only a single sequence for each subgroup has been reported to date. D'Hoostelaere published another novel  $V_k$  gene family (pC9-26) with approximately six members as suggested by RFLP analyses (D'Hoostelaere et al. 1988), but whether or not this family related to either of the two subgroups above, or to V_k38C, is unknown. Nevertheless, the large number of responses to foreign and self antigens investigated at the nucleic acid sequence level. and repeated isolation of identical sequences, suggest that the majority of the mouse  $V_k$  germline repertoire might now be known.

Acknowledgments. We thank Dr. G. Wick for critically reviewing, and Ms. M. Kat Occhipinti for editing, this manuscript. The work reported herein was supported by a grant from the Austrian Research Council (Project S-41/06). R. Strohal is supported by a fellowship from the Emil Boral Stiftung and G. Kroemer receives an Erwin Schrödinger Stipend (J0307M) from the Austrian Research Council.

## References

Akolkar, P. N., Sikder, S. K., Bhattacharya, S. B., Liao, J., Gruezø, F., Morrison, S. L., and Kabat, E. A.: Different V_L and V_H germline genes are used to produce similar combining sites with specificity for alpha (1 – ->6) dextrans. *J Immunol 138*: 4472-4479, 1987

- Alt, F. W., Blackwell, K., DePinho, R. A., Reth, M. G., and Yancopoulos, G. D.: Regulation of genome rearrangement events during lymphocyte differentiation. *Immunol Rev* 89: 5–30, 1986
- Altenburger, W., Steinmetz, M., and Zachau, H.G.: Functional and non-functional joining in immunoglobulin light chain genes of a mouse myeloma. *Nature* 287: 603-607, 1980
- Beidler, C. B., Ludwig, J. R., Cardenas, J., Phelps, J., Papworth, C. G., Melcher, E., Sierzega, M., Myers, L. J., Unger, B. W., Fisher, M., David, G. S., and Johnson, M. J.: Cloning and high level expression of a chimeric antibody with specificity for human carcinoembryonic antigen. J Immunol 141: 4053-4060, 1988
- Berek, C.: The D segment defines the T15 idiotope: the immunoresponse of A/J mice to Pneumococcus pneumoniae. Eur J Immunol 14: 1043-1048, 1984
- Berek, C. and Milstein, C.: Mutation drift and repertoire shift in the maturation of the immune response. *Immunol Rev* 96: 23-41, 1987
- Berek, C., Griffiths, G. M., and Milstein, C.: Molecular events during maturation of the immune response to oxazolone. *Nature 316*: 412-418, 1985
- Berek, C., Jarvis, J. M., and Milstein, C.: Activation of memory and virgin B cell clones in hyperimmune animals. *Eur J Immunol 17:* 1121, 1987
- Borden, P. and Kabat, E. A.: Nucleotide sequence of the cDNAs encoding the variable region heavy and light chains of a myeloma protein specific for the terminal nonreducing end of alpha (1-6) dextran. Proc Natl Acad Sci USA 84: 2440-2443, 1987
- Boyd, T. M., Goldrick, M. M., and Gottlieb, P. D.: Structural differences in a single gene encoding the V_kSer group of light chains explain the existence of two mouse light-chain genetic markers. *Proc Natl Acad Sci USA 83*: 9134-9138, 1986
- Brodeur, P. H. and Riblet, R.: The immunoglobulin heavy chain variable region (Igh-V) locus in the mouse. I. One hundred Igh-V genes comprise seven families of homologous genes. *Eur J Immunol* 14: 922–930, 1984
- Bruck, C., Co, M. S., Slaoui, M., Gaulton, G. N., Smith, T., Fields, B. N., Mullins, J. I., and Greene, M. I.: Nucleic acid sequence of an internal image-bearing monoclonal anti-idiotype and its comparison to the sequence of the external antigen. *Proc Natl Acad Sci* USA 83: 6578–6582, 1986
- Buckel, P., Huebner-Parajsz, C., Mattes, R., Lenz, H., Haug, H., and Beaucamp, K.: Cloning and nucleotide sequence of heavy- and light-chain cDNAs from creatine-kinase-specific monoclonal antibody. *Gene 51*: 13-19, 1987
- Cabilly, S., Riggs, A. D., Pande, H., Shively, J. E., Holmes, W. E., Rey, M., Perry, L. J., Wetzel, R., and Heyneker, H. L.: Generation of antibody activity from immunoglobulin polypeptide chains produced in *Escherichia coli*. *Proc Natl Acad Sci USA 81*: 3273-3277, 1984
- Campbell, M. J.: Idiotype vaccination against murine B cell lymphoma. Humoral and cellular responses elicited by tumor-derived immunoglobulin M and its molecular subunits. J Immunol 139: 2825-2833, 1987
- Clarke, S. H., Huppi, K., Ruezinsky, D., Staudt, L., Gerhard, W., and Weigert, M.: Inter- and intraclonal diversity in the antibody response to influenza hemagglutinin. J Exp Med 161: 687–704, 1985
- Corbet, S., Milili, M., Fougereau, M., and Schiff, C.: Two  $V_k$  germline genes related to the GAT idiotypic network (Ab1 and Ab3/Ab1') account for the major subfamilies of the mouse  $V_k$ -1 variability subgroup. *J Immunol 138*: 932–939, 1987
- Cory, S., Tyler, B. M., and Adams, J. M.: Sets of immunoglobulin V_k genes homologous to ten cloned V_k sequences: implications for the number of germline V_k genes. J Mol Appl Genet 1: 103–116, 1981
- Darsley, M. J. and Rees, A. R.: Nucleotide sequence of five antilysozyme monoclonal antibodies. *EMBO J* 4: 393–398, 1985

Devaux, C., Moinier, D., Mazza, G., Guo, X., Marchetto, S.,

Fougereau, M., and Rierres, M.: Preferential expression of  $V_k21E$  on IdX Ia.7 positive monoclonal anti-I-E antibodies. *J Immunol* 134: 4024-4030, 1985

- D'Hoostelaere, L. A., Huppi, K., Mock, B., Mallett, C., and Potter, M.: The Igk L chain allelic groups among the Igk haplotypes and Igk crossover populations suggest a gene order. J Immunol 141: 652-661, 1988
- Dildrop, R.: A new classification of mouse V_H sequences. Immunol Today 5: 85-86, 1984
- Eilat, D., Webster, D. M., and Rees, A. R.: V region sequences of anti-DNA and anti-RNA autoantibodies from NZB/NZW F1 mice. J Immunol 141: 1745-1753, 1988
- Even, J., Griffiths, G. M., Berek, C., and Milstein, C.: Light chain germ-line genes and the immune response to 2-phenyloxazolone. *EMBO J 4*: 3439-3445, 1985
- Gearhart, P. J. and Bogenhagen, D. F.: Clusters of point mutations are found exclusively around rearranged antibody variable genes. *Proc Natl Acad Sci USA 80*: 3439–3443, 1983
- Griffiths, G. M., Berek, C., Kaartinen, M., and Milstein, C.: Somatic mutation and the maturation of immune response to 2-phenyloxazolone. *Nature 312*: 271-275, 1984
- Hawley, R.G., Shulman, M.J., Murialdo, H., Gibson, D. M., and Hozumi, N.: Mutant immunoglobulin genes have repetitive DNA elements inserted into their intervening sequences. *Proc Natl Acad Sci USA* 79: 7425-7429, 1982
- Heinrich, G., Traunecker, A., and Tonegawa, S.: Somatic mutation creates diversity in the major group of mouse immunoglobulin kappa light chains. *J Exp Med 159*: 417-435, 1984
- Heller, M., Owens, J. D., Mushinski, J. F., and Rudikoff, S.: Amino acids at the site of  $V_k$ - $J_k$  recombination not encoded by germline sequences. *J Exp Med 166*: 637-646, 1987
- Höchtl, J., Müller, C. R., and Zachau, H. G.: Recombined flanks of the variable and joining segments of immunoglobulin genes. *Proc Natl Acad Sci USA* 79: 1383-1387, 1982
- Joho, R., Gershenfeld, H., and Weissman, I. L.: Evolution of a multigene family of V_k germ line genes. *EMBO J 3*: 185–191, 1984
- Kaartinen, M. and Maekelae, O.: Functional analogues of the V_kOx1 gene in different strains of mice: evolutionary conservation but diversity based on V-J joining. J Immunol 138: 1613–1617, 1987
- Kaartinen, M., Griffiths, G. M., Markham, A. F., and Milstein, C.: mRNA sequences define an unusually restricted IgG response to 2-phenyloxazolone and its early diversification. *Nature 304:* 320-324, 1983
- Kabat, E. A., Wu, T. T., Reid-Miller, M., Perry, H. M., and Gottesman, K.S.: Sequences of Proteins of Immunological Interest, 4th edn, US Department of Health and Human Services, Public Health Service, National Institutes of Health, Bethesda, 1987
- Kearney, J. F., Radbruch, A., Liesegang, B., and Rajewsky, K.: A mouse myeloma cell line that has lost immunoglobulin expression but permits the construction of antibody-searching hybrid cell lines. *J Immunol 123*: 1548–1550, 1979
- Kelley, D. E., Wiedemann, L. M., Pittet, A. C., Strauss, S., Nelson, K. J., Davis, J., Van Ness, B., and Perry, R. P.: Nonproductive kappa immunoglobulin genes: recombinational abnormalities and other lesions affecting transcription, RNA processing, turnover, and translation. *Mol Cell Biol 5*: 1660–1675, 1985
- Kofler, R.: A new murine Ig V_H gene family. J Immunol 140: 4031–4034, 1988
- Kofler, R., Dixon, F. J., and Theofilopoulos, A. N.: The genetic origin of autoantibodies. *Immunol Today* 8: 374–380, 1987a
- Kofler, R., Noonan, D.J., Strohal, R., Balderas, R.S., Møller, N.P.H., Dixon, F.J., and Theofilopoulos, A.N.: Molecular analysis of the murine lupus-associated anti-self response: involvement of a large number of heavy and light chain variable region genes. *Eur J Immunol 17:* 91–95, 1987b

R. Strohal et al.: Mouse  $V_k$  gene classification

R. Strohal et al.: Mouse  $V_k$  gene classification

- Kofler, R., Strohal, R., Balderas, R. S., Johnson, M. E., Noonan, D. J., Duchosal, M. A., Dixon, F. J., and Theofilopoulos, A. N.: Immunoglobulin k light chain variable region gene complex organization and immunoglobulin genes encoding anti-DNA autoantibodies in lupus mice. J Clin Invest 82: 852-860, 1988
- Kofler, R., Duchosal, M. A., and Dixon, F. J.: Complexity, polymorphism and connectivity of mouse V_k gene families. *Immunogenetics* 29: 65-74, 1989
- Kwan, S.-P., Rudikoff, S., Seidman, J. G., Leder, P., and Scharff, M. D.: Nucleic acid and protein sequences of phosphocholinebinding light chains. J Exp Med 153: 1366-1370, 1981
- Liu, A. Y.: Production of a mouse-human chimeric monoclonal antibody to CD20 with potent Fc-dependent biologic activity. J Immunol 139: 3521, 1987
- Liu, A. Y., Robinson, R. R., Hellström, K. E., Murray, E. D., Jr., Chang, C. P., and Hellström, I.: Chimeric mouse-human IgG1 antibody that can mediate lysis of cancer cells. *Proc Natl Acad Sci* USA 84: 3439-3443, 1987
- Livant, D., Blatt, C., and Hood, L.: One heavy chain variable region gene segment subfamily in the BALB/c mouse contains 500-1000 or more members. *Cell* 47: 461-470, 1986
- Lutz, C. T. and Davie, J. M.: Genetics and primary structure of  $V_k$  gene segments encoding antibody to Streptococcal group A carbohydrate. Comparison of  $V_k$  gene structure with idiotope expression. J Immunol 140: 641-645, 1988
- Malipiero, U. V., Levy, N. S., and Gearhart, P. J.: Somatic mutation in anti-phosphorylcholine antibodies. *Immunol Rev* 96: 59-74, 1987
- Manser, T., Parhami-Seren, B., Margolies, M. N., and Gefter, M. L.: Somatically mutated forms of a major anti-p-azophenylarsonate antibody variable region with drastically reduced affinity for p-azophenylarsonate. By-products of an antigen-drive immune response? J Exp Med 166: 1456-1463, 1987a
- Manser, T., Wysocki, L.J., Margolies, M.N., and Gefter, M.L.: Evolution of antibody variable region structure during the immune response. *Immunol Rev* 96: 141-162, 1987b
- Matsuda, T. and Kabat, E. A.: Variable region cDNA sequences and antigen binding specificity of mouse monoclonal antibodies to isomaltosyl oligosaccharides coupled to proteins. T-dependent analogous of  $\alpha(1-->6)$ dextran. J Immunol 142: 863-870, 1989
- Max, E. E., Seidman, J. G., Miller, H., and Leder, P.: Variation in the crossover point of kappa immunoglobulin gene V-J recombination: evidence from a cryptic gene. *Cell* 21: 793-799, 1980
- Meek, K., Sanz, Z., Rathbun, G., Nisonoff, A., and Capra, J. D.: Identity of the V_k10-Ars-A gene segments of the A/J and BALB/c strains. *Proc Natl Acad Sci USA 84:* 6244-6248, 1987
- Meek, K., Johansson, B., Schulman, J., Bona, C., and Capra, J. D.: Nucleotide changes in sequential variants of influenza virus hemagglutinin genes and molecular structures of corresponding monoclonal antibodies specific for each variant. *Proc Natl Acad Sci USA* 86: 4664–4668, 1989
- Nahmias, C., Strosberg, A. D., and Emorine, L. J.: The immune response toward beta-adrenergic ligands and their receptors. VIII. Extensive diversity of V_H and V_L genes encoding anti-alprenolol antibodies. J Immunol 140: 1304-1311, 1988
- Near, R. I. and Haber, E.: Characterization of the heavy and light chain immunoglobulin variable region genes used in a set of anti-digoxin antibodies. *Mol Immunol 26*: 371–382, 1989
- Nishioka, Y. and Leder, P.: Organization and complete sequence of identical embryonic and plasmacytoma kappa V-region genes. J Biol Chem 255: 3691-3694, 1980
- Ollier, P., Rocca-Serra, J., Somme, G., Theze, J., and Fougereau, M.: The idiotypic network and the internal image: possible regulation of a germ-line network by paucigene encoded Ab2 (anti-idiotypic) antibodies in the GAT system. *EMBO J 4*: 3681-3688, 1985

Panka, D. J. and Margolies, M. N.: Complete variable region sequences

of five homologous high affinity anti-digoxin antibodies. *J Immunol* 139: 2385-2391, 1987

- Panka, D. J., Mudgett-Hunter, M., Parks, D. R., Peterson, L. L., Herzenberg, L. A., Haber, E., and Margolies, M. N.: Variable region framework differences result in decreased or increased affinity of variant anti-digoxin antibodies. *Proc Natl Acad Sci USA* 85: 3080–3084, 1988
- Parslow, T. G., Blair, D. L., Murphy, W. J., and Granner, D. K.: Structure of the 5' ends of immunoglobulin genes: a novel conserved sequence. Proc Natl Acad Sci USA 81: 2650-2654, 1984
- Pech, M., Höchtl, J., Schnell, H., and Zachau, H. G.: Differences between germ-line and rearranged immunoglobulin V_k coding sequences suggest a localized mutation mechanism. *Nature 291*: 668-670, 1981
- Pennell, C. A., Arnold, L. W., Haughton, G., and Clarke, S. H.: Restricted Ig variable region gene expression among Ly-1⁺ B cell lymphomas. J Immunol 141: 2788–2796, 1988
- Perlmutter, R. M., Kearney, J. F., Chang, S. P., and Hood, L. E.: Developmentally controlled expression of immunoglobulin V_H genes. *Science* 227: 1597-1601, 1985
- Ponath, P. D., Hillis, D. M., and Gottlieb, P. D.: Structural and evolutionary comparisons of four alleles of the mouse immunoglobulin kappa chain gene, *Igk-VSer. Immunogenetics* 29: 249-257, 1989
- Potter, M.: Antigen-binding myeloma proteins of mice. Adv Immunol 25: 141-211, 1977
- Potter, M., Newell, J. B., Rudikoff, S., and Haber, E.: Classification of mouse V_k groups based on the partial amino acid sequence to the first invariant tryptophan: impact of 14 new sequences from IgG myeloma proteins. *Mol Immunol 19:* 1619–1630, 1982
- Reininger, L., Ollier, P., Poncet, P., Kaushik, A., and Jaton, J. C.: Novel V genes encode virtually identical variable regions of six murine monoclonal anti-bromelain-treated red blood cell autoantibodies. J Immunol 138: 316–323, 1987
- Reininger, L., Kaushik, A., Izui, S., and Jaton, J.-C.: A member of a new V_H gene family encodes anti-bromelinized mouse red blood cell autoantibodies. *Eur J Immunol 18*: 1521-1526, 1988
- Riley, S. C., Connors, S. J., Klinman, N. R., and Ogata, R. T.: Preferential expression of variable region heavy chain gene segments by predominant 2,4-dinitrophenyl-specific BALB/c neonatal antibody clonotypes. *Proc Natl Acad Sci USA 83*: 2589-2593, 1986
- Sablitzky, F. and Rajewsky, K.: Molecular basis of an isogeneic antiidiotypic response. EMBO J 3: 3005-3012, 1984
- Sahagan, B. G.: A genetically engineered murine/human chimeric antibody retains specificity for human tumor-associated antigen. J Immunol 137: 1066, 1986
- Sanz, I. and Capra, J. D.: V_k and J_k gene segments of A/J Ars-A antibodies: somatic recombination generates the essential arginine at the junction of the variable and joining regions. *Proc Natl Acad Sci USA 84*: 1085-1089, 1987
- Schiff, C., Corbet, S., Milili, M., and Fougereau, M.: Interstrain conservation of the murine GAT-specific antibody V_k repertoire as analyzed at the germline gene level. *EMBO J 2*: 1771-1776, 1983
- Schiff, C., Corbet, S., and Fougereau, M.: The Ig germline gene repertoire: economy or wastage? *Immunol Today* 9: 10-14, 1988
- Seidman, J. G., Leder, A., Edgell, M. H., Polsky, F., Tilghman, S. M., Tiemeier, D. C., and Leder, P.: Multiple related immunoglobulin variable-region genes identified by cloning and sequence analysis. *Proc Natl Acad Sci USA 75*: 3881–3885, 1978
- Seidman, J. G., Max, E. E., and Leder, P.: A kappa-immunoglobulin gene is formed by site-specific recombination without further somatic mutation. *Nature* 280: 370-375, 1979
- Selsing, E. and Storb, U.: Somatic mutation of immunoglobulin lightchain variable-region genes. Cell 25: 47-58, 1981
- Shlomchik, M., Nemazee, D., Van Snick, J., and Weigert, M.: Variable region sequences of murine IgM anti-IgG monoclonal autoan-

tibodies (rheumatoid factors). II. Comparison of hybridomas derived by lipopolysaccharide stimulation and secondary protein immunization. J Exp Med 165: 970-987, 1987a

- Shlomchik, M. J., Aucoin, A. H., Pisetsky, D. S., and Weigert, M. G.: Structure and function of anti-DNA autoantibodies derived from a single autoimmune mouse. *Proc Natl Acad Sci USA 84*: 9150–9154, 1987b
- Shlomchik, M. J., Marshak-Rothstein, A., Wolfowicz, C. B., Rothstein, T. L., and Weigert, M. G.: The role of clonal selection and somatic mutation in autoimmunity. *Nature* 328: 805-811, 1987c
- Sikder, S. K., Akolkar, P. N., Kaladas, P. M., Morrison, S. L., and Kabat, E. A.: Sequences of variable regions of hybridoma antibodies to alpha (1->6) dextran in BALB/c and C57BL/6 mice. *J Immunol 135*: 4215-4221, 1985
- Strohal, R., Kroemer, G., Wick, G., and Kofler, R.: Complete variable region sequence of a non-functionally rearranged kappa light chain transcribed in the non-secretor P3-X63-Ag8.653 myeloma cell line. *Nucleic Acids Res* 15: 2771, 1987

- Tonegawa, S.: Somatic generation of antibody diversity. *Nature 302:* 575-581, 1983
- Winter, E., Radbruch, A., and Krawinkel, U.: Members of novel V_H gene families are found in VDJ regions of polyclonally activated B-lymphocytes. *EMBO J 4*: 2861–2867, 1985
- Wysocki, L. J., Gridley, T., Huang, S., Grandea, A. G., and Gefter, M. L.: Single germline V_H and V_k genes encode predominating antibody variable regions elicited in strain A mice by immunization with p-azophenylarsonate. J Exp Med 166: 1-11, 1987
- Yancopoulos, G. D., Desiderio, S. V., Paskind, M., Kearney, J. F., Baltimore, D., and Alt, F. W.: Preferential utilization of the most J_H-proximal V_H gene segments in pre-B-cell lines. *Nature 311*: 727-733, 1984

Received July 31, 1989; revised version received September 26, 1989.