Mouse V_{k} gene classification by nucleic acid sequence similarity

Robert Strohal, Arno Helmberg, Guido Kroemer, and Reinhard Kofler
Institute for General and Experimental Pathology, University of Innsbruck Medical School, Innsbruck, Austria

Abstract

Analyses of immunoglobulin ($I g$) variable (V) region gene usage in the immune response, estimates of V gene germline complexity, and other nucleic acid hybridization-based studies depend on the extent to which such genes are related (i. e., sequence similarity) and their organization in gene families. While mouse Igh heavy chain V region (V_{H}) gene families are relatively wellestablished, a corresponding systematic classification of Igk light chain V region $\left(V_{k}\right)$ genes has not been reported. The present analysis, in the course of which we reviewed the known extent of the V_{k} germline gene repertoire and V_{k} gene usage in a variety of responses to foreign and self antigens, provides a classification of mouse V_{k} genes in gene families composed of members with $>80 \%$ overall nucleic acid sequence similarity. This classification differed in several aspects from that of V_{H} genes: only some V_{k} gene families were as clearly separated (by $>25 \%$ sequence dissimilarity) as typical V_{H} gene families; most V_{k} gene families were closely related and, in several instances, members from different families were very similar ($>80 \%$) over large sequence portions; frequently, classification by nucleic acid sequence similarity diverged from existing classifications based on amino-terminal protein sequence similarity. Our data have implications for V_{k} gene analyses by nucleic acid hybridization and describe potentially important differences in sequence organization between V_{H} and V_{k} genes.

Introduction

The ability of the immune system to recognize virtually any antigen is mediated by the enormous sequence variability in the amino-terminal region of immunoglobulin (Ig) heavy and light chains. Among other

[^0]mechanisms, this diversity is generated by somatic juxtaposition of gene segments that are separated in the germline, termed variable (V), diversity (heavy chain only), and joining (J) gene segments (reviewed by Tonegawa 1983, Alt et al. 1986). V genes contribute all residues of the first and second complementarity determining region (CDR) of both heavy and light chains, as well as part of the light chain CDR-3, and hence contribute the majority of antigen contact residues (Kabat et al. 1987). In mice, several hundred V_{H} and V_{k} (over 90% of all serum Ig is of the Igk isotype) gene segments exist in the germ line (Brodeur and Riblet 1984, Livant et al. 1986, Cory et al. 1981, Kofler et al. 1989). These genes can be very similar or may differ by over 40% nucleotides, and V region classifications based on nucleic and/or amino acid sequence similarity have been proposed (Brodeur and Riblet 1984, Dildrop 1984, Potter et al. 1982). Thus, mouse V_{H} genes have been grouped in $11 V_{H}$ gene families in which members generally share $>80 \%$ of their nucleic acid sequence within, and $<70-75 \%$ between, families (Brodeur and Riblet 1984, Winter et al. 1985, Kofler 1988, Reininger et al. 1988). Individual members of a given family cross-hybridize in nucleic acid hybridization assays only with members of their own family. These V_{H} gene families correspond well with a V_{H} region classification based on similarities at the protein level (Dildrop 1984). Understanding V_{H} gene relatedness on the nucleic acid sequence level has greatly facilitated studies regarding the expression of different V_{H} gene families during ontogeny (Yancopoulos et al. 1984, Perlmutter et al. 1985) and in response to foreign and self antigens (Manser et al. 1987b, Kofler et al. 1987a). These studies have thus provided an important insight into B-cell repertoire generation.
V_{k} classifications reported to date are confined to the protein level. One attempt to systematically classify V_{k} proteins was based on the partial amino acid sequence up to the invariant cysteine in position 23 (Cys23), leading to $26 \mathrm{~V}_{\mathrm{k}}$ subgroups, designated $\mathrm{V}_{\mathrm{k}} \mathrm{Cys}$ (Potter 1977). A
modified classification, based on the length and similarity of the amino termini up to the invariant tryptophan 35 (Trp35) of $79 \mathrm{~V}_{\mathrm{k}}$ proteins, was introduced in 1982 ($\mathrm{V}_{\mathrm{k}} \mathrm{Trp}$ subgroups; Potter et al. 1982). Four of the $\mathrm{V}_{\mathrm{k}} \mathrm{Cys}$ subgroups were condensed and two new groups were added, resulting in a total of $24 \mathrm{~V}_{\mathrm{k}}$ subgroups, six of which are still defined only by sequences up to Cys23. This classification has now been generally accepted and, although an extended comparison at the nucleic acid level has never been reported, the corresponding V_{k} protein subgroups have been widely used synonymously with V_{k} gene families. More recently, we have performed a detailed restriction fragment length polymorphism (RFLP) analysis with DNA probes corresponding to $16 \mathrm{~V}_{\mathrm{k}}$ protein subgroups, and obtained evidence that such protein groups may not necessarily correspond to gene families analogous to those described for V_{H} genes (Kofler et al. 1989). Since a large number of full-length V_{k} nucleic acid sequences has been reported, it is now possible to address, by direct sequence comparison, the matter of whether V_{k} genes can be organized into gene families, as has been accomplished with V_{H} genes, and how such V_{k} gene families relate to the existing V_{k} protein groups. This issue is of considerable interest for V_{k} gene usage determinations, repertoire estimates, genomic mapping, and similar studies using nucleic acid hybridization, since such procedures depend on relatedness between V_{k} groups, gene families, and corresponding DNA probes.

We compiled 248 full-length V_{k} nucleic acid sequences from the literature and several databases, and assigned them to existing V_{k} protein classifications with subsequent grouping into gene families comprised of members with $>80 \%$ overall nucleic acid sequence similarity. Our analysis revealed that the current classification in V_{k} protein groups or subgroups frequently did not reflect relatedness on the nucleic acid sequence level. Furthermore, V_{k} gene family organization differed in important aspects from that of V_{H} gene families; only some of the V_{k} gene families were clearly separated by sequence dissimilarity of $>25 \%$, as is usually observed in V_{H} gene families. The remaining families were more similar to each other and, in several instances, large portions of genes from different families shared $>80 \%$ of their sequences, leading to cross-hybridization between those families in hybridization analyses. In addition, although ancillary to the primary aim of this study, we reviewed the specificities encoded by the various V_{k} gene families and estimated their germline gene complexity.

Methods and nomenclature

V_{k} nucleic acid sequence bank. A database was constructed consisting of V_{k} nucleic acid sequences from the Genetic Sequence Data Bank (GenBank, Los Alamos, New Mexico), E. A. Kabat's collection (Kabat
et al. 1987), and other publications. Only sequences encoding the entire mature V_{k} protein were included in the database. If applicable, sequence portions encoding untranslated region, leader sequence, introns, or J segments were removed prior to comparisons. This primary database of 248 full-length V_{k} sequences was then condensed to a final database of 109 (Fig. 1) by deleting duplicate sequences and those differing by only 1 to 4 base pairs (bp).
V_{k} protein groups and subgroups. All nucleic acid sequences were translated into amino acids and organized into V_{k} protein groups and subgroups. Assignment to V_{k} protein groups (labeled I to VII) was based on the length of the amino-terminal sequence up to the invariant $\operatorname{Trp} 35$ (41, 40, 39, 36, 35, 34, and 33 residues, respectively; Kabat et al. 1987). Organization into V_{k} protein subgroups was based on <13 substitutions up to $\operatorname{Trp} 35$ ($\mathrm{V}_{\mathrm{k}} \operatorname{Trp}$ subgroups; Potter et al. 1982). Sequences meeting assignment criteria for more than one subgroup were assigned to the subgroup with the best match.
V_{k} gene families. Analogous to V_{H} gene families, we defined a " V_{k} gene family'' as a group of nucleic acid sequences that exhibit $>80 \%$ overall sequence similarity with every member of this family, and $<80 \%$ with V_{k} genes from other families. In nucleic acid hybridization analyses under defined stringency conditions (Brodeur and Riblet 1984), all members of a gene family can be expected to cross-hybridize with each other. The V_{k} gene family nomenclature proposed in this study was adjusted as far as possible to that used for V_{k} protein subgroups, in order to minimize confusion in the literature; when V_{k} protein subgroups and V_{k} gene familes corresponded to each other (e.g., $V_{k} 21$), the V_{k} subgroup designation was used for the V_{k} gene family as well. V_{k} gene families comprising two or more V_{k} protein subgroups were given the designation of the respective subgroups (e.g., the $V_{k} 4 / 5$ gene family comprised $V_{k} 4$ and $V_{k} 5$ protein subgroups). Addition of capital letters to the designation indicates that $a V_{k}$ protein subgroup included members from two distinct V_{k} gene families (e.g., the $V_{k} 9$ protein subgroup comprised members from two distinct V_{k} gene families, termed $V_{k} 9 A$ and $V_{k} 9 B$, respectively). $V_{k} R F$ and (tentatively) $V_{k} 38 C$ were two new gene families that could not be related unambiguously to any V_{k} protein subgroup and, hence, were named after a prototypic sequence.

Organization of mouse V_{k} sequences on the protein and nucleic acid level

The major goal of this study was to investigate the organization of mouse V_{k} genes in terms of nucleic acid sequence similarity, and to determine the relationship of such organization to existing V_{k} protein classifications. To this end, we first compiled 109 distinct (i. e., $>4 \mathrm{bp}$ different), full-length V_{k} nucleic acid sequences that were used as a database for subsequent analyses (Fig. 1). The sequences were translated into amino acids (Fig. 2) and assigned to protein groups and subgroups (Table 1).

Classification into protein groups was based on the number of residues up to the invariant $\operatorname{Trp} 35$ and, hence, was unambiguous in all instances. However, this classification was of limited practical value, since it frequently did not reflect structural relatedness (i.e., sequence similarity) between V_{k} sequences. For example, group V included members of several, sometimes quite dissimilar, V_{k} gene families $\left(V_{k} 23, V_{k} 12 / 13, V_{k} R F, V_{k} 11\right.$, $\left.V_{k} 9 A, V_{k} 9 B, V_{k} 10, V_{k} 38 C, V_{k} 19 / 28\right)$. On the other hand,

001 AACATtGTGCTGACCCAATCTCCAGCTTCTTTGGCTGTGTCTCTAGGGCAGAGGGCCACCATATCCTGC AGAGCCAGTGAAAGTGTTGATAGT...... TAT
002 GACATTGTGCTGACCCAATCTCCAGCTTCTTTGGCTGTGTCTCTAGGGCAGAGGGCCACCATATCCTGC AGAGCCAGTGAAAGTGTTGATAGT.......tat
003 GACATTGTGCTGACACAGTCTCCTGCTTCCTTAGCTGTATCTCTGGGGCAGAGGGCCACCATCTCATGC AGGGCCAGCAAAAGTGTCAGTACA...... TCT
004 GACATTGTGCTAACACAGTCTCCTGCTTCCTTAGCTGTATCTCTGGGGCAGAGGGCCACCATCTCATGC AGGGCCAGCCAAAGTGTCAGTACA.......tCT
005 GACATtGTGCTGACCCAATCTCCAGCTTCTTTGGCTGTGTCTCTAGGACAGAGAGCCACTATCTTCTGC AGAGCCAGCCAGAGTGTCGATTAT.......AAT
006 GACATTGTGCTGACCCAATCTCCAGGATCTTTGGCTGTGTCTCTAGGGCAGAGGGCCACCATATCCTGC AGAGCCAGTGAAAGTGTTGAAAGT.......TCT
007 AAAATTGTGCTGACCCAATTTCCAGCTTCTTTGGCTGTGTCTCTAAGGCAGAGGGCCACCATATCCTGC AGAGCCAGTGAAAGTGTTGATAGT...... TAT
008 gacattgrgctcacccantctccaccttctrpgectgtgrctctaggecagagtgtcaccatctcctgc agagccagtganagtgttgantat......tat
009 gaCATtGTGCTGACACAGTTTCCTGCTTCCTTAGCTGTATCTCTGGGGCAGAGGGCCACCATCTCATAC AGGGCCAGCAAAAGTGTCAGTACA......tCT
010 GACATCTTGCTGACTCAGTCTCCAGCCATCCTGTCTGTGAGTCCAGGAGAAAGAGTCAGTTTCTCCTGC AGGGCCAGTCAG...........................
011 GACATCTTGCTGACTCAGTCTCCAGCCATCCTGTCTGTGAGTCCAGGAGAAAGAGTCAGTTTCTCCTGC AGGGCCAGTCAG...............................
012 GACATCTTGCTGACTCAGTCTCCAGCCATCCTGTCTGTGAGTCCAGGAGAAAGAGTCAGTTTCTCCTGC AGGGCCAGTCAG.............................
013 GATATtGTGCTAACTCAGTCTCCAGCCACCCTGTCTGTGACTCCAGGAGATAGCGTCAGTCTTTCCTGC AGGGCCAGCCAA...........................

015 GATATTGTGCTAACTCAGTCTCCAGCCACCCTGTCTGTGACTCCAGGAGATAGCGTCAGTCTTTCCTGC AGGGCCAGCCAA.............................

017 CAAATTGTTCTCACCCAGTCTCCAGCAATCATGTCTGCATCTCCTGGGGAGAAGGTCACCATGACCTGC AGTGCCAGATCAAGT.....................
018 GAAAATGTGCTGACCCAGTCTCCAGCAATCATGGCTGCATCTCCAGGGGAGAAGGTCACCATGACCTGC AGTGCCAGCTCAAGT......................
019 GAAAATGTGCTCACCCAGTCTCCAGCAATAATGGCTGCCTCTCTGGGGCAGAAGGTCACCATGACCTGC AGTGCCAGCTCAAGT.......................
AACATTGTGCTGACCCAATCTCCAGCTTCTTTGGCTGTGTCTCTAGGGCAGAGGGCCACCATATCCTGC AGAGCCAGTGAAAGTGTTGATAGT...... TAT GACATTGTGCTGACCCAATCTCCAGCTTCTTTGGCTGTGTCTCTAGGGCAGAGGGCCACCATATCCTGC AGAGCCAGTGAAAGTGTTGATAGT...... . TAT GACATTGTGCTGACACAGTCTCCTGCTTCCTTAGCTGTATCTCTGGGGCAGAGGGCCACCATCTCATGC AGGGCCAGCAAAAGTGTCAGTACA..... . TCT GACATTGTGCTAACACAGTCTCCTGCTTCCTTAGCTGTATCTCTGGGGCAGAGGGCCACCATCTCATGC AGGGCCAGCCAAAGTGTCAGTACA..... . TCT GACATTGTGCTGACCCAATCTCCAGCTTCTTTGGCTGTGTCTCTAGGACAGAGAGCCACTATCTTCTGC AGAGCCAGCCAGAGTGTCGATTAT...... AAT GACATTGTGCTGACCCAATCTCCAGGATCTTTGGCTGTGTCTCTAGGGCAGAGGGCCACCATATCCTGC AGAGCCAGTGAAAGTGTTGAAAGT...... . TCT
AAAATTGTGCTGACCCAATTTCCAGCTTCTTTGGCTGTGTCTCTAAGGCAGAGGGCCACCATATCCTGC AGAGCCAGTGAAAGTGTTGATAGT...... TAT GACATTGTGCTCACCCAATCTCCAGCTTCTTTGGCTGTGTCTCTAGGGCAGAGTGTCACCATCTCCTGC AGAGCCAGTGAAAGTGTTGAATAT. TAT GACATTGTGCTGACACAGTTTCCTGCTTCCTTAGCTGTATCTCTGGGGCAGAGGGCCACCATCTCATAC AGGGCCAGCAAAAGTGTCAGTACA. TCT GACATCTTGCTGACTCAGTCTCCAGCCATCCTGTCTGTGAGTCCAGGAGAAAGAGTCAGTTTCTCCTGC AGGGCCAGTCAG.................... . . . AGC GACATCTTGCTGACTCAGTCTCCAGCCATCCTGTCTGTGAGTCCAGGAGAAAGAGTCAGTTTCTCCTGC AGGGCCAGTCAG..................... . . AGC GACATCTTGCTGACTCAGTCTCCAGCCATCCTGTCTGTGAGTCCAGGAGAAAGAGTCAGTTTCTCCTGC AGGGCCAGTCAG.................... . . AGC GATATTGTGCTAACTCAGTCTCCAGCCACCCTGTCTGTGACTCCAGGAGATAGCGTCAGTCTTTCCTGC AGGGCCAGCCAA....................... GATATTGTGCTAACTCAGTCTCCAGCCACCCTGTCTGTGACTCCAGGAGATAGCGTCAGTCTTTTCCTGC AGGGCCAGCCAA...................... . AGT GATATTGTGCTAACTCAGTCTCCAGCCACCCTGTCTGTGACTCCAGGAGATAGCGTCAGTCTTTCCTGC AGGGCCAGCCAA.................. AGT GATATTGTGCTAACTCAGTCTCCAGCCACCCTGTCTGTGACTCCAAGAGATAGCGTCAGTCTTTCCTGC AGGGCCAGCCAA...................... . . AGT CAAATTGTTCTCACCCAGTCTCCAGCAATCATGTCTGCATCTCCTGGGGAGAAGGTCACCATGACCTGC AGTGCCAGATCAAGT.................. . . GAAAATGTGCTGACCCAGTCTCCAGCAATCATGGCTGCATCTCCAGGGGAGAAGGTCACCATGACCTGC AGTGCCAGCTCAAGT................ GAAAATGTGCTCACCCAGTCTCCAGCAATAATGGCTGCCTCTCTGGGGCAGAAGGTCACCATGACCTGC AGTGCCAGCTCAAGT................... GAAAATGTGCTCACCCAGTCTCCAGCAATAATGGCTGCCTCTCTGGGGGAGAAGGTCACCATGACCTGC AGTGCCAGCTCAAGT..................... CAAATTGTTCTCACCCAGTCTCCAGCAATCATGTCTGCCTCTCCAGGGGAGAAGGTCACCATGACCTGC AGTGCCAGCTCAAGT.................... CAAATTGTTCTCACCCAGTCTCCAGCAATCATGTCTGCATCTCCTGGGGAACGGGTCACCATGACCTGC AGTGCCAGCTCAAGT.....................
GAAATTGTGCTCACCCAGTCTCCAACCACCATGGCTNNATCTCCCGGGGAGAAGATLACTATCACCTGC AGTGCCAACTCAAGT.................. . ATA GAAAATGTGCTCACCCAGTCTCCAGCAATCATGTCTGCATCTCCAGGGNAAAAGGTCACCATGACCTGT AGGGCCAGCTCAAGT................. GAAATTGTGCTCACCCAGTCTCCAACCACCATGGCTGCATCTCCCGGGGAGAAGATCACTATCACCTGC AGTGCCAGCTCAAGT................. . . . ATA GAAATTGTGCTCACCCAGTCTCCAGCACTCATGGCTGCATCTCCAGGGGAGAAGGTCACCATTACCTGC AGTGTCAGCTCAAGT................... ATA CAAATTGTTCTCACCCAGTCTCCAGCATTCATGTCTGCATCTCTAGGGGAACGGGTCACCATGACCTGC ACTGCCAGGTCAAGT..................... GAAATTTTGCTCACCCAGTCTCCAGCAATCATAGCTGCATCTCCTGGGGAGAAGGTCACCATCACCTGC AGTGCCAGCTCA. CAAATTGTTCTCACCCAGTCTCCAGCAATCATGTCTGCATCTCCAGGGGAGAAGGTCACCATGACCTGC AGTGCCAGCTCA. GAAAATGTGCTCACCCAGTCTCCAGCAATCATGTCTGCATCTCTAGGGGAGAAGGTCACCATGAGCTGC AGGGCCAGCTCA GGAATTGTGCTCACCCAATCTCCAACAACCATGACTGCATTTCCAGGGGAGAATGTCACCATCACCTGC AGTGCCAGCTCA. CAAATTGTTCTCACCCAGTCTCCAGCAATCATGTCTGCATCTCCAGGGGAGAAGGTCACCATGACCTGC AGTGCCAGCTCA. CAAATTGTTCTCACCCAGTCTCCAGCAATCATGTCTGCATCTCCAGGGGAGAAGGTCACCATATCCTGC AGTGCCAGCTCA GAAATTGTGCTCACTCAGTCTCCAGCCATCACAGCTGCATCTCTGGGGCAAAAGGTCACCATCACCTGC AGTGCCAGCTCA CAAATTGTTCTCACCCAGTCTCCAGCAATCCTGTCTGCATCTCCAGGGGAGAAGGTCACCATGACCTGC AGTGCCAGCTCA CAAATTCTTCTCACCCAGTCTCCAGCAATCATGTCTGCATCTCCAGGGGAGAAGGTCACCATGACCTGC AGTGCCAGCTCA CAAATTGTTCTCACCCAGTCTCCAGCACTCATGTCTGCATCTCCAGGGGAGAAGGTCACCATGACCTGC AGTGCCAGCTCA CAAATTGTTCTCTCCCAGTCTCCAGCAATCCTGTCTGCATCTCCAGGGGAGAAGGTCACATTGACTTGC AGGGCCAGCTCA CAAATTGTTCTCTCCCAGTCTCCAGCAATCCTGTCTGCATCTCCAGGGGAGAAGGTCACAATGACTTGC AGGGCCAGCTCA. CAAATTGTTCTCACCCAGTCTCCAGCAATCATGTCTGCATCTCCAGGGCAGAAAGTCACCATAACCTGC AGTGCCAGCTCA CAAATTGTTCTCTCCCAGTCTCCAGCAATCCTGTCTGCATCTCCAGGGGAGAAGGTCACAATGATTTGC AGGGCCAGCTCA CAAATTCTTCTCACCCAGTCTCCAGCAATCATGTCTGCATCTCCAGGCCAGAAGGTCACCATGACCTGC AGTGCCAGCTCA CAAATTCTTCTCACCCAGTCTCCAGCAATCATGTCTGCATCTCCAGGCCAGAAGGTCACCATGACCTGC AGTGCCAGCTCA CAAAATGTTCTCAACCAGTCTCCAGNAATCATGTCTGNATCTCCAGGGGAGAAGGTCACCATGACCTGC AGTGCCAGCTCA CAAATTGTTCTCACCCAGTCTCCAGNAATCATGTCTGNATCTCCAGGGGAGAAGGTCACCATGACCTGC AGTGCCAGTTCA CAAATTGTTCTCACCCAGTCTCCAGCAATCATGTCTGCATCTCCAGGGGAGAAGGTCACCATGACCTGC AGTGCCAGCTCA CAAATTGTTCTCACCCAGTCTCCAGCAATCATGTCTGCATCTCCAGGGGAGAAGGTCACCATGACCTGC AGTGCCAGCTCA CAAATTGTTCTCATACAGTCTCCAGNAATCATGTCTGCATCTCCAGGGGNGAAGGNCACCATGACCTGC AGTGCCAGCTCA CAAATTGTTCTCACCCAGTCTCCACCAATCATGTCTGCCTCTCCAGGGGAGAAGGTCACCATGACCTGC AGTGCCAGCTCA CAAATTGTTCTCACCCAGTCTCCAGCAATCATGTCTGCATCTCCAGGGGAGAAGGTCACCATGACCTGC AGTGCCAGTTCA CAAGTTGTTCTCACCCAGTCTCCAGNAATCATGTCTGCATCTCCAGGGNAGAAGGTCACCATGACCTGC AGTGCCAGCTCA CAAATTGTTCTCTCCCAGTCTCCAGCAATCCTGTCTGCATCTCCAGGGGAGAGGGTCACATTGACTTGC AGGGCCAGCTCA CAAATTGTTCTCACCCAGTCTCCAGNAATCATGTCTGCATCTCCAGGGGAGAAGGTCACCATGACCTGC AGTGCCAGCTCA CAAATTGTTCTCTCCCAGTCTCCAGCAATCCTGTCTGCATCTCCAGGGGAGCAGGTCACAATGACTTGC AGGGCCAGCTCA
 gGCAATAGTTTTATGCAC TGGTACCAGCAGAAACCAGGACAGCCACCCAAACTCCTCATCTAT CTTGCATCCAACCTAGAATCT GGGGTCCCTGCCAGG gGCAATAGTTTTATGCAC TGGTACCAGCAGAAACCAGGACAGCCACCCAAACTCCTCATCTAT CGTGCATCCAACCTAGAATCT GGGATCCCTGCCAGG gGCTATAGTTATATGCAC TGGTACCAACAGAAACCAGGACAGCCACCCAAACTCCTCATCTAT CTTGCATCCAACCTAGAATCT GGGGTCCCTGCCAGG agCTatagttatatgcac tgGtaccancaganaccaggacagccacccaanctcctcatcang tatgcatccaacctagantct gGggtccctgccagg GGAATtAGTTATATGCAC TGGTTCCAACAGAAACCAGGACAGCCACCCAAACTCCTCATCTAT GCTGCATCCAACCTAGAATCT GGGATCCCTGCCAGG gGCAATAATTTTATCCAC TGGCACCAGCAGAAACCAGGACAGCCACCCNAACTCCTCATCTAT CGTGCATCCAACCTAGCATCT GGGATCCCTGCCAGG GGCAATAGTTTTATGTAC TGGTACCAGCAGAAACCAGGACAGCCACCCAAACTCCTCATCTAT CGTGCATCCAACCTAGAATCT GGGGTCCCTGCCAGG GGCAGTAGTTTAATGCAG TGGTACCAACAGAAACCAGGACAGCCACCCAAACTCCTCATCTAT GGTGCATCCAACGTAGAATCT GGGGTCCCTGCCAGG gGCTATAGTTATATGCAC tGGAACCAACAGAAACCAGGACAGCCACCCAGACTCCTCATCTAT CTTGTATCCAACCTAGAATCT GGGGTCCCTGCCAGG attggcacangcatacac tggtatcagcanagancanatggttctccanggcttctcatanag tatgcttctgagtctatctct gggatcccttccagg attggcacangcatacac tggtatcagcaangancaiatggttctccangGcttctcatanag antgcttctgagtccatctct gGgatcccttccagg ATTGGCACAAGTCTTCAC TGGTATCAACAAAGAACAAATGGTTCTCCAAGGCTTCTCATAAAG TATGCTTCTGAGTCTATCTCT GGGATCCCTTCCAGG attatcancancctacac ttatatcgatananatcacatgagtctccanggcttctcatcana tatgcttcccagtccatctct gggatcccctctagg ATTAGCAACAACCTACAC TGGTATCAACAAAAATCACATGAGTCTCCAAGGCTTCTCATCAAT TATGCCTCCCAGTCCATGTCT GGGATCCCCTCCAGG attagcancancctacac tggtatcaacanaantcacatgagtctccangGcttctcatcang tatgct tcccagtccatctct gggatcccctccagg attagcancaacctacac tggtatcancaanantcacatgagtctccangGcttctcatcaan tatgcttcccagtccatctct gggatcccctctagg agTtccagctacttgtac tggtaccagcagangccaggatcctcccccanactctggatttat agcacatccancctggcttct ggagtccctgctcgc

 agttccagctacttgcac tggtaccagcagangtcaggcacttcccccaanctctggatttat ggcacatccancctggcttct ggagtcccagctcge AGTTCCAAATACTTGAAC TGGTACCAGCAGAGGTCAGGAGCCTCCCCCAAACTCTGGATTTAT GGCACATCCAACCTGGCTTCT GGAGTCCCTGCTCGC agttccagctacttgtac tggtaccagcagangccaggatcctcccccaanctatggatttat agcacatccancctggcttct ggagtccctgctccc agttccanttacttgcat tggtatcagcagangccaggattctcccctaanctcttgatttat aggacatccaatctagcttct ggagtccangctcge AGTTCCAGTTACTTGCAC TGGTACCAGCAGAAGTCAGGTGCCTCCCCCAAACTCTGGATTTAT AGCACATCCAACCTGGCTTCT GGNGTCCCTGCTCGC agttccanttacttgant tggtttcagcagangccaggattctcccctaanctcttgatttat aggacatccantctggcttct ggagtcccagatcgc
 agttccagttactrccac tggtaccagcagangccaggatcctcccccanactctggatttat agcacatccancctggcttct ggagtcccanctccc agtgtangttacatganc tggtaccagcaganaccaggatcctcccccaanatatggatttat ggtatatccancctggcttct ggagttcctgctcce agtatangttacatgcac tggtaccagcagangccaggcacctcccccaiangatggatttat gacacatccaanctggcttct ggagtccctgctccc agtgtanattacatgtac tggtaccagcagangtcagatgcctcccccaanctatggatttat tacacatccancctggctcct ggagtcccagctccc agtatanattacattcac tggtaccagcagangtcagganatacccccanacantgantttat angacatccgacctgccttct ggagtcccanctctc agtg tangttacatgcac tggtaccagcagangtcaggcacctcccccaanagatggatttat gacacatccaiactggcttct ggagtccctgctcgc AGTGTAAGTTACATGTAC TGGTACCAGCAGAAGCCAGGATCCTCCCCCAAACCCTGGATTTAT CGCACATCCAACCTGGCTTCT GGAGTCCCTGCTCGC agtgtangttacatgcac tggtaccagcagangtcaggcacctcccccaanccatggatttat ganatatccaanctggcttct ggagtcccagctcgc AGTGTAAGTTACATGTAA TGGTTCCAGCAGAAGCCAGGATCCTCCCCCAAACTCTGGATTTAT AGCATATCCAACCTGGCTTCT GGAGTCCCTGCTCGC agtgtangttacatgcac tGgTaccagcagangccaggatcctcgcccanaccctggatttat gacacatccancctggctrlut ggattccctactcgc agtgtangttacatgtac tggtaccagcagangccangatcctcccccanaccctggatttat ctcacatccaacctggcttct ggagtccctgctcge agtg tangtttcatgaic tggtaccagcagangccaggatcctcccccanaccctggatttat gccacatccaitt tgccttct gagttccctggtcgc agtgtangttacatgcac tggtaccagcagangcttggatcctcccccanaccatggatttat gccacatccaacctggcttct ggagtccctgctcgc agTGTAAATTACATGCAC TGGTACCAGCAGAAGCTAGGATCCTCCCCCAAACTCTGGATTTAT GACACATCCAAACTGGCTCCT GGAGTCCCTGCTCGC AGTGTAAGTTACATGCAC TGGTACCAGCAGAAGCCAGGATCCTCCCCCAAACCCTGGATTTAT GCCCCATCCAACCTGGCTTCT GGAGTCCCTGCTCGC agtgtangttacatgtac tgGtaccagcagangccaggatcctcccccagactcctgatttat gacacatccancctggcttct ggagtccctgttcce agtgtangttacatgcac tggtaccagcagangtcaggcacctcccccaanagatggatttat gacacatccanactggcttct ggagtccctgctcge agtgtangttacatgcag tggttccagcagnagtcaggcacctcccccaanagatggatttat gacacatccaagctggnttct ggngtccctactcgc
 AGTGTAAGTTACATGAAC TGGTTCCAGCAGAAGTCAGGCACCTCCCCCAAAAGATGGATTTAT GACACATCCAAACTGTCTTCT GGAGTCCCTCCTCGC attgtangttacgtgcag tggttccagcagangtcaggcacctcccccanaagatggatttct gacacatccanactgccttct ggagtccctgctcce AGTGTAAGTTATATGAAC TGGTACCAGCAGAAGTCAGGCACCTCCCCCAAAAGATGGATTTAT GACACATCCAAACTGGCTTCT GGAGTCCCTGCTCGC AGTGTAAGTTACTTGCAG TGGTTCCAGCAGAAGTCAGGCACCTCCCCCAAAAGATGGATTTAT GACACATCCAAACTGGATTCT GGNGTCCCTGCTCGC agtgttagttacatganc tggttccagcagaagtcaggcacctcccccaaangatgggttttt gccacatccaanctggnttct ggagtccctgctcge agtgtangttacatgcag tggttccagcagangtcaggcacctcccccaanagattgattttt tacacatccanactgacttct ggagtccctgctcgc agTGTAAGTTACATTCAG TGGTTCCAGCAGAAGCCAGGATCCTCCCCCAAACCCTGGATTCAT GCCACATCCAAGNTGGCTTCT GGAGTCCCTGCTCGC agtgtangttrcatgcag tggtaccagcagangtcaggcacctcccccaanagatggatttat cacacatccaanctggcttct ggagtccctactcgc agtgtangttacatgcac tggtaccagcagangccaggatcctcccccaanccctggatttat gccacatccancntggcttct ggagtcccngctcgc

C

001

$$
051
$$

 TTCAGTGGCAGTGGGTCTAGGACAGACTTCACCCTCACCATTGATCCTGTGGAGGCTGATGATGCTGCAACCTATTACTGT CAGCAAAATAATGAGGATCCT TTCAGTGGCAGTGGGTCTAGGACAGACTTCACCCTCACCATTAATCCTGTGGAGGCTGATGATGTTGCAACCTATTACTGT CAGCAAAGTAATGAGGATCCT TTCAGTGGCAGTGGGTCTGGGACAGACTTCACCCTCAACATCCATCCTGTGGAGGAGGAGGATGCTGCAACCTATTACTGT CAGCACAGTAGGGAGCTTCCT TTCAGTGGCAGTGGGTCTGGGACAGACTTCACCCTCAACATCCATCCTGTGGAGGAGGAGGATACTGCAACATATTACTGT CAGCACAGTTGGGAGATTCCT TTCAGTGGCAGTGGGTCTGGGACAGACTTCACCCTCAACATCCATCCTGTGGAGGAGGAAGATGCTGCAACCTATTACTGT CAGCAAAGTATTGAGGATCCT TTCAGTGGCAGTGGGTCTATGACAGACTTCACCCTCACCATTAATCCTGTGGAGGCTGATGATGTTGCAACATATTACTGT CAGCAAAGTAATGAGGATCCA TTCAGTGGCAGTGGGTCTAGGACAGACTTCACCCTCACCATTGATCCTGTGGAGGCTGATGATGGTGCAACCTATTACTGT CAGCAAAATAATGAGGATCCG TTTAGTGGCAGTGGGTCTGGGACAGACTTCAGCCTCAACATCCATCCTGTGGAGGAGGATGATATTGCAGTGTATTTCTGT CAGCAAAGTAGGAAGGTTCCT TTCAGTGGCAGTGGGTCTGGGACAGACTTCACCCTCAACATCCATCCTGTGGAGGAGGAGGATGCTGCAACCTATTACTGT CAGCACATTAGGGAGCT tTtagtggcagtggatcagggacagattrtactcttagcatcancagtgtggagtctgangatattgcagattattactgt cancaiagtaatacctggcca TTTAGTGGCAGTGGATCAGGGACAGATTTTACTCCTAGCATCAACAGTGTGGAGTCTGAAGATATTGCAGAATATTACTGT CAACAAAGTTATAGGTGGCCA TTTAGTGGCAGTGGATCAGGGACAGACTTTACTCTTAGCATCAACAGTGTGGAGTCTGAAGATGTTGCAGATTATTACTGT CAACAAACTAATAGCTGGCCG tTCAGTGGCAGTGGATCAGGGACAGATTTCACTCTCAGTATCAACAGTGTGGAGACTGAAGATTTTTGGAATGTATTTTCTGT CAACAGAGTAACAGCTGGCCT TTCAGTGGCAGTGGATCAGGGACAGATTTCACTCTCAGTATCAACAGTGTGGAGACTGAAGATTTTGGAATGTATTTCTGT CAACAGAGTAACAACTGGCCT tTCAGTGGCAGTGGATCAGGGACAGATTTCNCTCTCATTATCAACAATGTGGAGACTGAAGATTTTTGGAATGTATTTTCTGT CAACAGAGTAACAGCTGGCCT TTCAGTGGCAGTGGATCAGGGACAGATTTCACTCTCAGTATCAACAGTGTGGAGACTGAAGATTTTTGGAATGTATTTCTGT CAACAGAGTAACAGCTGGCCT TTCAGTGGCAGTGGGTCTGGGACCTCTTATTCTCTCACAATCAGCAGCATGGAGGCTGAAGATGCTGCCACTTTTTTACTGC CAGCAGTACAGTGGTTACCCA TTCAGTGGCAGTGGGTCTGGGACCTCTTACTCTCTTACAATCAGCAGCGTGGAGGCCGAAGATGCTGCCACTTATTACTGC CAGCAGTGGAGTGGTTACCCA TTCAGTGGCAGTGGGTCTGGGACCTCTTACTCTCTCACAATCAGCAGCGTGGAGGCTGAAGATGATGCAACTTATTACTGC CAGCAGTGGAGTGGTTACCCA TTCAGTGGCAGTGGGGCTGGGATCTCTTACTCTCTCACAATCAGCAGCATGGAGGCTGAAAATGATGCAACTTATTACTGC CAGCAGTGGAGTGGTTACCCA TTCAGTGGCAGTGGGTCTGGGACCTCTTACTCTCTCACAATCAGCAGCGTGGAGGCTGAAGATGCTGCCACTTATTACTGC CAGCAGTATCATAGTGACCCA TTCAGTGGCAGTGGGTCTGGGACCTCTTATTCTCTCACAATCAGCAGCATGGAGGCTGAAGATGCTGCCACTTATTTACTGC CAGCAGTACAGTGGTTACCCA TTCAGTGGCAGTGGGNNTGTGACCTCTTACTCTCTCACAATTGGCACCATGGAGGCTNAAGATNTTGCCACTTACTACTGC CAGCAGGGTAGTAGTATACCG TTCAGTGGCAGTGGGTCTGGGACCTCTTACTCTCTCACAATCAGCAGTGTGGAGGCTGAAGATGCTGCCACTTATTACTGC CAGCAGTACAGTGGTTACCCA TTCAGTGGNAGTGGGTCTGGNACCTCTTACTCTCTCACAATTGGCACCATGGAGGCTGAAGATGTTGCCACTTACTACTGC CAGCAGGGTAGTAGTATACCG TTCAGTGGCAGTGGATCTGGGACCTCTTATTCTCTCACAATCAGCAGCATGGAGGCTGAAGATGCTGCCACTTATTACTGT CAACAGTGGAGTAGTTACCCA TTCAGTGGCAGTGGGTCTGGGACCTCTTACTCTCTCACAATCAGCAGCATGGAGGCTGAAGATGCTGCCACTTATTACTGC CACCAGTATCATCGTTCCCCA TTCAGTGGCAGTGGGTCTGGGACATCTTTCTCTTTCACAATCAACAGCATGGAGGCTGAAGATGTTGCCACTTATTACTGT CAGCAAAGGAGTAGTTACCCA TTCAGTGGCAGTGGGTCTGGGACCTCTTATTCTCTCACAATCAGCAGCATGGAGGCTGAAGATGCTGCCACTTATTACTGC CATCAGCGGAGTAGTTACCCA TTCAGTGGCAGTGGGTCTGGGAACTCTTATTCTCTCACAATCAGCAGCATGGAGGGTGAAGATGCTGCCACTTATTACTGC CAGCAGTTTACTAGTTCCCCA tTCAGTGGCAGTGGGTCTGGGACCTCTTACTCTCTCACAATCAGCAGTGTGGAGGCTGAAGATGCTGCCACTTATTACTGC CAGCAGTGGAGTGGTTACCAA TTCAGTGGCAGTGGGTCTGGGACCTCTTACTCTCTCACAATCAGCAGCATGGAGGCTGAAGATGCTGCCACTTATTACTGC CAGCAGTGGAGTAGTAACCCA TTCAGTGGCAGTGGGTCTGGGACCTCTTACTCTCTCACAATCAGCAGCATGGAGGCTGAAGATGCTGCCACTTATTACTGC CAGCAGTATCATAGTTACCCA TTCAGTGGCAGTGGGTCTGGGACCTCTTACTCTCTCACAATCAGCAGCATGGAGGCTGAAGATGCTGCCATTTATTACTGC CAGCAGTGGAATTATCCTCTT TTCAGTGGCAGTGGGTCTGGGACCTCTTATTCTCTCACAATCAGCAGCGTGAAGGCTGAAGATGCTGCCACTTATTACTGC CAGCAGTGGAGTAGTTCCCCA tTCAGTGGCAGTGGGTCTGGGACCTCTTACTCTCTCATAATCAGCAGCATGGAGGCTGAAGATGCTGCCACTTATTACTGC CATCAGCGGAGTAGTTACCCA TTCAGTGGCAGTGGGTCTGGGACCTCTTACTCTCTCACAATCAGCAGCATGGAGGCTGAAGATGCTGCCACTTATTACTGC CAGCAGTGGAGTAGTAACCCA TTCAGTGGCGAGTGGTCTGGGACCTCTTACTCTCTCGCAATCAGCAGAGTGGAGGCTGAAGATGCTGCCACTTATTACTGC CAGCAGTGGAATAGTAACCCA TTCAGTGGCAGTGGGTCTGGGACCTCTTACTCTCTCACAATCAGCAGAGTGGAGGCTGAAGATGCTGCCACTTATTACTGC CAGCAGTGGAGTAGTAACCCA TTCAGTGGCAGTGGGTCTGGGACCTCTTACTCTCTCACAATCAGCAGCATGGAGGCTGAAGATGCTGCCTCTTATTTCTGC CATCAGTGGAGTAGTTACCCG TTCAGTGGCAGTGGGTCTGGGACCTCTTACTCTCTCACAATCAGCAGAGTGGAGGCTGAAGATGCTGCCACTTTATTACTGC CAGCAGTGGAGTTTTAACCCA TTCAGTGGCAGTGGGTCTGCGACCTCTTACTCTCTCACAATCACCCGAATGCAGGCTGAAGATGCTGCCACTTATTACTGC CAGCAGTGGAGTAGTTACCCA TTCAGTGGCAGTGGGTCTGCGACCTCTTACTCTCTCACAATCACCAGCATGCAGGCTGAAGATGCTGCCACTTATTACTGC CAGCAGTGGAGTAGTAACCCG tTCAGTGGNAGTGGGTCTGGGACCNCTTACTCTCTCACAATCAGCAGCATGGAGGCTGAGGATGCTGCCACTTATTACTGC CAGCAGTGGAGTAGTAATCCA TTNAGTGGCAGTGGGTCTGGGACCTCTTNCTCTCTCACAATCAGCAGCATGGAGGNNGAAGATGNNGCCACTTATTACTGC CAGCAGTGGAGTAGTAATCCA TTCAGTGGCAGTNGGNCTGGGACCTCTTACTCTCTCACAATCAGCAGCATGGAGGCTGAAGATGCTGCCACTTATTACTGT CAGCAGTGGAATAGTAACCCA TTCAGTGGCAGTGGGTCTGGGACCTCTTACTCTCTCACAATCAGCAGCATGGAGGCTGAAGATGCTGCCACTTATTACTGC CAGCAGTGGACTAGTAACCCA tTCAGTGGCAGTGGGTCTGGGACCTCTTACTCTCTCACAATCAGCAGCATGGAGGCTGAAGATGCTGCCACTTATTACTGC CAGCAGTGGAATAGTAACCCG TTCAGTGGNAGTGGGTCTGGGACCTCTTACTCTCTCACAATCAGCAGCATGGAGGCTGAAGATGCTGCCACTTATTACTGC CAGCAGTGGACTAGTAACCCG TTCAGTGGCAGTGGGNCTGGGACCTCTTACTCTCTCACAATCAGCAGCATGGAGGCTGAAGATGCTGCCACTTATTACTGC CAGCAGTGGAGTAGTAACCCA TTCAGTGGNAGTGGGNNTGGGACCTCTTACTCTCTCACAATCAGTAGCATGGAGGCTGAGGATGCTGCCACTTATTACTGC CAGCAGTGGAGTAGTAATCCA TTCAGTGGCAGTGGGTCTGGGACCTCTTACTCTCTCACAATCAGCAGAGTGGAGGCTGAAGATGCTGCCACTTTTTTACTGC CAGCAGTGGAGTAGTAACCCG TTCAGTGGNAGTGGGTNTGGGACCTCTTACTCTCTCACAATCACCAGCATGGAGGCTGAAGATGCTGCCACTTATTACTGC CAGCAGTNGAGTGGNAATCCA TTCAGTGGCAGTGGGTCTGGGACCTCTTACTCTCTCACAATCAGCAGAGTGGAGGCTGAAGATGCTGCCACTTATTACTGC CAGCAGTGGAGTAGTAACCCA

gAAAATGTTCTCACCCAGTCTCCAGNAATCATGTCTGNATCTCCNGGGGNAAAGGTCACCATGACCTGC AGTGCCAGGTCA......................... CAAATTGTTCTCTCCCAGTCTCCGGCAATCCTGTCTGCATCTCCAGGGGAGAAGGTCACAATGACTTGC AGGGCCAGCTCA. CAAATTGTTCTCTCCCAGTCTCCAGCAATCCTGTCTGCATCTCCAGGGGAGAAGGTCACAATGACTTGC AGGGCCAGCTCA gacatccagatgactcagtctccagcctccctatctgcatctgtgggtganactgtcaccatcacatgt cgagcangtggg....................... GACATCCAGATGACTCAGTCTCCAGCCTCCCTATCTGTATCCGTGGGAGAAACTGTCACCATCACATGT CGAGCAAGTGAG...................... AAT gacatccagatgactcagtctccagcctccctatctgcatctgtgggagnaactgtcaccatcacatgt cgagcangtgag...................... GACATCCAGATGACGCAGTCTCCAGCCTCCCTATCTGCATCTGTGGGAGNAACTGTCACCATCACATGT CGAGCAAGTGAA..................... . . AAT GATGTCCAGATAACCCAGTCTCCATCTTATCTTGCTGCATCTCCTGGAGAAACCATTACTATTAATTGC AGGGCAAGTAAG.................... . . . AGC GATGTTCAAATGACCCAGTCTCCATCCTCCCTGTCTGCATCTTTGGGGAGAAAGAGTCTCCCTGACCTGC CAGGCAAGTCAG...................... . . AGC gacatccagatgacccagtctccatcctccttatctgcctctctgggaganagagtcagtctcacttgt cgggcangtcag...................... gac GACATCCAGATGACCCAGTCTCCATCCTCCTTATCTGCCTCTCTGGGAGAAAGAGTCAGTCTCACTTGC CGGGCAAGTCAG.................... . . GAC gacatccagatgacccagtctccatcctccttatctgcctctctgggaganagagtcagtctcacttgt cgggcangtcag..................... . . GACATCCAGATGATTCAGTCTCCATCGTCCATGTTTGGCTCTCTGGGAGACAGAGTCAGTCTCTCTTGC CGGGCTAGTCAG.................... . . . GGC gacatcangatgacccagtctccatcttccatgtatgcatctctaggagagagagtcactatcacttgc anggcgagtcag..................... . . gac gacatcangatgacccagtctccatcttccatgtatgcatctctaggagagagagtcactatctcttgc anggcgagtcag.................... . . gac GACATCAAGATGACCCAGTCTCCATCCTCCATGTATGCATCGCTGGGAGAGAGAGTCACTATCACTTGC AAGGCGAGTCAG.................... . . . GAC GATATCCAGATGACACAGACTACATCCTCCCTGTCTGCCTCTCTGGGAGACAGAGTCACCATCAGTTGC AGGGCAAGTCAG..................... . . GAC GATATCCAGATGACACAGACTACATCCTCCCTGTCTGCCTCTCCGGGAGACAGAGTCACCATCAGTTGC AGGACAAGTCAG...................... GAC GACATCCAGATGACACAGTCTCCATCCTCACTGTCTGCATCTCTGGGAGGCAAAGTCACCATCACTTGC AAGGCAAGCCAA.................... . GAC gacatccagatgacacagtctccatcctcactgtctgcatctctgggaggcanagtcaccatcacttgc anggcaagccag. gac GATATTGTGATAACCCAGGATGAACTCTCCAATCCTGTCACTTCTGGAGAATCAGTTTCCATCTCCTGC AGGTCTAGTAAGAGTCTCCTATATAAG. . .GAT GATATTGTGATGACGCAGGCTGCATTCTCCAATCCAGTCACTCTTGGAACATCAGCTTCCATCTCCTGC AGGTCTAGTAAGAGTCTCCTGCACAGT. . . AGT GATATTGTGATGACGCAGGCTGCATTCTCCAATCCAGTCACTCTTGGAACATCAGCTTCCATCTCCTGC AGGTCTAGTAAGAGTCTCCTACATAGT. . . AAT GATATTGTGATGACTCAGGCTGCACCCTCTGTATCTGTCACTCCTGGAGAGTCAGTATTCATCTCCTGC AGGTCTAGTAAGAGTCTCCTGCATAGT... AAT GATATTGTGATGACTCAGGCTACACCCTCTGTATCTGTCACTCCTGGAGAGTCAGTATTCATCTCCTGC AGGTCTAGTAAGAGTCTCCTGTATATT. . . AAT GATATTGTGATGACTCAGGCTGCACCCTCTGTACCTGTCACTCCTGGAGAGTCAGTATCCGTCTCCTGC AGGTCTAGTAAGAGTCTCCTGCATAGT...AAT GATATTGTGATGACGCAGGCTGCCTTCTCCAATCCAGTCACTCTTGGAACATCAGCTTCCATCTCCTGC AGGTCTAGTAAGAATCTCCTACATAGT. . . AAT GATGTTGTGATGACCCAAACTCCACTCTCCCTGCCTGTCAGTCTTGGAGATCAAGCCTCCATCTCTTGC AGATCTAGTCAGAGCCTTGTACACAGT. . . AAT GATGTTTTGATGACCCAAACTCCACTCTCCCTGCCTGTCAGTCTTGGAGATCAAGCCTCCATCTCTTGC AGATCTAGTCAGAGCATTGTACATAGT. . . AAT GATGCTGTGATGACCCAAACTCCACTCTCCCTGCCTGTCAGTCTTGGAGATCAAGCCTCCATCTCTTGC AGGTCTAGTCAGAGCCTTGAAAACAGT... AAT GATGTTGTGGTGACTCAAACTCCACTCTCCCTGCCTGTCAGCTTTGGAGATCAAGTTTCTATCTCTTGC AGGTCTAGTCAGAGTCTTGCGACCAGT. . .CAT GATGTTGTGATGACCCAAACTCCACTCTCCCTGCCTGTCAGCCTGGGAGATCAAGCCTCCATCTCTTGC AGATCTAGTCAGAGCATTGTACACAGT. . .AAT GATGCTGTGATGACCCAAACTCCACTCTCCCTGCCTGTCAGTCTTGGAGATCAAGCCTCCATCTCTTGC AGGTCTAGTCAGAGCATTGAAAACAGT. . . AAT GATATTGTGATGACCCAAACTCCACTCTCCCTGCCTGTCAGTCTTGGAGATCAAGCCTCCATCTCTTGC AGATCTAGTCAGAGCATTGTAATCAGT... AAT GATGTTGTGATGACCCAGACTCCACTCACTTTGTCGGTTACCATTGGACAACCAGCCTCCATCTCTTGC AAGTCAAGTCAGAGCCTCTTAGATAGT... GAT GACATTGTGATGACACAGTCTCCATCCTCCCTGGCTATGTCAGTAGGACAGAAGGTCACTATGAGCTGC AAGTCCAGTCAGAGCCTTTTAAATAGTAGCAAT GGCATTGTGATGTCACAGTCTCCATCCTCCCTAGCTGTGTCAGTTGGAGAGAAGGTTACTATGAGCTGC AAGTCCAGTCAGAGCCTTTTCTATAGTAGCAAT GACATTGTGATGACACAGTCTCCATCCTCCCTGACTGTGACAGCAGGAGAGAAGGTCACTATGAGCTGC AAGTCCAGTCAGAGTCTGTTAAACAGTGGAAAT GACATTGTGATGACACAGTCTCCATCCTCCCTGAGTGTGTCAGCAGGAGAGAAGGTCACTATGAGCTGC AAGTCCAGTCAGAGTCTGTTAAACAGTGGAAAT AACATTATGATGACACAGTCGCCATCATCTCTGGCTGTGTCTGCAGGAGAAAAGGTCACTATGAGCTGT AAGTCCAGTCAAAGTGTTTTATACAGTTCAAAT GACGTTGTGATGTCACAGTCTCCATCCTCCCTGGCTGTGTCAGCAGGAGAGAAGGTCGCTGTGAGCTGC AAATCCAGTCAGAGTCTGTCTACAGTAGAACCC GNCATTGTGATGACACAGTCTCCNCNCTCCCTGAGTGTGTCAGCAGGANNNAAGGTCACTATGAGCTGT AAGTCCAGTCAGNGTCTGNTTAACAGTGNAGTC GACATTGTGATGACTCAGTCTCCAACTTTCCTTGCTGTGACAGCAAGTAAGAAGGTCACCATTAGTTGC ACTGCNTCTGAGAGCCTTTATTCAAGCAAACAC AGTATTGTGATGACCCAGACTCCCAAATTCCTGCTTGTATCAGCAGGAGAGAGGGTTACCATAACCTGC AAGGCCAGTCAG...................... . . AGT
 gacattgtgatgacccaitctcacanattcatgtccacatcagtaggagacagggtcagcatcacctgc anggccagtcag. GACATTGTGATGACCCAGTCTCAAAAATTCATGTCCACATCAGTAGGAGACAGGGTCAGCATCACCTGC AAGGCCAGTCAG....................... AAT GACATTGTGATGACCCAGTCTCAAAAATTCATGTCCACATCAGTGGGAGACAGGGTCAGCGTCACCTGC AAGGCCAGTCAG..................... la. GACATTGTGATGACCCAGTCTCAAAAATTCATGTCCACATCAGTAGGAGACAGGGTCAGCATCACCTGC AAGGCCAGTCAG..................... . . . AAT GACATTGTGATGACCCAGTCTCACAAATTCATGTCCACATCAGTAGGAGACAGGGTCAGCGTCACCTGC AAGGCCAGTCAG...................... . . AAT GACATTGTGATGACCCAGTCTCAAAAATTCATGTCCACATCAGTAGGAGACAGGGTCAGCGTCACCTGC AAGGCCAGTCAG..................... . . AAT GACATTGTGATGACCCAGTCTCACAAATTCATGTCCACATCAGTAGGAGACAGGGTCAGCATCACCTGC AAGGCCAGTCAG...................... GACATTGTGATGACCCAGTCTCACAAATTCATGTCCACATCAGTAGGAGACAGGGTCAGCATCACCTGC AAGGCCAGTCAG....................... GAT AACATTGTAATGACCCAATCTCCCAAATCCATGTCCGTGTCAGTAGGAGAGAGGGTCACCTTGACCTGC AAGGCCAGTGAG.................... . . AAT AACATTGTAATGACCCAATCACCCAAATCCATGTCCATGTCAGTAGGAGAGAGGGTCACCTTGAGCTGC AAGGCCAGTGAG.....................

agtatangttacatgcac tggtaccagcagnagtcangcacctccccnanactctggatttat gacacatccaaninggecttct ggng tccctgcncgn agtgrangrtacatacag tggttccagcagangccaggatcctcccccaanccctggatttct gtcacatccaicctggcttct ggagtccctoctcgc agtgtangttacatacac tggtaccagcagangccaggatcctcccccaanccctggatttat gccacatccaacctggcttct ggagtccctgttcgc attcacanttatttagca tggtatcagcaganacaggganaitctcctcagctcctggtctat antgcaananccttagcagat ggtgtgccatcaigg atttacagtantttggca tggttattcagcaganacaggganaacccccccagcttggtctat gctgcaacaancttagcagat ggtgtgccatcangg attracagttatttagca tggtatcagcaganacaggganantctcctcagctcctggtctar antgcaanaaccttagcagan ggtgtgccatcangg atttacagttatttagca tggtatcagcaganacaggganaatctcctcagctcctg tctat aatgcaaaiaccttaccagan ggtgtgccatcangg attagcanatatttagcc tggtatcaigaganacctgggaianctantangcttcttatctac rctggatccactttgcantct gganttccatcange ATTAACAATTTTTTAAAA TGGTTTCAGCAAACACTGGGGAAAACTGCTAGGCTCTTGATCTAT GGTGCAAACAAATTGGAAGAT GGGGTCCCTTCAAGG attggtagtagcttanac tgGcttcagcagganccagatgganctattaancgcctgatctac gccacatccagtttagattct ggtgtgcccaanagg ATTCATGGTTATTTAAAC TTGTTTCAGCAGAAACCAGGTGAAACTATTAAACACCTGATCTAT GAAACATCCAATTTAGATTCT GGTGTCCCAAAAAGG ATTAGTGGTTACTTAAGC TGGCTTCAGCAGAAACCAGATGGAACTATTAAACGCCTGATCTAC GCCGCATCCACTTTAGATTCT GGTGTCCCAAAAAGG attagaggtantttagac tgGtatcagcaganaccaggtgganctattaanctcctgatctac tccacatccaatttanattct gGtgtcccatcang attantagctatttangc tggttccagcaganaccaggganatctcctangaccctgatctat cgtgcaancagattggtagat ggggtcccatcaagg attantagctatttancc tggttccagcaganaccagggangtctcctangaccctgctctat cgtacaaagagattggtagat ggggtcccatcaagg attanaigctatttangc tggtaccagcaganaccatg nantctcctangaccctgatctat tatgcancaigcttggcagat gGggtcccatcanga attagcanttatttaanc tgGtatcagcaganaccagatgganctgttanactcctgatctac tacacatcangattacactca ggagtcccatcang attagcanttutttatac tgGttrcagcaganatcagatgganctgttanactcctgatctac tacacctcangatancactca ggagtcccatcange attancangtatatagct tgggaccaacacangcctgganaaggtcctaggctgctcatacat tacacatctacaatagagcca ggcatcccatcang attancangtatttagct tggtaccancacangcctgganaaggtcctaggctgctcatacat tacacatctacattacagcca ggcatcccatcaagg gGgangacatacttgant tgGtttctgcagagaccaggacantctcctcagctcctgatctat ttgatgtccacccgtgcatca ggagtctcagaccgg gGCAACACTTACTTGTAT TGGTTCCTGCAGAAGCCAGGCCAGTCTCCTCAGCTCCTGATATAT TATATCTCCAACCTTGCCTCA GGAGTCCCAGACAGG gGCATCACTTATTTGTAT TGGTATCTGCAGAAGCCAGGCCAGTCTCCTCAGCTCCTGATTTAT CAGATGTCCAACCTTGCCTCA GGAGTCCCAGACAGG gGCAACACTTACTTGTAT TGGTACCTACAGAGGCCAGGCCAGTCTCCTCAGCTCCTGATATAT CGGATGTCCAACCTTGCCTCA GGAGTCCCAGACAGG gGCAACACTTACTTGTAT TGGTACCTACAGAGGCCAGGCCAGTCTCCTCAACTCCTGATATAT CGGATGTCCTACCTTGCCTCA GGAGTCCCAGACAGG gGCAACACTTACTTGTAT TGGTTCCTGCAGAGGCCAGGCCAGTCTCCTCAGCTCCTGATATAT CGGATGTCCAACCTTGCCTCA GGAGTCCCAGACAGG GGCATCACTTTTTTATAT TGGTATCTCCAGAGGCCAGGCCAGTCTCCTCAGCTCCTGATATAT CGGGTGTCCAATCTGGCCTCA GGAGTCCCAAACAGG GGAAACACCTATTTACAT TGGTACCTGCAGAAGCCAGGCCAGTCTCCAAAGCTCCTGATCTAC AAAGTTTCCAACCGATTTTCT GGGGTCCCAGACAGG gGaAacacctatttagan tggtacctgcaganaccaggccagtctccaaagctcctgatctac aangtttccaaccgattttct ggggtcccagacagg GGAAACACCTATTTGAAG TGGTACCTCCAGAAACCAGGCCAGTCTCCACAGCTCCTGATCTAC AGGGTTTCCAACCGATTTTCT GGGGTCCTAGACAGG GGGATCACCTATTTGTCT TGGTACCTGCACAAGCCTGGCCAGTCTCCACAGCTCCTCATCTAT GGGATTTCCAACAGATTTTCT GGGGTGCCAGACAGG GGAAACACCTATTTATAT TGGTACCTGCAGAAACCAGGCCAGTCTCCAAAGCTCCTGATCTAC AGGGTTTCCAACCGATTTTCT GGGGTCCCAGACAGG gGaAACACCTATTTGAAC TGGTACCTCCAGAAACCAGGCCAGTCTCCCAGGCTCCTGATCTAC AGGGTTTCCAACCGATTTTCT GGGGTCCTAGACAGG GGGTTCACCTATTTAGAA TGGTACCTGCAGAAACCAGGNNNNNNNNNAAAGCTCCTGATATAT GGGATTTCCAACCGATTTTCT GGGGTCCCAGACAGG gGAAAGACATATTTGAAT TGGTTGTTACAGAGGCCAGGCCAGTCTCCAAAGCGCCTAATCTAT CTGGTGTCTAAACTGGACTCT GGAGTCCCTGACAGG CAAAAGAACTATTTGGCC TGGTACCAGCAGAAACCAGGACAGTCTCCTAAACTTCTGGTATAC TTTGCATCCACTAGGGAATCT GGGGTCCCTGATCGC CAAAAGAACTCTTTGGCC TGGTACCAGCAGAGACCAGGGCAGTCTCCTAAACTGCTGATTTAC TGGGCATCCACTAGGGAATCT GGGGTCCCTGATCGC CCGAAGAACTACTTGACC TGGTACCAGCAGAAACCAGGGCAGCCTCCTAAACTGTTGATCTAC TGGGCATCCACTAGGGAATCT GGGGTCCCTGATCGC CAAAAGAACTACTTGGCC TGGTACCAGCAGAAACCAGGGCAGCCTCCTAAACTGTTGATCTAC GGGGCATCCACTAGGGAATCT GGGGTCCCTGATCGC CAGAAGAACTACTTGGCC TGGTACCAGCAGAAACCAGGGCAGTCTCCTAAACTGCTGATCTAC TGGGCATCCACTAGGGAATCT GGAGTCCCTGATCGC GAAAGAAGCTACTTGGCT TGGTACCAGCAGAAACCAGGGCAGTCTCCTAAACTGCTGATCTAC TGGGCATCCACTAGGGAATCT GGGGTCCCTGATCGC AAAAGAACTAACTTGGCC TGGTACCANAAGAAACCAGGGCAGCCTCCNAAACTGTTGATCTCC GTGGATGCGCGACCCNCACAC GGAGTCCCTGATCGC aAGGTGCACTACTTGGCT TGGTACCAGAAGAAACCAGAGCAATCTCCTAAACTGCTGATATAC GGGGCATCCAACCGATACATT GGGGTCCCTGATCGC GTGAGTAATGATGTAGCT TGGTACCAACAGAAGCCAGGGCAGTCTCCTAAACTGCTGATATAC TATGCATCCAATCGCTACACT GGAGTCCCTGATCGC gTGGGTAATAATGTAGCC tGGTACCAACAGAAGCCAGGACAGTCTCCTAAACTGCTGATATAC TATGCATCCAATCGCTACACT GGAGTCCCTGATCGC gTGGGTGCTGCTATAGCC tGGTATCAACAGAAACCAGGACAATCTCCTAAACTACTGATTTAC TGGGCATCCACCCGGCACACT GGAGTCCCTGATCGC GTGGGTACTGCTGTAGCC TGGTATCAACAGAAACCAGGACAATCTCCTAAACTACTGATTTAC TCGGCATCCAATCGGTACACT GGAGTCCCTGATCGC gTGGTCACTAATGTAGCC tGGTATCAACAGACACCAGGACAATCTCCTAAAGCACTGATTTAC tCGGCATCCTACCGGTACAGT GGAGTCCCTGATCGC GTTCGTACTGCTGTTGCC TGGTATCAACAGAAACCAGGGCAGTCTCCTAAAGCACTGATTTAC TTGGCATCCAACCGGTACACT GGAGTCCCTGATCGC gTGGGTACTAATGTAGCC tGGTATCAACAGAAACCAGGGCAATCTCCTAAAGCACTGATTTAC TCGGCATCCTACCGGTACAGT GGAGTCCCTGATCGC gTGGGTACTAATGTAGCC tGGTATCAGCAGAAACCAGGGCAATCTCCTAAAGCACTGATTTAC TCGGCATCCTACCGGTACAGT GGAGTCCCTGATCGC GTGAGTACTACTGTGGCC TGGTATCAGCAGAAACCAGGGCAATCTCCTAAACTACTGATTTAT TCGGCATCCTACCGGTACACT GGAGTCCCTGATCGC GTGAGTACTGCTGTAGCC TGGTATCAACAGAAACCAGGACAATCTCCTAAACTACTGATTTAC TCGGCATCCTACCGGTACACT GGAGTCCCTGATCGC gTGGTTACTTATGTTTCC TGGTATCAACAGAAACCAGAGCAGTCTCCTAAACTGCTGATATAC GGGGCATCCAACCGGTACACT GGGGTCCCCGATCGC gTGGGTACtTATGTATCC tGGTATCAACAGAAACCAGAGCAGTCTCCTAAACTGCTGATATAC GGGGCATCCAACCGGTACACT GGGGTCCCCGATCGC
 TTCAGTGGNAGTGGGNCTGGNAACTCTTACTCTCTCACGATCAGCAGCATGGAGGCNGAAGATGTTGCCACTTATTACTGT TTTCNGGGGAGTGGGTACCCA TTCAGTGGNAGTGGGTCTGGGACCTCTTACTCTCTCACAATCAGCAGAGTGGAGGCTGAAGATGCTGCCACTTATTACTGC CAGCAGTGGAGGAGTAACCCA TTCAGTGGAAGTGGGTCTGGGACCTCTTACTCTCTCACAATCAACAGAGTGGAGGCTGAAGATGCTGCCACTTATTACTGC CAGCAGTGGAGTAGTAACCCA TTCAGTGGCAGTGGATCAGGAACACAATATTCTCTCAAGATCAACAGCCTGCAGCCTGAAGATTTTGGGAGTTATTACTGT CAACATTTTTGGAGTACTCCT TTCAGTGGCAGTGGATCAGGAACACAATATTCTCTCAAGATCAACAGCCAGCAGCCGGAGGATTTTTGGGAGTTATTACTGT CAACATTTTTGGAGTGCTCCT TTCAGTGGCAGTGGATCAGGCACACAGTTTTCTCTGAAGATCAACAGCCTGCAGCCTGAAGATTTTTGGGAGTTATTACTGT CAACATCATTATGTTACTCCG TTCAGTGGCAGTGGATCAGGCACACAGTTTTCTCTGAAGATCAACAGCCTGCAGCCTGAAGATTTTGGGAGTTATTACTGT CAGCATCATTATGGTCCTCCG tTCAGTGGCAGTGGATCTGGTACAGATTTCACTCTCACCATCAGTAGCCTGGAGCCTGAAGATTTTGCAATGTATTACTGT CAACAGCATAATGAATACCCG TTCAGTGGAACTGGATATGGGACAGATTTCACTTTCACCATCAGCAGCCAGGAGGAAGAAGATGTGTCAACTTATTTCTGT CTACAGCATAGGTATCTCCCT tTCAGTGGCAGTAGGTCTGGGTCAGATTATTCTCTCACCATCAGCAGCCTTGAGTCTGAAGATTTTGTAGACTATTACTGT CTACAATATGCTAGTTCTCCT TTCAGTGGCAGTAGGTCTGGGTCAGATTATTCTCTCATTATCGGCAGCCTTGAGTCTGAAGATTTTTGCAGACTATTACTGT CTACAATATGCTAGTTCTCCT TTCAGTGGCAGTAGGTCTGGGTCAGATTATTCTCTCACCATCAGCAGCCTTGAGTCTGAAGATTTTGCAGACTATTACTGT CTACAATATCTTAGTTATCCG tTCAGTGGCAGTGGGTCTGGGTCAGATTATTCTCTCACCATCAGCAGCCTAGAGTCTGAAGATTTTGCAGACTATTACTGT CTACAGCGTAATGCGTATCCG TTCAGTGGCAGTGGATCTGGGCAAGATTATTCTCTCACCATCAGCAGCCTGGAGTATGAAGATATGGGAATTTATTATTGT CTACAGTATGATGAGTTTCCT tTCAGTGGCAGTGGATCTGGGCAAGAATATTCTCTCACCATCAGCAGCCTGGAGTATGAAGATATGGGAATTTATTTTTGT CTTCAGTATGATGAATTTCTTT TTCAGTGGCAGTGGATCTGGGNAAGATTATTCTCTAACCATCAGCAGCCTGGAGTCTGACGATACAGCAACTTATTACTGT CTACAGCATGGTGAGAGCCCT TTCAGTGGCAGTGGGTCTGGAACAGATTATTCTCTCACCATTAGCAACCTGGAGCAAGAAGATATTGCCACTTACTTTTGC CAACAGGGTAATACGCTTCCT tTCAGTGGCAGTGGGTCTGGAACAGATTATTCTTTCACCATTAACAACCTGGAGTAAGAAGATGTCGCCACTTATTCTTGA CAACAGGGTATATT TTCAGTGGAAGTGGGTCTGGGAGAGATTATTCCTTCAGCATCAGCAACCTGGAGCCTGAAGATATTGCAACTTATTATTGT CTACAGTATGATAATCTGTAC tTCAGTGGAAGTGGGTCTGGGAGAGATTATTCCTTCAGCATCAGCAACCTGGACGCGGAAGAGATTGCAACTTATTATTGT CTACAGTATGATAGTCTGTAC TTTAGTGGCAGTGGGTCAGGAACAGATTTCACCCTGGAAATCAGTAGAGTGAAGGCTGAGGATGTGGGTGTGTATTACTGT CAACAACTTGTAGAGTATCCTT tTCAGTGGCAGTGGGTCAGGAACTGATTTCACACTGAGAATCAGTAGAGTGGAGGCTGAGGATGTGGGTGTTTATTACTGT ATGCAAGGTCTAGAATATCCT TTCAGTAGCAGTGGGTCAGGAACCGACTTCACACTGAGAATCAGCAGAGTGGAGGCTGAGGATGTGGGTGTTTATTACTGT GCTCAAAATCTAGAACTTCCT tTCAGTGGCAGTGGGTCAGGAACTGCTTTCACACTGAGAATCAGTAGAGTGGAGGCTGAGGATGTGGGTATTTATTATTGT ATGCAACATCTAGAATATCCT TTCAGTGGCAGTGGGTCAGGAACTGCTTTCACACTGAGAATCAGTAGAGTGGAGGCTGAGGATGTGGGTATTTATTATTGT ATGCAACATCTAGAATATCCT TTCAGTGGCAGTGGGTCAGGAACTGCTTTCACACTGAGAATCAGTAGAGTGGAGGCTGAGGATGTGGGTGTTTATTACTGT ATGCAACATCTAGAATATCCG TTCAGTGGCAGTGAGTCAGGAACTGATTTCACACTGAGAATCAGCAGAGTGGAGGCTGAGGATGTGGGTGTTTATTACTGT GCTCAACTGCTAGAACTCCC tTCAGTGGCAGTGGATCAGGGACAGATTTCACACTCAAGATCAGCAGAGTGGAGGCTGAGGATCTGGGAGTTTATTTCTGC TCTCAAAGTACACATGTTCCT TTCAGTGGCAGTGGATCAGGGACAGATTTCACACTCAAGATCAGCAGAGTGGAGGCTGAGGATCTGGGAGTTTATTACTGC TTTCAAGGTTCACATGTTCCT TTCAGTGGTAGTGGATCAGGGACAGATTTCACACTGAAAATCAGCAGAGTGGAGGCTGAGGATTTGGGAGTTTATTTCTGC CTCCAAGTTACACATGCTCCT TTCAGTGGCAGTGGTTCAGGGACAGATTTCACACTCAAGATCAACACAATAAAGCCTGAGGACTTGGGAATGTATTACTGC TTACAAGGTTCACATCAGCCG tTCAGTGGCAGTGGATCAGGGACAGATTTCACACTCAATATCAGCAGAGTGGAGGCTGAGGATATGGGAGTTTATTACTGC TTTCAAGGTACACATGTTCCT tTCAGTGGTAGTGGATCAGGGACAGATTTCACACTGAAAATCAGCAGAGTGGAGGCTGAGGATTTGGGGAGTTTATTTCTGC CTCCAAGTTACACATGTCCCG TTCAGTGGCAGTGGATCAGGGACAGATTTCACACTCAAGATCAGCAGAGTGGAGGCTGAGGATGTAGGAATTTATTACTGT TTTCAAGGTATACATGTTCCG tTCACTGGCAGTGGATCAGGGACAGATTTCACACTGAAAATCAGCAGAGTGGAGGCTGAGGATTTGGGAGTTTATTATTGC TGGCAAGGTACACATTTTCCT tTCATAGGCAGTGGATCTGGGACAGATTTCACTCTTACCATCAGCAGTGTGCAGGCTGAAGACCTGGCAGATTACTTCTGT CAGCAACATTATAGCACTCCG TTCACAGGCAGTGGATCTGGGACAGATTTCACTCTCACCATCAGCAGTGTGAAGGCTGAAGACCTGGCAGTTTATTACTGT CAGCAATATTATAGCTATCCG TTCACAGGCAGTGGATCTGGAACAGATTTCACTCTCACCATCAGCAGTGTGCAGGCTGAAGACCTGGCAGTTTATTACTGT CAGAATGATTATAGTTATCCG TTCACAGGCAGTGGATCTGGAACCGATTTCACTCTTACCATCAGCAGTGTGCAGGCTGAAGACCTGGCACTTTATTACTGT CAGAATGATCATACTTATCCG TTCACAGGCAGTGGATCTGGGACAGATTTTACTCTTACCATCAGCAGTGTACAAGCTGAAGACCTGGCAGTTTATTACTGT CATCAATACCTCTCCTCG TTCACGGGCAGTGGATCTGGGACAGATTTCACTCTCACCATCAGCAGTGTGCGGGCTGAAGACCTGGCAGTTTATTACTGC AAGAATCTTATGGATCTTCCC TTCACAGGAAGTGGTTCTGGGAGNGATTATACTCTCACAGTCAGCAGTGTGAAGGCTGAAGACCTGGCACTTTACTACTGT CAACAACATTATAGNTATCCG TTCACAGGCAGTGGATCTGGGACAGATTTCACTCTGACCATCAGCAGTGTACAGGTTGAAGACCTCACACATTATTACTGT GCACAGTTTTACAGCTATCCT TTCACTGGCAGTGGATATGGGACGGATTTCACTTTCACCATCAGCACTGTGCAGGCTGAAGACCTGGCAGTTTATTTCTGT CAGCAGGATTATAGCTCTCCT TTCACTGGCAGTGGATCTGGGACAGATTTCACTTTCACCATCAGCAGTGTGCAGGTTGAAGACCTGGCAGTTTATtTCTGT CAGCAGCATTATAGCTCTCCG TTCACAGGCAGTGGATCTGGGACAGATTTCACTCTCACCATTAGCAATGTGCAGTCTGATGACTTGGCAGATTATTTCTGT CAACAATATAGCGGGTATCCT TTCACAGGCAGTGGATCTGGGACAGATTTCACTCTCACCATCAGCAATATGCAGTCTGAAGACCTGGCAGATTATTTCTGC CAGCAATATAGCAGCTATCCT TTCTCAGGCAGTGGATCTGGGACAGATTTCACTCTCACCATCAGCAATGTGCAGTCTGGAGACTTGGCAGAGTATTTCTGT CAGCAATATAACAGCTATCCT TTCACAGGCAGTGGATCTGGGACAGATTTCACTCTCACCATTACCAATGTGCAATCTGAAGACCTGGCAGATTATTTCTGT CTGCAACATTGGAATTATCCG TTCACAGGCAGTGGATCTGGGACAGATTTCACTCTCACCATCAGCAATGTGCAGTCTGAAGACTTGGCAGAGTATTTCTGT CAGCAATATAACAGCTGTCCA TTCACAGGCAGTGGATCTGGGACGGATTTCACTCTCACCATCAGCAATGTGCAGTCTGAAGACTTGGCAGTGTATTTCTGT CAGCAATATAACAGCTATCCG TTCACTGGCAGTGGATCTGGGACGGATTTCACTTTCACCATCAGCAGTGTGCAGGCTGAAGACCTGGCAGTTTATTACTGT CAGCAACATTATAGTACTCCT TTCACTGGCAGCGGATCTGGGACGGATTTCACTTTCACCATCAGCAGTGTGCAGGCTGAAGACCTGGCAGTTTATTACTGT CAGCAACATTATAGTACTCCG tTCACAGGCAGTGGATCTGCAACAGATTTCACTCTGACCATCAGCAGTGTGCAGGCTGAAGACCTTGCAGATTATCACTGT GGACAGGGTTACAGCTATCCG trCacaggcagtggatctgcancagatttcactctgaccatcagcagtgtgcagtctgangaccttgcagattatttctgt ggacagagttacagctatcce
similar members from a single V_{k} gene family $\left(V_{k} 4 / 5\right)$ were present in different groups (IV and VI).

Organization of V_{k} proteins into subgroups using <13 mismatches up to $\operatorname{Trp} 35$ as a criterium (Potter et al. 1982) better reflected primary structure similarities, although such organization frequently led to multiple assignments, in which cases only a single assignment for the sequence representing the best match was included (Table 1). Moreover, as will be shown below, this classification repeatedly failed to adequately reflect overall similarity at the nucleic acid sequence level. Finally, some sequences (discussed below) could not be assigned unambiguously to any existing $\mathrm{V}_{\mathbf{k}} \mathrm{Tr}$ subgroup.

We then determined whether V_{k} nucleic acid sequences could be organized into gene families (analogous to V_{H} genes), and how such families related to V_{k} protein groups and subgroups. For this purpose, all V_{k} genes in the data bank were arranged in groups of $>80 \%$ sequence similarity, which were termed V_{k} gene families. The characteristics of these families and their relationship to V_{k} protein groups and subgroups are detailed below. A quick summary outlining how the different classifications correspond to each other is presented in Table 2.
$V_{k} 21$ gene family. All $V_{k} 21$ genes fulfilled the criteria for a typical V gene family, i. e., all members were $>80 \%$ similar (mostly $>90 \%$) and differed from all other V_{k} sequences by at least 25%. This gene family corresponded completely to protein subgroup $\mathrm{V}_{\mathrm{k}} 21$ which, in turn, coincided with V_{k} protein group III. Five germline genes have been cloned (Heinrich et al. 1984) and approximately ten expressed sequences have been published. $V_{k} 21$ genes were used in response to influenza hemagglutinin (Clarke et al. 1985, Meek et al. 1989) and major histocompatibility complex class II antigens (Devaux et al. 1985), and encoded some lupus-associated autoantibodies (Shlomchik et al. 1987c). The P3-X63-Ag8. 653 myeloma line, a derivative of the MOPC21 myeloma that has lost the ability to express Ig heavy and light chain proteins and is frequently used in hybridoma technology (Kearney et al. 1979), also expressed a non-functional $\mathrm{V}_{\mathrm{k}} 21 \mathrm{mRNA}$
(Strohal et al. 1987). With the exception of an MRL$l p r / l p r$ rheumatoid factor (RF , anti-Ig) V_{k} sequence (AM12; Shlomchik et al. 1987c), which differed from all known $V_{k} 21$ germline genes by $>30 \mathrm{bp}$ and may have derived from an unknown germline gene, all other expressed sequences were very similar to, and hence probably derived from, known $V_{k} 21$ germline genes. RFLP (Kofler et al. 1989) and gene cloning analyses (Heinrich et al. 1984) suggested an estimated 6 to $13 V_{k} 21$ germline genes in the genome of most inbred strains of mice.

Finally, an incomplete $\mathrm{V}_{\mathrm{k}} 21$ sequence (VM201, Meek et al. 1989), which was therefore not included in our data bank, should be mentioned as it lacked two codons in CDR-1 in comparison to other $\mathrm{V}_{\mathrm{k}} 21$ sequences. Unless caused by somatic events, this would make the corresponding germline gene the only V_{k} gene with 37 codons up to $\operatorname{Trp} 35$.
$V_{k} 23$ gene family. Similar to $\mathrm{V}_{\mathrm{k}} 21, \mathrm{~V}_{\mathrm{k}} 23$ sequences were well separated from all other V_{k} sequences, and formed a gene family that corresponded entirely to its protein counterpart, the $\mathrm{V}_{\mathrm{k}} 23$ subgroup (protein group V). One germline gene has been reported (Pech et al. 1981) that was subsequently observed in RFs from BALB/c mice (Shlomchik et al. 1987a), and that probably encoded an $(\mathrm{NZB} \times \mathrm{NZW}) \mathrm{F}_{1}$ RNA-specific autoantibody (Eilat et al. 1988).

Additional $V_{k} 23$ genes, more distant from the above germline gene but closely related to each other, possibly derived from a second $V_{k} 23$ germline gene and encoded nitrophenyl-specific anti-idiotypes (Sablitzky and Rajewsky 1984) and a creatine-kinase-specific antibody (Buckel et al. 1987). A nonfunctional $\mathrm{V}_{\mathrm{k}} 23$ member was cloned from an MRL/n RF-producing hybridoma and might correspond to another $V_{k} 23$ (pseudo) gene (Kofler et al. 1989). Our previous RFLP analyses suggested the presence of four to eight $V_{k} 23$ germline genes in the genome of most inbred strains of mice. However, this may represent an over-estimate due to cross-hybridization of the more conserved 3^{\prime} portion of the $\mathrm{V}_{\mathrm{k}} 23$ probe with $\mathrm{V}_{\mathrm{k}} 1$ sequences (Kofler et al. 1989, and below).

Fig. 1. Nucleic acid sequences of $109 V_{k}$ genes contained in the V_{k} database. Dots have been introduced to maximize homology; N, undetermined nucleotides; CDR, complementarity determining region; FR , frame work region (according to Kabat et al. 1987). Codes of V_{k} genes: $1=V_{k} 21 B$, $2=V_{k} 21 C, 3=V_{k} 2 I E, 4=V_{k} l .6 k b, 5=V_{k} 18 k b, 6=H 37-85,7=A M 10,8=A M 12,9=A g 8.653 k-, 10=L 7,11=T 2,12=D 444,13=M R L / n-R F 33 B$, $14=A 8 / 4,15=A 20 / 44,16=M A K 33,17=H 1,18=R 11,19=R 1,20=L 8,21=$ MRL-Histone $7,22=M R L-D N A 22,23=N Q 10-4.6 .1,24=N Q 11-1.18$, $25=N Q 22-87.1,26=A 9,27=37 A 4,28=R 2,29=R 9,30=R 13,31=H 2,32=H 3,33=H 4,34=H 6,35=H 8,36=H 9,37=H 13,38=L 6,39=70 Z / 3$, $40=A M 1,41=2 H 7,42=N Q 2-6.1,43=N Q 2-48.2 .2,44=N Q 10-12.4 .6,45=N Q 10-12.5,46=N Q 10-15.3,47=N Q 11-7.12,48=N Q 11-8.1$, $49=N Q 22-15.18,50=N Q 22-18.7,51=N Q 22-61.1,52=N Q 22-17.18,53=N Q 19-2.4,54=N Q 18-36.44,55=N Q 16-38.18,56=N Q 10-11.1$, $57=N Q 10-2.12 .8,58=K 2,59=K 3,60=A 25.9 .7,61=A 31.90,62=M R L-R F 24,63=P C 664 K-, 64=M O P C 41,65=M 173 B, 66=G L O O P I$, $67=B X W-D N A 16,68=L 6,69=40-140,70=C P 5 B 5-3,71=V_{k} A R S, 72=P C 3386,73=38 C 13,74=V M 113,75=V_{k} 167,76=V_{k} 24 A, 77=V_{k} 24 B$, $78=A M 28,79=A M 29,80=A 15,81=25-39,82=K 5.1,83=K 1 A 5,84=K 18.1,85=W 3129,86=L X I X 27,87=J V 3,88=H P 9,89=B X W-D N A 14$, $90=V_{k} 139,91=G L O O P 5,92=A M 13,93=V S 3,94=A 17,95=J V 10,96=P Y 102,97=S 107 A, 98=V_{k} S e r, 99=M R L-R F 28,100=C E A 66-E 3$, $101=V-T N P, 102=B 6.2,103=C E M 231.6 .7,104=A 23,105=A 34,106=R F 49,107=R F 49 B, 108=R F 34,109=A M 16$.

A

001 NIVLTQSPASLAVSLGQRATISC RASESVDS. YGNSFMH WYOQKPGQPPKLLIY LASNLES GVPARFSGSGSRTDFTLTIDPVEADDAATYYC QQNNEDP DIVLTQSPASLAVSLGQRATISC RASESVDS. YGNSFMH WYQQKPGQPPKLLIY RASNLES GIPARFSGSGSRTDFTLTINPVEADDVATYYC QQSNEDP DIVLTQSPASLAVSLGQRATISC RASKSVST..SGYSYMH WYQQKPGQPPKLLIY LASNLES GVPARFSGSGSGTDFTLNIHPVEEEDAATYYC QHSRELP DIVLTQSPASLAVSLGQRATISC RASQSVST..SSYSYMH WYQQKPGQPPKLLIK YASNLES GVPARFSGSGSGTDFTLNIHPVEEEDTATYYC QHSWEIP DIVLTQSPASLAVSLGQRATIFC RASQSVDY. .NGISYMH WFQQKPGQPPKLLIY AASNLES GIPARFSGSGSGTDFTLNIHPVEEEDAATYYC QQSIEDP DIVLTQSPGSLAVSLGQRATISC RASESVES. .SGNNFIH WHQQKPGQPPXLLIY RASNLAS GIPARFSGSGSMTDFTLTINPVEADDVATYYC QQSNEDP KIVLTQFPASLAVSLRQRATISC RASESVDS. . YGNSFMY WYQQKPGQPPKLLIY RASNLES GVPARFSGSGSRTDFTLTIDPVEADDGATYYC QQNNEDP DIVLTQSPASLAVSLGQSVTISC RASESVEY..YGSSLMQ WYQQKPGQPPKLLIY GASNVES GVPARFSGSGSGTDFSLNIHPVEEDDIAVYFC QQSRKVP DIVLTQFPASLAVSLGQRATISY RASKSVST..SGYSYMH WNQQKPGQPPRLLIY LVSNLES GVPARFSGSGSGTDFTLNIHPVEEEDAATYYC QHIREXK DILLTQSPAILSUSPGERVSFSC RASQ. SIGTSIH WYQQRTNGSPRLLIK YASESIS GIPSRFSGSGSGTDFTLSINSVESEDIADYYC QQSNSWP DILLTQSPAILSVSPGERVSFSC RASQ......SIGTSIH WYQQRTNGSPRLLIK NASESIS GIPSRFSGSGSGTDFTPSINSVESEDIAEYYC QQSYRWP DILLTQSPAILSVSPGERVSFSC RASQ......SIGTSLH WYQQRTNGSPRLLIK YASESIS GIPSRFSGSGSGTDFTLSINSVESEDVADYYC QQTNSWP DIVLTQSPATLSVTPGDSVSLSC RASQ......SIINNLH LYRUKSHESPRLLIK YASOSIS GIPSRFSGSGSGTDFTLSINSVETEDFGMYFC QQSNSWP DIVLTQSPATLSVTPGDSVSLSC RASQ.SISNNLH WYQQKSHESPRLLIN YASQSMS GIPSRFSGSGSGTDFTLSINSVETEDFGMYFC QQSNNWP DIVLTQSPATLSVTPGDSVSLSC RASQ......SISNNLH WYQOKSHESPRLLIK YASQSIS GIPSRFSGSGSGTDFXLIINNVETEDFGMYFC QQSNSWP DIVLTQSPATLSVTPRDSVSLSC RASQ......SISNNLH WYQQKSHESPRLLIK YASQSIS GIPSRFSGSGSGTDFTLSINSVETEDFGMYFC QQSNSWP QIVLTQSPAIMSASPGEKVTMTC SARSS. . . . VSSSYLY WYQQKPGSSPKLWIY STSNLAS GVPARFSGSGSGTSYSLTISSMEAEDAATFYC QQYSGYP ENVLTQSPAIMAASPGEKVTMTC SASSS. . . . VSSSNLH WYQQKSGTSTKFWIY RTSNLAS EVPAPFSGSGSGTSYSLTISSVEAEDAATYYC QQWSGYP ENVLTQSPAIMAASLGQKVTMTC SASSS. . . . VSSSYLH WYQQKSGASPKPLIH RTSNLAS GVPARFSGSGSGTSYSLTISSVEAEDDATYYC QQWSGYP ENVLTQSPAIMAASLGEKVTMTC SASSS.....VSSSYLH WYQQKSGTSPKLWIY GTSNLAS GVPARFSGSGAGISYSLTISSMEAENDATYYC QOWSGYP QIVLTQSPAIMSASPGEKVTMTC SASSS. . . . VSSKYLN WYQQRSGASPKLWIY GTSNLAS GVPARFSGSGSGTSYSLTISSVEAEDAATYYC QQYHSDP QIVLTQSPAIMSASPGERVTMTC SASSS. . . . VSSSYLY WYQQKPGSSPKLWIY STSNLAS GVPARFSGSGSGTSYSLTISSMEAED.:ATYYC QQYSGYP EIVLTQSPTTMAXSPGEKITITC SANSS.....ISSNYLH WYQQKPGFSPKLLIY RTSNLAS GVQARFSGSGXVTSYSLTIGTMEAXDXATYYC QQGSSIP ENVLTQSPAIMSASPGXKVTMTC RASSS.....VSSSYLH WYQQKSGASPKLWIY STSNLAS XVPARFSGSGSGTSYSLTISSVEAEDAATYYC QQYSGYP EIVLTQSPTTMAASPGEKITITC SASSS.....ISSNYLN WFQQKPGFSPKLLIY RTSNLAS GVPDRFSXSGSXTSYSLTIGTMEAEDVATYYC QQGSSIP EIVLTQSPALMAASPGEKVTITC SVSSS.....ISSSNLH WYQQKSETSPKSWIY GTSNLAS GVPVRFSGSGSGTSYSLTISSMEAEDAATYYC QQWSSYP QIVLTQSPAFMSASLGERVTMTC TARSS.....VSSSYFH WYQQKPGSSPKLWIY STSNLAS GVPTRFSGSGSGTSYSLTISSMEAEDAATYYC HQYHRSP EILLTQSPAIIAASPGEKVTITC SASS....... SUSYMN WYQQKPGSSPKIWIY GISNLAS GVPARFSGSGSGTSFSFTINSMEAEDVATYYC QQRSSYP QIVLTQSPAIMSASPGEKVTMTC SASS.......SISYMH WYQQKPGTSPKRWIY DTSKLAS GVPARFSGSGSGTSYSLTISSMEAEDAATYYC HQRSSYP ENVLTQSPAIMSASLGEKVTMSC RASS....... SVNYMY WYOQKSDASPKLWIY YTSNLAP GVPARFSGSGSGNSYSLTISSMEGEDAATYYC QQFTSSP GIVLTQSPTTMTAFPGENVTITC SASS.......SINYIH WYQQKSGNTPKQUIY KTSDLPS GVPTLFSGSGSGTSYSLTIISSVEAEDAATYYC QQWSGYP QIVLTQSPAIMSASPGEKVTMTC SASS....... SVSYMH WYQQKSGTSPRRWIY DTSKLAS GVPARFSGSGSGTSYSLTISSMEAEDAATYYC QQWSSNP QIVLTQSPAIMSASPGEKVTISC SASS....... SVSYMY WYQQKPGSSPKPWIY RTSNLAS GVPARFSGSGSGTSYSLTISSMEAEDAATYYC QQYHSYP EIVLTQSPAITAASLGQKVTITC SASS....... SUSYMH WYQQKSGTSPKPWIY EISKLAS GVPARFSGSGSGTSYSLTISSMEAEDAAIYYC QQWNYPP QIVLTQSPAILSASPGEKVTMTC SASS....... SVSYMU WFQQKPGSSPKLWIY SISNLAS GVPARFSGSGSGTSYSLTISSVKAEDAATYYC QQWSSSP QILLTQSPAIMSASPGEKVTMTC SASS.......SVSYMH WYQQKPGSSPKPWIY DTSNLAS GFPARFSGSGSGTSYSLIISSMEAEDAATYYC HQRSSYP QIVLTQSPALMSASPGEKVTMTC SASS.......SVSYMY WYQQKPRSSPKPWIY LTSNLAS GVPARFSGSGSGTSYSLTISSMEAEDAATYYC QQWSSNP QIVLSQSPAILSASPGEKVTLTC RASS....... SVSFMN WYQQKPGSSPKPWIY ATSNLAS EFPGRFSGEWSGTSYSLAISRVEAEDAATYYC QQWNSNP QIVLSQSPAILSASPGEKVTMTC RASS.......SVSYMH WYQQKLGSSPKPWIY ATSNLAS GVPARFSGSGSGTSYSLTISRVEAEDAATYYC QQWSSNP QIVLTQSPAIMSASPGQKVTITC SASS....... SVNYMH WYQQKLGSSPKLWIY DTSKLAP GVPARFSGSGSGTSYSLTISSMEAEDAASYFC HQWSSYP QIVLSQSPAILSASPGEKVTMIC RASS.......SVSYMH WYQQKPGSSPKPWIY APSNLAS GVPARFSGSGSGTSYSLTISRVEAEDAATYYC QQWSFNP QILLTQSPAIMSASPGQKVTMTC SASS...... SVSYMY WYQQKPGSSPRLLIY DTSNLAS GVPVRFSGSGSATSYSLTITRMQAEDAATYYC QQWSSYP QILLTQSPAIMSASPGQKVTMTC SASS...... SVSYMH WYQQKSGTSPKRWIY DTSKLAS GVPARFSGSGSATSYSLTITSMQAEDAATYYC QQWSSNP QNVLNQSPXIMSXSPGEKVTMTC SASS....... SVSYMQ WFQQXSGTSPKRWIY DTSKLXS XVPTRFSXSGSGTXYSLTISSMEAEDAATYYC QQWSSNP QIVLTQSPXIMSXSPGEKVTMTC SASS.......SURYMN WFQQKSGTSPKRWIY DTSKLSS GUPARXSGSGSGTSXSLTISSMEXEDXATYYC QQWSSNP QIVLTQSPAIMSASPGEKVTMTC SASS.......SVSYMN WFQQKSGTSPKRWIY DTSKLSS GVPPRFSGSXXGTSYSLTISSMEAEDAATYYC QQWNSNP QIVLTQSPAIMSASPGEKVTMTC SASS.......IVSYVQ WFQQKSGTSPKRWIS DTSKLPS GVPARFSGSGSGTSYSLTISSMEAEDAATYYC QQWTSNP QIVLIQSPXIMSASPGXKXTMTC SASS....... SVSYMN WYQQKSGTSPKRWIY DTSKLAS GVPARFSGSGSGTSYSLTISSMEAEDAATYYC QOWNSNP QIVLTQSPPIMSASPGEKVTMTC SASS.......SUSYLQ WFQQKSGTSPKRWIY DTSKLDS XVPARFSXSGSGTSYSLTISSMEAEDAATYYC QQWTSNP QIVLTQSPAIMSASPGEKV MTC SASS. SVSYMN WFQQKSGTSPKRWVF ATSKLXS GVPARFSGSGXGTSYSLTISSMEAEDAATYYC QQWSSNP QVVLTQSPXIMSASPGXKVTMTC SASS.......SVSYMQ WFQQKSGTSPKRLIF YTSKLTS GVPARFSXSGXGTSYSLTISSMEAEDAATYYC QQWSSNP QIVLSQSPAILSASPGERVTLTC RASS....... SVSYIQ WFQQKPGSSPKPWIH ATSKXAS GVPARFSGSGSGTSYSLTISRVEAEDAATFYC QQWSSNP QIVLTQSPXIMSASPGEKVTMTC SASS...... SVSFMQ WYQQKSGTSPKRWIY HTSKLAS GVPARFSXSGXGTSYSLTITSMEAEDAATYYC QQXSXNP QIVLSQSPAILSASPGEQVTMTC RASS.......SVSYMH WYQQKPGSSPKPWIY ATSNXAS GVXARFSGSGSGTSYSLTISRVEAEDAATYYC QQWSSNP

B
 055 ENVLTQSPXIMSXSXGXKVTMTC SARS....... SISYMH WYQQXSSTSXKLWIY DTSKXAS XVPXXFSXSGXXNSYSLTISSMEXEDVATYYC FXGSGYP 056 QIVLSQSPAILSASPGEKVTMTC RASS....... SVSYIQ WFQQKPGSSPKPWIS VTSNLAS GVPARFSXSGSGTSYSLTISRVEAEDAATYYC QQWRSNP QIVLSQSPAILSASPGEKVTMTC RASS.......SVSYIH WYOQKPGSSPKPWIY ATSNLAS GVPVRFSGSGSGTSYSLTTINRVEAEDAATYYC QQWSSNP DIOMTQSPASLSASVGETVTITC RASG. NIHNYLA WYQQKQGKSPQLLVY NAKTLAD GVPSRFSGSGSGTQYSLKINSLQPEDFGSYYC QHFWSTP DIQMTQSPASLSVSVGETVTITC RASE. NIYSNLA WLFSRNRENPPSLVY AATNLAD GVPSRFSGSGSGTQYSLKINSQQPEDFGSYYC QHFWSAP dIQMTQSPASLSASVGXTVTITC RASE...... NIYSYLA WYQOKQGKSPQLLVY NAKTLAE GVPSRESGSGSGTQFSLKINSLQPEDFGSYYC QHHYVTP DIQMTQSPASLSASVGXTVTITC RASE. NIYSYLA WYQQKQGKSPQLLVY NAKTLPE GVPSRFSGSGSGTQFSLKINSLQPEDFGSYYC QHHYGPP DVQITQSPSYLAASPGETITINC RASK...... SISKYLA WYQEKPGKTNKLLIY SGSTLQS GIPSRFSGSGSGTDFTLTTISSLEPEDFAMYYC QQHNEYP DVQMTQSPSSLSASLGERVSLTC QASQ......SINNFLK WFQQTLGKTARLLIY GANKLED GVPSRFSGTGYGTDFTFTISSQEEEDVSTYFC LQHRYLP DIQMTQSPSSLSASLGERVSLTC RASQ....... DIGSSLN WLQQEPDGTIKRLIY ATSSLDS GVPKRFSGSRSGSDYSLTISSLESEDFVDYYC LQYASSP DIOMTQSPSSLSASLGERVSLTC RASQ...... DIHGYLN LFQQKPGETIKHLIY ETSNLDS GVPKRFSGSRSGSDYSLIIGSLESEDFADYYC LQYASSP DIOMTOSPSSLSASLGERVSLTC RASQ......EISGYLS WLQQKPDGTIKRLIY AASTLDS GVPKRFSGSRSGSDYSLTIISSLESEDFADYYC LQYLSYP DIOMIQSPSSMFGSLGDRVSLSC RASQ...... GIRGNLD WYQQKPGGTIKLLIY STSNLNS GVPSRFSGSGSGSDYSLTISSLESEDFADYYC LQRNAYP DIKMTQSPSSMYASLGERVTITC KASQ...... DINSYLS WFQQKPGKSPKTLIY RANRLVD GVPSRFSGSGSGQDYSLTISSLEYEDMGIYYC LQYDEFP DIKMTQSPSSMYASLGERVTISC KASQ...... DINSYLT WFQQKPGKSPKTLLY RTKRLVD GVPSRFSGSGSGQEYSLTISSLEYEDMGIYFC LQYDEFL DIKMTQSPSSMYASLGERVTITC KASQ. DIKSYLS WYQQKPWXSPKTLIY YATSLAD GVPSRFSGSGSGXDYSLTISSLESDDTATYYC LQHGESP DIQMTQTTSSLSASLGDRVTISC RASQ...... DISNYLN WYQQKPDGTVKLLIY YTSRLHS GVPSRFSGSGSGTDYSLTISNLEQEDIATYFC QQGNTLP DIQMTQTTSSLSASPGDRVTISC RTSQ...... DISNFLY WFQQKSDGTVKLLIY YTSRUHS GVPSRFSGSGSGTDYSFTINNLEUEDVATYSU QQGI DIQMTQSPSSLSASLGGKVTITC KASQ......DINKYIA WDQHKPGKGPRLLIH YTSTIEP GIPSRFSGSGSGRDYSFSISNLEPEDIATYYC LQYDNLP DIQMTQSPSSLSASLGGKVTITC KASQ...... DINKYLA WYQHKPGKGPRLLIH YTSTLQP GIPSRFSGSGSGRDYSFSISNLDAEEIATYYC LQYDSLY DIVITQDELSNPVTSGESVSISC RSSKSLLYK. DGKTYLN WFLQRPGQSPQLLIY LMSTRAS GVSDRFSGSGSGTDFTLEISRVKAEDVGVYYC QQLVEYP DIVMTQAAFSNPVTLGTSASISC RSSKSLLHS.SGNTYLY WFLQKPGQSPQLLIY YISNLAS GVPDRFSGSGSGTDFTL.RISRVEAEDVGVYYC MQGLEYP DIVMTQAAFSNPVTLGTSASISC RSSKSLLHS.NGITYLY WYLQKPGQSPQLLIY QMSNLAS GVPDRFSSSGSGTDFTLRISRVEAEDVGVYYC AQNLELP DIVMTQAAPSUSUTPGESVFISC RSSKSLLHS.NGNTYLY WYLQRPGQSPQLLIY RMSNLAS GVPDRFSGSGSGTAFTLRISRVEAEDVGIYYC MQHIEYP DIVMTQATPSVSUTPGESVFISC RSSKSLLYI.NGNTYLY WYLQRPGQSPQLLIY RMSYLAS GVPDRFSGSGSGTAFTLRISRVEAEDVGIYYC MQHLEYP DIVMTQAAPSUPVTPGESVSVSC RSSKSLLHS.NGNTYLY WFLQRPGQSPQLLIY RMSNLAS GVPDRFSGSGSGTAFTLRISRVEAEDVGVYYC MQHLEYP DIVMTQAAFSNPVTLGTSASISC RSSKNLLHS.NGITFLY WYLQRPGQSPQLLIY RVSNLAS GVPNRFSGSESGTDFTLRISRVEAEDVGVYYC AQLLEL DVVMTQTPLSLPVSLGDQASISC RSSQSLVHS. NGNTYLH WYLQKPGQSPKLLIY KVSNRFS GVPDRFSGSGSGTDFTLKISRVEAEDLGVYFC SQSTHVP DVLMTQTPLSLPVSLGDQASISC RSSQSIVHS.NGNTYLE WYLQKPGQSPKLLIY KVSNRFS GVPDRFSGSGSGTDFTLKISRVEAEDLGVYYC FQGSHVP DAVMTQTPLSLPVSLGDQASISC RSSQSLENS.NGNTYLK WYLQKPGQSPQLLIY RVSNRFS GVLDRFSGSGSGTDFTLKISRVEAEDLGVYFC LQVTHAP DVVVTQTPLSLPVSFGDQVSISC RSSQSLATS.HGITYLS WYLHKPGQSPQLLIY GISNRFS GVPDRFSGSGSGTDFTLKINTIKPEDLGMYYC LQGSHQP DVVMTQTPLSLPVSLGDQASISC RSSQSIVHS.NGNTYLY WYLQKPGQSPKLLIY RVSNRFS GVPDRFSGSGSGTDFTLNISRVEAEDMGVYYC FQGTHVP DAVMTQTPLSLPVSLGDQASISC RSSQSIENS.NGNTYLN WYLQKPGQSPRLLIY RVSNRFS GVLDRFSGSGSGTDFTLKISRVEAEDLGVYFC LQVTHVP DIVMTQTPLSLPVSLGDQASISC RSSQSIVIS.NGFTYLE WYLQKPXXXXKLLIY GISNRFS GVPDRFSGSGSGTDFTLKISRVEAEDVGIYYC FQGIHVP DVVMTQTPLTLSUTIGQPASISC KSSQSLLDS. DGKTYLN WLLQRPGQSPKRLIY LVSKLDS GVPDRFTGSGSGTDFTLKISRVEAEDLGVYYC WQGTHFP DIVMTQSPSSLAMSVGQKYTMSC KSSQSLLNSSNQKNYLA WYQQKPGQSPKLLVY FASTRES GVPDRFIGSGSGTDFTLTISSVQAEDLADYFC QQHYSTP GIVMSOSPSSLAVSVGEKVTMSC KSSQSLFYSSNQKNSLA WYQQRPGQSPKLLIY WASTRES GVPDRFTGSGSGTDFTLTISSVKAEDLAVYYC QQYYSYP DIVMTQSPSSLTVTAGEKVTMSC KSSQSLLNSGNPKNYLT WYQQKPGQPPKLLIY WASTRES GVPDRFTGSGSGTDFTLTISSVQAEDLAVYYC QNDYSYP DIVMTQSPSSLSVSAGEKVTMSC KSSQSLLNSGNQKNYLA WYOQKPGQPPKLLIY GASTRES GVPDRFTGSGSGTDFTLTISSVQAEDLALYYC QNDHTYP NIMMTQSPSSLAVSAGEKVTMSC KSSQSVLYSSNQKNYLA WYQQKPGQSPKLLIY WASTRES GVPDRFTGSGSGTDFTLTISSVQAEDLAVYYC HQYLSS DVVMSQSPSSLAVSAGEKVAVSC KSSQSLSTVEPERSYLA WYQQKPGQSPKLLIY WASTRES GVPDRFTGSGSGTDFTLTISSVRAEDLAVYYC KNLMDLP XIVMTQSXXSLSVSAGXKVTMSC KSSQXLXNSXVKRTNLA WYXKKPGQPXKLLIS VDARPXH GVPDRFTGSGSGXDYTLTTVSSVKAEDLALYYC QQHYXYP DIVMTQSPTFLAVTASKKVTISC TXSESLYSSKHKVHYLA WYOKKPEQSPKLLIY GASNRYI GVPDRFTGSGSGTDFTLTISSVQVEDLTHYYC AQFYSYP SIVMTQTPKFLLVSAGERVTITC KASQ. SVSNDVA WYQQKPGQSPKLLIY YASNRYT GVPDRFTGSGYGTDFTFTISTVQAEDLAVYFC QQDYSSP SIVMTQTPKFLPVSAGDRVTMTC KASQ.......SVGNNVA WYQQKPGQSPKLLIY YASNRYT GVPDRFTGSGSGTDFTFTISSVQVEDLAVYFC QQHYSSP DIVMTQSHKFMSTSVGDRVSITC KASQ. DVGAAIA WYQQKPGQSPKLLIY WASTRHT GVPDRFTGSGSGTDFTLTISNVQSDDLADYFC QQYYGYP DIVMTOSOKFMSTSVGDRVSITC KASQ.......NVGTAVA WYQQKPGQSPKLLIY SASNRYT GVPDRFTGSGSGTDFTLTISNMQSEDLADYFC QQYSSYP DIVMTQSQKFMSTSVGDRVSVTC KASQ.......NVVTNVA WYQQTPGQSPKALIY SASYRYS GVPDRFSGSGSGTDFTLTISNVQSGDLAEYFC QQYNSYP DIVMTQSQKFMSTSVGDRVSITC KASQ........NVRTAV WYQQKPGQSPKALIY LASNRYT GVPDRFTGSGSGTDFTLTITNVQSEDLADYFC LQHWNYP DIVMTQSHKFMSTSVGDRVSVTC KASQ.......NVGTNVA WYQQKPGQSPKALIY SASYRYS GVPDRFTGSGSGTDFTLTISNVQSEDLAEYFC QQYNSCP DIVMTOSOKFMSTSVGDRVSVTC KASQ.......NVGTNVA WYQQKPGQSPKALIY SASYRYS GVPDRFTGSGSGTDFTLTISNVOSEDLAVYFC QQYNSYP DIVMTQSHKFMSTSVGDRVSITC KASQ.......DVSTTVA WYQQKPGQSPKLLIY SASYRYT GVPDRFTGSGSGTDFTFTISSVQAEDLAVYYC QQHYSTP DIVMTQSHKFMSTSVGDRVSITC KASQ.......DVSTAVA WYQQKPGQSPKLLIY SASYRYT GVPDRFTGSGSGTDFTFTISSVQAEDLAVYYC QQHYSTP NIVMTQSPKSMSVSVGERVTLTC KASE.......NVVTYVS WYQQKPEQSPKLLIY GASNRYT GVPDRFTGSGSATDFTLTISSVQAEDLADYHC GQGYSYP NIVMTQSPKSMSMSVGERVTLSC KASE. NVGTYVS WYQOKPEQSPKLLIY GASNRYT GVPDRFTGSGSATDFTLTISSVQSEDLADYFC GQSYSYP

Fig. 2. Amino acid sequences deduced from $109 \mathrm{~V}_{\mathrm{k}}$ nucleic acid sequences contained in the V_{k} database. Dots have been introduced to maximize homology; X, undetermined amino acids. Remainder of legend as for Figure 1.

Table 1. V_{k} nucleic acid sequence database*

Code ${ }^{+}$	$\mathrm{V}_{\mathrm{k}}{ }^{\text {+ }}$	Group ${ }^{*}$	Subgroup*	Spec ${ }^{\text {l }}$	Strain ${ }^{\text {8 }}$	Class	Ref*
001-005	21	III	21	G	BALB/c	N/A	(1)
006				HA	BALB/c	IgG	(2)
007, 008				RF	MRL/lpr	IgG	(3)
009				nf	BALB/c	N/A	(4)
010	23	V	23	G	BALB/c	N/A	(5)
011				nf	N/R	N/A	(6)
012				RNA	($\mathrm{NZB} \times \mathrm{W}$) F_{1}	IgG	(7)
013				nf	MRL/n	N/A	(8)
014,015				Anti-ID	C57BL/6	IgG	(9)
016				CK	BALB/c	IgG	(10)
017-019		IV	4,5	G	BALB/c	N/A	(11)
020				G	BALB/c	N/A	(12)
021				histone	MRL/lpr	IgG	(13)
022				DNA	MRL/ $/ p r$	IgM	(14)
023,024				OX	BALB/c	IgG	(15)
025				OX	BALB/c	IgG	(16)
026				RF	BALB/c	IgM	(17)
027				ALP	BALB/c	IgG	(18)
028-032		VI	4	G	BALB/c	N/A	(11)
033-038				CaAg	BALB/c	IgG	(19)
039				unknown	BALB/c	IgM	(20)
040				RF	MRL/lpr	IgM	(3)
041				CD20	BALB/c	IgG	(21)
042, 043	4/5	VI	4	OX	BALB/c	IgG	(22)
044-048				OX	BALB/c	IgG	(23)
049-054				OX	BALB/c	IgG	(16)
055				OX	BALB/c	IgM	(16)
056				OX	BALB/c	IgG	(15)
057				OX	BALB/c	IgM	(15)
058,059	12/13	V	12-13	G	BALB/c	N/A	(24)
060,061				Anti-ID	C57BL/6	IgG	(9)
062	RF	V	ambiguous	RF	MRL/lpr	IgM	(13)
063	11	V	11	nf	NZB	N/A	(25)
064	9A	V	9	G	BALB/c	N/A	(26)
065				G	BALB/c	N/A	(27)
066				lysozyme	BALB/c	IgG	(28)
067				DNA	($\mathrm{NZB} \times \mathrm{W}$) F_{1}	IgM	(14)
068	9 B	V	9	G	BALB/c	N/A	(5)
069				digoxin	A/J	IgG	(29)
070				BrRBC	CBA/J	IgM	(30)
071	10	V	10	G	A/J	N/A	(31)
072				nf	NZB	N/A	(25)
073	38C	V	ambiguous	unknown	$\mathrm{C} 3 \mathrm{H} / \mathrm{HeN}$	IgM	(32)
074				HA	BALB/c	IgG	(33)
075	24/25	II	24	G	BALB/c	N/A	(34)
076,077				G	BALB/c	N/A	(35)
078,079				RF	$\mathrm{C} 3 \mathrm{H} / \mathrm{pr}$	IgA	(3)
080				RF	BALB/c	IgM	(17)
081				GAC	A/J	IgG	(36)
082-084	1	II	1	G	BALB/c	N/A	(37)
085				dextran	BALB/c	IgA	(38)
086				GAT	BALB/c	IgG	(39)
087				RF	BALB/c	IgM	(17)
088				Anti-ID	BALB/c	IgG	(40)
089	2	II	2	DNA	$(\mathrm{NZB} \times \mathrm{W}) \mathrm{F}_{1}$	IgM	(14)
090	8	I	8	DNP	BALB/c	IgA	(41)
091				HEL	BALB/c	IgG	(28)
092				RF	MRL/lpr	IgA	(3)
093,094				RF	BALB/c	IgM	(17)
095				RF	129/Sv	IgM	(17)
096				HA	BALB/c	IgG	(33)
097	22	I	22	PC	BALB/c	IgA	(42)
098	19/28	V	28	G	BALB/c	N/A	(43)
099				RF	MRL//pr	IgM	(8)
100			14-15-19	CEA	BALB/c	IgG	(44)
101				TNP	BALB/c	IgM	(45)
102				CASA	N/R	IgG	(46)
103				CEA	N/R	IgG	(47)
104-108				RF	BALB/c	IgM	(17)
109				RF	MRL/lpr	IgG	(3)

$V_{k} 4 / 5$ gene family. $\mathrm{V}_{\mathrm{k}} \mathrm{Trp}$ subgroups $\mathrm{V}_{\mathrm{k}} 4$ (groups IV and VI) and $\mathrm{V}_{\mathrm{k}} 5$ (group IV) were encoded by highly similar (around 90%) genes forming a gene family, termed $V_{k} 4 / 5$, that was separated from all other V_{k} sequences by $>25 \%$ of their nucleotides. This was the largest V_{k} gene family, composed of approximately 25-50 members, as deduced from RFLP (Kofler et al. 1989) and gene cloning (Even et al. 1985) studies. Fourteen germline genes (ten $V_{k} 4$ and four $V_{k} 5$ genes) have been isolated thus far (Even et al. 1985, Höchtl et al. 1982). $V_{k} 4 / 5$ genes were found in antibodies specific for galactan (Heller et al. 1987), oxazolone (Kaartinen and Maekelae 1987, Berek and Milstein 1987), dextran (Sikder et al. 1985, Akolkar et al. 1987), the lymphocyte surface marker CD20 (Liu 1987b), alprenolol (Nahmias et al. 1988), red blood cells (Pennell et al. 1988), and DNA, histone, and Ig self antigens (Shlomchik et al. 1987c, Kofler et al. 1987b, Kofler et al. 1988a, Shlomchik et al. 1987b).
$V_{k} 12 / 13$ gene family. The sequences encoding $V_{k} 12-13$ proteins (group V) formed another well-defined family that corresponded to all $\mathrm{V}_{\mathrm{k}} 12-13$ subgroup proteins (Kabat et al. 1987, Potter et al. 1982). Two germline genes have been published (Nishioka and Leder 1980, Seidman et al. 1978), one of which (K2) may be involved in the nitrophenyl-specific anti-idiotypic response (Sablitzky and Rajewsky 1984). A more distant $V_{k} 12 / 13$ gene encoded anti-idiotypic light chains in the GAT

[^1]Table 2. Correlation between V_{k} gene families and V_{k} protein groups and subgroups*.

V_{k} gene family	$\begin{aligned} & \mathrm{V}_{\mathrm{k}} \mathrm{Cys} \\ & \text { subgroup } \end{aligned}$	$\begin{aligned} & \mathrm{V}_{\mathbf{k}} \mathrm{Trp} \\ & \text { subgroup } \end{aligned}$	V_{k} protein group
21	21	21	III
23	23	23	V
4/5	4	4	IV, VI
	5	5	IV
12/13	12,13	12-13	V
RF	ambiguous assignment		V
11	11	11	V
9A	9	9	V
9B	9	9	V
10	10	10	V
38C	ambiguous assignment		V
24/25	24	24	II
	25	25	II, I
1	1,3,26	1	II
2	2	2	II
8	8	8	I
22	22	22	I
19/28	-	28	V
	14, 15, 19	19	V

* Relatedness between V_{k} gene families and $V_{k} T r p$ subgroups 20 and 27 , and $V_{k} C y s$ subgroups $6,7,16,17$, and 18 (for which only partial protein sequences are known), could not be determined.
($\mathrm{Glu}^{60} \mathrm{Ala}^{30} \mathrm{Tyr}^{10}$) system (Ollier et al. 1985). In RFLP analyses, two strongly and several weakly hybridizing restriction fragments were observed (Kofler et al. 1989). Whether the latter corresponded to additional, more distant, $V_{k} 12 / 13$ germline genes or are due to high similarity ($>80 \%$) in portions of the probe with other V_{k} genes (particularly those of V_{k} gene families $9 A, 9 B, 10$, and 11) remains to be determined.
$V_{k} R F$ gene family. The MRL-RF24 V_{k} protein (Kofler et al. 1987b), a member of the large protein group V, had 12 mismatches up to Trp35 from two $\mathrm{V}_{\mathrm{k}} 12-13$ proteins (K 2 and MOPC129), but differed from the remaining $\mathrm{V}_{\mathrm{k}} 12-13$ proteins (and all other V_{k} proteins) by >12 residues. Thus, this protein could not be unambiguously assigned to known V_{k} subgroups. Its nucleic acid sequence differed from all V_{k} sequences by $>25 \%$, thus forming a distinct V_{k} gene family, termed $V_{k} R F$. Used as a probe, this gene identified a single restriction fragment that was absent in haplotype $I g k^{f}$ (Kofler et al. 1989). The corresponding (as yet uncloned) germline gene probably also encoded a BALB/c (Bruck et al. 1986) and a C57BL/6 (Sablitzky and Rajewsky 1984) idiotypespecific antibody, as well as an (NZB $\times N Z W) F_{1}$ DNAspecific autoantibody (Eilat et al. 1988).
$V_{k} 11,9 A, 9 B, 10$, and $38 C$ gene families. The V_{k} gene families discussed thus far were clearly separated from all other V_{k} genes by $>25 \%$ overall sequence
dissimilarity and in this respect resembled V_{H} gene families. The following five gene families, distantly related to $V_{k} 12 / 13$ and $V_{k} R F$, were less well separated from one another.
$V_{k} 11$ gene family. For this gene family with four to six germline genes by RFLP analysis (Kofler et al. 1989), a single nucleic acid sequence corresponding to a nonfunctional rearrangement from an NZB myeloma (Kelley et al. 1985) was present in the data bank. This sequence fulfilled protein assignment criteria for V_{k} protein subgroups 9,10 , and 11 ; however, it best matched $V_{k} 11$ proteins. Comparisons with the entire data bank (including some $\mathrm{V}_{\mathrm{k}} 9$ and $\mathrm{V}_{\mathrm{k}} 10$ sequences) revealed matches of only 76% or less at the nucleic acid level, making this sequence the prototype for the $V_{k} 11$ gene family. $\mathrm{V}_{\mathrm{k}} 11$ proteins were observed in the beta 2,1 fructosan response (Kabat et al. 1987).
$V_{k} 9 A$ gene family. The $\mathrm{V}_{\mathrm{k}} 9$ protein subgroup, another member of the large protein group V (Potter et al. 1982), comprised sequences that, at the nucleic acid level, fell into two distinct gene families, termed $V_{k} 9 A$ and $V_{k} 9 B$. The $V_{k} 9 A$ gene family included two germline genes (Seidman et al. 1979, Max et al. 1980), one of which may be expressed in hen egg lysozyme antibodies (Darsley and Rees 1985). Another expressed $V_{k} 9 A$ gene from an NZB \times NZW F_{1} anti-DNA IgM (Kofler et al. 1988) was only 88% similar to the other germline gene and probably derived from an unknown $V_{k} 9 A$ germline gene. In addition, $V_{k} 9 A$ genes have been observed in GAT- idiotypespecific antibodies (Ollier et al. 1985).
$V_{k} 9 B$ gene family. The T 1 sequence and its germline counterpart, V-L6 (Pech et al. 1981), both assigned to the $\mathrm{V}_{\mathrm{k}} 9$ protein subgroup (Potter et al. 1982), differed from $\mathrm{V}_{\mathrm{k}} 9 \mathrm{~A}$ (and all other V_{k}) nucleic acid sequences by $>20 \%$ and, hence, formed a separate family, termed $V_{k} 9 B$. Genes from this family encoded antibodies specific for digoxin (Panka and Margolies 1987, Near and Haber 1989) and Escherichia coli (Pennell et al. 1988), and bromelain-treated red blood cell autoantibodies from lupus and normal mice (Reininger et al. 1987).
$V_{k} 10$ gene family. This family corresponded to the $\mathrm{V}_{\mathrm{k}} 10$ subgroup (protein group V). RFLP data suggested two to three $V_{k} 10$ germline genes (Kofler et al. 1989), one of which has been cloned (Sanz and Capra 1987, Wysocki et al. 1987) and probably encoded arsonate (Manser et al. 1987a, Meek et al. 1987), oxazolone (Berek et al. 1985), oligosaccharide (Matsuda and Kabat 1989), bromelain-treated red blood cell (Pennell et al. 1988) and RF-like (Shlomchik et al. 1987c) antibody responses. A more distant $\mathrm{V}_{\mathrm{k}} 10$ sequence, with multiple in-frame stop codons, has been observed as a nonfunctional allele of an

NZB myeloma (Kelley et al. 1985), and might correspond to one of the uncloned $V_{k} 10$ germline genes.
$V_{k} 38 C$ gene family (tentative). The very similar (97\%) sequences encoding the 38C13 lymphoma (Campbell 1987) and the VM113 anti-hemagglutinin hybridoma (Meek et al. 1989) light chains, respectively, were $>20 \%$ different from all other V_{k} nucleic acid sequences in the database and, hence, could not be assigned to any V_{k} gene family; the closest matches ($77-78 \%$) were observed with a $V_{k} 10$ germline gene (Sanz and Capra 1987, Wysocki et al. 1987). At the amino acid level, members of four $\mathrm{V}_{\mathrm{k}} \mathrm{Trp}$ subgroups $\left(\mathrm{V}_{\mathrm{k}} 9, \mathrm{~V}_{\mathrm{k}} 10, \mathrm{~V}_{\mathrm{k}} 11\right.$, and $\left.\mathrm{V}_{\mathrm{k}} 12 / 13\right)$ exhibited equally distant relatedness (nine and more residues difference in the N -terminal 35 amino acids), making unambiguous assignment at the protein level impossible. Whether these sequences were the representatives of a new V_{k} gene family or corresponded to highly mutated ($V_{k} 10$) genes remains to be determined.
$V_{k} 24 / 25, V_{k} 1$, and $V_{k} 2$ gene families. The next three families were grouped together based on sequence similarity of up to 78% between $V_{k} 24 / 25$ members and $V_{k} 1$ and $V_{k} 2$ genes, respectively, and because the overall similarity between $V_{k} 2$ and some $V_{k} 1$ genes exceeded 80%. The latter observation, i.e., similarity of $>80 \%$ between some, but not all, members of two gene families, obviously constitutes a problem in this type of V_{k} gene classification (see below).
$V_{k} 24 / 25$ gene family. Originally, only a single $V_{k} 24$ germline gene (involved in the phosphocholine response; Malipiero et al. 1987, Gearhart and Bogenhagen 1983) had been reported (Selsing and Storb 1981). Other investigators have cloned this, a related pseudogene, and two additional $V_{k} 24$ germline genes (Joho et al. 1984). The latter were only about $82-83 \%$ similar to the $V_{k} 24$ prototype and may have encoded Streptococcus group A carbohydrate antibody light chains previously assigned to the $\mathrm{V}_{\mathrm{k}} 25$ subgroup (Lutz and Davie 1988). Hence, these two $\mathrm{V}_{\mathrm{k}} \mathrm{Trp}$ subgroups (protein group II) were probably encoded by distant members of a single V_{k} gene family. In addition to the four cloned $V_{k} 24 / 25$ germline genes, evidence was obtained for the presence of at least two more germline genes in this family: firstly, RFs from autoimmune and normal mice (Shlomchik et al. 1987a, 1987 c) expressed $V_{k} 24$ genes very similar to each other, but $>30 \mathrm{bp}$ different from the closest $V_{k} 24$ germline gene, suggesting an additional germline gene; secondly, since all cloned $V_{k} 24 / 25$ genes had 40 codons up to Trp35, the germline gene encoding Hy2.5.13 with 41 N terminal amino acids (Kabat et al. 1987) has yet to be isolated.
$V_{k} 1$ and $V_{k} 2$ gene families. Protein subgroups $\mathrm{V}_{\mathrm{k}} 1$ (already previously condensed with Cys 23 subgroups
$\mathrm{V}_{\mathrm{k}} 3$ and $\mathrm{V}_{\mathrm{k}} 26$; Potter et al. 1982) and $\mathrm{V}_{\mathrm{k}} 2$ were encoded by sequences that, using a stringent family definition, precluded classification into either a single, or two distinct, gene families; all $\mathrm{V}_{\mathrm{k}} 1$ nucleic acid sequences were $>80 \%$ similar, yet the three almost identical $\mathrm{V}_{\mathrm{k}} 2$ nucleic acid sequences reported (Akolkar et al. 1987, Kofler et al. 1988, Panka et al. 1988) shared up to 81.7% similarity with some, but only about 75% with other, $V_{k} 1$ members. Moreover, sequence similarity in the 3' portion of several $V_{k} 1$ and $V_{k} 2$ genes was around 90%. These two ' 'gene families"' were, therefore, partially overlapping. However, for reasons of clarity, we have retained them as separate V_{k} gene families.

Three $V_{k} I$ germline genes (Corbet et al. 1987) and approximately 40 expressed $V_{k} 1$ sequences have been reported. With the exception of an anti-dextran V_{k} gene (W3129; Borden and Kabat 1987) with $>15 \%$ differences from any known $V_{k} 1$ gene, all expressed sequences were highly homologous to one of the above germline genes, suggesting that the total $V_{k} l$ germline gene number may not exceed four. A more direct complexity estimate in our previous RFLP analysis was hampered by crosshybridization of the $V_{k} 1$ probe to non $V_{k} I$ genes due to $>80 \%$ sequence similarity in the 3^{\prime} region of $V_{k} 1$ and other V_{k} genes (see below and Kofler et al. 1989). $V_{k} 1$ genes were used in a variety of responses to foreign and self antigens (reviewed by Schiff et al. 1988, Kofler et al. 1987a). $V_{k} 2$ germline genes have not yet been reported; the three expressed sequences encoded antibodies to dextran (Akolkar et al. 1987), digoxin (Panka et al. 1988), and DNA (Kofler et al. 1988).
$V_{k} 8, V_{k} 22$, and $V_{k} 19 / 28$ gene families. The following three gene families were separated from each other by $>20 \%$, and from all other V_{k} genes by $>25 \%$, overall sequence similarity; however, large portions (codons 35 to 94) of their genes had between 80% and 89% common nucleotides, leading to extensive cross-hybridizations (Kofler et al. 1989).
$V_{k} 8$ gene family. All sequences encoding $\mathrm{V}_{\mathrm{k}} \mathrm{Tr}$ p subgroup $\mathrm{V}_{\mathrm{k}} 8$ (protein group I) were around 90% similar and shared up to 78% of their nucleotides with $V_{k} 19 / 28$ and $V_{k} 22$ genes. Similarity in codons 35-94 was even higher, reaching 87% with $V_{k} 28$ genes. The complexity of this gene family was difficult to assess by RFLP analyses due to possible cross-hybridization, however, at least half of the 13-20 fragments hybridizing to a $V_{k} 8$ probe probably belonged to this large family (Kofler et al. 1989). $V_{k} 8$ genes encoded antibodies to phosphocholine (Malipiero et al. 1987), dinitrophenyl (Riley et al. 1986), and hen egg lysozyme (Darsley and Rees 1985), as well as RF-like (Shlomchik et al. 1987a, 1987c) and DNA-specific (Eilat et al. 1988) autoantibodies.
$V_{k} 22$ gene family. The only two, almost identical, $\mathrm{V}_{\mathrm{k}} 22$ (protein group I) sequences available for comparison, S107A (Kwan et al. 1981) and HPCA97 (Berek 1984), revealed between 80% and 89% similarity with a large portion (codons 35 to 94) of all $V_{k} 19 / 28$ genes. The remaining nucleotides were, however, only $<70 \%$ similar, resulting in an overall similarity of $72 \%-75 \%$, thus refuting assignment of $V_{k} 22$ and $V_{k} 19 / 28$ genes to a common gene family. Similarity with $V_{k} 8$ genes was in the range of $75 \%-77 \%$ and mismatches were distributed evenly over the entire gene. RFLP analyses suggested one to two $V_{k} 22$ germline genes; additional weak restriction fragments hybridizing to a $V_{k} 22$ probe on Southern blots probably corresponded to genes from the $V_{k} 19 / 28$ and $V_{k} 8$ families (Kofler et al. 1989). $V_{k} 22$ genes encoded phosphocholine antibodies (Malipiero et al. 1987).
$V_{k} 19 / 28$ gene family. Sequences encoding $V_{k} T r p$ subgroups 19 (comprising $\mathrm{V}_{\mathrm{k}} \mathrm{Cys} 14$ and 15 sequences) and 28 were $>80 \%$ similar among each other and differed from all other V_{k} genes (except $V_{k} 8$ and $V_{k} 22$, see above) by $>25 \%$. Thus, they were combined to a single V_{k} gene family, which was termed $V_{k} 19 / 28$. However, this V_{k} gene family (like some other V_{k} gene families, see below) behaved atypically in nucleic acid hybridization studies as compared to V_{H} gene families: different DNA probes
from this family, i. e., a $V_{k} 19$ and a $V_{k} 28$ probe, did not hybridize to an identical, but to an overlapping, set of restriction fragments (Kofler et al. 1989). This could be explained by cross-hybridization of the $V_{k} 28$, but not the $V_{k} 19$, probe with $V_{k} 8$ genes.

RFLP data suggested four to six $V_{k} 19 / 28$ germline genes (Kofler et al. 1989), one of which, a $V_{k} 28$ germline gene, also known as $V_{k} S e r$, from haplotypes Igk-VSer ${ }^{a}$, $I g k-V S e r^{b}, I g k-V S e r$, and $I g k-V S e r^{d}$, has been cloned (Boyd et al. 1986, Ponath et al. 1989). $V_{k} 19 / 28$ genes encoded antibodies to trinitrophenyl (Hawley et al. 1982), carcinoembryonic antigen (Cabilly et al. 1984, Beidler et al. 1988), human breast/lung/colon cancer cells (Sahagan 1986), influenza hemagglutinin (Meek et al. 1989), and an RNA-specific (Eilat et al. 1988) and some RF-like autoantibodies (Kofler et al. 1989, Shlomchik et al. 1987a, 1987c).

Relatedness between V_{k} gene families and implications for nucleic acid hybridization assays with $\boldsymbol{V}_{\boldsymbol{k}}$ probes

Figure 3 shows the relatedness between different V_{k} gene families as reflected by overall nucleic acid sequence similarity. A significant difference from V_{H} gene families was apparent, since the latter are generally more distantly

	Vk21	Vk23	Vk 4/5	Vk12/13	VkRF	Vk11	Vk9A	Vk9B	Vk10	Vk38c	Vk24/25	Vk1	Vk2	Vk 8	Vk22
Vk23	65-67														
$\mathrm{Vk} 4 / 5$	62-71	61-64													
Vk12/13	62-64	60-62	60-64												
VkRF	63-66	65-67	59-63	02											
Vk11	61	63	58-62	$69-11$	\#u										
Vk9A	61-67	61-70	63-67		69\%13	$69-72$									
Vk9B	63-67	61-65	62-67			74-76	$73-76$								
Vklo	57-67	63-66	60-68	60-4\% 4 -	$\pi, \pi 3$	\% 1 - $\%$ \%	24-77	$71-75$							
Vk38c	60-65	64-65	59-64	\%6\% 40	T1\% \% \%	69\%\%	69, 42	73	72-77						
Vk24/25	63-67	59-60	57-65	57-61	60-62	57	58-63	59-61	58-60	58-59					
Vk1	62-68	62-67	58-62	59-61	59-62	57-62	57-64	58-65	57-63	58-61	70-78				
Vk2	63-66	61	56-60	56-58	61	60	59-61	60-63	58-59	57	74-76	73-814			
Vk8	64-70	61-65	62-66	60-63	65-66	61-63	63-65	65	60-61	61-62	62-68	63-69	64-67		
Vk22	64-65	61-62	60-66	58-60	61	58	60-61	60-62	57-59	58	60-63	62-64	63	75-77	
Vk19/28	65-67	62-66	63-70	58-62	62-66	63-65	62-67	65-70	60-66	59-64	58-65	60-66	60-65	72-78	72-75

Fig. 3. Sequence similarity between different V_{k} gene families; comparison of known germline genes and derivatives of putative germline genes (i. e., sequences differing from known germline genes by $>10 \%$ and primarily of the IgM isotype). Indicated are the highest and lowest percentages of nucleic acid sequence similarity between members from two families; single percentage resulted from comparisons yielding identical percentages. Shading intensities highlight increased overall similarity between the respective families.
related by sequence similarity. Obviously, if members from different families are only a few percent less similar than those from within a family, cross-hybridizations might occur, particularly if these differences are not evenly distributed over the entire sequence. As described above, large sequence portions with high degrees of similarity were indeed observed in genes from families 8,22 , and $19 / 28$, and thus explain the previously observed cross-hybridizations between those families. Closer scrutiny of the similarities between portions of V_{k} sequences from different families revealed that the 3^{\prime} region (particularly codons 57-88, corresponding to frame work region 3) were generally more closely related than the remaining sequence, and this portion might precipitate unexpected cross-hybridizations, even between otherwise distant V_{k} gene families. For example, $V_{k} 10$ and $V_{k} 9 A$ genes had a $135 \mathrm{bp} 3^{\prime}$ sequence with 83% similarity, and $V_{k} R F$ and $V_{k} 9 B$ genes shared 84% of 103 nucleotides at the 3^{\prime} end. As a further complication, different genes from a given family may exhibit more or less cross-hybridizations with genes from other families.

Because of the differences in the organization of V_{H} and V_{k} genes, nucleic acid sequence hybridization assays with V_{k} DNA probes require particular care in the selection of probes and in data interpretation. While in general any member of a V_{H} gene family used as a probe will recognize its entire family, but will not cross-hybridize with other families, our previous RFLP analyses and the current study strongly suggest that V_{k} probes may often behave differently. As a rule, probes devoid of the more "promiscuous" 3 ' sequences will be more specific; however, such probes may not always hybridize to all members of their gene families, and therefore require the use of two or more genes to probe the entire family.

V_{k} germline gene complexity

Another question addressed in this study regards the total number of V_{k} genes in the genome of inbred mice. We estimated the complexity of known V_{k} gene families by using RFLP criteria (Kofler et al. 1989) and by taking into account expressed and germline genes identified for each family. Regarding expressed sequences, we assumed that IgM sequences with >6, and IgG sequences with >30 mismatches from known germline genes may have derived from as yet unknown germline genes. Allelic differences were also considered, however this was a minor concern as the majority of sequences in the database ($91 / 109$) derived from the same haplotype ($I g k^{c}$).

This approach led to a total of about 70-140 genes (Table 3). Obviously, such estimates need to be taken with caution due to the peculiarities of V_{k} gene probes discussed above, and to inherent limitations of the RFLP technique (discussed by Kofler et al. 1989). Furthermore,

Table 3. V_{k} germline gene complexity*

V_{k} gene family	Germline genes	
	Cloned	Estimated
$V_{k} 21$	5	6-13
$V_{k} 23$	1	2-4
$V_{k} 4 / 5$	14	25-50
$V_{k} 12 / 13$	2	2-8
$V_{k} R F$	-	$0-1{ }^{+}$
V_{k} II	-	4-6
$V_{k} 9$ A	2	4-9
$V_{k} 98$	1	2
$V_{k} 10$	1	2-3
$V_{k} 38 \mathrm{C}$	-	?
$V_{k} 24 / 25$	4	6
$V_{k} 1$	3	4-6
$V_{k}{ }^{2}$	-	1-6
$V_{k} 8$	-	5-16
$V_{k} 22$	-	1-2
$V_{k} 19 / 28$	-	4-6
Total	35	66-136

* References to cloned V_{k} germline genes are given throughout the text.
${ }^{*}$ The one-member $V_{k} R F$ family is deleted in haplotype $I g k^{f}$ mice (Kofler et al. 1989).
possible additional, as yet uncloned, V_{k} genes and gene families in the mouse genome have not been included. However, although evidence for some additional V_{k} genes exists, their number might be limited. For two $\mathrm{V}_{\mathrm{k}} \operatorname{Trp}$ subgroups, $\mathrm{V}_{\mathrm{k}} 27$ (group I) and $\mathrm{V}_{\mathrm{k}} 20$ (group VII), nucleic acid sequences have not been identified, but the corresponding V_{k} gene families may be small since only a single sequence for each subgroup has been reported to date. D'Hoostelaere published another novel V_{k} gene family ($p \mathrm{C} 9-26$) with approximately six members as suggested by RFLP analyses (D'Hoostelaere et al. 1988), but whether or not this family related to either of the two subgroups above, or to $\mathrm{V}_{\mathrm{k}} 38 \mathrm{C}$, is unknown. Nevertheless, the large number of responses to foreign and self antigens investigated at the nucleic acid sequence level, and repeated isolation of identical sequences, suggest that the majority of the mouse V_{k} germline repertoire might now be known.

Acknowledgments. We thank Dr. G. Wick for critically reviewing, and Ms. M. Kat Occhipinti for editing, this manuscript. The work reported herein was supported by a grant from the Austrian Research Council (Project S-41/06). R. Strohal is supported by a fellowship from the Emil Boral Stiftung and G. Kroemer receives an Erwin Schrödinger Stipend (J0307M) from the Austrian Research Council.

References

Akolkar, P. N., Sikder, S. K., Bhattacharya, S. B., Liao, J., Gruezo, F., Morrison, S. L., and Kabat, E. A.: Different V_{L} and V_{H} germline genes are used to produce similar combining sites with specificity for alpha ($1-\gg 6$) dextrans. J Immunol 138: 4472-4479, 1987

Alt, F. W., Blackwell, K., DePinho, R. A., Reth, M. G., and Yancopoulos, G. D.: Regulation of genome rearrangement events during lymphocyte differentiation. Immunol Rev 89: 5-30, 1986
Altenburger, W., Steinmetz, M., and Zachau, H. G.: Functional and non-functional joining in immunoglobulin light chain genes of a mouse myeloma. Nature 287: 603-607, 1980
Beidler, C.B., Ludwig, J. R., Cardenas, J., Phelps, J., Papworth, C. G., Melcher, E., Sierzega, M., Myers, L. J., Unger, B. W., Fisher, M., David, G. S., and Johnson, M. J.: Cloning and high level expression of a chimeric antibody with specificity for human carcinoembryonic antigen. J Immunol 141: 4053-4060, 1988
Berek, C.: The D segment defines the T15 idiotope: the immunoresponse of A/J mice to Pneumococcus pneumoniae. Eur J Immunol 14: 1043-1048, 1984
Berek, C. and Milstein, C.: Mutation drift and repertoire shift in the maturation of the immune response. Immunol Rev 96: 23-41, 1987
Berek, C., Griffiths, G. M., and Milstein, C.: Molecular events during maturation of the immune response to oxazolone. Nature 316 : 412-418, 1985
Berek, C., Jarvis, J. M., and Milstein, C.: Activation of memory and virgin B cell clones in hyperimmune animals. Eur J Immunol 17: 1121, 1987
Borden, P. and Kabat, E. A.: Nucleotide sequence of the cDNAs encoding the variable region heavy and light chains of a myeloma protein specific for the terminal nonreducing end of alpha (1-6) dextran. Proc Natl Acad Sci USA 84: 2440-2443, 1987
Boyd, T. M., Goldrick, M. M., and Gottlieb, P. D.: Structural differences in a single gene encoding the $V_{k} S e r$ group of light chains explain the existence of two mouse light-chain genetic markers. Proc Natl Acad Sci USA 83: 9134-9138, 1986
Brodeur, P. H. and Riblet, R.: The immunoglobulin heavy chain variable region (Igh-V) locus in the mouse. I. One hundred Igh-V genes comprise seven families of homologous genes. Eur JImmunol 14: 922-930, 1984
Bruck, C., Co, M. S., Slaoui, M., Gaulton, G. N., Smith, T., Fields, B. N., Mullins, J. I., and Greene, M. I.: Nucleic acid sequence of an internal image-bearing monoclonal anti-idiotype and its comparison to the sequence of the external antigen. Proc Natl Acad Sci USA 83: 6578-6582, 1986
Buckel, P., Huebner-Parajsz, C., Mattes, R., Lenz, H., Haug, H., and Beaucamp, K.: Cloning and nucleotide sequence of heavy- and light-chain cDNAs from creatine-kinase-specific monoclonal antibody. Gene 51: 13-19, 1987
Cabilly, S., Riggs, A. D., Pande, H., Shively, J. E., Holmes, W. E., Rey, M., Perry, L. J., Wetzel, R., and Heyneker, H. L.: Generation of antibody activity from immunoglobulin polypeptide chains produced in Escherichia coli. Proc Natl Acad Sci USA 81: 3273-3277, 1984
Campbell, M. J.: Idiotype vaccination against murine B cell lymphoma. Humoral and cellular responses elicited by tumor-derived immunoglobulin M and its molecular subunits. J Immunol 139: 2825-2833, 1987
Clarke, S. H., Huppi, K., Ruezinsky, D., Staudt, L., Gerhard, W., and Weigert, M.: Inter- and intraclonal diversity in the antibody response to influenza hemagglutinin. J Exp Med 161: 687-704, 1985
Corbet, S., Milili, M., Fougereau, M., and Schiff, C.: Two V ${ }_{k}$ germline genes related to the GAT idiotypic network (Abl and $\mathrm{Ab3} / \mathrm{Abl}$ ') account for the major subfamilies of the mouse $\mathrm{V}_{\mathbf{k}}-1$ variability subgroup. J Immunol 138: 932-939, 1987
Cory, S., Tyler, B. M., and Adams, J. M.: Sets of immunoglobulin V_{k} genes homologous to ten cloned V_{k} sequences: implications for the number of germline V_{k} genes. J Mol Appl Genet 1: 103-116, 1981
Darsley, M.J. and Rees, A. R.: Nucleotide sequence of five antilysozyme monoclonal antibodies. EMBO J 4: 393-398, 1985
Devaux, C., Moinier, D., Mazza, G., Guo, X., Marchetto, S.,

Fougereau, M., and Rierres, M.: Preferential expression of $V_{k} 21 E$ on IdX Ia. 7 positive monoclonal anti-I-E antibodies. J Immunol 134: 4024-4030, 1985
D'Hoostelaere, L. A., Huppi, K., Mock, B., Mallett, C., and Potter, M.: The Igk L chain allelic groups among the Igk haplotypes and Igk crossover populations suggest a gene order. J Immunol 141 : 652-661, 1988
Dildrop, R.: A new classification of mouse V_{H} sequences. Immunol Today 5: 85-86, 1984
Eilat, D., Webster, D. M., and Rees, A. R.: V region sequences of antiDNA and anti-RNA autoantibodies from NZB/NZW F1 mice. J Immunol 141: 1745-1753, 1988
Even, J., Griffiths, G. M., Berek, C., and Milstein, C.: Light chain germ-line genes and the immune response to 2-phenyloxazolone. EMBO J 4: 3439-3445, 1985
Gearhart, P. J. and Bogenhagen, D. F.: Clusters of point mutations are found exclusively around rearranged antibody variable genes. Proc Natl Acad Sci USA 80: 3439-3443, 1983
Griffiths, G. M., Berek, C., Kaartinen, M., and Milstein, C.: Somatic mutation and the maturation of immune response to 2-phenyloxazolone. Nature 312: 271-275, 1984
Hawley, R. G., Shulman, M. J., Murialdo, H., Gibson, D. M., and Hozumi, N.: Mutant immunoglobulin genes have repetitive DNA elements inserted into their intervening sequences. Proc Natl Acad Sci USA 79: 7425-7429, 1982
Heinrich, G., Traunecker, A., and Tonegawa, S.: Somatic mutation creates diversity in the major group of mouse immunoglobulin kappa light chains. J Exp Med 159: 417-435, 1984
Heller, M., Owens, J. D., Mushinski, J. F., and Rudikoff, S.: Amino acids at the site of $\mathrm{V}_{\mathrm{k}}-\mathrm{J}_{\mathrm{k}}$ recombination not encoded by germline sequences. J Exp Med 166: 637-646, 1987
Höchtl, J., Müller, C. R., and Zachau, H. G.: Recombined flanks of the variable and joining segments of immunoglobulin genes. Proc Natl Acad Sci USA 79: 1383-1387, 1982
Joho, R., Gershenfeld, H., and Weissman, I. L.: Evolution of a multigene family of V_{k} germ line genes. EMBO J 3: 185-191, 1984
Kaartinen, M. and Maekelae, O.: Functional analogues of the $\mathrm{V}_{\mathrm{k}} \mathrm{Ox} 1$ gene in different strains of mice: evolutionary conservation but diversity based on V-J joining. J Immunol 138: 1613-1617, 1987
Kaartinen, M., Griffiths, G. M., Markham, A. F., and Milstein, C.: mRNA sequences define an unusually restricted IgG response to 2-phenyloxazolone and its early diversification. Nature 304: 320-324, 1983
Kabat, E. A., Wu, T. T., Reid-Miller, M., Perry, H. M., and Gottesman, K.S.: Sequences of Proteins of Immunological Interest, 4th edn, US Department of Health and Human Services, Public Health Service, National Institutes of Health, Bethesda, 1987
Kearney, J. F., Radbruch, A., Liesegang, B., and Rajewsky, K.: A mouse myeloma cell line that has lost immunoglobulin expression but permits the construction of antibody-searching hybrid cell lines. J Immunol 123: 1548-1550, 1979
Kelley, D. E., Wiedemann, L. M., Pittet, A. C., Strauss, S., Nelson, K. J., Davis, J., Van Ness, B., and Perry, R. P.: Nonproductive kappa immunoglobulin genes: recombinational abnormalities and other lesions affecting transcription, RNA processing, turnover, and translation. Mol Cell Biol 5: 1660-1675, 1985
Kofler, R.: A new murine Ig V_{H} gene family. J Immunol 140 : 4031-4034, 1988
Kofler, R., Dixon, F. J., and Theofilopoulos, A. N.: The genetic origin of autoantibodies. Immunol Today 8: 374-380, 1987a
Kofler, R., Noonan, D. J., Strohal, R., Balderas, R. S., Møller, N. P. H., Dixon, F.J., and Theofilopoulos, A. N.: Molecular analysis of the murine lupus-associated anti-self response: involvement of a large number of heavy and light chain variable region genes. Eur J Immunol 17: 91-95, 1987b

Kofler, R., Strohal, R., Balderas, R. S., Johnson, M. E., Noonan, D. J., Duchosal, M. A., Dixon, F. J., and Theofilopoulos, A. N.: Immunoglobulin k light chain variable region gene complex organization and immunoglobulin genes encoding anti-DNA autoantibodies in lupus mice. J Clin Invest 82: 852-860, 1988
Kofler, R., Duchosal, M. A., and Dixon, F. J.: Complexity, polymorphism and connectivity of mouse V_{k} gene families. Immunogenetics 29: 65-74, 1989
Kwan, S.-P., Rudikoff, S., Seidman, J. G., Leder, P., and Scharff, M. D.: Nucleic acid and protein sequences of phosphocholinebinding light chains. J Exp Med 153: 1366-1370, 1981
Liu, A. Y.: Production of a mouse-human chimeric monoclonal antibody to CD20 with potent Fc -dependent biologic activity. J Immunol 139: 3521, 1987
Liu, A. Y., Robinson, R. R., Hellström, K. E., Murray, E. D., Jr., Chang, C. P., and Hellström, I.: Chimeric mouse-human IgG1 antibody that can mediate lysis of cancer cells. Proc Natl Acad Sci USA 84: 3439-3443, 1987
Livant, D., Blatt, C., and Hood, L.: One heavy chain variable region gene segment subfamily in the BALB/c mouse contains 500-1000 or more members. Cell 47: 461-470, 1986
Lutz, C. T. and Davie, J. M.: Genetics and primary structure of V_{k} gene segments encoding antibody to Streptococcal group A carbohydrate. Comparison of V_{k} gene structure with idiotope expression. J Immunol 140: 641-645, 1988
Malipiero, U. V., Levy, N.S., and Gearhart, P. J.: Somatic mutation in anti-phosphorylcholine antibodies. Immunol Rev 96: 59-74, 1987
Manser, T., Parhami-Seren, B., Margolies, M. N., and Gefter, M. L.: Somatically mutated forms of a major anti-p-azophenylarsonate antibody variable region with drastically reduced affinity for p-azophenylarsonate. By-products of an antigen-drive immune response? J Exp Med 166: 1456-1463, 1987a
Manser, T., Wysocki, L.J., Margolies, M. N., and Gefter, M. L.: Evolution of antibody variable region structure during the immune response. Immunol Rev 96: 141-162, 1987b
Matsuda, T. and Kabat, E. A.: Variable region cDNA sequences and antigen binding specificity of mouse monoclonal antibodies to isomaltosyl oligosaccharides coupled to proteins. T-dependent analogous of $\alpha(1-->6)$ dextran. J Immunol 142: 863-870, 1989
Max, E. E., Seidman, J. G., Miller, H., and Leder, P.: Variation in the crossover point of kappa immunoglobulin gene V-J recombination: evidence from a cryptic gene. Cell 21: 793-799, 1980
Meek, K., Sanz, Z., Rathbun, G., Nisonoff, A., and Capra, J. D.: Identity of the $\mathrm{V}_{\mathrm{k}} 10$-Ars-A gene segments of the A / J and BALB/c strains. Proc Natl Acad Sci USA 84: 6244-6248, 1987
Meek, K., Johansson, B., Schulman, J., Bona, C., and Capra, J. D.: Nucleotide changes in sequential variants of influenza virus hemagglutinin genes and molecular structures of corresponding monoclonal antibodies specific for each variant. Proc Natl Acad Sci USA 86: 4664-4668, 1989
Nahmias, C., Strosberg, A. D., and Emorine, L. J.: The immune response toward beta-adrenergic ligands and their receptors. VIII. Extensive diversity of V_{H} and V_{L} genes encoding anti-alprenolol antibodies. J Immunol 140: 1304-1311, 1988
Near, R. I. and Haber, E.: Characterization of the heavy and light chain immunoglobulin variable region genes used in a set of anti-digoxin antibodies. Mol Immunol 26: 371-382, 1989
Nishioka, Y. and Leder, P.: Organization and complete sequence of identical embryonic and plasmacytoma kappa V -region genes. J Biol Chem 255: 3691-3694, 1980
Ollier, P., Rocca-Serra, J., Somme, G., Theze, J., and Fougereau, M.: The idiotypic network and the internal image: possible regulation of a germ-line network by paucigene encoded Ab 2 (anti-idiotypic) antibodies in the GAT system. EMBO J 4: 3681-3688, 1985
Panka, D. J. and Margolies, M. N.: Complete variable region sequences
of five homologous high affinity anti-digoxin antibodies. J Immunol 139: 2385-2391, 1987
Panka, D. J., Mudgett-Hunter, M., Parks, D. R., Peterson, L. L., Herzenberg, L. A., Haber, E., and Margolies, M. N.: Variable region framework differences result in decreased or increased affinity of variant anti-digoxin antibodies. Proc Natl Acad Sci USA 85: 3080-3084, 1988
Parslow, T. G., Blair, D. L., Murphy, W. J., and Granner, D. K.: Structure of the 5^{\prime} ends of immunoglobulin genes: a novel conserved sequence. Proc Natl Acad Sci USA 81: 2650-2654, 1984
Pech, M., Höchtl, J., Schnell, H., and Zachau, H. G.: Differences between germ-line and rearranged immunoglobulin V_{k} coding sequences suggest a localized mutation mechanism. Nature 291: 668-670, 1981
Pennell, C. A., Arnold, L. W., Haughton, G., and Clarke, S. H.: Restricted Ig variable region gene expression among Ly-1+ \mathbf{B} cell lymphomas. J Immunol 141: 2788-2796, 1988
Perlmutter, R. M., Kearney, J. F., Chang, S.P., and Hood, L. E.: Developmentally controlled expression of immunoglobulin V_{H} genes. Science 227: 1597-1601, 1985
Ponath, P. D., Hillis, D. M., and Gottlieb, P. D.: Structural and evolutionary comparisons of four alleles of the mouse immunoglobulin kappa chain gene, Igk-VSer. Immunogenetics 29: 249-257, 1989
Potter, M.: Antigen-binding myeloma proteins of mice. Adv Immunol 25: 141-211, 1977
Potter, M., Newell, J. B., Rudikoff, S., and Haber, E.: Classification of mouse V_{k} groups based on the partial amino acid sequence to the first invariant tryptophan: impact of 14 new sequences from IgG myeloma proteins. Mol Immunol 19: 1619-1630, 1982
Reininger, L., Ollier, P., Poncet, P., Kaushik, A., and Jaton, J. C.: Novel V genes encode virtually identical variable regions of six murine monoclonal anti-bromelain-treated red blood cell autoantibodies. J Immunol 138: 316-323, 1987
Reininger, L., Kaushik, A., Izui, S., and Jaton, J.-C.: A member of a new V_{H} gene family encodes anti-bromelinized mouse red blood cell autoantibodies. Eur J Immunol 18: 1521-1526, 1988
Riley, S. C., Connors, S.J., Klinman, N. R., and Ogata, R. T.: Preferential expression of variable region heavy chain gene segments by predominant 2,4-dinitrophenyl-specific BALB/c neonatal antibody clonotypes. Proc Natl Acad Sci USA 83: 2589-2593, 1986
Sablitzky, F. and Rajewsky, K.: Molecular basis of an isogeneic antiidiotypic response. EMBO J 3: 3005-3012, 1984
Sahagan, B. G.: A genetically engineered murine/human chimeric antibody retains specificity for human tumor-associated antigen. J Immunol 137: 1066, 1986
Sanz, I. and Capra, J. D.: V_{k} and J_{k} gene segments of A/J Ars-A antibodies: somatic recombination generates the essential arginine at the junction of the variable and joining regions. Proc Natl Acad Sci USA 84: 1085-1089, 1987
Schiff, C., Corbet, S., Milili, M., and Fougereau, M.: Interstrain conservation of the murine GAT-specific antibody $\mathrm{V}_{\mathbf{k}}$ repertoire as analyzed at the germline gene level. EMBO J 2: 1771-1776, 1983
Schiff, C., Corbet, S., and Fougereau, M.: The Ig germline gene repertoire: economy or wastage? Immunol Today 9: 10-14, 1988
Seidman, J. G., Leder, A., Edgell, M. H., Polsky, F., Tilghman, S. M., Tiemeier, D. C., and Leder, P.: Multiple related immunoglobulin variable-region genes identified by cloning and sequence analysis. Proc Natl Acad Sci USA 75: 3881-3885, 1978
Seidman, J. G., Max, E. E., and Leder, P.: A kappa-immunoglobulin gene is formed by site-specific recombination without further somatic mutation. Nature 280: 370-375, 1979
Selsing, E. and Storb, U.: Somatic mutation of immunoglobulin lightchain variable-region genes. Cell 25: 47-58, 1981
Shlomchik, M., Nemazee, D., Van Snick, J., and Weigert, M.: Variable region sequences of murine IgM anti-IgG monoclonal autoan-
tibodies (rheumatoid factors). II. Comparison of hybridomas derived by lipopolysaccharide stimulation and secondary protein immunization. J Exp Med 165: 970-987, 1987a
Shlomchik, M. J., Aucoin, A. H., Pisetsky, D. S., and Weigert, M. G.: Structure and function of anti-DNA autoantibodies derived from a single autoimmune mouse. Proc Natl Acad Sci USA 84: 9150-9154, 1987b
Shlomchik, M. J., Marshak-Rothstein, A., Wolfowicz, C. B., Rothstein, T. L., and Weigert, M. G.: The role of clonal selection and somatic mutation in autoimmunity. Nature 328: 805-811, 1987c
Sikder, S. K., Akolkar, P. N., Kaladas, P. M., Morrison, S. L., and Kabat, E.A.: Sequences of variable regions of hybridoma antibodies to alpha $(1->6)$ dextran in BALB/c and C57BL/6 mice. J Immunol 135: 4215-4221, 1985
Strohal, R., Kroemer, G., Wick, G., and Kofler, R.: Complete variable region sequence of a non-functionally rearranged kappa light chain transcribed in the non-secretor P3-X63-Ag8.653 myeloma cell line. Nucleic Acids Res 15: 2771, 1987

Tonegawa, S.: Somatic generation of antibody diversity. Nature 302: 575-581, 1983
Winter, E., Radbruch, A., and Krawinkel, U.: Members of novel V_{H} gene families are found in VDJ regions of polyclonally activated B-lymphocytes. EMBO J 4: 2861-2867, 1985
Wysocki, L. J., Gridley, T., Huang, S., Grandea, A. G., and Gefter, M. L.: Single germline V_{H} and V_{k} genes encode predominating antibody variable regions elicited in strain A mice by immunization with p-azophenylarsonate. J Exp Med 166: 1-11, 1987
Yancopoulos, G. D., Desiderio, S. V., Paskind, M., Kearney, J. F., Baltimore, D., and Alt, F. W.: Preferential utilization of the most J_{H}-proximal V_{H} gene segments in pre-B-cell lines. Nature 311 : 727-733, 1984

Received July 31, 1989; revised version received September 26, 1989.

[^0]: Address correspondence and offprint requests to: Dr. Reinhard Kofler, Institute for General and Experimental Pathology, Fritz-Pregl-Straße 3, A-6020 Innsbruck, Austria.

[^1]: * Only sequences encoding the entire mature V_{k} region and differing by $>4 \mathrm{bp}$ are contained in this database (see Methods).
 ${ }^{\dagger}$ Codes of V_{k} genes are given in legend to Figure 1.
 ${ }^{*} V_{k}, V_{k}$ gene family (this report); Group, V_{k} protein groups (Kabat et al. 1987); Subgroup, $\mathrm{V}_{\mathrm{k}} \mathrm{Trp} 35$ subgroups (Potter et al. 1982)
 Abbreviations: Spec, specificity; Ref, references; G, germline sequence; N/A, not applicable: HA, influenza hemagglutinin; RF, rheumatoid factor; nf, nonfunctional; N/R, not reported, Anti-ID, idiotype-specific antibody; CK, creatine kinase; OX, 2-phenyloxazolone; ALP, alprenolol; CaAg, carbohydrate antigen on human carcinoma cells; CD20, lymphocyte surface marker; BrRBC , bromelain-treated red blood cells; GAC, group A carbohydrate; GAT, Glu ${ }^{60}$ $\mathrm{Ala}^{30} \mathrm{Tyr}^{10}$ polypeptide; DNP, dinitrophenyl; HEL, hen egg lysozyme; CEA, carcino-embryonal antigen; TNP, trinitrophenyl; CASA, cancer-associated surface antigen.
 ${ }^{\text {§ }}$ Strains and their $\lg k$ haplotypes (Kofler et al. 1989): $\operatorname{Ig} k^{a}$: MRL/lpr, MRL/n; $l g k^{b}: \mathrm{NZB} ; / g k^{k}$: BALB/c, C57BL/6, A/J, C3H, CBA/J, 129/Sv, NZW.
 ${ }^{\#}$ References: 1, (Heinrich et al. 1984); 2, (Clarke et al. 1985); 3, (Shlomehì̀k et al. 1987c); 4, (Strohal et al. 1987); 5, (Pech et al. 1981); 6, (Altenburger et al. 1980); 7, (Eilat et al. 1988); 8, (Kofler et al. 1989); 9, (Sablitzky and Rajewsky 1984); 10, (Buckel et al. 1987); 11, (Even et al. 1985); 12, (Höchtl et al. 1982); 13. (Kofler et al. 1987b); 14, (Kofler et al. 1988); 15, (Berek et al. 1985); 16, (Berek et al. 1987); 17, (Shlomchik et al. 1987a); 18, (Nahmias et al. 1988); 19, (Liu et al. 1987); 20, (Parslow et al. 1984); 21, (Liu 1987); 22, (Kaartinen et al. 1983); 23, (Griffiths et al. 1984); 24, (Seidman et al. 1978); 25, (Kelley et al. 1985); 26, (Seidman et al. 1979); 27, (Max et al. 1980); 28, (Darsley and Rees 1985); 29, (Near and Haber 1989); 30, (Reininger et al. 1987); 31, (Sanz and Capra 1987); 32, (Campbell 1987); 33, (Meek et al. 1989); 34, (Selsing and Storb 1981); 35, (Joho et al. 1984); 36, (Lutz and Davie 1988); 37, (Corbet et al. 1987); 38, (Borden and Kabat 1987); 39, (Schiff et al. 1983); 40, (Ollier et al. 1985); 41, (Riley et al. 1986); 42, (Kwan et al. 1981); 43, (Boyd et al. 1986); 44, (Cabilly et al. 1984); 45, (Hawley et al. 1982); 46, (Sahagan 1986); 47, (Beidler et al. 1988).

