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Summary. - This paper discusses the behavior o] real-valued solutions to the equation 

(1.1) y1+, + p(t)y" + q(t)y' + r(t)y ~ = O, 

where p, q, r are continuous and real-valued on some hall-line (to, + oo) and It is the quotient 
o] odd positive integers. Criteria are obtained ]or the existence of nonoseillato~'y solutions, 
several stability theorems are proved, and the existence o] oscillatory solutions is shown. O] 
primary concern are the two cases q(t)~O, r(t)> O, and q(t)>O, r(t)> O. Some o] the 
main techniques used involve comparison theorems ]or linear equations and re6ults in the 
theory o] second order nonlinear oscillations. 

1. - The purpose of this paper  is to discuss the existence and asymptot ic  behavior  
of oscillatory and nonoscillatory solutions of the third order nonlinear differential 
equat ion 

(1.1) y"1-F p( t )y~ '+ q ( t ) y ' +  r ( t ) y ~ =  0 

where # > 0 is the quot ient  of odd positive integers, and p(t) ,  q(t), r(t) are (at least) 
continuous on some interval  (to, + co). A solution of (1.1) existing on (tl, + co) 
for some tl > to is said to be oscillatory or nonoscillatory according as i t  does or does 
not  have  arbi trar i ly large zeros. Equat ion  (1.1) with p ~ 0 has been considered by  
I-IEIDEL [9], lgELS0N [15], SOLTES [16], ELIAS [2], WALTMAN [19], and for the case 
#-=: 1 we ment ion in part icular  the  papers of LAzE~ [14], HANAN [7], BA~anT~ [1], 
and the  book of SWANSON [18]. Although the coefficient of y" can be removed by  
a simple change of variable, it  is often useful to have oscillation and nonoscillation 
criteria with explicit  relations holding among the various coefi%ients (cf. [13], [6]), 
and for t ha t  reason we prefer to consider the more general equat ion (1.1). In  sec- 
t ion 2 we establish the  existence of nonoscillatory solutions of (1.1) with certain 
asymptot ic  properties under  various assumptions on the coefficients (but  always 
for the  case r ( t ) >  0). In  section 3 we consider the case q<O,  r > 0 and show tha t  
under  certain additional assumptions, all nonoscillatory solutions of (1.1) tend  to 
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zero monotonically.  Our results ma y  be applied, in part icular,  to the case when 
c o  

fr(t)dt< ~ ,  which is not  t reated in any of the references. These results improve 
and extend the results of [15], [16], [2], and [5], and for the case # = 1 results of [14]. 
Section 4 is devoted to the  ease q>O, r > 0 where we establish stabil i ty theorems 
and oscillation criteria for (1.1) improving results of [9], [16] and [5]. Some of the 
results here are based on the  theory  of second order nonlinear oscillations along with 
appropriate  changes of variable. 

I f  # < 1 ,  then  solutions of (1.1) may  be continued to all of (to, + co). I f /~  > 1, 
then  under  certain conditions a non-eontinuable solution of (1.1) has infinitely 
many  zeros in a finite interval  (see [9]). We shall be concerned here with the behavior 
of eontinuable solutions and shall assume tha t  solutions of initial v~lue problems 
for (1.1) are continuable to all of (to, + c~). 

2 .  - In  this section we shall establish some preliminary lemmas and theorems 
for the  existence of nonoscillatory solutions of (1.1) which are interesting in their  
own right. 

IJE~I~A 2.1. - Le t  q < O, r > O. Then there exists a solution y of (1.1) with y ~ 0 and 

(2.1) y > 0  , y / < 0  , y~>O , t>~T>to. 

P~ooF. - The existence of a solution satisfying (2.1) for large t follows easily from 
a result  of H a r t m a n  ([8], p. 510) by  rewriting (1.1) as (Py")'+ Qy'+ Rye== O, with 

t 

P(t) =-: exp (fpds), Q(t) ~- p(t)q(t), and R(t) = P(t)r(t). Setting y~=  y, y~= -- y' ,  
T 

Ya= Y", then (1.1) m~y be writ ten,  with Y = (y~, y~, Pys), as 

(2.2) ~ ' +  i(t, ~ )  = o ,  

where ](t, [Y)= (Y2, Y3, Ry~-Qy2)>~O (in the usual component-wise sense) provided 
I7 > 0. Therefore, by  the result of Har tman ,  for any  1~ > 0 there exists a t  least one 
solution :Y(t) with tlI~(/')il = k > 0 ,  and Y( t )>0 ,  ~Y'(t)<0 for t>T .  

REMARK. - -  I f  # > 1  so tha t  initial value problems for (1.1) have unique solutions, 
then (2.1) may  be replaced by  

(2.1)* y > O ,  y r ~ O ,  y~>O,  t > T > t o .  

To see this, note  that. if y satisfies (2.1) and y"(t)~ 0 for some t l>T,  then  from 
(1.1) and our assumptions, y"(tl)<~O and hence y " ~  0 - - y "  for t>tl.  Therefore, 
y '~O,  t>t~  and since r ~ 0  we find y ~ 0 ,  t>tl. 
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B u t  then we must  have, by  uniqueness of solutions of initial value problems, 
tha t  y ~ 0 for t >  T, contradicting Lemma 2.1. 

The next  result implies, among other things, the existence of a solution satisfy- 
ing (2.1)* under different assumptions. Recall tha t  an n-th order linear equation 
is said to be disconjugate on an interval I in case no nontrivial solution has more 
than  n -  1 zeros on I .  

THEOI~E~ 2.2. - Let  r >  0 and assume the second order equation 

(2.3) y"+ (q--p ' /2)y  ~- 0 

is disconjugate on (T, -f-¢x~) for some T>~to. Then there exists a solution of (1.1) 
satisfying for all large t 

(i) y > O ,  y ' < 0 ,  # > ~ 1 ,  

(ii) y > O ,  y'<~O, y ~ O ,  0 < # < 1 .  

Furthermore,  if q--p '<O,  p~<0, p ' > 0  eventually, and if y > 0, y'  < 0 holds for 
large t, then y " >  0 for large t. 

P~ooF. - We show first tha t  for each t * >  T there exists a solution of (1.1), 
y(t; t*) satisfying the bounda ry  conditions 

(2.4) y(T)~-y ' (T)2~y"(T)~-~  l , y( t*)=y'( t*)=O 

and 

(2.5) y > 0 ,  y ' < 0  for T < t < t * *  

CleaTly, if y is a solution of (1.1) satisfying y( t*)=y' ( t*)= o<y"( t* ) ,  then the 
inequality in (2.5) holds, a t  least for awhile, in a left neighborhood of t*. Suppose 
there is a point t~, T < t ~ < t * ,  with yr(t~)=O and y > 0 ,  y ' < 0  on (tl, t*). I f  we 
mult iply (1.1) by  y'  and integrate by parts from t~ to t* we obtain 

(2.6) 
~* t* t* 

ti tl t~ 

How the right hand side of (2.6) is easily seen to be positive by expanding 

t* 

f (y" -- y'v'/v)~dt > 0,  
tl 

where v is a solution of (2.3) with v(tl) -~ O, v'(tl) > 0 on (t~, ~- co). But  the left 
hand side of (2.6) is negative since ry~y'< 0 on (tl, t*). This contradiction shows 
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t ha t  (2.5) holds on (T, t*). I t  remains to show tha t  the  first par t  of (2.4) holds. To 
I 2 ii 2 this end, let S~ be the set of all numbers y~(T) ~ ~- y~(T) -~ y~(T) where y~ is a so- 

l , ~" $ lution of (1.1) with y~(t*)--~ y~(t ~) = O~ y~(t ) =  k, Then the set 

s =  u{&: 

is connected by  the Kamke-Kneser  Theorem ([8], [12])~ and since 0 e S it suffices 
to  show tha t  sup S ~ 1 cannot  hold. Suppose on the contrary  tha t  sup S < 1. I f  
we choose M > 0 so tha t  ]p(t)l < M, ]q(t)] < M ,  and lr(t)] < M  on [T~ t*], then an inte- 
grat ion of (1.1) yields 

t 

,, f ( , ,  (2.7) ly~(t)l< C-~ M fY~I-~ lY'~t) cts 
T 

where C is a constant  (C = lye(T) 1 -Jr M(t* -- T)). Since 

t 

lY'~(t)] < ' f t " ly~(T)[-~ Yktds , 
T 

upon adding this to (2.7) we get 

t 

(2.8) ]yk(t)l + lyk(t)] < C~-~ M~ lyd + lY'k]) ds 
T 

for suitable constants C~, M~ (depending on C, M, [y'~(T)[). Hence Gronwall 's  ine- 

qual i ty shows tha t  

"t 

for some constant  M~. This is a contradict ion and therefore (2.4) and (2.5) hold 
for some y = y~. )Iow letting tn--~ c~, we obtain a sequence y,~ oi solutions of (1.1) 
satisfying (2.4), (2.5), and by  a s tandard diagonalization argument,  this yields a 
solution y of (1.1) on [ T , + c ~ )  with y>~O, y'<O, and y ~ 0 .  ~ o w  if y > 0  for 
t>~T and if y'( t l )~ 0 for some t l >  T~ then the first par t  of the argument  above 
shows there cannot  exist t~ > tl with y'(t~)~-0 and y ' ~  0 on (t~-+t~). Henc% either 
y '~O,  t>t~,  or y'-~O, t>t~. But  the la t ter  case clearly cannot  hold since this 
leads to ry~_O, a contradiction.  Therefore,  if y > 0  for t>~T~ then  y ' <  0 holds 
eventually.  I f  /~>1, then as in the remark following Lemma 2..1, it  must  be the 
case tha t  y ~ 0 for t >  T~ so tha t  assertion (i) of the  Theorem holds iu this case. 
Finally~ suppose q--pr<~O, p<~O, p'>~O holds~ t>T~, and suppose y > 0 ,  y ' ~  0, 
t ~> T~. Since y is nonoscillatory, there  must  exist points arbi trar i ly far  out  for which 
y" ~ 0. Suppose y"(tl) -~ y"(t~) -~ 0 and y" ~ 0 on (h, t~), T~ < tl ~ t~: Then an fate- 
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grution of (1.1) gives 

(2.9) 

ta ts t i  

i t  tl ti 

The sum of the two integrals in (2.9) is positive and since y'( t l)~ y'(t~)~ 0, (2.9) 
implies p(t2)~p(tl), a contradiction. Therefore, we must  have y " >  0 eventually. 
This completes the proof of the Theorem. 

Our next  result yields the existence, bu t  not  the monotonicity,  of nonoscillatory 
solutions to (1.1). 

T~woI~E~ 2.3. - Let  r ~ 0 ,  p < 0 ,  and p"--q'>~O on (to, -~ c~). Then there ex- 
ists a solution of (].1) with y~>0 on (to, -~ c~), y ~ 0 .  If  # ~ 1 ,  then y > 0 .  

PROOF. - ~or  t o g  T <  t * ~  ~- c~, we show there exists a solution of (1.1) satisfy- 
ing (2.4) with y > 0 on (to, t*). With  S and Sk as in Theorem 2.2 it suffices to 
show tha t  sup S < 1 cannot hold. Suppose y is a solution of (1.1) satisfying y(t*) -~ 

y'(t*)-= 0, y"(t*)-~ k>O. We claim first tha t  y > 0 on (to, t*). If  there exists 
t o < t l ~ t *  with y(tl)=O and y > 0  on (tl, t*), then multiplying (1.1) by  y and 
integrating by  parts gives 

t* t* t* t* 

<2.10) (pyy'--(y')~i2)]--fp(y')'dt+ f(q--p')yy'dt+ fry.+'dt=O 
t l  I t  ll It 

t* t* 

~ o w  ~(q-- p') yy' dt : f(p" -- q')y~[2 dt so tha t  from (2.10) we have 
t~ ti  

t* t* t* 

(2.11) (y ' ( t , ) ) : t2--f l~(y'):at+ f ( , " - q ' ) y : i 2 a , +  fry.~'at=o. 
h t~ tl 

Since the left hand side of (2.11) is positive, this contradiction shows tha t  y > 0 
on (to, t*). 

Next,  since 

fpy"dt  = -- y'(T)p(T) - - p ' ( r ) y (T )  + fp"ye t  , 
T T 

and 
t* t* 

f qy' et = - q(r)y(  ~r) - f q' y,tt , 
T T 

if we integrate (1.1) from T to t*, we get 

t* t* 

(2.12/ k Jr fry~+,dt = f(q,--p")ydt+ y"(T) + (p'(T) -~ q(T))y(T) ~- y'(T)p(T) 
T T 
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and therefore 

(2.13) k< ly'r(T)l + [(p'(T) + q(T)) y(T)l + ly'(T)p(T)l . 

Since the  right hand  side of (2.13) cannot  remain bounded for all k > 0, it  follows 
thu t  sup S---- + co and hence there exists a solution of (1.1) satisfying (2.4). Now 
a diagonalization argument  gives a solution of (1.1) y ~ 0, and y > 0  on (to, + co). 
I f  # > 1 ,  then the first par t  of the argument  above shows tha t  y can have at  most  
one double zero so y > 0 eventually.  (If  0 < # < 1, then  either~y > 0 for large t 

or y _~ 0 for large t). 

R E M A R K .  - Some of the results of this section generalize results of [3], [14], and [17]. 

3. - In  this section we shall investigate the case q < 0 and r > 0. For  convenience, 
we state  first the following Lemma,  a proof of which ma y  be found in [4], for example. 

L ] ~ A  3.1. - The equation y " +  a(t)y't+ b(t)y'+c(t)y-----0 is disconjugate on 
the  interval  I iff there  exists o:(t), fl(t)e C2(I) with ~ <  fl and £ t+] ( t ,~ , :d )>O,  
fltr+ ](t, fl, fl') dO on I ,  where ](t, u, u') = 3uu '+  a(t) u '+  u 3 + a(t) u ~ + b(t) u + c(t). 

R E M A R K .  - Funct ions ~(t), fi(t) as in Lemma 3.1 are said to be lower and upper  
solutions respectively, of the Riccati  equat ion corresponding to y " + a y " + b y ' +  
+ cy-----O, obtained by  the substi tut ion u = y'/y (see [11] for details). 

LEM~A 3.2. - Le t  q<~O, r > O ,  and let y be a solution of (1.1) with y~>0 and 
y ~ 0 on uny half-line [t~, + co). Then there exists T > to such tha t  either 

(i) y > 0 ,  y '<O~ y " > 0 ,  t > T ,  or 

(ii) y > O ,  y ' > 0 ,  t ~  T .  

Fur ther ,  if (i) holds, then  y > 0, y ' <  0, y " >  0 on (to, + co) and  

lim y ' ( t )=  lira y"(t)-~ 0 
t-~vo t-*co 

PROOF. -- We show first there  exists T > to such t h a t  y > 0 for t > T. I f  not,  
then  we m a y  find consecutive double zeros tl < t~ of y with y > 0 on (tl, t~), and we 
m ay  choose t 3 e (tl, t~) such tha t  y"(t3) = 0, y" > 0 y ' <  0 on (t,, t~). Then the func- 

t ion 

w(t) ---- y(t) y'(t) y"(t) P (t) 

t 

satisfies w ' > 0  on (ts,t~), where _P(t)----exp(!pds). 
~3 

Since w( t s )=  w(t~)= O, we have a contradiction.  Therefore,  y > 0 for t > T .  We 
show next  t ha t  y '  can change sign at  most  two times. I f  y'(tl)-----y'(t~)----O, and 
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y 've0 on (tl,t~), then since the second order equat ion z"-[-pz'-~-qz= 0 is disconju- 
gate on (to, -t- c~) (i.e., q~<0; ef. [8]), i t  follows tha t  y ' >  0 on (t~, t~). Otherwise, 
with v = -  y ' >  0, then v"--kpv'-{-qv>~O on (tl, t2) and this implies the existence of 
a solution z(t) of z"-k pz '-k qz-~ with z(t~) = z(t~) ~- 0 and 0 < v(t) <~z(t) on (t~, t~), 
(cf. [10], [11]), and this is a contradiction.  Hence, either y'~>0 or y ' <  0 for all 
large t. In  the lat ter  case, since (Py") '= -- Pqy' -- p r y , <  0, we see tha t  the function 
qz = yy ' y "P  satisfies w' > 0 on any interval  on which y" > 0. Therefore, since y"<~0 
cannot  hold for all large t, it  follows tha t  y" > 0 for all large, say t>~ T. Fur thermore ,  
in this case, one can show as in the first par t  of the proof, tha t  w(t) =/= 0 for to < t < T. 
Tha t  y'-+O, y"---~O as t--->~-oo is clear. This completes the proof. 

REMAI~K. -- The previous lemma is similar to a result  of LAZEI~ [14] for the linear 

ease .  

The next  result  gives a sufficient condition tha t  nonoscillatory solutions of (1.1) 

satisfy (2.1)* for all t > to. 

LEM~A 3.3. - Le t  q~<0, r > 0 ,  and let y be a solution of (1.1) with y~>0 and 
y ~ 0 on any  half-line [t~, ~ cx~). Fur ther ,  assume for each ,~ > 0 the equation 

(3.1) y" + py" + qy'-~ 2ry = 0 

is not  disconjugate on any half-line [tl, q-c~) .  Then:  

(i) if 0 <  # <  1 and y is bounded,  or 

(ii) if #~>1, 

it follows tha t  y > 0, y'  < 0, y" > 0 for to < t < -]- c~ and y'--> 0, y"--> 0 as t -> q- c~. 
Fur ther ,  if #----1, then  it  is sufficient to assume (3.1) is not  disconjugate for 

PROOF. -- We need only show tha t  case (ii) of Lemma 3.2 cannot  occur. So sup- 
pose y > 0 ,  y'>~O, t > T .  With  u=y' /y>~O, t > T ,  we obtain from (1.1) 

(3.2) u" + 3uu' ~-pu'-t- u3-~ pu2-~ qu -~ r ye - l=  0 . 

In  either case (i) or (ii) we may  find 4o > 0 (40= 1, if # = 1) such tha t  y~-l(t) > ~o 
for all t >~ T. Since initial value problems for the Riceati  equat ion have unique solu- 
tions, it  follows tha t  u > 0 for t~> T, and by  (3.2) tha t  u is an upper  solution of the 
Riecati  equat ion corresponding to (3.1) with 2----Xo. Since ~ ~ 0 is a lower solu- 
tion, it  follows by  Lemma 3.1 tha t  (3.1) with ~ = 4o is disconjugate on IT, -4- cx~), 
a contradiction. This proves the Lemma.  

The above result implies tha t  if y is a solution of (1.1) with y( t l )y ' ( t l )= 0 for 
some t~>to and if (3.1) has on oscillatory solution for all ~ > 0 (for 4---- 1 if #---- 1), 
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then  y is oscillatory. This extends ~ results of Lazer  ([14], L e m m a  1.2 ' )  for the  case 
/~-----1 and gives an oscillation criterion for the  ease # ~ 1. 

The nex t  result  is a s tabi l i ty  result  for (1.1) and  implies t ha t  all nonosei l latory 

solutions t end  monotonical ly  to zero along wi th  their  derivatives.  

T ~ o ~ E ~  3.4. - Le t  q<O,  r > 0 and let  y be a nontrivi~l solution of (1.1) wi th  

y > 0  for large t. Assume fur ther  t ha t  equat ion (3.1) is not  disconjugate for each 

1 >  0 (for ~ =  1 if # ~  1) and  t h a t  either 

(i) l im inf (tp(t)  - -  t~q(t)) > 2, or 
t - ~ +  co 

(ii) l i m i n f  t~r(t) > O. 
t - > +  oo 

Then l im y(t) = l im y'( t)  ---- lira y"(t) = O. 
t ->co t ->co  t -+co 

P~ooF. - W e  need only show t h a t  lira y(t)  = O. I f  not,  suppose y ( t ) >  k > 0 for 

all t > to, Let  s > 0 and  choose T > to so t h a t  y ( T )  < (1 -}- s) k. Since y(t)  - -  y ( T )  < 

< y ' ( t ) ( t - -~g ) ,  t >  T ,  f rom the Mean Value Theorem, we obtain  f rom the above 

relations 

(3.3) y ' ( t ) /y ( t )  > (t - -  T )  - t  (1 - -  y ( T ) / y ( t ) )  > - -  s(t  - -  T )  -~ 

for t > T. Now with u-----y'/y we see t ha t  u satisfies 

(3.4) u " +  3 u u ' ÷  p u ' ÷  u ~ ÷  p u S ÷  qu + )~or<0,  t > 1' 

where 40 - -1 ,  if # = 1, A0-~ k ~-1 if # > 1 ,  ~nd 40- - (k (1  ~-s))~ -1 if # <  1. 
Wi th  a ( t ) = -  s ( t - - 1 ' )  -1, a c~lculation shows tha t  

(3.5) 

- -  (t - -  T) -a (2s ~- 3s 2 + s ~) ~- (t - -  T ) -~p ( t ) ( s  ~- s ~) - -  (t - -  T )  -~ q(t) s Jr ior( t)  . 

Using either (i) or (ii) of the  hypothesis ,  one can show tha t  the r ight  hand  side of 
(3.5) is nonegat ive  for e > 0 sufficiently small. Hence,  b y  L e m m a  3.1 equat ion (3.1) 

is disconjugate for 1 ----- ;,0. This contradict ion shows tha t  y(t)  -+ 0 as t -~ ~- co and 
proves  the  Theorem.  

c o  

REMAI~.K. -- I t  is shown in [14] (Theorem 1.5) t h a t  if p --~ 0, q < 0, and f t~r(t)  d t =  -~ co, 

and if (1.1) with # = 1 h~s an oscillatory solution, then  any  nonosci l latory solu- 

t ion tends to zero. The above result  wi th  # = 1 shows the conclusion of this theo- 
c o  

rem also holds when ft~r(t)dt < ~- c~, provided pa r t  (i) of the hypothesis  of Theo- 
r em 3.4 holds. 
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TH]~0~n~ 3 . 5 . - L e t  # ~ 1 ,  r ) 0 ,  q<O, p~>0, p'--q>~O, and q'--p">~O for t o g  
co 

t < + co. Assume fur ther  t ha t  f r  dt-~ ~ c~. Let  y be ~ nontr ivial  nonoseil latory 
solution of (1.1). Then y satisfies for all large t, s g n y ( t ) ~ s g n y " ( t ) v ~ s g n y ' ( t ) ,  
and y -+ 0, y~--> 0, y"--> 0~ as t --> ~- co. 

PROOF. -- Assume tha t  y > 0, t > to. ~v][ultiplying (1.1) by  y-~ yields 

(3.6) y"  y-~ + py" y-~-~ qy' y-~-~ r =  0 .  

For  to ~ t~ ~ t, we integrate  the first and second terms by  parts  twice and the third 
t e rm once, f rom t~ to t, and get af ter  rearranging 

(3.7) y~'(t) y-z(t) -~ tt(y'(t))~y-~-l(t)/2 + p(t)y'(t)y-~(t) 

t 

+ (p'(t) -- q(t)) y-~+l(t)/(# -- 1) -~ (#(# -~ 1))/2jy'~y-,-~ds 
tl 

t t t 

+ ( , -  x) lf(q,_p,,)y-,+ln8 +  fy',py-,,ds + frds= K. 
tz t~ t l  

t 

F r o m  (3.7) it  is clear tha t  if y ' > 0  for all large t, then since ] r d s - ~ - ~  co, we must  
Q 

have y"(t) y-~(t) -~ - -  c% and therefore, y"(t) ~ - -  c~, a contradiction. Therefore b y  
Lemma  3.2 it follows tha t  y > O ,  y '~O ,  y ' ~ O ,  t ~ t o ,  and y'-->0, yt:-->0~ as 
t - + +  c~. I f  y - > L ~ O ,  then  from (3.6) we would have y":( t ) -~L~r(t)~O, t ~ t o ,  
and integrating this inequali ty shows tha t  y'(t) - -> -  ~ ,  again a contradiction. There- 
fore, L = 0 and the Theorem is proved. 

F r o m  the proof of the previous theorem, we ma y  obtain 

COROLLARY 3.6. -- Le t  0 < # < 1 ,  r > 0 ,  q~<0, p > 0 ,  p ' - -q<O,  and q'- -p"<O. 
Assume fur ther  t ha t  

t 

f r dt ---> ~- c~. 

Then for any nonoscillatory solution y of (1.1), the conclusion of Theorem 3.5 holds. 

PROOF. -- The proof follows from (3.7), as in Theorem 3.5. 

EXA~gPLE 3.7. -- As remarked above, Theorem 3.4 applies to the case when 

co 

f r(t) dt ~ -t- c~ , 

25  - . d n n a l i  d i  M a t e m a t i c a  
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in contrast  to Theorem 3.5, Corollary 3.6, and the results in the references. As a 
simple illustration, for the case p ~ 0, let  q(t) ~ -- mt ~, and 

k~ t ~ < r (t) < k2 t ~ 

where m, k~,/~ > 0, -- 3 < (51 < (~ < -- 1, y < (5~. 
Then for any  +l > O, equat ion (3.1) has an oscillatory solution ([5]) and par t  (ii) 

of the hypothesis of Theorem 3.4 clearly holds. Hence, the conclusion of Theorem 3.4 
holds. 

Corollary 3.6 applies, for example, to any r(t) > 0 with 

c o  

f r  = + co dt 

and the  choices p ( t ) = k ~ t  ~, q(t)------/¢2t ~, where k~,k~>O, y @ l < d < 0 .  (If y @  
1 = d, then we also need k~d + k~<0). Such sublinear examples are not  consi- 

dered in the references. 
We also wish to  remark tha t  Theorem 3.5 includes as special cases results of [16] 

and [15]. 

4. - In  this section we shall consider the case q>~O, r > O. We begin with a L e m m a  
which is a generalization of a result  of Heidel  ([9], Theorem 3.6). 

LEPTA 4.1. - Le t  q>~O, r > 0  and assume the equation z"~- (q- -p l /2 )z - - :  0 is 
disconjugate on (to, + co). Then for any  nonoscillatory solution y of (1.1) there  
exists T>to so tha t  y(t)y '( t)~O or y( t )y ' ( t )< 0, for t~>T. 

PROOF. -- To be specific, assume y > O ,  t > T > t o .  Suppose y'(tl)==y'(t~)~-O, 
y'V:0 on (tl, t~), for some T < t l < t 2 :  (Zeros of y '  are isolated). Then as in Theo- 
rem 2.2 we mult iply (1.1) by  y'  and integrate by  parts  to get relation (2.6), (t* --~ t~). 
Since the right hand  side of (2.6) is positive, it  follows tha t  y '  > 0 on (tl, t~). Hence,  
y ' > 0  for all t > T ,  and this proves the Lemma.  

LE~V~A 4.2. - Le t  q>~0, r >  0 and assume the equation z"-~ ( q - - p ' / 2 ) z =  0 is 
disconjugate on (to, 4: oz). In  addition, assume either 

c o  c o  ¢ o  

(a)  P- dt= fqpdt+  t Prdt= + or 
t .  to ta 

t 

(b) the  equation z'~+ pz'-4- qz -~ 0 is oscillatory, where in (a) P(t) = exp ( !p  t/s). 

Then any nonoscillatory solution y of (1.1) satisfies 

y(t)y'(t) < 0 for all large t. 
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Fur thermore ,  if p < 0 ,  q ~ p ' < O ,  p'~>0, t>~T, and if y > 0 ,  y ' <  0 for all large t, 
t h en  yr~ > 0 eventually.  

P~OOF. - In  view of Lemma  4.1, assume y > 0 ,  y ~ 0 ,  t>~T. I f  (b) holds, then  
u ----- y'/y satisfies u' ~- u~ + py ~ q-= -- ry~ < 0, t> T, so tha t  z" + pz' + qz-~ 0 is 
disconjugate ([8], p. 362), a contradiction. I f  (a) holds, then 

(py,), _ qpyt _ rPy~ ~ 0 ,  t ~ T, 

Hence,  if yr'(t1) ~ 0 for some tl ~ T~ then P(t)yrr(t) ~ P(tl)y"(t~) ~ O, t ~ tl, and since 
o o  

f P - ~ d t :  ~ c~, this implies tha t  y'(t)-->-- c% a contradiction. Therefore,  y">~O, 
t>~T, so t ha t  y'(t)>~k > O, and y(t)>~kt for some k > 0 and all t>t~>T.  Bu t  then  

from (1.1) we obtain 
t t 

(4.1) P(t) y"(t) <_P(t2) y"(t~) -- k[Pq ds -- k[s"Pr ds 
t~ t~ 

and since the  right hand  side of (4.1) tends to  --  0% we have a contradiction. Hence,  
y(t)y ' ( t )~ 0 for  all large t. 

:Finally, if p<O, q - -p '<O,  p'>~O, t>~T and y>O,  y '~O,  for all large t, then  
y " >  0 eventually,  by  Theorem 2.2. This completes the  proof. 

¢ o  

REMARK 4.3. - I f  f P - ~ d t ~  ~ 0% so tha t  (a) does not  hold, then (b) holds, if 
for example,  

c ~  o o  

t 

(see [1], p. 421). 
The nex t  result gives several different criteria under  which y--~0, if y is a 

nonoscil latory solution of (1.1) with yy '~  0 for all large t. 

T:gEORE]~[ 4.3. -- Le t  q>~O, r ~  O, and let  y be a nonoscillatory solution of (1.1) 
with yy t~  O, t>~ T. Then y --> 0 provided any one of the following three conditions 

holds: 
~ o  

(i) p q + q ' < O ,  p<O, and fPqdt= + ~o, 

(ii) f t~rd t=  -~- c~, tp(t)<2, and t2q(t)-- (t~p(t)'<M for some M ~  0, 

there  exists k > 0  such tha t  l iminft~r((t)--  (iii) p<O,  q--  p' <O, p'>~O, 
t - ~ c o  

% 

- -  k(t-lq(t)-- t-~p(t))) > 0 and for any ~ > 0 (~ : 1, if /~ : :1) the equa- 
,,,÷ ,,÷ t ion y py qy '~  ~ry : 0 is not  diseonjugate on any half-line (t~, -I- c~). 

P~ooF.  - We assume to be specific t ha t  y > O, y ' ~  O, t ~ T .  I f  (i) holds, then  
c o  

(xPq)'<O, and since 19<0, ft'-~dt= ÷ ~ .  Now from (1.1) we obtain through inte- 
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gration by parts, for t > tx> T 

t 

(4.2) P(t)(y"(t) + q(t)y(t)) + f ( P r y , -  (Pq)'y)dt : P(t~)(y'~(t~) + q(t~)y(t~)). 
t~ 

If  there exists t l >  T with y"(t~)+ q(t~)y(t~) =_-- k <  O, then from (4.2) we get 
y"(t) < -- q(t)y(t) -- kP-~(t), t > tl, und *herefore an integration of this inequality 
leads to y ' ( t ) - + -  c~, a contradiction. Therefore, for some k~ > 0, we must  h~ve 

k~>~P(t)(y"(t)+ q(t)y(t))>O, t > T  

~nd hence with u =  y'/y we have 

u , +  u 2 . , , , A  > t >  T. = y  l y e - - q ,  

But  then 

(4.3) y ( P u ' +  P u ~ ) < k l -  qP , t> T 

so tha t  if y +~0, then an integration of (4.3) shows 

t t 

T T 

Since p ~< O, this implies 

(4.5) u(t) : y'(t)/y(t) < -- P-l(t) , t>~t~ 

and therefore logy(t)--~--c~,  contradicting the assumption tha t  y(t)-~0. 
Suppose next  tha t  (ii) holds, multiplying (1.1) by  t ~ a,nd integrating by parts  

from T. to t we obtain 

(4.6) t2y"(t) -- 2ty'(t) + t2p(t)y'(t) + 

t t 

f (s2q(s) - (s2p(s))'+ 2)y'(s)ds + fs2r(s)y~(s)ds= K 
T T 

from which we get, using the condition in (ii), 

t 

(4.7) t~y"(t) + (M -]- 2)y(t) + j s : r ( s )y , ( s )ds<K1.  
T 

Thus, if y(t)+.0,  then (4.7)implies tha t  t~y'~(t)---~--c~, which is a contradiction 
since y ' ( t )< O, t> T. 

Finally, suppose tha t  (iii) holds. We m~y assume by Lemm~ 4.2 tha t  y > 0, 
y ' < 0 ,  y " > 0 ,  t > T ,  and then the argument  proceeds as in Theorem 3.4. Given 



L. ERBE: Oscillation, nonoscillation and  asymptot ic  behavior, etc. 385 

l >  0, condition (iii) guarantees tha t  ~ ( t ) = -  e ( t -  T) -1 is a lower solution of the  
l~iccati equation corresponding to  y,H+ py , ,+  q y , +  l r y  = 0 for  sufficiently small 
s > 0. Therefore,  as in Theorem 3.4, we must  have y(t)---~0. 

COrOLLArY 4.4. - Le t  the  hypotheses  of L e m m a  4.2 and Theorem 4.3 hold. Then 
for any nonoscil latory solution y of (1.1) l i m y ( t ) - - 0 .  

I~RMARK 4.5. -- P a r t  (ii) of Theorem 4.3 is a generalization of a result  of HEIDEL [9]. 
I t  is easy to see tha t  (i) and (ii) of Theorem 4.3 are independent.  To see tha t  (iii) 
m a y  hold with nei ther  (i) nor (ii) holding, let  q(t) ~ O, p(t)  = --  t -o, where 1 < 2~ < 2, 
and r(t) -~ t -~. Clearly, nei ther  (i) nor  (ii) holds. To see t h a t  (iii) holds i t  is sufficient 

to show tha t  

(4.s) y"  - -  t -~y"+ i t -~y  ----- 0 

has an oscillatory solution for all l > 0. Wi th  the change of variables 

we obtain f rom (4.8) 

(4.9) 

y = e x p  ( t~ -~ /3 (1  - ~ ) ) ,  

w " ~  B ( t ) w ' +  C( t )w~-  0 

where B(t) = --  t-2~(1 + 35t~-1)/3, and C(t) ~- i t  -1 --  2t-3~/27 ~- ((~/3)(5 + 1)t  -~-~. Since 
C(t) > O, B(t)  < O, for large t and since 

oO 

f ( c ( t ) -  2(-- B( t ) )~ /3 i )d t -~  + oo 

for any ~ > 0, it  follows by  a theorem of Lazer  ([i4], Theorem 1.3) t ha t  (4.9) has an 
oscillatory solution. Using results of [5] one can also give examples where 
o o  

f r ( t ) d t <  + oo. 
The nex t  lemmas give criteria under which nonoscillatory solutions with cer ta in  

initial conditions have asymptot ic  behavior much different f rom tha t  in L e m m a  2.1 
and Theorem 2.2. 

o o  

LEPTA 4.6. - Le t  p < 0 ,  q > 0 ,  q - - p ' > O ,  q ' - - p " < O ,  and f p ( t ) d t > - - o o .  As- 
sume fur ther  t ha t  for any 1 > 0 there exists T~ > to such tha t  

I l p ( t ) [ < q ( t ) + t ~ ' r ( t ) ,  t>T~. 

Le t  y be a nontr ivial  nonoscillatory solution of (1.1) with G(y(tl)) < O, for some tl > to, 
where 

G(y(t))  = 2y(t) y"(t) + 2y( t )y ' ( t )p ( t )  -? (q(t) --  p '( t ))  y2(t) - -  (y '( t))~.  
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Then there exists T>to such tha t  for t >  T 

sgn y(t) = sgn y'(t) = sgn y'(t) V: sgn y"(t).  

Pt~OOF. - Assume y > 0 ,  y ~ 0 ,  t>~t~. Then a calculation shows tha t  

G'(y(t)) = 2(y')~p + (q ' - -p" )y~ -  2ry~+.<O, t>t l  

and G'(y(t))< 0 if y ( t )¢O.  Therefore, if G(y(t~))<O, then  G(y(t))<O for all t>t~. 
I f  y(t~)= 0 for some t~>t~ then  G(y{t~))--= 0 so tha t  y ~ 0  for t~<~t<t2. Thus, we 
m a y  assume tha t  y > 0 and G(y(t)) ~ 0 for all t > t,: I f  y '( t3)~ 0 for some t3>t~ , 
then y '  cannot  v~nish again on (ta, + c¢). ~¢ow if y '  < 0 for t > t~, then  clearly 
y " < 0  cunnot hold for all large t. I f  y"~> 0 for all lurge t, then 

-- y'(t)~<G(y(t))<G(y(t~)) < O, t> t~  

so thut  y'(t)--->- k ~  0, a contradiction. Finally, if y" changes sign for arbitrari ly 
large t, then since lim+supy'(t) ----- 0, we may  find a sequence t.--> -~ c~, with 

timooy'(t~ ) = 0 ~nd y"(t.) = 0.  

Bu t  then -- y'(t.)~< G(y(t.)) < G(y(t~)) < 0, for all n and this is a contradiction. There- 
fore, we may  conclude tha t  y > 0, y '  > 0, t > tl. 

We  show nex t  t ha t  y " >  0 for all t ~ ti. I f  y"(t*)= 0 for some t * >  tl~ then  
y"(t*) -~ -- q(t*)y'(t *) -- r(t*) y~(t*) ~ O, und therefore y" cannot  vanish again for t ~ t*. 
Thus, y " < 0  for t > t *  and since y " =  -- py" -- qy' -- ry~ ~ O, for t > t * ,  it follows 
tha t  y ' -~  -- 0% a contradiction. Therefore, y" > 0, t > t~. To see tha t  y"(t) ~ 0 for 
all large t, we need first the fact  tha t  y" is bounded above. Multiply (1.1) by  (y")-~ 
and integrate  for t >  T > tl to get 

c~  

y"(t)<y"(r)exp(-fpds)< t>r 
T 

Let t ing  ~ denote the right hand side of the above inequali ty and choosing lc > 0 
so tha t  y'(t)>~k, and y(t)>~kt for t>~ T, we obtain from (1.1) 

(4.1o) y"(t)-}- ~p(t) 4- kq(t) + k~r(t)t~<O , t>~ T. 

Bu t  by  the  conditions of the  Lemma,  the last three terms of (4.10) are eventual ly  
positive which shows tha t  y " ( t ) ~  0 eventually.  This completes the proof of the  
Lemma.  
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LEPTA 4.7. - Le t  p > O ,  r > O ,  pqq-  q'<O, q>O. Let  y be a nontr ivial  non- 
oscillatory solution of (1.1) with H(y(t~))<O for some t~>to where 

H(y(t))  -~ P(t)(2y"(t)y(t) --  y ' ( t )~+ qy(t)z) , 

t 

_P(t)-~ exp ( fp(s)ds) .  Then there  exists T>t~  so tha t  sgn y ( t ) =  sgny ' ( t )~-  s g n y ' ( t ) #  
tx 

:/: sgn y"(t), t > T .  

PROOf'. - A calculation shows tha t  

(4.11) H'(y(t))  = P(t)(y~(pq + q') --  2ry~+u-- py'~) . 

Therefore, if H(y(tl))  < O, then H(y(t))  < 0 for t > t~: The argument  now is similar to, 
bu t  easier, than  in Lemma  4.6. I f  y > 0 for t > tl, then H'(y(t))  < 0, t > t~, and as 
in Lemma  4.6, it follows tha t  y '  > 0 and y" > 0 for t > t~. Hence,  y"(t) = --p( t )y"( t )  --  
-- q(t)y'(t) -- r(t)yu(t) < O, t > h,  and this proves the Lemma.  

Our nex t  result  includes an improvement  of an oscillation criterion for (1.1) due 
to Heidel  ([9], Corollary 3.4). We offer a different proof which is shorter and appeals 
to results in the  theory  of second order noulinear oscillations. 

TrfEO~E~ 4.8. - Le t  the hypotheses of Lemma 4.6 hold and, in addition, assume 
tha t  the second order nonlinear equation 

(4.12) (P(t) u ' ) ' +  ](t, u, 2,) = o 

is oscillatory for some O <  ) ,<  ½, ( tha t  is, all solutions of (4.12) are oscillatory-), 
where P(t) is as in Lemma  4.7 and 

](t, u, ~)-~ P(t)(q(t)u-4- %utur(t)uu) . 

Then any nontrivial  solution of (1.1) with G(y(h) )<0  for some t l~to is oscillatory. 

P~ooF. - I f  the theorem is not  true, let y be a nonoscillatory solution with 
G(y(tl)) <0.  In  view of L e m m a  4.6 we ma y  then assume tha t  y > 0, y '  > 0, y" > 0, 
and y " <  0 for t > T .  By a result of Lazer  ([14], Le mma  3.2) 

l .  . f y ( t )  L 1 

t~+~o Y ( )  

and hence we may  also assume tha t  y(t)/ty'(t)>i~, for t > T .  Therefore, f rom (1.1) 
we obtain with u =  y '  

(4.13) u" q- pu '  q- qu q- %,t,r(t) u,  <O . 
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T h a t  is, u ~ - y '  is an upper  solution of the  equat ion 

(4.14) z"+ pz '+  qz+  ~.t~r(t)z.= O , 

which is (4.12). Since ~ny k > 0 is a lower solution of (4.13) ( tha t  is, satisfies the  

reverse differential inequality)~ i t  follows f rom well-known theorems in the  theory  
of second order differential inequalities (see [10], [11]) t h a t  there  exists a solution 
v(t) of (4.14) wi th  O~v(t)<u(t)  on (T, + co). Thus,  (4.12) has a nontrivi~t  non- 

oscil latory solution and  this contradict ion proves  the  Theorem. 

TtI]~0RE~ 4.9. - Le t  the  hypotheses  of L e m m a  4.7 hold and ~ssume fur ther  t h a t  
(4.12) is oscillatory for some 0 < 2 < ½. Then any  nontr ivial  solution y of (1.1) with 
H(y(tD) <O is oscillatory, t~>to. 

P~oo~.  - Follows as in Theorem 4.8. 

I~E~A~K 4.10. - Under  the hypotheses  of L e m m a  4.6 or L e m m a  4.7 it  is clear 
t h a t  any  criterion which guarantees  t h a t  

(4.15) 

o r  

(4.16) 

u" + pu' + qu = 0 ,  

some 0 < ~ < ½ 

is oscillatory also guarantees  t ha t  (4.12) is oscillatory. As corollaries, therefore,  
we have  

C0~O~LARY 4.11. - Le t  the  hypotheses  of L e m m a  4.6 hold and  in addit ion as- 
sume tha t  

c ~  

(i) f(toq(t) + tV~r(t)) dt = -~ c~ ,  0 < # < 1, some 0 < 6 < 1 

c o  

(ii) fto(q(t) ~- tr(t)) d t :  -~ o<~, # = 1 ,  some 0 < 6 < 1 

c o  

(iii) f(toq(t) 4- t~+~r(t)) dt-~ q- co ,  # > 1 ,  some 0 < 6 < 1 

Then any  solution of (1.1) wi th  G(y(tO)dO is oscillatory. 
t 

P~oo~.  - Since P(t)-~ exp (]p(s)) ds is decreasing and  bounded  away  f rom zero, 

a s t ra ight forward extension of a well-known oscillation criterion for z"+ q z=  0 
(see [8], p. 368) shows t h a t  

o o  

f tOq(t) dt = + c~ 
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inplies tha t  (4.15) is oscillatory: (i.e., (Py') '+ _Pqy= 0 
(4.16) is oscillatory if: 

(a) 0 < / ~ < 1  and ft~.r(tldt= + ~ ,  
co  

(b) # = 1 and ft~+or(t)dt= + oo, 
co 

(c) t~ > 1 and ft~+.r(t) at = + ~ , 

is oscillatory). IAkewise, 

some 0 < ~ < 1 

(see [20] for additional details). This completes the proof. 
co oo 

Since either fP-~(t)dt = + c~ or fP-l(t)dt < + c~, we have as further corol- 
laries for the case when the hypotheses of Lemma 4.7 hold: 

CO~O]~LARY 4.12. - Le t  the hypotheses of Lemma 4.7 hold with 

co  

f P-l(t) dt = + c~ 

and assume one of the following conditions hold: 

t co 

(50 

(b) fP(tlq(t, d t=  + ~;  
to 

co  t 

t co  

(d) l im sup ( fP- l ( s )ds )  fP(s)(q(s)+ L~r(s))ds > 1, # =  1, some O<  2 <  ½; 
t.-> eo 

to t 

co t 

(e) f ( fP- l (s)ds)°P(t) (q( t )+ tr( t , )dt= + ~ ,  t ' = 1 ,  some O < d < t ;  
to to 

co t 

~o to 

Then any nontrivial solution of (1.1) with H(y(to))<O is oscillatory. 

PgooF. - Conditions (a) and  (b) are sufficient for oscilllation of all solutions of 
(4.15) based on the Liouville t ransformation 

t 

s = f P - l ( w ) d w ,  
to 
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(see [1]). Likewise, conditions (d) and (e) imply (4.12) is oscillatory in the case # = 1. 
Finally~ conditions (e) and (]) are sufficient for oscillation of all solutions of (4.16)~ 
based ~gain on the Liouville t ransformation (see [20] for additional details). 

Therefore, the Corollary follows by Remark  4.10. 

CO~OT,LA~Y 4.13. - Le t  the hypotheses of Lemma 4.7 hold with 

oo 

fP-qs)  < +  oo, ds 
to 

and assume one of the following conditions hold: 

t .  t 

c~ co 

(b) l ( 8 ) , @ =  + . > :,, 
to t 

t0 t 

~ = 1 ,  0 < ~ < ½  

ta t 

Then any nontrivial solution of (1.1) with H(y(to))<O is oscillatory. 

PROOF. - Condition (a) is sufficient for oscillation of (4.15) (see [1], Corollary 1.4:.1, 
p. 421)7 based on the change of independent variable 

oo 

t 

and likewise condition (c) is sufficient for oscillation of (4.12) if # = 1. I f  we use 
the change of dependent and independent variables 

t 

then conditions (b) and (d) are straightforward extensions of well-known necessary 
and sufficient conditions for oscillation for second order superlinear and sub-linear 
equations~ (again see [20], p. 227-28 for details). The proof is therefore complete. 

I~E~i~K t.11. -- Theorems 4.87 4.97 and Corollaries 4.117 4.12 may  all be consi- 
dered extensions and improvements (even in the case p ~ 0) of oscillation criteria 
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in [9], [3], [19], [16], and for the case /~ ~ 1 in [14], with however, different proofs. 

Corollary 4.13 gives new oscillation criteria in all cases. 
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