Oscillation, Nonescillation, and Asymptotic Behavior
for Third Order Nonlinear Differential Equations (¥) (*+).

L. Erse (Edmonton, Canada)

Summary. — This paper discusses the behavior of real-valued solutions to the equation

(L.1) ¥+ py" + q@)y'+ r(t)y* =0,

where p, q, v are continuous and real-valued on some holf-line (1, -+ o) and u is the quotient
of odd positive integers. COriteria are obtained for the existence of nonoscillatory solutions,
several stability theorems are proved, and the ewistence of oscillatory solutions is shown. Of
primary concern are the two cases ¢(1) <0, r()> 0, and ¢()>0, r{#)> 0. Some of the
main techwigques used involve comparison theorems for linear equations and resulis in the
theory of second order nonlinear oscillotions.

1. — The purpose of this paper is to discuss the existence and asymptotic behavior
of oseillatory and nonoscillatory solutions of the third order nonlinear differential
equation

(1.1 Y+ pB)y'+ gy +r)yr=0

where u > 0 is the quotient of odd positive integers, and p(?), q{t), r(?) are (ab least)
continuous on some interval (4,, + co). A solution of (1.1) existing on (¢, + ©0)
for some 7, >1, is said to be oscillatory or nonoscillatory according as it does or does
not have arbitrarily large zeros. Equation (1.1) with p =0 has been considered by
HrIDEL [9], NELSON [15], SoLTES [16], ErIAs [2], WALTMAN [19], and for the case
p==1 we mention in particular the papers of LAzZER [14], HANAN [T], BARRETT [1],
and the book of Swanson [18]. Although the coefficient of 4”7 can be removed by
a simple change of variable, it is often useful to have oscillation and nonoscillation
criteria with explicit relations holding among the various coefficients (cf. [13], [6]),
and for that reason we prefer to consider the more general equation (1.1). In see-
tion 2 we establish the existence of nonoscillatory solutions of (1.1} with certain
asymptotic properties under various assumptions on the coefficients (but always
for the case r(f)>>0). In section 3 we consider the case ¢<0, r > 0 and show that
under certain additional assumptions, all nonoscillatory solutions of (1.1) tend to

(*) Enfrata in Redazione il 6 settembre 1975.
(**) Research supported by the Alexander von Humboldf Foundation and by the Na-
tional Research Council of Canada, Grant NRC-A7673.



374 L. ErBE: Oscillation, nonoscillation and asymptotic behavior, ete.

zero monotonically. Our results may be applied, in particular, t0 the case when

[

f 7(t) di < oo, which is not treated in any of the references. These results improve
and extend the results of [15], [16], [2], and [5], and for the case x = 1 results of [14].
Section 4 is devoted to the case ¢>0, r > 0 where we establish stability theorems
and oscillation criteria for (1.1) improving results of [9], [16] and [5]. Some of the
results here are based on the theory of second order nonlinear oscillations along with
appropriate changes of variable.

If u<1, then solutions of (1.1) may be continued to all of (t;, 4 oo). If u>1,
then under certain conditions a non-continuable solution of (1.1) has infinitely
many zeros in a finite interval (see [9]). We shall be concerned here with the behavior
of continuable solutions and shall assume that solutions of initial value problems
for (1.1) are continuable to all of (¢,, 4 o0).

2. — In this section we shall establish some preliminary lemmas and theorems
for the existence of nonoscillatory solutiens of (1.1) which are interesting in their
own right.

LeEMMA 2.1. ~ Let g<0, # > 0. Then there exists a solutiony of (1.1) withy = 0 and
(2.1) >0, ¥Y<0, ¥>=0, it=2T>t,.

Proovr. — The existence of a solution satisfying (2.1) for large ¢ follows easily from

a result of Hartman ([8], p. 510) by rewriting (1.1) as (Py")+ Qy'+ Ry»==0, with
13

P(t)=exp ([pds), Q)= P(n)q(t), and B(t)=P(5)r(t). Setting y=y, .=~/
s

y,=y", then (1.1) may be written, with Y = (91, ¥,, Py,), a8
(2.2) Y+t Y)=0,

where f(t, ¥)= {¥,, Y5, By — @y.) >0 (in the usual component-wise sense) provided
Y >0. Therefore, by the result of Hartman, for any &k > 0 there exists at least one
solution ¥(¢) with | Y(T)|=%k>0, and ¥{#)>0, Y (1}<0 for i>T.

REMARK. — If 4 >»1 so that initial value problems for (1.1) have unique golutions,
then (2.1} may be replaced by

(2.1)* ¥>0, 9'<0, ¥'>0, t=>T>t.

To see this, note that if y satisfies (2.1) and ()= 0 for some #,>7, then from
(1.1) and our assumptions, ¥"(f,)<0 and hence y”" =0 =y" for t>{,. Therefore,
y¥'=0, t>1, and since r >0 we find y =0, t1,.
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But then we must have, by uniqueness of solutions of initial value problems,
that y =0 for t> T, contradicting Lemma 2.1.

The next result implies, among other things, the existence of a solution satisfy-
ing (2.1)* under different assumptions. Recall that an »-th order linear equation
is said to be disconjugate on an interval I in ease no nontrivial solution has more
than » — 1 zeros on I.

THEOREM 2.2. — Let » >0 and assume the second order equation

(2.3) Y+ g—p'[2)y=0
is disconjugate on (7, - oc) for some T >%,. Then there exists a solution of (1.1)
satisfying for all large ¢

(1) y>0, y<0, pux1,

(ii) y=>0, y'<0, y=#0, O<pu<l.
Furthermore, if ¢ —p' <0, p<0, p’>0 eventually, and if ¥y >0, y' < 0 holds for
large 1, then y" >0 for large {.

Proo¥. — We show first that for each ¢* > T there exists a solution of (1.1),
y{t; t*) satisgfyihg the boundary conditions

(2.4) y(IyE+y' (TrR+y"(IE=1, y@t*)=y'{*)=0
and
(2.5) y>0, Yy <0 for T<i<<t™

Clewrly, if v is a solution of (1.1) satisfying y(t*)=y'(t*)= 0 << y"(t*), then the
inequality in (2.5) holds, at least for awhile, in a left neighborhood of ¢*. Suppose
there is a point ¢, T <t <#* with ¢'({)=0 and y >0, ¥’ <0 on (&, *). I we
multiply (1.1) by ¥’ and integrate by parts from ¢, to t* we obtain

* o t*
(2.6) [rysy ar=[rrar—[@—p' 2y a

iy b [
Now the right hand side of (2.6} is easily seen to be positive by expanding

i*

f(y”—y’@’/@)“’dt>0,

2

where v is a solution of (2.3) with »({t,) =0, 0'({;) >0 on (;, -+ o0). But the left
hand side of (2.6) is negative since ry#y’ << 0 on (¢, t*). This contradiction shows
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that (2.5) holds on (7, t*). It remains to show that the first part of (2.4) holds. To
this end, let 8, be the set of all numbers y,(T)%- y(T)? -~ y,(T)? where ¥, is a so-
lution of (1.1) with y,(t*) = y,(t*)= 0, y,(t*)= k. Then the set

is connected by the Kamke-Kneser Theorem ([8], [12]), and since 0 & 8 it suffices
to show that sup § <1 eannot hold. Suppose on the contrary that sup § < 1. If
we choose M > 0 so that [p()] < M, |q()|< M, and |r(?)| < M on [T, #*], then an inte-
gration of (1.1) yields

¢

(2.7) [yal)| < O + M [ (91 + lyzl) s
T

where C is a constant (0= [y;(T)| 4+ M(t* — T)). Since

i
| <l + [yl ds
T
upon adding this to (2.7) we get

(2.8) O]+ 9] < O3+ M (1y3] + 9il) ds
T

- for suitable constants C,, M, (depending on O, M, ly{T)]). Hence Gronwall’s ine-
quality shows that

)]+ ) < My, T<t<t*

for some constant M, This is a contradiction and therefore (2.4) and (2.5) hold
for some y =y,. Now letting ¢{,— oo, we obiain a sequence y, of solutions of (1.1)
satigfying (2.4), (2.5), and by a standard diagonalization argument, this yields a
solution y of (1.1) on {7, + oo) with ¥>0, ¥'<0, and ¥y £ 0. Now if y>0 for
t>T and if y'(f) =0 for some t, > 7, then the first part of the argument above
shows there cannot exist £, >, with y'(f,) = 0 and 4’ < 0 on ({,—t,). Hence, either
y' <0, t>1, or y'=0, t>»%. But the latter case clearly cannot hold since this
leads to ry#=0, a contradietion. Therefore, if ¥ >0 for {>T, then y < 0 holds
eventually. If u>1, then as in the remark following Lemma 2.1, it must be the
cage that y >0 for 7, so that assertion (i) of the Theorem holds in this case.
Finally, suppose ¢ —p'<0, p<0, p'>0 holds, t>1T,, and suppose y >0, ¥y’ <0,
t>T,. Since y is nonoscillatory, there must exist points arbitrarily far out for which
y">0. Suppose y'(t;)=y"(t,)=0 and y" >0 on (&, ), Ti<t<t,: Then an inte-
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gration of (1.1) gives

ts iz

b
(2.9) ']+ [a—p)y i+ [rpar=o.

by 1 b

The sum of the two integrals in (2.9) is positive and sinee y'(4) < ¥'(f;) < 0, (2.9)
implies p(4,) < p(t,), & contradiction. Therefore, we must have y” > 0 eventually.
This completes the proof of the Theorem.

Our next result yields the existence, but not the monotonicity, of nonoscillatory
solutions to (1.1).

THEOREM 2.3. — Let r>0, p<0, and p"— ¢'>0 on ({, -+ o). Then there ex-
ists a solution of (1.1) with ¥>0 on (f), -+ o), ¥y % 0. If u>1, then y > 0.

PRrooF. — For t,< IT'<C 1* < + oo, we show there exists a solution of (1.1) satisfy-
ing (2.4) with ¥ >0 on (%, ?*). With 8 and 8, as in Theorem 2.2 it suffices to
show that sup § < 1 cannot hold. Suppose y is a solution of (1.1) satisfying y(#*) =
=y’ (#*)= 0, y"(I*)=k>0. We claim first that y >0 on (4, ¢*). If there exists
o< t < 1* with y{t;)=0 and y >0 on (I, *), then multiplying (1.1) by y and
integrating by parts gives

©* i* i* *
(2.10) (pvy’ — ('112)| ~ [pty @t + [@— )y dt+ [ryedi=o
1 I 1 [

i* i*
Now f(q—p’)yy’dt: f(p”—q’)yz/z d¢ so that from (2.10) we have
iy by

i*

t* i*
(2.11) (/)2 — [pyrat+ [0 — )y j2dat+ [ryodi=o.
21 t1 tl

Since the left hand side of (2.11) is positive, this contradicetion shows that y > 0
on (,, t*).
Next, since
tl

t*
[pyrat=—ymyp() - p'@y9(0) + [pryat,
T T

and
[ *
Jov'at =—amyyen— [qyar,
T T

if we integrate (1.1) from T to t*, we get
> *

(2.12) k- ?‘yﬂ+1dt=f(q’—p”)ydter”(T)Jr(p’(T)+q(T))y(T)+y’(T)p(T)
T T
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and therefore

(2.13) k< [y"(I)] + [(»"(T) + o) y(T) |+ 1y (T) p(T)] -

Since the right hand side of (2.13) cannot remain bounded for all k > 0, it follows
that sup 8 == - co and hence there exists a solution of (1.1) satisfying (2.4). Now
a diagonalization argument gives a solution of (1.1) y=#0, and y>0 on (fy, -+ oo).
If u>1, then the first part of the argument above shows that y can have at most
one double zero 80 y >0 eventually. (If 0 < <1, then either-y > 0 for large ¢
or y =0 for large f).

REMARK. — Some of the results of this section generalize results of [3], [14], and [17].

3. — In this section we shall investigate the case ¢<0 and r > 0. For convenience,
we gtate first the following Lemma, a proof of which may be found in [4], for example.

LeMMA 3.1. — The equation ¥” -+ a($)y"-+ b()y'+-c(t)y=0 is disconjugate on
the interval I iff there exists «(t), S(f)e C*(I) with < f and &'+ f(f, 2, ') >0,
B" +f(t, B, y<0 on I, where f(t, u,w')=Buw'-+ a(t)u -+ w*+ a(t)u? -+ b(t)u - ¢(?).

REMARK. — Funetions «(f), () as in Lemma 3.1 are said to be lower and upper
solutions respectively, of the Riccati equation corresponding to %" ay’-+ by'+
4 ¢y =0, obtained by the substitution = y’[y (see [11] for details).

Lemma 3.2. — Let q<0, r>0, and let y be a solution of (1.1) with y>0 and
y= 0 on any half-line [#;, 4 oo). Then there exists T > ¢, such that either

(i) y>0, y'<0, y'>0, t>T, or
(ii) y>0, y' =0, t>1T.

Further, if (i) holds, then ¥y >0, ¥’ < 0, " >0 on (f, -+ oo} and

lim %'($)= lim y"(t) =0

] o

ProoF. — We show first there exists 7T > ¢, such that y >0 for ¢ > 7. If not,
then we may find consecutive double zeros #, < ¢, of ¥y with y > 0 on (i, {,), and we
may choose t, € (f;,1,) such that y"(%;)=0, y">0 y’'< 0 on (¢,,%,). Then the funec-
tion

w(t)=y@)y'()y" () P (1)

1
satisfies w' >0 on (i,,%;), where P()= exp (fpds).
ks

Since w(f,) = w{f,) = 0, we have a contradiction. Therefore, y > 0 for i>71. We
show next that ' can change sign at most two times. If y'(t) = 9'(t;) =0, and
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450 on (4,,1,), then since the second order equation 2"+ p2’+ gz=0 is disconju-
gate on (f,, 4+ oo) (i.e., ¢<0; cf. [8]), it follows that y' >0 on (;,?,). Otherwise,
with v=—y’ >0, then v"-- pv'+4- gv>0 on (¢, ?,) and this implies the existence of
a solution 2(?) of &"+ p2’'+ ge= with 2({,)=2(1,)=0 and 0<<o(f)<<e({) on (I, 1),
(¢f. [10], [11]), and this is a contradiction. Hence, either y'>0 or y'< 0 for all
large ¢. In the latter case, since (Py")' = — Pqy’ — pry*<< 0, we see that the function
w=yy'y"P satisfies w' >0 on any interval on which y” > 0. Therefore, sinee y" <0
cannot hold for all large 7, it follows that y” > 0 for all large, say {>7. Furthermore,
in this case, one can show ag in the first part of the proof, that w(t) == 0 for ¢, <t < T.
That y'—>0, y"—>0 as t— 4+ oo is clear. This completes the proof.

REMARK. ~ The previous lemma is similar to a result of Lazer [14] for the linear
case.

The next result gives a sufficient condition that nonosecillatory solutions of (1.1)
satisfy (2.1)* for all ¢ > ¢,.

LemmA 3.3. — Let g<0, #>0, and let y be a solution of (1.1) with y>0 and
y # 0 on any half-line [#, + oo). Further, assume for each A > 0 the equation

(3.1) y'+py'+ gy + Ary=10

is not disconjugate on any half-line [¢;, -+ oo). Then:
(i) if 0<<p <1 and y is bounded, or
(i) if p>1,

it follows thaty > 0, y' << 0, y" >0 for t,<t<< + oo and y' =0, ¥y"=>0 as t - 4 oo.
Further, if y=1, then it is sufficient to assume (3.1) is not disconjugate for
A=1.

ProoF. — We need only show that case (ii) of Lemma 3.2 eannot occur. So sup-
pose y>0, 4y’ >0, t>7. With u=y'/y>0, t>T, we obtain from (1.1)

(3.2) W' Buw' +pu'+ ud -+ pur+ qu -+ ryr =10

In either case (i) or (ii) we may find A,>0 (4,=1, if y=1) such that y»(f)> 4,
for all > T. Since initial value problems for the Riccati equation have unique solu-
tions, it follows that » > 0 for {>17, and by (3.2) that » is an upper solution of the
Riceati equation corresponding to (3.1) with A=14,. Since =0 is a lower solu-
tion, it follows by Lemma 3.1 that (3.1) with A== 41, is disconjugate on [T, 4 co),
a contradiction. This proves the Lemma.

The above result implies that if y is a solution of (1.1) with y(¢)y'(f,) =0 for
some ¢, >1, and if (3.1) has on oscillatory solution for all 1 >0 (for A=1 if pg=1),
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then y is oscillatory. This extends a results of Lazer ([14], Lemma 1.2") for the case
u=1 and gives an oscillation criterion for the case p #1.

The next result is a stability result for (1.1) and implies that all nonoscillatory
solutions tend monotonically to zero along with their derivatives.

THEOREM 3.4. — Let ¢<0, r> 0 and let ¥ be a nontrivial solution of (1.1) with
y>0 for large {. Assume further that equation (3.1) is not disconjugate for each
A>0 (for A=1 if p==1) and that either

(i) liminf (4p(f) — 22¢(1)) > 2, or
>+ o0

(ii) liminf##(t) > 0.
bt 00

Then lim y(¢) = lim %’(¢) = lim y"(¢) = 0.
o0

t—o0 t—>o0

Proor. — We need only show that }gg y(#) = 0. If not, suppose y({}>k > 0 for

all £>1t,, Lete>0 and choose T >t, so that y(T)< (14 &)k. Since y(t) —y(1) <
<y'{#)(t—1T), t> 1T, from the Mean Value Theorem, we obtain from the above
relations

(3.3) YOyt > (¢ — Iy (1 —y(D)fy(t)) > —elt— Iy
for t>T. Now with #=y'jy we see that u satisfies
(3.4) w"+ Bun' - pu' -+ ud -+ pul-b gu -+ Aer<0, t>7T

where Ao=1, if u=1, A=kt if g >1, and A= (k(1 4 &) if p<1.
With «(t) = —e(t— T)"1, a calculation shows that

(8.5) o -+ o'+ pa’ -+ o+ pot - o+ Agr =
= (E— T (2e - St ) (E— T)2p(Ble+ o) — (t— T)* qlt)e + Aor(t) -

Using either {i) or (ii) of the hypothesis, one can show that the right hand side of
(3.5) is nonegative for ¢ > 0 sufficiently small. Hence, by Lemma 3.1 equation (3.1)
is disconjugate for A== 4,. This contradietion shows that y(t) >0 as ¢t - + co and
proves the Theorem.

REMARK. —~ It is shown in [14] (Theorem 1.5) that if p =0, ¢< 0, and ft%(t)dt = -} co,
and if (1.1) with =1 has an oscillatory solution, then any nonoscillatory solu-
tion tends to zero. The above result with y = 1 shows the conclusion of this theo-

rem also holds when f t2r(f)dt < + oo, provided part (i) of the hypothesis of Theo-
rem 3.4 holds.
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THEOREM 3.5, ~ Let p>1, r>0, ¢<0, p>0, p' —¢>0, and ¢ —p">0 for {,<

<1< + co. Assume further that f rdt = - co. Let y be a nontrivial nonoscillatory
solution of (1.1). Then y satisfies for all large ¢, sgny(f)= sgny’(?) == sgny'{f),
and y =0, y'—0, y"—0, as t > -} oo.

PrOOF. — Assume that y >0, t>1{,. Multiplying {1.1) by y* yields

(3.6) Yyt py'y gy y - r=0.

For #,< ¢, <t, we integrate the first and second terms by parts twice and the third
term onee, from £, to ¢, and get after rearranging

(8.7) y" () y(8) + ply' (1)) 2y~ (1) /2 + p(t)y'(E) y4(F)

£
+ (') — a®) y#2 (@) — 1) + (ulp -+ 1))/2f?/’3y“ﬂ"2ds
[

i 3 2

+ (p— 1)—1f(q’ —p")yHtds + ﬂfy’i‘pzr"‘lds + f?‘ds =K.
i iy

b

t

From (3.7) it is clear that if y' >0 for all large ¢, then since ﬁﬂ ds — 4+ co, we must
A

have y"(t)y—#{(f) - — oo, and therefors, y”(}) > — oo, a contradietion. Therefore by

Lemma 3.2 it follows that y >0, y'<0, y">0, t>1¢, and y—0, y"—0, as
1~ oco. If y—~ L >0, then from (3.6) we would have y"(f)+ L#r(f) < 0, t <1,
and integrating this inequality shows that y"({) - — oo, again a contradiction. There-
fore, L==0 and the Theorem is proved.

From the proof of the previous theorem, we may obtain

COROLLARY 3.6, — Let 0<pu<C1, >0, ¢<0, p>0, p'—¢<0, and ¢'—p"<0.
Agsume further that

t

f?"dt—a%»oo.

Then for any nonoscillatory solution y of (1.1), the conclusion of Theorem 3.5 holds.
Proor. — The proof follows from (3.7), as in Theorem 3.5.

ExAMPLE 3.7. — As remarked above, Theorem 3.4 applies to the case when

oo

fw(t)dt<+ o,

25 - dnnali di Matemaiica



382 L. ERBE: Oscillation, nonoscillation and asymptotic behavior, ete.

in contrast to Theorem 3.5, Corollary 3.6, and the results in the references. As a
simple illustration, for the ecase p =0, let ¢(t) = — m#”, and

Tyt r(t) <kyt

where m, ky, k, >0, —3< d; <0, < —1, y<by.

Then for any 1> 0, equation (3.1) has an oscillatory solution ([5]) and part (ii)
of the hypothesis of Theorem 3.4 clearly holds. Hence, the conclusion of Theorem 3.4
holds.

Corollary 3.6 applies, for example, to any »(#) > 0 with

&

jﬁ”(lt: o)

and the choices p(f)= k1, q(t)= — k,t", where k;, ks >0, y +1<d<0. (If v+
+ 1 =24, then we also need %6+ k;<0). Such sublinear examples are not consi-
dered in the references.

‘We also wish to remark that Theorem 3.5 includes as gpecial cages results of [16]
and [15].

4. — In this section we shall consider the case ¢>0, r > 0. We begin with a Lemma
which is a generalization of a result of Heidel ([9], Theorem 3.6).

LemMa 4.1, — Let ¢>0, » > 0 and assume the equation 2"+ (g — p’/2)2=0 is
disconjugate on (#;, + oo). Then for any nonoscillatory solution y of (1.1) there
exists T'>1t, so that y(#)y'(£)=0 or y()y'(t)< 0, for ¢>1T.

Proor. — To be specific, assume y >0, i>T >4, Suppose y'(t,)=y{)=0,
¥’ 0 on (t;,1,), for some T« << t,: (Zeros of 4’ are isolated). Then as in Theo-
rem 2.2 we multiply (1.1) by ¥’ and integrate by parts to get relation (2.6), (f*=1,).
Since the right hand side of {(2.6) is positive, it follows that ' > 0 on (f;,1,). Hence,
¥'>0 for all t= 1T, and this proves the Lemma,

LemMa 4.2, — Let ¢>0, » >0 and assume the equation 2"+ (g —p'/2)2=0 i8
disconjugate on (¢, -+ oo). In addition, assume either

(a) TP*ldt = qu‘-’dt -+ TtﬂPw dt = 4~ oo, or
iy ty tq

[
(b} the equation 2”4 pz'-+ gz = 0 is oscillatory, where in (a) P(t) = exp ( f P ds)
t

Then any nonoscillatory solution y of (1.1) satisfies

y(t)y' (1)< 0  for all large ¢.
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Furthermore, if p<0, ¢—p'<0, p’'>0, t>7T, and i y>0, y' <0 for all large ¢,
then ¥’ >0 eventually.

ProoF. — In view of Lemma 4.1, assume y >0, y'>0, t>>T. If (b) holds, then
w=1y'ly satisfies u'-+ w4 py+ q=—rys<<0, t>7T, so that '+ pe’+gz=0 is
disconjugate ([8], p. 362), a contradiction. If (a) holds, then

(Py")'=—qPy' —rPy» <0, t>T,

Hence, if y"(t,) < 0 for some ¢, > T, then P@)y"(t) < P(t,)y"(t)<< 0, ¢>>1,, and since

f P-1di= - oo, this implies that ¥'(!) - — oo, a contradiction. Therefore, y">0,
t>T, so that y'(t)>k > 0, and y(f)>kt for some k>0 and all {>4,>7. But then
from (1.1) we obtain

£ [
(4.1) P)y" (1) < P(t2)y"(8) — f Pyds —k f o Prds
iy ty

and sinece the right hand side of (4.1) tends to — oo, we have a confradiction. Hence,
¥ty (1)< 0 for all large ?.

Finally, if p<0, g—p'<0, p'>0, t>T and y>0, y'< 0, for all large £, then
y" > 0 eventually, by Theorem 2.2. This completes the proof.

RemArk 4.3. - If fP‘ldt< -+ oo, 80 that (a) does not hold, then (b) holds, if
for example,
J‘qP(fP*lds)zdt: + o0,
13

(see [1], p. 421).
The next result gives several different ecriteria under which y —0, if y is a
nonoscillatory solution of (1.1) with yy'<C 0 for all large 1.

TaworeEM 4.3. — Let ¢>0, »> 0, and let ¥ be a nonoscillatory solution of (1.1)
with yy'<< 0, t>>T. Then y — 0 provided any one of the following three conditions
holds:

() pg-+ 4'<0, p<0, and |Pgit=+ oo,
(i) Tt%dt: + oo, tp(t)<2, and t2q(t) — (t*p(t) <M for some M >0,
(iii) p<0, ¢— p’'<0, p'>0, there exists k>0 such that lim inf t%ﬂ((t) —
— k(t1q(t) — Z“ﬁp(t))) >0 and for any A>0 (A=1, if y= 1t)_w::he equa-
tion y”+- py”-+ qy'+ Ary = 0 is not disconjugate on any half-line (¢,, 4 oco).
Proor. -~ We assume to be specific that y > 0, ¥’ < 0, t1>7. If (i) holds, then
(Pq)' <0, and since p <0, oTP'lolts -+ co. Now from (1.1) we obtain through inte-
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gration by parts, for ¢ >#,>T

i
(.2)  PO'O+ a0y®) + [(Pryx— (Pg)'y)dt = P)(y"(h) + a(h) y(t) -

28

If there exists &, > T with y"(f,) + q(t)yt) =— k<0, then from (4.2) we get
Yy < — gl y(t) — EP(t), t>1,, and therefore an integration of this inequality
leads to y'(t) - — oo, a contradiction. Therefore, for some &, > 0, we must have

}51>P(i)(y#(t) + Q(t)y(t)) >0, i>T

and hence with v = y'/y we have

wtuw=y'ly>—q, t>1.
But then
(4.3) y(Pu'+ Pud) <k, —qP, t>T

go that if y +~ 0, then an integration of (4.3) shows
(4.4) P{tyu pru ds 4 fPW ds — — oo .

Since p< 0, this implies
(4.5) ult) =y O)y(t) < — P1(t), ity

and therefore logy(f) —— oo, contradicting the assumption that y(¢) -+ 0.
Suppose next that (ii} holds. Multiplying (1.1) by #* and integrating by parts
from T to ¢ we obtain

(4.6)  2y'(t)—2y'(t) + ey () +
t 3
[(s2at5) ~ (s2p(5)) -+ 2) 9/ (5) s + [s2r(s) yo(s) @5 = K
T 7

from which we get, using the condition in (ii),

H
(4.7) 2" (8) + (M + 2)y(t) - jsw syds <K, .
T

Thus, if y(¢)++0, then (4.7) implies that ¢2y"({) > — oo, which is a contradiction
sinee y'(f) << 0, i>1T.

Finally, suppose that (iii) holds. We may assume by Lemma 4.2 that y > 0,
y' <0, y">0, t>T, and then the argument proceeds as in Theorem 3.4. Given
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A>0, condition (iii) guarantees that «(f)= —¢e(t— I')-* is a lower solution of the
Ricecati equation corresponding to %" py"+ qy'+ Ary =0 for sufficiently small
&¢>0. Therefore, as in Theorem 3.4, we must have y(f) —0.

COROLLARY 4.4. — Let the hypotheses of Lemma 4.2 and Theorem 4.3 hold. Then
for any nonoscillatory solution y of (1.1) lim y(f) = 0.

RBMARK 4.5. — Part (ii) of Theorem 4.3 is a generalization of a result of HEipEL [9].
It is easy to see that (i) and (ii) of Theorem 4.3 are independent. To see that (iii)
may hold with neither (i) nor (ii) holding, let ¢(f) = 0, p(f) = — -9, where 1 < 20 < 2,
and ¢(f) = ¢~1. Clearly, neither (i) nor (ii) holds. To see that (iii) holds it is sufficient
to show that

(4.8) Y — oy =y =0
hag an oscillatory solution for all 1 > 0. With the change of variables

y = exp (t-3[3(1 - 8)) ,
we obtain from (4.8)
(4.9 w"” - B{t)w'+ C{t)yw=0

where B(t) = — t~25(1 -+ 36¢5-1)/3, and O(t) = At~ — 2£-39/27 A (8/3)(d 4~ 1)¢—9-2. Since
C(t) > 0, B(t)< 0, for large ¢ and since

f (o) —2(— B3t dt=+ oo
for any A > 0, it follows by a theorem of Lazer ([14], Theorem 1.3) that (4.9) has an
oscillatory solution. TUsing results of [5] one can also give examples where

[r@ydi< 4 oo

The next lemmasg give criteria under which nonoscillatory solutions with ecertain
initial conditions have asymptotic behavior much different from that in Lemma 2.1
and Theorem 2.2.

LeMMA 4.6. — Let p<0, ¢>»0, g—p'>0, ¢ — p"<0, and jp{t)dt>—oo. As-
sume further that for any A > 0 there exists T, > ¢, such that

[Ap(t)|<q(t) +t#r(t), t>T,

Let y be a nontrivial nonoscillatory solution of (1.1) with G(y(%,)) <0, for some #, > #,,
where

G(y() = 2y(1)y" (1) + 2y()y' () p(E) -+ (g8) — p' () w2(t) — (¥ ()*.
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Then there exists T >1, such that for i>7T
sgn y(t) = sgn y'(f) = sgn y” (1) #sgny"(t) .
Proor. — Assume ¥ >0, y=£0, {>1,. Then a calculation shows that
G'(y(1) =2(y")p + (¢~ p")y* — 2ry*+<0, 151

and G'(y(t)) <0 if y(t)=0. Therefore, if G(y(t;))<0, then G(y(t))<0 for all i>1,.
It y(t.)= 0 for some #,>1?, then G(y(f,)) =0 so that y =0 for {,<i<?t,. Thus, we
may assume that y > 0 and G(y(i)) < 0 for all > ¢,: If y'(,) = 0 for some 1, > 1,
then y’ cannot vanish again on (f,, 4 o). Now if 4y’ < 0 for ¢ >¢,, then clearly
y"<0 cannot hold for all large ¢t. If y¥">0 for all large ¢, then

— ¥ G(g(t)) < G@{ta)) <0, >,

so that y'() >— k<0, a contradiction. Finally, if ¥” changes sign for arbitrarily
large ¢, then since lim Supy'(t)=0, we may find a sequence ¢, -+ oo, with

limy'(t,) =0 and  y"(t,)=0.

But then — y'(£,)2< G(y(t,)) <G(y(t;)) < 0, for all n and this is a contradiction. There-
fore, we may conclude that y >0, ¥ >0, t>1,. _

We show next that y” >0 for all t>1¢,. If y"(t*)=0 for some *>1¢,, then
Y (#%) = — q(I*)y'(t*) — r(*) y#(#*) < 0, and therefore y” cannot vanish again for ¢ > *,
Thus, y"< 0 for ¢>¢* and since y"=— py" — qy’' —ry#< 0, for ¢>1t* it follows
that ¥’ — oo, a contradiction. Therefore, ¥” > 0, ¢ >¢,. To see that y”(t) < 0 for
all large ¢, we need first the fact that y” is bounded above. Multiply (1.1) by (y")!
and integrate for {7 >, o get

y" () <y"(T) exp (w Tp ds)< + oo, 1>T.
T

Letting 4 denote the right hand side of the above inequality and choosing % > 0
so that y'(t) >k, and y(t) >kt for i>T, we obtain from (1.1)

(4.10) Y1)+ p(t) + hq(t) + ber(w<0, T

But by the conditions of the Lemma, the last three terms of (4.10) are eventually
positive which shows that y”(¢) < 0 eventually. This completes the proof of the
Lemma.
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Lemwma 4.7. — Let p>0, r>0, pg+ ¢’ <0, g=>0. Let ¥y be a nontrivial non-
oscillatory solution of (1.1) with H(y(#,))<0 for some %, >1, where

H{y(t)) = Pt)(2y" () y(t) — y' (12 + qy(8)?) ,

4
P(t) = exp ( f p(s)ds)‘ Then there exists T>1, so that sgn y(f) = sgny'(¢) = sgny"(t) =
f
#=sgny”(t), t=1T.

PrOOF. — A caleculation shows that

(4.11) H'(y()) = P(t)(y*(pq + ') — 2ry*++— py'2) .

Therefore, if H(y(t,)) <0, then H(y({)) <0 for t>¢,: The argument now is similar to,
but easier, than in Lemma 4.6. If y > 0 for ¢ >¢,, then H'(y(f)) < 0, t > ¢;, and as
in Lemma 4.6, it follows that y' > 0 and " > 0 for ¢ > t,. Hence, 4" ({) == — p(t) y"(t) —
—q(&)y'(t) — r(f) y#(t) < 0, t >>1,, and this proves the Lemma.

Our next result includes an improvement of an oscillation eriterion for (1.1) due
to Heidel ([9], Corollary 3.4). We offer a different proof which is shorter and appeals
to results in the theory of second order nonlinear oscillations.

THEOREM 4.8. — Let the hypotheses of Lemma 4.6 hold and, in addition, assume
that the second order nonlinear equation

(4.12) (P W)+ 1, uy )= 0

is oseillatory for some 0< 1<%, (that is, all solutions of (4.12) are oseillatory),
where P(f) is as in Lemma 4.7 and

f(£, w, A) = P(2)(q(t) w + Anisr(t)us) .

Then any nonfrivial solution of (1.1) with G(y(t,)) <0 for some ¢, >7, is oscillatory.

Proor. — If the theorem is nof true, let ¥ be a nonoscillatory solution with
G{y(t,))<0. In view of Lemma 4.6 we may then assume that y > 0, y' > 0, y" > 0,
and y” < 0 for {>7. By a result of Lazer ([14], Lemma 3.2)

O
£ e
hglfffi (o) 2

and hence we may also assume that y(f)/ty'(t)> 4, for > 7. Therefore, from (1.1)
we obtain with 4=y’

(4.13) w" - pu' -+ qu - Arthr () ur<0 .
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That is, ¥ =y’ is an upper solution of the eguation

(4.14) "4 p2'+ gz Ater(t)er=0,

which is (4.12). Since any % > 0 is a lower solution of (4.13) (that is, satisfies the
reverse differential inequality), it follows from well-known theorems in the theory
of second order differential inequalities (see [10], [11]) that there exists a solution
v(t) of (4.14) with 0 <o{t)<u(t) on (7, -+ o0). Thus, (4.12) has a nonfrivial non-
oseillatory solution and this contradiction proves the Theorem.

THEOREM 4.9. — Let the hypotheses of Lemma 4.7 hold and assume further that
(4.12) is oscillatory for some 0 << A<C . Then any nontrivial solution y of (1.1) with
H(y(t)) <0 is oscillatory, i,>1,.

Proor. — Follows as in Theorem 4.8,

ReMARK 4.10. — Under the hypotheses of Lemma 4.6 or Lemma 4.7 it is clear
that any ecriterion which guarantees that

(4.15) w-+pu+gu=20,
or
(4.186) w'+ pu' -+ Arr(t)ur= 0, some 0<< A<}

is oscillatory also guarantees that (4.12) is oscillatory. As corollaries, therefore,
we have

CoROLLARY 4.11. — Let the hypotheses of Lemma 4.6 hold and in addition as-
sume that

oo

() f(toq(t)+tﬂur(t))dt=+oo, 0<pu<1, some0<d<1
(i) fﬁé ) tr@)di=+ oo, u=1, some 0< <1

(i) f(t6q()+zl+w( Y=+ oo, p>1, some 0 <8< 1

Then any solution of (1.1) with G(y(4,)) <0 is oscillatory.

ProOF. — Since P(f)= exp ( f Fa s)) ds is decreasing and bounded away from zero,

a straightforward extension of a well-known oscillation criterion for 2’4 qz=20
{see [8], p. 368) shows that

f tog(t) dt = - oo
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inplies that (4.15) is oscillatory: (i.e., (Py')'+ Pgy=0 is oscillatory). Likewise,
(4.16) is oscillatory if:

(@) O0<p<1 and ftwr(t)dt=+oo,
{b) p=1 and jzlﬁa«'(t)dt:—g—oo, some 0<<d<C1

©  p>1 and f gty dt = + oo,

(see [20] for additional details). This completes the proof.

Since either f Pitydt= + oo or f P-it)dt< - oo, we have as further corol-
laries for the case when the hypotheses of Lemma 4.7 hold:

COROLLARY 4.12. ~ Let the hypotheses of Lemma 4.7 hold with

o3

f 1) db = - oo

and asswme one of the following conditions hold:

1 o

(@) lim sup ( f}_H(s) ds)( P(s)q(s) ds)>1;
[3

t~>-} 00 i

o

®) [P)gtdt =+ oo;

I

(¢) T(ﬁ?‘l(s) czs)P(t)wr(t) dt= + oo, p>1;
[P

i
{d) limsup (fP‘i(s) ds) J.P(s}(q(s) + Asr{s))ds>1, p=1, some 0 <A< %;
b t

ferco

¢
(e) ( fP~1(s) ds)"P(t)(q(t) 4 tr(t) dt = 1 oo, p=1, some 0< 5<1;
%o

(7,

S g Sty

(fP—l(s) ds)up(t) for(d)dt = + oo, 0< p<<1.

to
Then any nontrivial solution of (1.1) with H(y(t,))<0 is oscillatory.

Proor. - Conditions (a) and (b) are sufficient for oscilllation of all solutions of
(4.15) based on the Liouville transformation
t
s= | PY{w)dw,

129
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(see [1]). Likewise, conditions (d) and (¢) imply (4.12) is oscillatory in the case y = 1.

Finally, conditions (¢) and (f) are sufficient for oscillation of all solutions of (4.16),

based again on the Liouville transformation (see [20] for additional details).
Therefore, the Corollary follows by Remark 4.10.

COROLLARY 4.13. — Let the hypotheses of Lemma 4.7 hold with
fP~1(s)ds< + o,
to

and assume one of the following conditions hold:

(@) f Py o) f P(s)ds)rdi= + oo,
o I

(b) fP(t)tur(t)(jP—l(s)ds)u.-—: +oo, p>1,
iy i

©) [P at)+ re)([P6)as)rdt = + oo,

to t

p=1, 0<i<i
(@) fp(t)w(t)(fp—l(s)ds) di=+ oo, 0<u<l.
g 2

Then any nontrivial solution of (1.1) with H(y(%)) <0 is oscillatory.
Proor. — Condition (a) is sufficient for oscillation of (4.15) (see [1], Corollary 1.4.1,
p. 421), based on the change of independent variable

5= (fP—l(w) dw),
i

and likewise condition {c) is sufficient for oscillation of (4.12) if y=1. If we use
the change of dependent and independent variables

5= f Pw)dw), (s =sy(t),
1

then conditions (b) and (d) are straightforward extensions of well-known necessary
and sufficient conditions for oseillation for second order superlinear and sub-linear
equations, (again see [20], p. 227-28 for details). The proof is therefore complete.

RuMARK 4.14. — Theorems 4.8, 4.9, and Corollaries 4.11, 4,12 may all be consi-
dered extensions and improvements (even in the case p = 0) of ogcillation criteria
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in [9], [3], [19], [16], and for the case w==1 in [14], with however, different proofs.
Corollary 4.13 gives new oscillation criteria in all cases.
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