
Differentiability and Bifurcation Points 
for a Class of Monotone Nonlinear Operators (*). 
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S u n t o .  - Sia P l'operatore de]inito hello spazio L2(O) ponendo u~-- P] in (11% Si dimostra 
vhe questo operatore ( di]/erenziabile secondo Frdehet nelt'origine (vedi teorema 1) e si utilizza 
questo risultato per caratterizzare i punti di bi]orcazione per il problema non tineave (25) 
(vedi teorema 2). 

Le t  ~ be a smooth open bounded set in the u-dimensional euclidean space R ~ 
a n d  let  F be the boundary  of f2. 

We shall assume tha t  the L~(/2) spaces and the Sobolev spaces Wk'~(~), k posi- 
t ive integer,  are familiar to the  reader.  We denote  b y  II ll~ and II llk,~ the usual norms 
in these spaces and we pu t  H--L~(Y2), HII= [1112- I f  l < p < £ v  we denote  by  p* 
the Sobolev's embedding exponent  p* = p n / ( n - - p ) .  We shah also consider the 
space s L~(F) and the  Sobolev space W½'~(F) with the usual noIms I 1~ and 11½,2 re- 
spectively. 

We shall assume tha t  the reader  is familiarized with the basic results on maximal  
monotone  operators on t t i lber t  spaces. 

Consider now a maximal  monotone  (m.m.) graph fl on R × R  such tha t  0Eft(0) 
a n d  d e f i n e  a n  operator  B:  H - ~ 2  H as follows: 

B = --  A wi th  

(1) { ~nau F} D ( B ) =  u e  W~,~(O):--~--efi(u) a.e. on 

where D(B) denotes the  set ( u G H :  B(u)V:O}. 
On the  other  hand  consider the convex, lower semicontinuous (1.s.c.) functional  

@: H --~ ]--  c~, + c~] defined by  

[  ]lvuj dx+ fj(u) r 
(2) ~(u) = ~ 1' 

i f  • ~ W1'2(~2) and j(u) E LI (F ) ,  

o therwise ,  

(*) Entra~a in Redazione 1'11 settembre 1975. 
{**) Instituto de Fisica e ~iatem£tica (Lisbon); 2 Av. do Prof. Gama Pin~o, Lisboa 4, 

Portugal. 
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where j :  R - + ] - - c ~ ,  ~- co] is convex and 1 . s . c . , / ?  = ~j and j ( 0 ) =  0. I t  is wetl known 
(cf. [5], theorem i2)  t ha t  B is the subdifferentiM of q), i.e., 

(3) B = ~(P, 

and consequently B is m.m. on H.  Fur thermore  (cf. [4], theorem 1.10) 

(4) 

On the other  hand  consider two measurable functions a(x) and b(x) defined on ~Q 
with r~nge in [--  c~, -~ c~] ~nd verifying a(x) < 0 < b(x) u.e. on Y2. Le t  g(x, y) be 

a real function defined on 

A = {(x, y) e Y2 × R: a(x) < y < b(x)) 

and suppose tha t  for each y e R the function x -+g(x, y) is measurable in his domain 
(x e Y2: a(x)< y < b(x)}. Moreover we assume tha t  g(x, y) verifies the  following" con- 
ditions: 

(5) g(x, 0) =- 0 ,  a.e. in t~2, 

(6) for almost  all x e ~  the function y-->g(x~y), defined on ]a(x),b(x)[, is con- 
t inuous and nondecreasing. I f  a(x) > - -  c~ then lira. g(x, y) . . . .  c~; if 
b(x) < -~ c~ then  l i ~ )  g(x, y) = + c~. 

Put t ing  g(x, y) = 0 if y ~ ]a(x), b(x)[, the hypothesis  (6) become s equivMent to 
the maximM monotony  of the  graph~ y - + g ( x ,  y) in R × R .  

P u t  now, for any  (x, y) e ~ × R, 

(7) V(x,y)-~ 

y 

fg(x,,]) d~ if y e [a(x), b(x)], 
o 

co otherwise,  

and define T :  H - *  [0, + c~] by  

(s) ~(u) =fV(x,  u(x)) dx. 

This functional is convex, 1.s.c. and (see [3]) 

(9) ~P" = 

where ~ is the operator  

g(x, u(x)) 
(1o) ~[u](x) = 0 

a.e. in Y2, if g(x ,u ( x ) ) eH ,  

otherwise .  
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Obviously ~ is m.m. (by (9)) and univalued on D(.O)= { u e H : g ( x , u ( x ) ) e H } .  
We suppose tha t  the following condition holds: 

(11) for any ] e H the equation 

Bu + O[u] -{- u -- l 

has a solution u .  

Since B + ~ is monotone on H the condition (11) is equivalent  to 

(11') B + g is m.m. in H ,  

since a monotone  operator  A is m.m. if and only if R (I  + A) -- H.  Pu t t ing  u = 20t 

we have  then  

(12) P = (I  + B + ~q)-i = (1 + ,~((b + T) )  -1 ; 

i t  is well known tha t  such an operator  P is a contract ion on H.  
Notice tha t  (11) can be Written more explicitly 

(11 'r) for any  ] e H the  problem 

- -  Au  + u + g(x,  u(x)) = t a.e.  in /2 ,  

--~=U-u~fi(u) ~.e. in F ,  
o n  

has a solution u e W2'"0(/2). 

Final ly we assume tha t  

(13) The est imate  tlull2,~ < eii/t [hoIds for any  ] in a neighbourhood of the origin oi H .  

Remark  tha t  from ( i i")  it follows trivially tha t  

where u = PI and ul = 2011. 
Sufficient conditions on g(x, y) in order that (11) hohls were proved in [3]. In  [3] 

we also give estimates on tIutt~,~ which can be used to prove (13) (see [3] theorem 7.2 
and corollary 7.3). 

In  this paper  we seek conditions for Fr6chet  4ifferentiability of the operator  
P :  H -+ H at  the origin. When  g doesn ' t  depend on x this problem was solved in [1] 
by  assuming only tha t  the  funct ion g(y) is derivable for y = 0. The direct exten- 
sion of this condition to the  case when g depends also on x is to suppose tha t  the  
functions y --> g(x, y) are derivable at  y = t), uniformly in respect  of almost all x e [2. 
Under  this last condition the results proved in [1] are easily extended to the case 
under  consideration. The aim of this paper  is to s tudy the differentiability of P 
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at  the origin when y-+g(x, y) is not  uniformly differentiable a t  y = 0 (see the- 
orem 1). We app ly  then  this result  to the s tudy  of the bifurcat ion points for the 

prob lem (25) b y  using the  Krasnosel ' ski i ' s  theorem (see r emark  4). The me thod  
used in this pape r  c a n  also be  adap ted  to the  s tudy  of the  differentiabil i ty a t  the  

infinity (see r em ark  5). 
Suppose then  t ha t  for a lmost  all x e /2  the function y ~ g(x, y) is differentiable 

a t  the point  y = 0. Pu t t ing  

(15) 

we have  

( 1 6 )  

[ ~g(x,y)] = h(x) 
~Y J~=o 

g(x, y) = h(x)y + ~o(x, y)y , 

with limco(x, y ) =  0 for a lmost  all x e /2 .  
Y-->O 

I f  v(x) is a measurable  funct ion we pu t  for commodi ty  r3[v](x)= o~(x, v(x)). 
R e m a r k  t h a t  v = v~ implies t h a t  r~[v] = r~[v~], wi th  the  usual  convent ion v = v~ 

if v(x)= v~(x) a.e. in /2. 

(17) 

Put 

s = n / 3  if n : > 4 ,  

s > 2 n / ( n + 2 )  if n==4, 

s = 2 n / ( n + 2 )  if ~ - - 3 ,  

s > l  if n--2, 

s-----I if n=l. 

R e m a r k  tha t  2n/(n ~- 2) = (2*)'. On wri t t ing s > (2*)' or s > 1 we suppose, with- 
out  loss of generali ty,  t ha t  s is close to the  indicated values. We  assume tha t  the 

r emainder  co(x, y) verifies the  following condition, which is weaker  t han  uni form 
differentiabili ty of y -+ g(x, y) at  y---- 0 : 

(18) for every  e > 0 there exists a 5~ > 0 such t ha t  

and 

We can use((v(x) measurable  and  v(x) E ]a(x), b(x)[ a.e. in /2  )~ instead of (~ v e D(~) *. 

RE~Aa]< 1. - Condition (18) says t ha t  there exists in L~(/2) a neighbourhood U 

of the  origin such t h a t  ~ :  D(~) n U -~ L'(/2) is continuous a t  the  origin. I f  we pu t  
s = - ~  c~ this condition is re la ted to the  uni form differentiabil i ty a t  the  origin 
of y-->g(x, y) in respect  of a lmost  all x e /2 .  

I t  is obvious t ha t  h(x)>0 a.e. in /2. I n  the  following we suppose t h a t  

(19) h(x)~Lm(/2) with m> n/2 if n > 4 and m = 2 if n < 4. 
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R]~A~K 2. - We have assumed (for clearty) tha t  limco(x, y ) =  0 a.e. in /2, or 
Y-->0 

equivMently, tha t  [~g(x, Y)/~Y],=o exists a.e. in /2; however this condition is un- 
necessary. In  fact  it suffices tha t  g(x, y ) =  h(x)y+co(x, y)y for almost all x e $2, 
with o~(x, y) verifying (18). l~emark tha t  ~o(x, y) is well defined for y e ]a(x), b(x)[, 
y=/= 0 (we put  by  definition co(x, 0 ) =  0). One has co(x, y ) y - ~ 0  when y - > 0  bu t  
not  necessarily r~(x, y) -+ 0 when y -+ 0. 

One can prove tha t  (5), (6) and (18) implies tha t  h(x)>0.  The proof follows from 
the inequali ty o~(x, y) > --  h(x) if 0 # y e ]a(x), b(x)[, and from the existence of a 
function v@) > 0, v(x) eD(~) (i). 

On the other hand  notice tha t  if [~g(x, Y)/~Y]~=o exists a.e. in /2 then it must  
coincide with h(x) a.e. in /2. 

Le t  now/3 be the m.m. graph referred in (1). In  the following we assume that /3  
is differcntiable at  the origin in the following sense, introduced in [1]: 

We say tha t  fi is differentiable at  the origin with finite derivative fl' if 

(20) for any e > 0 there exists G~ > 0 such tha t  

Iz - f fy l  <~tyl, Vze/3(y), 

for all yeD(/3)63 ]--5~, ~[ .  

We say tha t  /3 is differentiable at  the origin with /3'= -F c~ if 

(21) for any  s > 0 there exists 6~ > 0 such tha t  

[yl <~lzl, Vze/3(y), 

for aM yeD(/3) 63 ] - - ~ ,  ~[ .  

On the other hand we consider the linear operator A:H--> H defined by 

(22) 

if /3'= + ~ ,  or 

(23) 

- -  AA]  ~- A t +  h(x)A] = ] 

A t =  o 

- AAI÷ A ] +  h (x )A ] -=  1 

~n + /3 '  A!  = o 

a.e. in /2, 

a.e. in F ,  

a.e. in t2, 

a.e. in F ,  

i f /3 '<  ÷ c¢. 

(1) We put w(x) = rain{y: g(x,y) = 1} if this set is not empty and w(x) =- c>O other- 
wise, and we define v(x) by v(x)= min(w(x), c). 
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We have Ale W~'~(~2) and 

(24) ltAtll ,  < elltl l  • 

For  the  reader 's  convenience we verify in the appendix the val idi ty  of this state- 
ments  under  the condition (19). 

Our aim is to prove the following result:  

T~EOl~E~ 1. - Assume that the conditions (5), (6), (11"), (13) and (18) hold and put 
u = Pl  in (11"). I /  fl '= @ c~ [resp. fl'< @ co] the operator P is ~rdchet di/leren- 
tiable at the origin and DP(O)= A with A detined by (22) [resp. (23)]. 

This theorem can be used to curacterize completely the bifm'cation points ~ for 
the  problem 

-- Au @ g(x, u(x)) @ ~u = 0 ~ .e .  in zg ,  

(25) ~u 
- - [ n ~ ( u )  ~.e. in 1", 

at  it  was done in [1] for the case in which g is independent  of x. I t  is immediate  
tha t  for ~ > 0 the only solution of (25) is the null solution. Hence  we m a y  assume, 
without  loss of generality, tha t  ~ < 0. I f  4, u is a solution of (25) with u ~= 0 we say 
tha t  ~ is an eigenvalue. We say tha t  ~o is a bifurcation point  for (25) if for any  
~ >  0 there  exists ~ solution ),, u with 0 < IIull < s and I )~-~oI< s. 

The following result holds: 

T~EOl~E~[ 2. - Assume that the hypothesis o] theorem 1 hold. Then i/ fi'= @ c<~ 
the bilurcation points ~ ]or problem (25) are the eigenvalc~es ~ ]or the Dirichlet problem 

(26) 
I --  Au + h(x)u @ ,~u = O in ~ , 

u = O  in F .  

I] fl '~ @ c~ then the bi/urcation points ~ ]or problem (25) are the eigenvalues Z ]or 
the linear problem 

l --Au÷h(x) u+~u=O in ~9, 
(27) ~u /~, 

~-~+ u = O  in /~. 

This theorem, which is essentially a consequence of theorem 1 and of the 
Krasnosel 'skii  theorem (cf. [8], § VI theorem 2.2, p. 332), can be proved in the fol- 
lowing way:  

I t  is easy to see tha t  the solutions 4, u of (25) are t ransformed in the solutions of 

(28) v = #Pv 
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by  means of the change of variables 

(29) /~ = 1 - -  2., v ---- # u .  

]~E~ARK 3. -- The change of variables (29) was introduced in [6]. 

In  part icular  /~-= 1 - - 2  transforms the bifurcation points ~ for (25) onto the 
bifurcat ion points # for (28). On the other  hand  # = 1 - - A  transforms the eigen- 
v~lues )~ for (26) [resp. (27)] onto the  characteristic values (~) for 

(30) v ~- ~eAv 

where A is the linear operator  defined by  (22) [resp. (23)]. Therefore to prove the- 
orem 2 it  is enough to prove tha t  the bifurcation points/~ for (28) are the character-  
istic values/~ for (30). Bu t  this follows from the Krasnosel 'skii 's theorem since b y  
theorem 1 lP is differentiable at  the origin with DP(0)~--A.  

We recall t ha t  the Krasnosel 'skii 's  theorem also requests the  potentialness of _P 
and some supplementary  conditions, which are verified for our  ope ra to r /~ ,  as was 
remarked in [6] for a formally analogous operator.  Infac t  ~ is a potent ia l  operator  
since in a real Hi lber t  space every  operator  of the form P = ( I +  80) -1 with 
O : H - - > R w { +  co), 0 convex and 1.s.c. (and 0 ~ + oo) is a potent ial  operator  as 
proved by  M0~EAV in [9], proposit ion 7.d (3). 

On the other  hand  lP is completely continuous in H (~). I f  not,  it  follows from (14) 
(notice tha t  W~,2(~9):-*H is compact)  tha t  there  exists a sequence ]~-~ ] such tha t  
P]~ -+ u ¢ JP]. Bu t  this is not  possible s i n c e / )  is m.m. (cf. [5], (7)). Final ly  i t  is  weJ1 
known tha t  f rom the compactness of the  gradient  P i t  follows the we~k cont inui ty  
of the potent ial  0 (see for instance [10], theorem 8.2) and from the  uniform contin- 
u i ty  (in a ball) of P it follows the uniform diffferentiability (in the ball) of 0 (see 
for instance the proof of theorem 4.2 in [10]). 

I~EMAICK 4. - -  ~USt like it  has been done with Krasnosel 'skii 's theorem we can 
~pply to problem (25) other  known general results (5) which under ly  on the Fr6chet  
differentiabili ty of B at  the  origin (proved in theorem 1). We leave this exercise 
to the  reader. 

t~E]~[AICK 5. - -  The basic ideas on which under ly  the s tudy of the differentiabili ty 
for P and for analogous operators were introduced in [1] for the s tudy of the dif- 
ferent iabi l i ty  at  the origin of P.  Some of these ideas were later  adapted in [7] for 
the s tudy of the differentiability at  infinity. 

(2) I.e. the values /~ for which (30) has a non-null solution. 
(~) There exists a potential 0, constructed in [9], such that P : V0 in H, in the Fr6- 

chef sense. 
(4) I.e. in -~ ] in H ~ P]n--.P] in H. This property is also called <~ strong continuity ,> 

by some authors. 
(5) As for example some results of Rabinowitz. 
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The device i n t roduced  in t he  presen t  paper ,  concern ing  the  case when  g also 

depends  on x, has  a cor responding  device for  the  s t u d y  of the  different iabi l i ty  a t  

infinity.  Once  this is done  one can apply ,  as in [7], some k n o w n  genera l  results  
which  unde r l y  On the  different iabi l i ty  of P a t  infinity.  

I~EMARK 6. -- B y  chang ing  (16) in a sui table w a y  the  resul ts  e x t e n d  immed ia t e ly  

to  the  case in which  y -+g(x ,  y) is a g r aph  in R x R.  

W e  p rove  now the  t h e o r e m  l .  F i r s t  we recall  two l emmas  which  are a pa r t i cu la r  

case of some resul ts  of [1]: 

LE~:~A 1. - .bet o~ be a graph in R x R such that 0 ~ a(O) and ~ '= + oo. Assume 
that v~  W½'2(F), w~L2(1"), v(x) eD(a)  and w(x) ~ a(v(x)) a.e. in 1". Then 

(31) Ivl~ < ~lwl~ + ~*(~-')~'~"'~ W > o 

with r > 2 such that W½'2(1") ~ Z~(1"). 

LE~MA 2. -- .Let ~ be a graph in R x R  such that 0 e ~ ( 0 )  and ~ '= O. Assume 
that v , w ~  W½'U(F), v (x )eD(~)  and w(x)E~(v(x))  a.e. in 1". Then 

(32) ,~,~ t t~ ,2  T ,,~ ½,~ ), r e > o ,  

with r > 2 such that W½'2(F):->L~(F). 

L ] ~ A  3. - Zet l < q < s < +  0% q < t < + o o .  Assume that 

(33) w(x) = v(x) co(x, v(x)) 

with v(x)~D(~)  (~) and with co veri]ying the condition (18). Then 

(34) (q-O/q[ t/q ilwL<~llvL~,(,-o) + c,~. ,11~11, + llwlli'°), w > o. 

PROOF. -- P u t  (~ = 6 a nd  define /2¢v b y  

90, ,  = {x E ~2: [v(x)l > 8} .  

T h e n  

flwl[: = f Iw,°d  + f ,wl od.. 

(6) I f  we assume (18) with ((v(x) ~ ]a(x), b(x)[ a.e. in /2 >> instead of <~ v ~ D(y) ~ we do 
the same modification in ]emma 3. 
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~Yforeover (ef. [1] (1.11) and (1.12)) we can prove t h a t  

(36) f lwl.dx< f tvl+ax + f Iwt.dx< ~ ~'(ltvIli + tiwI[+) 

On the other  hand  by  using (33), HSlder 's  inequali ty and (18) it  follows tha t  (7) 

(37) f f ,+L+°.°,+x) 

since the funct ion defined by  ~(x) = v(x) if x e f2 - -  Q~,~, ~(x) ----- 0 if x e/2~., belongs 
to  D(~). F rom (35), (36) ~n4 (37) it  follows (34). 

F r o m  now on we fix s as indicated in (17) and q as follows 

] q -- ( 2 . ) '=  2n/(n + 2) if n > 2 ,  
(38) t q = s  if n < 2 .  

Final ly we pu t  t----2 in (34) and we define p by  

(39) p = sq/(s-- q).  

Remark  tha t  p ~ (2*)* if n > 4  andp---- + co if n < 3 .  F rom the Sobolev's em- 

bedding theorems it  follows tha t  WI'~(Q)~->L¢(£2) and W~'2(/2)~->L~(~). Conse- 
quen t ly  the  following result  holds f rom lemma 3: 

C01~0LLA]~¥ 1. - Assume that eo verily the condition (18) and de]ine w(x) by (33) 
with v(x) e D(~). Then 

(40) 

where q < 2, WI'~(~) ~-> L¢(.Q) and W~'~(~) ~> L~(+Q). 

PROOF OF THEORE~ 1. -- Suppose first tha t  f i ' =  + co. Pu t t ing  R] ---- P I C  A] 
it  follows from (22) and (11") t ha t  

(41) 
AR]- -R]- -h (x )R]=P]Co(P])  a.e. in 9 ,  

R] = P] a.e. in F ,  

(~) With obvious changes if s : q or s = + c~. 
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~[ultiplying the first equation (41) by  f2], integrating in D and applying Green's 
formulae on has 

[tR/H~,2<-- f P/ Co(Pt)Rtdx + f ~[ PtdF 
D F 

since h(x)>0 a.e. in ~ and R f - P ]  in F. 
Thus (s) 

2o 

since IIRtil0.<cllRllli,~<clItjl ~nd laRl/anl~<cYll by (13) and (24). 
On fhe  other h~nd applying corollary 1 with v = e l  and w-=-_P] E~(P]) we get 

since W2'2(~)~->L~{~). By  using (13) ~n4 (2~) it follows tha t  (s) 

(44) I1~11 <cyl l  

since ~ = zl_nt--Rl--h(x)_nt. F r o m  (~a), (~t~) and (13) we get (~) 

11~110 < c(~ + ~%o-'~011/p -o)~0) ]lIt] • 

Therefore for ~ny ~ > 0 there exists ~: > 0 such tha t  

(45) tlllt < a: ~ II~llo<=tl/iI • 

On the other h~n4 by  using the lemma i with // instea.d of ~, v = P] ~nd 
w = - -  ~P]/~n one obtains as is [1] tha t  for any  s > 0 there exists ~: > 0 such tha t  

(4s)  II/ll< a: ~ [~/ l~<~ltt l l  • 

From (42), (45) and (46) we ge~ 

(4:7) l i r a  I I P f  - -  Alllx'~ - -  0 
,~ ,~o  tlttl 

and thus P is Fr6ehet differentiable at the origin with D P ( O ) =  A .  

(s) For sm~ll values of lI/il- 
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Assume now tha t  f l '<-[ -  c~. 
follows tha t  

since fi' > 0. 

(4s) 

Put t ing  R / =  P / - - A / ,  and using (11') and (23) i t  

( (3R] fi 'R])RfdT', 
D 

Then,  as for (42), 

ilRtll , < ll/ll IIPL, (P/)llo + clntll + . 

Final ly (47) follows f rom (48), (45)(~) and f rom the following result:  for any  
s > 0 there  exists 6: > 0 such tha t  

~R/ ~' RI  2 

We prove this result  exact ly  as is [1] by  using the lemma 2 with g(y) = fl(y)--fl'y, 
v = P ]  and  w = -  ~R//~n--fi'R]. :Remark tha t  £ =  0 and t h a ~ -  ~R]/~n--fl 'R]e 
efl(P])--t~'P ] a.e. in / ' .  

Remark  by  the way tha t  _P is also differentiable (at the origin) as an operator  
f rom Z~(/2) into W~.~(/2), as follows from (47); this result  can be generalized 
further (cf. [2]). 

A~ :ExAmPLE. -- The more usual example of functions converging to zero when 
y - > 0 ,  not  uni~o, mly  in respect  of a parameter ,  is the family / # y ) =  lyl t, t > 0 .  
F r o m  this family we can construct  examples to which the theorem I (and con- 
sequently the theorem 2) applies. A very  easy one is the following: pu t  o)(x, y) = ]yr (~) 
where r(x) is the distance from x to the origin and [2 is a smooth open bounded set 
(more genera~y one can s tudy the  same problem if r(x) is the  distance from x to  a 
line, a plan or a suitable set). For  the sake of simplicity suppose tha t  n = 3 and 
tha t  h(x)= 0. Under  this last assumption one has 

g(x, y) = ytyf ~(~) , Vx ~ tO, Vy e R .  

For  any  fixed x ¢ 0 one has l im co(x, y) ---- 0; however, if 0 e ~ ,  this p roper ty  
Y-->0 

is not  verified uniformly in respect  of x V= 0. However  one can verify tha t  (18) 
holds for any  s ~ [1, c~[. On the other  hand  the conditions (11) and (13) holds (~o) 
and the remaining assumptions of theorem I are tr ivially verified (by assumption fl 
is differentiable at  the origin). Consequently the theorems 1 and 2 apply. In  par- 

(9) Which is proved as before. 
(1o) Apply by instance the corollary 7.3 of [3]; remark that 

O<--y~logy<l/er if y~[0,1]  and r > 0 .  
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t i tu lar  the bifurcation points 2 for the p r o b l e m - ~ u ÷ u l u l , ( ~ ) = - ~ u  in [2, 
--~u/3nefl(u) in F, ~re the eigenvalues ~ for the linear problem --z lu = - - ~ u  
in /2, --  3u/~n = fl'u [resp. u = 0] in F,  if f i '< ÷ co [resp. f l ' =  ÷ c~]. 

Appendix. 

For  the sake of convenience we verify in this appendix tha t  the problem (23)(~), 
i.e. the problem 

(50) 

- - A u ÷ u ÷ h ( x )  u = l  in ~ ,  

Ou ÷ 
~n fl'u = 0 in 1", 

with /eL~(Y2), fl'>O, h(x)>~O and h(x) verifying (19) has a unique solution 
u e  W~'~(/2). Fur thermore (24) holds, i.e. llull2,2<el[]H. 

First ,  by  using the vuri~tional method, we see easily tha t  (50) has a unique weak 
solution u ~ WI'~(/2), which verifies 

(51) II ~ II1,~ < cIl/ll, 

since the bilinear form 

a(~,v)=fVu.Wa~+ f(l + h(x))u~a~+ ~'fuv41 ~ 
D Q 1" 

is continuous and coercitive on W~'~(f2)x W]'~(/2). 
Assume tha t  n > 4  (if n < 4 the procedure is identical), put  q~-~ 2 * - - 2 n / ( n - - 2 )  

and define p~ an4 q~ by 

1 1 1 1 1 2 
(52) - 4 , - ( i > 1 ) .  

p~ m q~ q~+l p~ n 

Since ]/p~+l----- l i p s - - ( ( 2 I n ) -  (i/m)) the sequence p~ is increasing. I f  Pt < 2 de- 
fine io by  1/p~.+t<½<l/p~o: t~emark tha t  q~+l= (P~)* if 1 < i < i  o. 

Since ueL~'(n)  and heLm(~) one has hueL~"(/2) with Hhult~<clIulI~<elltII 
by (51). On the other han4 if hue  L~'(/2) with 1 < i < io it foUows tha t  hu e L~'÷1(/2) 
with tlhutl~,+Ke(tlhull~,+ II/ll). For, it ~onows nom (50), by regularisation, tha t  

~ w~,',(/2) ~ L~,+.(n) and lih~ll~,+, < ~ll~Ilo,+.< ~ll~li2,~, < ~( tih~lb, + lllll). 
Eenee, by induction, h ~ L % + ' ( n )  and II~ll~<~llh~ll,,.+,<~lltll. Wi th  a last 

reg,~arisation one obtains that ~ ~ W~.~(n) with I1~It~,~< ~ll/ll" 

(1~) The procedure is identical for the Diriehlct problem (22). 
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