Differentiability and Bifurcation Points
for a Class of Monotone Nonlinear Operators (¥).

H. BeIrAo DA VEIGA (Lisbon, Portugal) (**)

Sunto. — Sia P Poperatore definito nello spazio L*(Q2) ponendo u= Pf in (117). Si dimostra
che questo operatore ( differenziabile secondo Fréshet nell’ origine (vedi teorema 1) e si utilicza
questo risullale per caratterizzare ¢ pumii di biforcazione per il problema non lineare (25}
(vedi teorema 2).

Let £ be a smooth open bounded set in the n-dimensional euclidean space R"
and let I be the boundary of £.

We shall assume that the L7(2) spaces and the Sobolev spaces W57(Q), & posi-
tive integer, are familiar to the reader. We denote by |||, and ||, the usual norms
in these spaces and we put H=L*Q), || =[], If 1<p<N we denote by p*
the Sobolev’s embedding exponent p* = pn/(n—p). We shall also consider the
spaces LP(I") and the Sobolev space W*(I") with the usual norms ||, and | Iy, TE-
spectively.

We shall assume that the reader is familiarized with the basic results on maximal
monotone operators on Hilbert spaces.

Consider now a maximal monofone (m.m.) graph § on RxR such that 0efS(0)
and define an operator B: H —2¥ as follows:

B=—/4 with

@) D(B)= {ue Wa2({): — g—geﬁ(u} 4.6. on F} R

where D(B) denotes the set {ue H: B(u) §}.
On the other hand consider the convex, lower semicontinuous (l.s.c.) functional
@: H —» ]— oo, -+ o] defined by

3 f Vu|* do + f jwydl  if we W) and j(w) e LI,
(2) Dlu)=4{ * r

-+ oo otherwise,

(*) Entrata in Redazione 1’11 settembre 1975.
(**) Instituto de Fisica e Matemética (Lisbon); 2 Av. do Prof. Gama Pinto, Lisboa 4,
Portugal.
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where j: R->]— oo, + oo] is convex and ls.c., §= 8 and j(0)=0. It is well known
(cf. [8], theorem 12) that B is the subdifferential of @, i..,

(3) B= 29D,
and consequently B is m.m. on H. Furthermore (cf. [4], theorem I.10)
@ Julsa<el — dutull, VueD(B).
On the other hand consider two measurable funetions a{x) and b(x) defined on £

with range in [— oo, + oo] and verifying a{®) < 0 < b(x) a.e. on 2. Let g(z, y) be
a real function defined on

A= {(zy)e2xR: a(w)<y<blx)}
and suppose that for each y € R the function 2 — g(x, ¥) is measurable in his domain

{we Q: a(w) <y <b(x)}. Moreover we assume that g(x, y) verifies the following con-
ditions:

(8) g, 0)=10, a.e. in £,

(6) for almost all we {2 the function y — g(x,y), defined on Ja(z), b(x)[, is con-
tinnons and nondecreasing. If a(x)>—co then Ugm) g(x, y) == — ooj if
b(#) < 4 oo then ygb(mm) g(x, y) = + co.

Pufting g(z, y) = 0 if y ¢ Ja(a), b(x)[, the hypothesis (6} becomes equivalent to
the maximal monotony of the graph y —¢{(z, ¥) in RxR.
Put now, for any (#, ¥)c 2 xR,

v

(7) w(m,y)= fg(wm) dn it y ela(x),b(x)],
[ B

-+ oo otherwise,

and define ¥: H — {0, + oo} by

(8) Yiw) :fy)(m, u(@))de .
o

This functional is convex, Ls.c. and (see [3])
9) V=g

where § is the operator

(@, u(x)) a.e.in Q, if g(x, u(x)eH,

_ [
(10) glul(z) = 0 otherwise .
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Obviously 7 is m.n. (by (9)) and univalued on D(g)= {ucH: g(», u(z)) e H}.
We suppose that the following condition holds:

(11) for any fe H the equation
Bu+ glul+w={f

has a solution # .
Since B+ § is monotone on H the condition (11) is equivalent to
(117 B+g ismm. in H,

since & monotone operator A is m.m. if and only if B (I 4+ 4) = H. Putting u = Pf
we have then

(12) P=(I+B+g=(I+8P+P)7;

it is well known that such an operator P is a contraction on H.
Notice that (11) can be writlen more explicitly

(11" for any fe H the problem
—Au+u-+ gz, uz)=f ae in 2,

oY .
—g;;eﬂ(u) a.e. in I7,
has a solution ue W22(£2).

Finally we assume that

(13) The estimate |u,.<c¢|f]| holds for any f in a neighbourhood of the origin of H.

Remark that from (117) it follows trivially that
(14) “u“‘ u1“1,2< Hf“’"fln

where u = Pf and u, = Pf,.

Sufficient conditions on g{x, y) in order that (11) holds were proved in [3]. In [3]
we also give estimates on |ull,, which can be used to prove (13) (see [3] theorem 7.2
and corollary 7.3).

In this paper we seek conditions for Fréchet differentiability of the operator
P: H —H at the origin. When g doesn’t depend on x this problem was solved in [1]
by assuming only that the function g(y) is derivable for y = 0. The direct exten-
sion of this condition to the case when g depends also on # is to suppose that the
funetions y — g(x, y) are derivable at y = 0, uniformly in respect of almost all € £.
Under this lagt condition the results proved in [1] are easily extended to the case
under consideration. The aim of this paper is to study the differentiability of P
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at the origin when y —g(»,y) is not uniformly differentiable at ¥y = 0 (see the-
orem 1). We apply then this result to the study of the bifurcation points for the
problem (25) by using the Krasnosel'skii’s theorem (see remark 4). The method
used in this paper can also be adapted to the study of the differentiability at the
infinity (see remark 5).

Suppose then that for almost all x €2 the function y — g{(w, ¥) is differentiable
at the point y = 0. Putting

og(2, ?/)] 3
19) [ oy Jy=o )
we have
(16) 9(@, y) = WD)y + (@, ¥)y ,

with lim o (2, y) = 0 for almost all velfd

If v(x) is a measurable function we put for commodity &[v](z) = w(x, v(z)).
Remark that v = v, implies that &lv]= ®[v,], with the usual convention v =y,
if v(x) = vy() a.e. in Q.

Put
s=mn/3 it n>4,
s>2nf(n+2) it n=4,
1n s=2n/n-+2) ifn=3,
s>1 ifn=2,
s=1 Hau=1.

Remark that 2n/(n 4 2) = (2*)’. On writting s > (2*)’ or s >1 we suppose, with-
out loss of generality, that s is close to the indicated values. We assume that the
remainder w(z, y) verifies the following condifion, which is weaker than uniform
differentiability of y —g(#,y) at y=0:

(18) for every ¢>0 there exists a 0.> 0 such that
veD(G) and o] ,<0d = |B@)],<e.

We can use « v(x) measurable and v(@) € la(x), b(x)[ a.e. in £2 » instead of « v & D(g) ».

ReEMARK 1. — Condition (18) says that there exigts in L™(£) a neighbourhood U
of the origin such that &: D(F) N U — L5(£2) is continuous at the origin. If we put
s = -- oo this condition is related to the uniform differentiability at the origin
of y—g(z,y) in respect of almost all xe Q.

It is obvious that A(z)>0 a.e. in 2. In the following we suppose that

(19) hz)yeLm(82) withm>n/2 f n>4 and m=2 if n<4.
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REMARK 2. — We have assumed (for clearty) that lim w(z, y) =0 a.e. in Q, or

equivalently, that [9g(x, ¥)/oyl,_, exists a.e. in 2; however this condition is un-
necessary. In fact it suffices that g{z, ¥) = b(@)y +w(®, y)y for almost all e 2,
with w(x, y) verifying (18). Remark that w(x, y) is well defined for y € Ja(z), b(2)[,
y#0 (we put by definition w(wz,0)=0). One has w(x,y)y —0 when y —0 but
not necessarily w(w, y) -0 when y —0.

One can prove that (5), (6) and (18) implies that h(x)>0. The proof follows from
the inequality w(z, y)> —h(z) i 052 yela(w), b(x)[, and from the existence of a
funetion »(x) >0, v(z) e D(F) (1).

On the other hand notice that if [dg(x, y)/0y],—, exists a.e. in £ then it must
coincide with h(z) a.e. in Q.

Let now f3 be the m.m. graph referred in (1). In the following we assume that
is differentiable at the origin in the following sense, introduced in [1]:

We say that § is differentiable at the origin with finite derivative g’ if

(20) for any &> 0 there exists J:> 0 such that

—pByl<elyl, Veeply),
for all y e D(BY N T— ey Ocf .

We say that 8 is differentiable at the origin with f'= 4 oo if

(21) for any &> 0 there exists d.> 0 such that

lyl<ele], Vzepy),
for all ye D(B) N 1—3&, 6 .

On the other hand we consider the linear operator A: H — H defined by

— AAf+ Af+ Wa)Af =f a.e in 2,

22) Af=0 a.e. in I,
if p'= 4 oo, or

— AAf+ Af -+ h(z)Af=f a.e. in £,
(23) —%‘%i{—ﬂ’Af:O ae. in I,
if p'<<+ co.

(\) We put w(®) = min {y: g(»,y) = 1} if this set is not empty and w(z) = ¢>0 other-
wise, and we define v{x) by v(») = min (w{), ¢).
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We have Afe W22(£2) and
(24) 14f{laz<elf] -

For the reader’s eonvenience we verify in the appendix the validity of this state-
ments under the condition (19).
Our aim is to prove the following result:

THEOREM 1. — Assume that the conditions (3), (6), (11"), (13) and (18) hold and put
w = Pf in (11"). If p'= + oo [resp. p'<< + ool the operator P is Fréchet differen-
tiable at the origin and DP(0) = A with A defined by (22) [resp. (23)].

This theorem can be used to caracterize completely the bifurcation points A for
the problem
— Au+ glw, w(x)) + u=0 a.e. in 2,
(25) ou

-——gne[)’(u) a.e. in I,

at it was done in [1] for the case in which ¢ is independent of #. It is immediate
that for 4> 0 the only solution of (25) is the null solution. Hence we may assume,
without loss of generality, that A<0. If 4, » is a solution of (25) with u+ 0 we say
that 1 is an eigenvalue. We say that 1, is a bifurcation point for (25) if for any
¢>0 there exists a solution 4, u with 0< [ul| <& and |2— A|<e.

The following result holds:

THEOREM 2. —~ Assume that the hypothesis of theorem 1 hold. Then if f'= + oo
the bifurcation points A for problem (25) are the eigenvalues A for the Dirichlet problem

— Au 4 h{xyu -+ Au =0 in £,
(26)
%=0 in I'.

If B'<< - oo then the bifurcation points A for problem (25) are the eigenvalues A for
the linear problem
—du+h@)u+ Au=0 in Q,

@7 Zi;»s—ﬁ’u:ﬁ in I,

This theorem, which is essentially a consequence of theorem 1 and of the
Krasnosel'skii theorem (ef. [8], § VI theorem 2.2, p. 332}, can be proved in the fol-
lowing way:

It is easy to see that the solutions A, w of (25) are transformed in the solutions of

(28) = MP@
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by means of the change of variables

29 p=1—2%, wv=pu.

REMARK 3. — The change of variables (29) was introduced in [6].

In particular g =1— A transforms the bifurcation points A for (25) onto the
bifurcation points u for (28). On the other hand g =1—/ fransforms the eigen-
values A for (26) [resp. (27)] onto the characteristic values (%) for

(30) v = udo

where A is the linear operator defined by (22) [resp. (23)]. Therefore to prove the-
orem 2 it is enough to prove that the bifurcation points u for (28) are the character-
istic values w for (30). But this follows from the Krasnosel'skii’s theorem since by
theorem 1 P is differentiable at the origin with DP(0) = 4.

We recall that the Krasnosel’skii’s theorem also requests the potentialness of P
and some supplementary conditions, which are verified for our operator P, as was
remarked in [6] for a formally analogous operator. Infact P is a potential operator
since in a real Hilbert space every operator of the form P = (I 86)~* with
6: H - Ry {+ oo}, 0 convex and l.s.c. (and 0 = -+ oco) is a potential operator as
proved by MorEAU in [9], proposition 7.d (3).

On the other hand P is completely continuous in H (*). If not, it follows from (14)
(notice that W2(Q)<>H is compact) that there exists a sequence f, —f such that
Pf, —u = Pf. But this is not possible since P is m.m. (cf. [5], (7)). Finally it is well
known that from the compactness of the gradient P it follows the weak continuity
of the potential § (see for instance [10], theorem 8.2) and from the uniform contin-
uity (in a ball) of P it follows the uniform diffferentiability (in the ball) of 6 (vee
for instance the proof of theorem 4.2 in [10]).

REMARK 4. — Just like it hag been done with Krasnosel'skii’s theorem we can
apply to problem (25) other known general results () which underly on the Fréchet
differentiability of P at the origin (proved in theorem 1). We leave this exercise
to the reader.

REMARK 5. — The basic ideas on which underly the study of the differentiability
for P and for analogous operators were introduced in [1] for the study of the dif-
ferentiability at the origin of P. Some of these ideas were later adapted in [7] for
the study of the differentiability at infinity.

(?) I.e. the values x for which (30} has a non-null solution.

{(®) There exists a potential 0, constructed in [9], such that P = V8 in H, in the Fré-
chet sense.

(%) I.e f,~~f in H= Pf,~Pf in H. This property is also called «strong continuity »
by some authors.

(°) As for example some results of Rabinowitz.
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The device introduced in the present paper, concerning the case when g also
depends on #, has a corresponding deviee for the study of the differentiability at
infinity. Once this is done one can apply, as in [7], some known general results
which underly on the differentiability of P at infinity.

REMARK 6. — By changing (16) in a suitable way the results extend immediately
to the case in which ¥ —g(», ) is a graph in RxR.

We prove now the theorem 1. First we recall two lemmas which are a particular
case of some results of [1]:

LeMMA 1. — Let o be a graph in R xR such that 0 € a(0) and o' = |+ oo. Assume
that ve WH(I'), we L¥(I'), v(z)€ D(x) and w(x)€ a(v(z)) a.e. in I. Then

(31) o]y <elwly 4 e0E~"oli3,  Ve>0,

with r>2 such that WH(I")— L'(I").

LeEMMA 2. — Let o be a graph in RxR such that 0ex(0) and o'= 0. Assume
that v, we WH(I'), v(z) e D(«) and w(z)ca(v(z)) a.e. in I. Then

(32) [wly <elvls + e0F " 2(|olf3 + lwl3 ), Ve>0,
with r>2 such that WH(I") = L'(I).
LEMMA 3. — Let 1<g<s8< + o0, q<t <+ oco. Assume that
(33) w(z) = v(2) o(z, v(z))
with v(z) € D(F) (}) and with w verifying the condition (18). Then
(34) lolle<elv]e-o + e (o7 + Jwli?), Ve>o.
PrOOF. — Put J, = 6 and define 2, by

Q,,={wel: |v(@)|>6}.
Then

(35) fwli= | pwftde+ [ s,

0~y 4,0

(6) If we assume (18) with «v(®) € la(x), b(x)[ a.e. in 2» instead of « v e D(G)» we do
the same modification in lemma 3.
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Moreover (cf. [1] (1.11) and (1.12)) we can prove that
(36) J lwjtdr < f [v]ede +- f w[qdm< — 6“‘ (Jo]i+ Jlwlf) .
4,0 2o,
On the other hand by using (33), Holder’s inequality and (18) it follows that (%)

(37) f |w|«dm<( f ooz, 0 ldm) “( f [v]““/(S—Q)dm)(s_q”s

204, 0-9,, 0140

<& v S0

since the function deflned by #(x) = v(x) if € 2 —0Q,,, B(w) = 0 if x € 2;, belongs
to D{F). From (35), (36) and (37) it follows (34).
From now on we fix § as indieated in (17) and ¢ as follows

(38)

g=2%=2n/n+2) ifan>2,
g=28 fn<2.

Finally we put ¢t =2 in (34) and we define p by
(39) p=34/(s—9)

Remark that p = (2%)* if n>4 and p = + oo if #<3. From the Sobolev’s em-
bedding theorems it follows that WY3(Q)e>L7(Q) and W>*Q)<>L%£Q). Conse-
gquently the following result holds from lemma 3:

CoROLLARY 1. — Assume that w verify the condition (18) and define w(z) by (33)
with v(z) e D(G). Then

(40) [l <elvl, + e (Jol3 + Jw]F)

where q <2, W'(Q) > L7(Q) and W*¥(Q) > L7(Q).

Proor or TorEoREM 1. — Suppose first that f'= 4 co. Putting Bf = Pf- Af
it follows from (22) and (11”) that

ARf— Rf —h(w)Rf = Pf&(Pf) a.e. in 2,
Rf = Pf a.e. in I',

(41)

(*) With obvious changes if s =¢ or s = + oo.
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Multiplying the first equation (41) by Rf, integrating in Q and applying Green’s
formulae on has

”Rf”%,2<—ff’fo?)(Pf)Rfdx .{_faa];fpfdp

Q

since {zx)>0 a.e. in Q and Rf = Pf in I
Thus (°)

42 IRfael Rl PO, + [ G Piar<elfl 126+ elfi 21,

since | Rf],<¢|Rf|,.<c|f| and |6Rf/on|;<c|f| by (13) and (24).
On the other hand applying corollary 1 with v = Pf and w = Pf&(Pf)} we get

(43) lw],<ee]o]se+ e8P (o] ¥+ w]y,)
since W>%(Q2) > I7(2). By using (13) and (24) it follows that ()
(44) [w] <[]
since w = ARf— Rf —h(z)Rf. From (43), (44) and (13) we get (%)
lwllg< e 4 82 7] @) 1] .
Therefore for any > 0 there exists 6,> 0 such that
(45) 17l <0, = ] <elf] .

On the other hand by using the lemma 1 with § instead of «, v=Pf and

w = — 0Pf/on one oblains as is [1] that for any &> 0 there exists 8. > 0 such that
(46) 7l < 0. = |Pfl.<ef] .

From (42), (48) and ({46) we get

\Pf—Afl.
4D P T R

and thus P is Fréchet differentiable at the origin with DP(0) = 4.

(%) For small values of ||f].
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Assume now that f'< 4 oco. Putting Bf = Pf— Af, and using (11’) and (23) it
follows that

|Rflfa< — f P a(Pf) Rido+ f (5 + + §'Bf) Ry,

sinee §'>0. Then, as for (42},

48) (R lta=elf [ 1PLaENL+ elf] |

+ 5| .
2
Finally (47) follows from (48), (45) (*) and from the following result: for any
¢>0 there exists 6. > 0 such that

(19) 1l <o = I el

4B RS }581#11 .

We prove this result exactly as is [1] by using the lemma 2 with a(y) = f(y)— 5y,
v = Pf and w = — 0Rf/on — ' Rf. Remark that «'= 0 and that — oRf/on — ' Rfe
ef(Pf)—pF' Pf a.e. in I

Remark by the way that P is also differentiable (at the origin) as an operator
from L) into W'2(L), as follows from (47); this result can Dbe generalized
further (cf. [2]).

AN ExaMprLE. — The more usual example of functions converging to zero when
¥ — 0, not unifoimly in respeet of a parameter, is the family f.(%) = |y}, 1>0.
From this family we can construct examples to which the theorem 1 (and con-
sequently the theorem 2) applies. A very easy one is the following: put w(z, y) = |y|™@
where 7(x) is the distance from @ to the origin and £ is a smooth open bounded set
(more generally one can study the same problem if () is the distance from z to a
line, a plan or a suitable set). For the sake of simplicity suppose that » = 3 and
that h(x) = 0. Under this last assumption one has

gz, y) =yly™®, Vrze®, ¥yeR.

For any fixed x5 0 one has ;1_{1([‘1 w(z, y) = 0; however, if 0 e, this property
is not verified uniformly in respect of #+% 0. However one can verify that (18)
holds for any se[1, co[. On the other hand the conditions (11) and (13) holds (**)
and the remaining assumptions of theorem 1 are trivially verified (by assumption §
is differentiable at the origin). Consequently the theorems 1 and 2 apply. In par-

(%) Which is proved as before.
(*%) Apply by instanece the corollary 7.3 of [3]; remark that

0<—y"logy < 1/er it y€[0,1] and > 0.
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ticular the bifurcation points 1 for the problem — Au -4 ulu[™—=—lu in £,
— oufonef(u) in I', are the eigenvalues A for the linear problem — Ay =—lu
in O, —oufon = f'u [resp. w= 0] in I, if f'<< 4 oo [resp. f'= -+ oo].

Appendix.

For the sake of convenience we verify in this appendix that the problem (23) (1),
i.e. the problem

—Au+u-+h(x)u=Ff in 2,

(50) ou | ,
—%—{—ﬂu—o in I",

with feLQ), >0, h(r)>0 and hk(x) verifying (19) has a unique solution
we W22(Q2). Furthermore (24) holds, ie. |u].,<e|f].

 First, by using the variational method, we see easily that (50) has a unique weak
solution %€ W22(£2), which verifies

(51) l#la<eli]

since the bilinear form

a(u, v) :fVu-Vvdw +f(1+ h(z))uv do + /)”fm;dl’
2 Q r

is continuous and coercitive on Wl2(£) x W2(Q).
Assume that n>4 (if » <4 the procedure is identical), put ¢, = 2* = 2n/(n —2)
and define p, and ¢, by

1 1 1 1 1 2
52 P _ = ——— i>1).
(52) D m—I—Qi’Qi—(—l P n ( )

Since 1/p.y, = 1/p,—{(2/n)— (1/m)) the sequence p, is increasing. If p, <2 de-
fine 4, by 1/p; ,,<3<<1/p,: Remark that g, , = (p;)" if 1<i<i,.

Since u e L*(Q) and he L™(Q) one has hue L™(Q) with [huf, <clu],<e|f|
by (51). On the other hand if Au ¢ I*(Q) with 1<i<4, it follows that hu e LF*(£)
with [hull,,. <e(|hu], + |f|). For, it follows from (50), by regularisation, that
we WooHQ) < () and. [n],,, < o], < c|ulyy <o [huly+ |f]):

Hence, by induction, hu e I’+*(Q) and ||hul|2<0||huﬂmnﬂ<o|| fl. With a last
regularisation one obtains that we W22(Q) with |ull,,<c]f].

(**) The procedure is identical for the Dirichlet problem (22).



H. BeIRA0 pA VEIGA: Differentiability and bifurcation poinis, eie. 333

Y

(2]
(31
[4]
(5]
(6]
[7]
(8]

[9]

(10]

REFERENCES

H. Bririo pA VEiaa, Differentiability jor Green’s operators of wvariational inequalities
and applications to the calculus of bifurcation points, J. Funct. Analysis (to appear);
preprint « Instituto de Fisica e Mateméatica » (November 1974).

H. BEIrA0 DA VEIGA, A remark on the differeniiability for Green’s operators of variational
inequalities, Atti Accad. Naz. Lincei, 58 (Aprile 1975), pp. 479-481.

H. Bririo pa VEiga, Existence of strong solutions for a class of nonlinear partial dif-
ferential equations satisfying nonlinear boundary conditions, Ann. Seuola Norm. Sup.
Pisa (to appear).

H. Bruzis, Problémes unilateraux, J. Math. Pures Appl., 51 (1972), pp. 1-168.

H. Brezis, Monotonicity methods in Hilbert spaces and some applications to nonlinear
partial differential equations, Contributions to nonlinear functional analysis, E. H. Za-
rantonello ed., Academic Press (1971), pp. 101-156.

J. P. Dias, Variational inequalities and eigenvalue problems for nonlinear maximal mo-
notone operators in a Hilbert space, Amer. J. Math., 97 (1975), pp. 905-914.

J. P. Dias - J. HErNANDEZ, Bifurcation & l'infini et alternative de Fredholm por certains
problémes unilotéraus, J. Math. Pures Appl. (to appear).

M. A. KrasNoseL'skir, Topological methods in the theorie of nonlinear integral equations,
Pergamon Press (1963) (english edition).

J. J. MorEau, Proximilé et dualité dans un espace hilbertien, Bull. Soc. Math. France,
93 (1965), pp. 273-299.

M. M. VAINBERG, Variational methods for the study of nonlinear operators, Holden-Day,
Ine. (1964) (english edition).

22 ~ Annali di Matematica



