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l ines 

Summary. - For the simple group H0 of the 1,451,520 automo~Thisms of  the 28 bitangents 
to a plane quartic curve, and for its subgroup C~ of 51840 automorphisms of the 27 
lines on the cubic surface, each related to an exceptionai Lie algebra (E~ and Es), are 
determined all the classes and irreducible characters, some irreducible representations, 
certain basic invariants  of  G, and the large subgroups of H o . 

1. Introduction. 
Following the work of SEGRE [32], GOXETER [10], TODD [34] and many 

others, this paper is concerned with the study of the classes and represen- 
tations of two famous finite groups, related to the exceptional LIE groups E 6 
and ET, and each of geometric interest  in its own right. One is the group G 
of automorphisms of the 27 lines on the general  cubic surface, and the other 
is the group H o of automorphisms of the 28 bitangents to a plane quartic 
curve. As groups generated by reflections Sk whose products are of order 2 
or 3, COXETE~ denotes the l inear reflection groups associated with the adjoin~ 
group-s of the exceptional simple LIE algebras E~ and E 7 [8] by the symbols 
[3.2,~,i] and [33,~,t], and denotes their simple invariant  rotation subgroups of 
index 2 by [3~, -0,~]' and [3", ~, l], respectively. We shall also denote these four 
groups by the letters G, H ,  Go and He. 

The group G is the group of the 51840 automorphisms of the 27 lines 
on a general  cubic surface, described in part  in the books of HENDERSON [23] 
and SEGI~E [32]. Its six dimensional irreducible orthogonal representat ion 
which we call F~ (calling Fi the identity representation) has been studied 
by COXETER as the group of symmetries of the s ix-dimensional  polytope 2~,  
and by CARMAN [8], WEYL [36], VAN DER W.A.ERDEN [35], RACAI~ [28] and 
others in their  studies of the exceptional LIE algebra E, .  Its invariant  
subgroup of index 2 is the simple group G O of order 25920. Hence the group G 
is not to be confused with another  abstractly different group G' of order 
51840 = (3'--1)33(3 ~ -  1)3 studied by JORDAN [22], KLEIN [25], WIT~IN~ [37], 
3fASOHKE [27], BURKI~ARDT [6] and others in connection with the trisection 
of the periods of the hyperell iptic modular  functions, since the latter group G' 
has G o not as a subgroup but as a quotient  group However, BURKHARDT' S 
f ive-dimensional  representat ion of G O does induce a ten-dimensional  irredu- 
cible representat ion (F~) of our group G. 
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Closely related to the group G, and containing it as a subgroup of 
index 56, is the seven-dimensional  reflection group [33,~, ~] associated with 
the exceptional  LIE algebra E 7. This group H. is the direct product of a 
group of order 2 (containing the identity and inversion in the origin) and a 
simple group //0 - -  [33' ~' ~]' of order  4 X 9 ! - -  1,451,520, which is isomorphic 
with the group of automorphisms of the 28 bitangents to the general  quart ic 
curve. The geometrical  relation between these 28 bitangents and the 27 lines 
of the general  cubic surface has been described by G]~ISER [20], SE(~RE [31], 
and others. 

In  § 2 we describe a class of 6 >46 orthogonal matrices that represent  
in a simple way  the 36 hyperplane  reflections of which six generate  the 
irreclucible representat ion F~ of the group G. In  § 3 we describe the 25 
conjugate classes of G, giving to each a cycle symbol 1~2~3"<4~..., in which :¢ 
is the trace and % ~, y, ~ are integers. (The symbol 1 2 3 -~ 6 indicates that 
the six characteris t ic  roots of a matr ix  in this class include a complete set 
of six 6th roots of uni ty from which the cube roots have been removed, and 
in addition the two square roots, 1, - - i ,  and a first root 1). The classes of 
the various powers of an element are evident from this notation. We also 
prove that if Tk and Uh denote elements of order two that are respectively 
the products of two or three reflections S~ in mutual ly  perpendicular  hyper- 
planes, then each element of G0 has the form U~Ua and each element of the 
odd coset G(~S has the form U jTk. Hence  the elements of G may be wri t ten 
as products of at most six reflections. In  § 4 a set of six basic invariants 
of degrees 2, 5, 6, 8, 9, 12 in the variables of 14. 2 are derived, whose Jaeobian 
is factored into its 36 hyperplaue factors In  § 5 some other irreducible 
representat ions of G are studied, and the complete table of irreducible cha- 
racters  is formed. Final ly in § 6 the 30 classes of conjugates for the grot;p 
H0 ~ [3~'~'~] ' are obtained, and all the 30 ordinary irredncibile characters  
are found for this simple group of order 1,451,520. Several modular  characters  
are also found, including the one for its representat ion as the simple Abelian 
l inear  group A(6, 2) [l~j. All large subgroups of //0 (of index < 160) arc 
found by a synthesis of permutat ion characters,  

2. The 36 hypcrplane reflections in 6-space. 
The 27 lines on the genera l  cubic surface are so related that each 

intersects 10 other  lines and is skew to the remaining 16. An intersecting 
pair determines a third coplanar line, and the three lines form a tr iangle in 
one of the 27 X i 0 / 3 ! - -  45 t r i tangent  planes. Each of the 27 X 16/2 ~--- 216 
pairs of skew lines determines  one of the 36 double sixes. A double six 
consists of six pairs of skew lines forming two sextuplets, such that each 
line is skew to all the other five lines in the one sextuplet, but intersects 
each of their  five partners  that belong to the other sextuplet.  Paired lines 
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are in opposite sextuplets and are interchanged by the involutory transfor- 
mation Sa associated with the double six Dk. The fifteen lines residual to 
the double six Dk are left invariant by Sk. 

To describe these incidence relations succinctly we may use the 63 
nonvanishing ordered triples that can be formed from the four marks 0, 1, 
w, w*" "(rood 2) of the finite field GF(2~). The 27 triples that contain just  
one 0 correspond to the lines of the cubic surface and may be called L-tri- 
ples [17]. The other 36 triples having two or no O's correspond to the double 
sixes, and may be called D-triples. Three L-tr iples  represent coplanar lines 
if and only if their sum is 0. Two L-tr iples  represent skew lines if and 
only if their difference is a D-triple, and this D-triple represents both the 
double six in which these lines are paired and the involutory transforma- 
tion Sk that interchanges these lines. Two of the Sh are permutable if and 
only if the sum (or difference) of their D-triples is a n L - t r i p l e .  (The line of 
this L-tr iple intersects each of the four common lines of the two double 
sixes). Each Sk is permutable with 15 others but not with the remaining 20. 
l~on-permutable Sa's fall into one of 36 X 20/3!---120 sets of three associa- 
ted Sk's that are related to each other as the three reflections in the altitudes 
of an equilateral triangle. Each two of a set of three associated Sh's have a 
product of order 3, and the three corresponding D-triples have sum zero 
modulo 2. 

By introducing certain sign changes we may change from L-tr iples  
involving the mark w of the finite field to L-tr iples  involving the complex 
cube root of unity ¢o. The L-tr iples  and their differences the D-triples are 
then complex number  triples whose real and imaginary parts are components 
of vectors in a real Euclidean 6-space. In fact, the L-tr iples determine the 
27 vertices of the polytope 2~i , discovered in 1897 by T. GossE~ [21], whose 
relation to the 27 lines of the cubic surface was described in 1910 by 
P. ScEOUT~, [29]. Each D-triple determines homogeneous coordinates for a 
symmetry hyperplane of 2~, reflection in which is the corresponding trans- 
formation Sh. 

COXE~ER [13] has shown that the 27 lines of the general cubic surface 
may be represented by the complex L-tr iples  

(2.1) (0, ¢o~, -- ~o~)(~ ~o~, 0, ~o~)(~o ~, - -  ¢o~, 0) ; k, I~ ---- i, 2, 3 ; ~o ~ e'~/3. 

Here again, t h r ee  L-tr iples  whose sum is zero represent coplanar lines. 
Differences of L-tr iples that correspond to skew lines determine the 36 
distinct D- tr iples:  

(2.2) (~o~, ¢o~, ¢o~)((o~+~--~o ~-', 0, 0)(0, ¢o~+~--~o ~,-', 0)(0, 0, ¢o~+~--o)e-~), x, ),, ~ - -  1, 2, 3. 

Each of these 36 D-triples must be identified with its negative. For three 
D-triples of an associated set we have D~ -d- D t-q- Dh - -  O~ where an appro- 
priate choice of signs must be made to obtain equality. 
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Taking real and imaginary parts of the L-tr iples (2.1) as coordinates 
in a 6-space whose general point is 

(2.3) (x~, y , ,  x2, y~, x3, y~) 

we obtain the following coordinates for the 27 vertices of the polytope 2~t: 

(0, 0, c~, s~, --o~, -s~) 
(2.4) Vertices of 22i: ( - - ~ ,  - - s ~ ,  O, 0, cx, s~) ),, } t ~ i ,  2, 3; 

(c~, s~, --o~, - - s~ ,  0, 0) 
where 
(2.5) c). - -  cos 2~:~/3, s~ - -  sin 2~:~/3, ¢o~. : c~ ~- isx. 

Pairs of non-adjacent  vertices of this 2~ determine diagonals of length 6 ~;~ 
and represent intersecting lines of the cubic surface. Pairs of adjacent vertices 
determine edges of length 3~/~ and represent a pair of skew lines of the cubic 
surface. The difference of a pair  of adjacent L-vectors (2.4) is a vector normal 
to one of the 36 hyperplanes of symmetry of 22~. To obtain the unit column 
vectors Da associated with the reflections Sk, we normalize each such diffe- 
rence by the factor 3-~/~. We denote the corresponding row vectors by D'a 
or more explicitly by D' ' ----- ~L~, D~oo, D'ozo, D'oo~, (x,),, ~ 1. 2, 3) where 

D' -----3-~/~(c~ s~, c~, s). v~, sl~), ~, ),, ~ 1, 2, 3 

D'~oo--= (--s~, c~, 0, 0, 0, 0) 
(2.6) 

D'o~o ~ (0, 0, - - s~ ,  c~, 0, 0) 
D' - -  (0, 0, 0, 0, ~). 

Vectors D~ and Dj having exactly one common subscript in the three-sub- 
script notation of {2.6} represent permutable transformations S~, S~, and their 
scalar product is D~'Dj~--O. Vectors D~ and Dj having two or no common 
subscripts in the three subscript notation of (2.6) represent non-permutable  
transformations S~, S~, and their scalar product is D~'Dj-~-+-1/2. Thus they 
make angles of 60 ° or 120 ° with each other, and are parallel to two sides 
of an equilateral triangle. They determine a third vector Da, 

(2.7) Da -~ ~- (D~ --  (2D,'D~)D~), 

which is a unit  vector parallel to the third side of the equilateral triangle. 
The three vectors D~, D~, Da are said to ~orm an associated set. In the three 
subscript notation of (2.6), we may find the subscript triple for Da by repla- 
cing 0, 1, 2, 3 in the subscript triples for D~ and D~ by the marks O, w~ w ~, 
w ~ ( - - t ) ,  then adding these triples rood 2. and converting back. 

From the D-vectors we obtain an explicit representation for the 6 X 6 
matrices that generate the real 0rthogonal representation /~ of our group. 
Although it was derived independently, this representation is closely related 
to Cox]~E~' s representation by anti-collineations [13]. 
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T H E O R E M  I .  - If the 36 unit row vectors of (3.6) are denoted by Da' and 
the corresponding column vectors by Dh, then the 36 real symmetric ortho- 
gonal matrices 
(3.8) Sh - -  I - -  2DkDk' 

form a complete set of 36 conjugate matrices, of which six suffice to generate 
the 6-dimensional irreducible linear group F~ of order 51840. 

PnooF:  If X is any column vector perpendicular  to Dh, then 

S k X  - -  ( I - -  2DkDk')Z - -  X - -  2Dk(Dk'X) = X ,  

SkD~, - -  ( I -  2DaD~,')Dn, = Dh - -  2Dh(1) -= - -  Dh. 

Since the matrix Sa reverses the sign of Dh, and leaves invariant all vectors 
perpendicular  to Da, it represents a reflection in the hyperplane through the 
origin perpendicular  to Da. 

Using the triple subscript notation of (2.6), consider the six matrices 
S~oo, So~o, Soot, S~oo, So~o, Ss~ defined by (3.8). A pair of permutable S-ma- 
trices are recognized by having just  one of their three subscripts in common. 
Each of a pair of non-permutable  S-matrices transforms the other into the 
same third S-matrix,  the new subscripts being obtained in the manner  
described above in (2.7) for the corresponding D-vectors in an associated set. 
Thus Sioo, So~o, Soot, and their products transform $333 into each of the 
matrices S~.~ with ×, ),, t~- -2  or 3, and by transforming these by $300, S03o 
and Sac o Se3o $3~, and by their products in turn, we may cha'nge one or all 
of the subscripts 2 in S ~  to 1' s. Finally each S~0o, S0z0, or S00~ belongs to 
an associated set with two S ~ ' s  having two non-zero subscripts in common, 
and can be obtained by transforming one by the other. Thus each of the 
S-matrices is conjugate to $338, and is expressible in terms of six generating 
S-matrices. Since the elements of a complete set of conjugates generate an 
invariant subga'oup of G, this must include the simple subgroup G2~9~o. But 
since the individual S-matrices are not included in this even subgroup, the 
subgroup generated by the S~ must be the entire group G of order 51840. 

Certain products of the matrices Sh play an important role in the study 
of the group G. Products of two, three, or four mutually permutable S factors 
will be denoted by Tk, Uk and Irk respectively. Thus if D~'D~ == O, etc., 

(2.9a) T~j = S,S~ -= I - -  2D,D; - -  2DjDf,  

(2.95) Vqk --  S,S~Sh - -  I - -  2D,Df  - -  2DiD / - -  2DhDh', 

(2.9c) IZ~j~ _= S,S~SaSz --= I ~ 2D,D; - -  2D~Dj - -  2DhDh' - -  2D~D~'. 

In  particular we define U s to be the following diagonal matrix of trace 0: 

(2.10a) U, - -  S~0o So~o Soo~ - -  diag / 1, - -  1, 1, ~ 1, 1, ~ 1 }. 

If the four vectors Di,  D~, D~, Dr, are mutually perpendicular  D-vectors 
of (2,6), they span a four-space perpendicular  to the plane of an equilateral 
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tr iangle formed by three vertices of 2~t, whose centroid is at the origin. 
Since there are 45 such triangles, there are 45 matrices V~, represent ing 
reflections in a four space. However, each V~ can be represented in 3 distinct 
ways as a product  of four factors Sk. Thus for example we may define the 
par t icular  matr ix  V0 in three ways as 

Given one such factorization of a V matrix,  the eight S factors in the other 
two factorizations are those not commutat ive with any of the factors of the 
first factorization. These eight fall uniquely into two sets of four mutual ly  
permutable  factors forming the second and third fact.~rization of V. 

To prove this statement,  let us define V0 by its first faetorization in (2.10b). 
Then we see that the second and third factorizations may be wri t ten as 
S~2 ~ Vo S.2~ 2 and S ~  Vo S~4~ respectively. On the other hand, it is easily 
verified that the product V o = $8ooSo.~oSoo8S~33 t ransforms each of ~he twelve 
S factors of t2.10b) into itself, so in par t icular  Vo is commutat ive with S ~  
and S ~ .  Hence the three products in (2.10b) are equal. 

It  is easily shown that if S~, Sj ,  and Sh are mutual ly  non-permutable  
members  of an associated set, then S~S~ is representable  in the three ways :  

t2.11) S,Sj  -= S jSh ~-- S~S,,  if (D/Dj)(D/Dk)(D~,'D,) =t= O, 

Next consider an element of order 3 that can be represented as a product U~U 1 
in which each of the three S-factors  of U~ is non-permutable  with jus t  one 
of the S-factors  of U~, and conversely. Each such UiUj is an element of 
order 3 that has 108 dist.inct factorizations as a product of two such U factors. 
Clearly, from any given factorization U~U~ , 27 arise (including this one) by 
applying (2.1]) to each of the three pairs of non-permutable  factors. But it 
is not quite trivial to obtain the four  apparent ly  unrelated factorizations of 
which the following is an example :  

To establish {2.12) however,  it is only necessary to show that the left member  
transforms S~,~ S~.~.~ into one of the equal products given by (2.11), whereas 
this product t ransforms the factors of tl~e left member  of (2.12) into those of 
the three other forms according as ~ is 1, 2, or 3. 

LEPTA 1. - Any mat r ix  which  is a product  of factors S~ can be reduced 
to a product containing two less factors, under  the following circumstances:  

1. If  it contains a repeated factor. 
2. If  it contains three factors from the same associated set. 
3. If  it contains four mutual ly  permutable  factors and a fifth that is 

permutable  with none of them. 
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PROOF: To prove (1) we note that S~ShS~ is a single S matr ix  and that 

S,(S,S.~ ... S,)S, = (S,S~S,)(S,S~S~) ... (S,S:~S,). 

Thus the n - ~  2 factors on the left are replaced by n factors on the right. 
To prove (2), let Si,  Sj ,  Sk be members  of an associated set. Then we can 
replace Sj by the equal S~SjSa, insert ing two factor% and then eliminate 
two pairs of repeated factors S~ S~ and Sk Sh by (1). 

To prove (3), we let the product of the four mutual ly  pe;mntable  factors 
S, SjShS~ be V, and note that the fifth factor S ,  will appear in an al ternate 
factorization V - - S , S ~ S Q S ~ .  By introducing the identi~y as the product of 
these eight factors, we can then cancel five repeated pairs by (1), reducing 
the total number  of factors by two. 

D]~F]=~ITION. - A completely reduced product of S factors is defined to be 
one in which no fur ther  reductions are possible by Lemma 1, and in which 
any two non-permutable  S factors are ei ther adjacent or separated by a 
single S factor. Each pair  of non-permutable  factors shall be called a li~k. 

T~EORE~ 2. - The trace of a completely reduced product of n S-factors 
with 1 links is given by the formula 

n 

(2.13) tr tI S~ = 6 - -  2n ~- l. 

Pnoo:e: We expand the produc~ in (2.13) by Theorem 1 as follows: 

(2.14) 1I ( I - - 2 D , D ( ) :  I -  2 Z D,D,' t- 4 ~ D,(D{Dj)D~'--8 ~ D,(D(Dj)(Dj'Dh)Da'-+-.. 
i=1 i i < j  i < j < ~  

Taking traces we obtain 

(2.15) tr ~1 S, = 6 - 2n -t- E (2D,'Dy - -  ~ (2D,'D~)(2D~'D~)(2Da'D,} -~- .... 

The first  summation in (2.15) reduces to the number  of links, since 2D(Dj=-~- t  
whenever  S~ and Sj are non-permutable ,  and 2D(Dj = 0 otherwise. The sums 
involving /hree products vanish, since we assumed that no ~hree of lhe S~ 
belong to an associated set. Final ly  the sums involving four  or more preducts 
vanish since we assumed that S~ and S~ are permutable,  and hence D{D~=0.  
whenever  S~ and S~ are separated by two or more factors Sj and S~. Thus 
(2.13) is established, and the foundation is laid for a study of the classes of 
conjugate elemenls in G. 

3. The classes of  covjugate elemev.ts of  G. 
Since the even subgroup [3~, ~,~]'= Go, of order 25920, is known to have 

ten rational characters  and five pairs of complex characters  [16], it follows 
that G will l:ave ten pairs of associat(d characters  belonging to the irreducible 
representat ions F~, /~:*, F~, / ~ . . . F i o  , /rio , and fi~e self associated characters  

Annal i  di Matemat~ca 12 
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belonging to the i rreducible represeutat ives F ~ ,  . . .F,~. These characters  are 
a l ready known for elements of the even subgroup, and they will be determined 
for elements of the odd coset in § 5. 

We also deduce that G will have 10- t -5  • even >~ classes of conjugates 
C~, C2,... C,5 consisting of elements that are products of an even number  of 
S factors, and 10 << o d d ,  classes of conjugates C~ ... C~. The order of assigning 
subscripts to the class symbols Q is arbitrary,  but we shall assign C~ to 
the identi ty cla~s, C.~... C 5 and C~ ... C~0 to those classes of elements whose 
orders are powers of 2, Q ... C~ and C~ ... C.~ 4 to those classes whose elements 
have an order divisible by 3, and C~5 and C~5 respectively to the classes of 
elements of orders 5 and 10. 

Eighteen of the twenty-f ive  classes may be described as r - cha ins  or 
products of disjoint r -chains .  By an r - cha in  we shall mean a product  of r - -  1 
S factors in which adjacent  factors are  l inked (i. e. non-permutable)  and 
non-ad jacen t  factors are permutable.  Such an element is i l lustrated by the 
product  of r - -  1 transpositions (12){23)... ( r - -  1 r) in the symmetric group. 
By Theorem 2 its trace in the representat ion /P~ is the following: 

{3.1) Trace  of r - cha in  ~- 6 - -  r. 

Six classes of conjugates Ci, C,6, C~, C~s , C~0 and C~3 have elements formed 
of r -cha ins  for r ~  1, 2, 3, 4, 5, 6, respectively, and we shall denote such a 
class by the symbol 16-"r, which is analogous to the symbol for a permutat ion 
on 6 symbols, with trace 6 - - r ,  that permutes r symbols in a single cycle. 

Two or more r -cha ins  are called disjoi~t if each S-fac tor  in one is 
permutable  with every S-fac tor  in the other. Twelve additional classes of G 
have elements representable as ploducts  of disjoint chains. The order of such 
an element is the least common mult iple of the orders of the permutable 
factors, and the trace (a) of its matr ix  in F~ is equal to 6 minus the sum of 
the orders of its r -chains .  For  example, a product of a 2-chain (single S 
factor) and two 3-chains,  all three mutual ly  disjoint, will have order 6 and 
trace 6 - - 2 - : - 3 - - 3  ~ ~ 2, and we shall de~ote it by 1- :2  3 ~. 

In general  we shall characterize the classes of G by symbols of the form 

(8.2} 1~2~3r4 ~ ... ---~ II k~ ,  (V k~h : ~), 
k : l  

where o: : ~ ,  ~ = %, ~' ~ %, ... etc. are integers. Such a symbol in which :¢i 
are non-negat ive  integers is commonly used to characterize the class or 
classes in a permutat ion group consisting of permutat ions leaving :¢, s~mbols 
fixed (trace ~- a,), and containing ~k cycles of k letters. The ruth power of 
such a permutat ion is obtained by simply replacing each factor k~. by (k/d)S~,, 
where d ~ (k, ~n), and combining exponents. The trace s~, of the ~nth power 

is given by the formula:  

(3.3) s , ~ = E k ~ a ,  or s,~---a, s~--- -~+2~,  s s : ~ - 1 - 3 %  s 4 : ~ d - 2 ~ - + 4 ~ ,  etc. 
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To find a symbol of the type (3.2) for a class of matrices, we may first  
compute s,,, directly, and then solve equation (3.3) for the o: k . The solution 
is facil i tated by expanding the Euler  function ~(/¢), and replacing the integers 
-4-m in this expansion by the corresponding -~-sin. Thus for example:  

(3.4a) (P(12)-  1 2 ( 1 - - ~ ) ( 1 - - ~ ) - - 1 2 - - 6 - - 4 - ~ - 2 ,  

(3.4b) 13ai5 = s~ - -  s s -- s~ --  s~. 

The numbers ~ so obtained will not in general be non-negative.  But if 
the sk are rational integers (as they are for the group G) and if the group 
element is conjugate to all these of its powers whose exponents are relatively 
prime to its order, then it follows that  s ~ - l ~  ~ s ~  (mod p~), and hence that 
the ~ are integers [18]. 

The eighteen classes obtained as products of one or more disjoint r -chains  
are those in whose symbols all exponents except possibly ~ (the trace) are 
non-negative.  We find the numbers of elements gx in these 18 classes C). by 
building up the products from left to right (taking the chains in decreasing 
order of their length), mult iplying together the numbers of ways each new 
factor can be obtained, and dividing by the number of distinct ways of 
representing a given ~oroup element as an ordered product of S-factors having 
a given pattern of links. For  the classes 1-524, 1-°'354, and 1-'236 a non-t r ivia l  
factor 3 enters the denominator  because of the three-fold representation of V 
in (2.10b), and for the class 1-333 a non-tr ivial  factor 4 in the denominator 
arises from the identi ty (3.12). Any r -cha in  for r 2> 2 can be rewrit ten by 
t ransforming the first S-factor  by the product of the remaining r -  2 factors 
and placing this transformed S- fac tor  at the end, so for r ~ 2 each r -cha in  
introduces a factor r in the denominator of g~ in (3.5). Also since :¢, equal 
r -cha ins  can be permuted among themselves in :¢,. ! ways, the factor a,. ! must  
be divided out when r ~ 1. The expressions for g~ are as follows: 

(3.5) Class ~Number of elements = g;( 

1~: gi = 1  ----- 1 

183: gG -----36"20/3 = 240 

15:g~5 = 36.20-9.4/5 = 5 1 8 4  

1~25 " g~ = 36'15/2 ! = 270 

123" gsl ~ 36' 20.6/3 = 1440 

3~: g9 =36"20"6"2/322~ = 480 

24 : g~ = 36.20.9 .2 /4  = 3240 

1-~35 : g~ = 36"30.9.4/5 = 5 1 8 4  

1-526 : g~o = 36.20.9.4.1/6(3) = 1440 

Class  Number of elements 

1 4 2 : g i 6 = 3 6  

134:gl8 - -  36.20.9/4 

6 : g53 = 36 .20 .9 .4 .1 /6  
3 

1-~2, 

1-~2~3 

1-~23~ 

: gl7 = 36.15 6/3 ! 

: g3 = 35.15.6 .1/4  !(3) 

: g8 = 36 .20 .6 .3 /3 .2  ! 

: g~2 - -  36"20"6"3"3/3 ~3 ! 

- -  36 

= 1 6 2 0  

= 4 3 ~ 0  

- -  540 

= 45 

----3160 

= 1 4 4 0  

1-333 : g,, ---- 36.20.6.2.3.2/383!(4)= 80 

1-2254 : g~9 = 36 .20 .9 .2 .1 /4 .2  !(3) - -  540 
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The remaining seven classes have elements that are no~ expressible as 
produc~s of S-factors  with simple chain structure.  The numb. ers of elements 
of five of the classics not listed above are found in the published character  
table of t h e  group G.,~9~ . I16], together with the traces of their  powers. 
These are elements o[ orders 4, 6, 6, 9 and 12 respectively, with traces 2, 
1, 1, 0, - - 1  respectively in the s ix-dimensional  representat ion F~. The first 
two classes contain products of four  S-factors  with 4 and 3 links respectively, 
whereas the next  three contain products of six S-factors  with 7, 6, and 5 
links respectively. Jus t  5/24 of the elements of the group are left for the 
two remaining classes of the odd eoset, whereas  only i/12 of the order of 
the group is left as a total for the sum of the squares of the traces in 
these classes. Hence  these classes contain 1/8 and 1/12 of the group elements 
r~:spectlvely, and they include elements of order 8 and 12 respectively, 
each permutable  only ~'ith its own powers. Each is the product of five 
S-factors,  wi th  four or five links respectively, so the traces are 0 and 1. 
From a s tudy  of the traces of powers we determine the symbols for these 
seven remaining classes as fol lows:  

(3.5b) 1"22- ~4~ : g4 - -  540 

12-~3-i6~ : gl~ = 720 

3- t9  : g~4 - -  5760 

24-i8 : g2o - -  6480. 

123-16 : g7 = 1440 (four S-factors) 

1-~234-~6-~(12) : g~3 -" 4320 (six S-factors) 

12-~3-~46 : g~4--4320 (five S-factors) 

It is interest ing to note that the required link s tructure for every class 
is obtained by mult iplying the fixed diagonal matr ix  U 0 o[ (2.t0a) by  the 
matrices Uj of Ci7 to obtain all even classes, or by the matrices Tj of C.a 
to obtain all odd classes. We shall prove the following theorem:  

TREORE~ 3. - Every element of the simple subgroup G2592o is a product 
U,b~ of jus t  two involutory elements Ui, U~ from the class C~ of G~8,o, 
and every element of the odd coset is a product U~Tj where T~ lies in the 
class C2. The elements Tj and Ui are defined to be products of two or three 
mutual ly  permutable  reflections Sk, respectively. Hence each element of O 
is a product of at most six factors Sh. 

PnooF:  We examine all the 540 products UoUj and the 270 products UoTh, 
where  Uo is defined by (2.10a), and classify them according to the relationship 
of the factors of Uj or Tk to each of the three factors S~oo, S030, and S00 ~ 
of U0. To each S-fac tor  of Uj or T, we assign the value 2 if it is equal to 
one of the three factors of Uo, or the value l - - 2  if it is l inked (non-per.  
mutable) with 1 of the three factors. To save print ing space we denote - - t  
and - - 2  by 1 and 2, respectively. Fur thermore ,  we indicate by 0 ~ or i -~ a 
pair  of S-factors  both related in the same way to each of the factors of Uo, 
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but by 00 and 11 a pair not both linked with the same factors of U0. Thus 
each product UoU~ is classified by three of the symbols 2, 1, 0, 1, 2, and 
each product ~ T a  by two of them. Furthermore, by Theorem 2, the trace 
of UoUj or UoT~ is the sum of the numbers in its symbol. 

Arranged in descending order, possible traces for the even and odd 
classes are : 

(3.6) 
Trace (UoUj): 6, 3, 2, 2, 1, 1, 1, 0, 0, 0, - -1 ,  - -1 ,  --2~ - -2 ,  

Trace (boT~): 4, 2, 1, 1, 0, 0, 0, - -  1, - -  2, - -  2. 

- - 3  

Upon investigation it turns out tha~ elements from different classes of 
conjugates never have the same symbol, and that all classes are represented. 
This fact proves Theorem 3. However, in nine cases two different symbols 
represent elements of the same class. To illustrate this, consider the product 
U0 S ~  S ~  S~33 which is represented by the symbol 111-, and the product 
U0 S ~  S~ 3 S ~  which is represented by the symbol 10:. Both have trace i. 
Their squares 

U, S~oo S0o~ 8o.  = S . ,  820o and U° S,,~ $2,, S,,,  = 8~33 8~,~ 

are represented by the symbols 221-and 111 respectively, and therefore have 
trace 3. Yet there is only one cla~ss of elements having trace 3, namely C6, 
and only one class of elements of trace 1 whose squares have trace 3, 
namely the class C~ of elements of order 6. 

In Table I, we list for each class first its cycle symbol of type (3.2), 
which automatically gives the o rde r  of the element and its trace ~ in the 
six-dimensional representation, next its linkage symbol (or symbols) of the 
type just described, that enables one to write down elements UIUj o1" U~T~, 
in the class~ next a particular e lement  UoUj or UoTj in the class, then the 
number of elements g~, the order nx--~51840/gz of the normalizer of an 
element of Cz, and finally the traces of the elements in various permutation 
representations to be discussed later. 
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TABLE I. 

Class s t ruc tu re  of  the  group [3 ~,~, ~]. 

Five Selected 
Cycle Link Representative permutation 

Class symbol symbols element g;~ n). characters of ~. 

C t 1 ~ 

C~ F2 ~ 

C~ 1-~2 ~ 

C, 1~2-~4 .- 110 UoS~,S~,IS.,.23 540 

C, 24 21~,202 UoS3ooS~,~S~ ~ 3240 

C~ 133 111,22i- UoS~ooSo3oSoo , 240 

C 7 123- 6 11],10.- UoS,~,S,.,3S~,, ~ 1440 

C~ I-'2~3 1i.- UoS,,,S,338,o o 2160 

C o 3"- 211 UoSsooSo,oSo¢, 480 

C,o 1-.-26 01-.-,0()-2 UoS,.~S3~,S.~3 ~ 1440 

C .  i -~3 ~ I l l  ~Y~S,o,So~oSoo, 80 

C,.- 12-.-3-~6 ~ 100 UoS,,,S,.-3S:~.~, 720 

C,~ 1-i234-16-:( i2t  001,111 UoS,,,S,~..~S~.~ 4320 

C,~ 3-~9 101 UoS~,S.-,sS~.~ ~ 5760 

C~ 15 20I- UoS:~ooS~,So~ o 5184 

C,~ 1~2 22 S =  U~So~So~ 

C,~ 2 ~ 22,0 ~ U - -  UoS~,,S~.-~ 540 

C,s P4  20,11 UoSmS,~.  " 1620 
,¢,  

C,~ 1-~2~4 1~,02 UoS3,~S~ ~ 540 

C~o 24- '8  11- U o S m S ~  a 6480 

C.-~ 123 21 UoS~ooSo~o 1440 

C~ 1-~23 ~ 1-1 ~)~S',~S~, ~ 1440 

C~a 6 O0 U , S ~ S , , ~  4320 

6½~ t2-~3-~46 10 U o S m S ~  ~ 4320 

5i84 

222 1 = U.S.~ooSo~oSoo ~ 1 51840 36 72 27 40 45 

222,20 * T=UoS~ooS~iS~.::  270 192 8 t2  7 0 5 

0 ~ - 2  V=UoS3,,S3.-~S33 ~ 45 1152 12 0 3 8 13 

96 0 0 3 4 1 

t6 2 2 1 0 I 

216 6 12 9 4 6 

36 0 0 3 2 4 

24 2 0 t 0 2 

108 3 6 0 4 3 

36 3 0 0 2 1 

648 0 0 0 13 9 

72 0 0 0 5 1 

t2 0 0 0 1 1 

9 0 0 0 1 0 

10 1 2 2 0 0 

36 1440 16 30 15 0 15 

96 4 2 3 8 7  

32 2 4 5 0 3 

96 6 0  1 0 3  

8 0 0 1 2 1 

36 4 6 3 0 0  

36 1 0 0 0 3  

12 1 2 0 2 1 

12 0 0 1 0 0 

10 1 0 0 0 0 
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4. Basic invariants of  the 6-dimensional orthogonal representation of G. 
It  is clear that the 6-dimensional  orthogonal group F .  has the quadratic 

invariant  
.~ 2 A = + + + + + 

G I~ACA~ [2~] has indicated that a set of six independent  basic invariants 
of degrees 2, 5, 6, 8, 9, and 12 exist such that every rational invariant  of 
the group is rationally expressible in terms of these. He also notes that 
since the product Of these degrees is equal to the order of the group, these 
invariants  form a complete set. His method of finding invariants is to form 
the power sums 

(4.2) c~,, = Z (~2~. -- ¢?~)~ + (~ .  - -  ¢?~t,.)" + (~:'. - -  ¢7%~)" 
),, i~:1 

where 

(4.3) %m = x, cos 2r~m/3 .+ y~ sin 2urn/3, i, m = 1, 2, 3. 

In  general  6p,~ represents the sum of the nth powers of the projections 
~?~)~--¢?j~ of a vector of general position upon the lines joining the origin to 
the 27 vertices (2.4) of the polytope 2.~. Certain of the 6p~, namely 6p~ and (I)~ 
are found to vanish identically. (I) t is proportional to ~2, (I)7 to ~2(I) 5 and 
similarly all ¢,~ except those for n =  2, 5, 6, 8, 9, 12 are found to be poly- 
nomial functions of those of lower degree. These six give a complete set of 
basic invariants, but the last three of them are quite complicated functions 
of x~, y~, involving some large coefficients. 

We propose to obtain expressions for a different, complete set of basic 
invariants  of the degrees indicated, by introducing a new set of coordinates 
p~, q~ defined by the equations 

l X 3  (4.4) p~ - -  x} + y:, q' : 3 ' - -  x~y, , 

and then operating on the invariant  A --p~ -I-P2 + P ~  by applying successively 
the differential  operators 0 and A,, where 

(4.5a) (-)=~:=~Z [3q,(pj - - P k ) -  2p,(qj--qk)] ~ - I -  2 P ~ { P ~ - - P h } -  3q~(q~-- qh) ~q~ 

(ijk)--~ (123), t231) or (312). 

(4.5b) h :fi__14~p,~--p~-t- 1 2 q , ~  + p~ ~ .  

The operator 0 raises by 3 the degree in x~, y~, of a form to which it 
is applied, and the LAPLACE operator A lowers the degree by 2. We shall 
prove the following theorem:  
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T~EORE~ 4. - A set of six basic invariants of degrees 2, 5, 8, 6, 9, 19 
for the orthogonal group F~ are 

(4.6) A - - p i  q -p2  + p3 , OA, O~A, AO~A, OAO~A, O'~5O~A. 

where ihe operators 0 and A are defined by (4.5). The Jacobian of these six 
invariants,  expressed as a funct ion of degree 36 in wi, Y~, factors into the 
36 l inear factors fi,~ and fh,,,~ : 

(4.7) f ~  ~ - -  x, sin 2~ra/3 -e y~ cos 2urn~3, i, m - -  1, 2, 3, 

fa,,,, --= ~,a -+- T~,,~ ÷ ~3~, k, m, n - -  1, 2, 3, 

that vanish respectively on the 36 symmetry  hyperplanes corresponding to 
the hyperplane reflections Sh of (2.7). 

FI~OOF : It  is clear from (4.2) that the functions ~,, are functions of ¢~,, 
complete ly  symmetrized with respect  to the second subscript m. Since for 
f ixed i the e lementary  symmetr ic  functions of ¢p~,,~ are 

(4.8) ?~ ÷ ?i~ + ?~3 -~ 0, ~? i3  ÷ ~q~i~ q- ? ~  ---- - -  3p~/4, ? ~ ? ~ 8  - -  3q~/4, 

i t  follows that all rational invariants  are rational functions of the six varia- 
bles 10~ q~, of (4.4). Cyclic permutat ions  of the subscripts i in ~i,~ leave the 
functions (I),~ unchanged~ whereas  odd permutat ions change the sign of those 
whose degree in x~, y~, is odd, but leave unchanged those of even degree. 
This symmetry  is introduced by using determinants  of odd degree in q and 
permanents  of e~en degree in q. For example we write 

(4.9i B ----- I q P 1 I --= qi(P2 - P ~) ÷ q~(P~ - -  P~) -t- q3(P~ - -  P~)" 

(4.10) 1 qP~ q P  I + ~  q,P~(q~.P~ q- q~P~) ÷ q~P~(q~P~ q- q,P~) -~ q~P~(q~ "~- q°P~)" 

The first of these is a de terminant  of degree 5 in x, y which we shall prove 
to be the basic invariant  B - - O A / 5 .  The second is a permanent  of degree 12, 
which resembles a determinant  except for the fact lhat all six terms in its 
expansion are added without changes of sign. This par t icular  permanent  is 
not invar iant  under  the group. 

Every  invariant  of even degree is a l inear  combination of permanents  
similar to (4A0) and every invariant  of odd degree is a l inear  combination 
of de terminants  similar to (4.9). A necessary and sufficient condition that 
such forms in p~, q~, be invariant  under  the group is that lhey be invariant  
unde~r lhe single substitution S ~ ,  whose explicit form is 

(4.11) 5 ~  : x~' --~ x~ - -  2s, y(  ~-- y~, where s - -  (x~ ÷ x~ -~- x~)/3. 

This is t rue because the variables p~ and ql are individually invariant  
under  each of the nine reflections S~oo ~ S~0~ S o ~  ~ - - 1 ,  2, 3~ and we know 
by Theorem 1 that these reflections together  with Ss~ generate the group. 
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Since pi and q~ are of degrees 2 and 3 in ~ ,  y~, respectively, the only 
determinant  of degree 3 is I q 11 ], which vanishes, and the only non-vanishing 
one of degree 5 is [ q p l  I .  This must therefore be an invariant.  We may 

verify directly the invariance under  (4.11) of A tP 11 ]+ and B--~-]qp 1 I, 

as follows : 

(4.12) A' 1 p, i+ = ~ 1  11 - - - = A - - 2 s [ x l l l  + + 2 s  ~1 1111 + - - A - 1 2 s  ~ + 1 2 8  ~ = A .  

(4.12b) B '=  Iq' p' l -=lqP ll--  2s[~q/~xP ll+lq ~p/~x lH+2s~[l~q~ /~x?pll+2l$q/~x?p/~x 11] 

-1- vanishing terms, 

B - -  2s[I x ~ - -  9~ 2~c~11 -t- ] q 2x 1 I] + 2s~[12x' a~ + Y~ 1 I +  I( 2x~ --  2Y ~) 2x 1]] 

: B - -  2s[I q/x 2x, ~ 1 I -t- I q 2x 1 I - -  3s I q/x 2x l l ]  - -  B .  

Under  the orthogonal l inear group F 2 the partial derivatives of an inva. 
r iant  B with respect  to the original variables x~, y~, transform in the same 
manner  as the coordinates themselves, and the scalar product of the gradients 
of two invariants B and C is a new invariant.  Expressed in terms of the 
va r i ab l e s /h ,  q~, we have 

~B ~C ~B ~C 
V ' B . V C = ~ .  - - - - + - - - -  

~=~ ~x~ ~x~ ~y~ ~y~ 

- -  

1 V B . V C =  OC (4.13) 

where 0 is differential  operator defined in (4.5a). Thus the operator 0 
converts an invariant  of degree n into a new one of degree n-~-3. Start ing 
with A of degree 2, we find 0A = 5B (of degree 5). Then H---= 0B  is a new 
invariant  of degree 8, and OH is an invariant  of degree 11. 

Using the L~tPL cE operator 5, which assumes the form (4.5b) in the 
variables p~, ff~, we get nothing new from A or B, since hA ~---12, 5 B ~ O .  
However, AH is an invariant  of degree 6 that involves q explicitly, and is 
therefore not proportional to A ~. Cancelling a numerical  factor 16, we set 
C=: AH/16. Then we find that the invariants 0C and A~B of degree 9 are 
independent,  and we take the simplest combination of these as J__ {OC-- 3A~B)/9. 
Final ly setting K--2@J/3 .  we obtain the following six l inearly independent  
invariants of degree 12: A 6, A3C, ASH, AB  ~, C 2. K. 

A~nal~ di M~tamat*ea 
13 
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Expressions for some of the 
determinants  are as fel lows: 

(4.14) 

2) A 

5) B - -  OA/5 

6) C = 51t/16 

s) n = O B  

inv~riants in terms of permanents  and 

- - ~ [ p 1 1 ] + .  4) A. ~__~21[p . .11[++[pp l [+ .  

-': ]q / f l  !. 7) A B - - ~ l q p p l i +  lqp~t I. 

= l p~p 1 [+ 1 1 ]+ ]+. - - 2 [ p p p ] + - t - - ~ l q ' q l  ~ 5 ] q q l  

1 ~ + 1 
- -  ~ [P P II - -  ~ [P~PP[+'+2[q~P ll+--6]q qp 1]+÷41q qpl +. 

9) J = (OC--  3A~B)/9 - -  l qpp~l t "+" 21q lg P~ l -t- 41q q~l I" 

12) K - -  20J/3=.g tp p" li --[I~ P :P] -~-~ lP'PPI +4[q p p  [ +2~q~p 1 i -6]q  p :Pl 

- -  lO[qp~q191{+-+ 4 {qp~q.p [ + + 1 2 { q p q p p {  + - 10} q~v q/9~{ + + 4]qqp:~] + 
- 8 {q~q  I 1+ + 16 1 q~q~l {+ - -  8 { q:q q I +. 

Expressions for the power sum invariants ~n in ten'ms of A, B, C, H~ J, K, 
in addition to (I)~ ~ • 3 - -  0, are  

(4.15) 
O~--4 ------ A (I) s - 4 . 3  ~ 

~ , + 4 . 3  = A s 

O~-(53)4.3 ~ B  

(I)6-4.3 ~ --_A~+2C 

O~-  3 4.3"--. AB 

- -  3A 4 + 16A C + 20H 

(I)9-(~)4.3 ~ - - A ~ B + J / 2  

4),0+4.3' ---- A 5 + 10A~C+ 3 0 A H +  70B "~ 

/11\ 4 ~J--13 )" "3~-- 9A3B + l l A J  + 4BC 

q) ÷ 4 . 3  ~ _---3A6-+90K-~ 8C2-~ 48A~C÷250A~H-+ 1120ABL 

The par t icular  invariants mentioned in Theorem 4 are also expressible 
in terms of A, B, C, H, J, K :  

(4.16) A, OA = 5B, 0~A = 5//, A02A --~ 80C, 0A0~A = 7 2 0 J +  48A~0A 

O~AE)~A = 1080K+ 72A~O2A + 144(0A) ~. 

To complete the proof of Theorem 4 we must show that the Jacobian 
of the six functions A, B, C, H, J, K,  with respect to the variables x~, yi, 
is not identically zero, and find its l inear factors. A partial  factorization is 
afforded by the relations : 

~¢(A B C H J K) ~{A B C H J K) "$(p,q,) ~{19~q~) ~!2:,q3) 
(4.17) ~(x~,y~x y~x.~y3) - -  ~(p,q,P~q~P:~q~) ~(x~ y~) ~(w~y~) ~(x~y3) 

(41s) - I = 2 y , ( -  + y:)  = ; 
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whore f~,. are defined by (4.7). Now we argue that since the nine functions f~,, 
are l inear factors of the 3acobian, and since the Jaeobian is invariant  under  
all the transformations of the group, it follows that all the 36 l inear functions 
equivalent to f~,n under  the group must be factors of this Jacobian. Hence 
the first factor on the right of (4.17) is a constant mult iple of the product 
of the 27 l inear functions f~,,~,. To find this constant mult iple and show that 
it is not zero, we take a simple point (w, y) such as (1, 0, 0, 0, 0, 0) at which 
the product of f~, , ,  has the non vanishing value 2 -~s, and compare it with 
the J-acobian of the six invariants  with respect  to the variables pi ,  q,, at 
the point p~ - -  1, q, = 1/'3, P.2 = q2 ~--P:~ ~ q~ " -  0. 

The only terms from H, J, and K that have non vanishing partial  deri. 
6 [ q q p l [ +  from H, 4 ] q q ~ l l  from J, vatives at this point axe 2 l q~-pl I + -  

a n d  - -  8 [q3ql [+ from K. 
Thus for p~ ~ ps --- q~ -~. q,~ --- 0 we obtain 

3 ( A B C H J K )  ~ c ( A B H C J K }  
(4.18} ~(P ,q,P.2q,_P~q~) ~ ~(P ,P~Psq,q~q~) = 

i l  0 0 

Since qi = 1/3, 

1 q~ 2q~ 

1 - -  q, 2q~ 

0 0 0 

0 --p, --6q,p~ 

0 0 0 

p: o o 

o o 

2q~ 0 0 

- l o q ,  -4q  .- 

-  oq, 4q - 

= 

the exact factorization of the Jacobian (4.17) is 

3 8 
(4.20) ~(A B C H J K) _ (16/'3)~ ( II f~,,)( II h,,~). 

~(~y ,x.2y2%y~) -- i, m=l k, m, n ~ l  

We shall find that some knowledge of the invariants of the represen- 
tation 2' 2 is helpful in reducing its KnO~ECKE_R powers and finding precisely 
what  variables undergo the different  irreducible representat ions of G. 

5. The irreducible characters  and representat ions of  [3 ~, :,~]. 
The following techniques which we denote by I, P, S, O, M, may be 

combined to compute the irreducible characters  of a group G over the com- 
plex number  f ield.  (I) the analysis of characters  i~duced by representations 
of a subgroup;  (P) the analysis of KRO~EC~:ER products of two known 
charac ters ;  (S) the analysis of the KROI~ECKEn ~ t h  power of a known 
character  by first using Schur 's  method of decomposing the ruth power 
into components, one for each partition of m, that are irreducible for the full 
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l inear group, and then fur ther  decomposing these (~ partit ion characters  >> for 
the subgroup G; (0) the orthogon~lity relations among irreducible group 
characters  X~, (expressed by the fact that X~ n~ ~/'~ is a uni tary  matrix}; and 
(M) the theory of modular characters  of the indecomposable and irreducible 
representat ions of G over a finite field whose characterist ic  p divides the order 
of G. This modular  theory is extensively developed in papers of R. BRAVER [4, 5]. 

]~'~n~EOD I :  For  the group G ~ 0  we apply fir-t  the method I, using 
characters  induced by the representat ions of the simple subgroup Go of order  
25920 whose characters  have been published [16]. From the ten real characters  
of Go we obtain ten induced characters  of G, each of which splits into an 
associated pair  X ~ + X ~* (i = 1, ... 0), such that X~ ~ X~* for even classes C~. 
and X~ - "  --  X~* for odd classes. Arbitrari ly we designate by X ~ those characters  
having positive value in the class C ~  ( =  1~2), and by X ~* those with negative 
values in this class. The five remaining characters  of G, XCii>,...~ ~(~) are 
self associated, and are obtained for even classes by adding pairs of conjugate 
complex characters  of the subgroup G o . These self associated characters  have 
value 0 for odd classes. In  order to see at a glance the degrees of characters  
that are involved in the various equations it will also be helpful  to denote 
a character  by its degree (value for identity class) followed by a subscript, 
as follows.  

(5.1) lp1,~6~6,15~)15~20~20~30~30,64v64,~81p81,15q15,~24~24~60~60,~20~90 flO fiO flO~. 

Those with subscripts s are self associated, whereas those with subscripts p 
(or q) are positive for Cj6 and those with n (or m) are negative for C~. The 
characters  15, and 15++ have the value - - 1  in class C~ whereas 15q and 15m 
are -+-3 in that class. In  table I I  each character  X ~ is shown as a column 
~ector. 

All characters  are known for the even subgroup, and the self-associated 
characters  vanish in the other classes. So it remains to compute the characters  
15~, 20~, 30~, 64p, 81~,, 15q, 24p, 60~, for the odd classes. Five of these can 
be computed by analyzing the characters  induced by the 1-character  of 
certain large subgroups of G. We decompose as follows the five transitive 
permutat ion characters  given in Table I, using orthogonality relations to find 
irreducible components whose characters  are already known. 

(5.2) X (~7) - -  lp + 6p + 20~ X ('5) - -  1~ + 20p + 24p 

X ~:~) = X ~)  + 6~ + 30~. 

For  a given class Cx, X(~ "~) is the number  of vertices of 2_~ (or lines of 
the cubic surface) left fixed, X [~) is the number  of elements of C~ (or tri. 
tangent  planes of the cubic surface) left invariant,  X~ ~ the number of ele- 
ments  of C~ (or of double-sixes) left fixed, E(Z ~ the number  of sextuples 
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(half of a double-six) left fixed, and ~ $ 0 '  the number of subgroups of order 3 
from class C,, that are left fixed, by nn element in the given class of conju- 
gates. We note that each equation in (5.2) involves only one new chara,cter, 
since the character 6, has already been found. 

XETHOD S :  The << partition n characters which SGHUR [go] has shown to 
be the irreducible co~nponents of the ICxzo~~cx~xz 9%-th power of the full 
linear group, mill be denoted by using the correspouding partition as a 
superscript. For the class whose cycle symbol is 1"2@3r4C.. as describe8 in (3.2) 
and (3.3) and whose oharacter is = a, these characters have the following 
values : 

Applying these formulas to the known character x = 6,, we obtain decom- 
postiions as follows : 

From these decompositions the characters 15,, 20,, ZO,, 64,, 30,, 15,, 90,, 
81,, and 15, can be computed in succession without using the results of 
the other methods. This serves as a check on method I and gives the new 
characters 64, and 81,. By using the value of 24,, obtained from the per- 
mutation character f"', we see that 60, can also be computed. This finishes 
the list of characters of [3',29 '1 given i n  Table 11. We check the complete 
character table by the orthogonality reIations which sta.te that the matrix 
x;rt;l~~ is a unitary matrix. Certain KRONECEER products may also be used 
as checks. For example we have: 
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~IET~OD M:  The modular  theory could have been used 4irectly to obtain 
such characters  as 81~, 81.,  64p, 6~t~ and others. Since we shall use this 
theory later  for the m u c h  larger  group [3 "~, ~, ~]', we  i l lustrate the modular  
theory here  by two examples- 

For  the prime p - -  3, there are thir teen p -s ingu la r  classes of G contai~ing 
elements whose orders are divisible by p, and twelve p - regu la r  classes con- 
taining elements whose orders a re  prime to 3 but 5ivide 5184()/3~ ~ 2~5. For 
only one regular  class Cz is the order n~ of |he normalizer of an element 
divisible by 3', so the theory of BRAUEa [4] shows that there is but one block 
of characters  of type 0 (rood 3). This block contains the 1-character  and all 
characters  with degrees not divisible by 3, bes;des several others. Wi th in  this 
block all the class multipliers g~X~/X~ vanish (rood 3) except for class C,. 
Actually all but two characters  belong in this block, since the only characters  
for which this congruence does not hold (mod 3) are the two characters  81~ 
and 81~, each of which forms a block of highest type. Characters of highest  
type must  vanish for M1 p - s ingu la r  classes. In  the p - r e g u l a r  classes, however~ 
these characters  of degree 81 must  in this case be odd for elements whose 
orders are a power of 2;  and they have the value I in the class 1.5, and 

1 in the class 1-~2.5. In  each p - r e g u l a r  class therefore the character  may 
be wri t ten 3~7,x~ where 3ez is the highest  power of 3 dividing the order n). 
of the normalizer of an e lement ;  and is xz an odd integer. We do this for 
the odd coset, and use known values for the even subgroup. The three 
orthogonality relations involving the sum of squares of the characters  and 
the scalar product with 1~ and 6v now determine the characters  Slv and 81~. 
We have, for the twelve 3- regular  classes:  

nz: 3'(640), 32(128), 3(64), 3(32), 16, 10; 32(160), 3t32), (32), 3(32), (8), (10). 

(56iE(X~)~ 3' 3 ~ 3 3 1 1 3 ~  3x~-4-x~+3x~ ~d_~c~_~_~_l, 

(5.7) E X~. t 1 1 1 1 1 x~ x~ ÷ x~ + x 4 x~ x~ _ 
)~ n~ 640 -+ 128 64 32 16 ~ 32 ~8- -t- ~ - - 0 ,  

4x~ 2x~ - -  2x4 x~ _ O. 
(Scalar product with 6 p -  6~): 1-6-(~d- 32 10 (5.s) 

Equation (5.6) is satisfied only if the positive integers x} are all 1, and from 
{5.7} and (5.8} we readily conclude that 

(5.9) x, ~- - -  x~ = - -  ~3 = x4 = x~ = - -  x~ - -  ------ 1. 

The character  values for 81p in the 3- regular  classes of the odd coset must 
be 9~ --3~ - - 1 ,  3, 1, - - 1  and in the 3-s ingular  classes they are 0, whereas 

81~- - - - -  81~ in odd classes. 



J. S. FRA~E : The c~asses and represen,~tions o] the group~ of 27 lines, etc. 103 

As a second example  of the modula r  theory, we consider the pr ime 5, 
for which there are 23 regular  classes, of which  two have nermalizers  of an 
order n)~ divisible by 5 (the highest  power  of p dividing the group order). 
There  must  be two blocks of type 0 (and defect 1), and each block contains 5 
ordinary characters  with  degrees a l ternate ly  congruent  to 1 and - - 1  (rood 5). 
Wi th in  each block the sum of the three characters  of degrees ~- 1 (rood 5) is 
equal to the sum of the other two characters,  except  for the two 5-s ingular  
classes. Thus  we obtain the identi t ies  

(5.10) 1, - -  24~ + 81,~ - -  64~ -I- 6~ ---- 0 (Except  in the two 
1,~ - -  24~ -t- 81~ - -  64~ + 6~ ~- 0 \classes 1.5 and 1-~2.5. 

Characters  in the first  block have equal  values in the two classes 1.5 and 
1- '25,  whereas  those in the second block have values of opposite sign in 
the two classes. 

Sums  of consecut ive characters  in ei ther  row of (5.10) are indecolnposable 
characters  (rood 5). The remain ing  ordinary charecters  whose degrees are 
divisible by 5 are both indecomposable  and i rreducible  (meal 5). I t  is clear 
that  64v is connected with 6p and with 81~ in the indecomposable characters  
(mod 9) because the products  

(5.11) 6~15, --- 20~ -1- 6~ -t- 64r 
6~30~ ~ 20~ + 64~ + 81~ + 15q 

must  be sums of indecomposable  characters  (rood 5)~ since 15~ and 30~ are 
each indecomposable  (rood 5). 

The rules for combining characters,  and the knowledge of the invariants  
shed some tight on the i r reducible  representa t ions  themselves.  Thus  the Sc~VR 
decomposi t ions of the KRON]~CKER ruth power [30] describe not only the 
characters  but the homogeneous  funct ions of the variables x~...x6 in our 
basic s ix-d imens ional  representat ion 6p that  undergo these representat ions.  
To split these fur ther  for this par t icular  finite group G we must  make  use 
of the basic invariants  of the group. Thus  the representa t ion 15~ is a repre- 
senta t ion induced on the t:)LUECKER coordinates  of l ines in 6-space,  or on 
such expressions as x~,I/~cxj--xj~I/~cx~, where I is any invar iant  funct ion 
of x~ ... x 6. The 56 homogeneous  symmetr ic  products  of degree 3 be longing  
to 6[ '~]p can be resol~'ed into a set of six such as x~Ejwj ~ that  undergo the 
representa t ion  6~, a se~ of 20 combinat ions  of second part ial  derivatives of 
the fifth degree invar iant  B of (4.9) that  undergo 20~, and a residual  set 
of 30 quant i t ies  belonging to 30p. 
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Class  gz 

1 ~ Even classes 1 

1~22 270 

1-~2 ' 45 

122-~4 ~ 540 

24 3240 

133 240 

123-16 1440 

1-t2~3 2160 

3 "~ 480 

1-~:~6 1440 

1-33 ~ 80 

12-~3-~6 ~ 720 

1-'234-~6-'(12) 4320 

3 - ' 9  5760 

15 5184 

TABLE lI .  

Character  table o f  the  group [3 ~, ~, ~] o f  order  51840. 

l p  

1 

1 - -2  - -1  

1 2 3 

1 0 - - 1  

1 3 3 

1 1 - - 1  

1 - -1  - -1  

1 0 

1 - -2  

1 - - 3  

1 1 

1 - - 1  

1 0 

1 1 

6p 15~ 20~ 30~ 64p 8t~ 15q 24~ 60~ 

4 2 - -1  4 2 0 - - 3  3 0 

4 - 1 0  

0 - - 2  

0 0 

5 3 

1 - - 1  0 

1 - - 1  0 

0 - -1  3 - -2  

2 t - - 1  0 

6 2 3 - 8  

2 - -2  - -1  0 

0 0 1 0 

0 - - 1  0 1 

0 0 0--i 

0 9 7 8 - - 4  

0 - -3  - -1  0 0 

0 - - 1  1 0 0 

4 0 0 0 - 3  

0 - -2  2 - -1  

0 0 0 1 

0 3 3 - - 3  

0 1 - -1  - -1  

0 - - 3  6 6 

0 t 2 2 

0 - - 1  0 0 

0 0 0 0 

1 0 - - 1  0 

~k 

20~ 90~ 80~ 60~ 10~151840 
I 

- - 4  - -6  0 4 2 192 

4 - -6  - 1 6  12 - -6  1152 

4 2 0 4 2 96 

0 2 0 0 - -2  16 

2 0 - - 4 - - 6  - -2  216 

- -2  0 2 0 0 36 

2 0 0 - - 2  2 24 

2 0 2 0 4 108 

- -2  0 2 0 0 36 

- -7  9 --10 - -3  1 648 

1 -- 3 2 - -3  ~ 3  72 

1 - -1  0 1 - -1  12 

- -1  0 --1 0 1 9 

0 0 0 0 0 10 

1'2 Odd classes 36 

23 540 

1~4 1620 

1-~2~4 540 

24-  ~8 6480 

123 1440 

1 - '23 "~ 1440 

6 4320 

12- t3-146 4320 

1- t25 5184 

+ 1  4 5 

+ 1  0 - 3  

+ 1  2 1 

q-1 - -2  i 

+ 1  0 - -1  

+ 1  1 - -1  

+ 1  - -2  

+ 1  0 

+ 1  1 

+ 1  --i 

10 10 

2 - - 2  

2 0 

2 - - 4  

0 0 0 

1 1 - - 2  

2 1 1 - - 2  

0 - - 1  1 0 

1 N !  - -1  0 

0 0 0 

16 9 5 

0 - - 3  1 

0 --1 - -1  

0 3 3 

_ 

4 10 

4 2 

0 - - 2  

0 - - 2  

1 - - 1  0 0 

0 2 - 2  1 

0 - - t  1 1 

0 1 1 - - 1  

0 0 0 1 

1 0 - - 1  0 

Self  assoc ia ted  charac-  
t e r s  v a n i s h  for  odd 
classes.  Ten  e the r  cha- 
r ac te r s  a re  ob t a ined  
f rom the  f i r s t  t en  b y  
m u l t i p l y i n g  these  cha- 
r ac te r s  b y  - - 1  in  odd 

classes.  

1440 

96 

3 2  

96 

8 

36 

36 

12 

10 
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6. Characters of the group of automorphisms of  the 28 bitangents to a 
plane quartie curve of  genus three. 

The group of automorphisms of the 28 bitangents to a plane quartic 
cur~'e is a simple group Ho of order 28 X 51840, called [;~, 3, t], by COXE~ER [12] 
and A(6, 2) by DlcxsoN [15]. It contains as its subgroup leaving one bitangent 
fixed, the group G-~ [3-', ~ ~] of the 27 lines on the cubic surface. The tangent 
plane at a general point P of a cubic surface, and the 27 planes each passing 
through P and one of the lines of the cubic surface, meet an arbitrary 
section plane in the 28 bitangents. The plane quartic curve to which they 
are tangent is cut by the section plane from the quartic cone whose elements 
pass through P and are tangent to the cubic surface. The direct product of 
this group Ho and a group of order 2 is a group H, of order 2,903,040, 
called [3 ~, :, t] by Cox]~]~,  which is the group of symmetries of the uniform 
7-dimensional polytope 3~ of 56 vertices, and is also the group associated 
with the exceptional LI~. group E~. 

A set of 56 vertices for the polytope 3~ [see 11, p. 186] are 

(6.!) (___ l, o, l, +__ 1, 0, o, 0) 
(0, ~ 1, 0, -----1, - t - l ,  0, 0), etc. 

the rest being obtained by cyclical permutations on the seven coordinates. 
Pairs of opposite vertices correspond to the 28 bitangents. Each vertex is at 
distance 2 from its 27 nearest neighbors, and the 5 6 X  27/2 segments joining 
neighboring vertices are parallel in sets of twelve to the normals to 63 
symmetry hyperplanes. There are 135 ways of choosing seven of these hyper- 
planes as mutually orthogonal coordinate hyperplanes, and each hyperplane 
lies in 15 of these sets of seven. Each hyperplane contains 16 pairs of oppo. 
site vertices that correspond to a KUM~ER set [2(~] of 16 bitangents, and the 
corresponding hyperplane reflection S interchanges in pairs those vertices 
that correspond to lines of a double six on the cubic surface. From the 
coordinates (6.1) it is clear that 56 vertices fall into sets of eight that form 
the vertices of a cube. Each pair of orthogonal hyperplanes determines a 
unique third, forming a (~ cubic set ~, such that their three normals are 
parallel to the edges of one of the cubes. Exactly twelve more hyperplanes 
are orthogonal to each of the three in a cubic set, and contain the vertices 
of this cube; and these form three sets of fot~r mutually orthogonal hyper- 
planes, whose reflections are related as the three distinct sets of S factors 
in (2.10b) for an element V of class C~. We denote by --  Vh the product of 
the reflections in three hyperplanes of a cubic set. These involutory group 
elements - -  Va are not conjugate to the involutory elements Uj of classes C~, 
that are products of reflections in three mutually orthogonal hyperplanes 
having four pairs of opposite vertices in common. Similarly, products of 
reflections in four mutual ly orthogonal hperplanes are of two types V and ~ U, 

AnnaZi  di  Matemat~ca  14~ 



106 J .S .  F R ~ z  The clas,ses and repre,~e~t~tio~s of the groups of 27 lb~e,s, etc. 

that  belong to different  classes of conjugates  in H0. Both classes, however  
have the same cycle symbol 1-~2 ~ in the 7-dimensional  representa t ion ~(~) 
of H0. The fact that  only odd powers of e lements  of the classes C~ to C.~.~ 
can lie in these classes may be used to d is t inguish  the classes C~ and C~ 
in H~. Similar  considerat ions d is t inguish  the classes C,.~ and C~, both having 
the cycle symbol 124, and the classes C~ and C~0, bo~h having the symbol 1-~26. 

We wish to de te rmine  the table of characters  of the group H 0. (From 
it the charac ter  table for 
method}. Firs t  we need to 
there are 30. The  first 15 
the var ious even classes 
d imens ions  we s imply add 
follows. 

H could easily be found by the direct  p r o d u c t  
identify the classes o~ conjugates  of H~, of which 
classes are taken as those containing elements  of 
of G. To change the cycle symbol from 6 to 7 
1 to the exponent  ~. The classes C~... C,~ are as 

(6.2a) t~' 132~' 1-~2~ (type V), 132-~4 ~, 124, 1~3, 1~23-~6, 2"3, 13 ~, 1-~26, 

1-~3 ~, 122-~3-'6 ~, 234-~6-'(12), 13-J9, F5. 

Classes C,6 to C~ of H,~ are obtained from the odd classes of G by 
mul t ip ly ing  each of their  e lements  by - - l ,  the inversion in the origin. Each 
product  55"Th in G is replaced by (-- U~)T~ in H,,, so these elements are still 
products of at most six S factors. Multipl icat ion by - -  1 takes a complete set 
of 12k)th roots of uni ty  into itself, but  chsnges  a set of kth roots, when  k 
is odd, into the (2k)th roots th'~.t are l~ot kth roots. Hence  to obtain the new 
cycle symbol for one of the classes C,s to (;~s, we first increase :¢ by 1, and 
then  replace each power /c~ of an odd order cycle by k-~h {2kV~, a~,~d combine 
exponents .  The  new class symbols for C~6 to Css in H,~ are 

l -S2 s, 1 - i2  ~ ~type - - U } ,  1-:~2:~4, 124, 1-12~4-'8, 1-'22s3-'6, 
(6.2b) 1 3-s6 ~, 1 -~ 26, 1 -~ 234, 25-~{10). 

Denot ing  by g~. and h~. respect ively the number  of e lements  of G and Ho 
in class Cx of H~, and denot ing by ~. and N>. the orders of the corresponding 
normalizers  of ~n e lement  in G or in H 0, the equat ion 

de termines  the numbers  h~., in those 25 classes of H0 where  g~.~ 0, in terms 
of the charac ter  of the permuta t ion  group P~s on the 28 eosets of G in H0 
(or the 28 bitangents).  This  character  exceeds by one the subgroup character  
X (~  which  was given in Table I. Since P~s is doubly transitive, X ~ is a 
s imple  i r reducible  charac ter  of H0 which  we shall  call ~ .  It h a s  the value 
- -  1 for the classes of H~ that  are not represented  in G. By the orthogonali ty 
relat ions for group characters ,  we may compute  the fract ional  contr ibut ion 
of these u n k n o w n  classes to the 1-character  .~) and to the 7-dimensional  
charac ter  ~ ,  and its square.  We  divide the sum of these characters  for the 
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elements of known classes by the order of Ho and subtract from 0 (or 1), to 
obtain the fractional sum (or sum of squares). 

1 1 5 1 
1~ ° + ~ + ~-~ + ~ --- ~ 1/N~ for unknown classes C~6 ... 

1 1 1 
(G.4) 15  + = >> >> >> 

I 1 1 
I-5 + - ' - / B  = z >> >> >> 

Thus we are led to five additional classes, containing respectively 1/15, 1/24, 
1/128. 1/16 and 1/7 of the elements of H0, and having the traces - - 1 ,  0, 
--1, 1~ 0 respectively in the 7-dimensional ~c~). A product of four S factors 
forming a 5-chain, and two other S-factors permutable with these and forming 
a 3-chain, can be constructed in the 7-space, giving a class of elements 1-135 
of order fifteen that are permutable only with their own powers. Six S factors 
can also be put together to form a 7-chain, which effects a cyclic permutat ion 
of the seven coordinates in (6.1), and represents a class of elements of order 7. 
An 8-chain of seven S factors can also be constructed, in which the first, 
third, fifth and seventh factors are permutable with each other. By moving 
these four factors to the left to form a product of type V, and then replacing 
them by a set of three factors equal to - -  V, we obtain an element of order 
eight and type 12-18. Its normalizer is of order 16. Its square, of type 1-% *, 
is not represented in G, and belongs to a new class. Finally the product of 
a 3-chain and 4-chain, mutually disjoint, gives a new element of H of order 12 
whose negative is of type 3-~46 in H 0. The traces in ~(~) check as they 
should, and we have the following classes: 

(6.5} STew classes in H0: 1-~35, 3-~46, 1-~4 ~, 12-~8, 7. 

Order of normalizer Nz: 15, 24, 128, 16, 7. 

This completes the analysis of 30 classes of conjugates in H~'. 
The thirty irreducible characters of H0 (over the field of complex numbers) 

will be denoted by ~. ( i - - 1 ,  ..., 30), but in order to follow the computations 
more easily we shall also denote each character by attaching to the degree 
a subscript a, b or c, using b and c respectively for a second or third 
character of the same degree. As before we shall use a partition symbol in 
square brackets as a superscript to denote the (possibly reducible) character 
corresponding to SCl~UlC'S irreducible components of the KRO~ECKER ruth 
power of the full l inear group. The derivation of the 30 irreducible characters 
may be carried out in three stages using different methods of attack that 
are available. 

In  the first stage, knowing the 1-character ~(~)= l a ,  and the 7-dimensional 
character ~c~>_~ 7a ' w e  use the method S, computing Sequin 's  partition 
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components of the KROb~ECKER m- th  power by formulas (5.31 and then 
splitt ing off known components identified by use of the orthogonali ty relations. 
(The mult ipl ici ty of an irreducible ~* as a component  of a reducible ~ is the 
mean value of ~ averaged over all group elements). Six new characters  
may be isolated in this way  as fo l lows :  

(6.6) 711,] - -  2 ] .  a 

21 [lq ~ 21a q- 189a 

7[~1 ~_ l a 4- 27~ 

71211 - -  7~ + 1 0 5  a 

21[~] = la + 27a -¢" 35a -~- 168a. 

In  each of these decomposit ions the last character  is the only new one, so 
its value is uniquely  determined. The first stage ends when we can no longer 
obtain decomposit ions involving only one new character .  

In  the second stage we use the method I of induced representations.  
Firs t  we treat the eight known irreducible characters  of Ho as possibly 

reducible  characters  for the subgroup G, and reduce them by use of the 
character  table of G (Table II). Then from certain of the irreducible cha- 
racters  X ~ of G which appear  in these decomposit ions of ~t we form and 
reduce the induced character  IXJ of H0 defined by the formula 

(6.7) ITJ - -  (la 4- 27~)XJ : ~ m~j~ ~, for Ho. (See Table IV) 
i 

The permutat ion character  la 4-27~ of H0 represents  H o by permutat ions 
on the cosets of its subgroup  G~ and the non-negat ive  integers m~j indicate 
both the mult ipl ici ty w i t h  which ~ occurs as a component  of the induced 
character  IXJ , and the equal multiplicity with which X ~ occurs as a compo- 
nent of ~t when ~ is restr icted to G. (This reciprocal  formulation is not 
quite general, but  holds in our case since the classes of H o de net split in G). 
Seven new characters  are obtained as fol lows:  

(6.8) Reduct ion of ~ in G 

1~ ~ t v in G 

7 a - -  1, -4- 6 ,  in G 

27 a -~ 1 v -+- 6~ -I-- 20p in G 

= + i n  e 

35~ ~- 15. -+- 20~ in G 

105 a - -  6~ -~- 15n 4- 20. 4- 64~ in G 

189 a ~- 15~ -t- 64, -~- 20~ ~- 90~ in G 

168 a - -  20p -¢- 64~ -~ 24~ -~- 60~ in G 

Reduct ion of induced iX 3" in HQ 

/7 =-= t a q- 27~ (definition) 

I t .  - -  7~ -~- 21~ 

I6~ ----- 7~ q-  105 a -~- 5 6  a 

I6p ~- 27~ ~ 21~ -~- 120~ 

I15p = 21~ + i89 a ÷ 210a 

I 1 5 .  - -  35~ ~- 105~ ÷ 280~ 

1208 ~- 35a q- 189a ÷ 336a 

I20~ - -  27 a + 168a + i20a -1- 210a + 35~. 
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The method of forming and reducing KRONECKER products of 7 a with each 
of the known characters of small degree serves as a check at this stage, 
and yields one new character 189~, bringing the total number of known 
characters up to i6. 

(6.9.1 7 ~ X 2 1 ~ = 7 ~  A- 35~-t--105~ 

7aX27a--~7a-4-105aA--21b-4-56 a 

7 a X 3 5 a - - - - - 2 t a + 3 5 a + 1 8 9  ~ 

7 a X 2 1 ~ = 2 7 a A - 1 2 0  a 

7 ~ X 5 6 ~ - - 2 7 a A - 1 2 0 a + 2 1 0 a + 3 5  ~ 

7~X35a--56a-4-189~ 

A complete tabulation of products ~ X ~J that contain 7 a as a component, 
or of product's 7a~ ~ that contain ~J as a component is a given in Table V 
at the end of this paper, based on the complete table of characters of H~ 
(Table IIi). Note that if ~ is a component of the KRO~EC~:na m-th power 
of 7~, and if ~ J  contains 7~, then ~ must be a component of either the 
(m - 1)th power or the (m A-1)th power of 7 a. Thus the characters fall into 
sets according to the least power of 7~ that contains them. Thus far we have 
obtained all components of the Kr~ONECXnR square ,  cube, and fourth power 
of 7~, and some from the fifth power (2S0~, 336~ and 1S9~). But we have 
reached a point where products of known characters of small degree, either 
involve no new characters or at least two that must somehow be separated. 

In the third stage we use the theory of modular characters combined 
with the induction method L BR±un~ [4] has shown that if pa is the highest 
power of a prime p that divides the order pug, of a finite group, then any 
ordinary irreducible character ~ whose degree z ~ is divisible by pa remains 
irreducible (rood p) and forms a block of the highest kind, which is also an 
indecomposable character (rood p). Next, an ordinary irreducible character ~ 
whose degree z ~ is divisible by pa-~ but not by pa belongs to a block of characters 
of defect 1 or type a - -  1, all of whose ordinary characters have this property 
and all of which have equal values (rood p) for the class multipliers . a ~ / z .  
For a group such as the group H 0 that we are studying, in which each 
family of p-conjugate classes consists of a single class, and therefore each 
family of p-conjugate irreducible representations has but one member, 
BnAvw.a' s theorems show that a block of defect one consists of a chain of p 
ordinary irreducible representations ~. The degree z t of each is divisible 
by pa-~ but not by p~, and the sum of characters of two consecutive members 
in the chain is an indecomposable character (nlod p) which vanishes for 
p-singular classes (classes of elements whose orders are divisible by p) and 
has a value in a p-regular  class Cz that is divisible by the highest power 
of p dividing ~5.. The ordinary irreducible representations at the ends of the 
chain are irreducible (mod p), and the others contain two (mod p) irreducible 
components, one in common with each of its neighbors [5]. If we divide the 
ordinary characters of a block of defect 1 into two sets, so that adjacent 
members of the chain belong in different sets, then those characters in the 
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same set have equal  values in p - s ingu l a r  classes whereas two in opposite 
sets have values  of sum zero in any p - s i n g u l a r  class. Fu r the rmore  in any 
p - r e g u l a r  class the gum of the characters  of one set is equal  to the sum of 
those in the other set. If c~-~ 1, the degrees in the one set are ~ 1 (rood p) 
and those in t~he other  arc ~ - -  1 (rood p), ~nd the number  of blocks of type 0 
is equal  to the number  of p - r eg n l a r  classes for which N~-----0 (,nod p). 

W h e n  we apply this theory to the group H0, we find that  there are 
three blocks of type 0 (,nod 5) in which the characters  for the p - s ingu la r  
classes lS5, 1-~35 and 25-~10 are respecl ively q--(l, 1, 1), -+-(2, - - 1 ,  0) and 
____-.(1, 1~ - -  1). Each  of these blocks contains 5 ordinary i r reducible  characters.  
and there remain  fifteen characters  of highest  type with degrees divisible 
by 5. For  the pr ime 3 we know that the characters  189 a and 189b belong to 
a block of defect  1 which mus t  c.>ntain a third ordinary charac ter  378~,, and 
that  the character  27a belongs to a second block of defect 1 (rood 3). Thus  
we obtain five new characters  189e, 378a, 216~, 512a, and S4a as fol lows:  

Relat ion in p - r e g u l a r  classes Relat ion in p - s i n g u l a r  classes 

(6.10a) p-.-=5 21~--189 a t-336~t--189c +-2l~=0 (1,1,--1):21~=--189a---336a=- 189c----21b 
' (  - -  (6.10b) p - - 3  1S.)~ 378~ -t- 189b = 0  189~ = - -  878~ -~ 189b 

(6.10c) p'--3 27a ~16a ~- 189c -----0 27, - -  216 a ~ 189 c 

(6.10d) p ~ 5  , , ta--16Sa+51~a--3~$a+ta-----0 (2, --1,0)=27a--~--16Sa'=512~=--378a-~7~, 

O ) (6.10e) p - - 5  1a--84~a+.,16~--189o + 56~ - -0  (1,1, 1 )= : l a :=- -8¢~=216~: - - l cqg0- -56a .  

The  three characters  of defect  1 (rood 3) in each of the blocks (6.10b} and 
(6.10c) are d is t r ibuted in three different  blocks of defect  1 (rood 5). That  the 
ordinary  characters  in each of the (rood 5) blocks (6.10a), (6.10d) and (6.10e) 
are ar ranged so that  the sum of consecut ive characters  is a modula r  inde- 
composable character  (rood 5), is verified by analyzing into blocks the 
following char~cters of representa t ions  induced in Ho, by (mod 5t indecom- 
posable representa t ions  of G. 

I15~ -~{21a q-  189~) 

I15,n-----(189~ + ~ 16~) + t5~ 

(6.11) I30,~ --(189~q-56a)+280a+315a 

I20~ = (189,~ -+- 336~) 

10p ~-24~)=(1~+84~) + (27~ + 168~) q- ~t20~ 

I(1,~q-24.) = {21o+189c) +(7a+378a)+-105c 

'~' 378~) d- 280~ + 420~ + 405~. I90~ =(189,~ + o36~} -+- (512~ + 

l~ot only do we conclude from (6.1t} that  the pairs  in parentheses  form 
indecomposable  characters  (rood 5) but  we obtain from (6.11) the five new 
characters  15A, 105~, 315~, 405~ and 420~. We now have all seven of the cha- 
racters  that  belong to the single block of defect 1 [rood 7). By examining  
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the products 7 ~ X 7 ~ ,  7~X21~,  (above 6.9), 15~X56~ (below 6.13) and the 
induced representat ions I15,~ and I90~ in (6.tl) it is clear that 

(6.t2) 1~ - -  27a + 120~ ~ 405~ + 512~ ~ 216~ -~- i5~ : 0, except in class 7 

and that the sum of two adjacent  characters  in (6.12) is a~n indecomposable 
character  (rood 7). The character  512a is of highest type (mod 2), and 405 a 
is of highest  type (rood 3). 

The charac ter  i5~ remains irreducibile and is equal to 15,, for elements 
of the subgroup G. From it we readily obtain certain KnoN]~c~:]~R products 
from which all the remaining characters  can be found. 

15~ X 7~ = 105b, 15~ ~] - -  105c, 15~] - -  1~ + 35h + 84~ 

(6.13) 15~ X 21~ = 315~, 15~ X 21b - -  35b -t- 280b 
15~ X 56~ ----- 105 b -b (120~ ÷ 405~) -e 210~, 110, = 210b -t- 70~ 

The list of the ordinary irreducible characters  of the simple group Ho, also 
known as [33. ~, i], or A(6, 2), is now complete, and the values of the characters  
are collected in Table III .  All the corresponding representations can be 
~ r i t t en  with real coefficients, since the sum of the degrees is 5104, a number  
equal to the number  of group elements that satisfy S ~ = L  

At this point we may indicate briefly the irreducible modular  characters, 
excluding those of highest type (rood p), since they are the same as the 
ordinary irreducible characters  whose degrees are divisible by the exact 
pI ime power 2 a that divides the group order. From our previous discussion 
we derive the following values in p - regu la r  classes for certain irreducible 
modular  characters  : 

(6.14a) For  p = 7 : 

(6.14b) For p - -  5 : 

(6.14c) For p ---- 3 : 

1~, 2 7 ~ 1 ~ ,  120a--27~+I~, 512~--216~-t-15~, 216~--15~, 15~. 

1,,  84~--1~ ,  189,~--56~, 56,.  

27~, 168~--27~,  378~- -7a ,  7~. 

21~, t 8 9 Z - - 2 1 , ,  189e--21~,  21~. 

189~, 189b; 27a, 189~. 

There remains a single block of lowest type (rood 3) containing 23 ordi- 
nary characters  and 10 modular  characters,  whose values for p - regu la r  
classes arc 

(6.14d) For  p = 3 :  1~, 7,, 15~--1~ ,  21~, 35~, 35~, 56~--7~,  105c--15~-~-1~, 

105b - -  7~, 280~ - -  35~ - -  56~ -l- 7~. 
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The indecomposable character (moo 3) that contains the 1-character as one 
constituent is 1, -r- 120, q- 512,-t- 15~, and another indecomposable character 
whose degree is a small multiple~ of 81 is 35~-I-168~ if-84,-I-280b. The rest 
each contain more than four ordinary characters as constituents. 

Finally for the prime 2, there remains a single block of lowest type 
containing 29 ordinary characters and 7 modular characters, whose values 
for p - regu la r  classes are 

(6.14e) For p ~ - - 2 :  1~,, 7~--1~, 15~--1~, 21,-- la,  70~, 105~--7,~, 280~--105,,+l~. 

The indecomposable modular character that contains the l -character  is of 
degree 293~-- - 4608, and it contains the sixteen ordinary characters of odd 
degree once each, and contains 56a, 120~, 210~, 280,_., 336,~ and 420~ twice 
each. All the (rood 2) indeeomposable constituents of this block have a fairly 
complicated decomposition in a field of characteristic 0. Special mention 
should be made, however, of the 6-dimensional irreducible representation 
(rood 2) since this arises in DIcKso~'s  [15] definition of the group as the 
simple group A(6, 2) of order (26_  1)2~(24- 1)23(2 ~ -  1)2. 

We conclude this study of the characters of the group [33, ~, ~1' by showing 
that this group has only eight classes of conjugate proper subgroups of 
order greater than 9000, of which five are classes of maximal subgroups. 
These subgroups include the reflection groups [3 '2, ~, t I and [3 '~, ~, ~] and their 
even subgroups of index 2, the symmetric and alternating groups of degree 8, 
and two classes of groups of the orders 263~7 --- 12096 and 2937 ~ 10752 
respectively. A subgroup of this last class leaves fixed one of the 135 pos- 
sible products of seven S-factors that represent the inversion in the origin 
in the group [38, ~, ~]. 

We show that no other large subgroups exist by forming all possible 
s u m s  of irreducible characters of H0 that satisfy the following necessary 
conditions for the character ~ of a transitive permutation representation 
(4= i) of 

1 . -  A transitive permutat ion character ~ contains the 1-character 
jus t  onc% and contains one or more other irreducible characters with non-  
negative multiplicity. 

2. - The degree of ~} is a factor of the group order, and all the cha- 
racter values are non-negative integers. 

3 . -  In  no case may the value of r2 for an element of the group 
exceed its value for an integral power of the element. 

Subject to those conditions the only possibilities for permutat ion cha- 
racters of degree < 160 are the following eight~ which actually are induced 
by subgroups. 
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(6.15) Permutation character Degree Order of subgroup Type of subgroup 

i~ + 27~ 28 51840 [3 ~, 2, ~] 

(1~ + 27~) + 7~ + 21b 56 25920 [32, 2, ~], 

1~ + 35b 36 40320 [36] (symmetric group) 

(la + 35~) + 21b + 15~ 72 20160 [36] ' {alternating group) 

1 n + 27a + 35~ 63 23040 [33' ', '] 

(I~ + 27. + 35b) + 7. + 56. 126 11520 [33, ~, ~]' 

1~ + 35~ + 84~ 120 12096 Contains HO(3, 9) 

la + 35b + 84~ + 15~, 135 10752 

By working out its character  table, we find that the subgroup of index 120 
contains the simple group HO(3, 9) of order 6048 as an invariant subgroup 
of index 2. To this simple subgroup of H 0 corresponds the permutat ion 
character  1~ + 35~ -t- 84~ -4- i5~ -4- 105e. 

An~tall di Matematiea 15 
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TABLE II1. 

Character table of  the group [3 ~' 5, ,], of  order 1,451,520 

Class 
symbol 

Class 
size: h~ CttAI~ACTEI~S OF ODD DEGI~EE 

1~2: 

1.2-~4 ~ 

1 2 4  

1 1~ 7~ 27a 21a 35. 105~ 189a 21~ 35b 1890 189c 15. 1050 105o 315. 405~ 

3~57 1 3 7 1 - -5  5 --11 5 7 13 1 3 9 - -3  3 - -3  

3~57 1 --1 3 --3 3 1 - -3  5 11 - -3  21 7 --7 17 --21 --27 

2:3357 1 3 3 5 7 5 9 1 --1 - -3  - - 3 - - 1  - -3  - -3  - -5  --3 

2~3'57 1 1 1 - -1  --1 ~ 1  1 1 1 1 - - I  1 1 --1 --1 1 

i~3 2537 1 4 

1'~23-~ ~6 2~3~57 1 2 

2:3 253357 1 0 

135 27357 1 1 

1-~26 2~3~57 1 - 1 

9 6 5 15 9 6 5 9 9 0 0 0 0 0 

3 0 --3 1 - -3  2 --1 - -3  3 - - 2  --4 2 0 0 

1 - - 2  1 - - 1  1 "2 1 1 1 0 0 0 0 0 

0 0 2 - -3  0 0 2 0 0 3 3 3 0 0 

0 0 0 1 0 2 2 0 0 1 --1 --1 0 0 

1-~3 ~ 2657 1 - -2  

1~2-:3-'62 263~57 1 2 

234-'6-'(12) 2~3357 1 0 

13- '9  2~3257 1 1 

U5 28337 1 2 

0 3 --1 - -3  

0 3 3 1 

0 --1 1 - -1  

0 0 --1 0 

2 1 0 0 

0 3 --1 0 0 - -3  6 6 - -9  0 

0 --1 - - I  0 0 1 2 2 3 0 

0 1 --1 0 0 --1 0 0 1 0 

0 0 --1 0 0 0 0 0 0 0 

--1 1 0 --1 --1 0 0 0 0 0 

1-526 327 1 - -5  15 9 - - 5 - - 3 5  

1-i24(--[~ 253357 1 --1 3 - -3  3 1 

1-32~4 233'57 1 --3 5 3 --1 - -5  

1 2 4  2~3~57 1 l 1 --1 --1 --1 

1-~2~4-'8 253~57 1 --1 1 - 1  1 1 

21 --11 15 --51 --39 - -5  25 5 --45 45 

--3  - -3  3 - -3  - -3  --1 1 - -7  3 - -3  

1 - -3  1 1 --1 1 --3 --1 3 - -3  

1 - -3  5 1 - -5  - -3  - -3  3 3 - -3  

--1 --1 --1 1 --1 1 --1 1 --1 1 

1-~2~3-'6 2~3~57 1 - 2 

1 3-~6 '2 2~3~57 1 1 

1-i26 2~3357 1 - 1 

1-~234 263357 1 --2 

25- ~(10) 28347 1 0 

1-135 29337 1 --1 --1 

3-~46 263857 1 0 --1 

1-~4 ' 2"3'57 1 --1 --1 

i 2 - ' 8  2~3457 1 1 --1 

7 23345 1 0 --1 

3 0 1 1 

0 0 - -2  1 

0 0 0 1 

1 2 --1 --1 

0 - - 1  0 0 

- -3  - -2  3 - -3  3 - -2  4 2 0 0 

0 - -2  0 0 0 1 1 --1 0 0 

0 0 0 0 0 --1 1 --1 0 0 

1 0 --1 1 1 0 0 0 0 0 

i --1 0 --1 1 0 0 0 0 0 

1 0 0 --1 1 

0 --1 1 1 0 

1 - -1  1 1 1 

1 1 --1 --1 --1 

0 0 0 0 0 

0 --1 --1 0 0 0 0 0 

1 1 --1 - -2  0 2 0 0 

3 - -3  1 3 - -3  1 3 5 

1 1 1 M1 --1 - - i  --1 1 

0 0 0 I 0 0 0 --=1 
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Chara- 
cters 

TABLE IV .  

I r reducible  components in the  subgroup G-~  [32, ~,~] of  the characters 
of  H o -----[3 ~, 2, ~],, and irreducible components in H 0 of  the  characters induced 

by those of  G. 

[~ 27a 35~ 

7~ 21~ 105,~ 

1 1 

1 

t 1 

1 1 

1 

1 1 

1 

1 

l 

81. 
15q 

24. 

60 v 

60, 

203 
90~ 

80s 

603 
10~ 

189~ 35~ 189~ 

21b i89b 15a 

1 

1 1 1 

1 

1 

1 1 

1 

1 

1 

1 

1 

1058 3 t5 .  t68~ 

105c 405. 56. 

1 

1 

1 1 

1 1 

1 1 

1 

1 1 

1 

1 

1 

1 

1 1 1 

1 

120~ 280~ 216~ 

210~ 336,, 512~ 

1 1 

1 

1 

1 1 

t 

1 i 

1 1 

1 1 1 

1 1 1 1 

378~ 420~ 210b 

84~ 280b 70,i 

I 

1 1 

1 t 

1 1 

1 1 

1 1 

1 

1 

1 

1 1 

1 

1 1 1 

1 

1 1 

1 1 

1 1 

1 1 1 

1 1 1 i 
1 1 

Each row indicates the decomposition of the character of H0 induced by the 
character of G at the left. Each column indicates the decomposition in G of 
the irreducible character of Ho at the top. (Note that no multiplicities 
exceed i, in accordance with LITS:LEWOOD' S conjecture, [26], for representa- 

tions induced by a maximal subgroup G of H0). 
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TABL~ V. 

Kroaecker  products t h a t  con ta in  the  character  7~ 

} { m 

7, x x l 
27a x x 

216~1 2L, 
70, [ 21b 

105~{ 56, 
x X 

x 

x 

x x 

x x 

X 

X X 

X 

X X X 

105v]105~ x x x x 
 o53,i(35°) x 

x 35b 

X X 

X 

x 280a{120,, x x x 
x (210b)I210~ X X X X X 
X 420a{168~ X X X X 

X 84~ {189a X X X 
X 

X X 

x x 189b 
x x 189e 
x x x x 280~, 
x x x x 315,~ 
x x x (336~) 
x x x x x x (378,) 

KRO~ECKER products that  contain the character  7: may be read from 
this table as follows. Two characters ~ and ~J (indicated by their degrees) 
are associated with each x in the table, one nearest to the x in the same 
row and the other in the same column. They are such that the product ~ 
contains 7~ as a component, and the product 7a~ ~ contains ~+ as a component. 
The KRONECKER squares of the characters 35~, 336~, 378~ and 2i0o each 
contain 7: once, and 512+>4 512a contains 7: twice. Decompositions such as 
(6.9) can all be read from the table. Characters above the diagonal steps are 
components of one of the first four KRONECKER powers of 7~, those at the 
lower right are found in the Kno~Ec~:]~ fifth power (but in nol ower~power) 
and those below the steps are first found in the sixth and seventh powers of 7~. 
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