The classes and representations of the groups of 27 lines
and 28 bitangents.
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Summary. - For the simple group H, of the 1,451,620 automorphisms of the 28 bitangents
to a plane quartic curve, and for its subgroup G of 51840 automorphisms of the 27
lines on the cubic surface, each related to an exceptional Lie algebra (E, and Ey), are
determined all the classes and irreducible characters, some irreducible representations,
certain basic invariants of G, and the large subgroups of H,.

1. Introduction.

Following the work of SrerE [32)], CoxErer [10|, Topp [34] and many
others, this paper is concerned with the study of the classes and represen-
tations of two famous finite groups, related to the exceptional Lir groups E,
and E,, and each of geomeiric interest in its own right. One is the group @
of automorphisms of the 27 lines on the general cubic surface, and the other
is the group H, of automorphisms of the 28 bitangents to a plane quartic
curve. As groups generated by reflections S, whose products are of order 2
or 3, CoXETER denotes the linear reflection groups associated with the adjoint
groups of the exceptional simple LIt algebras E, and E, [8] by the symbols
[3%%'] and {3%%'], and denotes their simple invariant rotation subgroups of
index 2 by [3>*'] and [3%*'] respectively. We shall also denote theso four
groups by the letters G, H, G, and H,.

The group @ is the group of the 51840 automorphisms of the 27 lines
on a general cubic surface, described in part in the books of HENDERSON [23]
and SEGRE [32]. Its six dimensional irreducible orthogonal representation
which we call F, (calling F, the identity representation) has been studied
by COXETER as the group of symmetries of the six-dimensional polytope 2,,,
and by CArrTaAN [8], WEYL [36], VAN DER WAERDEN [35), Racam [28] and
others in their studies of the exceptional Lie algebra E,. Its invariant
subgroup of index 2 is the simple group @, of order 25920. Hence the group G
is not to be confused with another abstractly different group &' of order
51840 = (3* — 1)3%3* — 1)3 studied by JorpaN [22], KLEIN [25], WitTING [37],
MAscHKE [27], BURKHARDT [6] and others in connection with the trisection
of the periods of the hyperelliptic modular functions, since the latter group @
has G, not as a subgroup but as a quotient group However, BURKHARDT s
five-dimensional representation of G, does induce a ten-dimensional irredu-
cible representation (F,,) of our group G.
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Closely related to the group @, and containing it as a subgroup of
index 56, is the seven-dimensional reflection group [3%%!] associated with
the exceptional LiE algebra E,. This group H.is the direct product of a
group of order 2 (containing the identity and inversion in the origin) and a
simple group H,=[3%%**] of order 4> 9!= 1,451,520, which is isomorphic
with the group of antomorphisms of the 28 bitangents to the general quartic
curve. The geometrical relation between these 28 bitangents and the 27 lines
of the general cubic surface has been described by Griser {20], SEerE [31],
and others.

In § 2 we describe a class of 6><6 orthogonal matrices that represent
in a simple way the 36 hyperplane reflections of which six generate the
irreducible representation F, of the group G. In § 3 we describe the 25
conjugate classes of G, giving fo each a cycle symbol 12283v43 ..., in which «
is the trace and «, B, vy, 5 are integers. (The symbol 1 2 3—' 6 indicates that
the six characteristic roots of a matrix in this class include a complete set
of six 6th roots of unity from which the cube roots have been removed, and
in addition the two square roots, 1, — 1, and a first root 1), The classes of
the various powers of an element are evident from this notation. We also
prove that if T, and U, denote elements of order two that are respectively
the products of two or three reflections §; in mutually perpendicular hyper-
planes, then each element of G, has the form U,U, and each element of the
odd coset G,S has the form U,T,. Hence the elements of G may be written
as products of at most six reflections. In § 4 a set of six basic invariants
of degrees 2, 5, 6, 8, 9, 12 in the variables of F, are derived, whose Jacobian
is factored into its 36 hyperplane factors In § 5 some other irreducible
representations of G are studied, and the complete table of irreducible cha-
racters is formed. Finally in § 6 the 30 classes of conjugates for the group
H,=[3%%'] are obtained, and all the 30 ordinary irreducibile characters
are found for this simple group of order 1,451,520. Several modular characters
are also found, including the one for its representation as the simple Abelian
linear group A(6, 2) [15]. All large subgroups of H, (of index < 160) are
found by a synthesis of permutation characters,

2. The 36 hyperplane reflections in 6-space.

The 27 lines on the general cubic surface are so related that each
intersects 10 other lines and is skew to the remaining 16. An infersecting
pair determines a third coplanar line, and the three lines form a triangle in
one of the 27 3<10/3!=45 tritangent planes. Each of the 27><16/2=216
pairs of skew lines determines onme of the 36 double sixes. A double six
consists of six pairs of skew lines forming two sextuplets, such that each
line is skew to all the other five lines in the ome sextuplet, but intersects
each of their five partners that belong to the other sextuplet. Paired lines
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are in opposite sextuplets and are interchanged by the involutory transfor-
mation 8, associated with the double six D,. The fifteen lines residual to
the double six D, are left invariant by S,.

To desoribe these incidence relations succinctly we may use the 63
nonvanishing ordered triples that can be formed from the four marks 0, 1,
w, #° “(mod 2} of the finite field GF(2?). The 27 triples that contain just
one O correspond to the lines of the cubic surface and may be called IL-tri-
ples [17]. The other 36 triples having two or no 0’s correspond to the double
sixes, and may be called D-triples. Three L-triples represent coplanar lines
if and only if their sum is 0. Two L-triples represent skew lines if and
only if their difference is a D-friple, and this D-triple represents both the
double six in which these lines are paired and the involutory transforma.
tion S, that interchanges these lines. Two of the S, are permutable if and
only if the sum (or difference) of their D-triples is an L-triple. (The line of
this L-triple intersects each of the four common lines of the two double
sixes). Each Sy is permutable with 15 others but not with the remaining 20.
Non-permutable S;’s fall into one of 36 > 20/3! =120 sets of three associa-
ted Si’s that are related to each other as the three reflections in the altitudes
of an equilateral triangle. Each two of a set of three associated S,’s have a
product of order 3, and the three corresponding D-triples have sum zero
modulo 2.

By introducing certain sign changes we may change from L-triples
involving the mark s of the finite field to L-triples involving the complex
cube root of unity w. The L-triples and their differences the D-triples are
then complex number friples whose real and imaginary parts are components
of vectors in a real Euclidean 6-space. In fact, the L-triples determine the
27 vertices of the polytope 2,,, discovered in 1897 by T. Gosser [21], whose
relation to the 27 lines of the cubic surface was described in 1910 by
P. Scmourk (29]. Each D-triple determines homogeneous coordinates for a
symmetry hyperplane of 2, , reflection in which is the corresponding trans-
formation S,.

Coxerer [13] has shown that the 27 lines of the general cubic surface
may be represented by the complex L-triples

21) (0, 0 — w¥(—uw 0, W)}, —ok, 0); A, p=1, 2, 8; =6,

Here again, three' L-triples whose sum is zero represent coplanar lines.
Differences of L-triples that correspond to skew lines determine the 36

distinct D- triples:
(2:2) (0%, 0%, 0@+ —w=, 0, 00, W+ —wi=4, 0)0, 0, i+ —wr—1), %, ), p=1, 2, 3.

Each of these 36 D-triples must be identified with its negative. For three
D-triples of an associated set we have D,= D, =t D, =0, where an appro-
priate choice of signs must be made to obtain equality.
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Taking real and imaginary parts of the L-triples (2.1) as coordinates
in a 6-space whose general point is

(2'3) (m.{9 yi.‘ w23 y?’ xs: y‘.&)
we obtain the following coordinates for the 27 vertices of the polytope 2,,:

©, 0 &, 8, —c,., —8)

2.4 Vertices of 2,,: (—e¢,, —8,, 0, 0, ¢z, ) AL p=1 2 3;
(01, 8y — Cp, — 8y, O) 0)

where

(2.5) ¢y, = cos8 27A/3, 8) = sin 2n}/3, o = ¢, + 8.

Pairs of non-adjacent vertices of this 2,, determine diagonals of length 62
and represent intersecting lines of the cubic surface. Pairs of adjacent vertices
determine edges of length 3'* and represent a pair of skew lines of the cubic
surface. The difference of a pair of adjacent L-vectors (2.4) is a vector normal
to one of the 36 hyperplanes of symmetry of 2,,. To obtain the unit column
vectors D, associated with the reflections S,, We normalize each such diffe-
rence by the factor 3—'2. We denote the corresponding row vectors by Iy
or more explicitly by D'y, Digey Dongy Doops (6 A, p==1, 2, 3) where

Drnlng—i/g(cu; Syy Cry 81 6}” S;x),- %, A) p= 1) 23 3
{2.6} D:xoo = (— 8y Ons 0, 0, 0, O)

Dolo: (O, 0, — 8, G, O, 0)

D= ©, 0, 0, 0, — s, ¢,

Vectors D; and D; having exactly one common subscript in the three-sub-
seript notation of (2.6) represent permutable transformations S, S;, and their
scalar product is D/D;=0. Vectors D, and D; having two or no common
subscripts in the three subscript notation of (2.6) represent non-permutable
transformations S,, S;, and their scalar product is D/D; = ==1/2. Thus they
make angles of 60° or 120° with each other, and are parallel fo two sides
of an equilateral triangle. They determine a third vector Dy,

@7 Dy = == (D, — (2D{D))Dy),

which is a unit vector parallel to the third side of the equilateral triangle.
The three vectors D,, D;, D, are said to form an associafed sef. In the three
subscript notation of (2.6), we may find the subsecript triple for D, by repla-
cing 0, 1, 2, 3 in the subscript triples for D; and D; by the marks 0, w, »?
w* (= 1), then adding these triples mod 2, and converting back.

From the D-vectors we obtain an explicit representation for the 6><6
matrices that generate the real orthogonal representation F, of our group.
Although it was derived independently, this representation is closely related
to COXETER s representation by anti-collineations [13].
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TuEorREM 1. - If the 36 unit row vectors of (2.6) are denoted by D,” and
the corresponding column vectors by D,, then the 36 real symmetric ortho-
gonal matrices
(2.8 Sy=1—2D,Dy

form a complete set of 36 conjugate matrices, of which gix suffice to generate
the 6-dimensional irreducible linear group F, of order 51840.
Proor: If X is any column vector perpendicular to D, then

SpX =(I—2D;D)X = X —2D4(D/X) = X,
SyDy = (I — 2Dy Dy)Dy = D), — 2Dy(1) = — Dy.

Since the matrix S reverses the sign of D,, and leaves invariant all veetors
perpendicular to D, it represents a reflection in the hyperplane through the
origin perpendicular to Dj.

Using the triple subscript notation of (2.6), consider the six matrices
Si00s Soior Soors Ssoes Seges Szay defined by (2.8). A pair of permutable S-ma-
trices are recognized by having just one of their three subscripts in common.
Each of a pair of non-permutable S-matrices transforms the other into the
same third S-matrix, the new subscripts being obtained in the manner
described above in (2.7) for the corresponding D-vectors in an associated set.
Thus S50, 8105 Spoy» and their products transform S, , into each of the
matrices Sy, with x, 4, p=2 or 3, and by transforming these by S,,,, S,
and 8y, Sy Sy, and by their products in turn, we may change one or all
of the subscripts 2 in Sy, to s. Finally each Sy, Sy,, or Sy, belongs to
an associated set with two S,,’s having two non-zero subscripts in common,
and can be obtained by transforming one by the other. Thus each of the
S-matrices is conjugate to S,;,, and is expressible in terms of six generating
S-matrices. Since the elements of a complete set of conjugates generate an
invariant subgroup of @, this must include the simple subgroup G,,,,,. But
since the individual S-matrices are not included in this even subgroup, the
subgroup generated by the S, must be the entire group @ of order 51840,

Certain products of the matrices S, play an imporfant role in the study
of the group G. Products of two, three, or four mutually permutable S factors
will be denoted by T,, U, and V, respectively. Thus if D;/D, =0, etc.,

(2.9“) T,j == SlSj =1 ZD,;D,-I — 2Djl)j,,
(2.9b) Uz'jh = SiSjSk = I“"“ 2Di1)j’ —_ 2Djl)j’ — ZDka’,
(2‘90} V:’jkl == SiSjSkSl — I"—" 2D,Di' _ 2Dij, —_ 2Dth, - 2D1Dl!.
In particular we define U, to be the following diagonal matrix of trace 0:
{2.10a) U= 8,00 S0 Soos =diag {1, —1, 1, —1, 1, —1}.

It the four vectors D;, D;, D,, D,, are mutually perpendicular D-vectors
of (2,6}, they span a four-space perpendicular to the plane of an equilateral
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triangle formed by three vertices of 2,,, whose centroid is at the origin.
Since there are 45 such triangles, there are 45 matrices V,, representing
reflections in a four space. However, each V, can be represented in 3 distinct
ways as a product of four factors S,. Thus for example we may define the
particular matrix V, in three ways as

(2'1Ob) Vo= 8300803080038333 = 8122324282248111 = S‘zuwaSueSeae .

Given onc such factorization of a V matrix, the eight S factors in the other
two factorizations are those not commutative with any of the factors of the
first factorization. These eight fall uniquely inte two sets of four mutually
permutable factors forming the second and third factorization of V.

To prove this statement, let us define V, by its first factorization in (2.10b).
Then we see that the second and third factorizations may be written as
S, V, S, and S, V, S, respectively. On the other hand, it is easily
verified that the product V, = 8,,,8,,08,035;,; transforms each of the twelve
8 factors of (2.10b) into itself, so in particular V, is commutative with §,,,
and S,,,. Hence the three products in (2.10b) are equal.

It is easily shown that if S;, S;, and S, are mutnally non-permutable
members of an associated set, then S;S; is representable in the three ways:

(2.11) 8,8, = 8,8, = SxSe, it (D/DND;DW)DYD,) =0,

Next consider an element of order 3 that can be represented as a product U,U;
in which each of the three S-factors of U, is non-permutable with just one
of the S-factors of U;, and conversely. Bach such U,U; is an element of
order 3 that has 108 distinet factorizations as a product of two such U factors.
Clearly, from any given factorization U.U;, 27 arise (including this one) by
applying (2.11) to each of the three pairs of non-permutable factors. But it
is not quite trivial to obtain the four apparently unrvelated factorizations of
which the following is an example:

(Si(}OSB{08001)(SQG6802()SG°2) = (82338323‘8332)(831iSlSiSi1‘3}
= (S S SZ?Z)(S31281328333) = (S2328322Sl12)(831381338223)'

23177324

(2.12)

To establish (2.12) however, it is only necessary to show that the left member
transforms S,,, S,pu+, into one of the equal products given by (2.11), whereas
this product transforms the factors of tne left member of (2.12) into those of
the three other forms according as p is 1, 2, or 3.
LeMMA 1. - Any matrix which is a product of factors S; can be reduced

to a product containing two less factors, under the following circumstances:

1. If it contains a repeated factor.

9, If it contains three factors from the same associated set.

3. If it contains four mutually permutable factors and a fifth that is
permutable with none of them.
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Proor: To prove (1) we note that S,5,S; is a single S matrix and that
S8, 8, .. SuIS, = (8;8,8)(8.8,8)) ... (8.8:8)).

Thus the n + 2 factors on the left are replaced by n factors on the right.
To prove (2), let S;, S;, Sy be members of an associated set. Then we can
replace S; by the equal S8.§;S;, inserting two factors, and then eliminate
two pairs of repeated factors S; S; and S, Sy by (1).

To prove (3), we let the product of the four mutually permutable factors
8,5;8,8, be V, and note that the fifth factor S, will appear in an alternate
factorization V= 8,5,8,8,. By introducing the identily as the product of
these eight factors, we can then cancel five repeated pairs by (1), reducing
the total number of factors by two.

DeriniTioN. - A complelely reduced product of S factors is defined to be
one in which no further reductions are possible by Lemma 1, and in which
apy two non-permutable § factors are either adjacent or separated by a
single § factor. Each pair of non-permutable factors shall be called a link.

THEOREM 2. - The trace of a completely reduced product of n S-factors
with { links is given by the formula

2.13) tr I S, =6 — 2n + L.
d==1
Proor: We expand the product in {2.13) by Theorem 1 as follows:

@.14) T (I—2D.D;)=I~ 22 D,D; + 43 D(D;D,D,;—8 S D,(D;D,)(D,Ds)Ds+..
i=1 i i< i<j<k

Taking traces we obtain

(2.15) trI.S;=6 — 2n+Z(2D,/D;)* — X (2D/D,)2D,;D,)(2Dy'D,) + ....
i=1 i< i<j<te

The first summation in (2.15) reduces to the number of links, since 2D;/D,;= =1
whenever S; and S; are non~-permutable, and 2D;D;= 0 otherwise. The sums
involving three products vanish, since we assumed that no three of the S,
belong to an associated sef. Finally the sums involving four or more preducts
vanish since we assumed that S; and S, are permutable, and hence D,D; =0,
whenever §; and S, are separated by two or more factors S; and S,. Thus
(2.13) is established, and the foundation is laid for a study of the classes of
conjugate elements in G.

3. The eclasses of conjugate elements of G

Since the even subgroup [3%%!] = G,, of order 25920, is known to have
ten ratiopal characters and five pairs of complex characters [16], it follows
that G will Lave ten pairs of associatcd characters belonging to the irreducible
representations F,, ¥}, F,, F;.. F,,, F}, , and five self associated characters

Annali di Matemaotica 12
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belonging to the irreducible representatives F,,,.. F,,. These characters are
already known for elements of the even subgroup, and they will be determined
for elements of the odd coset in § 5.

We also deduce that G will have 10+ 5 <«evens classes of conjugates
C,, C,,..C, consisting of elements that are products of an even number of
S factors, and 10 «odd » classes of conjugates C; ... C,,. The order of assigning
subscripts to the class symbols C, is arbitrary, but we shall assign C, to
the identity class, C,...C; and (.. C,, to those classes of elements whose
orders are powers of 2, C,...C,, and C,, ... C,, to those classes whose elements
have an order divisible by 3, and C,, and C,, respectively to the classes of
elements of orders 5 and 10.

Eighteen of the twenty-five classes may be described as #r-chains or
products of disjoint r-chains. By an r-chain we shall mean a product of r—1
S factors in which adjacent factors are linked (i. e. mon-permutable) and
non-adjacent factors are permutable. Such an element is illustrated by the
product of 7 — 1 transpositions (12)(23)..(r — 1 #) in the symmetric group.
By Theorem 2 its trace in the represeniation F, is the following:

3.1) Trace of r-chain =106 —7.

Six classes of conjugates €, C,,, C,, O, C, and C,; have elements formed
of r-chains for r=1, 2, 8, 4, 5, 6, respectively, and we shall denote such a
class by the symbol 1°~7r, which is analogous to the symbol for a permutation
on 6 symbols, with trace 6 —r, that permutes r symbols in a single cycle.

Two or more r—-chaing are called disjoint if each S-factor in one is
permutable with every S-factor in the other. T'welve additional classes of G
have elements representable as pioducts of disjoint chains. The order of such
an element is the least common multiple of the orders of the permutable
tactors, and the trace () of its matrix in ¥, is equal to 6 minus the sum of
the orders of its r-chains. For example, a prcduct of a 2-chain (single §
tactor) and two 3-chains, all three mutually disjeint, will have order 6 and
trace 6 — 2 — 3 — 3 = — 2, and we shall denote it by 1?2 3%

In general we shall characterize the classes of G by symbols of the form

n

(8.2) 12283743 ... xklllk“k, (2 koy = n),
where a = a,, § = a,, Y= o,, .. otc. are integers. Such a symbol in which «;
are non-negative integers is commonly used to characterize the class or
classes in a permutation group consisting of permutations leaving o, symbols
fixed (trace == a,), and containing «, cycles of k lettexrs. The mth power of
such a permutation is obtained by simply replacing each factor &% by (k/d)dos,
where d == (k, m), and combining exponents. The trace s, of the mth power
is given by the formula:

(8.3) sp=2Zka,, or s,=a, s,=a-+ 2B, s,=a-+ 3y, s,=a—+ 28 + 483, ete.
kim
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To find a symbol of the type (3.2) for a class of matrices, we may first
compute s,, directly, and then solve equation (3.3) for the a,. The solution
is facilitated by expanding the Euler function ®(k), and replacing the integers
==m in this expansion by the corresponding =t s,,. Thus for example:

(3.4a) 0(12) = 12(1 — %)(1 — é) —12—6— 442

(3.48) 126,, = S10— 83 — 8, — 8,

The numbers «, so obtained will not in general be non-negative. But if
the s, are rational integers (as they are for the group G) and if the group
element is conjugate to all these of ifs powers whose exponents are relatively
prime to its order, then it follows that s,g—1,, = 8,8, (mod p?), and hence that
the a, are integers [1§].

The eighteen classes obtained as products of one or more disjoint »-chains
are those in whose symbols all exponents except possibly «, (the trace) are
non-negative. We find the numbers of elements g, in these 18 classes 0, by
building up the products from left to right (taking the chains in decreasing
order of their length), multiplying together the numbers of ways each new
factor can be obtained, and dividing by the number of distinct ways of
representing a given group element as an ordered product of S-factors having
a given pattern of links. For the classes 1224, 1-22%4, and 1-226 a non-trivial
factor 3 enters the denominator because of the three-fold representation of V
in (2.10b), and for the class 1723 a non-trivial factor 4 in the denominator
arises from the identity (2.12). Any #-chain for » >>2 can be rewritten by
transforming the first S-factor by the product of the remaining » — 2 factors
and placing this transformed S-factor at the end, so for r > 2 each r-chain
introduces a factor r in the denominator of ¢, in (3.5). Also since «, equal
r—chains can be permuted among themselves in «, ! ways, the factor a, ! must
be divided out when » > 1. The expressions for g, are as follows:

(3.5} Class Number of elements = ga Class Number of elements = o

1: g, =1 = 1 1*2: g,, =36 = 36

133: g, = 36+20/3 = 240| 1%4: g, =36.20.9/4 = 1620

15: g, =536+20.9.4/5  =5184 6: gy, =36+20.9.4.1/6 = 4320

1:2°: g, = 36.15/21 = 270 2¢: g, =36.15 6/3! = 540

123: g,, = 86-20.6/3 —1440| 1722': g, =35.15.6-1/418) = 45

3*: g, =36.20.6.2/8°2! —= 480|17'2*3: g, = 36.20-6.3/3.2! =2160

24: g, =386.20.9.2/4  =5240| 1-°23: g,, = 36.20.6.2.8/3:21 = 1440
1-125: g,, = 36-20.9.4/5 =b184| 1-%3%: g,, = 36.20-6.2.3.2/3°3/(4) = 80
17226 : g,, = 36-20+9.4.1/6(3) = 1440 | 1-22*4 : g, == 86.20.9.2.1/4.21(3) = 540
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The remaining seven classes have elements thaf are not expressible as
products of S-factors with simple chain structure. The numbers of elements
of five of the classés not listed above are found in the published character
table of the group G,,,,, |16], together with the traces of their powers.
These are elements of orders 4, 6, 6, 9 and 12 respectively, with traces 2,
1, 1, 0, —1 respectively in the six-dimensional representation F,. The first
two classes contain produets of four S-factors with 4 and 3 links respectively,
whereas the next three contain products of six S-factors with 7, 6, and 5
links respectively. Just 5/24 of the elements of the group are left for the
two remaining classes of the odd coset, whereas only 1/12 of the order of
the group is left as a total for the sum of the squares of the fraces in
these classes. Hence these classes contain 1/8 and 1/12 of the group elements
respectively, and they include elements of order 8 and (2 rvespectively,
each permutable only with its own powers. Each is the product of five
S-factors, with four or five links respectively, so the traces are 0 and 1.
From a study of the traces of powers we determine the symbols for these
seven remaining classes as follows:

(3.56) 1°2-24*: g, = D40 123-16: g, == 1440 (four S-factors)
12-23-6%: g,, = 720 1”“234“6"‘()&2): g,, = 4320 (six S-factors)
3-19: g,,=bH760 12—3-146: g,, = 4320 {five S-factors)

2418 g,, == 6480.

It is interesting to mote that the required link structure for every class
is obtained by multiplying the fixed diagonal matrix U, of (2.10a) by the
matrices U; of C,, to obtain all even eclasses, or by the matrices 7, of G,
to obtain all odd classes. We shall prove the following theorem :

TarEoREM 3. - Every element of the simple subgroup G,y,, is a product
UU; of just two involutory elements U;, U; from the class C,; of G,
and every element of the odd coset is a product U;T; where I, lies in the
class C,. The elements T; and U; are defined to be products of two or three
mutually permutable reflections S, respectively. Hence each element of @
is a product of at most six factors .

Proo¥: We examine all the 540 products U,U; and the 270 products U, T},
where U, is defined by (2.10a), and classify them according to the relationship
of the factors of U; or T, to each of the three factors Sy, Sy, and Si,
of U,. To each S-factor of U; or T, we assign the value 2 if it is equal to
one of the three factors of U,, or the value I —2 if it is linked (non-per-
mutable) with 7 of the three factors. To save printing space we denote — 1
and —2 by 1 and 2, respectively. Furthermore, we indicate by 0° or 1* a
pair of S-factors both related in the same way to each of the factors of U,,
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but by 00 and 11 a pair not both linked with the same factors of U,. Thus
each product U,U; is classified by three of the symbols 2, 1, 0, 1, 2, and
each product U,T, by two of them. Fuarthermore, by Theorem 2, the trace
of U,U; or U,Ty is the sum of the numbers in its symbol.

Arranged in descending order, possible traces for the even and odd
classes are:

@6 Trace (U,U;): 6, 8,2,2 1,1, 1,0,0,0, —1, —1, —2, —2, —3
" Trace (U, Ty: 4, 2, 1,1, 0,00 —1, —2, —2.

Upon investigation it turns out that elements from different classes of
conjugates never have the same symbol, and that all classes are represented.
This fact proves Theorem 3. However, in nine cases two different symbols
represent elements of the same class. To illustrate this, consider the product
U, 8,,, S, S, which is represented by the symbol 111, and the produect
U, S,y 8.5y S;; which is represented by the symbol 10%. Both have trace 1.
Their squares

U, Sy, Sios S50 = Ss00 S0 and U, Sip Sout B = 8455 Sias

are represented by the symbols 221 and 111 respectively, and therefore have
trace 3. Yet there is only one class of elements having trace 3, namely 0,
and only one class of elements of trace 1 whose squares have frace 3,
namely the class C, of elements of order 6.

In Table I, we list for each class first its cycle symbol of type (3.2),
which automatically gives the order of the element and its trace « in the
six-dimensional representation, next its linkage symbol (or symbols) of the
type just described, that enables one to write down elements U,U; or U, T},
in the class, next a particular element U,U; or U,T; in the class, then the
number of elements g,, the order n, =51840/g, of the normalizer of an
element of C;, and finally the traces of the elements in various permutation
representations to be discussed later.
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4. Basie invariants of the G-dimensional orthogonal representation of G.
It is clear that the 6-dimensional orthogonal group F, has the quadratic
invariant
(4.1) A=x+y+ 2+ ¥ +x + y.

G Racaz [24] has indicated that a set of six independent basic invariants
of degrees 2, b, 6, 8 9, and 12 exist such that every rational invariant of
the group is rationally expressible in terms of these. He also notes that
since the product of these degrees is equal to the order of the group, these
invariants form a complete set. His method of finding invariants is to form
the power sums

3
(4-2) q)n :) 2‘1(5P21 - ':P'a’p.)n -+ ((P:‘,l - cplll)n -+ ((P”. - (P2P«)n
where
(4.3) Pim = %, €08 27m/3 + y, sin 2mm/3, i, m=1, 2, 3.

In general @, represents the sum of the nth powers of the projections
9i— @, of a vector of general position upon the lines joining the origin to
the 27 vertices (2.4) of the polytope 2,,. Certain of the ®,, namely ®, and @,
are found to vanish identically. ®, is proportional to @, @  to ®,®, and
similarly all @, except those for n=2, b, 6, 8, 9, 12 are found to be poly-
nomial functions of those of lower degree. These six give a complete set of
basic invariants, but the last three of them are quite complicated functions
of @;, y;, involving some large coefficients.

We propose to obtain expressions for a different complete set of basic
invariants of the degrees indicated, by introducing a new set of coordinates
p:. q; defined by the equations

(4.4) =ty = ;;wa — Y,

and then operating on the invariant 4 =p, + p, + p, by applying successively
the differential operators © and A, where

3 a3 1
{4.5a) @ :4:‘:‘1[391'(10!' — Pr) — 209 — Q)] 50— -+ 9 l’f(pj — P) — 3095 — q»)

i i 2q;
(ik) = (123), (231) or (312).
- 3 P 0 o2 ke
4.5b A=34"p 0 4 12¢, 0 4 p2 2,
(4.50) S i T T ligpag, TP 5

The operator © raises by 3 the degree in x;, y,, of a form to which it

is applied, and the LAPLACE operator A lowers the degree by 2. We shall
prove the following theorem :
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THEOREM 4. - A set of six basic invariants of degrees 2, 5, 8 6, 9, 12
for the orthogonal group F, are

(4.6) A=p,+p,+p,, ©4, 024, AB*4, OAG*'4, ©°40°4.

where the operators © and A are defined by (4.5). The Jacobian of these six
invariants, expressed as a funecfion of degree 36 in x,, »,, factors into the
36 linear factors [, and fu,.m:

(4.7) fim = — x,sin 2nm/3 + y, cos 2mm3, i, m=1, 2, 3,
fhmn::’:(P;k‘*“chm‘*“cPsny k; m, n= 1, 27 37

that vanish respectively on the 36 symmetry hyperplanes corresponding to
the hyperplane reflections S, of (2.7).

Proor: It is clear from (4.2) that the functions ®, are functions of ¢,
completely symmetrized with respect to the second subscript m. Since for
fixed ¢ the elementary symmetric funetions of ¢;,, are

(4.8) i+ i+ P =0, 95,95 + PisPir + PuPin = — 3Dif4,  9i,Pi,Pi; = 3¢i/4,

it follows that all rational invariants are rational functions of the six varia-
bles p;, g, of (4.4). Cyclic permutations of the subscripts ¢ in ¢;, leave the
funotions @, unchanged, whereas odd perwmutations change the sign of those
whose degree in 2;, y:, is odd, but leave unchanged those of even degree.
This symmetry is introdnced by using determinants of odd degree in ¢ and
permanents of even degree in g. For example we write

(4.9 B=1gpl | =q(p,— p)+ &0 —p,) + &(p, — P.)-
(4.10) | qp® qp | *= q,0Uq.Ps + ¢ 2:) + GNP+ 9. 05) + TPHE P, + 4-D,)-

The first of these is a determinant of degree 5 in x, y which we shall prove
to be the basic invariant B = 04/5. The second is a permanent of degree 12,
which resembles a determinant except for the fact that all six terms in its
expansion are added without changes of sign. This particular permanent is
not invariant under the group.

Every invariant of even degree is a linear combination of permanents
similar to (4.10) and every invariant of odd degree is a linear combination
of determinants similar to (4.9). A necessary and sufficient condition that
such forms in p;, gi, be invariant under the group is that they be invariant
under the single substitution S,,,, whose explicit form is

(411 S, wi =ai—28, Y =Y, where = (x, -+ @, + @®,)/3.

This is true because the variables p; and ¢; are individually invariant
under each of the nine reflections Syo, Sexey Seer, %=1, 2, 3, and we know
by Theorem 1 that these reflections together with Sy, generate the group.
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Since p; and ¢; are of degrees 2 and 3 in w;, y;, respectively, the only
determinant of degree 3 is | ¢ 11|, which vanishes, and the only non-vanishing
one of degree 5 is | gp1|. This must therefore be an invariant. We may

verify directly the invariance under (4.11) of 4 ::é lpllj* and B=|gpl],

as follows:

4.12) A’:% [P U =Ad—2s | @ll|*+2| 1]+ =4 — 128 + 125 = 4.

(4.120) B'=|q'p'1 =lqp 1|—2s[3q/dx p 1|+|q 3p/x1]]+2s[|aq® /3 p1|+-2|3q/xdp/dm 1]
~+ vanishing terms,
= B — 28| 2* — ¢* 20c*1 |+ | q 20 1 |] 4 287[| 2 20® + 9° 1 | + |(220® — 2¢%) 20 1]
=B—2s{|g/e2x*1 |+ | g2l | — 8s | g/ 2x1]] = B.

Under the orthogonal linear group F, the partial derivatives of an inva-
riant B with respect to the original variables a;, ¥;, transform in the same
manner as the coordinates themselves, and the scalar product of the gradients
of two invariants B and C is a new invariant. Expressed in terms of the
variables p;, ¢;, we have

3 3B3C 3B aC

—y 2oy L DY
VB vc_i:i du; am,-’*‘ayi i
—3 (OB s 9B dpi 9_Q+(9_1§§gi+§_1_3_§g_¢ o
21 \ow; das + 3wi Oy 3pi \ows 2 3y di) 3
3 ( B aB)ac

)20, (54284 B2
’quapi

+ (6%@ M

(4.13) éVB-VC: ec
where © is differential operator defined in (4.5a). Thus the operator ©
converts an invariant of degree  into a new one of degree n --8. Starting
with 4 of degree 2, we find ©4 = 5B (of degree 5). Then H= OB is a new
invariant of degree 8, and ©H is an invariant of degree 11.

Using the LAPL cE operator A, which assumes the form (4.55) in the
variables p;, ¢i, we get nothing new from A4 or B, since A4 =12, AB =0.
However, AH is an invariant of degree 6 that involves q explicitly, and is
therefore not proportional to A2 Cancelling a numerical factor 16, we set
C==AH/16. Then we find that the invariants ©C and A:B of degree 9 are
independent, and we take the simplest combination of these as J= (©C—34*B))9.
Finally setting K = 20J/3. we obtain the following six linearly independent
invariants of degree 12: 4% A3C, A*H, AB:, C*, K.

Annali di Matematica 13
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Expressions for some of the invariants in terms of permanents and
determinants are as follows:

(4.14)

1 , 1.,
%) 4 =3I plLI*. 4 L=3z|p*+|ppl*
5 B=04/5 =|gpll 7) AB=|qpp ! |+ |qpl]
6) O=AH/16 =|p’pl ;+—;}pppi"*ﬂ—%iq‘lll}“"-—ﬁqul ™.

1 1
8) H=0B =3P 1" —5 PP pi*t+2lg’p 11T —6lg gp LI +4lg g pl™

9) J=(0C—34°B)9=|qpp*l|+2]gpp*|+4|qgl}
1 . . 2 D DD 2 12 H 2
12) K =20J/3=5|p"p" L[ —|p'0"p* 435 |Ppp" "+ 4g p "+ 2 0" [ —6lg'ppl

— 10[gp*gp1[* + 41qp’qp* + 12| gpgpp|* — 101gp g p*|" + 4igqp*|*
— 8l [* +16]|g¢L " —8lg’¢q ™.

Expressions for the power sum invariants ®, in terms of 4, B, C, H, J, K,

in addition to ®, =®, =0, are

(4.15)

o+ =4 ®, +4.30 = 34*+ 164C+ 20H

043 =4 @;@)4‘33 — 4B+ J)2

@;@4.3 — B ®,4.3 = A5+ 104°C+ 304H -+ TOB?
0,448 —=A%420 @,,+(§1)4-32= 9ASB + 1147 + 4BC

@7—:@4. 3= AB  ©,+4.3' =3A4+90K+8C"+484%C+2504*H+11204B".

The particular invariants mentioned in Theorem 4 are also expressible
in terms of 4, B, C, H, J, K:
(4.16) A, ©4 = 5B, ©*A=05H, AO*4A =80C, OAD'A="T20J+ 484704
@°A0°4 = 1080K + 72404 + 144(04)".
To complete the proof of Theorem 4 we must show that the Jacobian
of the six functions 4, B, C, H, J, K, with respect to the variables u:, ¥i,

is not identically zero, and find its linear factors. A partial factorization is
afforded by the relations: :
A4BCHJK) JABCHJK) 3p,g) 2p.q:) 8P

4.17 = . 2
(@-17) Mooy, Yo, OD,9,P0.0.0:) e, y,) e y,) dw.y,)

ey

20; o, — Y] . .
ot 1 ek | = 2l B ) = RANEA)
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where f;,, are defined by (4.7). Now we argue that since the nine functions f;,,
are linear factors of the Jacobian, and since the Jacobian is invariant under
all the transformations of the group. it follows that all the 36 linear functions
equivalent to f;, under the grounp must be factors of this Jacobian. Hence
the first factor on the right of (4.17) is a constant multiple of the product
of the 27 linear funetions f,..n. To find this constant multiple and show that
it is not zero, we take a simple point (x, y) such as (1, 0, 0, 0, 0, 0) at which
the product of f,,» bas the non vanishing value 2-'!, and compare it with
the Jacobian of the six invariants with respect to the variables p;, ¢;, at
the point v, =1 q = 1/,31 Py=q =p,=¢ =0

The only terms from H, J, and K that have non vanishing partial deri-
vatives at this point are 2|¢°pl|* —6|gqgpl|* from H, 4|qg¢’l| from J,
and — 8{¢%1|* from K.

Thus for p, =p, =¢, = ¢, =0 we obtain

AdBCHJK) ABHCJK)

(4.18) NPADLPL) AP PPA LT
‘10 0 60 0
1 g 2 p 00
11— 29; P 00
SR A
0 —p, —6gp, —10g,—4q - 8¢
50 p, —6qp, —10¢, 4¢—8¢

Since q, == 1/3, the exact factorization of the Jacobian (4.17) is

2 3 2
(4.20) (ABCHJK)_ (16/8)( I 1f,;,,,)( 0 famn)

e,y 20,4,%,9 ) iy m= ey m, =t

We shall find that some knowledge of the invariants of the represen-
tation F, is helpful in reducing its KRONECKER powers and finding precisely
what variables undergo the different irreducible representations of G.

5. The irreducible characters and representations of [3% 2 1],

The following techniques which we denote by I, P, S, 0, M, may be
combined fo compute the irreducible characters of a group G over the com-
plex number field. (I) the analysis of characters induced by representations
of a subgroup; (P) the analysis of KRONECKER producis of two knowu
characters; (S) the analysis of the KRONECKER mth power of a known
character by first using Schur’s method of decomposing the mth power
into components, one for each partition of m, that are irreducible for the full
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linear group, and then further decomposing these « partition characters» for
the subgroup G; (0) the orthogon ility relations among irreducible group
characters y7 (cxpressed by the fact that y¥ #%2 is a unitary matrix); and
(M) the theory of modular characters of the indecomposable and irreducible
representations of G over a finite field whose characteristic p divides the order
of @. This modular theory is extensively developed in papers of R. BRAUER [4, 3].

MrreoDp I: For the group G,,,, we apply fir-t the method I, using
characters induced by the representations of the simple subgroup G, of order
20920 whose characters have been published [16]. From the ten real characters
of G, we obtain ten induced characters of @, each of which splits info an
associated pair y! 4 y™ (f=1,..0), such that x! =yi* for even classes
and i = — yi* for odd classes. Arbitrarily we designate by x’ those characters
having positive value in the class C, (=1'2), and by y** those with negative
values in this class. The five remaining characters of G, y“Y, .., X9 are
self associated, and are obtained for even classes by adding pairs of conjugate
complex characters of the subgroup @,. These self associated characters have
value 0 for odd classes. In order to see at a glance the degrees of characters
that arve involved in the various equations it will also be helpful to denote
a character by its degree (value for identity class) followed by a subscripf,
as follows.

(5.1) 1,146,6415,15,20,20,30,30,64,64,81,81,15,15,,24,24,60,60,,20,90,80,60,10,.

Those with subscripts s are self associated, whereas those with subscripts p
{or ¢) are positive for C,, and those with » (or m) are negative for (. The
characters 15, and 15, have the value — 1 in class C, whereas 15, and 15,,
are -3 in that class. In table II each character x* is shown as a column
vector,

All characters are known for the even subgroup, and the self-associated
characters vanish in the other classes. So it remains to compute the characters
15,, 20,, 30,, 64,, 81,, 15,, 24,, 60,, for the odd classes. Five of these can
be computed by analyzing the characters induced by the 1-character of
certain large subgroups of G. We decompose as follows the five transitive
permutation characters given in Table I, using orthogonality relations to find
irreducible components whose characters are already known.

b.2 N =1, -+ 6, + 20 =1, + 20, + 24,
X p » »
%E = 1, + 20, + 15, K0 =1+ 24, + 15,
X(”:%) — X(Bﬁ) e Gp -+ 3017 .

For a given class C,, ¥ is the number of vertices of 2., (or lines of
the cubic surface) left fixed, x{® is the number of elements of C; (or tri-
tangent planes of the cubic surface) left invariant, x{* the number of ele-

ments of C,, (or of double-sixes) left fixed, x{® the number of sextuples
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{half of a double-six) left fixed, and y{!» the number of subgroups of order 3
from class C,, that are left fixed, by an element in the given class of conju-
gates, We note that each equation in (5.2) involves only one new character,
since the character 6, has already been found.

MetHOD S: The « partition» characters which ScHUR [30] has shown to
be the irreducible components of the KRONECKER wm-th power of the full
linear group, will be denoted by using the corresponding partition as a
superscript. For the class whose cyele symbol is 19283745 .., as described in (3.2)
and (3.3) and whose character is y[!l = «, these characters have the following

values:

i ==l
(e ULy
eI R vy Nk B
A )Tl

+ 2 : + 3 +1 + 1
Xm:(“g )+cxﬁ~+«“{ X141 =(“4 >+(“2 >?>+ow+5+(ﬁ2 )

Applying these formulas to the known character y =6,, we obtain decom-
postiions as follows:

(5.4) 607 =15, 604 =15,
6 =1, + 20, 6201 = 15, +- 90,
6L = 20, 6 =1, + 20, + (24, -+ 60y)
61 = 6, + 64, 681 = 15, + 20, +- 30, + 64, + 81,

601 =6, + 20, +30, 601 =1, + 20, -+ 6, +- 64, + 20, + 15,.

From these decompositions the characters 15,, 20,, 20,, 64,, 30,, 15,, 90,,
81,, and 15, can be computed in succession without using the results of
the other methods. This serves as a check on method I and gives the new
characters 64, and 81,. By using the value of 24,, obtained from the per-
mutation character y“*, we see that 60, can also be computed. This finishes
the list of characters of [3**'] given in Table II. We check the complete
character table by the orthogonality relations which state that the matrix

X712 is a unitary matrix. Certain KRONECKER products may also he used
as checks. For example we have:

(85)  6,15,=30,+60,, 6,24, = 64,-+80,, 6,10, = 60,.
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MerHOD M: The modular theory could have been used directly to obtain
such characters as 81,, 81,, 64,, 64, and others. Since we shall use this
theory later for the much larger group [3%%* '], we illustrate the modular
theory here by two examples-

For the prime p == 3, there are thirteen p-singular classes of G containing
elemeunts whose orders are divisible by p, and twelve p-regular classes con-
taining elements whose orders are prime to 3 but divide 51840/3* = 275, For
only one regular class (, is the order #; of the normaljzer of an element
divisible by 3%, so the theory of BRAUER [4] shows that there is but one block
of characters of type O (mod 3}. This block contains the 1-character and all
characters with degrees not divisible by 3, besdes several others. Within this
block all the class multipliers gx%/x* vanish (mod 3} oxcept for class C,.
Actually all but two characters belong in this block, since the only characters
for which this congruence does not hold (mod 3) are the two characters 81,
and 81,, each of which forms a block of highest type. Characters of highest
type must vanish for all p-singular classes. In the p-regular classes, however,
these characters of degree 81 must in this case be odd for elements whose
orders are a power of 2; and they have the value 1 in the class 1.5, and
21 in the class 17*2.5, In each p-regular class therefore the character may
be written 3%.x; where 8% is the highest power of 3 dividing the order m,
of the normalizer of an element; and is x, an odd integer. We do this for
the odd coset, and use known values for the even subgroup. The three
orthogonality relations involving the sum of squares of the characters and
the scalar product with 1, and 6, now determine the characters 81, and 8l..
We have, for the twelve 3-regular classes:

m.: 34(640), 3%(128), 3(64), 3(32), 16, 10 3%(160), 3(32), (32), 3(32), (8), (10).
Op 8 8 3 8 1 1 3% Baja+3x af @ of

gp_ 8 & 3 o 1 1 0w o t®or T, Ty,

6625 =t et 0 60 " 32 IRT)!

pee_t 1t 1 1 1 @ e mm O D

O =e5+ 128 62 32 16 710 160" 52 BRI R
. .. 4w, 2e,— 20, o

{5.8) (Scalar product with 6, — 6,): 14664——3—3?——4*«.1.6:0.

Equation (5.6) is satisfied only if the positive integers x are all 1, and from
(5.7) and (5.8) we readily conclude that

(5.9) By, =ty = 0y = By = — iy = L.

The character values for 81, in the 3-regular classes of the odd coset must
be 9, —3, —1, 3, 1, —1 and in the 3-singular classes they are O, whereas
81, = — 81, in odd classes.
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As a second example of the modular theory, we consider the prime b,
for which there are 23 regular classes, of which two have normalizers of an
order g, divisible by D (the highest power of p dividing the group order).
There must be two blocks of type O (and defect 1), and each block contains 5
ordinary characters with degrees alternately congruent to 1 and — 1 (mod 5).
Within each block the sum of the three characters of degrees = 1 {mod 5) is
equal to the sum of the other two characters, except for the two H-singular
classes, Thus we obtain the identities
3 1, —24, 481, —~64,+6,=0 (Except in the two
(5.10) ( .
1,—24,+81,—64,+6,=0 classes 1.5 and 1-%2.5,

Characters in the first block have equal values in the two classes 1.5 and
1-'25, whereas those in the second block have values of opposite sign in
the two classes,

Sums of consecutive characters in either row of (5.10) are indecomposable
characters (mod 5). The remaining ordinary charecters whose degrees are
divisible by 5 are both indecomposable and irreducible (mod 5). It is clear
that 64, is connected with 6, and with 81, in the indecomposable characters
(mod 9) because the products

6,15, = 20, -+ 6,, +- 64,

5.11
o-11) 6,30, = 20, -+ 64, -+ 81, + 15,

must be sums of indecomposable characters (mod b), sinece 15, and 30, are
each indecomposable (mod 5).

The rules for combining characters, and the knowledge of the invariants
shed some light on the irreducible representations themselves. Thus the ScHUR
decompositions of the KRONECKER mth power [80] describe not only the
characters but the homogeneous functions of the variables «,..x, in our
basic six-dimensional representation 6, that undergo these representations.
To split these further for this particular finite group G we must make use
of the basic invariants of the group. Thus the representation 15, is a repre-
sentation induced on the PLUECKER coordinates of lines in 6-space, or on
such expressions as «;2l/0x; — a;01/3x;, where I is any invariant function
of ® ..»x,. The 56 homogeneous symmetric products of degree 3 belonging
to 6F1 can be resolved into a set of six such as :x;@E,w‘f that undergo the
representation 6,, a set of 20 combinations of second partial derivatives of
the fifth degree invariant B of (4.9) that undergo 20,, and a residual set
of 30 quantities belonging to 30,.
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TasLe 1I.
Character table of the group [3% * '] of order 51840.

Class g ),
1° Even classes 1| 1, 6, 15, 20, 30, 64, 81, 15, 24, 60,/ 20, 90, 80, 60, 10, 51840
|

1222 270 1 2—-1 4 2 0—-3 3 0 4/ —4-—-6 0 4 2 192
1—20 45 1—-2—-1 4-16 0 9 7 8 —4 4 —-6-16 12 —6 | 1152
122242 540 i 2 3 0-2 0-3—~1 0 0] 4 2 0 4 2| 96
24 3240 1 0—-1 60 O 0-—~1 ¢t O O, O 2 0 0-=2 16
13 240 1 3 3 5 3 4 0 0 0-3;, 2 0-4-—-6-—2| 216
12316 1440 i t1—-1 {-1 0 0-—-2 2-—-1/ -2 0 2 0 0] 36
1-1223 2160 i—1—-1 1t —-1 0 0 0 0 1 2 0 0-—2 2 24
3? 480 i1 0 0—-1 3-2 0O 3 3-3 2 O 2 0 4| 108
1-226 1440 1i-2 2 t1t—1 0 0 1t —-1—-1/-2 0 2 0 O] 36
1338 80 1-3 6 2 3-8 0—-3 6 6]—7 9—10 -3 1| 648
12-23-162 720 i1 1 2—-2—-1 0 0 1t 2 2| 1-3 2-3-3] 72
1-1234—16—1(12) 4320 i—1 0 0 1t 0 0—1t O 0, 1—1 0 1-—1 12
3-19 5760 i1 0 0-1t 0 t 0 0 O O0|—1 O0-—1 0 1 9
15 5184 i1 1.0 0 0—-1 t O-1 O O O O O O 10
1°2 Odd classes 36 | +1 4 5 10 10 16 9 5 4 10 1440
28 540 | +1 0 -3 2-—-2 0-3 1 4 2 96
1%4 620 |41 2 1 2 0 0—1—1 0—2| @ e | 52
1-22% 540 | +1—2 1 2—4 0 8 3 03| fes vanh for odd ) gg
24—18 6480 | +1 0 —1 O O O 1 —1 O O} racters are obtained 8
from the first ten by
125 1440 [ 41 1 —1 1 1 -2 0 2 —2 1| multiplying these cha- 36
1-e23° 1440 |41 —2 2 1 12 0—1 1 1| "eemimormedtlog
6 4320 +1 0 0—t 1 O O 1 1-—1 12
123146 4320/ +1 1 1 —1-—-1 0 0 0 0O 1 12
1126 5184 |+1—-1 0 0 0 1 -1 O0-—1 O 10
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6. Characters of the group of automorphisms of the 28 bitangents to a
plane gquartic curve of genus three.

The group of automorphisms of the 28 bitangents to a plane gquartic
curve is a simple group H, of order 28 > 51840, called [3% * '] by CoXETER [12]
and A4(6, 2} by Dicksox [15]. It contains as its subgroup leaving one bitangent
fixed, the group G =[3%*1!] of the 27 lines on the cubic surface. The tangent
plane at a general point P of a cubic surface, and the 27 planes each passing
through P and one of the lines of the cubic surface, meet an arbitrary
section plane in the 28 bitangents. The plane quartic curve to which they
are tangent is cut by the section plane from the quartic cone whose elements
pass through P and are tangent to the cubic surface. The direct product of
this gronp H, and a group of order 2 is a group H, of order 2,903,040,
called [3%*%!] by COXETER, which is the group of symmetries of the uniform
7-dimensional polytope 3,, of 56 vertices, and is also the group associated
with the exceptional LI group E,.

A set of 56 vertices for the polytope 3,, [see 11, p. 186] are

(6.1) (=1, 0, =1, ==1, 0, 0, 0)
0, =1, 0, =1, ==1, 0, 0), etc.

the rest being obtained by cyclical permutations on the seven coordinates,
Pairs of opposite vertices correspond to the 28 bitangents. Each vertex is at
distance 2 from its 27 nearest meighbors, and the 56 >< 27/2 segments joining
neighboring vertices are parallel in sets of twelve to the normals to 63
symmetry hyperplanes. There are 135 ways of choosing seven of these hyper-
planes as mutually orthogonal coordinate hyperplanes, and each hyperplane
lies in 15 of these sets of seven. Each hyperplane contains 16 pairs of oppo-
site vertices that correspond to a KuMMER set [20] of 16 bitangents, and the
corresponding hyperplane reflection S interchanges in pairs those vertices
that correspond to lines of a double six on the cubic surface. From the
coordinates (6.1) it is clear that 56 vertices fall into sets of eight that form
the vertices of a cube. Each pair of orthogonal hyperplanes determines a
unigue third, forming a «cubic set», such that their three normals are
parallel to the edges of one of the cubes. Exactly twelve more hyperplanes
are orthogonal to each of the three in a cubic set, and contain the vertices
of this cube; and these form three sets of four mutually orthogonal hyper-
planes, whose reflections are related as the three distinct sets of S factors
in (2.100) for an element V of class C,. We denote by — V, the product of
the reflections in three hyperplanes of a cubic set. These involutory group
elements — V, are not conjugate to the involutory elements U; of classes C,,,
that are products of reflections in three mutually orthogonal hyperplanes
having four pairs of opposite vertices in common. Similarly, products of
reflections in four mutually orthogonal hperplanes are of two types Vand — U,

Annali di Matematica 14
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that belong to different classes of conjugates in H,. Both classes, however
have the same cycle symbol 1-'2' in the 7-dimensional representation {®
of H,. The fact that only odd powers of elements of the classes C, to C,;
can lie in these classes may be used to distinguish the classes €, and G
in H,. Similar considerations distinguish the classes C,, and C,, both having
the cycle symbol 124, and the classes C,, and C,,, both having the symbol 126,

We wish to determine the table of characters of the group H,. (From
it the character table for H could easily be found by the direct product
method). First we need to identify the classes of conjugates of H,, of which
there are 30. The first 15 classes are taken as those containing elements of
the various even classes of G. To change the cycle symbol from 6 to 7
dimensions we simply add 1 fo the exponent «. The classes C, .. C,, are as
follows.

17, 1528, 112+ (type V), 1°2—242, 124, 1'3, 132316, 23, 13, 1-'26,

6.2
(6.20) | g0 1e9-e5-16, 234—16-(12), 139, 1.

Classes C,, to C,, of H, are obtained from the odd classes of G by
multiplying each of their elements by — 1, the inversion in the origin. Each
product U;Ty in G is replaced by (— UjT, in H,, so these elements are still
products of at most sixz S. factors. Multiplication by — 1 takes a complete set
of (2k)th roots of unity into itself, buf changes a set of kth roots, when k
is odd, into the (2k)th roots that are not kth roots. Hence to obtain the new
cycle symbol for one of the classes C,, to C,;, we first increase a by 1, and
then replace each power k7 of an odd order cycle by k= (2k)», and combine
exponents. The new class symbols for C,; to C,; in H, are

1-325, 1—19¢ (type — U}, 1-°2%4, 124, 1—'2'4—18, 1-2293—16,

(.20 1 56, 1126, 1-2234, 25-(10)

Denoting by g, and & respectively the number of elements of G and H,
in class C, of H,, and denoting by =, and N, the orders of the corresponding
normalizers of an element in G or in H,, the equation

(6.3) 28gy /I =1 + ¥ = {0+ (P,

determines the numbers %,, in those 25 classes of H, where g == 0, in terms
of the character of the permutation group P,, on the 28 cosets of G in H,
(or the 28 bitangents). This character exceeds by one the subgroup character
¥@" which was given in Table I. Since P, is doubly transitive, 3“7 is a
simple irreducible character of H, which we shall call T It has the value
— 1 for the classes of H, that are not represented in G. By the orthogonality
relations for group characters, we may compute the fractional contribution
of these unknown classes to the I-character (' and to the 7-dimensional
character {®, and its square. We divide the sum of these characters for the
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elements of known classes by the order of H, and subfract from O (or 1), to
obtain the fractional sum (or sum of squares).

1 1 5 1

AR 7= 2 g sre
5198 + 3 4~ Fe=2 1/Ni  for unknown classes C,,
1 1 1
6.4 — i — g+ =2 ({ON,
6.4 518w =2 > > >
1 1 1
Sl e = 3 (@)
51t s 2 EPFN >

Thus we are led to five additional classes, containing respectively 1/15, 1/24,
1/128. 1/16 and 1/7 of the elements of H,, and having the traces — 1, 0,
—1, 1, O respectively in the 7-dimensional {®. A product of four S factors
forming a d-chain, and two other S-factors permutable with these and forming
a 3-chain, can be constructed in the 7-space, giving a class of elements 1—'35
of order fifteen that are permntable only with their own powers. Six S factors
can also be put together to form a 7-chain, which effects a cyclic permutation
of the seven coordinates in (6.1), and represents a class of elements of order 7.
An 8-chain of seven S factors can also be constructed, in which the first,
third, fifth and seventh factors are permutable with each other. By moving
these four factors to the left to form a product of type V, and then replacing
them by a set of three factors equal to — V, we obtain an element of order
eight and type 12-'8. Its normalizer is of order 16. Its square, of type 1—'4%
is not represented in @&, and belongs to a new class. Finally the product of
a 3-chain and 4-chain, mutually disjoint, gives a new element of H of order 12
whose negative is of type 3-'46 in H,. The traces in {® check as they
should, and we have the following classes :

(6.D) New classes in H,: 17'3b, 3746, 1—'4% 128, T,
Order of normalizer N,: 15, 24, 128, 16, 7,

This completes the analysis of 30 classes of conjugates in H,.

The thirty irreducible characters of H, (over the field of complex numbers)
will be denoted by (! (i=1,..., 30), but in order to follow the computations
more easily we shall also demote each character by attaching to the degree
a subscript a, b or ¢, using b and c¢ respectively for a second or third
character of the same degree. As before we shall use a partition symbol in
square brackets as a superscript to denote the (possibly reducible) character
corresponding to ScHUR'S irreducible components of the KroNECKER mth
power of the full linear group. The derivation of the 30 irreducible characters
may be carried out in three stages using different methods of attack that
are available.

In the first stage, knowing the 1-character {¥ = 1,, and the 7-dimensional
character {® =7,, we use the method S, computing ScHUR s partition
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components of the KRONECKER m~th power by formulas (5.3) and then
splitting off known components identified by use of the orthogonality relations.
(The multiplicity of an irreducible {* as a component of a reducible { is the
mean value of (' averaged over all group elements). Six new characters
may be isolated in this way as follows:

(6:6) T =21, @ =1, +2,
T = 385, 00 =7, + 103,

21 =21,+-189, 21 =1,+4-27,+ 35, +168,.

In each of these decompositions the last character is the only new ome, so
its value is uniquely determined. The first stage ends when we can no longer
obtain decompositions involving only one new character.

In the second stage we use the method I of induced representations.

First we treat the eight known irreducible characters of H, as possibly
reducible characters for the subgroup @, and reduce them by use of the
character table of G (Table II). Then from certain of the irreducible cha-
racters ¥/ of G which appear in these decompositions of {* we form and
reduce the induced character Iy of H, defined by the formula

(6.7) Iy = (1 ++ 270 = E myG, for H,. {See Table IV)

The permutation character 1, -+ 27, of H, represents H, by permutations
on the cosets of its subgroup &, and the non-negative integers my;; indicate
both the multiplicity with which (! occurs as a component of the induced
character I}/, and the equal multiplicity with which %/ occurs as a compo-
nent of {! when {! is restricted to @. (This reciprocal formulation is not
quite general, but holds in our case since the classes of H, de nof split in G).
Seven new characters are obtained as follows:

(6.8) Reduction of {* in G Reduction of induced Iy’ in H,
l,=1, in G I=1,+ 27, {definition)
7,=1,464 in G I, =17, 21,

27,=1,+6, -+ 20, in G 16, =17, + 105, + 56,
21,=6,+ 15, in @ 16, =27, + 21,+ 120,
35, = 15, -+ 20, in @  I15,=21, + 189, +- 210,

105, == 6, +- 15s + 20n +64» in G I15, = 35, + 105, + 280,

189, = 15, + 64, + 20, + 90, in G 120, =35, + 189, + 336,

168, = 20, + 64, + 24, +- 60, in G 120, = 27, + 168, 1+ 120, -+- 210, -+ 35,.
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The method of forming and reducing KRONECKER products of 7, with each
of the known characters of small degree serves as a check at this stage,
and yields one new character 189,, bringing the total number of known
characters up to 16.

6.9) 7421, =17, 35, + 105, 14X 21, =27, + 120,
T X2, =7, 105, +21,4-56,, 7, XX b6, = 27, + 120, - 210, 4 35,
7,35, =21, + 35, + 189, 7,> 35, = 56, - 189,

A complete tabulation of products §'>< ¢/ that contain 7, as a component,
or of producfs 7,(' that contain {/ as a component is a given in Table V
at the end of this paper, based on the complete table of characters of H,
(Table IIl). Note that if {' is a component of the KrRoNECKER m-th power
of 7,, and if {'¢/ contains 7,, then {7 must be a component of either the
(m — 1)th power or the (m —+ 1)th power of 7,. Thus the characters fall into
sets according to the least power of 7, that contains them. Thus far we have
obtained all components of the KRONECKER square, -cube, and fourth power
of 7,, and some from the fifth power (280,, 336, and 189,). But we have
reached a point where products of known characters of small degree, either
involve no new characters or at least two that must somehow be separated.

In the third stage we use the theory of modular characters combined
with the induction method I. BRAUER [4] has shown that if p% is the highest
power of a prime p that divides the order p%y’ of a finite group, then any
ordinary irreducible character (' whose degree z' is divisible by p® remains
irreducible (mod p) and forms a block of the highest kind, which is also an
indecomposable character (mod p). Next, an ordinary irreducible character {’
whose degree z* is divisible by p4—* but not by p® belongs to a block of characters
of defect 1 or type @ — 1, all of whose ordinary characters have this property
and all of which have equal values (mod p) for the class multipliers hﬂi;’zﬂ
For a group such as the group H, that we are studying, in which each
family of p-conjugate classes consists of a single class, and therefore each
family of p-conjugate irreducible representations has but one member,
BRAUER’ s theorems show that a block of defect one consists of a chain of p
ordinary irreducible representations {!. The degree 2! of each is divisible
by p*~* but not by p* and the sum of characters of two consecutive members
in the chain is an indecomposable character (mod p) which vanishes for
p-singular classes (classes of elements whose orders are divisible by p) and
has a value in a p-regular class C) that is divisible by the highest power
of p dividing N;. The ordinary irreducible representations at the ends of the
chain are irreducible (mod p), and the others contain two (mod p) irreducible
components, one ir common with each of its neighbors [5]. If we divide the
ordinary characters of a block of defect 1 into two sets, so that adjacent
members of the chain belong in different sets, then those characters in the
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same set have equal values in p-singular classes whereas two in opposite
sets have values of sum zero in any p-singular class. Furthermore in any
p-regalar class the sum of the characters of one set is equal to the sum of
those in the other set. If @ =1, the degrees in the one set are = 1 {mod p)
and those in the other ave = — 1 (mod p), and the number of blocks of type O
is equal to the number of p-regular classes for which N> =0 (mod p).
When we apply this theory to the group H,, we find that there are
three blocks of type O (mod 5) in which the characters for the p-singular
classes 15, 1—'35 and 25-'10 ave respectively == (1, 1, 1), &=(2, — 1, 0) and
=+{1, 1, — 1). BEach of these blocks contains 5 ordinary irreducible characters,
and there remain fiftecn characters of highest type with degrees divisible
by 5. For the prime 3 we know that the characters 189, and 189, belong to
a block of defect 1 which must contain a third ordinary character 378,, and
that the character 27, belongs to a second block of defect 1 (mod 3). Thus
we obtain five new characters 189,, 378,, 216,, 512,, and 84, as follows:

Relation in p-regular classes Relation in p-singunlar classes
(6.10a) p==> 21,—189,4-336,—189, +21,=0 (1,1,—1)=21,=—189,=336,= - 189,=21,
(6.100) p=3 189, — 378, - 189, =0 189, = — 378, = 189,
(6.10¢) p=3 27, — 216, + 189, =0 27, = — 216, = 189,
(6.10d) p==H 27,—168,4-512,—378,+7,=0 (2, —1,0)=27,=—168,=512,=—378,=7,
(6.10e) p=b 1,~—84,-+216,—189, + 56, =0 (1,1, 1)=1,=—84,=216,=—189,=56, .
The three characters of defect 1 {mod 3) in each of the blocks (6.10b) and
(6.10¢) are distributed in three different blocks of defect 1 (mod 5). That the
ordinary characters in each of the {mod 5) blocks (6.10a), {6.10d) and (6.10¢)
are arranged so that the sum of consecutive characters is a modular inde-
composable character (mod D), is verified by analyzing into blocks the

following characters of representations induced in H,, by (mod 5 indecom.
posable representations of G.

115, =(21, -+ 189 120, = (189 + 336,)

115,=(189, + 216,) -+ 15, I, +-24,) =(1a+-845) + (2Ta + 168,) +420,
730, =(189,4-56,)+-280,4+-315,  I(L+24,) = (21,-+-189) +(7,+378,)+105,
790, =(189% + 3364) +- (5124 +- 378a) +- 280a + 420u -+ 403,

6.11

Not only do we conclude from (6.11) that the pairs in parentheses form
indecomposable characters (mod 5) but we obtain from (6.11) the five new
characters 15,, 105,, 31b,, 405, and 420,. We now have all seven of the cha-
racters that belong to the single block of defect 1 {mod 7). By examining
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the produets 7, 7,, 7a><21,, (above 6.9), 15,> 56, (below 6.13} and the
induced representations 115, and I90, in (6.11) it is clear that

6.12) 1, — 27, + 120, — 405, -+ 512, — 216, -+- 15, = 0, except in class 7

and that the sum of two adjacent characters in (6.12) is an indecomposable
character (mod 7). The character 512, is of highest type (mod 2), and 405,
is of highest type (mod 3).

The character 15, remains irreducibile and is equal to 15,, for elements
of the subgroup G. From it we readily obtain certain KRONEOKER products
from which all the remaining characters can be found.

150> Ta =105,,  1509= 105,, 158 = 1, + 35, + 84,
(6.13) 15,3 21, = 815,, 15, > 21, = 35, + 280,
154 3< 56, = 105, -+ (120, + 405,) -+ 210,, I10, = 210, + 70,

The list of the ordinary irreducible characters of the simple group H,, also
known as [3* %) or A(6, 2), is now complete, and the values of the characters
are collected in Table III. All the corresponding representations can be
written with real coefficients, since the sum of the degrees is 5104, a number
equal to the number of group elements that satisfy S* =1

At this point we may indicate briefly the irreducible modular characters,
excluding those of highest type (mod p), since they are the same as the
ordinary irreducible characters whose degrees are divisible by the exact
prime power p*® that divides the group order. From our previous discussion
we derive the following values in p-regular classes for certain irreducible
modular characters:

(6.14a) For p="T: 1, 27,—1,, 120,— 274+ 14, 512,—216,+ 154, 216,—15,, 15,

(6.14B) For p=>5: 1,, 84, — 1,, 189, — 56,, 56,.
7., 168, — 274, 378 — Ta, Ta.
21,, 189, — 21,, 189, — 21,, 21,.

(6.14c) For p=3: 189,, 189,; 27,, 189,.
There remains a single block of lowest type (mod 3) containing 23 ordi-

nary characters and 10 modular characters, whose values for p-regular
classes are

(6.14d) For p =3: 1,, Ta, 15, — la, 21,4, 35,, 35,, 56, — 74, 105, — 15a+1,,
105, — 7., 2804 — 85, — 564 —+ Ta.
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The indecomposable character (mod 3) that contains the l-character as one
constituent is 1, 4 120, + 512, + 15,, and another indecomposable character
whose degree is a small multiple‘ of 81 is 85, + 168, + 84, 4 280,. The rest
each contain more than four ordinary characters as constituents.

Finally for the prime 2, there remains a single block of lowest type
containing 29 ordinary characters and 7 modular characters, whose values
for p-regular classes are

(6.14¢) For p=2: 14, To—1lg, 154~ 14, 21,—1,, 70,, 105,—T7q, 280,—1054+ 1.

The indecomposable modular character that contains the I-character is of
degree 2°3* = 4608, and it contains the sixteen ordinary characters of odd
degree once each, and contains b6,, 120,, 210,, 280,, 336, and 420, twice
each. All the (mod 2) indecomposable constituents of this block have a fairly
complicated decomposition in a field of characteristic 0. Special mention
should be made, however, of the 6-dimensional irreducible representation
(mod 2) since this arises in Dickson’s [15] definition of the group as the
simple group A(6, 2) of order (26 — 1)2°%(2* — 1)2%2° — 1)2.

‘We conclude this study of the characters of the group [3%* '] by showing
that this group has only eight classes of conjugate proper subgroups of
order greater than 9000, of which five are classes of maximal subgroups.
These subgroups include the reflection groups [3%*!] and [3%*' '] and their
even subgroups of index 2, the symmetric and alternating groups of degree 8,
and two oclasses of groups of the orders 2°3°7 = 12096 and 2°37 = 10752
respectively. A subgroup of this last class leaves fixed ome of the 135 pos-
sible products of seven S-factors that represent the imversion in the origin
in the group [3%%'].

We show that no other large subgroups exist by forming all possible
.sums of irreducible characters of H, that satisfy the following necessary
conditions for the character v of a tramsitive permutation representation
(#=1) of H,.

1. - A tramsitive permutation character % contains the 1l-character
just once, and contains one or more other irreducible characters with non-
negative multiplicity.

2. - The degree of v is a factor of the group order, and all the cha-
racter values are non-negative infegers.

3. - In no case may the value of % for an element of the group
exceed its value for an integral power of the element.

Subject to those conditions the only possibilities for permutation cha-
racters of degree < 160 are the following eight, which actually are induced
by subgroups.
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(6.15) Permutation character Degree Order of subgroup Type of subgroup

1, + 27, 28 51840 (8% % 4

(1o 4+ 274) + T4 + 21, 56 25920 (3% % 1]

1s + 35, 36 40320 [3°] (symmetric group)
(1a + 35,) + 21, + 15, 72 20160 [8%] (alternating group)
1, + 27,435, 63 23040 [3% 41

(lo + 274+ 85,) + T, 4+ 56, 126 11520 3% 4 1]

1a + 35, + 84, 120 12096 Contains HO(3, 9}

1 + 35, + 84, + 15, 135 10752

By working out its character table, we find that the subgroup of index 120
contains the simple group HO(3, 9) of order 6048 as an invariant subgroup
of index 2. To this simple subgroup of H, corresponds the permutation
character 1, + 35, 4+ 84, + 15, 4+ 105,.
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Class

symbel size: h)

1 1 1,
1022 §7 1
1-124V)  8%B7 1
132242 213957 1
124 243457 1
143 2837 1
12236 2°3*H7 1
2°3 2°3°57 1
13 27367 1
1—26 2'3°57 1
1—23% 257 1
1°2-23—16® 203*7 1
234-16-4(12) 273%57 1
1319 23%7 1
125 28387 1
1-52¢ 3*7 1
1—24-0U) 2°3%7 1
13234 233%57 1
124 2°3%B7 1
1-12724—8  2°3*B7 1
1—22%3—-16  2°3°57 1
132 278367 1
1-126 273%7 1
1-%234 283%H7 1
25-4(10) 2347 1
1—135 2°3%7 1
3—446 20367 1
1—44* 20357 1
12—18 2°3457 1
7 2°3*5 1

7
3
—1
3
i

4
2
0
1
-1

—2
2

0
1
2

-1

—1

—1
1
0

TasLe 111
Character table of the group [3% %]’ of order 1,451,520

CHARACTERS OF ODD DEGREE

27, 21, 35, 105,
7 1 -5 5
3 -8 3 1
3 5 7 5
1 —1 —1 —1
9 6 5 15
5 0 -3 1
1 —2 1 —1
0 0 2 —3
0 0 0 1
0 8 —1 —38
0o 3 3 1
0 —1 1 —1
0 0—1 0
2 1 0 0
15 9 —b—35
3 -3 3 1
5 3 —1 —b
{ —1 —1 —1
1 -1 1 1
3 0 1 1
0 0 —2 1
0 0 0 1
1 2 —1 —1
0—1 0 0

—1 1 0 0

1 0 —1 1

-1 1 -1 1

-1 1 1 —1

—-1 0 0 O

189, 21,
11 5
3 5
9 1
1 1
9 6
-3 2
12
0 0
0 2
0 3
0 —1
0 1
0 0
—1 1
21 —11
—3 -3
1 —3
1 —3
—1 -1
—3 =2
0 —2
0 0
1 0
1 -1
—1 1
1 0
11
—1 —1
0 0

35,

7
11

S O ow

Ay

<

O e I = O

189, 189, 15, 105,
13 1 3 9
—3 21 7 =T
—3 —83 —1 —3
1 —1 1 1
9 9 0 0
—3 3 -2 —4
t 1 0 0
0 0 3 3
0 0 1 —1
0 0-3 &6
0 0 1 2
0 0—1 0
0 0 0 0
—1 —1 0 0
51 —39 —5 25
~-83 —8—1 1
1 —1 1 -3
1 -5 —3 —3
1 —1 1 —1
-3 838-2 4
0 0 1 1
0 0-—1 1
1 1 0 0
—1 1 0 0
—1 —1 0 ©
1 —1—-2 0
-3 1 3 -3
1 1 -1 —1
0 0 1 0

105, 315, 405,
-3 3 —3
17 —21 —27
—3 —5 —3
-1 —1 1
0 0 0
2 0 0
0 0 0
3 0 0
—1 0 0
6 —9 0
2 3 0
0 1 0
0 0 0
0 0 0
5 —45 45
-7 3 —3
—1 3 —3
3 3 -3
1 —1
2 0 0
-1 0 0
-1 0 0
0 0 0
0 0 0
0 0 0
2 0 0
1 8 5
—1 —1 1
0 0 —1
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Tasue IIL
Character table of the group 3[>* '] (continued)

N

CHARACTERS OF EVEN DEGREE

1,451,520

70,

210,

280, 336, 216, b512, 378, 84, 420, 280,
—16 12

210,

120,

1,536
4,608

6

10

—8

~14 —10

24

24

16

384

32

2,160

10 -9  —16 -9 —6 0 —b -16 —b
—92 —

15
—1

144

—3

—2

48
108

—1

-2

—1

36

—2

648

—8 —6

—3

72
12

30

—1

—2

23,040

10 —10

40
2

—30 20

—24

—16

50 —40

40

40 —24

384

192

—2

192

16

144

36

12
24
10

15
24
128

16
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Irreducible components in the subgroup G = [3%%!] of the characters
of H,=[3%%1], and irreducible components in H, of the characters induced
by those of G.

Chara-

cters

TaBLE 1V,

1, 27,
7 21,

3D
105,

189,

21,

35b '
189,

189,

15,

105, 315, 168,
105, 405, 56,

120, 280, 216,
210, 336, 512,

378, 420,
84, 280,

210,

70«,

6412

81,
15,
15,,
24,

24,

60,
60,,
20,
90,
80,
60,
10,

[ Ty

[ GG Y

Each row indicates the decomposition of the character of H, induced by the
character of G at the left. Each column indicates the decomposition in G of
the irreducible character of H, at the top. (Note that no multiplicities
exceed 1, in accordance with LITTLEWOOD’ s conjecture, [26], for representa-

tions induced by a maximal subgroup G of H,).
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TAaBLE V.
Kronecker products that contain the charaecter 7,

l 1, x ! —
T 7. x 0x
I_E’Ct-'_%lg_ X X X
216a4| 21, x x
0|21 x
1054 564 f xox
X X 105,105, x x X X
p-9 4050;1{35&} X
X x  (1612,))} 35y X
X X x 2803120, X X X
X X x (2104)1210, X X X X X
x X X 420,168, X X X x
o X 84,189, X X X
X X X T 189,
X X 189,
X X X x 280,
X X X X X X 315,
X X X (3364)
X X X X X X (3784)

KRrONECKER products that contain the character 7, may be read from
this table as follows. Two characters {f and {/ (indicated by their degrees)
are associated with each x in the fable, one nearest to the x in the same
row and the other in the same column. They are such that the product {*§/
contains 7, as a component, and the product 7,{* contains {/ as a component.
The KrRONECKER squares of the characters 35,, 336,, 378« and 210, each
contain 7, once, and 512,><b512, contains 7, twice. Decompositions such as
(6.9) can all be read from the table. Characters above the diagonal steps are
components of one of the first four KRONECKER powers of 7,, those at the
lower right are found in the KroNEckER fifth power (but in nol ower power)
and those below the steps are first found in the sixth and seventh powers of 7,.
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