Pseudo-Differential Operators (${ }^{*}$) ${ }^{(1)}$.

S. Zaidman (Montréal, Canada)

Summary. - We present here a number of results on some aspects of Kohn-Nirenberg's theory of pseudo-differential operators. We hope that some parts of Kohn-Nirenberg's paper [1] are presented here in a more detailed and explicit form; this could help a larger audience to understand their ideas and methods.

1. - Preliminaries.

We assume basic knowledge of distribution theory; the spaces S, S^{\prime}, Hs; the Fourier transform in these spaces; we use the usual notations:

$$
\begin{gathered}
D_{s}=-i \frac{\partial}{\partial x_{s}}, \quad D=\left(D_{1}, \ldots, D_{n}\right), \quad D^{\alpha}=D_{1}^{\alpha_{1}}, \ldots, D_{n}^{\alpha_{n}}, \quad \xi^{\alpha}=\xi_{1}^{\alpha_{1}}, \ldots, \xi_{n}^{\alpha_{n}}, \quad \partial_{s}=\frac{\partial}{\partial \xi_{s}} \\
\partial=\left(\partial_{1}, \ldots, \partial_{n}\right), \quad \alpha=\left(\alpha_{1}, \ldots, \alpha_{n}\right), \quad|\alpha|=\alpha_{1}+\ldots+\alpha_{n}, \quad\| \|_{s}=\| \|_{H s} \\
\xi=\left(\xi_{1}, \ldots, \xi_{n}\right), \quad|\xi|^{2}=\xi_{1}^{2}+\ldots+\xi_{n}^{2}
\end{gathered}
$$

We say that the linear operator L, from S into S^{\prime} is of order r, if $\|L u\|_{s} \leqslant C\|u\|_{s+r}$, $\forall u \in S$ and for any real s.

We define the Friedrichs operator $\varphi(D) ; \varphi(D) u=\mathcal{F}^{-1}(\varphi(\xi) \tilde{u}(\xi))$.
We assume that $\varphi(\xi)$ applies S in $S^{\prime} ; \mathscr{F} u=\tilde{u}$ is the direct Fourier transform, \mathcal{F}^{-1} the inverse Fourier transform.

Example 1. - Let us consider a measurable function $\varphi(\xi)$ such that, $\forall \xi \in R^{n}$ $|\varphi(\xi)| \leqslant C\left(1+|\xi|^{2}\right)^{\sigma}$; it maps S into S^{\prime}.

If $u \in S, \Rightarrow \tilde{u} \in \mathcal{S}$ and $|\varphi(\xi) \tilde{u}(\xi)| \leqslant C_{v}\left(1+|\xi|^{2}\right)^{\sigma-2}, \forall p=1,2, \ldots$ Hence

$$
\mathfrak{F}^{-1}(\varphi(\xi) \tilde{u}(\xi))=(2 \pi)^{-n i 2} \int \exp (i x \cdot \xi) \varphi(\xi) \tilde{u}(\xi) d \xi
$$

is an absolutely convergent integral, and $\varphi(D) u$ is continuous and bounded on $x \in R^{n}$.
We have estimates:

$$
\|\varphi(D) u\|_{s}^{2}=\int\left(1+|\xi|^{2}\right)|\varphi(\xi)|^{2}|\tilde{u}(\xi)|^{2} d \xi \leqslant C \int\left(1+|\xi|^{2}\right)^{s+2 \sigma}|\tilde{u}(\xi)|^{2} d \xi=C\|u\|^{2}, 2 \sigma
$$

Hence, the operator $\varphi(D)$ is of order 2σ.
(*) Entrata in Redazione il 3 giugno 1971.
${ }^{(1)}$ This research is supported by a grant of the N.R.C. of Canada.

Example 2. - If $\psi(\xi)$ has compact support in R^{n} and is continuous, then, $\forall \xi \in R^{n}$ and $p=1,2, \ldots, \Rightarrow\left(1+|\xi|^{2}\right)^{p}|\psi(\xi)| \leqslant O_{p}$. If follows $\|\psi(D) u\|_{s} \leqslant O_{s, p}\|u\|_{s-p}$, $p=1,2, \ldots$ Hence, the inf. of the orders (named true order) is $-\infty$.

Another operator in S; if $a(x) \in \mathcal{S}$, then $a(x) u(x) \in \mathcal{S}, \forall u \in \mathcal{S}$. Moreover, we have the estimate $\|a u\|_{s} \leqslant C\|u\|_{s}$, which shows that this multiplication operator is of order 0 . In order to prove this estimate, we see first that:

$$
\widetilde{a u}(\xi)=(\tilde{a} * \tilde{u})(\xi)=(2 \pi)^{-n / 2} \int \tilde{a}(\xi-\eta) \tilde{u}(\eta) d \eta
$$

Therefore:

$$
\begin{aligned}
& \|a u\|_{s}=\left\|\left(1+|\xi|^{2}\right)^{s / 2}(2 \pi)^{-m / 2} \int \tilde{a}(\xi-\eta) \tilde{u}(\eta) d \eta\right\|_{0}= \\
& =\left\|(2 \pi)^{-n / 2} \int\left(1+|\xi|^{2}\right)^{s / 2}\left(1+|\eta|^{2}\right)^{-s / 2} \tilde{a}(\xi-\eta)\left(1+|\eta|^{2}\right)^{s / 2} \tilde{u}(\eta) d \eta\right\|_{0}
\end{aligned}
$$

We know the inequality:

$$
\left(\frac{1+|\xi|^{2}}{1+|\eta|^{2}}\right)^{s / 2} \leqslant 2^{\mid s / 2 z}\left(1+|\xi-\eta|^{2}\right)^{\mid s / 2}
$$

furthermore, if $|f(\xi)| \leqslant|g(\xi)| \Rightarrow\|f\|_{0} \leqslant\|g\|_{0}$. Consequently, as

$$
\begin{aligned}
&\left|\int\left(1+|\xi|^{2}\right)^{s / 2}\left(1+|\eta|^{2}\right)^{-s / 2} \tilde{a}(\xi-\eta)\left(1+|\eta|^{2}\right)^{s / 2} \tilde{u}(\eta) d \eta\right|=f(\xi) \leqslant \\
& \leqslant 2^{\mid s / 2 / 2} \int\left(1+|\xi-\eta|^{2}\right)^{1 s / 2 / 2}|\tilde{a}(\xi-\eta)|\left(1+|\eta|^{2}\right)^{s / 2}|\tilde{u}(\eta)| d \eta=g(\xi)
\end{aligned}
$$

it follows that

$$
\begin{equation*}
\|a u\|_{s} \leqslant(2 \pi)^{-n / 2} 2^{\mid s / 2 /}\left|\int\left(1+|\xi-\eta|^{2}\right)^{|s| / 2}\right| \tilde{a}(\xi-\eta)\left|\left(1+|\eta|^{2}\right)^{s / 2}\right| \tilde{u}(\eta) \mid d \eta \|_{0} . \tag{1.1}
\end{equation*}
$$

Let us remember Minkowski's inequality for integrals

$$
\begin{equation*}
\left(\int\left(\int|f(\xi, \eta)| d \eta\right)^{2} d \xi\right)^{\frac{1}{2}} \leqslant \int\left(\int|f(\xi, \eta)|^{2} d \xi\right)^{\frac{1}{2}} d \eta \tag{1.2}
\end{equation*}
$$

Changing the variables: $\xi-\eta=\eta^{\prime}$ in (1.1), we have obviously

$$
\begin{equation*}
\|a u\|_{s} \leqslant(2 \pi)^{-n / 2} 2^{\mid s / 2}\left\|\int\left(1+\left|\eta^{\prime}\right|^{2}\right)^{|s| / 2}\left|\tilde{a}\left(\eta^{\prime}\right)\right|\left(1+\left|\xi-\eta^{\prime}\right|^{2}\right)^{s / 2}\left|\tilde{u}\left(\xi-\eta^{\prime}\right)\right| d \eta^{\prime}\right\|_{0} . \tag{1.3}
\end{equation*}
$$

Let be $f(\xi, \eta)=\left(1+|\eta|^{2}\right)^{\text {s/2 }}|\tilde{a}(\eta)|\left(1+|\xi-\eta|^{2}\right)^{s / 2}|\tilde{u}(\xi-\eta)| ;$ we have then, by (1.2)-(1.3)

$$
\begin{align*}
& \|a u\|_{s} \leqslant C_{s}\left(\int\left(\int f(\xi, \eta) d \eta\right)^{2} d \xi\right)^{\frac{1}{2}} \leqslant C_{s} \int\left(\int f^{2}(\xi, \eta) d \xi\right)^{\frac{1}{2}} d \eta= \tag{1.4}\\
& =C_{s} \int\left(\int\left(1+|\eta|^{2}\right)^{|s|}|\tilde{a}(\eta)|^{2}\left(1+|\xi-\eta|^{2}\right)^{s}|\tilde{u}(\xi-\eta)|^{2} d \xi\right)^{\frac{1}{2}} d \eta= \\
& =O_{s} \int\left(1+|\eta|^{2}\right)^{|s| 2 \mid 2}|\tilde{a}(\eta)|\left(\int\left(1+|\xi-\eta|^{2}\right)|\tilde{u}(\xi-\eta)|^{2} d \xi\right)^{\frac{1}{2}} d \eta= \\
& \quad=C_{s}\|u\|_{s} \int\left(1+|\eta|^{2}\right)^{|s| / 2}|\tilde{a}(\eta)| d \eta=C_{1 . s}\|u\|_{s}
\end{align*}
$$

Finally, an other example of operator which maps \mathcal{S} into \mathcal{S}.
Let $\zeta_{\sigma}(D) u=\mathcal{F}^{-1}\left(\zeta(\xi)|\xi|^{\sigma} \tilde{u}(\xi)\right), \forall u \in \mathcal{S}$, where $\zeta(\xi) \in C^{\infty}\left(R^{n}\right)$ is $=0$ for $|\xi|<\frac{1}{2}$, and is $=1$ for $|\xi| \geqslant 1$. Then obviously, $\zeta(\xi)|\xi|^{\sigma} \in C^{\infty}$; furthermore, as $\xi \rightarrow \infty$, it increases polynomially and we remark also that all derivatives $\partial^{\beta}\left(\zeta(\xi)|\xi|^{\sigma}\right)$ have the same property.

This shows that $\zeta(\xi)|\xi|^{\sigma} \tilde{u}(\xi) \in S$ if $\tilde{u} \in S$; consequently, $\zeta_{\sigma}(D)$ maps S into S.
This operator is useful in the successive study of pseudo-differential operators of a more general form (see [1]).

We see also that $\left|\zeta_{\sigma}(\xi)\right| \leqslant C\left(1+|\xi|^{2}\right)^{\sigma / 2}, \forall \xi \in R^{n}\left(\zeta_{\sigma}(\xi)=\zeta(\xi)|\xi|^{\sigma}\right)$. Hence, operator $\zeta_{\sigma}(D)$ has order $\leqslant \sigma$.

2. - Symbols.

Let $a(x, \xi)$ be a complex valued function defined for $x \in R^{n}, \xi \in R^{n}-\{0\}$ and assume $a(x, \xi) \in C^{\infty}\left(R^{n} \times R^{n}-\{0\}\right)$. Suppose that $a(x, t \xi)=a(x, \xi)$ for $t>0$, and assume also that $\lim _{|x| \rightarrow \infty} a(x, \xi)=a(\infty, \xi)$ exists for $\xi \in R^{n}-\{0\}$ and $a(\infty, \xi)$ is a C^{∞}-function; define then $a^{\prime}(x, \xi)=a(x, \xi)-a(\infty, \xi)$, and assume the estimates

$$
\begin{equation*}
\left(1+|x|^{2}\right)^{p}\left|D_{x}^{\alpha} \partial_{\xi}^{\beta} a^{\prime}(x, \xi)\right| \leqslant C_{x, x, \beta}, \quad \forall x \in R^{n} \tag{2.1}
\end{equation*}
$$

and ξ such that $|\xi|=1\left(^{1}\right)$; here $p=1,2, \ldots, \alpha=\left(\alpha_{1}, \ldots, \alpha_{n}\right), \beta=\left(\beta_{1}, \ldots, \beta_{n}\right)$-arbitrary multi-indexes. We see some corollary of Definition (2.1), which are remarked without proof in [1].

Theorem 1.

a) We have $|a(\infty, \xi)-a(\infty, \eta)| \leqslant C((|\xi-\eta|) \mid(|\xi|+|\eta|)), \quad \forall \xi, \eta$ arbitrary in $R^{n}-\{0\}$: The estimates
b) $\left(1+|\lambda|^{2}\right)^{v}\left|\tilde{a}^{\prime}(\lambda, \xi)\right| \leqslant C_{p}, \quad \forall \lambda \in R^{n}, \xi \in R^{n}-\{0\}, p=1,2, \ldots ;$
c) $\left(1+|\lambda|^{2}\right)^{p}\left|\tilde{a}^{\prime}(\lambda, \xi)-\tilde{a}^{\prime}(\lambda, \eta)\right| \leqslant C_{p}|\xi-\eta|(|\xi|+|\eta|)^{-1}, \quad \forall \lambda \in R^{n}, \xi, \eta \in R^{n}-\{0\}$, $p=1,2, \ldots$ being

$$
\tilde{a}^{\prime}(\lambda, \xi)=(2 \pi)^{-n / 2} \int \exp (-i x \cdot \lambda) a^{\prime}(x, \xi) d x, \quad \forall \lambda \in R^{n}, \xi \in R^{n}-\{0\}
$$

are verified.
Proof of $a) .-a(\infty, t \xi)=a(\infty, \xi), \forall t>0, \xi \in R^{n}-\{0\}$, as easily seen. Hence $a(\infty, \xi)$ is also homogeneous of order 0 , and by hypothesis is also $C^{\infty}\left(R^{n}-\{0\}\right)$. Let us put $\xi\|\xi|=\zeta, \eta \| \eta|=\mu ;$ we have $|\zeta|=|\mu|=1, a(\infty, \xi)=a(\infty, \zeta), a(\infty, \eta)=$ $=a(\infty, \mu)$, and on the other hand

$$
\begin{equation*}
\frac{|\xi-\eta|}{|\xi|+|\eta|}=\frac{|\xi| \xi|-\mu| \eta| |}{|\xi|+|\eta|}=\left|\frac{|\xi|}{|\xi|+|\eta|} \zeta+\frac{|\eta|}{|\xi|+|\eta|}(-\mu)\right| \tag{2.2}
\end{equation*}
$$

($\left.^{1}\right)$ Remark that $D_{x}^{\alpha} a^{\prime}(x, t \xi)=D_{x}^{\alpha} a^{\prime}(x, \xi), \forall t>0$. Then, from $\left(1+|x|^{2}\right)^{y}\left|D_{x}^{\alpha} a^{\prime}(x, \xi)\right| \leqslant O_{y, x}$ valid for $x \in R^{n},|\xi|=1$, it follows that same estimate is valid for $x \in R^{n}, \xi \in R^{n}-\{0\}$.

Immediately it can be seen, considering $\min _{0<\theta<1}|\theta \xi+(1-\theta)(-\mu)|$, or geometrically that $|\theta \zeta+(1-\theta)(-\mu)| \geqslant \frac{1}{2}|\zeta+(-\mu)|$, for $|\zeta|=|\mu|=1$ and hence is, as we have $|\xi| /(|\xi|+|\eta|)+|\eta| /(|\xi|+|\eta|)=1$, the estimate

$$
\begin{equation*}
\frac{|\xi-\eta|}{|\xi|+|\eta|} \geqslant \frac{1}{2}|\zeta-\mu| \tag{2,3}
\end{equation*}
$$

if we show here that

$$
\begin{equation*}
|a(\infty, \zeta)-a(\infty, \mu)| \leqslant \gamma|\zeta-\mu|, \quad \forall \zeta, \mu \tag{2.4}
\end{equation*}
$$

on the unit sphere in R^{n}, we will have shown a) for $C=2 \gamma$.
Let us suppose hence, reasoning ad absurdum, that there are two sequences $\zeta_{n}, \mu_{n},\left|\zeta_{n}\right|=\left|\mu_{n}\right|=1, n=1,2, \ldots$ so that

$$
\begin{equation*}
\left|a\left(\infty, \zeta_{n}\right)-a\left(\infty, \mu_{n}\right)\right| \geqslant n\left|\zeta_{n}-\mu_{n}\right|, \quad \forall n=1,2, \ldots \tag{2.5}
\end{equation*}
$$

Now we can assume, choosing two subsequences, that

$$
\begin{equation*}
\lim _{n \rightarrow \infty} \zeta_{n}=\zeta_{0}, \quad \lim _{n \rightarrow \infty} \mu_{n}=\mu_{0}, \quad\left|\zeta_{0}\right|=\left|\mu_{0}\right|=1 \tag{2.6}
\end{equation*}
$$

With use of (2.5) we shall get now:

$$
\left|\zeta_{n}-\mu_{n}\right| \leqslant \frac{1}{n} 2 \sup _{|\xi|=1}|a(\infty, \zeta)| .
$$

This gives $\zeta_{0}=\mu_{0}$, as the continuous function $a(\infty, \xi)$ is bounded on the unit sphere in R^{n}. On the other hand, it results that: $a\left(\infty, \zeta_{n}\right)-a\left(\infty, \mu_{n}\right)=\left(\zeta_{n}-\mu_{n}, \operatorname{grada} a\left(\infty, z_{n}\right)\right)$ scalar product in R^{n}; here $z_{n}=\theta_{n} \xi_{n}+\left(1-\theta_{n}\right) \mu_{n}, 0<\theta_{n}<1$; this is true for n large enough.
(In fact, for these n, the vectors ζ_{n} and μ_{n} belong to same small neighbourhood: $\left|\zeta-\zeta_{0}\right|<\delta$ where $a(\infty, \zeta)$ is of class C^{∞}, the origin being outside of this neighbourhood). We have then:

$$
\left|a\left(\infty, \zeta_{n}\right)-a\left(\infty, \mu_{n}\right)\right| \leqslant\left|\zeta_{n}-\mu_{n}\right| \sup _{\left|z-\zeta_{0}\right|<\delta}|\operatorname{grad} a(\infty, z)| \leqslant M\left|\zeta_{n}-\mu_{n}\right| .
$$

It can be deduced that is valid the inequality

$$
\begin{equation*}
n\left|\zeta_{n}-\mu_{n}\right| \leqslant\left|a\left(\infty, \zeta_{n}\right)-a\left(\infty, \mu_{n}\right)\right| \leqslant M\left|\zeta_{n}-\mu_{n}\right|, \quad n=1,2, \ldots \tag{2.7}
\end{equation*}
$$

which is impossible. Hence estimate a) is satisfied. More precisely: we proved that
$a(\infty, \xi)$ is in the Lipschitz class on the unit sphere, i.e.

$$
\sup _{\substack{\xi \xi=1 \\ \mid \eta=1}} \frac{|a(\infty, \xi)-a(\infty, \eta)|}{|\xi-\eta|}=\gamma<\infty
$$

Then we obtamed that

$$
|a(\infty, \xi)-a(\infty, \eta)| \leqslant 2 \gamma|\xi-\eta|, \quad \forall \xi, \eta \in R^{n}-\{0\}
$$

Proof of b). - Obviously, we have equality

$$
\begin{align*}
& \left(1+|\lambda|^{2}\right)^{n} \tilde{a}^{\prime}(\lambda, \xi)=(2 \pi)^{-n / 2} \int \exp (-i x \cdot \lambda)\left(I-\Lambda_{x}\right)^{p} a^{\prime}(x, \xi) d x, \tag{2.8}\\
& \\
& \quad \lambda \in R^{n}, \xi \in R^{n}-\{0\}, \Delta_{x}=\sum_{i=1}^{n} \frac{\partial^{2}}{\partial x_{i}^{2}}
\end{align*}
$$

and therefore is verified the estimate

$$
\begin{align*}
& \left|\left(1+|\lambda|^{2}\right)^{p} \tilde{a}^{\prime}(\lambda, \xi)\right| \leqslant \tag{2.9}\\
& \quad \leqslant C \int\left(1+|x|^{2}\right)^{q}\left|\left(I-A_{x}\right)^{p} a^{t}(x, \xi)\right|\left(1+|x|^{2}\right)^{-q} d x \leqslant C_{1} \int \frac{d x}{\left(1+|x|^{2}\right)^{q}}=C_{2}
\end{align*}
$$

for q large enough.
Proof of c). - Obviously, we have the equality

$$
\begin{align*}
& \left(1+|\lambda|^{2}\right)^{p}\left[\tilde{a}^{\prime}(\lambda, \xi)-\tilde{a}^{\prime}(\lambda, \eta)\right]= \tag{2.10}\\
& =(2 \pi)^{-n / 2} \int \exp (-i x \cdot \lambda)\left(I-\Lambda_{x}\right)^{p}\left[a^{\prime}(x, \xi)-a^{\prime}(x, \eta)\right] d x= \\
& =(2 \pi)^{-n / 2} \int \exp (-i x \cdot \lambda)\left(1+|x|^{2}\right)^{q}\left(I-\Delta_{x}\right)^{p}\left[a^{\prime}(x, \xi)-a^{\prime}(x, \eta)\right]\left(1+|x|^{2}\right)^{-q} d x .
\end{align*}
$$

Let us put now

$$
\begin{equation*}
b_{p, q}(x, \xi)=\left(1+|x|^{2}\right)^{q}\left(I-\Delta_{x}\right)^{p} a^{\prime}(x, \xi), \quad x \in R^{n}, \xi \in R^{n}-\{0\} \tag{2.11}
\end{equation*}
$$

We obtain then the estimate

$$
\begin{align*}
& \left(1+|\lambda|^{2}\right)^{n}\left|\tilde{a}^{\prime}(\lambda, \xi)-\tilde{a}^{\prime}(\lambda, \eta)\right| \leqslant \tag{2.12}\\
& \quad \leqslant(2 \pi)^{-n / 2} \int\left(1+|x|^{2}\right)^{-q}\left|b_{x, q}(x, \xi)-b_{n, q}(x, \eta)\right| d x, \quad \forall \lambda \in R^{n}, \xi, \eta \in R^{n}-\{0\}
\end{align*}
$$

Consequently, it will be sufficient to show here that
with a constant independent of $x \in R^{n}$ we have, for $x \in R^{n}, \xi, \eta \in R^{n}-\{0\}$, the estimate

$$
\begin{equation*}
\left|b_{p, q}(x, \xi)-b_{p, q}(x, \eta)\right| \leqslant C|\xi-\eta|(|\xi|+|\eta|)^{-1} \tag{2.13}
\end{equation*}
$$

Let us observe that $b_{p, q}(x, \xi) \in C^{\infty}\left(R_{\xi}^{n}-\{0\}\right)$ and is also homogeneous of order 0 with respect to ξ, as follows without any difficulty from (2.11) and properties of $a^{\prime}(x, \xi)$.

It will consequently be enough, by repeating the reasonings in a), to show that we have the inequality

$$
\begin{equation*}
\left|b_{y, q}(x, \zeta)-b_{p, q}(x, \mu)\right| \leqslant \gamma|\zeta-\mu| \tag{2.14}
\end{equation*}
$$

for ζ, μ on the unit sphere, and $x \in R^{n}$, because this will imply estimate (2.13) after use of (2.3), and then c) is proved if we use (2.12) for q large enough in order to have $\int\left(1+|x|^{2}\right)^{-q} d x<\infty$.

In the opposite case, (i.e. if (2.14) is not true) there are three sequences $\left(x_{k}\right)_{1}^{\infty},\left(\zeta_{k}\right)_{1}^{\infty},\left(\mu_{k}\right)_{1}^{\infty}$, such that $\left(x_{k}\right)_{1}^{\infty} \subset R^{n},\left|\zeta_{k}\right|=\left|\mu_{k}\right|=1, k=1,2, \ldots$ and the following holds:

$$
\begin{equation*}
\left|b_{p, q}\left(x_{k}, \zeta_{k}\right)-b_{p, q}\left(x_{k}, \mu_{k}\right)\right| \geqslant k\left|\zeta_{k}-\mu_{k}\right|, \quad \forall k=1,2, \ldots \tag{2.15}
\end{equation*}
$$

we may suppose, by extracting subsequences, that

$$
\begin{equation*}
\lim _{k \rightarrow \infty} \zeta_{k}=\zeta_{0}, \quad \lim _{k \rightarrow \infty} \mu_{k}=\mu_{0} \tag{2.16}
\end{equation*}
$$

exist, where $\left|\zeta_{0}\right|=\left|\mu_{0}\right|=1$. Hence, from (2.15),

$$
\left|\mu_{k}-\zeta_{k}\right| \leqslant \frac{1}{k} 2 \sup _{\substack{|\zeta|=1 \\ x \in R^{n}}}\left|b_{p, Q}(x, \zeta)\right| \rightarrow 0
$$

with $k \rightarrow \infty$ (as easily seen) and consequently $\zeta_{0}=\mu_{0}$.
On the other hand, we have

$$
\begin{equation*}
b_{p, q}\left(x_{k}, \zeta_{k}\right)-b_{p, a}\left(x_{k}, \mu_{k}\right)=\left(\zeta_{k}-\mu_{k}, \operatorname{grad}_{\xi} b_{p, q}\left(x_{k}, z_{k}\right)\right) \tag{2.17}
\end{equation*}
$$

where $z_{k_{k}}=\theta_{k} \zeta_{k}+\left(1-\zeta_{k}\right) \mu_{k}, 0<\theta_{k}<1$.
Now we remark that for ζ_{k}, μ_{k} (and hence z_{k}) in a small neighbourhood of ζ_{0} we have

$$
\begin{equation*}
\left|\operatorname{grad}_{\xi} b_{p, q}\left(x_{k}, z_{k}\right)\right| \leqslant C . \tag{2.18}
\end{equation*}
$$

In fact, first of all, we see that, for any multi-index $\alpha=\left(\alpha_{1}, \ldots, \alpha_{n}\right)$

$$
\begin{equation*}
\left|\partial_{\xi}^{\alpha} b_{p, 8}(x, \xi)\right| \leqslant 0, \quad \forall x \in R^{n},|\xi|=1, \text { holds } \tag{2.19}
\end{equation*}
$$

Thereafter, for any $\xi \in R^{n}-\{0\}$, we get:

$$
\left|\partial_{\xi_{i}} b_{p, q}(x, \xi)\right|=\left|\partial_{\xi_{i}} b_{p, 2}\left(x, \frac{\xi}{|\xi|}|\xi|\right)\right|=\left|\partial_{\xi_{i}} b_{p, q}\left(x, \frac{\xi}{|\xi|}\right)\right| \frac{1}{|\xi|} \leqslant \frac{C}{|\xi|} \leqslant C_{1} \quad \text { if }|\xi|>\delta>0
$$

(as in the neighbourhood of ζ_{0} which we have considered).

We have used here the fact that $\partial_{\xi_{i}} b_{p, q}(x, \xi)$ is homogeneous of order -1 in respect to ξ. Having then, from (2.15), (2.17), (2.18), the estimates

$$
\begin{equation*}
k\left|\zeta_{k}-\mu_{k}\right| \leqslant\left|b_{p, a}\left(x_{k}, \zeta_{k}\right)-b_{p, e}\left(x_{k}, \mu_{k}\right)\right| \leqslant C\left|\zeta_{k}-\mu_{k}\right| \tag{2.20}
\end{equation*}
$$

we arrive at a contradiction, q.e.d.
Corollary. - With an absolute constant, we have:

$$
\begin{equation*}
|a(x, \xi)-a(x, \eta)| \leqslant C \frac{|\xi-\eta|}{|\xi|+|\eta|} \tag{2.21}
\end{equation*}
$$

for $x \in R^{n}, \xi, \eta \in R^{n}-\{0\}$. In fact, we have

$$
\begin{align*}
a(x, \xi)-a(x, \eta) & =a(\infty, \xi)-a(\infty, \eta)+a^{\prime}(x, \xi)-a^{\prime}(x, \eta)= \tag{2.22}\\
= & a(\infty, \xi)-a(\infty, \eta)+(2 \pi)^{-n / 2} \int \exp (i x \cdot \lambda)\left[\tilde{a}^{\prime}(\lambda, \xi)-\tilde{a}^{\prime}(\lambda, \eta)\right] d \lambda
\end{align*}
$$

from where we get the inequalities

$$
\begin{align*}
& |a(x, \xi)-a(x, \eta)| \leqslant C \frac{|\xi-\eta|}{|\xi|+|\eta|}+C_{1} \frac{|\xi-\eta|}{|\xi|+|\eta|} \int\left(1+|\lambda|^{2}\right)^{-p} d \lambda \leqslant \tag{2.23}\\
& \quad \leqslant O_{2}|\xi-\eta|(|\xi|+|\eta|)^{-1}, \quad \forall x \in R^{n}, \xi, \eta \in R^{n}-\{0\}: \quad \text { q.e.d. }
\end{align*}
$$

Observation. - We have implicitly proved, considering in (2.13) $b_{p, q}(x, \xi)$ with $p=0$, that the following inequality

$$
\begin{align*}
&\left(1+|x|^{2}\right)^{q}\left|a^{\prime}(x, \xi)-a^{\prime}(x, \eta)\right| \leqslant C|\xi-\eta|(|\xi|+|\eta|)^{-1} \tag{2.24}\\
& \forall x \in R^{n}, \xi, \eta \in R^{n}-\{0\}, q=1,2, \ldots
\end{align*}
$$

is also satisfied.
3. - The operator $A(x, D)$.

Let $a(x, \xi)=a(\infty, \xi)+a^{\prime}(x, \xi)$ be a symbol, and, as previously, $\forall \lambda \in R^{n}, \xi \in R^{n}-\{0\}$ $\tilde{a}^{\prime}(\lambda, \xi)=(2 \pi)^{-n / 2} \int \exp (-i x \cdot \lambda) a^{\prime}(x, \xi) d x$. Obviously, it results that $\tilde{a}^{\prime}(\lambda, \xi) \in \boldsymbol{S}\left(R_{\lambda}^{n}\right)$ uniformly for $\xi \in R^{n}-\{0\}\left({ }^{1}\right)$.

Let us define, for any $u \in S$ and $x \in R^{n}$, a function $v(x)=(A(x, D) u)(x)$, by

$$
\begin{equation*}
A(x, D) u=(2 \pi)^{-n / 2} \int \exp (i x \cdot \xi) G(\xi) d \xi \tag{3.1}
\end{equation*}
$$

${ }^{(1)}$ Use for that the formula

$$
\left(1+|\lambda|^{2}\right) D_{\lambda}^{\alpha} \tilde{a}^{\prime}(\lambda, \xi)=(2 \pi)^{-n / 2} \int \exp (-i x \cdot \lambda)\left(I-\Lambda_{x}\right)^{p}\left((-i x)^{\alpha} a^{\prime}(x, \xi) d x\right.
$$

and the definition of a symbol.
where, $\forall \xi \in R^{n}-\{0\}$, the function $G(\xi)$ is given by

$$
\begin{equation*}
G(\xi)=a(\infty, \xi) \tilde{u}(\xi)+(2 \pi)^{-n / 2} \int \tilde{a}^{\prime}(\xi-\eta, \xi) \tilde{u}(\eta) d \eta \tag{3.2}
\end{equation*}
$$

Evidently, it has to be proved that $G(\xi)$ is Fourier transformable; in fact, we have $G(\xi) \in L^{1}\left(R^{n}\right)$ as

$$
|a(\infty, \xi) \tilde{u}(\xi)| \leqslant \max _{\mid \hat{\xi}=1}|a(\infty, \xi)||\tilde{u}(\xi)| \in L^{1}
$$

then obviously, it is sufficient to show that

$$
\iint\left|\tilde{a}^{\prime}(\xi-\eta, \xi) \tilde{u}(\eta)\right| d \eta d \xi<\infty ;
$$

we have in fact, $\forall p=1,2, \ldots$

$$
\int\left|\tilde{a}^{\prime}(\xi-\eta, \xi) \tilde{u}(\eta)\right| d \eta \leqslant C_{p} \int\left(1+|\xi-\eta|^{2}\right)^{-p}|\tilde{u}(\eta)| d \eta
$$

This last expression is the convolution between $\left(1+|\xi|^{2}\right)^{-p}$ and $|\tilde{u}(\xi)|$ both integrable for p sufficiently large.

Hence $A(x, D) u$ is continuous and bounded on R^{n}; we can say then that

$$
\begin{equation*}
\widehat{A(x, D) u}=a(\infty, \xi) \tilde{u}(\xi)+(2 \pi)^{-n / 2} \int a^{\prime}(\xi-\eta, \xi) \tilde{u}(\eta) d \eta \tag{3.3}
\end{equation*}
$$

is verified the Fourier transform being taken in S^{\prime}.
Another formula of representation is given in
Proposition 1. - If $a(x, \xi)$ is a symbol, we have

$$
\begin{equation*}
(A(x, D) u)(x)=(2 \pi)^{-n / 2} \int \exp (i x \cdot \xi)\left((2 \pi)^{-n / 2} \int \exp (-i y \cdot \xi) a(y, \xi) u(y) d y\right) d \xi \tag{3.4}
\end{equation*}
$$

for every $u \in S, x \in R^{n}$.
It will be sufficient to show that

1) The integral $\int \exp (-i x \cdot \xi) a(x, \xi) u(x) d x$ is absolutely convergent.
2) We have $G(\xi)=(2 \pi)^{-2 / 2} \int \exp (-i y \cdot \xi) a(y, \xi) u(y) d y, \forall \xi \in R^{n}-\{0\}$.

We have 1). In fact, as $a(x, \xi)=a(\infty, \xi)+a^{\prime}(x, \xi)$, it is sufficient to prove the absolute convergence of

$$
\int \exp (-i x \cdot \xi) a(\infty, \xi) u(x) d x=a(\infty, \xi) \int \exp (-i x \cdot \xi) u(x) d x
$$

which is obvious, and gives $a(\infty, \xi) \tilde{u}(\xi)$ for $u \in \mathcal{S}$, and of $\int \exp (-i x \cdot \xi) a^{\prime}(x, \xi) u(x) d x$, for $u \in \mathcal{S}$. As $\left|a^{\prime}(x, \xi)\right| \leqslant C_{p}\left(1+|x|^{2}\right)^{-p}$ for every p, we have

$$
\int\left|\exp (-i x \cdot \xi) a^{\prime}(x, \xi) u(x)\right| d x \leqslant O_{\nu} \int\left(1+|x|^{2}\right)^{-p}|u(x)| d x
$$

In order to prove the 2), it is sufficient that

$$
\begin{equation*}
(2 \pi)^{-n / 2} \int \tilde{a}^{\prime}(\xi-\eta, \xi) \tilde{u}(\eta) d \eta=(2 \pi)^{-n / 2} \int \exp (-i x \cdot \xi) \alpha^{\prime}(x, \xi) u(x) d x \tag{3.5}
\end{equation*}
$$

be verified. By Fourier's inversion formula (valid in the case which is considered here) we have

$$
\begin{equation*}
a^{\prime}(x, \xi)=(2 \pi)^{-n / 2} \int \exp (i x \cdot \lambda) \tilde{a}^{\prime}(\lambda, \xi) d \lambda, \quad x \in R^{n}, \xi \in R^{n}-\{0\} \tag{3.6}
\end{equation*}
$$

the integral being absolutely convergent.
Or, the «double» integral, for $u \in S$

$$
\begin{equation*}
\iint \exp (-i x \cdot \xi) \exp (i x \cdot \lambda) \tilde{a}^{\prime}(\lambda, \xi) u(x) d x d \lambda \tag{3.7}
\end{equation*}
$$

is absolutely convergent:

$$
\begin{equation*}
\iint\left|\tilde{a}^{\prime}(\lambda, \xi)\right| u(x) \mid d x d \lambda<\infty \tag{3.8}
\end{equation*}
$$

Hence, by Fubini's theorem, we have

$$
\begin{align*}
& (2 \pi)^{-n / 2} \int \exp (-i x \cdot \xi) a^{\prime}(x, \xi) u(x) d x= \tag{3.9}\\
& =(2 \pi)^{-n / 2} \int\left[(2 \pi)^{-n / 2} \int \exp [-i x \cdot(\xi-\lambda)] \tilde{a}^{\prime}(\lambda, \xi) d \lambda\right] u(x) d x
\end{align*}
$$

By making in the internal integral the substiution

$$
\begin{equation*}
\xi_{1}-\lambda_{1}=\mu_{1}, \ldots, \xi_{n}-\lambda_{n}=\mu_{n} \tag{3.10}
\end{equation*}
$$

we arrive at equality between (3.9) and

$$
\begin{equation*}
(2 \pi)^{-n / 2} \int(2 \pi)^{-n / 2}\left(\int \exp (-i x \cdot \mu) \tilde{a}^{\prime}(\xi-\mu, \xi) d \mu\right) u(x) d x= \tag{3.11}
\end{equation*}
$$

$$
=(2 \pi)^{-q / 2} \int(2 \pi)^{-n / 2}\left(\int \exp (-i x \cdot \mu) u(x) d x\right) \tilde{a}^{\prime}(\xi-\mu, \xi) d \mu=(2 \pi)^{-n / 2} \int \tilde{a}^{\prime}(\xi-\mu, \xi) \tilde{u}(\mu) d \mu
$$ q.e.d.

A fundamental property of the operator $A(x, D)$ is given in
Theorem 2. - We have the inequality $\|A(x, D) u\|_{s} \leqslant C_{s}\|u\|_{s}, \forall u \in S, s$ being real arbitrary.

We have in fact the immediate decomposition:

$$
A(x, D)=A(\infty, D)+A^{\prime}(x, D)
$$

We must remark that for $u \in \mathcal{S}$, we have by definition:

$$
\widehat{A(\infty, D)} u(\xi)=a(\infty, \xi) \tilde{u}(\xi), \quad \widetilde{A^{\prime}(x, D) u}(\xi)=(2 \pi)^{-n i 2} \int \tilde{a}^{t}(\xi-\eta, \xi) \tilde{u}(\eta) d \eta
$$

23 - Annali di Matematica

Then we see first of all

$$
\begin{align*}
& \|A(\infty, D) u\|_{s}^{2}=\int\left(1+|\xi|^{2}\right)^{s}|a(\infty, \xi) \tilde{u}(\xi)|^{2} d \xi \leqslant\left(\sup _{|\xi|=1}|a(\infty, \xi)|\right)^{2}\|u\|_{s}^{2}, \tag{3.12}\\
& \|A(\infty, D) u\|_{s} \leqslant\left(\sup _{|\xi|=1}|a(\infty, \xi)|\right)\|u\|_{s} . \tag{3.13}
\end{align*}
$$

Less trivial is the cstimate for $A^{\prime}(x, D) u$. Its Fourier transform (in $\left.S^{\prime}\right)$ equals

$$
(2 \pi)^{-n i 2} \int \tilde{a}^{\prime}(\xi-\eta, \xi) \tilde{u}(\eta) d \eta
$$

And then (using the definition of H_{s}), we will have to estimate the norm L^{2} of the expression

$$
\begin{equation*}
(2 \pi)^{-n / 2}\left(1+|\xi|^{2}\right)^{5 / 2} \int \tilde{a}^{\prime}(\xi-\eta, \xi) \tilde{u}(\eta) d \eta \tag{3.14}
\end{equation*}
$$

which is equal to

$$
\begin{equation*}
(2 \pi)^{-n / 2} \int\left(1+|\xi|^{2}\right)^{s / 2}\left(1+|\eta|^{2}\right)^{-s / 2} \tilde{a}^{\prime}(\xi-\eta, \xi)\left(1+|\eta|^{2}\right)^{s / 2} \tilde{u}(\eta) d \eta=U_{s}(\xi) \tag{3.15}
\end{equation*}
$$

Now, the proof is similar to that given in Preliminaries for a more special case. Again we shall use the estimate (some time credited to J. Peetre)

$$
\begin{equation*}
\left(1+|\xi|^{2}\right)^{t}\left(1+|\eta|^{2}\right)^{-t} \leqslant 2^{|t|}\left(1+|\xi-\eta|^{2}\right)^{|t|}, \quad \forall \text { real } t, \xi, \eta \in R^{n} \tag{3.15bis}
\end{equation*}
$$

We observe first of all that

$$
\begin{align*}
&\left|U_{s}(\xi)\right| \leqslant(2 \pi)^{-n / 2} 2^{\mid s / 2} \int\left(1+|\xi-\eta|^{2}\right)^{s / 2 / 2}\left|\tilde{a}^{\prime}(\xi-\eta, \xi)\right|\left(1+|\eta|^{2}\right)^{s / 2}|\tilde{u}(\eta)| d \eta \leqslant \tag{3.16}\\
& \leqslant C_{p, s} \int\left(1+|\xi-\eta|^{2}\right)^{|s| / 2 \cdots p}\left(1+|\eta|^{2}\right)^{s / 2}|\tilde{u}(\eta)| d \eta .
\end{align*}
$$

Then, making the substitution $\xi-\eta=\eta^{\prime}$ we arrive at the inequality

$$
\left|U_{s}(\xi)\right| \leqslant C_{p, s} \int\left(1+\left|\eta^{\prime}\right|^{2}\right)^{\mid s / 22-\nu}\left(1+\left|\xi-\eta^{\prime}\right|^{2}\right)^{s f^{2}}\left|\tilde{u}\left(\xi-\eta^{\prime}\right)\right| d \eta^{\prime}=C_{p, s} \int K\left(\xi, \eta^{\prime}\right) d \eta^{\prime}
$$

where

$$
\begin{equation*}
K\left(\xi, \eta^{\prime}\right)=\left(1+\left.\left|\eta^{\prime}\right|^{2}\right|^{s / 2-p}\left(1+\left|\xi-\eta^{\prime}\right|^{2}\right)^{\sin }\left|\tilde{u}\left(\xi-\eta^{\prime}\right)\right|\right. \tag{3.18}
\end{equation*}
$$

Hence $\left|U_{s}(\xi)\right|^{2} \leqslant C_{1}\left(\int K\left(\xi, \eta^{\prime}\right) d \eta^{\prime}\right)^{2}$ and $\left(\int\left|U_{s}(\xi)\right|^{2} d \xi\right)^{\frac{t}{2}} \leqslant C_{p, s}\left(\int\left(\int K\left(\xi, \eta^{\prime}\right) d \eta^{\prime}\right)^{2} d \xi\right)^{\frac{1}{2}}$ which is, by Minkowski's inequality for integrals, estimated in

$$
\begin{align*}
& \left\|U_{s}\right\|_{0} \leqslant C_{p, s} \int\left(\int K^{2}\left(\xi, \eta^{\prime}\right) d \xi\right)^{\frac{\xi}{3}} d \eta^{\prime}= \tag{3.19}\\
& \quad=C_{p, s} \int\left(\int\left(1+\left|\eta^{\prime}\right|^{2}\right)^{|s|-2 s}\left(1+\left|\xi-\eta^{\prime}\right|^{2}\right)^{s}\left|\tilde{u}\left(\xi-\eta^{\prime}\right)\right|^{2} d \xi\right)^{\frac{1}{2}} d \eta^{\prime}= \\
& \quad=C_{p, s, s} \int\left(1+\left|\eta^{\prime}\right|^{2}\right)^{\mid s / 2 / 2-p}\left(\int\left(1+\left|\xi-\eta^{\prime}\right|^{2}\right)^{s}\left|\tilde{u}\left(\xi-\eta^{\prime}\right)\right|^{2} d \xi\right)^{\frac{1}{2}} d \eta^{\prime}=C_{x, s}^{1}\|u\|_{\rho}
\end{align*}
$$

(when we take p sufficiently large).

Now Theorem 2 is a consequence of the relation

$$
\left\|\left(A(\infty, D)+A^{\prime}(x, D)\right) u\right\|_{H^{*}} \leqslant\|A(\infty, D) u\|_{H^{s}}+\left\|A^{\prime}(x, D) u\right\|_{H^{s} \leqslant} \leqslant C_{1}\|u\|_{s}
$$

It proves that the operator $A(x, D)$ is of order $\leqslant 0$.
By density arguments we may extend $A(x, D)$ to a linear continuous map of H^{s} in H^{s}, and this for any real s.

In the next Chapter we define a similar, but different operator associated to a given symbol $a(x, \xi)$; we study its properties and relationship with $A(x, D)$.
4. - The operator $\mathfrak{A}(x, D)$.

Let $a(x, \xi)$ be a symbol; we define an operator $\mathcal{A}(x, D)$ of S in S^{\prime} by means of the formula

$$
\begin{equation*}
\mathcal{A}(x, D) u=(2 \pi)^{-n / 2} \int \exp (i x \cdot \xi) H(\xi) d \xi \tag{4,1}
\end{equation*}
$$

where, for $u \in \mathcal{S}$, the function $H(\xi)$ is defined by the relation

$$
\begin{equation*}
H(\xi)=a(\infty, \xi) \tilde{u}(\xi)+(2 \pi)^{-m / 2} \int \tilde{a}^{\prime}(\xi-\eta, \eta) \tilde{u}(\eta) d \eta, \quad \xi \in R^{n}-\{0\}, u \in \mathcal{S} . \tag{4.2}
\end{equation*}
$$

With the same proof used for $A(x, D)$ we have: the function $\mathcal{A}(x, D) u$ is continuous and bounded, for $x \in R^{n}$. Besides, we see that if the symbol $a(x, \xi)$ does not depend on x, we have $A(D)=\mathcal{A}(D)$.

Another formula of representation is given in
Proposition 2. - We have:

$$
\mathcal{A}(x, D) u=(2 \pi)^{-u / 2} \int \exp (i x \cdot \eta) a(x, \eta) \tilde{u}(\eta) d \eta
$$

$$
\forall u \in \mathrm{~S} .
$$

Proof. - As $a(x, \eta)=a(\infty, \eta)+a^{\prime}(x, \eta)$ and $\tilde{u}(\eta) \in S$, the integral is absolutely convergent.

We have, then:

$$
\begin{equation*}
(2 \pi)^{-\mu / 2} \int \exp (i x \cdot \xi)\left[(2 \pi)^{-n / 2} \int \tilde{a}^{\prime}(\xi-\eta, \eta) \tilde{u}(\eta) d \eta\right] d \xi \tag{4.3}
\end{equation*}
$$

is absolutely convergent because

$$
\begin{align*}
& \iint\left|\tilde{a}^{\prime}(\xi-\eta, \eta)\right| \tilde{u}(\eta) \mid d \eta d \xi \leqslant \tag{4.4}\\
& \quad \leqslant C_{\eta} \iint\left(1+|\xi-\eta|^{2}\right)^{-p}|\tilde{u}(\eta)| d \eta d \xi=C_{p} \int|\tilde{u}(\eta)|\left(\int\left(1+|\xi-\eta|^{2}\right)^{-p} d \xi\right) d \eta<\infty
\end{align*}
$$

for p large enough.

Furthermore we see that (4.3) equals

$$
\begin{align*}
& (2 \pi)^{-n} \int \exp (i x \cdot(\xi-\eta)) \exp (i x \cdot \eta)\left(\int \tilde{a}^{\prime}(\xi-\eta, \eta) \tilde{u}(\eta) d \eta\right) d \xi= \tag{4.5}\\
& =(2 \pi)^{-n} \int\left(\int \exp (i x \cdot(\xi-\eta)) \tilde{a}^{\prime}(\xi-\eta, \eta) d \xi\right) \exp (i x \cdot \eta) \tilde{u}(\eta) d \eta= \\
& =(2 \pi)^{-n} \int\left(\int \exp (i x \cdot \lambda) \tilde{a}^{\prime}(\lambda, \eta) d \lambda\right) \exp (i x \cdot \eta) \tilde{u}(\eta) d \eta= \\
& =(2 \pi)^{-n l} \int^{2} a^{\prime}(x, \eta) \cdot \exp (i x \cdot \eta) \tilde{u}(\eta) d \eta
\end{align*}
$$

This will prove Proposition 2.
Example. - As an useful application of Prop. 2, let us take a fixed function $u(x) \in C_{0}^{\infty}$, and then the sequence

$$
u_{v}(x)=v^{n / 4} u\left(\left(x-x_{0}\right) v^{\mathbf{1}}\right) \exp \left(i\left(x \cdot \xi_{0}\right) y\right), \quad v=1,2, \ldots
$$

where $x_{0} \in \operatorname{Supp} u$, and $\left|\xi_{0}\right|=1$. Then it follows

$$
\left(\mathcal{A}(x, D) u_{\nu}\right)(x)=v^{n / 4} v_{\nu}\left(\left(x-x_{0}\right) v^{\frac{1}{2}}\right) \exp \left(i\left(x \cdot \xi_{0}\right) v\right)
$$

where $v_{\nu}(x)$ are defined by

$$
v_{v}(x)=(2 \pi)^{-n / 2} \int a\left(x_{0}+v^{-\frac{1}{2} x}, v \xi_{0}+\eta v^{\frac{\hbar}{3}}\right) \tilde{u}(\eta) \exp (i x \cdot \eta) d \eta .
$$

We see that $\left(v_{\nu}(x)\right)_{\nu=1}^{\infty}$ is an uniformly bounded sequence, and it can be proved that

$$
\lim _{\nu \rightarrow \infty} v_{\nu}(x)=a\left(x_{0}, \xi_{0}\right) u(x)
$$

holds, uniformly on bounded sets in R^{n}.
In fact, we get easily that

$$
v_{\nu}(x)-a\left(x_{0}, \xi_{0}\right) u(x)=(2 \pi)^{-n / 2} \int\left[a\left(x_{0}+\frac{x}{\sqrt{\nu}}, \nu \xi_{0}+\eta \sqrt{\nu}\right)-a\left(x_{0}, \xi_{0}\right)\right] \tilde{u}(\eta) \exp \left(i x \cdot \eta^{\prime}\right) d \eta
$$

Moreover we have, being $a\left(x_{0}, \xi_{0}\right)=a\left(x_{0}, v \xi_{0}\right), v=1,2, \ldots$, the estimate

$$
\begin{aligned}
\left\lvert\, a\left(x_{0}+\frac{x}{\sqrt{\nu}}, \nu \xi_{0}+\eta \sqrt{\nu}\right)-\right. & a\left(x_{0}, \xi_{0}\right)\left|\leqslant\left|a\left(x_{0}+\frac{x}{\sqrt{v}}, \nu \xi_{0}+\eta \sqrt{\nu}\right)-a\left(x_{0}, \nu \xi_{0}+\eta \sqrt{\nu}\right)\right|+\right. \\
& +\left\lvert\,\left(\left.a\left(x_{0}, \nu \xi_{0}+\eta \sqrt{\nu}\right)-a\left(x_{0}, \nu \xi_{0}\right)\left|\leqslant \frac{|x|}{\sqrt{\nu}} \sup _{x, \xi}\right| \operatorname{grad}_{x} a \right\rvert\,+\frac{\partial|\eta|}{\sqrt{\nu}}\right.\right.
\end{aligned}
$$

(we use here (2.21) and (2.1)).

Consequently we have

$$
\left|v_{\nu}(x)-a\left(x_{0}, \xi_{0}\right) u(x)\right| \leqslant \frac{C|x|}{\sqrt{v}} \int|\tilde{u}(\eta)| d \eta+\frac{C}{\sqrt{v}} \int|\eta||\tilde{u}(\eta)| d \eta
$$

which proves the result.
It can be shown, exactly as with the operator $A(x, D)$ that, \forall real s, the estimate

$$
\|\mathcal{A}(x, D) u\|_{s} \leqslant C_{s}\|u\|_{s}, \quad u \in \mathbb{S}
$$

is verified.
Considering only the case $s=0$, and by the density of δ in L^{2}, we can extend $A(x, D)$ and $A(x, D)$ by continuity, to linear operators of L^{2} in L^{2}. Now we have

Proposimion 3. - Let $a(x, \xi)$ be a symbol, and $\bar{a}(x, \xi)$ its complex conjugate, operator $A(x, D)$ associated to $a(x, \xi)$, operator $\overline{\mathcal{A}}(x, D)$ associated to $\bar{\alpha}(x, \xi)$. Then we have the equality:

$$
(A(x, D) u, v)_{L^{2}}=(u, \overline{\mathcal{A}}(x, D) v)_{L^{2}}, \quad \forall u, v \in L^{2}
$$

It will be sufficient to show that for $u, v \in \mathcal{S}$. We have first of all:

$$
\begin{equation*}
\bar{A}(x, D) v=(2 \pi)^{-n / 2} \int \exp (i x \cdot \eta) \bar{a}(x, \eta) \tilde{v}(\eta) d \eta, \quad \forall v \in \mathcal{S}(\text { Prop. 2) } \tag{4.6}
\end{equation*}
$$

Hence we get, when $(u, v)_{L^{2}}=\int u(x) \bar{v}(x) d x$, the equality

$$
\begin{align*}
(u, \overline{\mathfrak{A}}(x, D) v)=(2 \pi)^{-n / 2} \int u(x)\left(\int\right. & \exp (-i x \cdot \eta) a(x, \eta) \overline{\tilde{v}}(\eta) d \eta) d x= \tag{4.7}\\
& =(2 \pi)^{-x / 2} \iint \exp (-i x \cdot \eta) a(x, \eta) u(x) \overline{\tilde{v}}(\eta) d x d \eta
\end{align*}
$$

Now, by Plancherel's formula we obtain, using also Proposition 1

$$
\begin{align*}
& (A(x, D) u, v)_{L^{2}}=(\widehat{A(x, D) u}, \tilde{v})_{L^{z}}=\int \widehat{A(x, D) u}(\xi) \overline{\tilde{v}}(\xi) d \xi= \tag{4.8}\\
& \left.=(2 \pi)^{-n / 2}\right]\left(\int \exp (-i y \cdot \xi) a(y, \xi) u(y) d y\right) \overline{\tilde{v}}(\xi) d \xi=(2 \pi)^{-n / 2} \iint \exp (-i y \cdot \xi) \\
& \quad \cdot a(y, \xi) u(y) \overline{\tilde{v}(\xi) d \xi d y}
\end{align*}
$$

which is exactly (4.7).
Remark. - Let $a(x, \xi)$ be a symbol of special type:

$$
a(x, \xi)=a(x) b(\xi)
$$

Then we have

$$
\begin{equation*}
\mathcal{A}(x, D) u=a(x) b(D) u, \quad A(x, D) u=b(D)(a(x) u(x)), \quad \forall u \in \mathcal{S} \tag{4.9}
\end{equation*}
$$

In fact, we see that

$$
\begin{aligned}
& \mathcal{A}(x, D) u=(2 \pi)^{-n / 2} \int \exp (i x \cdot \eta) a(x) b(\eta) \tilde{u}(\eta) d \eta=a(x) b(D) u \\
& \widetilde{A(x, D) u}=(2 \pi)^{-n / 2} \int \exp (-i y \cdot \xi) a(y) b(\xi) u(y) d y=b(\xi) \widetilde{a u}(\xi)=\widetilde{b(D)(a u)(\xi)} \quad \forall u \in \mathrm{~S}
\end{aligned}
$$

and this gives the remark.
Now we are able to prove the following
Proposition 4. - We have the relation

$$
\begin{equation*}
\|(A(x, D)-\mathcal{A}(x, D)) u\|_{s} \leqslant C_{s}\|u\|_{s-1}, \quad \forall u \in \mathcal{S} \tag{4.10}
\end{equation*}
$$

It is known that $A(x, D) u \in S^{\prime}$ and that

$$
\widetilde{A u}(\xi)=a(\infty, \xi) \tilde{u}(\xi)+(2 \pi)^{-n / 2} \int \tilde{a}^{\prime}(\xi-\eta, \xi) \tilde{u}(\eta) d \eta
$$

(Fourier transform in Ξ^{\prime}). The same is valid for $\mathcal{A}(x, D) u$ and

$$
\widetilde{\mathcal{A}(x, D) u}(\xi)=a(\infty, \xi) \tilde{u}(\xi)+(2 \pi)^{-n / 2} \int \tilde{a}^{\prime}(\xi-\eta, \eta) \tilde{u}(\eta) d \eta
$$

Hence, we obtain, with Fourier transform in \mathbf{S}^{\prime}

$$
\begin{equation*}
\widehat{(A-A)} u(\xi)=(2 \pi)^{-n / 2} \int\left(\tilde{a}^{\prime}(\xi-\eta, \xi)-\tilde{a}^{\prime}(\xi-\eta, \eta)\right) \tilde{u}(\eta) d \eta \tag{4.11}
\end{equation*}
$$

Therefore, we will have to estimate the norm L^{2} of the expression

$$
\begin{align*}
& U_{s}(\xi)=(2 \pi)^{-n / 2}\left(1+|\xi|^{2}\right)^{s / 2} \int\left(\tilde{a}^{\prime}(\xi-\eta, \xi)-\tilde{a}^{\prime}(\xi-\eta, \eta)\right) \tilde{u}(\eta) d \eta= \tag{4.12}\\
= & (2 \pi)^{-n / 2} \int\left(1+|\xi|^{2}\right)^{s / 2}\left(1+|\eta|^{2}\right)^{-s / 2}\left(\tilde{a}^{\prime}(\xi-\eta, \xi)-\tilde{a}^{\prime}(\xi-\eta, \eta)\right)\left(1+|\eta|^{2}\right)^{s / 2} \tilde{u}(\eta) d \eta
\end{align*}
$$

We have

$$
\begin{array}{r}
\left|U_{s}(\xi)\right| \leqslant C_{s} \int\left(1+|\xi-\eta|^{2}\right)^{\mid s / 2 / 2}\left|\tilde{a}^{\prime}(\xi-\eta, \xi)-\tilde{a}^{\prime}(\xi-\eta, \eta)\right|\left(1+|\eta|^{2}\right)^{s / 2}|\tilde{u}(\eta)| d \eta \leqslant \tag{4.13}\\
\leqslant C_{\varepsilon, p} \int\left(1+|\xi-\eta|^{2}\right)^{\mid s / 2}\left(1+|\xi-\eta|^{2}\right)^{-p} \frac{|\xi-\eta|}{|\xi|+|\eta|}\left(1+|\eta|^{2}\right)^{s / 2}|\tilde{u}(\eta)| d \eta \\
\forall p=1,2, \ldots, \xi, \eta \in R^{n}-\{0\}
\end{array}
$$

(we used here Theorem 1, c).
We have now the following
Lemma. - For every $\xi, \eta \in R^{n}-\{0\}$ we have the inequality:

$$
\begin{equation*}
|\xi-\eta|(|\xi|+|\eta|)^{-1} \leqslant C\left(1+|\xi-\eta|^{2}\right)^{\frac{1}{2}}\left(1+|\eta|^{2}\right)^{-\frac{1}{2}} . \tag{4.14}
\end{equation*}
$$

In fact, we have, for $\xi, \eta \in R^{n}-\{0\}$, the evident relation $|\xi-\eta|+|\xi-\eta \| \eta| \leqslant$ $\leqslant|\xi|+|\eta|+|\eta||\xi-\eta|+|\xi||\xi-\eta|$, which is equivalent to

$$
\frac{|\xi-\eta|}{|\xi|+|\eta|} \leqslant \frac{1+|\xi-\eta|}{1+|\eta|}, \quad \xi, \eta \in R^{n}-\{0\} .
$$

Now, it will be sufficient to observe that, for $0<c<C$, we have

$$
c<(1+|\zeta|)\left(1+|\zeta|^{2}\right)^{-\frac{1}{2}} \leqslant C, \quad \forall \zeta \in R^{n}
$$

and to substitute

$$
(1+|\xi-\eta|) \leqslant O\left(1+|\xi-\eta|^{2}\right)^{\frac{1}{2}}, \quad(1+|\eta|) \geqslant c\left(1+|\eta|^{2}\right)^{\frac{1}{2}}
$$

Continuing now the estimates, from (4.13) we have for $\xi \in R^{n}-\{0\}$, that

$$
\begin{equation*}
\left|U_{s}(\xi)\right| \leqslant C_{s, p}^{1} \int\left(1+|\xi-\eta|^{2}\right)^{\left\lvert\, s / 2-p+\frac{1}{2}\right.}\left(1+|\eta|^{2}\right)^{s / 2-\frac{1}{2}}|\tilde{u}(\eta)| d \eta \tag{4.15}
\end{equation*}
$$

and reasoning as in the proof of Theorem 2, we deduce the result.
Remark 1. - The result above means that $A-\mathcal{A}$ is an operator of order $\leqslant-1$; for any real s, $A-\mathcal{A}$ extends to a linear continuous map of H^{s} into H^{s+1}; this implies that $A-\mathcal{A}$ has a certain "regularizing" effect. The property is also useful in the following way: suppose to have an estimate for operator A; then we can get same kind of estimate for the operator \mathcal{A} by writing that $\mathfrak{A}=\mathcal{A}-A+A$, applying (4.10) and the known estimate for A. Finally, sometimes we may neglect operators of order $\leqslant-1$. Then we can say that $A \equiv \mathcal{A}$ (mod operators of order $\leqslant-1$).

Remark 2. - Proposition 3 means that $\overline{\mathfrak{A}}$ is the L^{2}-adjoint of A; for real symbols $\mathcal{A}=A^{*}$. Hence $A=A^{*}$ iff $A=\mathcal{A}$; this happens for special symbols like $a(\xi)$ or $b(x)$; we don't know a necessary and sufficient condition on $a(x, \xi)$ in order that $A(x, D)=A^{*}(x, D)$.

Let us give now another proof of Proposition 3. We will use the definition (in case $a(\infty, \xi)=0$):

$$
\begin{equation*}
\widetilde{A} u(\xi)=(2 \pi)^{-n / 2} \int \tilde{a}(\xi-\eta, \xi) \tilde{u}(\eta) d \eta, \quad \widetilde{A} u(\xi)=(2 \pi)^{-n / 2} \int \tilde{a}(\xi-\eta, \eta) \tilde{u}(\eta) d \eta \tag{4.16}
\end{equation*}
$$

and the relation to be proved becomes, when we use Plancherel's theorem again

$$
\begin{equation*}
\int\left(\int \tilde{\alpha}(\xi-\eta, \xi) \tilde{u}(\eta) d \eta\right) \tilde{\tilde{v}}(\xi) d \xi=\int \tilde{u}(\xi) \overline{\left(\int \tilde{\bar{a}}(\xi-\eta, \eta) \tilde{v}(\eta) d \eta\right)} d \xi \tag{4.17}
\end{equation*}
$$

or

$$
\begin{equation*}
\iint \tilde{a}(\xi-\eta, \xi) \tilde{u}(\eta) \overline{\tilde{v}}(\xi) d \xi d \eta=\iint \tilde{u}(\xi) \overline{\tilde{a}}(\xi-\eta, \eta) \overline{\tilde{v}}(\eta) d \xi d \eta \tag{4.18}
\end{equation*}
$$

Let us observe here that:

$$
\begin{align*}
& \tilde{\bar{a}}(\lambda, \eta)=(2 \pi)^{-n / 2} \int \exp (-i x \cdot \lambda) \bar{a}(x, \eta) d x \tag{4.19}\\
& \overline{\bar{a}}(\lambda, \eta)=(2 \pi)^{-n / 2} \int \exp (i x \cdot \lambda) a(x, \eta) d x=\tilde{a}(-\lambda, \eta)
\end{align*}
$$

Therefore, the relation to be proved becomes:

$$
\begin{equation*}
\iint \tilde{a}(\xi-\eta, \xi) \tilde{u}(\eta) \bar{v}(\xi) d \xi d \eta=\iint \tilde{a}(\eta-\xi, \eta) \tilde{u}(\xi) \overline{\tilde{v}}(\eta) d \eta d \xi \tag{4.20}
\end{equation*}
$$

changing the variable: $\xi=\eta, \eta=\xi$, it becomes obvious.
The case $a(\infty, \xi) \neq 0$ does not introduce any new difficulty. Let $\zeta(\xi) \in C^{\infty}=0$, for $|\xi|<\frac{1}{2},=1$ for $|\xi| \geqslant 1$, and $\zeta(D)=\mathcal{F}^{-1}(\zeta(\xi) \mathcal{F})$, the associated operator.

Define two new operators:

$$
A_{\zeta}(x, D)=\zeta(D) A(x, D)
$$

and

$$
\mathfrak{A}_{\zeta}(x, D)=A(x, D) \zeta(D), \quad A_{\zeta}(x, D)-A(x, D)=(\zeta(D)-E) A(x, D)
$$

where $\zeta(D)-E$ has true order $=-\infty$; similarly $\mathcal{A}_{\zeta}(x, D)-\mathcal{A}(x, D)$ is an operator of order $=-\infty$. It follows that

$$
A_{\zeta}(x, D)-\mathcal{A}_{\xi}(x, D)=A(x, D)-\mathcal{A}(x, D)+T
$$

where T has order $-\infty$. By (4.10) we deduce, $\forall u \in S$, relation

$$
\left\|\left(A_{\zeta}-\mathcal{A}_{\zeta}\right) u\right\|_{s} \leqslant c_{s}\|u\|_{s-1}+\|T u\|_{s} \leqslant c_{s}^{\prime}\|u\|_{s-1}
$$

Furthermore, the L^{2}-adjoint of $A_{\zeta}(x, D)$ is $A^{*}(x, D) \zeta(D)=\bar{A}(x, D) \zeta(D)=\overline{X_{\zeta}}(x, D)$; this because $\zeta(D)$ is self-adjoint for real-valued $\zeta(\xi)$.

5. - Product and commutators.

Proposition. - Let $a(x, \xi), b(x, \xi)$ be two symbols. Then $c(x, \xi)=a(x, \xi) b(x, \xi)$ is a symbol too.

Obviously, $o(x, \xi) \in C^{\infty}\left(R^{n} \times R^{n}-\{0\}\right)$ as $a(x, \xi)$ and $b(x, \xi)$ are in this space.
Besides, $\forall t>0$,

$$
c(x, t \xi)=a(x, t \xi) b(x, t \xi)=a(x, \xi) b(x, \xi)=c(x, \xi), \quad x \in R^{n}, \xi \in R^{n}-\{0\}
$$

As

$$
\lim _{|x| \rightarrow \infty} a(x, \xi)=a(\infty, \xi), \quad \lim _{|x| \rightarrow \infty} b(x, \xi)=b(\infty, \xi)
$$

exist, for $\xi \in R^{n}-\{0\}$ the same is valid for $c(x, \xi)$;

$$
\lim _{|x| \rightarrow \infty} c(x, \xi)=c(\infty, \xi)=a(\infty, \xi) b(\infty, \xi)
$$

which exists for $\xi \in R^{n}-\{0\}$.
Hence: if we put $c^{\prime}(x, \xi)=c(x, \xi)-c(\infty, \xi)$, we have:
$c(x, \xi)=\left(a^{\prime}(x, \xi)+a(\infty, \xi)\right)\left(b^{\prime}(x, \xi)+b(\infty, \xi)\right)=$
$=a^{\prime}(x, \xi) b^{\prime}(x, \xi)+a(\infty, \xi) b^{\prime}(x, \xi)+b(\infty, \xi) a^{\prime}(x, \xi)+a(\infty, \xi) b(\infty, \xi)=c^{\prime}(x, \xi)+c(\infty, \xi)$
where

$$
c^{\prime}(x, \xi)=a^{\prime}(x, \xi) b^{\prime}(x, \xi)+a(\infty, \xi) b^{\prime}(x, \xi)+b(\infty, \xi) a^{\prime}(x, \xi)
$$

Obviously $c(\infty, \xi) \in C^{\infty}\left(R^{n}-\{0\}\right)$.
Let us now remark now that:

$$
\begin{gather*}
\left(1+|x|^{2}\right)^{p}\left|D_{x}^{\alpha} \partial_{\xi}^{\beta} c^{\prime}(x, \xi)\right| \leqslant C_{p, \alpha, \beta}, \tag{5.1}\\
\forall x \in R^{n}, \xi \in R^{n}-\{0\}, p=1,2, \ldots, \alpha=\left(\alpha_{1}, \ldots, \alpha_{n}\right), \beta=\left(\beta_{1}, \ldots, \beta_{n}\right)
\end{gather*}
$$

(consequence of Leibniz's theorem).
Let $C(x, D), A(x, D), B(x, D)$ be the operators corresponding to $c(x, \xi), a(x, \xi)$, $b(x, \xi)$, respectively. We have

$$
A(x, D)=A(\infty, D)+A^{\prime}(x, D), \quad B(x, D)=B(\infty, D)+B^{\prime}(x, D)
$$

$$
\begin{align*}
A(x, D) B(x, D) & =A(\infty, D) B(\infty, D)+ \tag{5.2}\\
& +A^{\prime}(x, D) B(\infty, D)+A(\infty, D) B^{\prime}(x, D)+A^{\prime}(x, D) B^{\prime}(x, D)
\end{align*}
$$

We denote $a(\infty, \xi) b(\infty, \xi)=\gamma(\xi)=c(\infty, \xi) ; a^{\prime}(x, \xi) b^{\prime}(x, \xi)=k(x, \xi), a(\infty, \xi) b^{\prime}(x, \xi)=$ $=k_{1}(x, \xi), b(\infty, \xi) a^{\prime}(x, \xi)=k_{2}(x, \xi)$. Then,

$$
\begin{equation*}
C(x, D)=\gamma(D)+K(x, D)+K_{1}(x, D)+K_{2}(x, D) \tag{5.3}
\end{equation*}
$$

Hence; we have some simple results:
Lemma 1. - We have $\gamma(D) u=A(\infty, D) B(\infty, D) u$ for $u \in \mathcal{S}$.
In fact,

$$
\begin{aligned}
& \widetilde{\gamma(D) u}(\xi)=\gamma(\xi) \tilde{u}(\xi)=a(\infty, \xi) b(\infty, \xi) \tilde{u}(\xi)= \\
& \quad=a(\infty, \xi) \widehat{(B(\infty, D) u)}(\xi)=\widehat{A(\infty, D)(B(\infty, D) u)}(\xi)
\end{aligned}
$$

hence, by Fourier's inversion formula, valid in S^{\prime}, we arrive at Lemma 1.

Lemma 2. - We have $K_{1}(x, D)=A(\infty, D) B^{\prime}(x, D)$.
In fact,

$$
\widehat{K_{1}(x, D) u}(\xi)=(2 \pi)^{-n / 2} \int a(\infty, \xi) \tilde{b}^{\prime}(\xi-\eta, \xi) \tilde{u}(\eta) d \eta
$$

(as $k_{1}(\infty, \xi)=0$, and $\left.\tilde{k}_{1}(\lambda, \xi)=a(\infty, \xi) \tilde{b}^{\prime}(\lambda, \xi)\right)$. Hence

$$
\begin{equation*}
\widehat{K_{1}(x, D) u}(\xi)=a(\infty, \xi) \widehat{B^{\prime}(x, D) u}(\xi)=\widehat{A(\infty, D)\left(B^{\prime}(x, D) u\right)}(\xi) \tag{5.4}
\end{equation*}
$$

and this is true for any $u \in S$; whence the Lemma follows.
Lemma 3. - We have $K_{2}(x, D)=B(\infty, D) A^{\prime}(x, D)$.
The proof is the same, as in Lemma 2. Let us examine here the difference

$$
\begin{aligned}
& A(x, D) B(x, D)-C(x, D)=A(\infty, D) B(\infty, D)+A^{\prime}(x, D) B(\infty, D)+ \\
& \quad+A(\infty, D) B^{\prime}(x, D)+A^{\prime}(x, D) B^{\prime}(x, D)-A(\infty, D) B(\infty, D)-A(\infty, D) B^{\prime}(x, D)- \\
& \quad-B(\infty, D) A^{\prime}(x, D)-K(x, D)=\left[A^{\prime}(x, D), B(\infty, D)\right]+A^{\prime}(x, D) B^{\prime}(x, D)-K(x, D)
\end{aligned}
$$

where [] means the commutator between the two operators, and $K(x, D)$ is the pseudo-differential operator associated with $k(x, \xi)=a^{\prime}(x, \xi) b^{\prime}(x, \xi)$.

Let us begin by proving the
Proposition 5. - We have the relation (*)

$$
\begin{equation*}
\left\|\left[A^{\prime}(x, D), B(\infty, D)\right] u\right\|_{s} \leqslant C_{s}\|u\|_{s-1}, \quad \forall u \in S, \forall \text { real } s \tag{5.5}
\end{equation*}
$$

In fact, we apply the formula

$$
\begin{align*}
& \widehat{A^{\prime}(x, D) B(\infty, D) u}(\xi)=(2 \pi)^{-n / 2} \int \tilde{\alpha}^{\prime}(\xi-\eta, \xi) \widehat{B(\infty, D)} u(\eta) d \eta= \tag{5.6}\\
& =(2 \pi)^{-\pi / 2} \int \tilde{a}^{\prime}(\xi-\eta, \xi) b(\infty, \eta) \tilde{u}(\eta) d \eta .
\end{align*}
$$

Besides,

$$
\widehat{B(\infty, D) A^{\prime}(x, D) u}(\xi)=b(\infty, \xi) \widetilde{A^{\prime}(x, D) u(\xi)}=b(\infty, \xi)(2 \pi)^{-n / 2} \int \tilde{a}^{\prime}(\xi-\eta, \xi) \tilde{u}(\eta) d \eta
$$

and hence

$$
\widehat{\left[A^{\prime}(x, D), B(\infty, D)\right] u}(\xi)=(2 \pi)^{-n / 2} \int \tilde{a}^{\prime}(\xi-\eta, \xi)(b(\infty, \eta)-b(\infty, \xi)) \tilde{u}(\eta) d \eta
$$

As $b(\infty, \xi)$ is homogeneous of order 0 in ξ and $C^{\infty}\left(R^{n}-\{0\}\right)$, we have, as seen at the beginning, for $\xi, \eta \in R^{n}-\{0\}$

$$
\begin{equation*}
|b(\infty, \xi)-b(\infty, \eta)| \leqslant C|\xi-\eta|(|\xi|+|\eta|)^{-1} \leqslant C\left(1+|\xi-\eta|^{2}\right)^{\frac{1}{2}}\left(1+|\eta|^{2}\right)^{-\frac{1}{2}} \tag{5.7}
\end{equation*}
$$

(*) Obviously the same holds if we replace $A^{\prime}(x, D)$ by $\mathcal{A}^{\prime}(x, D)$ and $B(\infty, D)$ by $\mathfrak{B}(\infty, D)=B(\infty, D)$.

Hence, we are obliged to estimate the norm L^{2} of the expression

$$
\begin{equation*}
U_{s}(\xi)=\left(1+|\xi|^{2}\right)^{s / 2}(2 \pi)^{-n / 2} \int \tilde{a}^{\prime}(\xi-\eta, \xi)(b(\infty, \xi)-b(\infty, \eta)) \tilde{u}(\eta) d \eta \tag{5.8}
\end{equation*}
$$

We have:

$$
\begin{aligned}
& \left|C_{s}(\xi)\right| \leqslant C_{s, v} \int\left(1+|\xi-\eta|^{2}\right)^{|s| / 2}\left(1+|\xi-\eta|^{2}\right)^{-p+1}\left(1+|\eta|^{2}\right)^{(s-1) / 2}|\tilde{u}(\eta)| d \eta= \\
& \\
& =C_{s, v} \int\left(1+|\xi-\eta|^{2}\right)^{|s| / 2+\frac{1}{2}-p}\left(1+|\eta|^{2}\right)^{(s-1) / 2}|\tilde{u}(\eta)| d \eta
\end{aligned}
$$

from where we arrive, as before, at the desired estimate.
A more refined technique is necessary in order to prove (*)
Theorem 3. - We have the relation

$$
\begin{equation*}
\left\|\left(A^{\prime}(x, D) B^{\prime}(x, D)-K(x, D)\right) u\right\|_{s} \leqslant C_{s}\|u\|_{s-1}, \quad \forall u \in \mathcal{S}, \forall \text { real } s . \tag{5.9}
\end{equation*}
$$

Let us consider the operator $K(x, D)$ associated with $k(x, \xi)$:

$$
\widetilde{K(x, D) u}(\xi)=(2 \pi)^{-n / 2} \int \tilde{k}(\xi-\eta, \xi) \tilde{u}(\eta) d \eta
$$

but we have, for $k(x, \xi)=a^{\prime}(x, \xi) b^{\prime}(x, \xi)$ that

$$
\begin{equation*}
\tilde{k}(\lambda, \xi)=(2 \pi)^{-n / 2} \int \tilde{a}^{\prime}(\lambda-\mu, \xi) \tilde{b}^{\prime}(\mu, \xi) d \mu \tag{5.10}
\end{equation*}
$$

whence we arrive at

$$
\begin{align*}
& \widehat{K(x, D) u}(\xi)=(2 \pi)^{-n} \int \tilde{u}(\eta)\left(\int \tilde{a}^{\prime}(\xi-\eta-\mu, \xi) \tilde{b}^{\prime}(\mu, \xi) d \mu\right) d \eta= \tag{5.11}\\
& =(2 \pi)^{-n} \int\left(\int \tilde{a}^{\prime}(\xi-\eta-\mu, \xi) \tilde{u}(\eta) d \eta\right) \tilde{b}^{\prime}(\mu, \xi) d \mu
\end{align*}
$$

In the interior integral, we make: $\eta+\mu=\tau$; $\nexists \eta=d \tau$; it follows

$$
\begin{align*}
& \widetilde{K} u(\xi)=(2 \pi)^{-n} \int\left(\int \tilde{a}^{\prime}(\xi-\tau, \xi) \tilde{u}(\tau-\mu) d \tau\right) \tilde{b}^{\prime}(\mu, \xi) d \mu= \tag{5.12}\\
&=(2 \pi)^{-n} \int\left(\int \tilde{a}^{\prime}(\xi-\tau, \xi) \tilde{b}^{\prime}(\mu, \xi) \tilde{u}(\tau-\mu) d \mu\right) d \tau= \\
&=(2 \pi)^{-n} \int \tilde{a}^{\prime}(\xi-\tau, \xi)\left(\int \tilde{b}^{\prime}(\mu, \xi) \tilde{u}(\tau-\mu) d \mu\right) d \tau
\end{align*}
$$

And once more, in the interior integral, we make: $\tau-\mu=\nu, d \mu=d \nu$.

$$
\begin{aligned}
& \left(^{*}\right) \text { Same estimate holds for operator } \mathcal{A}^{\prime}(x, D) \mathfrak{B}^{\prime}(x, D)-\mathscr{H}(x, D) \text { which equals } \\
& \left(\mathcal{F}^{\prime}(x, D)-A^{\prime}(x, D)\right) \mathcal{B}^{\prime}(x, D)+A^{\prime}(x, D) B^{\prime}(x, D)-K(x, D)+ \\
& +A^{\prime}(x, D)\left(\mathfrak{B}^{\prime}(x, D)-B^{\prime}(x, D)\right)+K(x, D)-K(x, D) \\
& \text { as easily seen. }
\end{aligned}
$$

We have now

$$
\begin{align*}
\widetilde{K u}(\xi)=(2 \pi)^{-n} \int \tilde{a}^{\prime}(\xi-\tau, \xi)\left(\int \tilde{b}^{\prime}(\tau\right. & -v, \xi) \tilde{u}(v) d v) d \tau= \tag{5.13}\\
& =(2 \pi)^{-n} \iint \tilde{a}^{\prime}(\xi-\tau, \xi) \tilde{b}^{\prime}(\tau-v, \xi) \tilde{u}(v) d v d \tau
\end{align*}
$$

Hence, we arrive at

$$
\begin{equation*}
\widetilde{K u}(\xi)=(2 \pi)^{-n} \iint \tilde{a}^{\prime}(\xi-\tau, \xi) \tilde{b}^{\prime}(\tau-\eta, \xi) \tilde{u}(\eta) d \eta d \tau \tag{5.14}
\end{equation*}
$$

On the other hand, we have

$$
\begin{equation*}
\widehat{A^{\prime}(x, D) B^{\prime}(x, D) u}(\xi)=(2 \pi)^{-n / 2} \int \tilde{a}^{\prime}(\xi-\eta, \xi) \widehat{B^{\prime}(x, D) u}(\eta) d \eta \tag{5.15}
\end{equation*}
$$

and besides:

$$
\begin{equation*}
\widehat{B^{\prime}(x, D) u}(\eta)=(2 \pi)^{-n / 2} \int \tilde{b}^{\prime}(\eta-\tau, \eta) \tilde{u}(\tau) d \tau \tag{5.16}
\end{equation*}
$$

and hence we shall obtain

$$
\begin{align*}
& \widehat{A^{\prime}(x, D) B^{\prime}(x, \bar{D}) u(\xi)}=(2 \pi)^{-n} \int \tilde{a}^{\prime}(\xi-\eta, \xi)\left(\int \tilde{b}^{\prime}(\eta-\tau, \eta) \tilde{u}(\tau) d \tau\right) d \eta= \tag{5.17}\\
&=(2 \pi)^{-n} \iint \tilde{a}^{\prime}(\xi-\eta, \xi) \tilde{b}^{\prime}(\eta-\tau, \eta) \tilde{u}(\tau) d \tau d \eta
\end{align*}
$$

By making substitution $\eta=\tau, \tau=\eta$, we arrive at

$$
\begin{equation*}
\widehat{A^{\prime}(x, D) B^{\prime}(x, D) u}(\xi)=(2 \pi)^{-n} \iint \tilde{a}^{\prime}(\xi-\tau, \xi) \tilde{b}^{\prime}(\tau-\eta, \tau) \tilde{u}(\eta) d \eta d \tau \tag{5.18}
\end{equation*}
$$

The absolute convergence of the "double» integrals here considered results from the estimates

$$
\begin{array}{r}
\left|\tilde{a}^{\prime}(\xi-\tau, \xi)\right| \leqslant C_{p}\left(1+|\xi-\tau|^{2}\right)^{-p},\left|\tilde{b}^{\prime}(\tau-\eta, \tau)\right| \leqslant C, \quad|\tilde{u}(\eta)| \leqslant O_{p}\left(1+|\eta|^{2}\right)^{-p} \tag{5.19}\\
\forall p=1,2, \ldots
\end{array}
$$

Therefore, we can express the difference $\left(\widehat{\left.A^{\prime}(x, D) B^{\prime}(x, D)-K(x, D)\right) u}(\xi)\right.$ by the "double» integral

$$
\begin{equation*}
(2 \pi)^{-n} \iint \tilde{a}^{\prime}(\xi-\tau, \xi)\left(\tilde{b}^{\prime}(\tau-\eta, \tau)-\tilde{b}^{\prime}(\tau-\eta, \xi)\right) \tilde{u}(\eta) d \eta d \tau \tag{5.20}
\end{equation*}
$$

Let us examine here the norm L^{2} of the expression

$$
\begin{equation*}
U_{s}(\xi)=(2 \pi)^{-n} \iint\left(1+|\xi|^{2}\right)^{s / 2} \tilde{a}^{\prime}(\xi-\tau, \xi)\left(\tilde{b}^{\prime}(\tau-\eta, \xi)-\tilde{b}^{\prime}(\tau-\eta, \tau)\right) \tilde{u}(\eta) d \eta d \tau \tag{5.21}
\end{equation*}
$$

We have, first of all, the pointwise estimate, $\forall \xi \in R^{n}-\{0\}$

$$
\begin{align*}
& \left|U_{s}(\xi)\right| \leqslant C \iint\left(1+|\xi|^{2}\right)^{s / 2}\left(1+|\xi-\tau|^{2}\right)^{-p}\left(1+|\tau-\eta|^{2}\right)^{-p}|\xi-\tau|(|\xi|+|\tau|)^{-1}|\tilde{u}(\eta)| d \eta d \tau \leqslant \tag{5.22}\\
& \leqslant C_{s, p} \iint\left(1+|\xi|^{2}\right)^{s / 2}\left(1+|\xi-\tau|^{2}\right)^{-p}\left(1+|\tau-\eta|^{2}\right)^{-p}\left(1+|\xi-\tau|^{2}\right)^{\frac{1}{3}}\left(1+|\tau|^{2}\right)^{-\frac{1}{-2}}|\tilde{u}(\eta)| d \eta d \tau= \\
& \\
& =C_{s, p} \iint\left(1+|\xi|^{2}\right)^{s / 2}\left(1+|\xi-\tau|^{2}\right)^{-p+\frac{1}{2}}\left(1+|\tau-\eta|^{2}\right)^{-p}\left(1+|\tau|^{2}\right)^{-\frac{1}{2}}|\tilde{u}(\eta)| d \eta d \tau
\end{align*}
$$

Let us denote now:

$$
\begin{align*}
& H(\xi, \eta, \tau)=\left(1+|\tau-\eta|^{2}\right)^{-p}\left(1+|\xi-\tau|^{2}\right)^{-p+\frac{1}{2}}\left(1+|\tau|^{2}\right)^{-\frac{1}{2}} \tag{5.23}\\
& K_{s}(\xi, \eta)=\frac{\left(1+|\xi|^{2}\right)^{s / 2}}{\left(1+|\eta|^{2}\right)^{(s-1 / 2}} \int H(\xi, \eta, \tau) d \tau \tag{5.24}
\end{align*}
$$

We remark that it follows, $\forall \xi \in R^{n}-\{0\}$

$$
\begin{equation*}
\left|U_{s}(\xi)\right| \leqslant C_{s, \eta} \iint\left(1+|\xi|^{2}\right)^{s / 2} H(\xi, \eta, \tau)|\tilde{u}(\eta)| d \eta d \tau \tag{5.25}
\end{equation*}
$$

Therefore, we have only to prove the inequality

$$
\begin{equation*}
\left(\int\left(\iint\left(1+|\xi|^{2}\right)^{s / 2} H(\xi, \eta, \tau)|\tilde{u}(\eta)| d \eta d \tau\right)^{2} d \xi\right)^{\frac{1}{2}} \leqslant C_{s}\|u\|_{s-1}, \quad \forall u \in \mathcal{S} \tag{5.26}
\end{equation*}
$$

In order to do that we shall prove here a more general result, which is given in
Lempa 1. - Let $r(\xi, \eta, \tau)>0$ be a function such that $\int r(\xi, \eta, \tau) d \tau<\infty$ for every ξ, η fixed in $R^{n}-\{0\}$.

We denote

$$
\varrho_{s}(\xi, \eta)=\frac{\left(1+|\xi|^{2}\right)^{s / 2}}{\left(1+|\eta|^{2}\right)^{(s-1) / 2}} \int r(\xi, \eta, \tau) d \tau
$$

and we suppose

$$
\int \varrho_{s}(\xi, \eta) d \xi \leqslant L, \quad \int \varrho_{s}(\xi, \eta) d \eta \leqslant L, \quad \xi, \eta \in R^{n}-\{0\}
$$

Then, there is a constant C_{s} such that the inequality

$$
\begin{equation*}
\left(\int\left(\iint\left(1+|\xi|^{\mid 2}\right)^{s / 2} r(\xi, \eta, \tau)|\tilde{u}(\eta)| d \eta d \tau\right)^{2} d \xi\right)^{\frac{3}{2}} \leqslant C_{s}\|u\|_{s-1}, \quad \forall u \in S, \forall \text { real } s \tag{5.27}
\end{equation*}
$$

is verified.
Proof of Lemma 1. - We remark that in fact, we have

$$
\begin{equation*}
\iint r(\xi, \eta, \tau)\left(1+|\xi|^{2}\right)^{s / 2}|\tilde{u}(\eta)| d \eta d \tau=\int \varrho_{s}(\xi, \eta)\left(1+|\eta|^{2}\right)^{(s-1) / 2}|\tilde{u}(\eta)| d \eta . \tag{5.28}
\end{equation*}
$$

Let us put $v(\eta)=\left(1+|\eta|^{2}\right)^{(s-1) / 2}|\tilde{u}(\eta)|$. We remark that $\left({ }^{*}\right)$

$$
\begin{align*}
& \int \varrho_{s}(\xi, \eta) v(\eta) d \eta= \int \sqrt{\varrho_{s}(\xi, \eta)} \sqrt{\varrho_{s}(\xi, \eta)} v(\eta) d \eta \leqslant \tag{5.29}\\
& \leqslant\left(\int \varrho_{s}(\xi, \eta) d \eta\right)^{\frac{1}{2}}\left(\int \varrho_{s}(\xi, \eta) v^{2}(\eta) d \eta\right)^{\frac{1}{2}} \leqslant \sqrt{L}\left(\int \varrho_{s}(\xi, \eta) v^{2}(\eta) d \eta\right)^{\frac{1}{2}} \\
& \iint r(\xi, \eta, \tau)\left(1+|\xi|^{2}\right)^{s / 2}|\tilde{u}(\eta)| d \eta d \tau \leqslant \sqrt{L}\left(\int \varrho_{s}(\xi, \eta) v^{2}(\eta) d \eta\right)^{\frac{1}{2}}, \quad \xi \in R^{n}-\{0\} \tag{5.30}
\end{align*}
$$

Hence we have also:

$$
\begin{aligned}
\iiint r(\xi, \eta, \tau)\left(1+|\xi|^{2}\right)^{s / 2}|\tilde{u}(\eta)| & \left.d \eta d \tau\right|_{L^{2}\left(R^{n}\right)} \leqslant \sqrt{L}\left(\int\left(\int \varrho_{s}(\xi, \eta) v^{2}(\eta) d \eta\right) d \xi\right)^{\frac{1}{2}}= \\
& =\sqrt{L}\left(\int\left(\int \varrho_{s}(\xi, \eta) d \xi\right) v^{2}(\eta) d \eta\right)^{\frac{1}{2}} \leqslant L\left(\int v^{2}(\eta) d \eta\right)^{\frac{1}{3}}=L\|u\|_{s-\mathbf{1}}
\end{aligned}
$$

We shall apply Lemma 1 taking $r(\xi, \eta, \tau)=H(\xi, \eta, \tau)$ and $\varrho_{s}(\xi, \eta)=K_{s}(\xi, \eta)$.
We see readily that $\left.{ }^{(}\right) \int H(\xi, \eta, \tau) d \tau<\infty$, and it remains to prove
Lemira 2. - We have

$$
\begin{equation*}
\int K_{s}(\xi, \eta) d \xi \leqslant L, \quad \int K_{s}(\xi, \eta) d \eta \leqslant L \tag{5.31}
\end{equation*}
$$

In fact,

$$
K_{s}(\xi, \eta)=\frac{\left(1+|\xi|^{2}\right)^{s / 2}}{\left(1+|\eta|^{2}\right)^{(s-1) / 2}} \int\left(1+|\tau-\eta|^{2}\right)^{-p}\left(1+|\xi-\tau|^{2}\right)^{-p+\frac{1}{2}}\left(1+|\tau|^{2}\right)^{-\frac{1}{2}} d \tau
$$

Because we have the known estimate $\left(1+|\tau|^{2}\right)^{-\frac{1}{2}} \leqslant 2^{\frac{1}{2}}\left(1+|\xi|^{2}\right)^{-\frac{1}{2}}\left(1+|\xi-\tau|^{2}\right)^{\frac{1}{2}}$, we obtain

$$
\begin{align*}
& K_{s}(\xi, \eta) \leqslant\left(\frac{1+|\xi|^{2}}{1+|\eta|^{2}}\right)^{(s-1 / 2} 2^{\frac{1}{2}} \int\left(1+|\tau-\eta|^{2}\right)^{-p}\left(1+|\xi-\tau|^{2}\right)^{-p+1} d \tau \leqslant \tag{5.32}\\
& \leqslant C_{s}\left(1+|\xi-\eta|^{2}\right)^{\mid s-1 / 2} \int\left(1+|\tau-\eta|^{2}\right)^{-p}\left(1+|\xi-\tau|^{2}\right)^{-p+1} d \tau= \\
&=O_{s} \int\left(1+|\xi-\eta|^{2}\right)^{\mid s-1 / 2}\left(1+|\tau-\eta|^{2}\right)^{-p}\left(1+|\xi-\tau|^{2}\right)^{-p+1} d \tau
\end{align*}
$$

Now we have, $\left(1+|\xi-\eta|^{2}\right)^{1 s-1 / 2} \leqslant C\left(1+|\xi-\tau|^{2}\right)^{1 s-1 / 2}\left(1+|\tau-\eta|^{2}\right)^{1 s-1 / 2}$, and hence

$$
\begin{equation*}
K_{s}(\xi, \eta) \leqslant C_{s} \int\left(1+|\xi-\tau|^{2}\right)^{-p+1+\mid s-1 / / 2}\left(1+|\tau-\eta|^{2}\right)^{-p+\mid s-1 / / 2} d \tau \tag{5.33}
\end{equation*}
$$

[^0]We denote at this stage:

$$
\lambda(t)=\int\left(1+|t-u|^{2}\right)^{-p+1 s-1 / 2}\left(1+|u|^{2}\right)^{-p+1+1 s-1 / 2} d u, \quad t \in R^{n}
$$

where p is large enough.
We see that $\lambda(t) \in L^{1}$ as convolution of two integrable functions; hence, we have:

$$
\begin{aligned}
& \lambda(\xi-\eta)=\int\left(1+|\xi-\eta-u|^{2}\right)^{-p+i s-1 / 2}\left(1+|u|^{2}\right)^{-p+1+\mid s-1 / 2} d u= \\
& \quad=(\text { by substituting } u=\xi-\tau)=\int\left(1+|\tau-\eta|^{2}\right)^{-p+\mid s-1 / 2}\left(1+|\xi-\tau|^{2}\right)^{-p+1+\mid s-1 / 2} d \tau
\end{aligned}
$$

Hence, we get

$$
K_{s}(\xi, \eta) \leqslant C_{s} \lambda(\xi-\eta)
$$

and obviously:

$$
\int \lambda(\xi-\eta) d \xi<\infty, \quad \int \lambda(\xi-\eta) d \eta<\infty
$$

which proves the Lemma 2.
Hence, for Lemma 1 we have that

$$
\begin{equation*}
\left\|U_{s}(\xi)\right\|_{L^{2}} \leqslant C\|u\|_{s-1}, \quad \forall u \in \mathcal{S} \tag{5.34}
\end{equation*}
$$

and this proves Theorem 3.
Corollary. - If $A(x, D), B(x, D)$ are two pseudo-differential operators, the commutator $[A(x, D), B(x, D)]$ is of order $\leqslant-1$.

In fact, we have that

$$
A(x, D) B(x, D)-(a b)(x, D)=\left[A^{\prime}(x, D), B(x, D)\right]+A^{\prime}(x, D) B^{\prime}(x, D)-K(x, D)
$$

is of order $\leqslant-1$ as by Theorem 3 and Proposition 5.
In the same way, we can prove that $B(x, D) A(x, D)-(a b)(x, D)$ is of order $\leqslant-1$. Hence we arrive at the desired result (*).

Remark. 1. - Iet $\alpha(x, \xi)$ be a symbol such that $|\alpha(x, \xi)|>\alpha>0, \forall x \in R^{n}$, $\forall \xi \in R^{n}-\{0\}$. Then one can see that $b(x, \xi)=(a(x, \xi))^{-i}$ is again a symbol. Hence $a(x, \xi) b(x, \xi)=1 \quad \forall x \in R^{n}, \xi \in R^{n}-\{0\}$. The operator \mathcal{A} associated to $c(x, \xi) \equiv 1$ is the identity operator. Hence we get

$$
\|(I-\mathcal{B A}) u\|_{0} \leqslant e\|u\|_{-1}, \quad \forall u \in \mathcal{S}
$$

Furthermore we have

$$
u=u-\mathcal{B A} u+\mathscr{B} \mathfrak{A} u, \quad \forall u \in \mathbb{S}
$$

(*) Same result holds for the commatator $[\mathcal{A}(x, D), \mathfrak{B}(x, D)]$ as follows from footnotes to Prop. 5 and Th. 3.

We derive inequality

$$
\|u\|_{0} \leqslant c\|u\|_{-1}+\|\mathcal{B}\|{\underline{E}\left(u^{2} ; z^{2}\right)} \cdot\|\mathfrak{t u}\|_{0} \leqslant c_{1}\left(\|\mathfrak{t} u\|_{0}+\|u\|_{-1}\right), \quad \forall u \in L^{2} .
$$

Same estimate holds when we replace ot by A.
We have also the interesting
Remark 2. - Let $a(x, \xi)$ be a symbol and $A(x, D)$ the associated p.d.o. Assume that $\lambda_{0} \in \mathcal{O}$ is an eigen-value of $A(x, D)$ (in $L^{2}\left(R^{n}\right)$), such that $\left|\alpha(x, \xi)-\lambda_{0}\right|>\alpha>0$ $\forall x \in R^{n},|\xi|=1$. Then, any eigen-vector $u_{0}(x)$ corresponding to λ_{0} is a C^{∞}-function.

In fact, $b(x, \xi)=\left(a(x, \xi)-\lambda_{0}\right)^{-1}$ is a symbol. If $B(x, D)$ is associated to it we get, as in Remark 1, that $B(x, D)\left(A(x, D)-\lambda_{0} E\right)=E+T$, where E is the identity operator and T has order $\leqslant-1$. It follows: $\theta=B\left(A-\lambda_{0} E\right) u_{0}=u_{0}+T u_{0}$, i.e. $u_{0}=-T u_{0}$. Being $u_{0} \in L^{2}$, it follows that $T u_{0} \in H^{1}$ and $u_{0} \in H^{1}$ too.

In the same way we get that $u_{0} \in \bigcap_{p=0}^{\infty} H^{p}$, which implies, as wellknown, that $u_{0}(x) \in C^{\infty}\left(R^{n}\right)$.

Let us consider now the operator $I_{s}=\left(1+|D|^{2}\right)^{s / 2}$, defined by $\widetilde{I_{s} u(\xi)=}$ $=\left(1+|\xi|^{2}\right)^{s / 2} \tilde{u}(\xi), \forall u \in \mathcal{S}$. A useful result is given in

Theorem 4. - Let $a(x, \xi)$ be a symbol, $A(x, D)$ the associated pseudo-differential operator. We have:

$$
\begin{equation*}
\|\left[A(x, D), I_{s}\left\|_{S^{t}\left(R^{n}\right)} \leqslant C\right\| u \|_{B^{s-1}}, \quad \forall u \in \mathcal{S}\right. \tag{5.35}
\end{equation*}
$$

In fact, we have:

$$
\begin{align*}
\widetilde{A\left(x, \overline{D) I_{s} u}(\xi)\right.}=a(\infty, \xi)\left(1+|\xi|^{2}\right)^{s / 2} & \tilde{u}(\xi) \tag{5.36}\\
& + \\
& +(2 \pi)^{-u / 2} \int \tilde{a}^{\prime}(\xi-\eta, \xi)\left(1+|\eta|^{2}\right)^{s / 2} \tilde{u}(\eta) d \eta
\end{align*}
$$

and also

$$
\begin{align*}
\widetilde{I_{s} A(x, D) u}(\xi)=\left(1+|\xi|^{2}\right)^{s / 2} \widetilde{A(x, D)} u(\xi) & =\left(1+|\xi|^{2}\right)^{s / 2} a(\infty, \xi) \tilde{u}(\xi)+ \tag{5.37}\\
& +(2 \pi)^{-n / 2} \int \tilde{a}^{\prime}(\xi-\eta, \xi)\left(1+|\xi|^{2}\right)^{s / 2} \tilde{u}(\eta) d \eta
\end{align*}
$$

and hence it can be deduced that

$$
\begin{array}{r}
{\left[\widehat{\left[(x, \bar{D}), I_{s}\right] u}(\xi)=(2 \pi)^{-n / 2} \int \tilde{a}^{\prime}(\xi-\eta, \xi)\left[\left(1+|\eta|^{2}\right)^{s / 2}-\left(1+|\xi|^{2}\right)^{s / 2}\right] \tilde{u}(\eta) d \eta=U_{s}(\xi),\right.} \tag{5.38}\\
\xi \in R^{n}-\{0\}
\end{array}
$$

By estimating the norm L^{2} of $U_{s}(\xi)$ we have first of all the point-wise estimate

$$
\begin{equation*}
\left|U_{s}(\xi)\right| \leqslant C_{y} \int\left(1+|\xi-\eta|^{2}\right)^{-p}\left|\left(1+|\eta|^{2}\right)^{s / 2}-\left(1+|\xi|^{2}\right)^{s / 2}\right| \tilde{u}(\eta) \mid d \eta \text {. } \tag{5.39}
\end{equation*}
$$

Let us remark here the elementary inequality, for $0<\theta<1$

$$
\begin{equation*}
\left(1+\mid \eta+\theta(\xi-\eta)^{2}\right)^{(s-1) / 2} \leqslant 2^{\mid s-1 / 1 / 2}\left(1+|\eta|^{2}\right)^{(s-1) / 2}\left(1+|\theta(\xi-\eta)|^{2}\right)^{\mid s-1 / 1 / 2} \tag{5.40}
\end{equation*}
$$

and therefore, as $|s-1| / 2>0,0<\theta<1:\left(1+\left(\left.\theta(\xi-\eta)\right|^{2}\right)^{\mid s-1 / 2} \leqslant\left(1+|\xi-\eta|^{2}\right)^{\mid s-1 / / 2}\right.$ whence

$$
\begin{equation*}
\left(1+|\eta+\theta(\xi-\eta)|^{2}\right)^{(s-1) / 2} \leqslant 2^{\mid s-1 / 2 / 2}\left(1+|\eta|^{2}\right)^{(s-1 / 1 / 2}\left(1+|\xi-\eta|^{2}\right)^{\mid s-1 / 2} \tag{5.41}
\end{equation*}
$$

By Taylor's formula, we have

$$
\begin{align*}
& \left(1+|\xi|^{2}\right)^{s / 2}-\left(1+|\eta|^{2}\right)^{s / 2}=\left((\xi-\eta), \operatorname{grad}\left(1+|\xi|^{2}\right)_{\xi=5}^{s / 2}\right), \quad \zeta=\eta+\theta(\xi-\eta) \tag{5.42}\\
& \left|\left(1+|\xi|^{2}\right)^{s / 2}-\left(1+|\eta|^{2}\right)^{s / 2}\right| \leqslant|\xi-\eta|\left|\operatorname{grad}\left(1+|\xi|^{2}\right)_{\xi /=\zeta}^{s / 2}\right| \tag{5.43}
\end{align*}
$$

As we have

$$
\frac{\partial}{\partial \xi_{i}}\left(1+|\xi|^{2}\right)^{s / 2}=\xi_{i} s\left(1+|\xi|^{2}\right)^{s / 2-1}
$$

it follows that

$$
\begin{equation*}
\left|\operatorname{grad}\left(1+|\xi|^{2}\right)^{s / 2}\right|=|\xi||s|\left(1+|\xi|^{2}\right)^{s / 2-3} \leqslant|s|\left(1+|\xi|^{2}\right)^{(s-1) / 2} \tag{5.44}
\end{equation*}
$$

and hence

$$
\begin{align*}
&\left(1+|\xi|^{2}\right)^{s / 2}-\left(1+|\eta|^{2}\right)^{s / 2}|\leqslant|\xi-\eta|| s \mid\left(1+\mid \eta+\theta(\xi-\eta)^{2}\right)^{(s-1) / 2} \leqslant \tag{5.45}\\
& \leqslant|s|\left(1+|\xi-\eta|^{2}\right)^{\frac{1}{2}}\left(1+\mid \eta+\theta(\xi-\eta)^{2}\right)^{(s-1) / 2} \leqslant \\
& \leqslant|s|\left(1+|\xi-\eta|^{2}\right)^{\frac{1}{2} 2^{\mid s-1 / 2}\left(1+|\eta|^{2}\right)^{(s-1) / 2}\left(1+|\xi-\eta|^{2}\right)^{1 s-1 / 2}}
\end{align*}
$$

Introducing (5.45) in (5.39) we shall obtain

$$
\begin{align*}
&\left|U_{s}(\xi)\right| \leqslant C_{p, s} \int\left(1+|\xi-\eta|^{2}\right)^{-p}\left(1+|\xi-\eta|^{2}\right)^{(s-1 \mid+1) / 2}\left(1+|\eta|^{2}\right)^{(s-1) / 2}|\tilde{u}(\eta)| d \eta= \tag{5.46}\\
&=C_{p, s} \int\left(1+|\xi-\eta|^{2}\right)^{-p+(|s-1|+1) / 2}\left(1+|\eta|^{2}\right)^{(s-1) / 2}|\tilde{u}(\eta)| d \eta
\end{align*}
$$

From here on the proof finishes as in Theorem 2, when we take large enough p.
Remark. - Same proof works for the commutator $\left[\mathcal{A}(x, D), I_{s}\right]$ (just replace in $(5.38) \tilde{a}^{\prime}(\xi-\eta, \xi)$ by $\left.\tilde{a}^{\prime}(\xi-\eta, \eta)\right)$.

6. - Some inequalities.

We want to prove the following (*)
Theorem 5. - Let $A(x, D), L^{2} \rightarrow L^{2}$ be a pseudo-differential operator associated with the symbol $a(x, \xi)$, such that $a=\bar{a}$ and

$$
\begin{equation*}
a(x, \xi) \geqslant \gamma \tag{6.1}
\end{equation*}
$$

[^1]for $|\xi|=1, x \in R^{3}$. Then for every $\varepsilon>0$ there is a constant $O^{\prime}(\varepsilon)$ such that, for $u \in \mathbb{S}$
\[

$$
\begin{equation*}
\operatorname{Re}(A(x, D) u, u)_{L^{2}}+C^{\prime}(\varepsilon)\|u\|_{H^{-\frac{1}{2}}}^{2} \geqslant(\gamma-\varepsilon)\|u\|_{L^{2}}^{2} \tag{6.2}
\end{equation*}
$$

\]

is verified.
Proor. - In fact, we have obviously, for arbitrary $\varepsilon>0$, the inequality

$$
\begin{equation*}
a(x, \xi)-\gamma+\varepsilon \geqslant \varepsilon \tag{6.3}
\end{equation*}
$$

for $|\xi|=1, x \in R^{n}$.
Let be $b(x, \xi)=(a(x, \xi)-\gamma+\varepsilon)^{\frac{1}{2}}, x \in R^{n},|\xi|=1$; for arbitrarily $\xi \in R^{n}-\{0\}$ we put $b(x, \xi)=b(x, \xi\|\xi\|)$. Hence $b(x, \xi)$ is homogeneous of order 0 . It is "easy» to verify that, when $x \in R^{x}$ and $|\xi|=1$ we have

$$
\begin{equation*}
\left|\left(1+|x|^{2}\right)^{p} D_{x}^{\alpha} \partial_{\xi}^{\beta} b^{\prime}(x, \xi)\right| \leqslant C_{p, \alpha, \beta}, \tag{6.4}
\end{equation*}
$$

if we are based on the same property valid for $a^{\prime}(x, \xi)$ and upon the fact that $a(x, \xi)-\gamma+\varepsilon \geqslant \varepsilon$ for $\xi \in R^{n}-\{0\}, x \in R^{n}$.

Hence, $b(x, \xi)$ is a symbol in the sense of Kohr-Nirenberg. We consider hence the operators $B(x, D)$ and $\mathfrak{G}(x, D)$ associated with the symbol $b(x, \xi)$. We have

1) The operator $A-(\gamma-\varepsilon) I-\mathcal{B} \cdot B$ is of order $\leqslant-1$.

In fact, $B(x, D) B(x, D)-b^{2}(x, D)$ is of order $\leqslant-1$, as shown in Chapter 5 . Being $b^{2}(x, \xi)=a(x, \xi)-\gamma+\varepsilon$, we have that $b^{2}(x, D)=A(x, D)-(\gamma-\varepsilon) I$, and hence we deduce that $B(x, D) B(x, D)-A(x, D)+(\gamma-\varepsilon) I$ is of order $\leqslant-1$.

Hence: $B \cdot B=A-(\gamma-\varepsilon) I+T_{-1}$ and $\mathscr{B} B=(\mathscr{B}-B) B+B \cdot B$; here T_{-1} is an operator of order $\leqslant-1$; whence we get

$$
\begin{align*}
& A-(\gamma-\varepsilon) I-\mathfrak{B} \cdot B=A-(\gamma-\varepsilon) I-B \cdot B+(B-\mathfrak{B}) B= \tag{6.5}\\
& A-(\gamma-\varepsilon) I-A+(\gamma-\varepsilon) I-T_{-1}+(B-\mathfrak{B}) B=T_{-1}+U_{-1}
\end{align*}
$$

as $B-\mathfrak{B}$ being of order $\leqslant-1$ and B of order 0 their product is of order $\leqslant-1$. Hence, we have also
2) Let T be an operator of S in S^{t} such that $\|T u\|_{s} \leqslant C\|u\|_{s-1}{ }^{(1)}$. Then T is continuous of L^{2} in L^{2}, and we have

$$
\begin{equation*}
\operatorname{Re}(T u, u)_{0} \geqslant-C^{\prime}\|u\|_{-\frac{1}{2}}^{2}, \quad \forall u \in \mathrm{~S} \tag{6.6}
\end{equation*}
$$

In fact, we obtain obviously the estimate

$$
\begin{equation*}
\left|\operatorname{Re}(T u, u)_{0}\right| \leqslant\left|(T u, u)_{0}\right| \leqslant\|T u\|_{s}\|u\|_{-s} \tag{6.7}
\end{equation*}
$$

${ }^{(1)}$ For any real s.
by Schwarz's inequality (generalized)

$$
\begin{equation*}
\left|(u, v)_{o}\right| \leqslant\|u\|_{s}\|v\|_{-s}, \tag{6.8}
\end{equation*}
$$

$$
\forall u, v \in S
$$

Hence:

$$
\begin{equation*}
\left|\operatorname{Re}(T u, u)_{0}\right| \leqslant C_{s}\|u\|_{s-1}\|u\|_{-s} \tag{6.8}
\end{equation*}
$$

$$
\forall \text { real } s, u \in \mathcal{S}
$$

we take $s=\frac{1}{2}$ and we obtain

$$
\begin{equation*}
\left|\operatorname{Re}(T u, u)_{0}\right| \leqslant C^{\prime}\|u\|_{-\frac{1}{2}}^{2} \tag{6.9}
\end{equation*}
$$

therefore is

$$
\begin{equation*}
\operatorname{Re}(T u, u)_{0} \geqslant-C^{\prime}\|u\|_{-k}^{2} \tag{6.10}
\end{equation*}
$$

By combining 1) and 2), we deduce that

$$
\begin{equation*}
\operatorname{Re}((A-(\gamma-\varepsilon) I-\mathcal{B} \cdot B) u, u)_{0} \geqslant-C^{\prime}\|u\|_{-\frac{1}{2}}^{2}, \quad \forall u \in \mathcal{S} \tag{6.11}
\end{equation*}
$$

or

$$
\begin{equation*}
\operatorname{Re}(A u, u)_{0}-(\gamma-\varepsilon)\|u\|_{0}^{2}-\operatorname{Re}(\mathscr{B} \cdot B u, u)_{0} \geqslant-C^{t}\|u\|_{-\frac{1}{2}}^{2} \tag{6.12}
\end{equation*}
$$

as $b(x, \xi)=\widetilde{b}(x, \xi)$, it follows that \mathfrak{B} is the L^{2} adjoint of B whence

$$
\begin{equation*}
\operatorname{Re}(A u, u)_{0}-(\gamma-\varepsilon)\|u\|_{0}^{2}-\|B u\|_{0}^{2} \geqslant-C^{\prime}\|u\|_{-\frac{2}{2}}^{2} \tag{6.13}
\end{equation*}
$$

and therefore

$$
\begin{equation*}
\operatorname{Re}(A u, u)_{0}+C^{\prime}\|u\|_{-\frac{1}{2}}^{2} \geqslant(\gamma-\varepsilon)\|u\|_{0}^{2}, \quad \forall u \in \mathcal{S} \tag{6.14}
\end{equation*}
$$

By using this result, we arrive at the following main
Theoren 6. - Let $a(x, \xi)$ be a symbol, $A(x, D)$ the associated pseudo-differential operator. Let be $K=\operatorname{maxx}_{\substack{x \in \mathbb{B}^{n} \\|\xi|=1}}|a(x, \xi)|$. We have that $\forall \varepsilon>0$ there is a constant C_{e} such that the inequality

$$
\begin{equation*}
\|A(x, D) u\|_{0} \leqslant(K+\varepsilon)\|u\|_{0}+C_{\varepsilon}\|u\|_{-1}, \tag{6.15}
\end{equation*}
$$

for $u \in \mathcal{S}$, is verified.
Remark. - Let be $K=\max _{\substack{x \in R^{n} \\|\xi|=1}}|a(x, \xi)|$ and, $\forall N=1,2, \ldots$

$$
K_{N}=\max _{\substack{|\operatorname{laj}| \leq N \\|\xi|=1}}|a(x, \xi)|
$$

Then obviously we have $K_{1} \leqslant K_{2} \leqslant \ldots \leqslant K$.
Furthermore we can see that $\lim _{Z^{7} \rightarrow \infty} K_{N F}=K$.

Proof. - In fact, let be $b=\bar{a} \cdot a=|a|^{2}$; we see that $b(x, \xi)$ is a symbol too. We put $B(x, D)$ as the associated pseudo-differential operator; then consider $\overline{\mathscr{A}}(x, D)$ associated with $\bar{a}(x, \xi) ; \bar{\pi}(x, D)$ is the L^{2}-adjoint of $A(x, D)$.

We have $B-\bar{A} A$ is of order $\leqslant-1$.
In fact, $B-\bar{A} A=T_{-1}$ is of order $\leqslant-1$; hence:

$$
B-\bar{A} A=\bar{A} A-\bar{A} A+T_{-1}=(\bar{A}-\bar{A}) A+T_{-1}
$$

is again of order $\leqslant-1$.
Hence, by 2) of Theorem 5 we deduce

$$
\begin{equation*}
\operatorname{Re}((B-\bar{A} A) u, u)_{x^{2}} \geqslant-e^{\prime}\|u\|_{H^{-\frac{1}{2}}}^{2}, \quad \forall u \in S \tag{6.16}
\end{equation*}
$$

and therefore:

$$
\begin{equation*}
\operatorname{Re}(B u, u)_{L^{3}}-\operatorname{Re}(\overline{\mathfrak{A}} \cdot A u, u)_{L^{2}}=\operatorname{Re}(B u, w)_{0}-\|A u\|_{0}^{2} \geqslant-c^{\prime}\|u\|_{-\frac{3}{2}}^{2}, \quad \forall u \in S \tag{6.17}
\end{equation*}
$$

Let us consider now the symbol $\alpha(x, \xi)=K^{2}-\bar{a}(x, \xi) a(x, \xi)$ which satisfies obviously the conditions of Theorem 5 . Hence, we obtain, taking $\gamma=0$ in Theorem 5, that $\forall \varepsilon^{\prime}>0, \exists e^{\prime}\left(\varepsilon^{\prime}\right)$ such that, for $u \in S$

$$
\begin{equation*}
\operatorname{Re}\left(\left(K^{2}-B\right) u, u\right)_{0}+c^{\prime}\left(\varepsilon^{\prime}\right)\|u\|_{-\underline{2}}^{2} \geqslant-\varepsilon^{\prime}\|u\|_{0}^{2}, \tag{6.18}
\end{equation*}
$$

is verified.
By adding (6.17) and (6.18) we arrive at the inequality

$$
\begin{equation*}
K^{2}\|u\|_{0}^{2}-\|A u\|_{0}^{2}+c^{\prime}\left(\varepsilon^{\prime}\right)\|u\|_{-1}^{2} \geqslant-e^{\prime}\|u\|_{-1}^{2}-\varepsilon^{\prime}\|u\|_{0}^{2} \tag{6.19}
\end{equation*}
$$

$$
\begin{equation*}
\|A u\|_{0}^{2}-\left(K^{2}+\varepsilon^{\prime}\right)\|u\|_{0}^{2} \leqslant C_{1}\left(\varepsilon^{\prime}\right)\|u\|_{-1}^{2} \tag{6.20}
\end{equation*}
$$

that is

$$
\begin{equation*}
\|A u\|_{0}^{2} \leqslant\left(K^{2}+\varepsilon^{\prime}\right)\|u\|_{0}^{2}+C_{1}\left(\varepsilon^{\prime}\right)\|u\|_{-\frac{1}{2}}^{2}, \quad \forall u \in S, \forall \varepsilon^{\prime}>0 \tag{6.21}
\end{equation*}
$$

and we may assume $C_{1}\left(\varepsilon^{\prime}\right)>0$; using now $\sqrt{a+b} \leqslant \sqrt{a}+\sqrt{b}, a, b>0$ we have

$$
\begin{equation*}
\|A u\|_{0} \leqslant\left(K+\sqrt{\varepsilon^{\prime}}\right)\|u\|_{0}+C_{2}\left(\varepsilon^{\prime}\right)\|u\|_{-\frac{1}{2}} . \tag{6.22}
\end{equation*}
$$

On the other hand, $\forall \varepsilon^{\prime \prime}>0, \exists \gamma\left(\varepsilon^{\prime \prime}\right)$, such that $\|u\|_{-1} \leqslant \varepsilon^{\prime \prime}\|u\|_{0}+\gamma\left(\varepsilon^{\prime \prime}\right)\|u\|_{-1}$ whence we obtain, from (6.22), the estimate

$$
\begin{equation*}
\|A u\|_{0} \leqslant\left(K+\sqrt{\varepsilon^{\prime}}\right)\|u\|_{0}+C_{2}\left(\varepsilon^{\prime}\right) \varepsilon^{\prime}\|u\|_{0}+\gamma\left(e^{\prime \prime}\right) C_{2}\left(\varepsilon^{\prime}\right)\|u\|_{-1} \tag{6.23}
\end{equation*}
$$

Let $\varepsilon>0$ be given; we take ε^{\prime} such that $\sqrt{\varepsilon^{\prime}}<\varepsilon / 2$; and $\varepsilon^{\prime \prime}$ such that $C_{2}\left(\varepsilon^{\prime}\right) \varepsilon^{\prime \prime}<\varepsilon / 2$; this is trivially done. We have, with a constant $\Gamma\left(\varepsilon^{\prime}, \varepsilon^{\prime \prime}\right)=\gamma^{\prime}(\varepsilon)$

$$
\begin{equation*}
\|A u\|_{0} \leqslant(K+\varepsilon)\|u\|_{0}+\gamma^{\prime}(\varepsilon)\|u\|_{-1}, \quad \forall \varepsilon>0, \forall u \in S \tag{6.24}
\end{equation*}
$$

Cobollary. - If we have

$$
K=\max _{\substack{x \in R^{x} \\|\xi|=1}}|a(x, \xi)|,
$$

then for every real s and $\forall \varepsilon>0$ there is a constant $O_{\varepsilon, s}$ such that

$$
\begin{equation*}
\|A u\|_{s} \leqslant(K+\varepsilon)\|u\|_{s}+C_{\varepsilon, s}\|u\|_{s-1}, \tag{6.25}
\end{equation*}
$$

is verified.
In fact, we observe here that, using some previous results, we obtain

$$
\begin{align*}
&\|A u\|_{s}=\left\|\left(I+|D|^{2}\right)^{s} A u\right\|_{0} \leqslant\left\|A\left(I+|D|^{2}\right)^{s} u\right\|_{0}+ \tag{6.26}\\
&+\left\|\left[A,\left(I+|D|^{2}\right)^{s}\right] u\right\|_{0} \leqslant(K+\varepsilon)\|u\|_{s}+C_{\varepsilon}\left\|\left(I+|D|^{2}\right)^{s} u\right\|_{-1}+ \\
&+C\|u\|_{s-1}=(K+\varepsilon)\|u\|_{s}+C_{\varepsilon}^{1}\|u\|_{s-1} .
\end{align*}
$$

We will prove now, as a consequence of the foregoing result, the following
Theorem 7. - Let $a(x, \xi)$ be a symbol; $K=\max _{\substack{x \in R^{x} \\ 1=1}}|a(x, \xi)|$ and $A(x, D)$ the associated pseudo-differential operator. Then we have

$$
\begin{equation*}
\inf _{x \in \mathcal{G}_{-\mathfrak{z}}}\|A(x, D)+T\| \leqslant K \tag{6.27}
\end{equation*}
$$

where \mathfrak{G}_{-1} is the class of operators of order $\leqslant-1$, and the norm is the one of $\mathfrak{f}\left(L^{2}\left(R^{n}\right) ; L^{2}\left(R^{n}\right)\right)$.

In fact, we must prove that $\forall \varepsilon>0$ there is an operator T_{ε} of order $\leqslant-1$ such that

$$
\begin{equation*}
\left\|\left(A+T_{\varepsilon}\right) u\right\|_{0} \leqslant(K+\varepsilon)\|u\|_{0}, \quad \forall u \in L^{2}\left(R^{n}\right) \tag{6.28}
\end{equation*}
$$

We build such an operator T_{ε} by considering a function in $C^{\infty}\left(R^{n}\right), \varphi_{R}(\xi)$ dependent on parameter $R>0$, such that $0 \leqslant \varphi_{R}(\xi) \leqslant 1, \varphi_{R}(\xi)=1$ for $|\xi| \leqslant R, \varphi_{R}(\xi)=0$ for $|\xi| \geqslant 2 R$.

The operator $T_{R}=-A \varphi_{R}(D)$ is of order $\leqslant-1$; in fact, we have for every $u \in \mathcal{S}$, the estimates

$$
\begin{align*}
& \left\|T_{R} u\right\|_{s}=\left\|A \varphi_{R}(D) u\right\|_{s} \leqslant C_{s}\left\|\varphi_{R}(D) u\right\|_{s}= \tag{6.29}\\
& \quad=C_{s}\left(\int_{s}\left(1+|\xi|^{2}\right)^{s} \varphi_{R}^{2}(\xi)|\tilde{u}(\xi)|^{2} d \xi\right)^{\frac{1}{2}} \leqslant C_{s}\left(\int_{|\xi| \leqslant 2 R}\left(1+|\xi|^{2}\right)^{s}|\tilde{u}(\xi)|^{2} d \xi\right)^{\frac{1}{2}}= \\
& =C_{s}\left(\int_{|s| \leqslant 2 R}\left(1+|\xi|^{2}\right)^{s-1}|\tilde{u}(\xi)|^{2}\left(1+|\xi|^{2}\right) d \xi\right)^{\frac{1}{2}} \leqslant\left(1+4 R^{2}\right) C_{s}\|u\|_{s-1}=C_{s, R}\|u\|_{s-1} .
\end{align*}
$$

By applying here Theorem 6, we have, $\forall \varepsilon>0$ and $u \in \mathcal{S}$,

$$
\begin{align*}
\left\|\left(A-A \varphi_{R}(D)\right) u\right\|_{0}=\left\|A\left(I-\varphi_{R}(D)\right) u\right\|_{0} \leqslant & \tag{6.30}\\
& \leqslant(K+\varepsilon)\left\|\left(I-\varphi_{R}(D)\right) u\right\|_{0}+C_{\varepsilon}\left\|\left(I-\varphi_{n}(D)\right) u\right\|_{-1} .
\end{align*}
$$

Remark that we have

$$
\begin{equation*}
\left\|\left(I-\varphi_{R}(D)\right) u\right\|_{0}=\left(\int\left(1-\varphi_{R}(\xi)\right)^{2}|\tilde{u}(\xi)|^{2} d \xi\right)^{\frac{1}{2}} \leqslant\|u\|_{0}, \quad u \in \mathbf{S} \tag{6.31}
\end{equation*}
$$

and also that

$$
\begin{align*}
\left\|\left(I-\varphi_{R}(D)\right) u\right\|_{-1}=\left(\int\right. & \left.\left(1-\varphi_{R}(\xi)\right)^{2}|\tilde{u}(\xi)|^{2}\left(1+|\xi|^{2}\right)^{-1} d \xi\right)^{\frac{1}{2}} \leqslant \tag{6.32}\\
& \leqslant\left(\int_{|\xi| \geqslant R}\left(1+|\xi|^{2}\right)^{-1}|\tilde{u}(\xi)|^{2} d \xi\right)^{\frac{1}{2}} \leqslant\left(\int\left(1+R^{2}\right)^{-\frac{1}{2}}|\tilde{u}(\xi)|^{2} d \xi\right)^{\frac{1}{2}}
\end{align*}
$$

whence we get

$$
\begin{equation*}
\left\|\left(A+T_{R}\right) u\right\|_{0} \leqslant(K+\varepsilon)\|u\|_{0}+C_{\varepsilon}\left(1+R^{2}\right)^{-\frac{1}{2}}\|u\|_{0} . \tag{6.33}
\end{equation*}
$$

We choose R_{ε} such that $O_{\varepsilon} / \sqrt{1+R_{\varepsilon}^{2}}<\varepsilon$; hence we get finally

$$
\begin{equation*}
\left\|\left(A+T_{B}\right) u\right\|_{0} \leqslant(K+2 \varepsilon)\|u\|_{0}, \quad \forall u \in L^{2} \tag{6.34}
\end{equation*}
$$

and this proves Theorem 7.

7. - Some results on compactness.

In this paragraph we will prove the following
Theorem 8. - Let $a(x, \xi)$ be a symbol, $A(x, D)$ and $\mathcal{A}(x, D)$ the associated pseudodifferential operators. Then $A-\mathscr{A}$ is compact linear operator, $L^{2}\left(R^{n}\right) \rightarrow L^{2}\left(R^{n}\right)$.

Let $a(x, \xi), b(x, \xi)$ and $c(x, \xi)=a(x, \xi) b(x, \xi)$ be three symbols, and $A(x, D)$, $B(x, D), C(x, D)$ the associated pseudo-differential operators. Then $A(x, D) B(x, D)-$ $-C(x, D)$ is a compact operator, $L^{2}\left(R^{n}\right) \rightarrow L^{2}\left(R^{n}\right)$.

Remark 1. - Let $a(x, \xi), b(x, \xi)$ be two symbois such that $a(x, \xi) b(x, \xi)=0$ $\forall x \in R^{n}, \xi \in R^{n}-\{0\}$. Then the operator $A(x, D) B(x, D)$ is compact in L^{2}.

In fact $A B-O$ is compact, where O is associated to $a(x, \xi) b(x, \xi) \equiv 0$.
So, O is the null operator, and the result follows.
Remark 2. - Let $\varphi(x), \psi(x)$ be C^{∞} functions with disjoint supports, and $a(x, \xi)$ be a symbol. Theu the operator

$$
\varphi(x) A(x, D) \psi(x)
$$

is compact, $L^{2} \rightarrow L^{2}$.

We have in fact $\varphi(x) \psi(x) \equiv 0$. Furthermore

$$
\varphi A \psi=(A \varphi) \psi+[\varphi, A] \psi=A(\varphi \psi)+[\varphi, A] \psi=[\varphi, A] \psi
$$

But $[\varphi, A]$ is compact, as follows also from Th. 8 , because $\varphi(x)$ is a symbol.
Proof of Theorem 8. - In the present case, we use the following
Obiterion of compactness. - Let $S \subset L^{2}\left(R^{n}\right)$ be a set, such that
a) $\|u\|_{H^{1}}=\left(\int\left(1+|\xi|^{2}\right)|\tilde{u}(\xi)|^{2} d \xi\right)^{\frac{1}{2}} \leqslant C$ for $u \in S$ and
b) $\lim _{|\tau| \rightarrow 0} \int_{|\xi| \leq R}|\tilde{u}(\xi+\tau)-\tilde{u}(\xi)|^{2} d \xi=0$ uniformly for $u \in S$, for any fixed $R>0$.

The S is precompact in L^{2}, and therefore a subsequence of every sequence in S is convergent in L^{2}.

As a set S is precompact in L^{2} if, and only if, the set \tilde{S}, of Fourter's transforms is precompact in L^{2}, it will be sufficient to prove that:

Every set S which is bounded in $L_{(1+\mid s)}^{2}$ and is L^{2}-equicontinuous on every sphere $\{\xi ;|\xi| \leqslant R\}$ is relatively compact in $L^{2}\left(R_{\xi}^{n}\right)$.

This last result is a consequence of the well-known criterion of M. Riesz. A set K in $L^{2}\left(R_{\xi}^{n}\right)$ is relatively compact if, and only if
a) $\int|v(\xi)|^{2} d \xi \leqslant C, \quad \forall v \in K$
b) $\lim _{|\tau| \rightarrow 0} \int|v(\xi+\tau)-v(\xi)|^{2} d \xi=0$ uniformly for $v \in K$
c) $\lim _{R \uparrow \infty} \int_{|\xi| \geqslant R}|v(\xi)|^{2} d \xi=0$ uniformly for $v \in K$.

Let us consider now the set \subseteq which is bounded in $L_{\left(1+\xi^{*}\right)}^{2}$, hence it is bounded in L^{2}, and a) is verified.

Besides, as $\int\left(1+|\xi|^{2}\right)|v(\xi)|^{2} d \xi \leqslant C$, it follows that $\int\left(1+|\xi|^{2}\right)|v(\xi)|^{2} d \xi \leqslant C$ and
$|\xi| \geqslant a$

$$
\begin{equation*}
\int_{|\xi| \geqslant \pi}|v(\xi)|^{2} d \xi \leqslant C\left(1+R^{2}\right)^{-1}, \quad \forall R>0, \forall v \in \mathbb{C} \tag{7.1}
\end{equation*}
$$

hence, c) is verified.
We observe here the following inequality, valid for $\tau \in R^{n},|\tau| \leqslant 1$

$$
\begin{equation*}
\int_{|\xi| \geqslant R+1}|v(\xi+\tau)-v(\xi)|^{2} d \xi \leqslant 2 \int_{|\xi+\tau| \geqslant R}|v(\xi+\tau)|^{2} d \xi+2 \int_{|\xi|>R}|v(\xi)|^{2} d \xi \quad \text { for } R>0, v \in S \text {. } \tag{7.2}
\end{equation*}
$$

In fact; for $|\xi| \geqslant R+1,|\tau| \leqslant 1$ we get $|\xi+\tau| \geqslant|\xi|-|\tau| \geqslant R+1-1=R$ and besides we have $|a-b|^{2} \leqslant 2|a|^{2}+2|b|^{2}$, whence we derive first of all

$$
\begin{equation*}
\int_{|\xi| \geqslant R+1}|v(\xi+\tau)-v(\xi)|^{2} d \xi \leqslant 2 \int_{|\xi| \geqslant R+1} \mid v\left(\xi+\left.\tau\right|^{2} d \xi+2 \int_{\mid \xi \geqslant R+1}|v(\xi)|^{2} d \xi .\right. \tag{7.3}
\end{equation*}
$$

As the set $\{\xi ;|\xi| \geqslant R+1\}$ is included in $\{\xi ;|\xi+\tau| \geqslant R\}$ when $|\tau| \leqslant 1$ we deduce that

$$
\begin{equation*}
\int_{|\xi| \geqslant R+1}|v(\xi+\tau)|^{2} d \xi \leqslant \int_{|\xi+\tau| \geqslant R}|v(\xi+\tau)|^{2} d \xi \tag{7.4}
\end{equation*}
$$

and hence we get

$$
\begin{align*}
& \iint_{|\xi| \geqslant R+1}|v(\xi+\tau)-v(\xi)|^{2} d \xi \leqslant \tag{7.5}\\
& \quad \underset{|\xi| \geqslant R}{ }|v(\xi)|^{2} d \xi+2 \int_{|\xi| \geqslant R+1}|v(\xi)|^{2} d \xi \leqslant 4 \int_{|\xi| \geqslant R}|v(\xi)|^{2} d \xi \leqslant 4 C\left(1+R^{2}\right)^{-1}, \quad \forall v \in ؟
\end{align*}
$$

We have, then, for every $R>0$ and $|\tau| \leqslant 1$, the estimate

$$
\begin{equation*}
\int|v(\xi+\tau)-v(\xi)|^{2} d \xi \leqslant \int_{|\xi| \leqslant A+1}|v(\xi+\tau)-v(\xi)|^{2} d \xi+4 C\left(1+R^{2}\right)^{-1}, \quad \forall v \in \mathbb{E}, \forall R>0 \tag{7.6}
\end{equation*}
$$

Taken $\varepsilon>0$ let us take R_{ε} such that $4 C\left(1+R_{\varepsilon}^{2}\right)^{-1}<\varepsilon / 2$, and then $|\tau|<\delta_{R_{\varepsilon}, s}$ such that

$$
\int_{|\xi| \leqslant R+1}|v(\xi+\tau)-v(\xi)|^{2} d \xi<\frac{\varepsilon}{2}, \quad \forall v \in \mathbb{S}
$$

(according to the hypothesis). Hence, we have, for $|\tau| \leqslant \delta_{\varepsilon}^{\prime}$

$$
\begin{equation*}
\int|v(\xi+\tau)-v(\xi)|^{2} d \xi \leqslant \varepsilon, \quad \forall v \in \mathbb{S} \tag{7.7}
\end{equation*}
$$

As a, b) and c) have been so verified, the set \subseteq is precompact for the criterion of M. Riesz.

We will now prove the
Theorem $8 a$. - If $a(x, \xi)$ is a symbol, the operator $A-\mathcal{A}$ is compact in L^{2}.
We define $T=A-A$; let Ω be a set which is bounded in $L^{2}\left(R^{n}\right)$. We will show that the set $T(\Omega)$ is relatively compact in $L^{2}\left(R^{n}\right)$; or that $\overparen{T(\Omega)}=\{\widetilde{T u}, u \in \Omega\}$ is relatively compact in $L^{2}\left(R_{5}^{2}\right)$.

By a preceding result (Proposition 4) we have

$$
\begin{equation*}
\|(A-A) u\|_{A^{2}} \in C\|u\|_{0} \tag{7.8}
\end{equation*}
$$

hence, for $u \in \Omega$, the set $\{T u\}_{u \in \Omega}$ is bounded in H^{1}. Therefore the set $\overparen{T(\Omega)}$ is bounded in $L_{\left(1+\mid \xi[)^{2}\right)}^{2}$.

Besides, we have to prove that for every $R>0$, it is

$$
\begin{equation*}
\lim _{|\tau| \rightarrow 0} \int_{|\xi| \leqslant a}|\widetilde{T u}(\xi+\tau)-\widetilde{T u}(\xi)|^{2} d \xi=0 \tag{7.9}
\end{equation*}
$$

uniformly for $u \in \Omega$.
The first (preliminary) result is given here in
Lemma 1. - We have, in the case of a symbol $a(x, \xi)$ such that $a(\infty, \xi) \equiv 0$

$$
\begin{equation*}
\lim _{|\tau| \rightarrow \mid} \int_{|\xi| \leqslant R}|\widetilde{A} u(\xi+\tau)-\widetilde{A u}(\xi)|^{2} d \xi=0 \tag{7.10}
\end{equation*}
$$

uniformly for $u \in \Omega \cap \delta$.
Let us remember the formula which we have proved before (Proposition 1).

$$
\begin{equation*}
\widetilde{A u}(\xi)=(2 \pi)^{-x / 2} \int \exp (-i x \cdot \xi) a(x, \xi) u(x) d x, \quad \forall u \in \mathbb{S} \tag{7.11}
\end{equation*}
$$

(the Fourier transform in the sense of \mathcal{S}^{\prime}, belongs to $L^{2}\left(R^{n}\right)$) and therefore we obtain

$$
\begin{equation*}
\widetilde{A u}(\xi+\tau)=(2 \pi)^{-n / 2} \int \exp (-i x \cdot(\xi+\tau)) a(x, \xi+\tau) u(x) d x \tag{7.12}
\end{equation*}
$$

and consequently

$$
\begin{equation*}
\widetilde{A u}(\xi+\tau)-\widetilde{A u}(\xi)=(2 \pi)^{-n / 2} \int \exp (-i x \cdot(\xi+\tau)) a(x, \xi+\tau) u(x) d x- \tag{7.13}
\end{equation*}
$$

$$
-(2 \pi)^{-n / 2} \int \exp (-i x \cdot \xi) a(x, \xi) u(x) d x=(2 \pi)^{-x / s} \int[\exp (-i x \cdot(\xi+\tau))-\exp (-i x \cdot \xi)] .
$$

$$
\cdot a(x, \xi+\tau) u(x) d x+(2 \pi)^{-n / 2} \int \exp (-i x \cdot \xi)[a(x, \xi+\tau)-a(x, \xi)] u(x) d x=
$$

$$
=I_{1}(\xi, \tau)+I_{2}(\xi, \tau)
$$

Hence, we have the estimate

$$
\begin{align*}
& \left|I_{1}(\xi, \tau)\right| \leqslant c \int|\exp (-i x \cdot \tau)-1||a(x, \xi+\tau)||u(x)| d x \leqslant \tag{7.14}\\
& \quad \leqslant c\left(\int|u(x)|^{2} d x\right)^{\frac{y}{2}}\left(\int|\exp (-i x \cdot \tau)-1|^{2}|a(x, \xi+\tau)|^{2} d x\right)^{\frac{3}{3}}
\end{align*}
$$

On the other hand, we have:

$$
|\exp (-i x \cdot \tau)-1|^{2}=|\cos x \cdot \tau-1-i \sin x \cdot \tau|=2-2 \cos x \cdot \tau=4 \sin ^{2} \frac{x \cdot \tau}{2}
$$

as: $|\sin \alpha| \leqslant|\alpha|$ we deduce that $|\exp (-i x \cdot \tau)-1|^{2} \leqslant|x|^{2}|\tau|^{2}$ whence we obtain

$$
\begin{equation*}
\left|I_{1}(\xi, \tau)\right| \leqslant C|\tau|\|u\|_{0}\left(\int|x|^{2}|\alpha(x, \xi+\tau)|^{2} d x\right)^{\frac{1}{2}}=C_{1}|\tau|\|u\|_{0} \tag{7.15}
\end{equation*}
$$

as obviously $|x||a(x, \xi)| \in L^{2}$ uniformly with respect to $\xi \in R^{n}-\{0\}$ (we remember that we took $a(\infty, \xi)=0$, so $\left.a^{t}(x, \xi)=a(x, \xi)\right)$.

And on the other hand we have the estimate concerning $I_{2}(\xi, \tau)$

$$
\begin{equation*}
\left|I_{2}(\xi, \tau)\right| \leqslant C\|u\|_{0}\left(\int|a(x, \xi+\tau)-a(x, \xi)|^{2} d x\right)^{\frac{1}{2}} \tag{7.16}
\end{equation*}
$$

Let us remember here that in the case $a(\infty, \xi) \equiv 0$ it follows

$$
\begin{align*}
&\left(1+|x|^{2}\right) p|a(x, \xi)| \leqslant C_{v}, x \in R^{n}, \xi \in R^{n}-\{0\}, p=1,2, \ldots \tag{7.17}\\
&\left(1+|x|^{2}\right)^{p}|a(x, \xi+\tau)-a(x, \xi)| \leqslant C_{v} \frac{|\tau|}{|\xi|+|\xi+\tau|} \tag{7.18}\\
& x \in R^{n}, \xi, \tau \in R^{n}-\{0\}, p=1,2, \ldots
\end{align*}
$$

and therefore we have, for every fixed $R>0$

$$
\begin{align*}
& \quad \int_{|\xi| \leqslant R}|A u(\xi+\tau)-A u(\xi)|^{2} d \xi=\int_{|\xi| \leqslant n}\left|I_{1}(\xi, \tau)+I_{2}(\xi, \tau)\right|^{2} d \xi \leqslant \tag{7.19}\\
& \quad \leqslant 2 \int_{|\xi| \leqslant R}\left|I_{1}(\xi, \tau)\right|^{2} d \xi+2 \int_{|\xi| \leqslant R}\left|I_{2}(\xi, \tau)\right|^{2} d \xi \leqslant \\
& \quad \leqslant C \omega_{R, n}|\tau|^{2}\|u\|_{0}^{2}+2 \int_{|\xi| \leqslant \varrho}\left|I_{2}(\xi, \tau)\right|^{2} d \xi+2 \int_{\varrho \leqslant|\xi| \leqslant R}\left|I_{2}(\xi, \tau)\right|^{2} d \xi, \quad \forall \varrho>0, \varrho<R .
\end{align*}
$$

For $|\xi| \leqslant \varrho$, we estimate $I_{2}(\xi, \tau)$ in the following way (using (7.16) and (7.17)):

$$
\begin{align*}
&\left|I_{2}(\xi, \tau)\right| \leqslant 2^{\frac{1}{2}} C\|u\|_{0}\left(\int\left(|a(x, \xi+\tau)|^{2}+|a(x, \xi)|^{2}\right) d x\right)^{\frac{1}{2}} \leqslant \tag{7.20}\\
& \leqslant C_{1}\|u\|_{0} 2^{\frac{1}{2}} O_{p}\left(\int\left(1+|x|^{2}\right)^{-2 p} d x\right)^{\frac{1}{2}}=C_{1, y}\|u\|_{0}
\end{align*}
$$

where p is sufficiently large.
For $|\xi| \geqslant \varrho$ we use the estimate (deriving from (7.18))

$$
\begin{equation*}
\left|I_{2}(\xi, \tau)\right| \leqslant C_{p}\left(\int\left(1+|x|^{2}\right)^{-2 p} d x\right)^{\frac{1}{\|}}\|u\|_{0}|\tau|(|\xi|)^{-1}, \quad \forall \xi \in R^{n}-\{0\},|\tau| \leqslant 1 \tag{7.21}
\end{equation*}
$$

and hence we obtain, using (7.19), (7.20), (7.21), the inequality

$$
\begin{align*}
& \int_{|\xi| \leqslant \pi}|\widetilde{A} u(\xi+\tau)-\widetilde{A} u(\xi)|^{2} d \xi \leqslant C_{1}|\tau|^{2}\|u\|_{0}^{2}+C\|u\|_{0}^{2} \int_{|\xi| \leqslant \varrho} d \xi+ \tag{7.22}\\
& \\
& \quad+C_{1}\|u\|_{0}^{2}|\tau|^{2}\left(\int_{\varrho \leqslant|\xi| \leqslant R} \frac{d \xi}{|\xi|^{2}}\right) \leqslant C_{R}|\tau|^{2}\|u\|_{0}^{2}\left(1+\frac{1}{\varrho^{2}}\right)+C\|u\|_{0}^{2} \int_{|\xi| \leqslant \varrho} d \xi .
\end{align*}
$$

If $u \in \Omega \cap S$ we have $\|u\|_{0} \leqslant H$. We take $\varepsilon>0$, and choose at first $\varrho_{0}(\varepsilon)$ such that

$$
\begin{equation*}
C H^{2} \int_{|\xi| \leqslant \sum_{0}} d \xi \leqslant \frac{\varepsilon}{2} \tag{7.23}
\end{equation*}
$$

Once $\varrho_{0}(\varepsilon)$ fixed, we take $\tau_{0}(\varepsilon)$ such that

$$
\begin{equation*}
C_{a}\left|\tau_{0}\right|^{2} H^{2}\left(1+\frac{1}{\varrho_{0}^{2}(\varepsilon)}\right)<\frac{\varepsilon}{2} . \tag{7.24}
\end{equation*}
$$

We arrive hence for $|\tau| \leqslant\left|\tau_{0}\right|$ and $\forall u \in \Omega \cap S$ at the estimate

$$
\int_{|\xi| \leqslant R}|\widetilde{A u}(\xi+\tau)-\widetilde{A u}(\xi)|^{2} d \xi \leqslant \varepsilon
$$

Lemma 1 is proved.
Hence, we can observe that:

$$
\begin{align*}
\widetilde{T u}(\xi)= & \widetilde{A u}(\xi)-\widetilde{\mathfrak{A} u}(\xi)=a(\infty, \xi) \tilde{u}(\xi)+ \tag{7.25}\\
& +\widetilde{A^{\prime} u(\xi)-a(\infty, \xi) \tilde{u}(\xi)-\widetilde{\mathcal{A}^{\prime} u}(\xi)=\widetilde{\left(\widetilde{A^{\prime}-\mathcal{A}^{\prime}}\right) u(\xi)}, \quad \xi \in R^{n}-\{0\}}
\end{align*}
$$

and similarly for $\tilde{T u}(\xi+\tau)$, and it will be henceforth sufficient to prove
Lemma 2. - We have, in the case of a symbol $a(x, \xi)$ with $a(\infty, \xi) \equiv 0$

$$
\begin{equation*}
\lim _{|x| \rightarrow 0} \int_{|:| \leqslant \pi}|\widetilde{A} u(\xi+\tau)-\tilde{A} u(\xi)|^{2} d \xi=0 \tag{7.26}
\end{equation*}
$$

uniformly for $u \in \Omega \cap \delta, \forall$ fixed $R>0$.
In fact, we have
and

$$
\begin{align*}
& |\widetilde{\mathcal{A} u}(\xi+\tau)-\widetilde{\mathcal{A} u}(\xi)|^{2} \leqslant 0\left(\int|\tilde{u}(\eta)|^{2} d \eta\right)\left(\int|\tilde{a}(\xi+\tau-\eta, \eta)-\tilde{a}(\xi-\eta, \eta)|^{2} d \eta\right)= \tag{7.28}\\
& =C\|u\|_{0}^{2} \int|\tilde{a}(\xi+\tau-\eta, \eta)-\tilde{a}(\xi-\eta, \eta)|^{2} d \eta .
\end{align*}
$$

We apply TAYLor's formula; we obtain, if $\tilde{a}=\tilde{a}(\lambda, \eta)$, the relation

$$
\begin{equation*}
\tilde{a}(\xi-\eta+\tau, \eta)-\tilde{a}(\xi-\eta, \eta)=\left(\tau, \operatorname{grad}_{\lambda} \tilde{a}(\xi-\eta+\theta \tau, \eta)\right), \quad 0<\theta<1 \tag{7.29}
\end{equation*}
$$

and therefore the estimate

$$
\begin{equation*}
|\tilde{a}(\xi-\eta+\tau, \eta)-\tilde{a}(\xi-\eta, \eta)| \leqslant|\tau|\left|\operatorname{grad}_{\lambda} \tilde{a}(\xi-\eta+\theta \tau, \eta)\right| \tag{7.30}
\end{equation*}
$$

Let us remember now that $\tilde{a}(\lambda, \eta) \in S\left(R_{\lambda}^{n}\right)$ uniformly for $\eta \in R^{n}-\{0\}$ and we get therefore

$$
\left|\left(1+|\lambda|^{2}\right)^{p} \frac{\partial}{\partial \lambda_{i}} \tilde{a}(\lambda, \eta)\right| \leqslant C_{n}, \quad \forall \lambda \in R^{n}
$$

which gives

$$
\begin{equation*}
\left|\operatorname{grad}_{\lambda} \tilde{a}(\xi-\eta+\theta \tau, \eta)\right| \leqslant C_{p}\left(1+|\xi-\eta+\theta \tau|^{2}\right)^{-p}, \quad \forall p=1,2, \ldots \tag{7.31}
\end{equation*}
$$

and by integrating with respect to η we arrive at the result (in estimate (7.28)).
Now, to finish the proof of Theorem $8 a$, we have to prove also (*)
Lemma 3. - We have in the case $a(\infty, \xi) \equiv 0$, that, $\forall R>0$

$$
\begin{align*}
& \lim _{|\tau| \rightarrow 0} \int_{|\xi| \leqslant R}|\widetilde{A} u(\xi+\tau)-\widetilde{A} u(\xi)|^{2} d \xi=0 \tag{7.32}\\
& \lim _{|\tau| \rightarrow 0} \int_{|\xi| \leqslant R} \mid \widetilde{\mathcal{A} u}(\xi+\tau)-\widetilde{\left.\mathcal{A} u(\xi)\right|^{2} d \xi=0} \tag{7.33}
\end{align*}
$$

uniformly for $u \in \Omega$-bounded set in $L^{2}\left(R^{n}\right)$.
We have already shown this relation for $u \in \Omega \cap S$. Let us remember that the spece \mathcal{S} is dense in L^{2}. Given $\varepsilon>0$, and Ω a bounded set in $L^{2}\left(R^{n}\right)$, there is $\forall u \in \Omega\left(^{1}\right)$, an element $u_{\varepsilon} \in \mathcal{S}$, such that $\left\|u-u_{\varepsilon}\right\|_{0}<\varepsilon$. Hence, for $u \in \Omega$ we have $\|u\|_{0} \leqslant L$, and

$$
\begin{equation*}
\left\|u_{\varepsilon}\right\|_{0} \leqslant\left\|u-u_{\varepsilon}\right\|_{0}+\|u\|_{0} \leqslant \varepsilon+L \leqslant L+1 \tag{7.34}
\end{equation*}
$$

and therefore the set

$$
\begin{equation*}
\left\{u_{\varepsilon} ; u \in \Omega\right\} \tag{7.35}
\end{equation*}
$$

is a set Ω_{1} bounded in L^{2} and included in \mathcal{S}.
Here we have, for $|\tau| \leqslant\left|\tau_{0}(\varepsilon)\right|$ that in the case $a(\infty, \xi) \equiv 0$

$$
\begin{array}{ll}
\int_{|\xi| \leqslant R}\left|\widetilde{A} u_{\varepsilon}(\xi+\tau)-\widetilde{A} u_{\varepsilon}(\xi)\right|^{2} d \xi \leqslant \varepsilon, & \forall u_{\varepsilon} \in \Omega_{1} \\
\int_{|\xi| \leqslant R} \mid \widetilde{\mathcal{A}} u_{\varepsilon}(\xi+\tau)-\widetilde{\left.\mathscr{A} u_{\varepsilon}(\xi)\right|^{2} d \xi \leqslant \varepsilon,} & \forall u_{\varepsilon} \in \Omega_{1} \tag{7.37}
\end{array}
$$

Hence, we deduce the inequalities

$$
\begin{equation*}
\int_{|\xi| \leqslant R}|\widetilde{A} u(\xi+\tau)-\widetilde{A} u(\xi)|^{2} d \xi \leqslant 3 \int_{|\xi| \leqslant a}\left|\widetilde{A} u(\xi+\tau)-\widetilde{A} u_{\varepsilon}(\xi+\tau)\right|^{2} d \xi+ \tag{7.38}
\end{equation*}
$$

$+3 \int_{|\xi| \leqslant R} \widetilde{A u}_{\varepsilon}(\xi+\tau)-\left.\widetilde{A u_{\varepsilon}}(\xi)\right|^{2} d \xi+3 \int_{|\xi| \leqslant R}\left|\widetilde{A u_{\varepsilon}}(\xi)-\widetilde{A u}(\xi)\right|^{2} d \xi \leqslant$

[^2]\[

$$
\begin{aligned}
& \leqslant\left. 3 \int_{R^{n}} \widehat{A\left(u-u_{\varepsilon}\right)}(\xi+\tau)\right|^{2} d \xi+3 \int_{|\xi| \leqslant n}\left|\widetilde{A u_{\varepsilon}}(\xi+\tau)-\widetilde{A} u_{\varepsilon}(\xi)\right|^{2} d \xi+\left.3 \int_{i^{n}} \widehat{A\left(u-u_{\varepsilon}\right)}(\xi)\right|^{2} d \xi= \\
& =6\left\|A\left(u-u_{e}\right)\right\|_{0}^{2}+3 \int_{\mid \xi \leqslant a}\left|\widetilde{A}_{\theta}(\xi+\tau)-\widetilde{A} u_{\varepsilon}(\xi)\right|^{2} d \xi \leqslant 6 c\left\|u-u_{\varepsilon}\right\|_{0}^{2}+3 \int_{\mid \xi \leqslant s} \widetilde{A} u_{\varepsilon}(\xi+\tau)-\left.\widetilde{A} u_{\varepsilon}(\xi)\right|^{2} d \xi \text {. }
\end{aligned}
$$
\]

For $|\tau|<\left|\tau_{0}(\varepsilon)\right|$ the second integral is $<\varepsilon$ and also $6 c\left\|u-u_{\varepsilon}\right\|_{0}^{2} \leqslant 6 \varepsilon^{2}$; the result is so proven.

The proof for $\mathcal{A}(x, D)$ is similar. Theorem $8 a$ is herewith proven (see Appendix to [3]).

Our Theorem 8 will be completely proved when we will have proven
Theorem $8 b$. - If $a(x, \xi), b(x, \xi)$ are symbols, and their product is $c(x, \xi)$, then $A(x, D) B(x, D)-C(x, D)$ is compact operator, $L^{2} \rightarrow L^{2}$.

The operator $T=A \cdot B-C$ is of order $\leqslant-1\left({ }^{1}\right)$; hence, if $u \in \Omega$ where Ω is a bounded set in L^{2}, then $\overparen{T(\Omega)}$ is bounded in $L_{\left(1+\mid \xi^{2}\right)}^{2}$, as easily seen. Therefore, we have to prove that, $\forall R>0$

$$
\begin{equation*}
\lim _{|\tau| \rightarrow 0} \int_{|\xi| \leq \pi}|\widetilde{T u}(\xi+\tau)-\widetilde{T u}(\xi)|^{2} d \xi=0 \tag{7.39}
\end{equation*}
$$

uniformly for $u \in \Omega$.
First of all, let us consider the case $a(\infty, \xi) \equiv b(\infty, \xi) \equiv c(\infty, \xi) \equiv 0$. If we use Theorem $8 a$ we get, $\forall R>0$

$$
\begin{equation*}
\lim _{|\tau| \rightarrow 0} \int_{|\xi| \leqslant n}|\widetilde{C u}(\xi+\tau)-\widetilde{C u}(\xi)|^{2} d \xi=0 \tag{7.40}
\end{equation*}
$$

uniformly for $u \in \Omega$. It is only left to consider

$$
\begin{equation*}
\int_{|\xi| \leqslant n} \overparen{A B u}(\xi+\tau)-\left.\widetilde{A B u(\xi)}\right|^{2} d \xi \tag{7.41}
\end{equation*}
$$

Let us remember Lemma 3. Then, $\forall \varepsilon>0, \exists \delta_{L}(\varepsilon)$, such that

$$
\begin{equation*}
\int_{|\xi| \leqslant R}|\widetilde{A v}(\xi+\tau)-\widetilde{A v}(\xi)|^{2} d \xi \leqslant \varepsilon, \quad \text { if }|\tau|<\delta_{L}(\varepsilon) \text { and }\|v\|_{0} \leqslant L \tag{7.42}
\end{equation*}
$$

Remark that if u is arbitrary in $L^{2}, u /\|u\|_{0}$ is of norm 1 , therefore
(${ }^{(1)} \mathrm{By} \mathrm{Ch}, 5$.
that is

$$
\begin{equation*}
\int_{|\xi| \leqslant \pi}|\widetilde{A u}(\xi+\tau)-\widetilde{A u}(\xi)|^{2} d \xi \leqslant \varepsilon\|u\|_{0}^{2}, \quad \text { if }|\tau|<\delta_{1}(\varepsilon), \forall u \in L^{2}\left(R^{n}\right) \tag{7.44}
\end{equation*}
$$

We apply this relation to $A B u, u \in L^{2}$; we have then

$$
\begin{equation*}
\int_{|\xi| \leqslant \pi} \widehat{A B u}(\xi+\tau)-\left.\widetilde{A B u}(\xi)\right|^{2} d \xi \leqslant \varepsilon\|B u\|_{0}^{2}, \quad|\tau| \leqslant \delta_{1}(\varepsilon), u \in L^{2}\left(R^{n}\right) . \tag{7.45}
\end{equation*}
$$

But $\|B u\|_{0} \leqslant c\|u\|_{0} ;$ the relation is proven then, as easily seen.
In the case $a(\infty, \xi) \neq 0, b(\infty, \xi) \neq 0$ there is the additional term $A^{\prime}(x, D)$. $\cdot B(\infty, D)-B(\infty, D) A^{\prime}(x, D)$ which is of order $\leqslant-1$ (see Ch. 5).

Moreover, the symbol of $B(\infty, D) A^{\prime}(x, D)$ is $b(\infty, \xi) a^{\prime}(x, \xi)$ which $\rightarrow 0$ as $|x| \rightarrow \infty$. For the term $A^{\prime}(x, D)(B(\infty, D))$ we use that $\{B(\infty, D) u\}$ is a bounded set in L^{2} when u is in a bounded set of L^{2}.

Remark. - As a corollary of Th. $8 b$. we get the following: let $a(x, \xi)$ be a symbol associated with $A(x, D)$ and λ_{0} belongs to the continuous spectrum of $A(x, D)$; then $\left|\lambda_{0}\right| \leqslant \sup _{x \in R^{n},|f|=1}|a(x, \xi)|$.

In fact, otherwise, $\exists \alpha>0$, such that

$$
\left|a(x, \xi)-\lambda_{0}\right|>\alpha>0, \quad \forall x \in R^{n},|\xi|=1 .
$$

Applying the (simple) result in [5], we find a positive C and a compact operator $T_{\lambda_{0}}, L^{2} \rightarrow L^{2}$, s.t.

$$
\|u\|_{L^{a}} \leqslant C\left(\left\|\left(A-\lambda_{0} E\right) u\right\|_{L^{2}}+\left\|T_{\lambda_{0}} u\right\|_{L^{2}}\right), \quad \forall u \in L^{2}
$$

On other hand, from $\lambda_{0} \in \sigma_{c}(A)$, we deduce a sequence $\left(u_{n}\right)_{1}^{\infty} \subset L^{2}$, of unit norm, such that $\left\|\left(A-\lambda_{0} E\right) u_{n}\right\| L_{L^{2}} \rightarrow 0$.

For a subsequence $\left(u_{n_{p}}\right)_{p=1}^{\infty}$ we have also $\left\|T_{\lambda_{0}} u_{n_{p}}\right\|_{L^{n}} \rightarrow 0$. We obtain $1 \leqslant c \cdot \varepsilon_{p}$, where $\varepsilon_{p} \rightarrow 0$, contradiction.
8. - Other inequalities (norms of p.d.o. modulo compact operators).

In this paragraph we will prove the following
Theorem 9. - Let $a(x, \xi)$ be a symbol, and $K=\max _{\substack{|\xi|=1 \\ x \in R^{n}}}|a(x, \xi)|$; let $A(x, D)$ be the associated pseudo-differential operator. Let \mathcal{G}_{c} be the olass of linear compact operators L^{2} in L^{2}.

Then we have the upper estimates

$$
\begin{equation*}
\inf _{T \in \mathfrak{G}_{c}}\|A(x, D)+T\| \mathfrak{L}_{\left(L^{2} ; L^{2}\right)} \leqslant K, \quad \inf _{T \in \mathcal{G}_{c}}\|\mathcal{H}(x, D)+T\| \mathfrak{L}_{\left(L^{2}, L^{2}\right)} \leqslant K . \tag{8.1}
\end{equation*}
$$

The result is a consequence of some preliminary theorems.
Preliminary theorem 9a. - Let $a(x, \xi)$ be a symbol, $A(x, D)$ the associated pseudodifferential operator. Then, for every $\varepsilon>0$ there is a semi-norm ${ }^{\varepsilon}| |$ on L^{2}, dependent of ε, suoh that every L^{2}-bounded sequence contains a subsequence convergent in ${ }^{\varepsilon} \mid$, such that the inequality

$$
\begin{equation*}
\|A(x, D) u\|_{0} \leqslant(K+\varepsilon)\|u\|_{0}+{ }^{\varepsilon}|u|, \quad \forall u \in L^{2}\left(R^{n}\right) \tag{8.2}
\end{equation*}
$$ is verified (*).

In fact, let us put $b_{\varepsilon}(x, \xi)=\left(K^{2}-\bar{a}(x, \xi) a(x, \xi)+\varepsilon\right)^{\frac{1}{2}}$ which is still a (homogeneous) symbol as we can "easily" see, and besides is

$$
b_{\varepsilon}(x, \xi)=\bar{b}_{\varepsilon}(x, \xi), \quad \varepsilon>0, x \in R^{n}, \xi \in R^{n}-\{0\} .
$$

Let us consider the operators $B_{s}(x, D), \mathscr{B}_{\varepsilon}(x, D)$ associated with $b_{\varepsilon}(x, \xi)$ and $\overline{\mathcal{A}}(x, D)$ associated with $\bar{a}(x, \xi)$. We have then the following

Lemma 1. - The linear operator

$$
T_{\varepsilon}=\left(K^{2}+\varepsilon\right) I-\bar{A} \cdot A-\mathfrak{B}_{\varepsilon} \cdot B_{\varepsilon}
$$

is compact, $L^{2} \rightarrow L^{2}$.
In fact, we have first of all the relation

$$
\begin{equation*}
\mathfrak{B}_{\varepsilon} \cdot B_{\varepsilon}=\left(\mathfrak{B}_{\varepsilon}-B_{\varepsilon}\right) \cdot B_{\varepsilon}+B_{\varepsilon}^{2}=T_{1}+B_{s}^{2} \tag{8.3}
\end{equation*}
$$

where $T_{1}=\left(\mathscr{B}_{\varepsilon}-B_{\varepsilon}\right) \cdot B_{B}$ is compact according to Theorem 8 . So we arrive at the relation

$$
\begin{equation*}
T_{\varepsilon}=\left(K^{2}+\varepsilon\right) I-\overline{\mathfrak{A}} \cdot A-B_{\varepsilon}^{2}-T_{1} \tag{8.4}
\end{equation*}
$$

On the other hand, we have the equality

$$
\begin{equation*}
\overline{\mathfrak{A}} \cdot \mathcal{A}=(\overline{\mathfrak{A}}-\bar{A}) \cdot A+\bar{A} \cdot A=T_{2}+\bar{A} \cdot A \tag{8.5}
\end{equation*}
$$

where T_{2} is compact, $L^{2} \rightarrow L^{2}$, again according to Theorem 8 ; and hence we get

$$
\begin{equation*}
T_{\varepsilon}=\left(K^{2}+\varepsilon\right)-\bar{A} \cdot A-B_{\varepsilon}^{2}-\left(T_{1}+T_{2}\right) \tag{8.6}
\end{equation*}
$$

Finally, we have: $B_{\varepsilon} \cdot B_{\varepsilon}-\left(K^{2}+\varepsilon-(\bar{a} \cdot a)(x, D)\right)=T_{3}$-compact, $L^{2} \rightarrow L^{2}$ and hence we derive

$$
\begin{equation*}
B_{\varepsilon}(x, D) \cdot B_{\varepsilon}(x, D)=B_{\varepsilon}^{2}(x, D)=K^{2}+\varepsilon-(\bar{a} \cdot a)(x, D)+T_{3} \tag{8.7}
\end{equation*}
$$

[^3]and therefore
\[

$$
\begin{align*}
& T_{\varepsilon}=K^{2}+\varepsilon-\bar{A} \cdot A-\left(K^{2}+\varepsilon\right)+(\bar{a} \cdot a)(x, D)- \tag{8.8}\\
&-\left(T_{1}+T_{2}+T_{3}\right)=(\bar{a} \cdot a)(x, D)-\bar{A} \cdot A-\left(T_{1}+T_{2}+T_{3}\right)=T_{0}
\end{align*}
$$
\]

where T_{0} is compact linear, $L^{2} \rightarrow L^{2}$ (by Theor. 8) (we have made here good use of the notation $a(x, D)$ instead of $A(x, D)$, by an obvious necessity).

Hence, Lemma 1 is proven. Then we have also the following
Lemma 2. - Given arbitrary $\varepsilon>0$, we have the relation

$$
\begin{equation*}
\operatorname{Re}\left(T_{\varepsilon} u, u\right)_{0}+\varepsilon\|u\|_{0}^{2} \geqslant-\frac{1}{4 \varepsilon}\left\|T_{\varepsilon} u\right\|_{0}^{2}, \quad \forall u \in L^{2} \tag{8.9}
\end{equation*}
$$

In fact we have:

$$
\begin{equation*}
\left|\operatorname{Re}\left(T_{\varepsilon} u, u\right)_{0}\right| \leqslant\left\|T_{\varepsilon} u\right\|_{0}\|u\|_{0}=\frac{1}{2 \sqrt{\varepsilon}}\left\|T_{\varepsilon} u\right\|_{0} \cdot 2 \sqrt{\varepsilon}\|u\|_{0} \leqslant \varepsilon\|u\|_{0}^{2}+\frac{1}{4 \varepsilon}\left\|T_{\varepsilon} u\right\|_{0}^{2} \tag{8.10}
\end{equation*}
$$

and consequently

$$
\begin{equation*}
\operatorname{Re}\left(T_{\varepsilon} u, u\right)_{0} \geqslant-\varepsilon\|u\|_{0}^{2}-\frac{1}{4 \varepsilon}\left\|T_{\varepsilon} u\right\|_{0}^{2} \tag{8.11}
\end{equation*}
$$

follows.
Now we shall give the following
Lemma 3. - We have the relation, $\forall \varepsilon>0$

$$
\begin{equation*}
\|A(x, D) u\|_{0}^{3} \leqslant\left(K^{2}+2 \varepsilon\right)\|u\|_{0}^{2}+\frac{1}{4 \varepsilon}\left\|T_{\varepsilon} u\right\|_{0}^{2}, \quad \forall u \in L^{2}\left(R^{n}\right) \tag{8.12}
\end{equation*}
$$

In fact, this results from Lemma 2. We have:

$$
\begin{equation*}
\left(T_{\varepsilon} u, u\right)_{0}=\left(K_{0}^{2}+\varepsilon\right)\|u\|_{0}^{2}-\|A(x, D) u\|_{0}^{2}-\left\|B_{\varepsilon}(x, D) u\right\|_{0}^{2} \tag{8.13}
\end{equation*}
$$

$\left(T_{\varepsilon} u, u\right)_{0}$ is hence real-valued. (We have used that $\overline{\mathcal{A}}^{*}=A$ and $\mathcal{B}_{\varepsilon}^{*}=B_{\varepsilon}$ being $b=\bar{b}$).
Hence, we deduce thereof, using Lemma 2, the estimate

$$
\begin{equation*}
\left(K^{2}+2 \varepsilon\right)\|u\|_{0}^{2}-\|A(x, D) u\|_{0}^{2}-\left\|\mathcal{B}_{\varepsilon}(x, D) u\right\|_{0}^{2} \geqslant-\frac{1}{4 \varepsilon}\left\|T_{\varepsilon} u\right\|_{0}^{2} \tag{8.14}
\end{equation*}
$$

and therefore

$$
\begin{equation*}
\|A u\|_{0}^{2}+\left\|B_{\varepsilon} u\right\|_{0}^{2} \leqslant\left(K^{2}+2 \varepsilon\right)\|u\|_{0}^{2}+\frac{1}{4 \varepsilon}\left\|T_{\varepsilon} u\right\|_{0}^{2} \tag{8.15}
\end{equation*}
$$

and hence a fortiori

$$
\begin{equation*}
\|A u\|_{0}^{2} \leqslant\left(K^{2}+2 \varepsilon\right)\|u\|_{0}^{2}+\frac{1}{4 \varepsilon}\left\|T_{\varepsilon} u\right\|_{0}^{2} . \tag{8.16}
\end{equation*}
$$

which proves Lemma 3.

Extracting the square root and for $\sqrt{a+b} \sqrt{a}+\sqrt{b}, a, b>0$, we have

$$
\begin{equation*}
\|A u\|_{0} \leqslant(K+\sqrt{2 \varepsilon})\|u\|_{0}+\frac{1}{2 \sqrt{\varepsilon}}\left\|T_{\varepsilon} u\right\|_{0} \tag{8.17}
\end{equation*}
$$

Preliminary theorem $9 a$ is proved if we put ${ }^{\varepsilon}|u|=c_{\varepsilon}\left\|T_{\varepsilon} u\right\|_{0}$ and if we observe that T_{ε} being compact in L^{2} the semi-norm ${ }^{\varepsilon}|u|=c_{\varepsilon}\left\|T_{\varepsilon} u\right\|_{0}$ satisfies the required properties.

Preliminary theorem 9b. - Let H be hilbertian; on H is defined a seminorm || such that

1) $|u| \leqslant c\|u\|_{B_{A}}, \quad \forall u \in H$,
2) for every bounded sequence $\left(u_{n}\right)_{1}^{\infty}$ there exists a Cauchy subsequence with respect to 11 .

Then: $\forall \varepsilon>0$, there exists $H_{\varepsilon}-a$ closed linear subspace of H, such that $H \theta H_{\varepsilon}=H_{\varepsilon}^{\perp}$ is of finite dimension and $|u| \leqslant \varepsilon\|u\|_{H}, \forall u \in H_{e}$.

Let us begin by assuming that, given $\varepsilon>0$, we have for every $u \in H$, such that $|u|=1$ the estimate $\|u\|_{H} \geqslant 1 / \varepsilon$. In this case, taken an arbitrary $u \in H$, such that $|u| \neq 0$, we have: $|u||u| \mid=1$.

Hence, $\|u\| u \mid\|=(1 \| u \mid)\| u \| \geqslant 1 / \varepsilon$; hence, $|u| \leqslant \varepsilon\|u\|$ and if $u \in H$ and $|u|=0$, we have also $|u| \leqslant \varepsilon\|u\|$. Therefore, in this case, it is found $H_{\varepsilon}=H$.

Now we have to consider the situation when there is at least an element $u_{1} \in H$ such that $\left|u_{1}\right|=1,\left\|u_{1}\right\|_{u} \leqslant 1 / \varepsilon$. According to HaHN-BANACH's theorem, we can build a linear functional on H, f_{1}, such that $f_{1}\left(u_{1}\right)=1,\left|f_{1}(u)\right| \leqslant|u|, \forall u \in H$. As $|u| \leqslant C\|u\|,\left|f_{1}(u)\right| \leqslant C\|u\|$, hence f_{1} is a continuous linear functional on $H\left({ }^{1}\right)$.

We define $H_{1}=\left\{u \in H ; f_{1}(u)=0\right\} ; H_{1}$ then is a closed subspace of H. In H_{1} we reason as in H; in the "worst» case there is at least one element $u_{2} \in H_{1},\left|u_{2}\right|=1$, $\left\|u_{2}\right\| \leqslant 1 / \varepsilon$; and hence we can build a continuous linear functional on H_{1}, denoted with $f_{2}\left({ }^{2}\right)$, such that

$$
\begin{equation*}
f_{2}\left(u_{2}\right)=1, \quad\left|f_{2}(u)\right| \leqslant|u|, \quad \forall u \in H_{1} \tag{8.18}
\end{equation*}
$$

and we denote by $H_{2}=\left\{u \in H_{1}, f_{2}(u)=0\right\} ; H_{2}$ is a closed subspace of H_{1}.
We observe that $\left|u_{1}-u_{2}\right| \geqslant 1$. In fact $u_{1} \in H, u_{2} \in H_{1} \subset H$, hence

$$
\left|\left(u_{1}-u_{2}\right)\right| \geqslant\left|f_{1}\left(u_{1}-u_{2}\right)\right|=\left|f_{1}\left(u_{1}\right)-f_{1}\left(u_{2}\right)\right|=1
$$

Now, in H_{2} we reason as in H and H_{1}; in the "worst» case there is at least an element $u_{3} \in H_{2}$, such that $\left|u_{3}\right|=1$, and $\left\|u_{3}\right\|_{I} \leqslant 1 / \varepsilon$ and we can build a functional f_{3}, which is linear continuous on $H_{2}\left(^{(3)}\right.$, and such that

$$
\begin{equation*}
f_{3}\left(u_{3}\right)=1, \quad\left|f_{3}(u)\right| \leqslant|u|, \quad \forall u \in H_{2} \tag{8.19}
\end{equation*}
$$

${ }^{(1)}$ And $\exists e_{1} \in H$, s.t. $f_{1}(u)=\left(u, e_{1}\right), \forall u \in H$.
(${ }^{2}$) And $\exists e_{2} \in H_{1}$, s.t. $f_{2}(u)=\left(u, e_{2}\right) \forall u \in H_{1}$; so $\left(e_{2}, e_{1}\right)=0$.
$\left(^{3}\right)$ And $\exists e_{3} \in H_{2}$, s.t. $f_{3}(u)=\left(u, e_{3}\right), \forall u \in H_{2} ;$ so $\left(e_{3}, e_{1}\right)=0$ and $\left(e_{3}, e_{2}\right)=0$, etc.

25-Annali di Matematica

We denote again

$$
\begin{equation*}
H_{3}=\left\{u \in H_{2} ; f_{3}(u)=0\right\} ; \tag{8.20}
\end{equation*}
$$

then $H_{3} \subset H_{2}$ as a closed subspace.
We observe that:

$$
\left|u_{1}-u_{3}\right| \geqslant 1, \quad\left|u_{2}-u_{3}\right| \geqslant 1
$$

and in fact

$$
\left|u_{1}-u_{3}\right| \gg f_{1}\left(u_{1}-u_{3}\right)\left|=\left|f_{1}\left(u_{1}\right)-f_{1}\left(u_{3}\right)\right|=1\right.
$$

as $f_{1}\left(u_{1}\right)=1$ and $f_{1}\left(u_{3}\right)=0$ being $u_{3} \in H_{2} \subset H_{1}$ and $f_{1}(u)=0$ on H_{1} and besides:

$$
\left|u_{2}-u_{3}\right| \geqslant\left|f_{2}\left(u_{\mathrm{s}}-u_{3}\right)\right|=\left|f_{2}\left(u_{2}\right)-f_{2}\left(u_{\mathrm{s}}\right)\right|=|1-0|=1 .
$$

We use successively the same reasonings, always considering the "worst" case. We obtain so a sequence of elements $\left(u_{1}, u_{2}, \ldots\right)$ such that

$$
\begin{equation*}
\left.\mid u_{j}\right\}=1, \quad\left\|u_{j}\right\|_{H}<\frac{1}{\varepsilon} \quad \text { and } \quad\left|u_{i}-u_{j}\right| \geqslant 1 \quad \text { if } i \neq j \tag{8.21}
\end{equation*}
$$

This sequence is necessarily finite, according to the property of «relative compactness \#.

In this way we can build a finite number N_{ε} of closed subspaces $H \supset H_{1} \supset H_{2} \supset$ $\supset \ldots \supset H_{N_{\varepsilon}}$, and everyone being of codimension 1 with respect to the preceding, then $H_{N_{\varepsilon}}$ will be of codimension N_{ε}; hence $H_{N_{\varepsilon}}^{1}$ is of dimension N_{ε}.

More precisely: for any f_{j} there is $e_{i} \in H_{j-1}$, such that $f_{j}(u)=\left(u, e_{j}\right), \forall u \in H_{j-1}$, $j=1,2, \ldots$. Here $H_{0}=H$. Furthermore:

$$
\begin{aligned}
H_{1} & =\left\{u \in H,\left(u, e_{1}\right)=0\right\} ; \quad H_{2}=\left\{u \in H_{1},\left(u, e_{2}\right)=0\right\}= \\
& =\left\{u \in H,\left(u, e_{1}\right)=\left(u, e_{2}\right)=0\right\}, \quad \ldots, \quad H_{N}=\left\{u \in H,\left(u, e_{1}\right)=\left(u, e_{2}\right)=\ldots\left(u, e_{N}\right)=0\right\} .
\end{aligned}
$$

Also we see that $\left(e_{i}, e_{j}\right)=0$ for $i \neq j$.
The space H has then the obvious orthogonal decomposition

$$
H=H_{N} \oplus S p\left[e_{1}, e_{2}, \ldots, e_{N}\right]
$$

See also our paper [3] where a similar result is proven.
Now, in $H_{N \varepsilon}$ is obviously $|u| \leqslant \varepsilon\|u\|_{H}, \forall u \in H_{A \varepsilon}$. This proves Preliminary theorem $9 b$.

Finally, Theorem 9 is proven by the preceding results and by
Preliminary theorem 9c. - Let H be a hilbertian space, and $A \in \mathcal{L}(H ; H)$. Let us assume that $\forall \varepsilon>0, \exists$ exists a seminorm ${ }^{\varepsilon}| |$ on H such that $\left\|\|_{H}\right.$ is relatively
compact with respect to ${ }^{2}| |$ and such that ${ }^{\varepsilon}|u| \leqslant c\|u\|, \forall u \in H$ (*) and

$$
\begin{equation*}
\|A u\|_{H} \leqslant(K+\varepsilon)\|u\|+{ }^{s}|u|, \quad \forall u \in H \tag{8.22}
\end{equation*}
$$

Then:

$$
\inf _{T \in \mathfrak{G}_{e}}\|A+T\| \mathfrak{L}_{(n ; H)} \leqslant K\left({ }^{*}\right) .
$$

In fact, it is sufficient to prove that for every $\varepsilon>0$ we find a compact operator T_{s} in H, such that

$$
\begin{equation*}
\left\|\left(A-T_{\varepsilon}\right) u\right\| \leqslant(K+\varepsilon)\|u\|, \quad \forall u \in H \tag{8.23}
\end{equation*}
$$

Let be $H_{\varepsilon} \subset H$; for $u \in H_{\varepsilon}$ we have, ${ }^{\varepsilon}|u| \leqslant \varepsilon\|u\|$ and H_{ε}^{\perp} of dimension N_{ε}-finite.
Let us put P_{ε} the orthogonal projection on H_{ε}; hence, ($I-P_{\varepsilon}$) projects on a space of finite dimension and is therefore compact: $H \rightarrow H$.

Hence, we put $T_{\varepsilon}=A\left(I-P_{\varepsilon}\right)$; this is obviously compact, and besides we have:

$$
\begin{equation*}
\left\|\left(A-T_{\varepsilon}\right) u\right\|=\left\|A P_{\varepsilon} u\right\|, \quad \forall u \in H \tag{8.24}
\end{equation*}
$$

By the hypothesis of the theorem, we arrive at:

$$
\begin{equation*}
\left\|\left(A-T_{\varepsilon}\right) u\right\| \leqslant(K+\varepsilon)\left\|P_{\varepsilon} u\right\|+\varepsilon\left|P_{\varepsilon} u\right|, \quad \forall u \in H \tag{8.25}
\end{equation*}
$$

Being now $P_{e} u \in H_{\varepsilon}$, we have:

$$
{ }^{\varepsilon}\left|P_{\varepsilon} u\right| \leqslant \varepsilon\left\|P_{\varepsilon} u\right\| \leqslant \varepsilon\|u\|
$$

therefore we get,

$$
\begin{equation*}
\left\|\left(A-T_{\varepsilon}\right) u\right\| \leqslant(K+2 \varepsilon)\|u\|, \quad \forall u \in H \tag{8.26}
\end{equation*}
$$

Applying Preliminary theorems $9 a$ and $9 c$, Theorem 9 is proven.

9. - Some more estimates.

Considering the later applications, we shall prove here the following
Theormi 10. - Let $a(x, \xi)$ be a symbol defined for $x \in R^{n}, \xi \in R^{n}-\{0\}, \Omega$ an open set in the $" x$-space», and $K_{\Omega}=\max _{\substack{x \in \Omega \\ \mid \xi \in=1}}|\alpha(x, \xi)|$. Then, for every $\varepsilon>0$ there is a
constant O_{ε} such that constant C_{s} such that

$$
\begin{equation*}
\|A(x, D) u\|_{0} \leqslant\left(K_{\Omega}+\varepsilon\right)\|u\|_{0}+C_{\varepsilon}\|u\|_{-\frac{1}{2}}, \quad \forall u \in C_{0}^{\infty}(\bar{\Omega})\left({ }^{1}\right)\left({ }^{2}\right) \tag{9.1}
\end{equation*}
$$

be verified.
${ }^{(*)}$ The class \mathfrak{C}_{0} of these semi-norms is obviously a linear space; this applies to the footnote at Preliminary Th. 9.a.
(1) We can replace $\left\|\|-\frac{1}{-1}\right.$ by $\| \|_{-1}$ using: $\forall \varepsilon>0, \exists O_{s}$, such that

$$
\|u\|_{-\frac{1}{2}} \leqslant \varepsilon\|u\|_{0}+C_{\varepsilon}\|u\|_{-1} .
$$

$\left(^{(}\right) C_{0}^{\infty}(\bar{\Omega})$ means the class of C^{∞} functions with compact support contained in $\bar{\Omega}$.

We deduce this theorem from Theorem 6 (see (6.22)) by means of some additional reasonings. We have the following

Lemma. - Let $a(x, \xi)$ be a symbol, Ω an open set of $R^{n,} K_{\Omega}=\max _{\substack{\mid=1 \\ x \in \Omega}}|a(x, \xi)|$. Then, $\forall \varepsilon>0$ there is an open set $\Omega_{\varepsilon} \supset \bar{\Omega}$ such that the relation $K_{\Omega_{\varepsilon}} \leqslant K_{\Omega}+\varepsilon$ is verified.

In fact, we have, for every $x_{0} \in R^{n},\left|a(x, \xi)-a\left(x_{0}, \xi\right)\right| \leqslant \varepsilon$ if $\left|x-x_{0}\right|<\delta_{s}$ and $\xi \in R^{n}-\{0\}$; here δ_{ε} is independent of x_{0}.

Let us consider here, if $\partial \Omega$ is the boundary of Ω, for every $x_{0} \in \partial \Omega$ the sphere $\left\{x ;\left|x-x_{0}\right| \leqslant \delta_{\varepsilon}\right\}$.

Let us take

$$
\begin{equation*}
\Omega_{\varepsilon}=\Omega \bigcup\left(\bigcup_{x_{v} \in \Omega \Omega} S\left(x_{0}, \delta_{\varepsilon}\right)\right) ; \quad S\left(x_{0}, \delta_{\varepsilon}\right)=\left\{x ;\left|x-x_{0}\right| \leqslant \delta_{\varepsilon}\right\} \tag{9.2}
\end{equation*}
$$

Therefore, if $y \in \Omega_{\varepsilon}$, we have $y \in \Omega$ or $y \in S\left(x^{*}, \delta_{\varepsilon}\right)$ for a certain $x^{*} \in \partial \Omega$. In the first case, we have

$$
\begin{equation*}
|a(y, \xi)| \leqslant \max _{\substack{|\xi|=1 \\ x \in \widehat{\Omega}}}|a(x, \xi)|=K_{\Omega} . \tag{9.3}
\end{equation*}
$$

In the second case we have

$$
\begin{equation*}
|a(y, \xi)| \leqslant\left|a(y, \xi)-a\left(x^{*}, \xi\right)\right|+\left|a\left(x^{*}, \xi\right)\right| \leqslant \varepsilon+K_{\Omega} . \tag{9.4}
\end{equation*}
$$

Hence, for every $y \in \Omega_{\varepsilon}, \xi \in R^{u}-\{0\}$ we have $|a(y, \xi)| \leqslant \varepsilon+K_{\Omega}$. Hence $K_{\Omega_{\varepsilon}} \leqslant K_{\Omega}+\varepsilon$.
Proof of The theorem. - Given $\varepsilon>0$, and $u \in C_{0}^{\infty}(\bar{\Omega})$ we build Ω_{ε} given in the Lemma. There exists also, a function $\zeta_{s}(x) \in C_{0}^{\infty}\left(R^{n}\right)$, equal to 1 on supp u, equal to 0 outside Ω_{ε}, contained between 0 and 1. Obviously $\zeta_{\varepsilon}(x)$ is a symbol, and $\gamma_{\delta}(x, \xi)=\zeta_{\varepsilon}(x) a(x, \xi)$ is another symbol.

Furthermore $\gamma_{\varepsilon}(x, \xi)=0$ if $x \in\left\lceil\Omega_{\varepsilon}\right.$; hence, we have

$$
\begin{equation*}
\max _{\substack{x \in R^{n} \\|\xi|=1}}\left|\gamma_{\varepsilon}(x, \xi)\right| \leqslant \max _{\substack{x \in \Omega_{\varepsilon} \\|\xi|=1}}|a(x, \xi)|=K_{\Omega} \leqslant K_{\Omega_{\varepsilon}}+\varepsilon \tag{9.5}
\end{equation*}
$$

We define $\Gamma_{\varepsilon}(x, D)$ the pseudo-differential operator associated with $\gamma_{\varepsilon}(x, \xi)$. We have

$$
\begin{equation*}
\Gamma_{\varepsilon}(x, D)=A(x, D)\left(\zeta_{\varepsilon}(x)\right) \tag{9.6}
\end{equation*}
$$

In fact,

$$
\begin{align*}
& \widehat{I_{\varepsilon}(x, D) u}(\xi)=(2 \pi)^{-n / 2} \int \exp (-i x \cdot \xi)\left(a(x, \xi) \zeta_{\varepsilon}(x)\right) u(x) d x= \tag{9.7}\\
& =\overline{A\left(x, \overline{D)\left(\zeta_{\varepsilon} u\right)}(\xi), \quad \forall u \in \mathcal{S}, \quad \forall \xi \in R^{n}-\{0\} . ~ . ~ . ~\right.}
\end{align*}
$$

Hence we get

$$
\begin{equation*}
\Gamma_{\mathrm{s}}(x, D) u=A(x, D)\left(\zeta_{\varepsilon}(x) u(x)\right), \quad \forall u \in \mathrm{~S} \tag{9.8}
\end{equation*}
$$

(however, not necessarily is $\Gamma_{s}(x, D)=\zeta_{\theta}(x) A(x, D)!$).

Now we have the decomposition

$$
\begin{equation*}
u(x)=\zeta_{\varepsilon}(x) u(x)+\left(1-\zeta_{\varepsilon}(x)\right) u(x) \tag{9.9}
\end{equation*}
$$

and

$$
\begin{align*}
& A(x, D) u=A(x, D)\left(\zeta_{\varepsilon} u\right)+A(x, D)\left(\left(1-\zeta_{\varepsilon}\right) u\right)= \tag{9.10}\\
& \quad=\Gamma_{\varepsilon}(x, D) u+A(x, D)\left(\left(1-\zeta_{\varepsilon}\right) u\right)
\end{align*}
$$

as it is $1-\zeta_{\varepsilon}(x)=0$ on $\operatorname{supp} u$, then it is $\left(1-\zeta_{\varepsilon}(x)\right) u(x)=0$ on R^{n}, and therefore

$$
\begin{equation*}
A(x, D) u=\Gamma_{\varepsilon}(x, D) u, \tag{9.11}
\end{equation*}
$$

Hence, applying Theorem 6, we get

$$
\begin{align*}
\|A(x, D) u\|_{0}=\left\|\Gamma_{\varepsilon}(x, D) u\right\|_{0} \leqslant\left(\max _{\substack{x \in R^{n} \\
|\xi|=1}}\left|\gamma_{\delta}(x, \xi)\right|+\varepsilon\right)\|u\|_{0}+O_{\varepsilon}\|u\|_{-\frac{1}{2}} \leqslant & \tag{9,12}\\
& \leqslant\left(K_{\Omega}+2 \varepsilon\right)\|u\|_{0}+C_{\varepsilon}\|u\|_{-\frac{1}{1}}
\end{align*}
$$

We will show, complementing Theorem 7, the following
Theorem $11\left(^{1}\right)$. - Let $a(x, \xi)$ be a symbol, $A(x, D)$ the associated pseudo-differential operator; \mathfrak{G}_{-1} the class of operators of order $\leqslant-1, K=\max _{\substack{x \in R^{n} \\ \mid \in \in=1}}|a(x, \xi)|$. We have

$$
\begin{equation*}
\inf _{T \in \mathcal{C}_{-2}}\|A(x, D)+T\| \geqslant K \tag{9.13}
\end{equation*}
$$

the norm being taken here in $£\left(L^{2}\left(R^{n}\right) ; L^{2}\left(R^{n}\right)\right)$.
Combining with Theorem 7 we deduce equality

$$
\begin{equation*}
\inf _{T \in \mathcal{G}_{-1}}\|A(x, D)+T\|=K \tag{9.14}
\end{equation*}
$$

The following theorem is fundamental for Theorem 11. In fact, Theorem 11 is a simple corollary of it.

Theorem 12. - Let $a(x, \xi)$ be a symbol, and $\left|a\left(x_{0}, \xi_{0}\right)\right|=c_{0}$ for a certain $x_{0} \in R^{n}$, $\left|\xi_{0}\right|=1$. Then, $\forall \varepsilon>0, \exists u_{\varepsilon}(x) \in C_{0}^{\infty}$, such that $\left\|u_{\varepsilon}(x)\right\|_{0} \neq 0$ and the estimates

$$
\begin{align*}
& \left\|A(x, D) u_{\varepsilon}\right\|_{0}-c_{0}\left\|u_{\varepsilon}\right\|_{0} \mid \leqslant \varepsilon\left\|u_{\varepsilon}\right\|_{0}\left({ }^{2}\right) \tag{9.15}\\
& \left\|u_{\varepsilon}\right\|_{-1} \leqslant \dot{\varepsilon}\left\|u_{e}\right\|_{0} \tag{9.16}
\end{align*}
$$

are satisfied.

[^4]Remark. - From foot-note $\left(^{2}\right)$ to Th. 12 we see that any value of $a(x, \xi)$ belongs to $\sigma(A(x, D))$. In fact, we find a sequence $u_{n}(x) \in C_{0}^{\infty}$, such that

$$
\left\|\left(A(x, D)-a\left(x_{0}, \xi_{0}\right) E\right) u_{n}\right\|_{0} \leqslant \frac{1}{n}\left\|u_{n}\right\|_{0}
$$

which implies that $\left(A(x, D)-a\left(x_{0}, \xi_{0}\right) E\right)$ has no bounded inverse.
Corollary to Th. 12. - Let $a(x, \xi)$ be a symbol such that estimate $\|u\|_{0} \leqslant$ $\leqslant c\left(\|A(x, D) u\|_{0}+\|u\|_{-1}\right), \forall u \in \mathcal{S}$, is verified.

Then, $\exists \alpha>0$, such that $|a(x, \xi)|>\alpha>0, \forall x \in R^{n}, \xi \in R^{a}-\{0\}$.
In fact, otherwise we could find a sequence $\left(x_{p}\right)_{1}^{\infty} \subset R^{n}$ and $\left(\xi_{p}\right)_{1}^{\infty}$ on the unit sphere, such that $\left|a\left(x_{p}, \xi_{p}\right)\right| \leqslant 1 / p, p=1,2, \ldots$. Then, $\forall p=1,2, \ldots$, take $u_{p}(x) \in C_{0}^{\infty}$ corresponding to $\varepsilon_{p}=1 / p$. We get $\left\|u_{p}\right\|_{0} \leqslant c\left(\mid A u_{p}\left\|_{0}+\right\| u_{p} \|_{-1}\right)$ and using (9.15) we deduce

$$
\left\|u_{p}\right\|_{0} \leqslant c\left(\left\lvert\, a\left(x_{p}, \xi_{p}\right)\left\|u_{p}\right\|_{0}+\frac{1}{p}\left\|u_{p}\right\|_{0}+\frac{1}{p}\left\|u_{p}\right\|_{0}\right.\right)
$$

(when (9.16) is also used): it follows $1 \leqslant 3 c / p, p=1,2, \ldots$, which is impossible.
Before proving Theorem 12, we indicate how Theorem 11 is a corollary of Theorem 12.

If, reasoning ad absurdum, we have: $\inf _{T \in \mathcal{G}_{-1}}\|A+T\|=k^{*}<K$, there would be, taken k such that $k^{*}<k<K$ at least one $T_{10} \in \mathcal{C}_{-1}$ so that

$$
\begin{equation*}
k^{*} \leqslant\left\|A(x, D)+T_{k}\right\| \leqslant k<K \tag{9.17}
\end{equation*}
$$

and therefore

$$
\begin{equation*}
k^{*} \leqslant \sup _{u \in \mathcal{L}^{2}} \frac{1}{\|u\|_{0}}\left\|\left(A+T_{k}\right) u\right\|_{0} \leqslant k<K \tag{9.18}
\end{equation*}
$$

whence $\left\|\left(A+T_{k}\right) u\right\|_{0} \leqslant k\|u\|_{0}, \forall u \in L^{2}$.
Being $k<K=\max _{\substack{x \in R^{n} \\|\xi|=1}}|a(x, \xi)|$ we find at least one $x_{0} \in R^{n}$ and $\xi_{0},\left|\xi_{0}\right|=1$ such that $\pi<\left|a\left(x_{0}, \xi_{0}\right)\right|=c_{0}<K$.

We apply here Theorem 12 and we find $u_{\varepsilon}(x) \in \mathcal{O}_{0}^{\infty}$, such that

$$
\begin{equation*}
-\varepsilon\left\|u_{\varepsilon}\right\|_{0} \leqslant\left\|A u_{\varepsilon}\right\|_{0}-c_{0}\left\|u_{\varepsilon}\right\|_{0} \tag{9.19}
\end{equation*}
$$

or

$$
\begin{align*}
\left(c_{0}-\varepsilon\right)\left\|u_{\varepsilon}\right\|_{0} \leqslant\left\|A(x, D) u_{\varepsilon}\right\|_{0}=\|(A(x, D)+ & \left.T_{k}\right) u_{\varepsilon}-T_{k} u_{\varepsilon} \|_{0} \leqslant \tag{9.20}\\
\leqslant\left\|\left(A+T_{k}\right) u_{\varepsilon}\right\|_{0}+\left\|T_{r_{k}} u_{\varepsilon}\right\|_{0} \leqslant & k\left\|u_{\varepsilon}\right\|_{0}+c\left\|u_{\varepsilon}\right\|_{-1} \leqslant \\
& \leqslant k\left\|u_{\sigma}\right\|_{0}+e \cdot \varepsilon\left\|u_{\varepsilon}\right\|_{0}=\left(k+c_{\varepsilon}\right)\left\|u_{\varepsilon}\right\|_{0}
\end{align*}
$$

and being $\left\|u_{\varepsilon}\right\|_{0} \neq 0$ we get, $\forall \varepsilon>0$

$$
\begin{equation*}
c_{0}-\varepsilon \leqslant k+c \cdot \varepsilon \tag{9.21}
\end{equation*}
$$

and as

$$
\begin{equation*}
k<c_{0} \tag{9.22}
\end{equation*}
$$

we have a contradiction, as easily seen.
We pass now to the
Proof of Theorem 12. - Let us take $\varepsilon^{\prime}>0$; we have $\left|a(x, \xi)-a\left(x_{0}, \xi\right)\right| \leqslant \varepsilon^{\prime}$ if $\left|x-x_{0}\right|<\delta_{\varepsilon^{\prime}}, \xi \in R^{n}-\{0\}$. Consider a function $\varphi_{\varepsilon^{\prime}}(x) \in C_{0}^{\infty}$ with support contained in the sphere $\left\{x ;\left|x-x_{0}\right| \leqslant \delta_{\varepsilon^{\prime}}\right\}$, and the sequence

$$
\begin{equation*}
u_{p, \varepsilon^{\prime}}(x)=\exp \left(i p\left(x \cdot \xi_{0}\right)\right) \varphi_{z^{\prime}}(x) \tag{9.23}
\end{equation*}
$$

where by hypothesis is

$$
\begin{equation*}
\left|a\left(x_{0}, \xi_{0}\right)\right|=c_{0} \quad \text { and } \quad\left|\xi_{0}\right|=1 \tag{9.24}
\end{equation*}
$$

Let be $f(\zeta) \in C^{\infty}=1$ for $|\zeta| \leqslant 1,0 \leqslant f \leqslant 1,=0$ for $|\zeta|>2$. Hence we write

$$
\begin{equation*}
\psi_{p}(\xi)=f\left(\frac{\xi-p \xi_{0}}{\sqrt{p}}\right) \tag{9.25}
\end{equation*}
$$

The following estimate is valid: (obviously)

$$
\begin{equation*}
\left|\operatorname{grad} \psi_{p}\right| \leqslant \frac{c}{\sqrt{p}} \tag{9.26}
\end{equation*}
$$

Let us consider now the operator $\psi_{p}(D)$ and observe the obvious decomposition (1)

$$
\begin{align*}
A(x, D) u_{p, \varepsilon^{\prime}} & =a\left(x_{0}, \xi_{0}\right) u_{p, \varepsilon^{\prime}}+\psi_{p}(D)\left(A(x, D)-a\left(x_{0}, \xi_{0}\right) E\right) u_{p, s^{\prime}}+ \tag{9.27}\\
& +\left(E-\psi_{p}(D)\right)\left(A(x, D)-a\left(x_{0}, \xi_{0}\right) E\right) u_{p, \varepsilon^{\prime}}=a\left(x_{0}, \xi_{0}\right) u_{p, \varepsilon^{\prime}}+I_{1}+I_{2}
\end{align*}
$$

and therefore we get

$$
\begin{equation*}
\left\|A(x, D) u_{p, \varepsilon^{\prime}}\right\|_{0}=\left\|a\left(x_{0}, \xi_{0}\right) u_{p, \varepsilon^{\prime}}+I_{1}+I_{2}\right\|_{0} \tag{9.28}
\end{equation*}
$$

and hence

$$
\begin{align*}
& \left\|A(x, D) u_{p, \varepsilon^{\prime}}\right\|_{0}-c_{0}\left\|u_{p, \varepsilon^{\prime}}\right\|_{0} \mid= \tag{9.29}\\
& \quad=\left|\left\|a\left(x_{0}, \xi_{0}\right) u_{p, \varepsilon^{\prime}}+I_{1}+I_{2}\right\|_{0}-\left\|a\left(x_{0}, \xi_{0}\right) u_{p, e^{\prime}}\right\|_{0}\right| \leqslant\left\|I_{1}+I_{2}\right\|_{0} \leqslant\left\|I_{1}\right\|_{0}+\left\|I_{2}\right\|_{0} .
\end{align*}
$$

We consider hence the expression

$$
\begin{equation*}
\left\|I_{1}\right\|_{0}=\left\|\psi_{p}(D)\left(A(x, D)-a\left(x_{0}, \xi_{0}\right)\right) u_{p, e^{\prime}}\right\|_{0} \tag{9.30}
\end{equation*}
$$

(1) E being the identity map.
which is estimated by

$$
\begin{equation*}
\left\|\psi_{p}(D)\left(A(x, D)-A\left(x_{0}, D\right)\right) u_{p, \varepsilon^{\prime}}\right\|_{0}+\left\|\psi_{p}(D)\left(A\left(x_{0}, D\right)-a\left(x_{0}, \xi_{0}\right)\right) u_{p, \epsilon^{*}}\right\|_{0} \tag{9.31}
\end{equation*}
$$

where

$$
\begin{equation*}
\widehat{A\left(x_{0}, D\right)} u(\xi)=a\left(x_{0}, \xi\right) \tilde{u}(\xi) \tag{9.32}
\end{equation*}
$$

$\forall u \in S$.
Hence, we have

$$
\begin{equation*}
\left\|\psi_{p}(D)\left(A\left(x_{0}, D\right)-a\left(x_{0}, \xi_{0}\right)\right) u_{p, e^{\prime}}\right\|_{0}= \tag{9.33}
\end{equation*}
$$

$$
=\left\|\psi_{p}(D)\left(A\left(x_{0}, D\right)-a\left(x_{0}, p \xi_{0}\right)\right) u_{p, \varepsilon^{\prime}}\right\|_{0}=\left(\int\left|\psi_{p}(\xi)\right|^{2}\left|a\left(x_{0}, \xi\right)-a\left(x_{0}, p \xi_{0}\right)\right|^{2}\left|\tilde{u}_{p, \varepsilon^{\prime}}(\xi)\right|^{2} d \xi\right)^{\frac{1}{2}}
$$

By the inequality (2.21) we have

$$
\begin{align*}
\left|a\left(x_{0}, \xi\right)-a\left(x_{0}, p \xi_{0}\right)\right| \leqslant c & \frac{\left|\xi-p \xi_{0}\right|}{|\xi|+\left|p \xi_{0}\right|} \leqslant 0 \frac{\left|\xi-p \xi_{0}\right|}{p}, \tag{9.34}\\
& p=1,2, \ldots, \xi \in R^{n}-\{0\},\left|\xi_{0}\right|=1, x_{0} \in R^{n} .
\end{align*}
$$

Therefore, considering too that

$$
\begin{equation*}
\psi_{p}(\xi)=0 \tag{9.35}
\end{equation*}
$$

for $\left|\xi-p \xi_{0}\right|>2 \sqrt{p}$, we have

$$
\begin{align*}
& \left\|\psi_{p}(D)\left(A\left(x_{0}, D\right)-a\left(x_{0}, \xi_{0}\right)\right) u_{p, \varepsilon^{t}}\right\|_{0} \leqslant \tag{9.36}\\
& \quad \leqslant c\left(\int_{\left|\xi-p \xi_{0}\right|<2 \sqrt{\bar{p}}} \frac{1}{p^{2}} \xi-\left.p \xi_{0}\right|^{\prime}\left|\tilde{u}_{x, \varepsilon^{\prime}}(\xi)\right|^{2} d \xi\right)^{\frac{1}{3}} \leqslant \frac{c_{1}}{\sqrt{p}}\left\|u_{p, \varepsilon^{\prime}}\right\|_{0}
\end{align*}
$$

Besides, we observe that we have also estimate

$$
\begin{equation*}
\left\|\psi_{p}(D)\left(A(x, D)-\mathcal{A}\left(x_{0}, D\right)\right) u_{p, \varepsilon^{\prime}}\right\|_{0} \leqslant\left\|\left(A(x, D)-A\left(x_{0}, D\right)\right) u_{p, \varepsilon^{\prime}}\right\|_{0} \tag{9.37}
\end{equation*}
$$

If $b(x, \xi)=a(x, \xi)-a\left(x_{0}, \xi\right)$ is the symbol associated with the operator $A(x, D)-$ $-A\left(x_{0}, D\right)$, we have

$$
\begin{equation*}
|b(x, \xi)| \leqslant \varepsilon^{\prime} \quad \text { for }\left|x-x_{v}\right|<\delta\left(\varepsilon^{\prime}\right),|\xi|=1 \tag{9.38}
\end{equation*}
$$

On the other hand, the functions $u_{p, \varepsilon^{\prime}}$ in (9.23) belong to $C_{0}^{\infty}\left(\left\{x ;\left|x-x_{r}\right|<\delta_{\varepsilon^{\prime}}\right\}\right)$ and hence (by Theorem 10), we have, given $\varepsilon^{\prime}>0$, a constant $\varepsilon_{\varepsilon^{\prime}}$, such that

$$
\begin{equation*}
\left\|\left(A(x, D)-A\left(x_{0}, D\right)\right) u_{p, \varepsilon^{\prime}}\right\|_{0} \leqslant\left(2 \varepsilon^{\prime}\right)\left\|u_{p, \varepsilon^{\prime}}\right\|_{0}+c_{\varepsilon^{\prime}}\left\|u_{p, \varepsilon^{\prime}}\right\|_{-1}, \quad \forall p=1,2, \ldots \tag{9.39}
\end{equation*}
$$

Up to now, we have arrived at estimate

$$
\begin{equation*}
\left\|I_{1}\right\|_{0} \leqslant \frac{c}{\sqrt{p}}\left\|u_{p, \varepsilon^{\prime}}\right\|_{0}+2 \varepsilon^{\prime}\left\|u_{p, \varepsilon}\right\|_{0}+c_{\varepsilon} \cdot\left\|u_{s, \varepsilon^{\varepsilon}}\right\|_{-1}, \quad \quad p=1,2, \ldots \tag{9.40}
\end{equation*}
$$

We will consider the expression for I_{2}.

Obviously, we have

$$
\begin{align*}
I_{2}=\left(A(x, D)-a\left(x_{0}, p \xi_{0}\right)\right)\left(E-\psi_{p}(D)\right) u_{p, \varepsilon^{\prime}} & - \tag{9.41}\\
& \quad\left[A(x, D)-a\left(x_{0}, p \xi_{0}\right) E, E-\psi_{p}(D)\right] u_{p, \varepsilon^{\prime}}
\end{align*}
$$

On the other hand, we see that the considered commutator is equal to the commutator $\left[A(x, D), v_{p}(D)\right]$, and therefore

$$
\begin{equation*}
I_{2}=\left(A(x, D)-a\left(x_{0}, p \xi_{0}\right)\right)\left(E-\psi_{p}(D)\right) u_{p, \varepsilon^{i}}+\left[A(x, D), \psi_{p}(D)\right] u_{p, \varepsilon^{i}}=I_{3}+I_{4} \tag{9.42}
\end{equation*}
$$

Hence, first of all we have (being $\left|a\left(x_{0}, p \xi_{0}\right)\right| \leqslant c$) that

$$
\begin{equation*}
\left\|I_{3}\right\|_{0} \leqslant c\left\|\left(E-\psi_{p}(D)\right) u_{p, \varepsilon^{2}}\right\|_{0} \leqslant c\left(\int\left(1-\psi_{p}(\xi)^{2}\left|\tilde{u}_{p, \varepsilon^{\prime}}(\xi)\right|^{2} d \xi\right)^{\frac{1}{2}}\right. \tag{9.43}
\end{equation*}
$$

Now we observe that we have $\psi_{p}(\xi)=1$ for $\left|\xi-p \xi_{0}\right|<\sqrt{p}$; hence $1-\psi_{p}(\xi)=0$ for $\left|\xi-p \xi_{0}\right| \leqslant \sqrt{p}$ and besides it is

$$
\begin{align*}
& \tilde{u}_{p, \varepsilon^{\prime}}(\xi)=\int_{u^{n}} \exp (-i x \cdot \xi) \exp \left(i p\left(x \cdot \xi_{0}\right)\right) \varphi_{\varepsilon^{\prime}}(x) d x= \tag{9.44}\\
& \quad=\int_{\tilde{R}^{n}} \exp \left(-i x \cdot\left(\xi-p \xi_{0}\right)\right) \varphi_{\varepsilon^{\prime}}(x) d x=\tilde{\varphi}_{\varepsilon^{\prime}}\left(\xi-p \xi_{0}\right)
\end{align*}
$$

and therefore

$$
\begin{equation*}
\left\|I_{3}\right\|_{0} \leqslant c\left(\int_{\left|\xi_{-p} \xi_{0}\right| \geqslant \sqrt{p}}\left|\tilde{\varphi}_{\delta^{\prime}}\left(\xi-p \xi_{0}\right)\right|^{2} d \xi\right)^{\frac{1}{2}}=c\left(\int_{|\xi| \geqslant \sqrt{\bar{n}}}\left|\tilde{\varphi}_{\varepsilon^{\prime}}(\zeta)\right|+d \zeta\right)^{\frac{1}{2}} \tag{9.45}
\end{equation*}
$$

and we have:

$$
\left(\int_{|\zeta| \geqslant \sqrt{p}}\left|\tilde{\varphi}_{\varepsilon^{\prime}}(\zeta)\right|^{2} d \zeta\right)^{\frac{1}{2}} \leqslant \varepsilon^{\prime}\left(\int_{R^{n}}\left|\tilde{\varphi}_{s^{\prime}}(\zeta)\right|^{2} d \zeta\right)^{\frac{1}{2}}=\varepsilon^{\prime}\left\|u_{p, \varepsilon^{\prime}}\right\|_{0} \quad \text { if } p \geqslant P_{0}\left(\varepsilon^{\prime}, \tilde{\varphi}_{s^{\prime}}\right)
$$

Then we have

$$
\begin{equation*}
\left\|I_{4}\right\|_{0}=\left\|\int \tilde{a}^{\prime}(\xi-\eta, \xi)\left(\psi_{p}(\xi)-\psi_{v}(\eta)\right) \tilde{u}_{p, \varepsilon^{\prime}}(\eta) d \eta\right\|_{0} \tag{9.46}
\end{equation*}
$$

We see that

$$
\left|\psi_{p}(\xi)-\psi_{p}(\eta)\right| \leqslant|\xi-\eta|\left|\operatorname{grad} \psi_{p}(\zeta)\right| \leqslant c p^{-\frac{1}{2}}\left(1+|\xi-\eta|^{2}\right)^{\frac{1}{2}}, \quad \xi, \eta \in R^{n}
$$

Hence we get, $\forall f=1,2, \ldots$

$$
\begin{equation*}
\int \tilde{a}^{\prime}(\xi-\eta, \xi)\left(\psi_{p}(\xi)-\psi_{p}(\eta)\right) \tilde{u}_{p, \varepsilon^{\prime}}(\eta) d \eta \leq \frac{c_{f}}{\sqrt{p}} \int\left(1+|\xi-\eta|^{2}\right)^{-f+\frac{1}{2}}\left|\tilde{u}_{p, \varepsilon^{\prime}}(\eta)\right| d \eta \tag{9.47}
\end{equation*}
$$

from where we arrive easily at estimate,

$$
\begin{equation*}
\left\|I_{4}\right\|_{0} \leqslant \frac{c}{\sqrt{\bar{p}}}\left\|u_{p, \varepsilon^{\prime}}\right\|_{0}, \quad p=1,2, \ldots \tag{9.48}
\end{equation*}
$$

Adding the different inequalities obtained up to now, we have

$$
\begin{align*}
&\left\|A(x, D) u_{y, \varepsilon^{\prime}}\right\|_{0}-c_{0}\left\|u_{p, \varepsilon^{\prime}}\right\|_{0} \left\lvert\, \leqslant \frac{c}{\sqrt{p}}\left\|u_{p, \varepsilon^{\prime}}\right\|_{0}+2 \varepsilon^{\prime}\left\|u_{p, \varepsilon^{\prime}}\right\|_{0}+\right. \tag{9.49}\\
&+c_{s^{\prime}}\left\|u_{p, \varepsilon^{\prime}}\right\|_{-1}+\varepsilon^{\prime}\left\|u_{p, \varepsilon^{\prime}}\right\|_{0}+\frac{c}{\sqrt{p}}\left\|u_{p, \varepsilon^{\prime}}\right\|_{0}
\end{align*}
$$

for $p \geqslant P_{0}\left(\varepsilon^{\prime}\right)$.
Now let us prove that
for every $\varepsilon^{\prime \prime}>0$ there is $\tilde{p}\left(\varepsilon^{\prime \prime}, \varepsilon^{\prime}\right)$ such that we have

$$
\begin{equation*}
\left\|u_{p, \varepsilon^{\prime}}\right\|_{-1} \leqslant 0 \cdot \varepsilon^{n}\left\|u_{y, s^{\prime}}\right\|_{0} \quad \text { for } p \geqslant \tilde{p}\left(\varepsilon^{n}, \varepsilon^{\prime}\right) \tag{9.50}
\end{equation*}
$$

In fact, we have

$$
\begin{align*}
& \left\|u_{p, \varepsilon^{\prime}}\right\|_{-1}^{2}=\int\left(1+|\xi|^{2}\right)^{-1}\left|\tilde{\tilde{q}}^{\prime}\left(\xi-p \xi_{0}\right)\right|^{2} d \xi=\int_{\left|\xi-p \xi_{0}\right|>r}\left|\tilde{\varphi}_{\varepsilon^{\prime}}\left(\xi-p \xi_{0}\right)\right|^{2} d \xi+ \tag{9.51}\\
& \quad+\int_{\left|\xi-p \xi_{0}\right|<r}\left(1+|\xi|^{2}\right)^{-1}\left|\tilde{\mathscr{q}}_{\varepsilon^{\prime}}\left(\xi-p \xi_{0}\right)\right|^{2} d \xi \quad \text { for every } r>0
\end{align*}
$$

Given now $\varepsilon^{\prime \prime}>0$ there is $r^{*}\left(\varepsilon^{\prime \prime}, \varepsilon^{\prime}\right)$ such that:

$$
\begin{equation*}
\int_{|\sigma|>r^{*}}\left|{\tilde{\varepsilon^{\prime}}}^{\prime}(\zeta)\right|^{2} d \zeta \leqslant \varepsilon^{\prime \prime 2}\left\|u_{p, \varepsilon^{\prime}}\right\|_{0}^{z} \tag{9.52}
\end{equation*}
$$

We observe that if $\left|\xi-p \xi_{0}\right|<r^{*}$, it results $|\xi| \geqslant p-r^{*}$ and therefore, for $p>r^{*}+1$, we get
and therefore, for $p \geqslant P_{1}\left(\varepsilon^{\prime}, \varepsilon^{n}\right)$, we get

$$
\begin{equation*}
\left\|u_{y, \varepsilon^{\prime}}\right\|_{-1} \leqslant 2 \varepsilon^{\prime \prime}\left\|u_{p, \varepsilon^{\prime}}\right\|_{0} \tag{9.54}
\end{equation*}
$$

Hence we arrive at inequalities

$$
\begin{equation*}
\left|\left\|A(x, D) u_{p, \varepsilon^{\prime}}\right\|_{0}-c_{0}\left\|u_{p, \varepsilon^{\prime}}\right\|_{0}\right| \leqslant \frac{c}{\sqrt{p}}\left\|u_{p, \varepsilon^{\prime}}\right\|_{0}+2 \varepsilon^{\prime}\left\|u_{p, \varepsilon^{\prime}}\right\|_{0}+2 c_{\varepsilon^{\prime}} \varepsilon^{\prime \prime}\left\|u_{p, \varepsilon^{\prime}}\right\|_{0} \tag{9.55}
\end{equation*}
$$

$$
\text { for } p>P\left(\varepsilon^{\prime}, \varepsilon^{\prime \prime}\right)
$$

and

$$
\left\|u_{p, \varepsilon^{\prime}}\right\|_{-1} \leqslant e \varepsilon^{\prime \prime}\left\|u_{p, \varepsilon^{\prime}}\right\|_{0} \quad \text { for } p \geqslant P_{\mathbf{1}}\left(\varepsilon^{\prime}, \varepsilon^{\prime \prime}\right)
$$

Let us take $\varepsilon^{\prime \prime}\left(\varepsilon^{\prime}\right)$ small enough to have $c \varepsilon^{\prime \prime}<\varepsilon^{\prime}$ and $2 c_{\varepsilon^{\prime}} \varepsilon^{\prime \prime}<\varepsilon^{\prime}$; hence, for $p \geqslant Q\left(\varepsilon^{\prime}\right)$, we have $\left\|u_{p, \varepsilon^{\prime}}\right\|_{-1} \leqslant \varepsilon^{\prime}\left\|u_{p, \varepsilon^{\prime}}\right\|_{0}$ and

$$
\left\|A(x, D) u_{y, \varepsilon^{\prime}}\right\|_{0}-c_{0}\left\|u_{p, \varepsilon^{\prime}}\right\|_{0} \left\lvert\, \leqslant \frac{c}{\sqrt{p}}\left\|u_{y, \varepsilon^{\prime}}\right\|_{0}+3 \varepsilon^{\prime}\left\|u_{p, \varepsilon^{\prime}}\right\|_{0} \leqslant 4 \varepsilon^{\prime}\right. \| u_{p, \varepsilon^{\prime} \|_{0}} \quad \text { if } p \geqslant Q_{1}\left(\varepsilon^{\prime}\right)
$$

$$
\begin{align*}
& \int_{\left|\xi-p \xi_{0}^{*}\right| \leqslant r^{*}}\left(1+|\xi|^{2}\right)^{-1}\left|\tilde{\varphi}_{\varepsilon^{\prime}}\left(\xi-p \xi_{0}\right)\right|^{2} d \xi \leqslant\left(1+\left(p-r^{*}\right)^{2}\right)^{-1}\left(\int\left|\tilde{\varphi}_{\varepsilon^{\prime}}\left(\xi-p \xi_{0}\right)\right|^{2} d \xi\right)= \tag{9.53}\\
& =\left(1+\left(p-r^{*}\right)^{2}\right)^{-1}\left\|u_{p, \varepsilon^{\prime}}\right\|_{0}^{2} \leqslant \varepsilon^{\prime \prime 2}\left\|u_{p, \varepsilon^{\prime}}\right\|_{0}^{2} \quad \text { if } p \geqslant \max \left(r^{*}+1, P_{\varepsilon^{\prime \prime}}\right)
\end{align*}
$$

Finally, given $\varepsilon>0$, let us take $\varepsilon^{\prime}<\varepsilon / 4$ and the result is proven (we find a sequence of functions ($\left.u_{\lambda, \varepsilon}\right)_{i=1}^{\infty}$ verifying Theorem 12).

We will give now, in addition to Theorem 9 (Ch. VIII) the following
Theorem 13. - If $a(x, \xi)$ is a symbol, $A(x, D)$ the associated pseudo-differential operator, \mathcal{G}_{6} the class of the compact operators, $L^{2} \rightarrow L^{2}, K=\max _{\substack{x \in R^{x} \\|\xi|=1}}|a(x, \xi)|$, we have

$$
\begin{equation*}
K \leqslant \inf _{T \in \mathcal{G}_{e}}\|A(x, D)+T\| \tag{9.56}
\end{equation*}
$$

the norm in $\mathcal{C}\left(L^{2} ; L^{2}\right)$.
Remark. - As a simple corollary of (9.56) we get also the estimate

$$
\begin{equation*}
K \leqslant \inf _{T \in \mathcal{G}_{c}}\|A(x, D)+T\|_{\mathcal{L}_{\left(L^{2} ; \mathcal{L}^{*}\right)}} \tag{9.56-bis}
\end{equation*}
$$

In fact, if we take an arbitrary $I_{\boldsymbol{0}} \in \mathfrak{G}_{c}$, we get

$$
\mathcal{A}(x, D)+T_{0}=\mathcal{A}(x, D)-A(x, D)+A(x, D)+T_{0}=A(x, D)+T_{1}
$$

where $T_{1} \in \mathscr{G}_{c}$ (by Theorem 8). Consequently, using (9.56), we have $\left\|t+T_{0}\right\|=$ $=\left\|A+T_{1}\right\| \geqslant K$. As T_{0} is arbitrary in \mathcal{C}_{c}, the desired result follows.

Combining with (8.1) (Theorem 9), we obtain equality

$$
\inf _{T \in \mathfrak{G}_{c}}\|\mathscr{A}+T\|_{\mathfrak{L}_{\left(L^{2} ; L^{2}\right)}}=K .
$$

Corollary. - Combining with Theorem 9 we have the interesting result

$$
\begin{equation*}
\inf _{T \in \mathcal{B}_{\circ}}\|A(x, D)+T\|=K \tag{9.57}
\end{equation*}
$$

Proof. - First of all, we have the following
Lemma 1. - Let $a(x, \xi)$ be a symbol, and $c_{0}=\left|a\left(x_{0}, \xi_{0}\right)\right|$ for a certain $x_{0} \in R^{n}$ and $\left|\xi_{0}\right|=1$. There is then, for every $\varepsilon>0$ a sequence $u_{n}(x) \in C_{0}^{\infty}\left(\Omega_{n}\right) ; \Omega_{n}=\left\{x ;\left|x-x_{0}\right| \leqslant 1 / n\right\}$ with $\left\|u_{n}\right\|_{0}=1$ and $c_{0}-\varepsilon \leqslant\left\|A u_{n}\right\|_{0}$.

As we have seen in Theorem 12, given $\varepsilon>0$, the function $u_{\varepsilon}(x)$ is obtained $=\exp \left(i p\left(x \cdot \xi_{0}\right)\right) \varphi_{s}(x)$, where $\varphi_{\varepsilon} \in C_{0}^{\infty}\left\{x ;\left|x-x_{0}\right|<\delta_{\varepsilon}\right\}$. Hence, for $n \geqslant n_{0}$ we get $1 / n \leqslant \delta_{s}$, and all the functions

$$
\begin{equation*}
u_{n, \varepsilon}(x)=\exp \left(i p_{n}\left(x, \xi_{0}\right)\right) \varphi_{n}(x) \tag{9.58}
\end{equation*}
$$

(with p_{n} big enough, fixed, dependent from $\varepsilon>0$ and from φ_{n}), verify estimate

$$
\begin{equation*}
\left(c_{0}-\varepsilon\right)\left\|u_{n, \varepsilon}\right\|_{0} \leqslant\left\|A(x, D) u_{n, \varepsilon}\right\|_{0} \tag{9.59}
\end{equation*}
$$

Dividing by $\left\|u_{n, \varepsilon}\right\|_{0}$, we can have the sequence of norm 1 . Now we have
Limma 2. - We have:

$$
\lim _{n \rightarrow \infty} \int u_{n, s}(x) g(x) d x=0, \quad \forall g \in L^{n}\left(R^{n}\right)
$$

In fact we have:

$$
\begin{equation*}
\int u_{n, \varepsilon}(x) g(x) d x=\int_{\left|x-x_{0}\right|>q} u_{n, \varepsilon}(x) g(x) d x+\int_{\left|x-x_{0}\right|<\underline{o}} u_{n, \varepsilon}(x) g(x) d x . \tag{9.60}
\end{equation*}
$$

For n big enough, $u_{n, \varepsilon}(x)=0$ when $\left|x-x_{0}\right|>0$ and therefore

$$
\begin{equation*}
\int u_{n, \varepsilon}(x) g(x) d x=\int_{\left|x-x_{0}\right|<\varrho} u_{n, \varepsilon}(x) g(x) d x \leqslant\left\|u_{n, \varepsilon}\right\|_{n 0}\left(\int_{\left|x-x_{0}\right|<\varrho}|g(x)|^{2} d x\right)^{\frac{1}{3}}=\left(\int_{\left|x-x_{0}\right|<\varrho}|g(x)|^{2} d x\right)^{\frac{1}{2}} . \tag{9.61}
\end{equation*}
$$

Hence, given $v>0$, we take $\varrho(v)$ such that

$$
\begin{equation*}
\left(\int_{\left|x-x_{0}\right|<\rho(\nu)}|g(x)|^{2} d x\right)^{\frac{1}{y}}<\nu . \tag{9.62}
\end{equation*}
$$

At last, we take n big enough to have $u_{n, \varepsilon}(x)=0$ when $\left|x-x_{0}\right|>1 / n$.
Proof of the Theoren. - We assume, ad absurdum, that

$$
\begin{equation*}
\inf _{T \in \mathcal{B}_{\mathfrak{c}}}\|A(x, D)+T\|=k<K \tag{9.63}
\end{equation*}
$$

Hence, taken k^{\prime} such that $k<\mathscr{F}^{\prime}<K$ there is at least a $T \in \mathcal{G}_{c}$, such that $\|A+T\|<k^{\prime}$. Hence we get

$$
\begin{equation*}
\|(A+T) u\|_{0} \leqslant k^{\prime}\|u\|_{0}, \quad \forall u \in L^{2} \tag{9.64}
\end{equation*}
$$

Being $k^{\prime}<K$, we find at least one $x_{0} \in R^{n}, \xi_{0} \in R^{n}-\{0\}$ and $\left|\xi_{0}\right|=1$ such that $k^{\prime}<\left|a\left(x_{0}, \xi_{0}\right)\right|=c_{0}<K$.

Hence, we have, for $u=u_{n, \delta}$ (applying Lemma 1), that

$$
\begin{equation*}
\left(c_{0}-\varepsilon\right) \leqslant\left\|A(x, D) u_{n, \varepsilon}\right\|_{0} \leqslant\left\|(A+T) u_{n, \varepsilon}\right\|_{0}+\left\|T u_{n, \varepsilon}\right\|_{0} \leqslant k^{\prime}+\left\|T u_{n, \varepsilon}\right\|_{0} \tag{9.65}
\end{equation*}
$$

If $n \rightarrow \infty, T u_{n, \varepsilon} \rightarrow 0$ strongly in L^{2}; hence $c_{0}-\varepsilon \leqslant k^{l}$, absurd for ε small enough.
Remark. - There is a different proof of (9.56-bis)—and hence of (9.56), which is independent of Th. 12 (cfr. for a more general case, the paper [6]).

If $K_{N}=\sup _{\left|01 \leqslant N_{0}\right|{ }_{2} \mid=1}|a(x, \xi)|$, then $\lim _{N \rightarrow \infty} K_{N^{2}}=K$, and it suffices to see that

$$
K_{N} \leqslant \inf _{T \in G_{c}}\|t+T\|, \quad \forall N=1,2, \ldots
$$

Take then $\left|x_{0}\right| \leqslant N_{0},\left|\xi_{0}\right|=1$, such that $\left|a\left(x_{0}, \xi_{0}\right)\right|=\mathcal{K}_{N_{0}}$; then a $O_{0}^{\infty}\left(|x| \leqslant N_{0}\right)$ funcction $u(x) \neq 0$ and the sequence

$$
u_{\nu}(x)=v^{n / 4} u\left(\left(x-x_{0}\right) \sqrt{v}\right) \exp \left(i\left(x \cdot \xi_{0}\right) v\right), \quad \nu=1,2, \ldots
$$

It follows $\left\|u_{v}\right\|_{L^{2}}=\|u\|_{L^{2}}$ and weak $\lim u_{v}(x)=0$ in L^{2}. By direct computation one gets

$$
\mathcal{A} u_{\nu}=v^{n / 4} v_{v}\left(\left(x-x_{0}\right) \sqrt{v}\right) \exp \left(i\left(x \cdot \xi_{0}\right) v\right)
$$

where

$$
v_{\nu}(x)=(2 \pi)^{-n / 2} \int a\left(x_{0}+\frac{1}{\sqrt{\nu}} x, \nu \xi_{0}+\eta \sqrt{\nu}\right) \tilde{u}(\eta) \exp (i x \cdot \eta) d \eta ;
$$

it follows $\left\|\mathcal{A} u_{\nu}\right\|_{L^{2}}=\left\|v_{\nu}\right\|_{L^{2}}$; some simple estimates give also that $\lim _{\nu \rightarrow \infty}\left|v_{\nu}(x)\right|^{2}=$ $=\left|a\left(x_{0}, \xi_{0}\right)\right|^{2}|u(x)|^{2}$, uniformly on bounded sets in R^{n}.

Then apply Fatou's lemma to sequence $\left|v_{\nu}(x)\right|^{2}$. We obtain

$$
\int_{R^{n}}\left|a\left(x_{0}, \xi_{0}\right)\right|^{2}|u(x)|^{2} d x=\left|a\left(x_{0}, \xi_{0}\right)\right|^{2}\|u\|_{L^{2}}^{2} \leqslant \liminf _{\nu \rightarrow \infty}\left\|A x u_{\nu}\right\|_{L^{2}}^{2}
$$

Take now arbitrary $T \in \mathcal{G}_{c}$. Then it follows readily estimate

$$
\left\|\mathcal{A} u_{v}\right\|_{L^{2}}^{2} \leqslant\left(\|\mathcal{A}+T\|_{L^{2}}\|u\|+\left\|T u_{v}\right\|_{L^{2}}\right)^{2}
$$

and consequently

$$
\liminf _{p \rightarrow \infty}\left\|\mathcal{A} u_{\nu}\right\|_{L^{2}}^{2} \leqslant\|\mathcal{A}+T\|^{2}\|u\|_{L^{2}}^{2}
$$

(as weakly $u_{v} \rightarrow 0$, it follows $\left\|T u_{\nu}\right\|_{L^{2}} \rightarrow 0$ as $\nu \rightarrow \infty$). We got this way the inequality $\left|a\left(x_{0}, \xi_{0}\right)\right|^{2}\|u\|_{L^{2} \leqslant}^{2} \leqslant\|\mathcal{A}+T\|^{2}\|u\|_{L^{2}}^{2}$, hence $K_{y_{0}} \leqslant\|\mathcal{A}+T\|$, which gives the desired result.

10. - Non-homogeneous symbols.

Most of the previously exposed theory can be extended, with the pertinent modifications, to the case of certain symbols $a(x, \xi)$ which do not have the properties of homogeneity with respect to the variable ξ, and besides $a^{\prime}(x, \xi)$ has a more general behavior than the one corresponding to the appartenence to the space δ.

We will define as non-homogeneous symbol a function $a(x, \xi)$ with complex values, defined for $x \in R^{n}, \xi \in R^{n}-\{0\}$; the limit $a(\infty, \xi)=\lim _{x \rightarrow \infty} a(x, \xi)$ exists for every $\xi \in R^{n}-\{0\}$. We assume that $a^{\prime}(x, \xi)=a(x, \xi)-a(\infty, \xi)$ is in $\mathcal{S}^{\prime}\left(R_{x}^{n}\right)$, and for its Fourier transform $\tilde{a}^{\prime}(\lambda, \xi)=\mathcal{F}_{x}\left(a^{\prime}(x, \xi)\right)$ we admit that it is a measurable function in $\lambda \in R^{n}$, verifying estimates

$$
\begin{array}{lr}
\left|\tilde{a}^{\prime}(\lambda, \xi)\right| \leqslant k(\lambda), & \forall \lambda \in R^{n}, \xi \in R^{n}-\{0\} \\
\left|\tilde{a}^{\prime}(\lambda, \xi)-\tilde{a}^{\prime}(\lambda, \eta)\right| \leqslant k(\lambda)(|\xi-\eta|)(|\xi|+|\eta|)^{-1}, & \forall \lambda \in R^{n}, \xi, \eta \in R^{n}-\{0\}
\end{array}
$$

where $k(\lambda)$ belongs to the class K of measurable functions such that $\left(1+|\lambda|^{2}\right)^{p}$. $\cdot k(\lambda) \in L^{1}$ for $p=0,1,2, \ldots$.

Furthermore, we suppose to have $|a(\infty, \xi)| \leqslant L, \xi \neq 0$ and

$$
\begin{equation*}
|a(\infty, \xi)-a(\infty, \eta)| \leqslant c(|\xi-\eta|)(|\xi|+i \eta \mid)^{-1}, \quad \forall \xi, \eta \in R^{n}-\{0\} . \tag{10.3}
\end{equation*}
$$

Finally, let us suppose that for $x \in R^{n}, \xi \in R^{n}-\{0\}$, the formula

$$
\begin{equation*}
a^{\prime}(x, \xi)=(2 \pi)^{-n / 2} \int \exp (i x \cdot \lambda) \tilde{a}^{\prime}(\lambda, \xi) d \lambda \tag{10.4}
\end{equation*}
$$

is verified.
We can give an instructive example of a non-homogeneous symbol, verifying the preceding hypothesis:

Let us take $a(x, \xi)=a(x) f(x)$, where $a(x) \in \mathcal{S}$ and

$$
\begin{equation*}
f(\xi)=|\xi| \quad \text { for }|\xi| \leqslant 1, \quad f(\xi)=1 \quad \text { for }|\xi|>1 \tag{10.5}
\end{equation*}
$$

Obviously, it will be sufficient to show that

$$
|f(\xi)-f(\eta)| \leqslant c \frac{|\xi-\eta|}{|\xi|+|\eta|}, \quad \xi, \eta \in R^{n}-\{0\}
$$

a) For $|\xi| \leqslant 1$ and $|\eta| \leqslant 1$ we have the desired estimate.
b) For $|\xi| \geqslant 1$ and $|\eta| \geqslant 1$ we have

$$
(|\xi|+|\eta|)(|f(\xi)-f(\eta)|)=0
$$

c) For $|\xi|>1$ and $|\eta|<1$, we get

$$
\begin{equation*}
(|\xi|+|\eta|)(\mid f(\xi)-f(\eta| |)=(|\xi|+|\eta|)(1-|\eta|) \leqslant(1+|\xi|)(1-|\eta|) \tag{10.6}
\end{equation*}
$$

We define: $\varepsilon=|\xi|-1, \delta=1-|\eta|$; we have

$$
\begin{equation*}
(1+|\xi|)(1-|\eta|)=(2+\varepsilon) \cdot \delta . \tag{10.7}
\end{equation*}
$$

On the other hand, it is $|\xi-\eta| \geqslant|\xi|-|\eta|=\varepsilon+\delta$.
Hence, it is sufficient to prove that with a constant $c>0$

$$
\begin{equation*}
(2+\varepsilon) \delta \leqslant c(\varepsilon+\delta), \quad \forall \varepsilon>0,0<\delta<1 \tag{10.8}
\end{equation*}
$$

and in fact we see that

$$
\begin{equation*}
\frac{(2+\varepsilon) \delta}{\varepsilon+\delta}=\frac{2}{\varepsilon / \delta+1}+\frac{\delta}{1+\delta / \varepsilon} \leqslant 2+1=3 \tag{10.9}
\end{equation*}
$$

we get henceforth

$$
\begin{equation*}
|f(\xi)-f(\eta)| \leqslant 3 \frac{|\xi-\eta|}{|\xi|+|\eta|}, \quad \forall \xi, \eta \in R^{n}-\{0\} \tag{10.10}
\end{equation*}
$$

Acknowledgement. This paper is essentially an english translation with some modifications of a set of lectures that I gave in September 1967 at the University of Ferrara.

I must thank prof. Lamberto Cattabriga who invited me there, and all people from Ferrara and Bologna who assisted to the talks.

BIBLIOGRAPHY

[1] J. J. Kohy - L. Nirenberg, An algebra of pseudo-differenial operators, Comm. Pure Appl. Math., 18 (1965), pp. 269-305.
[2] S. Zaidman, Some nonhomogeneous symbols and associated pseudo-differential operators, Ann. Scuola Normale Sup. Pisa, 21 (1967), pp. 547-574.
[3] S. Zaidman, Certaines classes d'opérateurs pseudo-differentiels, Journal of Mathematical Analysis and Applications, vol. 30, no. 3, June 1970.
[4] S. Zaidman, Axiomatic approach to pseudo-differential operators, Boll. U.M.I., vol. IV, 1971, pp. 36-44.
[5] S. Zatdman: A characterization of elliptic pseudo-differential operators, Boll. U.M.I., vol. III, 1970, pp. 656-669.
[6] G. Gussi - S. Zaidman, Esimates for pseudo-differential operators, Rev. Roumaine Math. Pures et Appl., T. XVI no. 9, 1971, pp. 1391-1395.

[^0]: (*) This proof, quite well-known in fact, was communicated to us some years ago by the colleague S. Takahashi (see however Seeley's lectures in Stresa, C.I.M.E., 1968).
 ${ }^{(1)}$ For sufficiently large p.

[^1]: that $\operatorname{Re} a(x, \xi) \geqslant \gamma$ can be considered. The proof uses (6.2) and (4.10), (cfr. with our paper [4], Th. 3).

[^2]: (*) Remember that for $^{*} u \in L^{2}$ but $u \notin \mathrm{~S}$, the definition of $A u$ aud $f u$ is by continuity from the definition on $u \in S$.
 ${ }^{(1)}$ At least, obvionsly; we choose a fixed one, for any u.

[^3]: $\left(^{*}\right)$ We have also $\|\mathcal{A}(x, D) u\|_{0} \leqslant(K+\varepsilon)\|u\|_{0}+{ }^{\varepsilon}|u|+\|(\mathcal{A}(x, D)-A(x, D)) u\|_{0}$.
 The map $u \rightarrow{ }^{\varepsilon}|u|+\|(\mathcal{A}-A) u\|_{0}$ is a semi-norm on L^{2} like ${ }^{\varepsilon}| |$ because $\mathcal{A}-A$ is compact; this will imply second estimate in (8.1).

[^4]: (1) If A is a p.d.o. of order $\leqslant-1$, we get in (9.13) $K=0$ (take $T=-4$).

 Then $a(x, \xi) \equiv 0$ and A is the null operator.
 ${ }^{\left({ }^{2}\right)}$ In fact the stronger sstimate $\left\|\left[A(x, D)-a\left(x_{0}, \xi_{0}\right)\right] u_{\varepsilon}\right\|_{0} \leqslant \varepsilon\left\|u_{\varepsilon}\right\|_{0}$ holds, as is easily seen from (9.27) and the subsequent estimates (see [3], Th. 9.1).

