Pseudo-Differential Operators (*) (1).

S. ZAIDMAN (Montréal, Canada)

Summary. — We present here a number of results on some aspects of Kohn-Nirenberg's theory of pseudo-differential operators. We hope that some parts of Kohn-Nirenberg's paper [1] are presented here in a more detailed and explicit form; this could help a larger audience to understand their ideas and methods.

1. - Preliminaries.

We assume basic knowledge of distribution theory; the spaces S, S', Hs; the Fourier transform in these spaces; we use the usual notations:

$$egin{aligned} D_s = -i\,rac{\partial}{\partial x_s}, & D = (D_1,\,...,\,D_n), & D^lpha = D_1^{lpha_t},\,...,\,D_n^{lpha_n}, & \xi^lpha = \xi_1^{lpha_t},\,...,\,\xi_n^{lpha_n}, & \partial_s = rac{\partial}{\partial \xi_s}, \ \partial = (\partial_1,\,...,\,\partial_n)\,, & lpha = (lpha_1,\,...,\,lpha_n)\,, & |lpha| = lpha_1 + ... + lpha_n\,, & \|\ \|_s = \|\ \|_{\mathcal{H}_S}\,, \ & \xi = (\xi_1,\,...,\,\xi_n)\,, & |\xi|^2 = \xi_1^2 + ... + \xi_n^2\,. \end{aligned}$$

We say that the linear operator L, from S into S' is of order r, if $||Lu||_s \leqslant C||u||_{s+r}$, $\forall u \in S$ and for any real s.

We define the Friedrichs operator $\varphi(D)$; $\varphi(D)u = \mathcal{F}^{-1}(\varphi(\xi)\tilde{u}(\xi))$.

We assume that $\varphi(\xi)$ applies S in S'; $\mathcal{F}u = \tilde{u}$ is the direct Fourier transform, \mathcal{F}^{-1} the inverse Fourier transform.

EXAMPLE 1. – Let us consider a measurable function $\varphi(\xi)$ such that, $\forall \xi \in \mathbb{R}^n$ $|\varphi(\xi)| \leq C(1+|\xi|^2)^{\sigma}$; it maps S into S'.

If
$$u \in S$$
, $\Rightarrow \tilde{u} \in S$ and $|\varphi(\xi)\tilde{u}(\xi)| \leqslant C_p(1+|\xi|^2)^{\sigma-p}$, $\forall p=1,2,...$ Hence

$$\mathcal{F}^{-1}\!\!\left(\varphi(\xi)\tilde{u}(\xi)\right) = (2\pi)^{-n/2}\!\!\int\!\!\exp\left(ix\cdot\!\xi\right)\varphi(\xi)\tilde{u}(\xi)\,d\xi$$

is an absolutely convergent integral, and $\varphi(D)u$ is continuous and bounded on $x \in \mathbb{R}^n$. We have estimates:

$$\|\varphi(D)u\|_{s}^{2} = \int (1+|\xi|^{2})^{s} |\varphi(\xi)|^{2} |\tilde{u}(\xi)|^{2} d\xi \leqslant C \int (1+|\xi|^{2})^{s+2\sigma} |\tilde{u}(\xi)|^{2} d\xi = C \|u\|_{s+2\sigma}^{2}.$$

Hence, the operator $\varphi(D)$ is of order 2σ .

^(*) Entrata in Redazione il 3 giugno 1971.

⁽¹⁾ This research is supported by a grant of the N.R.C. of Canada.

EXAMPLE 2. – If $\psi(\xi)$ has compact support in R^n and is continuous, then, $\forall \xi \in R^n$ and $p = 1, 2, ..., \Rightarrow (1 + |\xi|^2)^p |\psi(\xi)| \leqslant C_p$. If follows $\|\psi(D)u\|_s \leqslant C_{s,p} \|u\|_{s-p}$, p = 1, 2, ... Hence, the inf. of the orders (named true order) is $-\infty$.

Another operator in S; if $a(x) \in S$, then $a(x)u(x) \in S$, $\forall u \in S$. Moreover, we have the estimate $||au||_s \leqslant C||u||_s$, which shows that this multiplication operator is of order 0. In order to prove this estimate, we see first that:

$$\widetilde{au}(\xi) = (\tilde{a}*\tilde{u})(\xi) = (2\pi)^{-n/2} \! \int \!\! \tilde{a}(\xi-\eta) \, \tilde{u}(\eta) \, d\eta \; .$$

Therefore:

$$\begin{split} \|au\|_s &= \|(1+|\xi|^2)^{s/2}(2\pi)^{-n/2} \int & \tilde{a}(\xi-\eta)\,\tilde{u}(\eta)\,d\eta \|_0 = \\ &= \|(2\pi)^{-n/2} \int (1+|\xi|^2)^{s/2} (1+|\eta|^2)^{-s/2} \tilde{a}(\xi-\eta) (1+|\eta|^2)^{s/2} \,\tilde{u}(\eta)\,d\eta \|_0 \,. \end{split}$$

We know the inequality:

$$\left(\frac{1+|\xi|^2}{1+|\eta|^2}\right)^{s/2} \leqslant 2^{|s|/2} \left(1+|\xi-\eta|^2\right)^{|s|/2};$$

furthermore, if $|f(\xi)| \le |g(\xi)| \Rightarrow ||f||_0 \le ||g||_0$. Consequently, as

$$\begin{split} \Big| \int (1+|\xi|^{\frac{\alpha}{2}})^{s/2} (1+|\eta|^{\frac{\alpha}{2}})^{-s/2} \widetilde{a}(\xi-\eta) (1+|\eta|^{\frac{\alpha}{2}})^{s/2} \widetilde{u}(\eta) \, d\eta \Big| &= f(\xi) \leqslant \\ & \leqslant 2^{|s|/2} \Big[(1+|\xi-\eta|^{\frac{\alpha}{2}})^{|s|/2} |\widetilde{a}(\xi-\eta)| (1+|\eta|^{\frac{\alpha}{2}})^{s/2} |\widetilde{u}(\eta)| \, d\eta = g(\xi) \, , \end{split}$$

it follows that

$$(1.1) \qquad \|au\|_{s} \leq (2\pi)^{-n/2} 2^{|s|/2} \left\| \int (1+|\xi-\eta|^{\frac{1}{2}})^{|s|/2} |\widetilde{a}(\xi-\eta)| (1+|\eta|^{\frac{1}{2}})^{s/2} |\widetilde{u}(\eta)| \, d\eta \right\|_{0}.$$

Let us remember Minkowski's inequality for integrals

$$\left(\int \left(\int |f(\xi,\eta)| \, d\eta\right)^2 d\xi\right)^{\frac{1}{2}} \leq \int \left(\int |f(\xi,\eta)|^2 d\xi\right)^{\frac{1}{2}} d\eta.$$

Changing the variables: $\xi - \eta = \eta'$ in (1.1), we have obviously

$$(1.3) \qquad \|au\|_{s} \leq (2\pi)^{-n/2} 2^{|s|/2} \left\| \int (1+|\eta'|^{2})^{|s|/2} |\tilde{a}(\eta')| (1+|\xi-\eta'|^{2})^{s/2} |\tilde{u}(\xi-\eta')| \, d\eta' \right\|_{0}.$$

Let be $f(\xi,\eta) = (1+|\eta|^2)^{|s|/2} |\tilde{a}(\eta)| (1+|\xi-\eta|^2)^{s/2} |\tilde{u}(\xi-\eta)|$; we have then, by (1.2)-(1.3)

$$\begin{split} (1.4) \qquad \|au\|_s &\leqslant C_s \Big(\int \Big(\int f(\xi,\eta) \, d\eta \Big)^2 \, d\xi \Big)^{\frac{1}{2}} \leqslant C_s \int \Big(\int f^2(\xi,\eta) \, d\xi \Big)^{\frac{1}{2}} \, d\eta = \\ &= C_s \int \Big(\int (1+|\eta|^2)^{|s|} |\tilde{\alpha}(\eta)|^2 (1+|\xi-\eta|^2)^s |\tilde{u}(\xi-\eta)|^2 \, d\xi \Big)^{\frac{1}{2}} \, d\eta = \\ &= C_s \int (1+|\eta|^2)^{|s|/2} |\tilde{a}(\eta)| \Big(\int (1+|\xi-\eta|^2)^s |\tilde{u}(\xi-\eta)|^2 \, d\xi \Big)^{\frac{1}{2}} \, d\eta = \\ &= C_s \|u\|_s \int (1+|\eta|^2)^{|s|/2} |\tilde{a}(\eta)| \, d\eta = C_{1,s} \|u\|_s \, . \end{split}$$

Finally, an other example of operator which maps S into S.

Let $\zeta_{\sigma}(D)u = \mathcal{F}^{-1}(\zeta(\xi)|\xi|^{\sigma}\tilde{u}(\xi))$, $\forall u \in \mathbb{S}$, where $\zeta(\xi) \in C^{\infty}(\mathbb{R}^n)$ is = 0 for $|\xi| < \frac{1}{2}$, and is = 1 for $|\xi| \geqslant 1$. Then obviously, $\zeta(\xi)|\xi|^{\sigma} \in C^{\infty}$; furthermore, as $\xi \to \infty$, it increases polynomially and we remark also that all derivatives $\partial^{\beta}(\zeta(\xi)|\xi|^{\sigma})$ have the same property.

This shows that $\zeta(\xi)|\xi|^{\sigma}\tilde{u}(\xi) \in \mathbb{S}$ if $\tilde{u} \in \mathbb{S}$; consequently, $\zeta_{\sigma}(D)$ maps \mathbb{S} into \mathbb{S} . This operator is useful in the successive study of pseudo-differential operators of a more general form (see [1]).

We see also that $|\zeta_{\sigma}(\xi)| \leq C(1+|\xi|^2)^{\sigma/2}$, $\forall \xi \in \mathbb{R}^n$ $(\zeta_{\sigma}(\xi) = \zeta(\xi)|\xi|^{\sigma})$. Hence, operator $\zeta_{\sigma}(D)$ has order $\leq \sigma$.

2. - Symbols.

Let $a(x,\xi)$ be a complex valued function defined for $x \in \mathbb{R}^n$, $\xi \in \mathbb{R}^n - \{0\}$ and assume $a(x,\xi) \in C^{\infty}(\mathbb{R}^n \times \mathbb{R}^n - \{0\})$. Suppose that $a(x,t\xi) = a(x,\xi)$ for t>0, and assume also that $\lim_{|x| \to \infty} a(x,\xi) = a(\infty,\xi)$ exists for $\xi \in \mathbb{R}^n - \{0\}$ and $a(\infty,\xi)$ is a C^{∞} -function; define then $a'(x,\xi) = a(x,\xi) - a(\infty,\xi)$, and assume the estimates

$$(2.1) (1+|x|^2)^p |D_x^\alpha \partial_\xi^\beta a'(x,\xi)| \leqslant C_{\eta,\alpha,\beta}, \forall x \in \mathbb{R}^n,$$

and ξ such that $|\xi|=1$ (1); here $p=1,2,...,\alpha=(\alpha_1,...,\alpha_n)$, $\beta=(\beta_1,...,\beta_n)$ -arbitrary multi-indexes. We see some corollary of Definition (2.1), which are remarked without proof in [1].

THEOREM 1.

- a) We have $|a(\infty,\xi)-a(\infty,\eta)| \leq C((|\xi-\eta|)/(|\xi|+|\eta|))$, $\forall \xi, \eta$ arbitrary in $\mathbb{R}^n-\{0\}$: The estimates
 - b) $(1+|\lambda|^2)^p |\tilde{a}'(\lambda,\xi)| \leqslant C_p$, $\forall \lambda \in \mathbb{R}^n, \xi \in \mathbb{R}^n \{0\}, p=1,2,...;$
- c) $(1+|\lambda|^2)^p |\tilde{\alpha}'(\lambda,\xi)-\tilde{\alpha}'(\lambda,\eta)| \leq C_p |\xi-\eta| (|\xi|+|\eta|)^{-1}, \ \forall \lambda \in \mathbb{R}^n, \ \xi,\eta \in \mathbb{R}^n-\{0\}, p=1,2,\dots \ being$

$$\tilde{a}'(\lambda,\,\xi) = (2\pi)^{-n/2} \Big| \exp\big(-\,ix\cdot\lambda\big)\,a'(x,\,\xi)\,dx\;, \qquad \forall\,\lambda \in R^n,\; \xi \in R^n - \{0\}$$

are verified.

PROOF of a). $-a(\infty, t\xi) = a(\infty, \xi)$, $\forall t > 0$, $\xi \in \mathbb{R}^n - \{0\}$, as easily seen. Hence $a(\infty, \xi)$ is also homogeneous of order 0, and by hypothesis is also $C^{\infty}(\mathbb{R}^n - \{0\})$. Let us put $\xi/|\xi| = \zeta$, $\eta/|\eta| = \mu$; we have $|\xi| = |\mu| = 1$, $a(\infty, \xi) = a(\infty, \xi)$, $a(\infty, \eta) = a(\infty, \mu)$, and on the other hand

$$(2.2) \qquad \frac{|\xi - \eta|}{|\xi| + |\eta|} = \frac{|\xi|\xi| - \mu|\eta|}{|\xi| + |\eta|} = \left| \frac{|\xi|}{|\xi| + |\eta|} \, \xi + \frac{|\eta|}{|\xi| + |\eta|} \, (-\mu) \right|.$$

⁽¹⁾ Remark that $D_x^{\alpha}a'(x,t\xi) = D_x^{\alpha}a'(x,\xi)$, $\forall t > 0$. Then, from $(1+|x|^2)^p |D_x^{\alpha}a'(x,\xi)| \leqslant C_{p,\alpha}$ valid for $x \in \mathbb{R}^n$, $|\xi| = 1$, it follows that same estimate is valid for $x \in \mathbb{R}^n$, $\xi \in \mathbb{R}^n - \{0\}$.

Immediately it can be seen, considering $\min_{0<\theta<1}|\theta\zeta+(1-\theta)(-\mu)|$, or geometrically that $|\theta\zeta+(1-\theta)(-\mu)| > \frac{1}{2}|\zeta+(-\mu)|$, for $|\zeta|=|\mu|=1$ and hence is, as we have $|\xi|/(|\xi|+|\eta|)+|\eta|/(|\xi|+|\eta|)=1$, the estimate

(2.3)
$$\frac{|\xi - \eta|}{|\xi| + |\eta|} \geqslant \frac{1}{2} |\zeta - \mu|;$$

if we show here that

$$|a(\infty,\zeta) - a(\infty,\mu)| \leqslant \gamma |\zeta - \mu|, \qquad \forall \zeta,\mu$$

on the unit sphere in R^n , we will have shown a) for $C = 2\gamma$.

Let us suppose hence, reasoning ad absurdum, that there are two sequences ζ_n , μ_n , $|\zeta_n| = |\mu_n| = 1$, n = 1, 2, ... so that

$$|a(\infty,\zeta_n)-a(\infty,\mu_n)| \geqslant n|\zeta_n-\mu_n|, \qquad \forall n=1,2,\ldots.$$

Now we can assume, choosing two subsequences, that

(2.6)
$$\lim_{n \to \infty} \zeta_n = \zeta_0 , \qquad \lim_{n \to \infty} \mu_n = \mu_0 , \qquad |\zeta_0| = |\mu_0| = 1.$$

With use of (2.5) we shall get now:

$$|\zeta_n - \mu_n| \leqslant \frac{1}{n} 2 \sup_{|\zeta|=1} |a(\infty, \zeta)|.$$

This gives $\zeta_0 = \mu_0$, as the continuous function $a(\infty, \xi)$ is bounded on the unit sphere in \mathbb{R}^n . On the other hand, it results that: $a(\infty, \zeta_n) - a(\infty, \mu_n) = (\zeta_n - \mu_n, \operatorname{grad} a(\infty, z_n))$ -scalar product in \mathbb{R}^n ; here $z_n = \theta_n \zeta_n + (1 - \theta_n) \mu_n$, $0 < \theta_n < 1$; this is true for n large enough.

(In fact, for these n, the vectors ζ_n and μ_n belong to same small neighbourhood: $|\zeta - \zeta_0| < \delta$ where $a(\infty, \zeta)$ is of class C^{∞} , the origin being outside of this neighbourhood). We have then:

$$|a(\infty,\zeta_n)-a(\infty,\mu_n)|\leqslant |\zeta_n-\mu_n|\sup_{|z-\zeta_n|<\delta}|\operatorname{grad} a(\infty,z)|\leqslant M|\zeta_n-\mu_n|.$$

It can be deduced that is valid the inequality

(2.7)
$$n|\zeta_n - \mu_n| \le |a(\infty, \zeta_n) - a(\infty, \mu_n)| \le M|\zeta_n - \mu_n|, \qquad n = 1, 2, ...$$

which is impossible. Hence estimate a) is satisfied. More precisely: we proved that

 $a(\infty, \xi)$ is in the Lipschitz class on the unit sphere, i.e.

$$\sup_{\substack{\xi\xi \vdash 1\\ |\eta| = 1}} \frac{|a(\infty, \xi) - a(\infty, \eta)|}{|\xi - \eta|} = \gamma < \infty$$

Then we obtained that

$$|a(\infty,\xi)-a(\infty,\eta)| \leqslant 2\gamma |\xi-\eta| \;, \qquad \qquad orall \xi, \; \eta \in R^n - \{0\} \;.$$

Proof of b). – Obviously, we have equality

$$(2.8) \qquad (1+|\lambda|^2)^p \tilde{a}'(\lambda,\xi) = (2\pi)^{-n/2} \int \exp(-ix\cdot\lambda)(I-\Delta_x)^p a'(x,\xi) dx,$$

$$\lambda \in \mathbb{R}^n, \ \xi \in \mathbb{R}^n - \{0\}, \ \Delta_x = \sum_{i=1}^n \frac{\partial^2}{\partial x_i^2}$$

and therefore is verified the estimate

$$(2.9) \qquad |(1+|\lambda|^{2})^{p}\tilde{a}'(\lambda,\xi)| \leq \\ \leq C \int (1+|x|^{2})^{q} |(I-\Delta_{x})^{p} a'(x,\xi)| (1+|x|^{2})^{-q} dx \leq C_{1} \int \frac{dx}{(1+|x|^{2})^{q}} = C_{2}$$

for q large enough.

Proof of c). – Obviously, we have the equality

$$\begin{split} (2.10) & (1+|\lambda|^2)^p [\tilde{a}'(\lambda,\xi)-\tilde{a}'(\lambda,\eta)] = \\ & = (2\pi)^{-n/2} \int \exp{(-ix\cdot\lambda)(I-\Delta_x)^p} [a'(x,\xi)-a'(x,\eta)] dx = \\ & = (2\pi)^{-n/2} \int \exp{(-ix\cdot\lambda)(1+|x|^2)^q} (I-\Delta_x)^p [a'(x,\xi)-a'(x,\eta)] (1+|x|^2)^{-q} dx \; . \end{split}$$

Let us put now

$$(2.11) b_{r,q}(x,\xi) = (1+|x|^2)^q (I-\Delta_r)^p a'(x,\xi), x \in \mathbb{R}^n, \ \xi \in \mathbb{R}^n - \{0\}.$$

We obtain then the estimate

$$(2.12) \qquad (1+|\lambda|^2)^p |\tilde{a}'(\lambda,\xi)-\tilde{a}'(\lambda,\eta)| \le$$

$$\leq (2\pi)^{-n/2} \int (1+|x|^2)^{-q} |b_{r,q}(x,\xi)-b_{r,q}(x,\eta)| dx , \qquad \forall \lambda \in \mathbb{R}^n, \ \xi, \eta \in \mathbb{R}^n - \{0\}.$$

Consequently, it will be sufficient to show here that

with a constant independent of $x \in \mathbb{R}^n$ we have, for $x \in \mathbb{R}^n$, $\xi, \eta \in \mathbb{R}^n - \{0\}$, the estimate

$$|b_{p,q}(x,\xi) - b_{p,q}(x,\eta)| \le C|\xi - \eta| (|\xi| + |\eta|)^{-1}.$$

Let us observe that $b_{p,q}(x,\xi) \in C^{\infty}(\mathbb{R}^n_{\xi} - \{0\})$ and is also homogeneous of order 0 with respect to ξ , as follows without any difficulty from (2.11) and properties of $a'(x,\xi)$.

It will consequently be enough, by repeating the reasonings in a), to show that we have the inequality

$$|b_{x,q}(x,\zeta) - b_{x,q}(x,\mu)| \leqslant \gamma |\zeta - \mu|,$$

for ζ , μ on the unit sphere, and $x \in \mathbb{R}^n$, because this will imply estimate (2.13) after use of (2.3), and then c) is proved if we use (2.12) for q large enough in order to have $(1+|x|^2)^{-q}dx < \infty$.

In the opposite case, (i.e. if (2.14) is not true) there are three sequences $(x_k)_1^{\infty}$, $(\zeta_k)_1^{\infty}$, $(\mu_k)_1^{\infty}$, such that $(x_k)_1^{\infty} \in \mathbb{R}^n$, $|\zeta_k| = |\mu_k| = 1$, k = 1, 2, ... and the following holds:

(2.15)
$$|b_{x,q}(x_k, \zeta_k) - b_{x,q}(x_k, \mu_k)| \geqslant k|\zeta_k - \mu_k|, \quad \forall k = 1, 2, ...$$

we may suppose, by extracting subsequences, that

(2.16)
$$\lim_{k\to\infty}\zeta_k=\zeta_0\,,\qquad \lim_{k\to\infty}\mu_k=\mu_0\,,$$

exist, where $|\zeta_0| = |\mu_0| = 1$. Hence, from (2.15),

$$|\mu_k - \zeta_k| \leqslant \frac{1}{k} 2 \sup_{\substack{|\zeta|=1 \ a \in \mathbb{R}^n}} |b_{p,q}(x,\zeta)|
ightarrow 0$$

with $k \to \infty$ (as easily seen) and consequently $\zeta_0 = \mu_0$.

On the other hand, we have

$$(2.17) b_{p,q}(x_k, \zeta_k) - b_{p,q}(x_k, \mu_k) = (\zeta_k - \mu_k, \operatorname{grad}_{\xi} b_{p,q}(x_k, z_k))$$

where $z_k = \theta_k \zeta_k + (1 - \zeta_k) \mu_k$, $0 < \theta_k < 1$.

Now we remark that for ζ_k , μ_k (and hence z_k) in a small neighbourhood of ζ_0 we have

$$|\operatorname{grad}_{\xi} b_{p,q}(x_k, z_k)| \leqslant C.$$

In fact, first of all, we see that, for any multi-index $\alpha = (\alpha_1, ..., \alpha_n)$

$$(2.19) |\partial_{\xi}^{\alpha} b_{n,q}(x,\xi)| \leqslant C, \forall x \in \mathbb{R}^n, |\xi| = 1, \text{ holds.}$$

Thereafter, for any $\xi \in \mathbb{R}^n - \{0\}$, we get:

$$|\partial_{\xi_i}b_{p,q}(x,\,\xi)| = \left|\partial_{\xi_i}b_{p,q}\left(x,\frac{\xi}{|\xi|}\,|\xi|\right)\right| = \left|\partial_{\xi_i}b_{p,q}\left(x,\frac{\xi}{|\xi|}\right)\left|\frac{1}{|\xi|} \leqslant \frac{C}{|\xi|} \leqslant C_1 \qquad \text{if } |\xi| > \delta > 0$$

(as in the neighbourhood of ζ_0 which we have considered).

We have used here the fact that $\partial_{\xi_i} b_{p,q}(x,\xi)$ is homogeneous of order -1 in respect to ξ . Having then, from (2.15), (2.17), (2.18), the estimates

$$(2.20) k|\zeta_k - \mu_k| \leq |b_{x,a}(x_k, \zeta_k) - b_{x,a}(x_k, \mu_k)| \leq C|\zeta_k - \mu_k|$$

we arrive at a contradiction, q.e.d.

Corollary. - With an absolute constant, we have:

$$|a(x,\xi)-a(x,\eta)|\leqslant C\,\frac{|\xi-\eta|}{|\xi|+|\eta|}$$

for $x \in \mathbb{R}^n$, ξ , $\eta \in \mathbb{R}^n - \{0\}$. In fact, we have

$$\begin{split} (2.22) \qquad a(x,\xi)-a(x,\eta)&=a(\infty,\xi)-a(\infty,\eta)+a'(x,\xi)-a'(x,\eta)=\\ &=a(\infty,\xi)-a(\infty,\eta)+(2\pi)^{-n/2}\!\int\!\exp{(ix\cdot\lambda)[\tilde{a}'(\lambda,\xi)-\tilde{a}'(\lambda,\eta)]}\,d\lambda \end{split}$$

from where we get the inequalities

$$\begin{aligned} |a(x,\xi)-a(x,\eta)| &< C \frac{|\xi-\eta|}{|\xi|+|\eta|} + C_1 \frac{|\xi-\eta|}{|\xi|+|\eta|} \int (1+|\lambda|^2)^{-\eta} d\lambda < \\ &< C_2 |\xi-\eta| (|\xi|+|\eta|)^{-1}, \quad \forall x \in \mathbb{R}^n, \ \xi, \eta \in \mathbb{R}^n - \{0\}. \end{aligned} \quad \text{q.e.d.}$$

Observation. – We have implicitly proved, considering in (2.13) $b_{x,q}(x,\xi)$ with p=0, that the following inequality

$$(2.24) (1+|x|^2)^q |a'(x,\xi)-a'(x,\eta)| \leq C|\xi-\eta| (|\xi|+|\eta|)^{-1},$$

$$\forall x \in \mathbb{R}^n, \ \xi, \eta \in \mathbb{R}^n - \{0\}, \ q=1,2,\dots$$

is also satisfied.

3. – The operator A(x, D).

Let $a(x,\xi) = a(\infty,\xi) + a'(x,\xi)$ be a symbol, and, as previously, $\forall \lambda \in \mathbb{R}^n$, $\xi \in \mathbb{R}^n - \{0\}$ $\tilde{a}'(\lambda,\xi) = (2\pi)^{-n/2} \int \exp(-ix \cdot \lambda) a'(x,\xi) dx$. Obviously, it results that $\tilde{a}'(\lambda,\xi) \in S(\mathbb{R}^n_{\lambda})$ uniformly for $\xi \in \mathbb{R}^n - \{0\}$ (1).

Let us define, for any $u \in S$ and $x \in \mathbb{R}^n$, a function v(x) = (A(x, D)u)(x), by

(3.1)
$$A(x, D)u = (2\pi)^{-n/2} \int \exp(ix \cdot \xi) G(\xi) d\xi$$

(1) Use for that the formula

$$\left(1+|\lambda|^2\right)D_{\lambda}^{\alpha}\tilde{a}'(\lambda,\xi)=(2\pi)^{-n/2}\!\!\int\!\!\exp{(-\,ix\cdot\lambda)(I-\varDelta_x)^p}\big((-\,ix)^{\alpha}a'(x,\xi)dx\,,$$

and the definition of a symbol.

where, $\forall \xi \in \mathbb{R}^n - \{0\}$, the function $G(\xi)$ is given by

$$(3.2) \hspace{3cm} G(\xi) = a(\infty,\,\xi)\,\widetilde{u}(\xi) + (2\pi)^{-n/2} \int \!\!\widetilde{a}'(\xi-\eta,\,\xi)\,\widetilde{u}(\eta)\,d\eta\;.$$

Evidently, it has to be proved that $G(\xi)$ is Fourier transformable; in fact, we have $G(\xi) \in L^1(\mathbb{R}^n)$ as

$$|a(\infty,\xi)\widetilde{u}(\xi)| \leqslant \max_{|\xi|=1} |a(\infty,\xi)| |\widetilde{u}(\xi)| \in L^1$$
 ,

then obviously, it is sufficient to show that

$$\iint |\tilde{a}'(\xi-\eta,\xi)\tilde{u}(\eta)| \,d\eta\,d\xi < \infty;$$

we have in fact, $\forall p = 1, 2, ...$

$$\int \! |\tilde{a}'(\xi-\eta,\xi)\tilde{u}(\eta)| \, d\eta \! \leqslant \! C_{\scriptscriptstyle \mathcal{D}} \! \int \! (1+|\xi-\eta|^{\,2})^{-p} |\tilde{u}(\eta)| \, d\eta \, .$$

This last expression is the convolution between $(1+|\xi|^2)^{-p}$ and $|\tilde{u}(\xi)|$ both integrable for p sufficiently large.

Hence A(x, D)u is continuous and bounded on \mathbb{R}^n ; we can say then that

$$(3.3) \hspace{1cm} \widetilde{A(x,D)u} = a(\infty,\xi)\widetilde{u}(\xi) + (2\pi)^{-n/2} \int a'(\xi-\eta,\xi)\widetilde{u}(\eta)\,d\eta$$

is verified the Fourier transform being taken in S'.

Another formula of representation is given in

Proposition 1. – If $a(x, \xi)$ is a symbol, we have

$$(3.4) \qquad \big(A(x,D)u\big)(x) = (2\pi)^{-n/2} \int \exp(ix \cdot \xi) \Big((2\pi)^{-n/2} \int \exp(-iy \cdot \xi) \, a(y,\xi) \, u(y) \, dy \Big) \, d\xi$$

for every $u \in \mathbb{S}$, $x \in \mathbb{R}^n$.

It will be sufficient to show that

- 1) The integral $\int \exp(-ix\cdot\xi)a(x,\xi)u(x)dx$ is absolutely convergent.
- 2) We have $G(\xi) = (2\pi)^{-n/2} \int \exp{(-iy \cdot \xi)} \, a(y, \, \xi) \, u(y) \, dy, \, \, \forall \, \xi \in \mathbb{R}^n \{0\}.$

We have 1). In fact, as $a(x,\xi) = a(\infty,\xi) + a'(x,\xi)$, it is sufficient to prove the absolute convergence of

$$\int\!\exp{(-\operatorname{i} x\cdot\xi)}\,a(\infty,\,\xi)\,u(x)\,dx=a(\infty,\,\xi)\!\int\!\exp{(-\operatorname{i} x\cdot\xi)}\,u(x)\,dx$$

which is obvious, and gives $a(\infty,\xi)\tilde{u}(\xi)$ for $u \in S$, and of $\int \exp(-ix \cdot \xi)a'(x,\xi)u(x)dx$, for $u \in S$. As $|a'(x,\xi)| \leq C_p(1+|x|^2)^{-p}$ for every p, we have

$$\int |\exp(-ix\cdot\xi)a'(x,\,\xi)u(x)|\,dx \leqslant C_v \int (1+|x|^2)^{-v}|u(x)|\,dx\;.$$

In order to prove the 2), it is sufficient that

$$(3.5) \hspace{1cm} (2\pi)^{-n/2} \int \tilde{a}'(\xi-\eta,\,\xi)\,\tilde{u}(\eta)\,d\eta = (2\pi)^{-n/2} \int \exp{(-\,ix\cdot\xi)\,a'(x,\,\xi)\,u(x)}\,dx$$

be verified. By Fourier's inversion formula (valid in the case which is considered here) we have

(3.6)
$$a'(x,\xi) = (2\pi)^{-n/2} \int \exp(ix \cdot \lambda) \tilde{a}'(\lambda,\xi) d\lambda, \qquad x \in \mathbb{R}^n, \ \xi \in \mathbb{R}^n - \{0\}$$

the integral being absolutely convergent.

Or, the «double» integral, for $u \in S$

(3.7)
$$\iint \exp(-ix \cdot \xi) \exp(ix \cdot \lambda) \tilde{a}'(\lambda, \xi) u(x) dx d\lambda$$

is absolutely convergent:

Hence, by Fubini's theorem, we have

$$(3.9) \qquad (2\pi)^{-n/2} \int \exp\left(-ix \cdot \xi\right) a'(x, \, \xi) \, u(x) \, dx =$$

$$= (2\pi)^{-n/2} \int \left[(2\pi)^{-n/2} \int \exp\left[-ix \cdot (\xi - \lambda)\right] \tilde{a}'(\lambda, \, \xi) \, d\lambda \right] u(x) \, dx \, .$$

By making in the internal integral the substitution

we arrive at equality between (3.9) and

$$(3.11) \qquad (2\pi)^{-n/2} \int (2\pi)^{-n/2} \left(\int \exp\left(-ix \cdot \mu\right) \tilde{a}'(\xi - \mu, \xi) \, d\mu \right) u(x) \, dx =$$

$$= (2\pi)^{-n/2} \int (2\pi)^{-n/2} \left(\int \exp\left(-ix \cdot \mu\right) u(x) \, dx \right) \tilde{a}'(\xi - \mu, \xi) \, d\mu = (2\pi)^{-n/2} \int \tilde{a}'(\xi - \mu, \xi) \, \tilde{u}(\mu) \, d\mu$$
q.e.d.

A fundamental property of the operator A(x, D) is given in

THEOREM 2. – We have the inequality $||A(x, D)u||_s \leqslant C_s ||u||_s$, $\forall u \in S$, s being real arbitrary.

We have in fact the immediate decomposition:

$$A(x, D) = A(\infty, D) + A'(x, D).$$

We must remark that for $u \in S$, we have by definition:

$$\widetilde{A(\infty,D)}u(\xi)=a(\infty,\,\xi)\widetilde{u}(\xi)\,,\qquad \widetilde{A'(x,D)}u(\xi)=(2\pi)^{-n/2}\int\!\!\widetilde{a}'(\xi-\eta,\,\xi)\widetilde{u}(\eta)\,d\eta\;.$$

23 - Annali di Matematica

Then we see first of all

$$(3.12) \qquad \|A(\infty,D)u\|_s^2 = \int (1+|\xi|^2)^s |a(\infty,\xi)\tilde{u}(\xi)|^2 d\xi \leqslant (\sup_{|\xi|=1} |a(\infty,\xi)|)^2 \|u\|_s^2,$$

$$(3.13) ||A(\infty, D)u||_s \leq (\sup_{|\xi|=1} |a(\infty, \xi)|) ||u||_s.$$

Less trivial is the estimate for A'(x, D)u. Its Fourier transform (in S') equals

$$(2\pi)^{-n/2} \int \tilde{a}'(\xi-\eta,\xi) \tilde{u}(\eta) d\eta$$
.

And then (using the definition of H_s), we will have to estimate the norm L^s of the expression

$$(3.14) \hspace{3.1cm} (2\pi)^{-n/2} \big(1 + |\xi|^2)^{s/2} \int \tilde{a}'(\xi - \eta, \, \xi) \, \tilde{u}(\eta) \, d\eta$$

which is equal to

$$(3.15) \qquad (2\pi)^{-n/2} \int (1+|\xi|^2)^{s/2} (1+|\eta|^2)^{-s/2} \tilde{a}'(\xi-\eta,\xi) (1+|\eta|^2)^{s/2} \tilde{u}(\eta) \, d\eta = U_s(\xi) \,.$$

Now, the proof is similar to that given in Preliminaries for a more special case. Again we shall use the estimate (some time credited to J. Peetre)

$$(3.15 \,bis) \qquad (1+|\xi|^2)^t (1+|\eta|^2)^{-t} \leqslant 2^{|t|} (1+|\xi-\eta|^2)^{|t|}, \qquad \forall \ \ \mathrm{real} \ \ t, \ \xi, \eta \in \mathbb{R}^n.$$

We observe first of all that

$$\begin{split} |U_s(\xi)| \leqslant (2\pi)^{-n/2} 2^{|s|/2} & \int (1+|\xi-\eta|^2)^{|s|/2} |\tilde{a}'(\xi-\eta,\xi)| (1+|\eta|^2)^{s/2} |\tilde{u}(\eta)| \, d\eta \leqslant \\ & \leqslant C_{p,s} & \int (1+|\xi-\eta|^2)^{|s|/2-p} (1+|\eta|^2)^{s/2} |\tilde{u}(\eta)| \, d\eta \, . \end{split}$$

Then, making the substitution $\xi - \eta = \eta'$ we arrive at the inequality

$$|\,U_s(\xi)| \leqslant C_{p,s} \int (1+|\,\eta'\,|^2)^{|s|/2-p} \big(1+|\,\xi-\eta'\,|^2\big)^{s/2} |\,\widetilde{u}(\xi-\eta')|\,d\eta' = C_{p,s} \int K(\xi,\,\eta')\,d\eta'$$

where

(3.18)
$$K(\xi, \eta') = (1 + |\eta'|^2)^{|s|/2 - p} (1 + |\xi - \eta'|^2)^{s/2} |\tilde{u}(\xi - \eta')|.$$

Hence $|U_s(\xi)|^2 \leqslant C_1 \Big(\int K(\xi,\eta') d\eta'\Big)^2$ and $\Big(\int |U_s(\xi)|^2 d\xi\Big)^{\frac{1}{2}} \leqslant C_{p,s} \Big(\int \Big(\int K(\xi,\eta') d\eta'\Big)^2 d\xi\Big)^{\frac{1}{2}}$ which is, by Minkowski's inequality for integrals, estimated in

$$\begin{split} (3.19) \qquad & \|U_s\|_0 \leqslant C_{r,s} \!\! \int \!\! \left(\int \!\! K^2(\xi,\eta') \, d\xi \right)^{\!\frac{1}{2}} d\eta' \! = \\ & = C_{r,s} \!\! \int \!\! \left(\int \!\! (1+|\eta'|^2)^{|s|-2r} \!\! \left(1+|\xi-\eta'|^2\right)^{\!s} \!\! |\tilde{u}(\xi-\eta')|^2 d\xi \right)^{\!\frac{1}{2}} \!\! d\eta' \! = \\ & = C_{r,s} \!\! \left((1+|\eta'|^2)^{|s|/2-r} \!\! \left(\int \!\! \left(1+|\xi-\eta'|^2\right)^{\!s} \!\! |\tilde{u}(\xi-\eta')|^2 d\xi \right)^{\!\frac{1}{2}} \!\! d\eta' \! = C_{r,s}^1 \|u\|_{{\bf s}} \!\! \right)^{\!\frac{1}{2}} \!\! d\eta' \! = C_{r,s}^1 \|u\|_{{\bf s}} \!$$

(when we take p sufficiently large).

Now Theorem 2 is a consequence of the relation

$$\|(A(\infty, D) + A'(x, D))u\|_{H^s} \le \|A(\infty, D)u\|_{H^s} + \|A'(x, D)u\|_{H^s} \le C_1 \|u\|_s$$
.

It proves that the operator A(x, D) is of order ≤ 0 .

By density arguments we may extend A(x, D) to a linear continuous map of H^s in H^s , and this for any real s.

In the next Chapter we define a similar, but different operator associated to a given symbol $a(x, \xi)$; we study its properties and relationship with A(x, D).

4. – The operator $\mathcal{A}(x, D)$.

Let $a(x, \xi)$ be a symbol; we define an operator $\mathcal{A}(x, D)$ of S in S' by means of the formula

(4.1)
$$\mathcal{A}(x,D)u = (2\pi)^{-n/2} \Big[\exp\left(ix \cdot \xi\right) H(\xi) d\xi$$

where, for $u \in S$, the function $H(\xi)$ is defined by the relation

$$(4.2) \hspace{1cm} H(\xi) = a(\infty,\,\xi)\,\widetilde{u}(\xi) + (2\pi)^{-n/2} \int \widetilde{a}'(\xi-\eta,\,\eta)\,\widetilde{u}(\eta)\,d\eta\;, \qquad \xi \in \mathbb{R}^n - \{0\},\; u \in \mathbb{S}.$$

With the same proof used for A(x, D) we have: the function A(x, D)u is continuous and bounded, for $x \in \mathbb{R}^n$. Besides, we see that if the symbol $a(x, \xi)$ does not depend on x, we have A(D) = A(D).

Another formula of representation is given in

Proposition 2. - We have:

$$\mathcal{A}(x,\,D)\,u=(2\pi)^{-n/2}\Big|\exp\left(ix\cdot\eta\right)a(x,\,\eta)\,\tilde{u}(\eta)\,d\eta\;,\qquad\qquad\forall u\in\mathbb{S}.$$

PROOF. – As $a(x, \eta) = a(\infty, \eta) + a'(x, \eta)$ and $\tilde{u}(\eta) \in S$, the integral is absolutely convergent.

We have, then:

$$(4.3) \qquad (2\pi)^{-n/2} \int \exp\left(ix \cdot \xi\right) \left[(2\pi)^{-n/2} \int \tilde{a}'(\xi - \eta, \eta) \tilde{u}(\eta) d\eta \right] d\xi$$

is absolutely convergent because

$$\begin{split} (4.4) \qquad & \int \int |\tilde{a}'(\xi-\eta,\eta)|\tilde{u}(\eta)|\,d\eta\,d\xi \leqslant \\ \leqslant & C_{x} \int \int (1+|\xi-\eta|^{\,2})^{-y}|\tilde{u}(\eta)|\,d\eta\,d\xi = C_{x} \int |\tilde{u}(\eta)| \left(\int (1+|\xi-\eta|^{\,2})^{-y}\,d\xi\right)d\eta < \infty \end{split}$$

for p large enough.

Furthermore we see that (4.3) equals

$$(4.5) \qquad (2\pi)^{-n} \int \exp\left(ix \cdot (\xi - \eta)\right) \exp\left(ix \cdot \eta\right) \left(\int \tilde{a}'(\xi - \eta, \eta) \tilde{u}(\eta) d\eta\right) d\xi =$$

$$= (2\pi)^{-n} \int \left(\int \exp\left(ix \cdot (\xi - \eta)\right) \tilde{a}'(\xi - \eta, \eta) d\xi\right) \exp\left(ix \cdot \eta\right) \tilde{u}(\eta) d\eta =$$

$$= (2\pi)^{-n} \int \left(\int \exp\left(ix \cdot \lambda\right) \tilde{a}'(\lambda, \eta) d\lambda\right) \exp\left(ix \cdot \eta\right) \tilde{u}(\eta) d\eta =$$

$$= (2\pi)^{-n/} \int {}^{2}a'(x, \eta) \cdot \exp\left(ix \cdot \eta\right) \tilde{u}(\eta) d\eta.$$

This will prove Proposition 2.

EXAMPLE. – As an useful application of Prop. 2, let us take a fixed function $u(x) \in C_0^{\infty}$, and then the sequence

$$u_{\nu}(x) = \nu^{n/4} u((x-x_0)\nu^{\frac{1}{2}}) \exp(i(x\cdot\xi_0)\nu), \qquad \nu = 1, 2, ...,$$

where $x_0 \in \operatorname{Supp} u$, and $|\xi_0| = 1$. Then it follows

$$\left(\mathcal{A}(x,D)u_{\nu}\right)(x)=\nu^{n/4}v_{\nu}\left((x-x_0)\nu^{\frac{1}{2}}\right)\exp\left(i(x\cdot\xi_0)\nu\right),\,$$

where $v_r(x)$ are defined by

$$v_{\rm r}(x) = (2\pi)^{-n/2} \Big[a(x_0 + {\it v}^{-\frac{1}{2}} \sigma, \, {\it v} \xi_0 + \eta {\it v}^{\frac{1}{2}}) \, \tilde{u}(\eta) \, \exp \, (i x \cdot \eta) \, d\eta \; .$$

We see that $(v_{\nu}(x))_{\nu=1}^{\infty}$ is an uniformly bounded sequence, and it can be proved that

$$\lim_{r\to\infty}v_r(x)=a(x_0\,,\,\xi_0)\,u(x)$$

holds, uniformly on bounded sets in \mathbb{R}^n .

In fact, we get easily that

$$v_{r}(x) - a(x_{0}, \, \xi_{0}) \, u(x) = (2\pi)^{-n/2} \int \left[a \left(x_{0} + \frac{x}{\sqrt{\nu}}, \, \nu \xi_{0} + \eta \, \sqrt{\nu} \right) - a(x_{0}, \, \xi_{0}) \right] \tilde{u}(\eta) \, \exp \left(i x \cdot \eta \right) d\eta \, .$$

Moreover we have, being $a(x_0, \xi_0) = a(x_0, \nu \xi_0), \nu = 1, 2, ...,$ the estimate

$$\left| a\left(x_0 + \frac{x}{\sqrt{\overline{\nu}}}, \ \nu \xi_0 + \eta \sqrt{\overline{\nu}}\right) - a(x_0, \xi_0) \right| \leqslant \left| a\left(x_0 + \frac{x}{\sqrt{\overline{\nu}}}, \ \nu \xi_0 + \eta \sqrt{\overline{\nu}}\right) - a(x_0, \nu \xi_0 + \eta \sqrt{\overline{\nu}}) \right| + \\ + \left| (a(x_0, \nu \xi_0 + \eta \sqrt{\overline{\nu}}) - a(x_0, \nu \xi_0)) \right| \leqslant \frac{|x|}{\sqrt{\overline{\nu}}} \sup_{x, \xi} |\operatorname{grad}_x a| + \frac{C|\eta|}{\sqrt{\overline{\nu}}},$$

(we use here (2.21) and (2.1)).

Consequently we have

$$|v_{\mathbf{r}}(x)-a(x_{\mathbf{0}},\,\xi_{\mathbf{0}})\,u(x)|\!<\!\frac{C|x|}{\sqrt{\nu}}\!\int\!|\tilde{u}(\eta)|d\eta+\frac{C}{\sqrt{\nu}}\!\int\!|\eta||\tilde{u}(\eta)|d\eta$$

which proves the result.

It can be shown, exactly as with the operator A(x, D) that, \forall real s, the estimate

$$\|\mathcal{A}(x,D)u\|_{s} \leqslant C_{s}\|u\|_{s}, \qquad u \in \mathbb{S},$$

is verified.

Considering only the case s=0, and by the density of S in L^2 , we can extend A(x, D) and A(x, D) by continuity, to linear operators of L^2 in L^2 . Now we have

PROPOSITION 3. – Let $a(x, \xi)$ be a symbol, and $\overline{a}(x, \xi)$ its complex conjugate, operator A(x, D) associated to $a(x, \xi)$, operator $\overline{A}(x, D)$ associated to $\overline{a}(x, \xi)$. Then we have the equality:

$$(A(x, D) u, v)_{L^2} = (u, \overline{A}(x, D) v)_{L^2}, \quad \forall u, v \in L^2.$$

It will be sufficient to show that for $u, v \in S$. We have first of all:

$$(4.6) \hspace{1cm} \widetilde{\mathcal{A}}(x,\,D)\,v = (2\pi)^{-n/2} \Big[\exp\left(ix\cdot\eta\right) \overline{a}(x,\,\eta)\,\widetilde{v}(\eta)\,d\eta \;, \qquad \forall v \in \mathbb{S} \;\; (\text{Prop. 2}) \,.$$

Hence we get, when $(u, v)_{L^2} = \int u(x) \, \overline{v}(x) \, dx$, the equality

$$\begin{split} (4.7) \qquad \big(u,\,\overline{\mathcal{A}}(x,\,D)v\big) &= (2\pi)^{-n/2} \int \!\! u(x) \Big(\int \!\! \exp{(-\,ix\cdot\eta)} \, a(x,\,\eta) \, \bar{\tilde{v}}(\eta) \, d\eta \Big) \, dx = \\ &= (2\pi)^{-r/2} \! \int \!\! \exp{(-\,ix\cdot\eta)} \, a(x,\,\eta) \, u(x) \, \bar{\tilde{v}}(\eta) \, dx \, d\eta \; . \end{split}$$

Now, by Plancherel's formula we obtain, using also Proposition 1

which is exactly (4.7).

REMARK. - Let $a(x, \xi)$ be a symbol of special type:

$$a(x, \xi) = a(x)b(\xi)$$
.

Then we have

$$A(x, D)u = a(x)b(D)u, \qquad A(x, D)u = b(D)(a(x)u(x)), \qquad \forall u \in S.$$

In fact, we see that

$$\begin{split} \mathcal{A}(x,\,D)\,u &= (2\pi)^{-n/2} \! \int \! \exp{(ix\cdot\eta)}\,a(x)b(\eta)\,\widetilde{u}(\eta)\,d\eta = a(x)b(D)\,u \\ \\ \widetilde{A(x,\,D)}\,u &= (2\pi)^{-n/2} \! \int \! \exp{(-iy\cdot\xi)}\,a(y)b(\xi)\,u(y)\,dy = b(\xi)\,\widetilde{au}(\xi) = \widetilde{b(D)}(au)(\xi) \end{split} \qquad \forall u \in \mathbb{S}, \end{split}$$

and this gives the remark.

Now we are able to prove the following

Proposition 4. - We have the relation

(4.10)
$$\| (A(x, D) - A(x, D)) u \|_{s} \leqslant C_{s} \| u \|_{s-1}, \qquad \forall u \in S.$$

It is known that $A(x, D)u \in S'$ and that

$$\widetilde{Au}(\xi) = a(\infty,\xi)\widetilde{u}(\xi) + (2\pi)^{-n/2} \int \widetilde{a}'(\xi-\eta,\xi)\widetilde{u}(\eta)d\eta$$

(Fourier transform in S'). The same is valid for A(x, D)u and

$$\widetilde{\mathcal{A}(x,D)}u(\xi)=a(\infty,\xi)\widetilde{u}(\xi)+(2\pi)^{-n/2}\Big|\widetilde{a}'(\xi-\eta,\eta)\widetilde{u}(\eta)d\eta\;.$$

Hence, we obtain, with Fourier transform in S'

Therefore, we will have to estimate the norm L^2 of the expression

$$\begin{split} (4.12) \quad & U_s(\xi) = (2\pi)^{-n/2} \big(1 + |\xi|^2\big)^{s/2} \int & (\tilde{a}'(\xi - \eta, \, \xi) - \tilde{a}'(\xi - \eta, \, \eta)) \tilde{u}(\eta) \, d\eta = \\ & = (2\pi)^{-n/2} \int & (1 + |\xi|^2)^{s/2} \big(1 + |\eta|^2\big)^{-s/2} \big(\tilde{a}'(\xi - \eta, \, \xi) - \tilde{a}'(\xi - \eta, \, \eta)\big) \big(1 + |\eta|^2\big)^{s/2} \tilde{u}(\eta) \, d\eta \; . \end{split}$$

We have

$$\begin{aligned} |U_{s}(\xi)| \leqslant C_{s} \int (1+|\xi-\eta|^{2})^{|s|/2} |\widetilde{a}'(\xi-\eta,\xi)-\widetilde{a}'(\xi-\eta,\eta)| (1+|\eta|^{2})^{s/2} |\widetilde{u}(\eta)| \, d\eta \leqslant \\ \leqslant C_{s,p} \int (1+|\xi-\eta|^{2})^{|s|/2} (1+|\xi-\eta|^{2})^{-p} \frac{|\xi-\eta|}{|\xi|+|\eta|} \, (1+|\eta|^{2})^{s/2} |\widetilde{u}(\eta)| \, d\eta \\ \forall p=1,2,...,\; \xi,\eta \in \mathbb{R}^{n}-\{0\} \end{aligned}$$

(we used here Theorem 1, c)).

We have now the following

LEMMA. - For every $\xi, \eta \in \mathbb{R}^n - \{0\}$ we have the inequality:

$$(4.14) \qquad |\xi - \eta| (|\xi| + |\eta|)^{-1} \leqslant C(1 + |\xi - \eta|^2)^{\frac{1}{2}} (1 + |\eta|^2)^{-\frac{1}{2}}.$$

In fact, we have, for $\xi, \eta \in \mathbb{R}^n - \{0\}$, the evident relation $|\xi - \eta| + |\xi - \eta| |\eta| \le$ $\le |\xi| + |\eta| + |\eta| |\xi - \eta| + |\xi| |\xi - \eta|$, which is equivalent to

$$\frac{|\xi-\eta|}{|\xi|+|\eta|}\leqslant \frac{1+|\xi-\eta|}{1+|\eta|}\,,\qquad\qquad \xi,\,\eta\in R^n-\{0\}.$$

Now, it will be sufficient to observe that, for 0 < c < C, we have

$$c < (1+|\zeta|)(1+|\zeta|^2)^{-\frac{1}{2}} \leqslant C, \qquad \forall \zeta \in \mathbb{R}^n$$

and to substitute

$$(1+|\xi-\eta|) \leqslant C(1+|\xi-\eta|^2)^{\frac{1}{2}}, \qquad (1+|\eta|) \geqslant c(1+|\eta|^2)^{\frac{1}{2}}.$$

Continuing now the estimates, from (4.13) we have for $\xi \in \mathbb{R}^n - \{0\}$, that

$$(4.15) |U_s(\xi)| \leqslant C_{s,p}^1 \Big(1 + |\xi - \eta|^2 \Big)^{|s|/2 - p + \frac{1}{2}} \Big(1 + |\eta|^2 \Big)^{s/2 - \frac{1}{2}} |\tilde{u}(\eta)| d\eta$$

and reasoning as in the proof of Theorem 2, we deduce the result.

REMARK 1. – The result above means that A-A is an operator of order $\ll -1$; for any real s, A-A extends to a linear continuous map of H^s into H^{s+1} ; this implies that A-A has a certain «regularizing» effect. The property is also useful in the following way: suppose to have an estimate for operator A; then we can get same kind of estimate for the operator A by writing that A=A-A+A, applying (4.10) and the known estimate for A. Finally, sometimes we may neglect operators of order $\ll -1$. Then we can say that $A \equiv A$ (mod operators of order $\ll -1$).

REMARK 2. – Proposition 3 means that \bar{A} is the L^2 -adjoint of A; for real symbols $A = A^*$. Hence $A = A^*$ iff A = A; this happens for special symbols like $a(\xi)$ or b(x); we don't know a necessary and sufficient condition on $a(x, \xi)$ in order that $A(x, D) = A^*(x, D)$.

Let us give now another proof of Proposition 3. We will use the definition (in case $a(\infty, \xi) = 0$):

$$(4.16) \qquad \widetilde{Au}(\xi) = (2\pi)^{-n/2} \int \widetilde{a}(\xi-\eta,\,\xi)\,\widetilde{u}(\eta)\,d\eta \;, \qquad \widetilde{Au}(\xi) = (2\pi)^{-n/2} \int \widetilde{a}(\xi-\eta,\,\eta)\,\widetilde{u}(\eta)\,d\eta \;,$$

and the relation to be proved becomes, when we use Plancherel's theorem again

$$(4.17) \qquad \qquad \int \left(\int \tilde{a}(\xi - \eta, \, \xi) \, \tilde{u}(\eta) \, d\eta \right) \tilde{\tilde{v}}(\xi) \, d\xi = \int \tilde{u}(\xi) \left(\int \tilde{\tilde{a}}(\xi - \eta, \, \eta) \, \tilde{v}(\eta) \, d\eta \right) \, d\xi$$

or

$$(4.18) \qquad \qquad \iint \tilde{a}(\xi - \eta, \, \xi) \, \tilde{u}(\eta) \, \bar{\tilde{v}}(\xi) \, d\xi \, d\eta = \iint \tilde{a}(\xi - \eta, \, \eta) \, \bar{\tilde{v}}(\eta) \, d\xi \, d\eta \, .$$

Let us observe here that:

$$\begin{split} \tilde{\overline{a}}(\lambda,\eta) &= (2\pi)^{-n/2} \! \int \! \exp{(-ix\cdot\lambda)} \overline{a}(x,\eta) \, dx \,, \\ \tilde{\overline{a}}(\lambda,\eta) &= (2\pi)^{-n/2} \! \int \! \exp{(ix\cdot\lambda)} a(x,\eta) \, dx = \tilde{a}(-\lambda,\eta) \,. \end{split}$$

Therefore, the relation to be proved becomes:

$$(4.20) \qquad \qquad \iint \tilde{a}(\xi - \eta, \, \xi) \, \tilde{u}(\eta) \, \bar{\tilde{v}}(\xi) \, d\xi \, d\eta = \iint \tilde{a}(\eta - \xi, \, \eta) \, \tilde{u}(\xi) \, \bar{\tilde{v}}(\eta) \, d\eta \, d\xi$$

changing the variable: $\xi = \eta$, $\eta = \xi$, it becomes obvious.

The case $a(\infty, \xi) \neq 0$ does not introduce any new difficulty. Let $\zeta(\xi) \in C^{\infty} = 0$, for $|\xi| < \frac{1}{2}$, =1 for $|\xi| \geqslant 1$, and $\zeta(D) = \mathcal{F}^{-1}(\zeta(\xi)\mathcal{F})$, the associated operator.

Define two new operators:

$$A_{\zeta}(x, D) = \zeta(D) A(x, D)$$

and

$$A_{\xi}(x, D) = A(x, D)\zeta(D)$$
, $A_{\xi}(x, D) - A(x, D) = (\zeta(D) - E)A(x, D)$

where $\zeta(D) - E$ has true order $= -\infty$; similarly $\mathcal{A}_{\xi}(x, D) - \mathcal{A}(x, D)$ is an operator of order $= -\infty$. It follows that

$$A_{\ell}(x,D) - A_{\ell}(x,D) = A(x,D) - A(x,D) + T$$

where T has order $-\infty$. By (4.10) we deduce, $\forall u \in S$, relation

$$||(A_{\xi} - \mathcal{A}_{\xi})u||_{s} \leqslant c_{s}||u||_{s-1} + ||Tu||_{s} \leqslant c'_{s}||u||_{s-1}.$$

Furthermore, the L^2 -adjoint of $A_{\zeta}(x, D)$ is $A^*(x, D)\zeta(D) = \overline{\mathcal{A}}(x, D)\zeta(D) = \overline{\mathcal{A}}(x, D)$; this because $\zeta(D)$ is self-adjoint for real-valued $\zeta(\xi)$.

5. - Product and commutators.

PROPOSITION. – Let $a(x, \xi)$, $b(x, \xi)$ be two symbols. Then $c(x, \xi) = a(x, \xi)b(x, \xi)$ is a symbol too.

Obviously, $c(x, \xi) \in C^{\infty}(\mathbb{R}^n \times \mathbb{R}^n - \{0\})$ as $a(x, \xi)$ and $b(x, \xi)$ are in this space. Besides, $\forall t > 0$,

$$c(x,t\xi) = a(x,t\xi)b(x,t\xi) = a(x,\xi)b(x,\xi) = c(x,\xi) \,, \quad x \in \mathbb{R}^n, \ \xi \in \mathbb{R}^n - \{0\}.$$

As

$$\lim_{|x|\to\infty} a(x,\xi) = a(\infty,\xi) , \qquad \lim_{|x|\to\infty} b(x,\xi) = b(\infty,\xi)$$

exist, for $\xi \in \mathbb{R}^n - \{0\}$ the same is valid for $c(x, \xi)$;

$$\lim_{|x|\to\infty} c(x,\xi) = c(\infty,\xi) = a(\infty,\xi)b(\infty,\xi)$$

which exists for $\xi \in \mathbb{R}^n - \{0\}$.

Hence: if we put $c'(x, \xi) = c(x, \xi) - c(\infty, \xi)$, we have:

$$c(x,\xi) = (a'(x,\xi) + a(\infty,\xi))(b'(x,\xi) + b(\infty,\xi)) =$$

$$= a'(x,\xi)b'(x,\xi) + a(\infty,\xi)b'(x,\xi) + b(\infty,\xi)a'(x,\xi) + a(\infty,\xi)b(\infty,\xi) = c'(x,\xi) + c(\infty,\xi)$$

where

$$c'(x,\xi) = a'(x,\xi)b'(x,\xi) + a(\infty,\xi)b'(x,\xi) + b(\infty,\xi)a'(x,\xi)$$
.

Obviously $c(\infty, \xi) \in C^{\infty}(\mathbb{R}^n - \{0\}).$

Let us now remark now that:

(5.1)
$$(1+|x|^2)^p |D_x^{\alpha} \partial_{\xi}^{\beta} c'(x,\xi)| \leq C_{p,\alpha,\beta},$$

$$\forall x \in \mathbb{R}^n, \ \xi \in \mathbb{R}^n - \{0\}, \ p = 1, 2, ..., \ \alpha = (\alpha_1, ..., \alpha_n), \ \beta = (\beta_1, ..., \beta_n)$$

(consequence of Leibniz's theorem).

Let C(x, D), A(x, D), B(x, D) be the operators corresponding to $c(x, \xi)$, $a(x, \xi)$, $b(x, \xi)$, respectively. We have

$$A(x, D) = A(\infty, D) + A'(x, D), \qquad B(x, D) = B(\infty, D) + B'(x, D);$$

(5.2)
$$A(x, D)B(x, D) = A(\infty, D)B(\infty, D) + A'(x, D)B(\infty, D) + A(\infty, D)B'(x, D) + A'(x, D)B'(x, D)$$
.

We denote $a(\infty,\xi)b(\infty,\xi) = \gamma(\xi) = c(\infty,\xi)$; $a'(x,\xi)b'(x,\xi) = k(x,\xi)$, $a(\infty,\xi)b'(x,\xi) = k_1(x,\xi)$, $b(\infty,\xi)a'(x,\xi) = k_2(x,\xi)$. Then,

(5.3)
$$C(x, D) = \gamma(D) + K(x, D) + K_1(x, D) + K_2(x, D).$$

Hence; we have some simple results:

LEMMA 1. - We have $\gamma(D)u = A(\infty, D)B(\infty, D)u$ for $u \in S$.

In fact,

$$\widetilde{\gamma(D)}u(\xi) = \gamma(\xi)\widetilde{u}(\xi) = a(\infty, \xi)b(\infty, \xi)\widetilde{u}(\xi) =$$

$$= a(\infty, \xi)\widetilde{(B(\infty, D)u)}(\xi) = \widetilde{A(\infty, D)}(B(\infty, D)u)(\xi);$$

hence, by Fourier's inversion formula, valid in S', we arrive at Lemma 1.

LEMMA 2. - We have $K_1(x, D) = A(\infty, D)B'(x, D)$.

In fact,

$$\widetilde{K_{\mathbf{1}}(x,D)u}(\xi) = (2\pi)^{-n/2} \Big \lceil a(\infty,\xi) \tilde{b}'(\xi-\eta,\xi) \tilde{u}(\eta) \, d\eta \Big \rceil$$

(as $k_1(\infty, \xi) = 0$, and $\tilde{k}_1(\lambda, \xi) = a(\infty, \xi)\tilde{b}'(\lambda, \xi)$). Hence

$$(5.4) \hspace{1cm} \widetilde{K_1(x,D)}u(\xi) = a(\infty,\xi)\widetilde{B'(x,D)}u(\xi) = \widetilde{A(\infty,D)}(B'(x,D)u)(\xi)$$

and this is true for any $u \in S$; whence the Lemma follows.

LEMMA 3. - We have $K_2(x, D) = B(\infty, D)A'(x, D)$.

The proof is the same, as in Lemma 2. Let us examine here the difference

$$\begin{split} A(x,D)B(x,D) - C(x,D) &= A(\infty,D)B(\infty,D) + A'(x,D)B(\infty,D) + \\ &+ A(\infty,D)B'(x,D) + A'(x,D)B'(x,D) - A(\infty,D)B(\infty,D) - A(\infty,D)B'(x,D) - \\ &- B(\infty,D)A'(x,D) - K(x,D) = [A'(x,D),B(\infty,D)] + A'(x,D)B'(x,D) - K(x,D) \end{split}$$

where [] means the commutator between the two operators, and K(x, D) is the pseudo-differential operator associated with $k(x, \xi) = a'(x, \xi)b'(x, \xi)$.

Let us begin by proving the

Proposition 5. - We have the relation (*)

(5.5)
$$\|[A'(x, D), B(\infty, D)]u\|_{s} \leq C_{s} \|u\|_{s-1}, \quad \forall u \in S, \ \forall \text{ real } s.$$

In fact, we apply the formula

$$(5.6) \qquad \widetilde{A'(x,D)B(\infty,D)}u(\xi) = (2\pi)^{-n/2} \int \widetilde{a}'(\xi-\eta,\xi) \widetilde{B(\infty,D)}u(\eta) d\eta = \\ = (2\pi)^{-n/2} \int \widetilde{a}'(\xi-\eta,\xi) b(\infty,\eta) \widetilde{u}(\eta) d\eta \; .$$

Besides,

$$\widetilde{B(\infty,D)A'(x,D)u}(\xi) = b(\infty,\xi)\widetilde{A'(x,D)u}(\xi) = b(\infty,\xi)(2\pi)^{-n/2} \int \widetilde{a}'(\xi-\eta,\xi)\widetilde{u}(\eta)d\eta$$

and hence

$$\widehat{[A'(x,D),B(\infty,D)]}u(\xi)=(2\pi)^{-n/2} \Big) \widetilde{a}'(\xi-\eta,\xi) \big (b(\infty,\eta)-b(\infty,\xi) \big) \, \widetilde{u}(\eta) \, d\eta \; .$$

As $b(\infty, \xi)$ is homogeneous of order 0 in ξ and $C^{\infty}(\mathbb{R}^n - \{0\})$, we have, as seen at the beginning, for $\xi, \eta \in \mathbb{R}^n - \{0\}$

$$(5.7) \qquad |b(\infty,\xi)-b(\infty,\eta)|\leqslant C|\xi-\eta|\big(|\xi|+|\eta|\big)^{-1}\leqslant C\big(1+|\xi-\eta|^{\,2}\big)^{\frac{1}{2}}\big(1+|\eta|^{\,2}\big)^{-\frac{1}{2}}\,.$$

^(*) Obviously the same holds if we replace A'(x, D) by A'(x, D) and $B(\infty, D)$ by $\mathfrak{B}(\infty, D) = B(\infty, D)$.

Hence, we are obliged to estimate the norm L^2 of the expression

$$(5.8) U_s(\xi) = (1+|\xi|^2)^{s/2} (2\pi)^{-n/2} \int \tilde{a}'(\xi-\eta,\xi) (b(\infty,\xi)-b(\infty,\eta)) \tilde{u}(\eta) d\eta.$$

We have:

$$|U_s(\xi)| \leqslant C_{s,v} \int (1+|\xi-\eta|^{\,2})^{|s|/2} (1+|\xi-\eta|^{\,2})^{-v+rac{1}{2}} (1+|\eta|^{\,2})^{(s-1)/2} |\widetilde{u}(\eta)| \, d\eta = \ = C_{s,v} \int (1+|\xi-\eta|^{\,2})^{|s|/2+rac{1}{2}-v} (1+|\eta|^{\,2})^{(s-1)/2} |\widetilde{u}(\eta)| \, d\eta$$

from where we arrive, as before, at the desired estimate.

A more refined technique is necessary in order to prove (*)

THEOREM 3. - We have the relation

(5.9)
$$\|(A'(x,D)B'(x,D)-K(x,D))u\|_{s} \leq C_{s}\|u\|_{s-1}, \quad \forall u \in \mathbb{S}, \ \forall \text{ real } s.$$

Let us consider the operator K(x, D) associated with $k(x, \xi)$:

$$\widetilde{K(x,D)u}(\xi)=(2\pi)^{-n/2} \! \int \! \tilde{k}(\xi-\eta,\,\xi)\, \tilde{u}(\eta)\, d\eta \ ; \label{eq:Kappa}$$

but we have, for $k(x, \xi) = a'(x, \xi)b'(x, \xi)$ that

(5.10)
$$\tilde{k}(\lambda,\xi) = (2\pi)^{-n/2} \int \tilde{a}'(\lambda-\mu,\xi) \tilde{b}'(\mu,\xi) d\mu$$

whence we arrive at

$$(5.11) \qquad \widetilde{K(x,D)}u(\xi) = (2\pi)^{-n} \int \widetilde{u}(\eta) \Big(\int \widetilde{a}'(\xi-\eta-\mu,\xi) \widetilde{b}'(\mu,\xi) d\mu \Big) d\eta = \\ = (2\pi)^{-n} \int \Big(\int \widetilde{a}'(\xi-\eta-\mu,\xi) \widetilde{u}(\eta) d\eta \Big) \widetilde{b}'(\mu,\xi) d\mu \ .$$

In the interior integral, we make: $\eta + \mu = \tau$; $d\eta = d\tau$; it follows

$$\begin{split} (5.12) \qquad \widetilde{K}u(\xi) &= (2\pi)^{-n} \! \int \! \left(\int \! \tilde{a}'(\xi-\tau,\xi) \, \tilde{u}(\tau-\mu) \, d\tau \right) \! \tilde{b}'(\mu,\xi) \, d\mu = \\ &= (2\pi)^{-n} \! \int \! \left(\int \! \tilde{a}'(\xi-\tau,\xi) \tilde{b}'(\mu,\xi) \, \tilde{u}(\tau-\mu) \, d\mu \right) d\tau = \\ &= (2\pi)^{-n} \! \int \! \tilde{a}'(\xi-\tau,\xi) \left(\int \! \tilde{b}'(\mu,\xi) \, \tilde{u}(\tau-\mu) \, d\mu \right) d\tau \; . \end{split}$$

And once more, in the interior integral, we make: $\tau - \mu = \nu$, $d\mu = d\nu$.

We have now

$$\begin{split} (5.13) \qquad \widetilde{Ku}(\xi) &= (2\pi)^{-n} \! \int \!\! \tilde{a}'(\xi - \tau, \xi) \! \left(\int \!\! \tilde{b}'(\tau - \nu, \xi) \tilde{u}(\nu) d\nu \right) d\tau = \\ &= (2\pi)^{-n} \! \int \!\! \tilde{a}'(\xi - \tau, \xi) \tilde{b}'(\tau - \nu, \xi) \tilde{u}(\nu) d\nu d\tau \,. \end{split}$$

Hence, we arrive at

(5.14)
$$\widetilde{Ku}(\xi) = (2\pi)^{-n} \int \!\! \int \!\! \tilde{a}'(\xi - \tau, \xi) \tilde{b}'(\tau - \eta, \xi) \tilde{u}(\eta) \, d\eta \, d\tau \; .$$

On the other hand, we have

$$(5.15) \qquad \widehat{A'(x,D)B'(x,D)}u(\xi) = (2\pi)^{-n/2} \int \widetilde{a}'(\xi-\eta,\xi) \widehat{B'(x,D)}u(\eta) d\eta$$

and besides:

$$(5.16) \hspace{1cm} \widetilde{B'(x,D)u(\eta)} = (2\pi)^{-n/2} \int \widetilde{b}'(\eta-\tau,\eta) \widetilde{u}(\tau) d\tau \; ;$$

and hence we shall obtain

$$\begin{split} (5.17) \qquad \widetilde{A'(x,D)B'(x,D)u}(\xi) &= (2\pi)^{-n} \! \int \!\! \tilde{a}'(\xi-\eta,\xi) \! \left(\int \!\! \tilde{b}'(\eta-\tau,\eta) \tilde{u}(\tau) \, d\tau \right) d\eta = \\ &= (2\pi)^{-n} \! \int \!\! \int \!\! \tilde{a}'(\xi-\eta,\xi) \tilde{b}'(\eta-\tau,\eta) \tilde{u}(\tau) \, d\tau \, d\eta \; . \end{split}$$

By making substitution $\eta = \tau$, $\tau = \eta$, we arrive at

$$(5.18) \qquad \widetilde{A'(x,D)B'(x,D)u(\xi)} = (2\pi)^{-n} \iint \tilde{a}'(\xi-\tau,\xi) \tilde{b}'(\tau-\eta,\tau) \tilde{u}(\eta) d\eta d\tau.$$

The absolute convergence of the «double» integrals here considered results from the estimates

$$(5.19) |\tilde{a}'(\xi-\tau,\xi)| \leqslant C_p(1+|\xi-\tau|^2)^{-p}, |\tilde{b}'(\tau-\eta,\tau)| \leqslant C, |\tilde{u}(\eta)| \leqslant C_p(1+|\eta|^2)^{-p},$$

$$\forall p=1,2,....$$

Therefore, we can express the difference $(\widehat{A'(x,D)B'(x,D)-K(x,D)})u(\xi)$ by the «double» integral

$$(5.20) \hspace{1cm} (2\pi)^{-n} \int \!\! \tilde{a}'(\xi-\tau,\xi) \big(\tilde{b}'(\tau-\eta,\tau) - \tilde{b}'(\tau-\eta,\xi) \big) \tilde{u}(\eta) \, d\eta \, d\tau \; .$$

Let us examine here the norm L^2 of the expression

$$(5.21) U_s(\xi) = (2\pi)^{-n} \iint (1 + |\xi|^2)^{s/2} \tilde{a}'(\xi - \tau, \xi) (\tilde{b}'(\tau - \eta, \xi) - \tilde{b}'(\tau - \eta, \tau)) \tilde{u}(\eta) d\eta d\tau.$$

We have, first of all, the pointwise estimate, $\forall \xi \in \mathbb{R}^n - \{0\}$

$$\begin{split} |U_s(\xi)| \leqslant C \! \int \! (1 + |\xi|^2)^{s/2} (1 + |\xi - \tau|^2)^{-p} (1 + |\tau - \eta|^2)^{-p} |\xi - \tau| (|\xi| + |\tau|)^{-1} |\tilde{u}(\eta)| d\eta d\tau \leqslant \\ \leqslant C_{s,p} \! \int \! (1 + |\xi|^2)^{s/2} (1 + |\xi - \tau|^2)^{-p} (1 + |\tau - \eta|^2)^{-p} (1 + |\xi - \tau|^2)^{\frac{1}{2}} (1 + |\tau|^2)^{-\frac{1}{2}} |\tilde{u}(\eta)| d\eta d\tau = \\ = C_{s,p} \! \int \! (1 + |\xi|^2)^{s/2} (1 + |\xi - \tau|^2)^{-p+\frac{1}{2}} (1 + |\tau - \eta|^2)^{-p} (1 + |\tau|^2)^{-\frac{1}{2}} |\tilde{u}(\eta)| d\eta d\tau \,. \end{split}$$

Let us denote now:

(5.23)
$$H(\xi, \eta, \tau) = (1 + |\tau - \eta|^2)^{-p} (1 + |\xi - \tau|^2)^{-p+\frac{1}{2}} (1 + |\tau|^2)^{-\frac{1}{2}}$$

$$(5.24) \hspace{1cm} K_s(\xi,\eta) = \frac{\left(1+|\xi|^2\right)^{s/2}}{\left(1+|\eta|^2\right)^{(s-1)/2}} \int \! H(\xi,\eta,\tau) \, d\tau \; .$$

We remark that it follows, $\forall \xi \in \mathbb{R}^n - \{0\}$

$$|U_s(\xi)| \leqslant C_{s,p} \iint (1+|\xi|^2)^{s/2} H(\xi,\eta,\tau) |\tilde{u}(\eta)| \, d\eta \, d\tau \; .$$

Therefore, we have only to prove the inequality

(5.26)
$$\left(\int \left(\int \int (1+|\xi|^2)^{s/2} H(\xi,\eta,\tau) |\tilde{u}(\eta)| d\eta d\tau \right)^2 d\xi \right)^{\frac{1}{2}} \leqslant C_s ||u||_{s-1}, \qquad \forall u \in S.$$

In order to do that we shall prove here a more general result, which is given in

LEMMA 1. – Let $r(\xi, \eta, \tau) > 0$ be a function such that $\int r(\xi, \eta, \tau) d\tau < \infty$ for every ξ , η fixed in $\mathbb{R}^n - \{0\}$.

We denote

$$arrho_s(\xi,\eta) = rac{(1+|\xi|^2)^{s/2}}{(1+|\eta|^2)^{(s-1)/2}} \int r(\xi,\eta, au) d au \; ,$$

and we suppose

$$\int \varrho_s(\xi,\eta) \, d\xi \leqslant L \,, \qquad \int \varrho_s(\xi,\eta) \, d\eta \leqslant L \,, \qquad \qquad \xi,\eta \in \mathbb{R}^n - \{0\} \,.$$

Then, there is a constant C_s such that the inequality

$$(5.27) \qquad \left(\int \left(\int \int (1+|\xi|^2)^{s/2} r(\xi,\eta,\tau) |\tilde{u}(\eta)| \, d\eta \, d\tau \right)^2 d\xi \right)^{\frac{1}{2}} \leqslant C_s \|u\|_{s-1} \,, \qquad \forall u \in \mathbb{S}, \ \forall \ real \ s \ is \ verified.$$

PROOF OF LEMMA 1. - We remark that in fact, we have

(5.28)
$$\int \int r(\xi,\eta,\tau) (1+|\xi|^2)^{s/2} |\tilde{u}(\eta)| d\eta d\tau = \int \varrho_s(\xi,\eta) (1+|\eta|^2)^{(s-1)/2} |\tilde{u}(\eta)| d\eta .$$

Let us put $v(\eta) = (1+|\eta|^2)^{(s-1)/2}|\tilde{u}(\eta)|$. We remark that (*)

$$(5.29) \qquad \int \varrho_{s}(\xi,\eta)v(\eta)d\eta = \int \sqrt{\varrho_{s}(\xi,\eta)}\sqrt{\varrho_{s}(\xi,\eta)}v(\eta)d\eta \leqslant \\ \leqslant \left(\int \varrho_{s}(\xi,\eta)d\eta\right)^{\frac{1}{2}} \left(\int \varrho_{s}(\xi,\eta)v^{2}(\eta)d\eta\right)^{\frac{1}{2}} \leqslant \sqrt{L} \left(\int \varrho_{s}(\xi,\eta)v^{2}(\eta)d\eta\right)^{\frac{1}{2}}, \\ (5.30) \qquad \int \left[r(\xi,\eta,\tau)(1+|\xi|^{2})^{s/2}|\tilde{u}(\eta)|d\eta d\tau \leqslant \sqrt{L} \left(\int \varrho_{s}(\xi,\eta)v^{2}(\eta)d\eta\right)^{\frac{1}{2}}, \qquad \xi \in \mathbb{R}^{n} - \{0\}.$$

Hence we have also:

$$\begin{split} \left\| \iint r(\xi,\eta,\tau) \big(1 + |\xi|^{\,2}\big)^{s/2} |\widetilde{u}(\eta)| \; d\eta \, d\tau \right\|_{L^2(\mathbb{R}^n)} &\leqslant \sqrt{L} \Big(\int \Big(\int \varrho_s(\xi,\eta) v^2(\eta) \, d\eta \Big) \, d\xi \Big)^{\frac{1}{2}} = \\ &= \sqrt{L} \Big(\int \Big(\int \varrho_s(\xi,\eta) \, d\xi \Big) v^2(\eta) \, d\eta \Big)^{\frac{1}{2}} \leqslant L \Big(\int v^2(\eta) \, d\eta \Big)^{\frac{1}{2}} = L \|u\|_{s-1} \, . \end{split}$$

We shall apply Lemma 1 taking $r(\xi, \eta, \tau) = H(\xi, \eta, \tau)$ and $\varrho_s(\xi, \eta) = K_s(\xi, \eta)$. We see readily that (1) $\int H(\xi, \eta, \tau) d\tau < \infty$, and it remains to prove

LEMMA 2. - We have

(5.31)
$$\int K_s(\xi,\eta) d\xi \leqslant L, \qquad \int K_s(\xi,\eta) d\eta \leqslant L.$$

In fact,

$$K_s(\xi,\eta) = \frac{(1+|\xi|^2)^{s/2}}{(1+|\eta|^2)^{(s-1)/2}} \int (1+|\tau-\eta|^2)^{-p} (1+|\xi-\tau|^2)^{-p+\frac{1}{2}} (1+|\tau|^2)^{-\frac{1}{2}} \, d\tau \; .$$

Because we have the known estimate $(1+|\tau|^2)^{-\frac{1}{2}} \le 2^{\frac{1}{2}}(1+|\xi|^2)^{-\frac{1}{2}}(1+|\xi-\tau|^2)^{\frac{1}{2}}$, we obtain

$$\begin{split} (5.32) \qquad K_s(\xi,\eta) & \leqslant \left(\frac{1+|\xi|^2}{1+|\eta|^2}\right)^{(s-1)/2} 2^{\frac{1}{2}} \int (1+|\tau-\eta|^2)^{-p} (1+|\xi-\tau|^2)^{-p+1} d\tau \leqslant \\ & \leqslant C_s (1+|\xi-\eta|^2)^{|s-1|/2} \int (1+|\tau-\eta|^2)^{-p} (1+|\xi-\tau|^2)^{-p+1} d\tau = \\ & = C_s \int (1+|\xi-\eta|^2)^{|s-1|/2} (1+|\tau-\eta|^2)^{-p} (1+|\xi-\tau|^2)^{-p+1} d\tau \;. \end{split}$$

Now we have, $(1+|\xi-\eta|^2)^{|s-1|/2} \leqslant C(1+|\xi-\tau|^2)^{|s-1|/2}(1+|\tau-\eta|^2)^{|s-1|/2}$, and hence

$$(5.33) K_s(\xi,\eta) \leqslant C_s \int (1+|\xi-\tau|^2)^{-p+1+|s-1|/2} (1+|\tau-\eta|^2)^{-p+|s-1|/2} d\tau.$$

^(*) This proof, quite well-known in fact, was communicated to us some years ago by the colleague S. Takahashi (see however Seeley's lectures in Stresa, C.I.M.E., 1968).

⁽¹⁾ For sufficiently large p.

We denote at this stage:

$$\lambda(t) = \int (1 + |t - u|^2)^{-p + |s - 1|/2} (1 + |u|^2)^{-p + 1 + |s - 1|/2} du, \qquad t \in \mathbb{R}^n,$$

where p is large enough.

We see that $\lambda(t) \in L^1$ as convolution of two integrable functions; hence, we have:

$$\begin{split} \lambda(\xi-\eta) = & \int (1+|\xi-\eta-u|^{\,2})^{-p+|s-1|/2} (1+|u|^{\,2})^{-p+1+|s-1|/2} du = \\ = & \text{(by substituting } u=\xi-\tau) = & \int (1+|\tau-\eta|^{\,2})^{-p+|s-1|/2} (1+|\xi-\tau|^{\,2})^{-p+1+|s-1|/2} d\tau \;. \end{split}$$

Hence, we get

$$K_s(\xi, \eta) \leqslant C_s \lambda(\xi - \eta)$$

and obviously:

$$\int \lambda(\xi-\eta) d\xi < \infty$$
, $\int \lambda(\xi-\eta) d\eta < \infty$

which proves the Lemma 2.

Hence, for Lemma 1 we have that

(5.34)
$$||U_s(\xi)||_{L^1} \leqslant C||u||_{s-1}, \quad \forall u \in \mathbb{S}$$

and this proves Theorem 3.

COROLLARY. – If A(x, D), B(x, D) are two pseudo-differential operators, the commutator [A(x, D), B(x, D)] is of order ≤ -1 .

In fact, we have that

$$A(x, D)B(x, D) - (ab)(x, D) = [A'(x, D), B(x, D)] + A'(x, D)B'(x, D) - K(x, D)$$

is of order ≤ -1 as by Theorem 3 and Proposition 5.

In the same way, we can prove that B(x, D)A(x, D) - (ab)(x, D) is of order ≤ -1 . Hence we arrive at the desired result (*).

REMARK. 1. – Let $a(x, \xi)$ be a symbol such that $|a(x, \xi)| > \alpha > 0$, $\forall x \in \mathbb{R}^n$, $\forall \xi \in \mathbb{R}^n - \{0\}$. Then one can see that $b(x, \xi) = (a(x, \xi))^{-1}$ is again a symbol. Hence $a(x, \xi)b(x, \xi) = 1 \ \forall x \in \mathbb{R}^n$, $\xi \in \mathbb{R}^n - \{0\}$. The operator \mathcal{A} associated to $c(x, \xi) \equiv 1$ is the identity operator. Hence we get

$$||(I-\mathcal{R}A)u||_0 \leqslant c||u||_{-1}, \qquad \forall u \in S.$$

Furthermore we have

$$u = u - \Re Au + \Re Au$$
, $\forall u \in S$.

^(*) Same result holds for the commutator $[\mathcal{A}(x,D),\mathcal{B}(x,D)]$ as follows from footnotes to Prop. 5 and Th. 3.

We derive inequality

$$\|u\|_0 \leqslant c \|u\|_{-1} + \|\mathcal{B}\|_{\Sigma(\mathcal{I}^2;\mathcal{I}^3)} \cdot \|\mathcal{A}u\|_0 \leqslant c_1 (\|\mathcal{A}u\|_0 + \|u\|_{-1}), \qquad \forall u \in L^2.$$

Same estimate holds when we replace A by A.

We have also the interesting

REMARK 2. – Let $a(x, \xi)$ be a symbol and A(x, D) the associated p.d.o. Assume that $\lambda_0 \in C$ is an eigen-value of A(x, D) (in $L^2(R^n)$), such that $|a(x, \xi) - \lambda_0| > \alpha > 0$ $\forall x \in R^n$, $|\xi| = 1$. Then, any eigen-vector $u_0(x)$ corresponding to λ_0 is a C^{∞} -function.

In fact, $b(x, \xi) = (a(x, \xi) - \lambda_0)^{-1}$ is a symbol. If B(x, D) is associated to it we get, as in Remark 1, that $B(x, D)(A(x, D) - \lambda_0 E) = E + T$, where E is the identity operator and T has order ≤ -1 . It follows: $\theta = B(A - \lambda_0 E)u_0 = u_0 + Tu_0$, i.e. $u_0 = -Tu_0$. Being $u_0 \in L^2$, it follows that $Tu_0 \in H^1$ and $u_0 \in H^1$ too.

In the same way we get that $u_0 \in \bigcap_{p=0}^{\infty} H^p$, which implies, as wellknown, that $u_0(x) \in C^{\infty}(\mathbb{R}^n)$.

Let us consider now the operator $I_s = (1+|D|^2)^{s/2}$, defined by $I_s \widetilde{u}(\xi) = (1+|\xi|^2)^{s/2} \widetilde{u}(\xi)$, $\forall u \in S$. A useful result is given in

THEOREM 4. – Let $a(x, \xi)$ be a symbol, A(x, D) the associated pseudo-differential operator. We have:

(5.35)
$$||[A(x, D), I_s]||_{L^{s}(\mathbb{R}^n)} \leq C ||u||_{H^{s-1}}, \qquad \forall u \in \mathbb{S}.$$

In fact, we have:

$$(5.36) \qquad \widetilde{A(x,D)I_{s}u(\xi)} = a(\infty,\xi) \big(1+|\xi|^{\,2}\big)^{s/2} \widetilde{u}(\xi) + \\ + (2\pi)^{-n/2} \Big|\widetilde{a}'(\xi-\eta,\xi) \big(1+|\eta|^{\,2}\big)^{s/2} \widetilde{u}(\eta) \, d\eta \;,$$

and also

(5.37)
$$\widehat{I_{s}A(x,D)u}(\xi) = (1+|\xi|^{2})^{s/2} \widehat{A(x,D)u}(\xi) = (1+|\xi|^{2})^{s/2} a(\infty,\xi) \widetilde{u}(\xi) + (2\pi)^{-n/2} \int \widetilde{a}'(\xi-\eta,\xi) (1+|\xi|^{2})^{s/2} \widetilde{u}(\eta) d\eta$$

and hence it can be deduced that

$$(5.38) \quad \widehat{[A(x,D),I_s]}u(\xi) = (2\pi)^{-n/2} \int \widetilde{a}'(\xi-\eta,\xi) [(1+|\eta|^2)^{s/2} - (1+|\xi|^2)^{s/2}] \widetilde{u}(\eta) d\eta = U_s(\xi),$$

$$\xi \in \mathbb{R}^n - \{0\}.$$

By estimating the norm L^2 of $U_s(\xi)$ we have first of all the point-wise estimate

$$(5.39) \qquad |U_s(\xi)| \leqslant C_v \int (1+|\xi-\eta|^2)^{-p} |(1+|\eta|^2)^{s/2} - (1+|\xi|^2)^{s/2} ||\tilde{u}(\eta)| d\eta \; .$$

Let us remark here the elementary inequality, for $0 < \theta < 1$

$$(5.40) \qquad (1+|\eta+\theta(\xi-\eta)|^2)^{(s-1)/2} \leq 2^{|s-1|/2} (1+|\eta|^2)^{(s-1)/2} (1+|\theta(\xi-\eta)|^2)^{|s-1|/2}$$

and therefore, as |s-1|/2 > 0, $0 < \theta < 1$: $(1 + (\theta(\xi - \eta)|^2)^{|s-1|/2} \le (1 + |\xi - \eta|^2)^{|s-1|/2}$ whence

$$(5.41) \qquad (1+|\eta+\theta(\xi-\eta)|^2)^{(s-1)/2} \leq 2^{|s-1|/2} (1+|\eta|^2)^{(s-1)/2} (1+|\xi-\eta|^2)^{|s-1|/2}.$$

By Taylor's formula, we have

$$(5.42) \qquad (1+|\xi|^2)^{s/2} - (1+|\eta|^2)^{s/2} = ((\xi-\eta), \operatorname{grad}(1+|\xi|^2)^{s/2}_{\xi-\xi}), \qquad \zeta = \eta + \theta(\xi-\eta)$$

$$|(1+|\xi|^2)^{s/2} - (1+|\eta|^2)^{s/2}| \leqslant |\xi-\eta| |\operatorname{grad}(1+|\xi|^2)^{s/2}_{\xi-\zeta}|.$$

As we have

$$\frac{\partial}{\partial \xi_i} (1+|\xi|^2)^{s/2} = \xi_i s (1+|\xi|^2)^{s/2-1},$$

it follows that

(5.44)
$$|\operatorname{grad}(1+|\xi|^2)^{s/2}| = |\xi||s|(1+|\xi|^2)^{s/2-1} \leqslant |s|(1+|\xi|^2)^{(s-1)/2}$$

and hence

$$\begin{aligned} (5.45) \qquad & |(1+|\xi|^{2})^{s/2} - (1+|\eta|^{2})^{s/2}| \leqslant |\xi-\eta| |s| (1+|\eta+\theta(\xi-\eta)|^{2})^{(s-1)/2} \leqslant \\ & \leqslant |s| (1+|\xi-\eta|^{2})^{\frac{1}{2}} (1+|\eta+\theta(\xi-\eta)|^{2})^{(s-1)/2} \leqslant \\ & \leqslant |s| (1+|\xi-\eta|^{2})^{\frac{1}{2}} 2^{|s-1|/2} (1+|\eta|^{2})^{(s-1)/2} (1+|\xi-\eta|^{2})^{|s-1|/2}. \end{aligned}$$

Introducing (5.45) in (5.39) we shall obtain

$$\begin{split} |U_s(\xi)| \leqslant C_{p,s} & \int (1+|\xi-\eta|^2)^{-p} (1+|\xi-\eta|^2)^{(|s-1|+1)/2} (1+|\eta|^2)^{(s-1)/2} |\tilde{u}(\eta)| \, d\eta = \\ & = C_{p,s} & \int (1+|\xi-\eta|^2)^{-p+(|s-1|+1)/2} (1+|\eta|^2)^{(s-1)/2} |\tilde{u}(\eta)| \, d\eta \; . \end{split}$$

From here on the proof finishes as in Theorem 2, when we take large enough p.

REMARK. - Same proof works for the commutator $[A(x, D), I_s]$ (just replace in (5.38) $\tilde{a}'(\xi - \eta, \xi)$ by $\tilde{a}'(\xi - \eta, \eta)$).

6. - Some inequalities.

We want to prove the following (*)

THEOREM 5. – Let A(x, D), $L^2 \rightarrow L^2$ be a pseudo-differential operator associated with the symbol $a(x, \xi)$, such that $a = \overline{a}$ and

$$(6.1) a(x,\xi) \geqslant \gamma$$

^(*) Same result holds for the operator $\mathcal{A}(x, D)$; also, nonreal valued symbols $a(x, \xi)$ such that Re $a(x, \xi) \ge \gamma$ can be considered. The proof uses (6.2) and (4.10), (cfr. with our paper [4], Th. 3).

for $|\xi|=1$, $x\in \mathbb{R}^n$. Then for every $\varepsilon>0$ there is a constant $C'(\varepsilon)$ such that, for $u\in \mathbb{S}$

(6.2) Re
$$(A(x, D)u, u)_{t^2} + C'(\varepsilon) \|u\|_{H^{-\frac{1}{2}}}^2 \ge (\gamma - \varepsilon) \|u\|_{L^2}^2$$

is verified.

Proof. - In fact, we have obviously, for arbitrary $\varepsilon > 0$, the inequality

(6.3)
$$a(x,\xi) - \gamma + \varepsilon \geqslant \varepsilon,$$

for $|\xi| = 1$, $x \in \mathbb{R}^n$.

Let be $b(x,\xi) = (a(x,\xi) - \gamma + \varepsilon)^{\frac{1}{2}}$, $x \in \mathbb{R}^n$, $|\xi| = 1$; for arbitrarily $\xi \in \mathbb{R}^n - \{0\}$ we put $b(x,\xi) = b(x,\xi/|\xi|)$. Hence $b(x,\xi)$ is homogeneous of order 0. It is «easy» to verify that, when $x \in \mathbb{R}^n$ and $|\xi| = 1$ we have

$$(6.4) |(1+|x|^2)^p D_x^{\alpha} \partial_{\xi}^{\beta} b'(x,\xi)| \leqslant C_{p,\alpha,\beta},$$

if we are based on the same property valid for $a'(x, \xi)$ and upon the fact that $a(x, \xi) - \gamma + \varepsilon \geqslant \varepsilon$ for $\xi \in \mathbb{R}^n - \{0\}$, $x \in \mathbb{R}^n$.

Hence, $b(x, \xi)$ is a symbol in the sense of Kohn-Nirenberg. We consider hence the operators B(x, D) and $\mathcal{B}(x, D)$ associated with the symbol $b(x, \xi)$. We have

1) The operator $A - (\gamma - \varepsilon)I - \Re \cdot B$ is of order ≤ -1 .

In fact, $B(x, D)B(x, D) - b^2(x, D)$ is of order ≤ -1 , as shown in Chapter 5. Being $b^2(x, \xi) = a(x, \xi) - \gamma + \varepsilon$, we have that $b^2(x, D) = A(x, D) - (\gamma - \varepsilon)I$, and hence we deduce that $B(x, D)B(x, D) - A(x, D) + (\gamma - \varepsilon)I$ is of order ≤ -1 .

Hence: $B \cdot B = A - (\gamma - \varepsilon)I + T_{-1}$ and $\mathfrak{B}B = (\mathfrak{B} - B)B + B \cdot B$; here T_{-1} is an operator of order $\leqslant -1$; whence we get

$$(6.5) \qquad A - (\gamma - \varepsilon)I - \mathfrak{B} \cdot B = A - (\gamma - \varepsilon)I - B \cdot B + (B - \mathfrak{B})B = A - (\gamma - \varepsilon)I - A + (\gamma - \varepsilon)I - T_{-1} + (B - \mathfrak{B})B = T_{-1} + U_{-1}$$

as $B-\mathcal{B}$ being of order $\leqslant -1$ and B of order 0 their product is of order $\leqslant -1$. Hence, we have also

2) Let T be an operator of S in S' such that $||Tu||_s \leq C||u||_{s-1}$ (1). Then T is continuous of L^2 in L^2 , and we have

(6.6)
$$\operatorname{Re}(Tu, u)_0 \geqslant -C' \|u\|_{-\frac{1}{2}}^2, \quad \forall u \in S.$$

In fact, we obtain obviously the estimate

(6.7)
$$|\operatorname{Re}(Tu, u)_0| \le |(Tu, u)_0| \le ||Tu||_s ||u||_{-s}$$

⁽¹⁾ For any real s.

by Schwarz's inequality (generalized)

$$|(u,v)_0| \leqslant ||u||_s ||v||_{-s}, \qquad \forall u,v \in S.$$

Hence:

(6.8)
$$|\operatorname{Re}(Tu, u)_0| \leq C_s ||u||_{s-1} ||u||_{-s}, \quad \forall \text{ real } s, u \in S;$$

we take $s = \frac{1}{2}$ and we obtain

$$|\operatorname{Re}(Tu, u)_0| \leqslant C' ||u||_{-\frac{1}{2}}^2$$

therefore is

(6.10)
$$\operatorname{Re}(Tu, u)_{0} > -C' \|u\|_{-\frac{1}{4}}^{2}.$$

By combining 1) and 2), we deduce that

(6.11)
$$\operatorname{Re}\left(\left(A-(\gamma-\varepsilon)I-\mathcal{B}\cdot B\right)u,\,u\right)_{0}>-C'\|u\|_{-\frac{1}{2}}^{2},\qquad\forall u\in\mathbb{S},$$

or

(6.12)
$$\operatorname{Re}(Au, u)_{0} - (\gamma - \varepsilon) \|u\|_{0}^{2} - \operatorname{Re}(\mathfrak{B} \cdot Bu, u)_{0} \ge -C' \|u\|_{-\frac{1}{2}}^{2};$$

as $b(x,\xi) = \bar{b}(x,\xi)$, it follows that ${\mathfrak B}$ is the L^2 adjoint of B whence

(6.13)
$$\operatorname{Re}(Au, u)_{0} - (\gamma - \varepsilon) \|u\|_{0}^{2} - \|Bu\|_{0}^{2} \ge -C' \|u\|_{-\frac{1}{2}}^{2}$$

and therefore

(6.14)
$$\operatorname{Re}(Au, u)_{0} + C' \|u\|_{-1}^{2} \geqslant (\gamma - \varepsilon) \|u\|_{0}^{2}, \quad \forall u \in S.$$

By using this result, we arrive at the following main

THEOREM 6. – Let $a(x, \xi)$ be a symbol, A(x, D) the associated pseudo-differential operator. Let be $K = \max_{x \in \mathbb{R}^n} |a(x, \xi)|$. We have that $\forall \varepsilon > 0$ there is a constant C_{ε} such that the inequality

(6.15)
$$||A(x, D)u||_{0} \leq (K+\varepsilon)||u||_{0} + C_{\varepsilon}||u||_{-1},$$

for $u \in S$, is verified.

Remark. – Let be
$$K = \max_{\substack{x \in \mathbb{R}^n \\ |\xi|=1}} |a(x,\xi)|$$
 and, $\forall N = 1, 2, ...$

$$K_N = \max_{\substack{|x| \leq N \\ |\xi| = 1}} |a(x, \xi)|.$$

Then obviously we have $K_1 \leqslant K_2 \leqslant ... \leqslant K$.

Furthermore we can see that $\lim_{N\to\infty} K_N = K$.

PROOF. – In fact, let be $b = \overline{a} \cdot a = |a|^2$; we see that $b(x, \xi)$ is a symbol too. We put B(x, D) as the associated pseudo-differential operator; then consider $\overline{\mathcal{A}}(x, D)$ associated with $\overline{a}(x, \xi)$; $\overline{\mathcal{A}}(x, D)$ is the L^2 -adjoint of A(x, D).

We have $B - \overline{A}A$ is of order ≤ -1 .

In fact, $B - \overline{A}A = T_{-1}$ is of order ≤ -1 ; hence:

$$B - \overline{A}A = \overline{A}A - \overline{A}A + T_{-1} = (\overline{A} - \overline{A})A + T_{-1}$$

is again of order ≤ -1 .

Hence, by 2) of Theorem 5 we deduce

(6.16)
$$\operatorname{Re} ((B - \mathcal{H}A)u, u)_{L^{\bullet}} > -c' \|u\|_{H^{-\frac{1}{2}}}^{2}, \qquad \forall u \in S$$

and therefore:

(6.17)
$$\operatorname{Re}(Bu, u)_{t} - \operatorname{Re}(\overline{A} \cdot Au, u)_{t} = \operatorname{Re}(Bu, u)_{0} - \|Au\|_{0}^{2} \ge -c'\|u\|_{-\frac{1}{4}}^{2}, \quad \forall u \in S$$

Let us consider now the symbol $\alpha(x, \xi) = K^2 - \overline{a}(x, \xi) a(x, \xi)$ which satisfies obviously the conditions of Theorem 5. Hence, we obtain, taking $\gamma = 0$ in Theorem 5, that $\forall \varepsilon' > 0$, $\exists c'(\varepsilon')$ such that, for $u \in \mathcal{S}$

(6.18)
$$\operatorname{Re} ((K^{2} - B)u, u)_{0} + c'(\varepsilon') \|u\|_{-1}^{2} \ge -\varepsilon' \|u\|_{0}^{2},$$

is verified.

By adding (6.17) and (6.18) we arrive at the inequality

(6.19)
$$K^{2} \|u\|_{0}^{2} - \|Au\|_{0}^{2} + c'(\varepsilon') \|u\|_{-\frac{1}{2}}^{2} \geqslant -c' \|u\|_{-\frac{1}{2}}^{2} - \varepsilon' \|u\|_{0}^{2}$$

that is

(6.21)
$$\|Au\|_0^2 \leqslant (K^2 + \varepsilon') \|u\|_0^2 + C_1(\varepsilon') \|u\|_{-\frac{1}{2}}^2, \qquad \forall u \in S, \ \forall \varepsilon' > 0$$

and we may assume $C_1(\varepsilon') > 0$; using now $\sqrt{a+b} \leqslant \sqrt{a} + \sqrt{b}$, a, b > 0 we have

On the other hand, $\forall \varepsilon'' > 0$, $\exists \gamma(\varepsilon'')$, such that $||u||_{-\frac{1}{2}} \leqslant \varepsilon'' ||u||_{0} + \gamma(\varepsilon'') ||u||_{-1}$ whence we obtain, from (6.22), the estimate

(6.23)
$$\|Au\|_{0} \leq (K + \sqrt{\varepsilon'}) \|u\|_{0} + C_{2}(\varepsilon')\varepsilon'' \|u\|_{0} + \gamma(\varepsilon'')C_{2}(\varepsilon') \|u\|_{-1}.$$

Let $\varepsilon > 0$ be given; we take ε' such that $\sqrt{\varepsilon'} < \varepsilon/2$; and ε'' such that $C_2(\varepsilon')\varepsilon'' < \varepsilon/2$; this is trivially done. We have, with a constant $\Gamma(\varepsilon', \varepsilon'') = \gamma'(\varepsilon)$

$$\|Au\|_{0} \leqslant (K+\varepsilon) \|u\|_{0} + \gamma'(\varepsilon) \|u\|_{-1}, \qquad \forall \varepsilon > 0, \ \forall u \in S.$$

COROLLARY. - If we have

$$K = \max_{\substack{x \in \mathbb{R}^n \\ |\xi| = 1}} |a(x, \xi)|,$$

then for every real s and $\forall \varepsilon > 0$ there is a constant $C_{\varepsilon,s}$ such that

(6.25)
$$||Au||_{s} \leq (K+\varepsilon) ||u||_{s} + C_{\varepsilon,s} ||u||_{s-1} ,$$

is verified.

In fact, we observe here that, using some previous results, we obtain

$$\begin{aligned} \|Au\|_s &= \|(I+|D|^2)^s Au\|_0 \leqslant \|A(I+|D|^2)^s u\|_0 + \\ &+ \|[A, (I+|D|^2)^s] u\|_0 \leqslant (K+\varepsilon) \|u\|_s + C_s \|(I+|D|^2)^s u\|_{-1} + \\ &+ C \|u\|_{s-1} = (K+\varepsilon) \|u\|_s + C_s^1 \|u\|_{s-1}. \end{aligned}$$

We will prove now, as a consequence of the foregoing result, the following

THEOREM 7. – Let $a(x, \xi)$ be a symbol; $K = \max_{\substack{x \in \mathbb{R}^n \\ |\xi|=1}} |a(x, \xi)|$ and A(x, D) the associated pseudo-differential operator. Then we have

$$\inf_{x \in \mathcal{T}} \|A(x, D) + T\| \leqslant K$$

where \mathcal{C}_{-1} is the class of operators of order $\leqslant -1$, and the norm is the one of $\mathfrak{L}\big(L^2(R^n);L^2(R^n)\big)$.

In fact, we must prove that $\forall \varepsilon > 0$ there is an operator T_{ε} of order $\leqslant -1$ such that

We build such an operator T_s by considering a function in $C^{\infty}(\mathbb{R}^n)$, $\varphi_{\mathbb{R}}(\xi)$ dependent on parameter R > 0, such that $0 \leqslant \varphi_{\mathbb{R}}(\xi) \leqslant 1$, $\varphi_{\mathbb{R}}(\xi) = 1$ for $|\xi| \leqslant R$, $\varphi_{\mathbb{R}}(\xi) = 0$ for $|\xi| \geqslant 2R$.

The operator $T_R = -A\varphi_R(D)$ is of order $\leqslant -1$; in fact, we have for every $u \in S$, the estimates

$$\begin{split} (6.29) \qquad & \|T_R u\|_s = \|A\varphi_R(D)u\|_s \leqslant C_s \|\varphi_R(D)u\|_s = \\ & = C_s \Big(\int (1+|\xi|^2)^s \varphi_R^2(\xi) |\tilde{u}(\xi)|^2 d\xi \Big)^{\frac{1}{2}} \leqslant C_s \Big(\int (1+|\xi|^2)^s |\tilde{u}(\xi)|^2 d\xi \Big)^{\frac{1}{2}} = \\ & = C_s \Big(\int (1+|\xi|^2)^{s-1} |\tilde{u}(\xi)|^2 (1+|\xi|^2) d\xi \Big)^{\frac{1}{2}} \leqslant (1+4R^2) C_s \|u\|_{s-1} = C_{s,R} \|u\|_{s-1}. \end{split}$$

By applying here Theorem 6, we have, $\forall \varepsilon > 0$ and $u \in S$,

Remark that we have

(6.31)
$$\|(I - \varphi_{R}(D))u\|_{0} = \left(\int (1 - \varphi_{R}(\xi))^{2} |\tilde{u}(\xi)|^{2} d\xi\right)^{\frac{1}{2}} < \|u\|_{0}, \qquad u \in \mathbb{S}$$

and also that

$$\begin{aligned} (6.32) \qquad & \| \big(I - \varphi_{\mathbb{R}}(D) \big) u \|_{-1} = \Big(\int (1 - \varphi_{\mathbb{R}}(\xi))^2 |\tilde{u}(\xi)|^2 \big(1 + |\xi|^2 \big)^{-1} d\xi \Big)^{\frac{1}{2}} \leqslant \\ & \leqslant \Big(\int_{|\xi| \geqslant \mathbb{R}} (1 + |\xi|^2)^{-1} |\tilde{u}(\xi)|^2 d\xi \Big)^{\frac{1}{2}} \leqslant \Big(\int (1 + R^2)^{-\frac{1}{2}} |\tilde{u}(\xi)|^2 d\xi \Big)^{\frac{1}{2}} \end{aligned}$$

whence we get

(6.33)
$$\|(A+T_R)u\|_0 \leqslant (K+\varepsilon)\|u\|_0 + C_{\varepsilon}(1+R^2)^{-\frac{1}{2}}\|u\|_0.$$

We choose R_{ϵ} such that $C_{\epsilon}/\sqrt{1+R_{\epsilon}^2}<\varepsilon$; hence we get finally

and this proves Theorem 7.

7. - Some results on compactness.

In this paragraph we will prove the following

THEOREM 8. – Let $a(x, \xi)$ be a symbol, A(x, D) and A(x, D) the associated pseudo-differential operators. Then A = A is compact linear operator, $L^2(\mathbb{R}^n) \to L^2(\mathbb{R}^n)$.

Let $a(x, \xi)$, $b(x, \xi)$ and $c(x, \xi) = a(x, \xi)b(x, \xi)$ be three symbols, and A(x, D), B(x, D), C(x, D) the associated pseudo-differential operators. Then A(x, D)B(x, D) - C(x, D) is a compact operator, $L^2(\mathbb{R}^n) \to L^2(\mathbb{R}^n)$.

REMARK 1. – Let $a(x, \xi)$, $b(x, \xi)$ be two symbols such that $a(x, \xi)$ $b(x, \xi) = 0$ $\forall x \in \mathbb{R}^n$, $\xi \in \mathbb{R}^n - \{0\}$. Then the operator A(x, D)B(x, D) is compact in L^2 .

In fact AB-C is compact, where C is associated to $a(x,\xi)$ $b(x,\xi)\equiv 0$.

So, C is the null operator, and the result follows.

REMARK 2. – Let $\varphi(x)$, $\psi(x)$ be C^{∞} functions with disjoint supports, and $a(x, \xi)$ be a symbol. Then the operator

$$\varphi(x) A(x, D) \psi(x)$$

is compact, $L^2 \rightarrow L^2$.

We have in fact $\varphi(x) \psi(x) \equiv 0$. Furthermore

$$\varphi A \psi = (A \varphi) \psi + [\varphi, A] \psi = A(\varphi \psi) + [\varphi, A] \psi = [\varphi, A] \psi.$$

But $[\varphi, A]$ is compact, as follows also from Th. 8, because $\varphi(x)$ is a symbol.

PROOF OF THEOREM 8. - In the present case, we use the following

CRITERION OF COMPACTNESS. - Let $S \subset L^2(\mathbb{R}^n)$ be a set, such that

a)
$$||u||_{H^1} = \left(\int (1+|\xi|^2)|\tilde{u}(\xi)|^2 d\xi\right)^{\frac{1}{2}} \leqslant C \text{ for } u \in S \text{ and }$$

b)
$$\lim_{|\tau|\to 0} \int\limits_{|\xi|\leqslant R} |\tilde{u}(\xi+\tau)-\tilde{u}(\xi)|^2 d\xi = 0$$
 uniformly for $u\in S$, for any fixed $R>0$.

The S is precompact in L^2 , and therefore a subsequence of every sequence in S is convergent in L^2 .

As a set S is precompact in L^2 if, and only if, the set \tilde{S} , of FOURIER's transforms is precompact in L^2 , it will be sufficient to prove that:

Every set $\mathfrak S$ which is bounded in $L^2_{(1+|\xi|^2)}$ and is L^2 -equicontinuous on every sphere $\{\xi; |\xi| \leqslant R\}$ is relatively compact in $L^2(R^n_{\xi})$.

This last result is a consequence of the well-known criterion of M. RIESZ. A set K in $L^2(R_{\varepsilon}^n)$ is relatively compact if, and only if

a)
$$\int |v(\xi)|^2 d\xi \leqslant C$$
, $\forall v \in K$

b)
$$\lim_{| au| \to 0} \int |v(\xi + au) - v(\xi)|^2 d\xi = 0$$
 uniformly for $v \in K$

c)
$$\lim_{\substack{x\uparrow\infty\\|\xi|\geqslant x}}\int\limits_{|\xi|\geqslant x}|v(\xi)|^2d\xi=0$$
 uniformly for $v\in K$.

Let us consider now the set \mathfrak{S} which is bounded in $L^2_{(1+|\xi|^2)}$, hence it is bounded in L^2 , and a) is verified.

Besides, as $\int (1+|\xi|^2)|v(\xi)|^2 d\xi \leqslant C$, it follows that $\int (1+|\xi|^2)|v(\xi)|^2 d\xi \leqslant C$ and consequently $(1+R^2)\int |v(\xi)|^2 d\xi \leqslant C$ and therefore

(7.1)
$$\int\limits_{|\xi|\geqslant R} |v(\xi)|^{\,2}d\xi\leqslant C(1+R^{\,2})^{-1}\,, \qquad \forall R>0, \ \forall v\in\mathfrak{S}\,;$$

hence, c) is verified.

We observe here the following inequality, valid for $\tau \in \mathbb{R}^n$, $|\tau| \leq 1$

$$(7.2) \qquad \int\limits_{|\xi| \geqslant R+1} |v(\xi+\tau)-v(\xi)|^{\,2} d\xi \leqslant 2 \int\limits_{|\xi+\tau| \geqslant R} |v(\xi+\tau)|^{\,2} d\xi + 2 \int\limits_{|\xi| > R} |v(\xi)|^{\,2} d\xi \qquad \text{for } R>0, \ v \in \mathfrak{S}.$$

In fact; for $|\xi| > R+1$, $|\tau| \le 1$ we get $|\xi+\tau| > |\xi| - |\tau| > R+1-1 = R$ and besides we have $|a-b|^2 \le 2|a|^2 + 2|b|^2$, whence we derive first of all

(7.3)
$$\int |v(\xi+\tau)-v(\xi)|^2 d\xi \leq 2 \int |v(\xi+\tau)|^2 d\xi + 2 \int |v(\xi)|^2 d\xi .$$

$$|\xi| \geqslant_{R+1} |\xi| \geqslant_{R+1} |\xi| \geqslant_{R+1}$$

As the set $\{\xi; |\xi| \geqslant R+1\}$ is included in $\{\xi; |\xi+\tau| \geqslant R\}$ when $|\tau| \leqslant 1$ we deduce that

(7.4)
$$\int_{|\xi|\geqslant R+1} |v(\xi+\tau)|^2 d\xi \leqslant \int_{|\xi+\tau|\geqslant R} |v(\xi+\tau)|^2 d\xi$$

and hence we get

$$(7.5) \qquad \int\limits_{|\xi|\geqslant R+1} |v(\xi+\tau)-v(\xi)|^{\,2}d\xi \leqslant \\ \leqslant 2\int\limits_{|\xi|\geqslant R} |v(\xi)|^{\,2}d\xi + 2\int\limits_{|\xi|\geqslant R+1} |v(\xi)|^{\,2}d\xi \leqslant 4\int\limits_{|\xi|\geqslant R} |v(\xi)|^{\,2}d\xi \leqslant 4C(1+R^{\,2})^{-1}\,, \qquad \forall v\in\mathfrak{S}.$$

We have, then, for every R > 0 and $|\tau| \le 1$, the estimate

$$(7.6) \qquad \int |v(\xi+\tau)-v(\xi)|^{\,2} d\xi \leqslant \int |v(\xi+\tau)-v(\xi)|^{\,2} d\xi + \, 4C(1+R^{\,2})^{-1} \,, \ \, \forall v \in \mathfrak{S}, \, \, \forall R > 0 \,.$$

Taken $\varepsilon > 0$ let us take R_{ε} such that $4C(1+R_{\varepsilon}^2)^{-1} < \varepsilon/2$, and then $|\tau| < \delta_{R_{\varepsilon},\varepsilon}$ such that

$$\int\limits_{|\xi|\leqslant k+1} |v(\xi+\tau)-v(\xi)|^2 d\xi < \frac{\varepsilon}{2}\,, \qquad \qquad \forall v\in \mathfrak{S}$$

(according to the hypothesis). Hence, we have, for $|\tau| \leqslant \delta'_{\varepsilon}$

(7.7)
$$\int |v(\xi+\tau)-v(\xi)|^2 d\xi \leqslant \varepsilon, \qquad \forall v \in \mathfrak{S}.$$

As a), b) and c) have been so verified, the set \mathfrak{S} is precompact for the criterion of M. RIESZ.

We will now prove the

THEOREM 8a. – If $a(x, \xi)$ is a symbol, the operator A - A is compact in L^2 .

We define T = A - A; let Ω be a set which is bounded in $L^2(\mathbb{R}^n)$. We will show that the set $T(\Omega)$ is relatively compact in $L^2(\mathbb{R}^n)$; or that $\widetilde{T(\Omega)} = \{\widetilde{Tu}, u \in \Omega\}$ is relatively compact in $L^2(\mathbb{R}^n)$.

By a preceding result (Proposition 4) we have

$$||(A - A)u||_{H^1} \leqslant C||u||_0;$$

hence, for $u \in \Omega$, the set $\{Tu\}_{u \in \Omega}$ is bounded in H^1 . Therefore the set $\widetilde{T(\Omega)}$ is bounded in $L^2_{(1+|\xi|^4)}$.

Besides, we have to prove that for every R > 0, it is

(7.9)
$$\lim_{|\tau| \to 0} \int_{|\xi| \leq x} |\widetilde{Tu}(\xi + \tau) - \widetilde{Tu}(\xi)|^2 d\xi = 0$$

uniformly for $u \in \Omega$.

The first (preliminary) result is given here in

LEMMA 1. – We have, in the case of a symbol $a(x,\xi)$ such that $a(\infty,\xi)\equiv 0$

(7.10)
$$\lim_{|\tau| \to 0} \int_{|\xi| \leqslant R} |\widetilde{Au}(\xi + \tau) - \widetilde{Au}(\xi)|^2 d\xi = 0$$

uniformly for $u \in \Omega \cap S$.

Let us remember the formula which we have proved before (Proposition 1).

(7.11)
$$\widetilde{Au}(\xi) = (2\pi)^{-n/2} \int \exp\left(-ix \cdot \xi\right) a(x, \xi) u(x) dx, \qquad \forall u \in \mathbb{S}$$

(the Fourier transform in the sense of S', belongs to $L^2(\mathbb{R}^n)$) and therefore we obtain

(7.12)
$$\widetilde{Au}(\xi+\tau) = (2\pi)^{-n/2} \Big[\exp\left(-ix\cdot(\xi+\tau)\right) a(x,\xi+\tau) u(x) dx \Big]$$

and consequently

$$(7.13) \qquad \widetilde{Au}(\xi+\tau) - \widetilde{Au}(\xi) = (2\pi)^{-n/2} \int \exp\left(-ix \cdot (\xi+\tau)\right) a(x, \xi+\tau) u(x) dx - \\ - (2\pi)^{-n/2} \int \exp\left(-ix \cdot \xi\right) a(x, \xi) u(x) dx = (2\pi)^{-n/2} \int \left[\exp\left(-ix \cdot (\xi+\tau)\right) - \exp\left(-ix \cdot \xi\right)\right] \cdot \\ \cdot a(x, \xi+\tau) u(x) dx + (2\pi)^{-n/2} \int \exp\left(-ix \cdot \xi\right) \left[a(x, \xi+\tau) - a(x, \xi)\right] u(x) dx = \\ = I_1(\xi, \tau) + I_2(\xi, \tau).$$

Hence, we have the estimate

$$\begin{aligned} |I_1(\xi,\tau)| & \leq c \int |\exp(-ix \cdot \tau) - 1| \ |a(x,\xi+\tau)| \ |u(x)| \ dx \leq \\ & \leq c \Big(\int |u(x)|^2 dx \Big)^{\frac{1}{2}} \Big(\int |\exp(-ix \cdot \tau) - 1|^2 |a(x,\xi+\tau)|^2 dx \Big)^{\frac{1}{2}} \ . \end{aligned}$$

On the other hand, we have:

$$|\exp{(-\operatorname{i} x \cdot \tau)} - 1|^{\,{}_2} = |\cos{x} \cdot \tau - 1 - \operatorname{i} \sin{x} \cdot \tau| = 2 - 2\cos{x} \cdot \tau = 4\sin^2{\frac{x \cdot \tau}{2}}$$

as: $|\sin\alpha| \le |\alpha|$ we deduce that $|\exp(-ix\cdot\tau)-1|^2 \le |x|^2|\tau|^2$ whence we obtain

$$(7.15) \qquad |I_1(\xi,\tau)| \leqslant C|\tau| \|u\|_0 \Big(\int |x|^2 |a(x,\xi+\tau)|^2 dx \Big)^{\frac{1}{2}} = C_1|\tau| \|u\|_0$$

as obviously $|x| |a(x,\xi)| \in L^2$ uniformly with respect to $\xi \in \mathbb{R}^n - \{0\}$ (we remember that we took $a(\infty,\xi) \equiv 0$, so $a'(x,\xi) = a(x,\xi)$).

And on the other hand we have the estimate concerning $I_2(\xi, \tau)$

$$|I_2(\xi,\tau)| \leqslant C \|u\|_0 \left(\int |a(x,\xi+\tau) - a(x,\xi)|^2 dx \right)^{\frac{1}{2}}.$$

Let us remember here that in the case $a(\infty, \xi) \equiv 0$ it follows

$$(7.17) (1+|x|^2)^p |a(x,\xi)| \leq C_p, x \in \mathbb{R}^n, \; \xi \in \mathbb{R}^n - \{0\}, \; p=1,2,\dots$$

(7.18)
$$(1+|x|^2)^p |a(x,\xi+\tau)-a(x,\xi)| \leq C_p \frac{|\tau|}{|\xi|+|\xi+\tau|},$$

$$x \in \mathbb{R}^n, \ \xi, \ \tau \in \mathbb{R}^n - \{0\}, \ p=1,2,\dots$$

and therefore we have, for every fixed R > 0

$$\begin{split} (7.19) \qquad & \int\limits_{|\xi|\leqslant R} |Au(\xi+\tau)-Au(\xi)|^{\,2}d\xi = \int\limits_{|\xi|\leqslant R} |I_{1}(\xi,\,\tau)+I_{2}(\xi,\,\tau)|^{\,2}d\xi \leqslant \\ & \leqslant 2\int\limits_{|\xi|\leqslant R} |I_{1}(\xi,\,\tau)|^{\,2}d\xi + 2\int\limits_{|\xi|\leqslant R} |I_{2}(\xi,\,\tau)|^{\,2}d\xi \leqslant \\ & \leqslant C\omega_{R,n}|\tau|^{\,2}\|u\|_{0}^{\,2} + 2\int\limits_{|\xi|\leqslant \varrho} |I_{2}(\xi,\,\tau)|^{\,2}d\xi + 2\int\limits_{\varrho\leqslant |\xi|\leqslant R} |I_{2}(\xi,\,\tau)|^{\,2}d\xi\;, \qquad \forall \varrho>0,\;\; \varrho< R\;. \end{split}$$

For $|\xi| \leq \varrho$, we estimate $I_2(\xi, \tau)$ in the following way (using (7.16) and (7.17)):

$$\begin{aligned} |I_{2}(\xi,\tau)| &\leqslant 2^{\frac{1}{2}} C \|u\|_{0} \Big(\int (|a(x,\xi+\tau)|^{2} + |a(x,\xi)|^{2}) \, dx \Big)^{\frac{1}{2}} &\leqslant \\ &\leqslant C_{1} \|u\|_{0} 2^{\frac{1}{2}} C_{r} \Big(\int (1+|x|^{2})^{-2r} \, dx \Big)^{\frac{1}{2}} &= C_{1,r} \|u\|_{0} \, , \end{aligned}$$

where p is sufficiently large.

For $|\xi| > \rho$ we use the estimate (deriving from (7.18))

$$(7.21) \qquad |I_2(\xi,\tau)| \leqslant C_v \Big(\int (1+|x|^2)^{-2p} \, dx \Big)^{\frac{1}{4}} \|u\|_0 |\tau| \big(|\xi| \big)^{-1} \,, \qquad \forall \xi \in \mathbb{R}^n - \{0\}, \ |\tau| \leqslant 1$$

and hence we obtain, using (7.19), (7.20), (7.21), the inequality

$$\begin{split} (7.22) \qquad \int\limits_{|\xi|\leqslant \mathbb{R}} |\widetilde{Au}(\xi+\tau)-\widetilde{Au}(\xi)|^2 d\xi \leqslant C_1|\tau|^2 \|u\|_0^2 + C\|u\|_0^2 \int\limits_{|\xi|\leqslant \varrho} d\xi + \\ & + C_1 \|u\|_0^2 |\tau|^2 \bigg(\int\limits_{\varrho\leqslant |\xi|\leqslant \mathbb{R}} \frac{d\xi}{|\xi|^2} \bigg) \leqslant C_R |\tau|^2 \|u\|_0^2 \bigg(1+\frac{1}{\varrho^2}\bigg) + C\|u\|_0^2 \int\limits_{|\xi|\leqslant \varrho} d\xi \;. \end{split}$$

If $u \in \Omega \cap S$ we have $||u||_0 \le H$. We take $\varepsilon > 0$, and choose at first $\varrho_0(\varepsilon)$ such that

$$(7.23) CH^2 \int_{|\xi| \leq \varrho_0} d\xi \leq \frac{\varepsilon}{2} .$$

Once $\varrho_0(\varepsilon)$ fixed, we take $\tau_0(\varepsilon)$ such that

$$(7.24) C_{\mathbb{R}}|\tau_0|^2H^2\left(1+\frac{1}{\varrho_0^2(\varepsilon)}\right)<\frac{\varepsilon}{2}.$$

We arrive hence for $|\tau| \leqslant |\tau_0|$ and $\forall u \in \Omega \cap S$ at the estimate

$$\int\limits_{|\xi|\leqslant n} |\widetilde{Au}(\xi+\tau)-\widetilde{Au}(\xi)|^{\,2}d\xi \leqslant \varepsilon \;.$$

Lemma 1 is proved.

Hence, we can observe that:

$$(7.25) \qquad \widetilde{Tu}(\xi) = \widetilde{Au}(\xi) - \widetilde{Au}(\xi) = a(\infty, \xi)\widetilde{u}(\xi) + \\ + \widetilde{A'u}(\xi) - a(\infty, \xi)\widetilde{u}(\xi) - \widetilde{A'u}(\xi) = (\widetilde{A' - A'})u(\xi), \qquad \xi \in \mathbb{R}^n - \{0\}$$

and similarly for $\widetilde{Tu}(\xi+\tau)$, and it will be henceforth sufficient to prove

LEMMA 2. – We have, in the case of a symbol $a(x, \xi)$ with $a(\infty, \xi) \equiv 0$

(7.26)
$$\lim_{|\tau|\to 0} \int_{|\xi|\leqslant n} |\widetilde{\mathcal{A}u}(\xi+\tau) - \widetilde{\mathcal{A}u}(\xi)|^2 d\xi = 0$$

uniformly for $u \in \Omega \cap S$, \forall fixed R > 0.

In fact, we have

$$(7.27) \qquad \widetilde{\mathcal{A}}u(\xi+\tau) - \widetilde{\mathcal{A}}u(\xi) = (2\pi)^{-n/2} \int \left(\tilde{a}(\xi+\tau-\eta,\eta) - \tilde{a}(\xi-\eta,\eta) \right) \tilde{u}(\eta) \, d\eta$$
 and

$$(7.28) \qquad |\widetilde{\mathcal{A}u}(\xi+\tau)-\widetilde{\mathcal{A}u}(\xi)|^2 \leqslant C\Big(\int |\widetilde{u}(\eta)|^2 d\eta\Big)\Big(\int |\widetilde{a}(\xi+\tau-\eta,\eta)-\widetilde{a}(\xi-\eta,\eta)|^2 d\eta\Big) =$$

$$= C\|u\|_0^2 \int |\widetilde{a}(\xi+\tau-\eta,\eta)-\widetilde{a}(\xi-\eta,\eta)|^2 d\eta.$$

We apply Taylor's formula; we obtain, if $\tilde{a} = \tilde{a}(\lambda, \eta)$, the relation

(7.29)
$$\tilde{a}(\xi - \eta + \tau, \eta) - \tilde{a}(\xi - \eta, \eta) = (\tau, \operatorname{grad}_{\lambda} \tilde{a}(\xi - \eta + \theta \tau, \eta)), \quad 0 < \theta < 1$$

and therefore the estimate

$$|\tilde{a}(\xi - \eta + \tau, \eta) - \tilde{a}(\xi - \eta, \eta)| \leq |\tau| |\operatorname{grad}_{\lambda} \tilde{a}(\xi - \eta + \theta \tau, \eta)|.$$

Let us remember now that $\tilde{a}(\lambda, \eta) \in S(\mathbb{R}^n_{\lambda})$ uniformly for $\eta \in \mathbb{R}^n - \{0\}$ and we get therefore

$$\left| (1+|\lambda|^2)^p \frac{\partial}{\partial \lambda_i} \tilde{a}(\lambda,\eta) \right| \leqslant C_p, \qquad \forall \lambda \in \mathbb{R}^n,$$

which gives

$$|\operatorname{grad}_{\lambda} \tilde{a}(\xi - \eta + \theta \tau, \eta)| \leqslant C_{p} (1 + |\xi - \eta + \theta \tau|^{2})^{-p}, \qquad \forall p = 1, 2, \dots$$

and by integrating with respect to η we arrive at the result (in estimate (7.28)). Now, to finish the proof of Theorem 8a, we have to prove also (*)

LEMMA 3. – We have in the case $a(\infty, \xi) \equiv 0$, that, $\forall R > 0$

(7.32)
$$\lim_{|\tau| \to 0} \int_{|\xi| \leq R} |\widetilde{Au}(\xi + \tau) - \widetilde{Au}(\xi)|^2 d\xi = 0$$

(7.33)
$$\lim_{|\tau| \to 0} \int_{|\xi| \leq R} |\widetilde{\mathcal{A}}u(\xi + \tau) - \widetilde{\mathcal{A}}u(\xi)|^2 d\xi = 0$$

uniformly for $u \in \Omega$ -bounded set in $L^2(\mathbb{R}^n)$.

We have already shown this relation for $u \in \Omega \cap S$. Let us remember that the spece S is dense in L^2 . Given $\varepsilon > 0$, and Ω a bounded set in $L^2(\mathbb{R}^n)$, there is $\forall u \in \Omega$ (1), an element $u_{\varepsilon} \in S$, such that $||u - u_{\varepsilon}||_{0} < \varepsilon$. Hence, for $u \in \Omega$ we have $||u||_{0} \leqslant L$, and

$$||u_{\varepsilon}||_{0} \leq ||u-u_{\varepsilon}||_{0} + ||u||_{0} \leq \varepsilon + L \leq L+1.$$

and therefore the set

$$\{u_{\varepsilon}; u \in \Omega\}$$

is a set Ω_1 bounded in L^2 and included in S.

Here we have, for $|\tau| \le |\tau_0(\varepsilon)|$ that in the case $a(\infty, \xi) \equiv 0$

$$\int |\widetilde{A}u_{\varepsilon}(\xi+\tau)-\widetilde{A}u_{\varepsilon}(\xi)|^{2}d\xi \leqslant \varepsilon, \qquad \forall u_{\varepsilon} \in \Omega_{1}$$

(7.37)
$$\iint_{\|\xi\| \leq R} |\widetilde{A}u_{\varepsilon}(\xi + \tau) - \widetilde{A}u_{\varepsilon}(\xi)|^{2} d\xi \leq \varepsilon , \qquad \forall u_{\varepsilon} \in \Omega_{1}.$$

Hence, we deduce the inequalities

$$(7.38) \qquad \int\limits_{|\xi|\leqslant R} |\widetilde{Au}(\xi+\tau)-\widetilde{Au}(\xi)|^2 d\xi \leqslant 3 \int\limits_{|\xi|\leqslant R} |\widetilde{Au}(\xi+\tau)-\widetilde{Au}_{\varepsilon}(\xi+\tau)|^2 d\xi + 1$$

$$+3\int\limits_{|\xi|\leqslant R}|\widetilde{Au_{\varepsilon}}(\xi+\tau)-\widetilde{Au_{\varepsilon}}(\xi)|^2d\xi+3\int\limits_{|\xi|\leqslant R}|\widetilde{Au_{\varepsilon}}(\xi)-\widetilde{Au}(\xi)|^2d\xi\leqslant$$

^(*) Remember that for $u \in L^2$ but $u \notin S$, the definition of Au and Au is by continuity from the definition on $u \in S$.

⁽¹⁾ At least, obviously; we choose a fixed one, for any u.

$$\leqslant 3 \int |\widetilde{A(u-u_{\varepsilon})}(\xi+\tau)|^{\,2} d\xi + 3 \int |\widetilde{Au_{\varepsilon}}(\xi+\tau) - \widetilde{Au_{\varepsilon}}(\xi)|^{\,2} d\xi + 3 \int |\widetilde{A(u-u_{\varepsilon})}(\xi)|^{\,2} d\xi =$$

$$=6\left\|A(u-u_{\epsilon})\right\|_{0}^{2}+3\int\limits_{|\xi|\leqslant R}|\widetilde{Au_{\epsilon}}(\xi+\tau)-\widetilde{Au_{\epsilon}}(\xi)|^{2}d\xi\leqslant 6c\left\|u-u_{\epsilon}\right\|_{0}^{2}+3\int\limits_{|\xi|\leqslant R}|\widetilde{Au_{\epsilon}}(\xi+\tau)-\widetilde{Au_{\epsilon}}(\xi)|^{2}d\xi.$$

For $|\tau| < |\tau_0(\varepsilon)|$ the second integral is $< \varepsilon$ and also $6c \|u - u_\varepsilon\|_0^2 \le 6c\varepsilon^2$; the result is so proven.

The proof for $\mathcal{A}(x, D)$ is similar. Theorem 8a is herewith proven (see Appendix to [3]).

Our Theorem 8 will be completely proved when we will have proven

THEOREM 8b. – If $a(x, \xi)$, $b(x, \xi)$ are symbols, and their product is $c(x, \xi)$, then A(x, D)B(x, D) - C(x, D) is compact operator, $L^2 \to L^2$.

The operator $T = A \cdot B - C$ is of order $\leqslant -1$ (1); hence, if $u \in \Omega$ where Ω is a bounded set in L^2 , then $\widetilde{T(\Omega)}$ is bounded in $L^2_{(1+|\xi|^2)}$, as easily seen. Therefore, we have to prove that, $\forall R > 0$

(7.39)
$$\lim_{|\tau| \to 0} \int_{|\xi| \leq R} |\widetilde{Tu}(\xi + \tau) - \widetilde{Tu}(\xi)|^2 d\xi = 0$$

uniformly for $u \in \Omega$.

First of all, let us consider the case $a(\infty, \xi) \equiv b(\infty, \xi) \equiv c(\infty, \xi) \equiv 0$. If we use Theorem 8a we get, $\forall R > 0$

(7.40)
$$\lim_{|\tau| \to 0} \int_{|\xi| \leqslant n} |\widetilde{Cu}(\xi + \tau) - \widetilde{Cu}(\xi)|^2 d\xi = 0$$

uniformly for $u \in \Omega$. It is only left to consider

(7.41)
$$\int_{|\xi| \leq R} |\widetilde{ABu}(\xi + \tau) - \widetilde{ABu}(\xi)|^2 d\xi.$$

Let us remember Lemma 3. Then, $\forall \varepsilon > 0$, $\exists \delta_{\varepsilon}(\varepsilon)$, such that

$$\int\limits_{|\xi|\leqslant n} |\widetilde{Av}(\xi+\tau)-\widetilde{Av}(\xi)|^2 d\xi \leqslant \varepsilon \;, \quad \text{ if } |\tau|<\delta_{\mathtt{L}}(\varepsilon) \text{ and } \|v\|_0\leqslant L.$$

Remark that if u is arbitrary in L^2 , $u/\|u\|_0$ is of norm 1, therefore

(7.43)
$$\int\limits_{|\xi| \leqslant R} |\widetilde{A} \frac{u}{\|u\|_0} (\xi + \tau) - \widetilde{A} \frac{u}{\|u\|_0} (\xi)|^2 d\xi < \varepsilon \quad \text{if } |\tau| < \delta_1(\varepsilon),$$

⁽¹⁾ By Ch. 5.

that is

$$(7.44) \qquad \qquad \int\limits_{|\xi|\leqslant R} |\widetilde{Au}(\xi+\tau)-\widetilde{Au}(\xi)|^2 d\xi \leqslant \varepsilon \|u\|_0^2 \,, \qquad \text{if } |\tau|<\delta_1(\varepsilon), \ \forall u\in L^2(R^n) \,.$$

We apply this relation to ABu, $u \in L^2$; we have then

$$(7.45) \qquad \qquad \int\limits_{|\xi|\leqslant R} \widetilde{|ABu(\xi+\tau)-ABu(\xi)|^2} d\xi \leqslant \varepsilon \, \|Bu\|_0^2 \,, \qquad |\tau|\leqslant \delta_1(\varepsilon), \ u\in L^2(R^n) \,.$$

But $||Bu||_0 \leqslant c ||u||_0$; the relation is proven then, as easily seen.

In the case $a(\infty, \xi) \not\equiv 0$, $b(\infty, \xi) \not\equiv 0$ there is the additional term $A'(x, D) \cdot B(\infty, D) - B(\infty, D) A'(x, D)$ which is of order $\leqslant -1$ (see Ch. 5).

Moreover, the symbol of $B(\infty, D)A'(x, D)$ is $b(\infty, \xi)a'(x, \xi)$ which $\to 0$ as $|x| \to \infty$. For the term $A'(x, D)\big(B(\infty, D)\big)$ we use that $\{B(\infty, D)u\}$ is a bounded set in L^2 when u is in a bounded set of L^2 .

REMARK. – As a corollary of Th. 8b. we get the following: let $a(x, \xi)$ be a symbol associated with A(x, D) and λ_0 belongs to the continuous spectrum of A(x, D); then $|\lambda_0| \leqslant \sup_{x \in \mathbb{R}^n, |\xi| = 1} |a(x, \xi)|$.

In fact, otherwise, $\exists \alpha > 0$, such that

$$|a(x,\xi)-\lambda_0|>lpha>0$$
, $\forall x\in R^n, |\xi|=1$.

Applying the (simple) result in [5], we find a positive C and a compact operator T_{λ_0} , $L^2 \to L^2$, s.t.

$$\|u\|_{L^{2}} \leqslant C(\|(A - \lambda_{0}E)u\|_{L^{2}} + \|T_{\lambda_{0}}u\|_{L^{2}}), \qquad \forall u \in L^{2}.$$

On other hand, from $\lambda_0 \in \sigma_c(A)$, we deduce a sequence $(u_n)_1^{\infty} \subset L^2$, of unit norm, such that $\|(A - \lambda_0 E) u_n\|_{L^2} \to 0$.

For a subsequence $(u_{n_p})_{p=1}^{\infty}$ we have also $||T_{\lambda_0}u_{n_p}||_{L^1}\to 0$. We obtain $1\leqslant c\cdot\varepsilon_p$, where $\varepsilon_p\to 0$, contradiction.

8. - Other inequalities (norms of p.d.o. modulo compact operators).

In this paragraph we will prove the following

THEOREM 9. – Let $a(x, \xi)$ be a symbol, and $K = \max_{\substack{|\xi|=1 \ x \in \mathbb{R}^n}} |a(x, \xi)|$; let A(x, D) be the associated pseudo-differential operator. Let \mathcal{C}_c be the class of linear compact operators L^2 in L^2 .

Then we have the upper estimates

$$(8.1) \qquad \inf_{T \in \mathcal{C}_c} \|A(x,D) + T\|_{\mathfrak{C}(\mathcal{I}^{\bullet};L^{\bullet})} \leqslant K \,, \qquad \inf_{T \in \mathcal{C}_c} \|\mathcal{A}(x,D) + T\|_{\mathfrak{C}(\mathcal{I}^{\bullet};L^{\bullet})} \leqslant K \,.$$

The result is a consequence of some preliminary theorems.

PRELIMINARY THEOREM 9a. – Let $a(x, \xi)$ be a symbol, A(x, D) the associated pseudodifferential operator. Then, for every $\varepsilon > 0$ there is a semi-norm $|\epsilon|$ on L^2 , dependent of ε , such that every L^2 -bounded sequence contains a subsequence convergent in $|\epsilon|$, such that the inequality

(8.2)
$$||A(x, D)u||_{0} \leq (K + \varepsilon) ||u||_{0} + |u|, \qquad \forall u \in L^{2}(\mathbb{R}^{n})$$

is verified (*).

In fact, let us put $b_{\varepsilon}(x,\xi) = (K^2 - \overline{a}(x,\xi)a(x,\xi) + \varepsilon)^{\frac{1}{2}}$ which is still a (homogeneous) symbol as we can «easily» see, and besides is

$$b_{\varepsilon}(x,\xi) = \overline{b}_{\varepsilon}(x,\xi)$$
, $\varepsilon > 0$, $x \in \mathbb{R}^n$, $\xi \in \mathbb{R}^n - \{0\}$.

Let us consider the operators $B_{\varepsilon}(x, D)$, $\mathfrak{B}_{\varepsilon}(x, D)$ associated with $b_{\varepsilon}(x, \xi)$ and $\overline{\mathcal{A}}(x, D)$ associated with $\overline{a}(x, \xi)$. We have then the following

LEMMA 1. - The linear operator

$$T_{\varepsilon} = (K^2 + \varepsilon)I - \overline{A} \cdot A - \mathcal{B}_{\varepsilon} \cdot B_{\varepsilon}$$

is compact, $L^2 \rightarrow L^2$.

In fact, we have first of all the relation

$$\mathfrak{B}_{\varepsilon} \cdot B_{\varepsilon} = (\mathfrak{B}_{\varepsilon} - B_{\varepsilon}) \cdot B_{\varepsilon} + B_{\varepsilon}^{2} = T_{1} + B_{\varepsilon}^{2}$$

where $T_1 = (\mathcal{B}_{\varepsilon} - B_{\varepsilon}) \cdot B_{\varepsilon}$ is compact according to Theorem 8. So we arrive at the relation

$$(8.4) T_{\varepsilon} = (K^{2} + \varepsilon)I - \overline{\mathcal{A}} \cdot A - B_{\varepsilon}^{2} - T_{1}.$$

On the other hand, we have the equality

$$(8.5) \overline{A} \cdot A = (\overline{A} - \overline{A}) \cdot A + \overline{A} \cdot A = T_2 + \overline{A} \cdot A$$

where T_2 is compact, $L^2 \rightarrow L^2$, again according to Theorem 8; and hence we get

$$(8.6) T_{\varepsilon} = (K^2 + \varepsilon) - \overline{A} \cdot A - B_{\varepsilon}^2 - (T_1 + T_2).$$

Finally, we have: $B_{\varepsilon} \cdot B_{\varepsilon} - (K^2 + \varepsilon - (\overline{a} \cdot a)(x, D)) = T_3$ -compact, $L^2 \to L^2$ and hence we derive

$$(8.7) B_{\varepsilon}(x,D) \cdot B_{\varepsilon}(x,D) = B_{\varepsilon}^{2}(x,D) = K^{2} + \varepsilon - (\overline{a} \cdot a)(x,D) + T_{\varepsilon}$$

^(*) We have also $\|\mathcal{A}(x,D)u\|_0 \leq (K+\varepsilon)\|u\|_0 + \varepsilon|u| + \|(\mathcal{A}(x,D)-A(x,D))u\|_0$.

The map $u \to {}^{\epsilon}|u| + ||(A - A)u||_0$ is a semi-norm on L^2 like ${}^{\epsilon}|$ because A - A is compact; this will imply second estimate in (8.1).

and therefore

$$(8.8) T_{\varepsilon} = K^{2} + \varepsilon - \overline{A} \cdot A - (K^{2} + \varepsilon) + (\overline{a} \cdot a)(x, D) -$$

$$- (T_{1} + T_{2} + T_{3}) = (\overline{a} \cdot a)(x, D) - \overline{A} \cdot A - (T_{1} + T_{2} + T_{3}) = T_{0}$$

where T_0 is compact linear, $L^2 \to L^2$ (by Theor. 8) (we have made here good use of the notation a(x, D) instead of A(x, D), by an obvious necessity).

Hence, Lemma 1 is proven. Then we have also the following

LEMMA 2. - Given arbitrary $\varepsilon > 0$, we have the relation

(8.9)
$$\operatorname{Re} (T_{\varepsilon}u, u)_{0} + \varepsilon \|u\|_{0}^{2} > -\frac{1}{4\varepsilon} \|T_{\varepsilon}u\|_{0}^{2}, \qquad \forall u \in L^{2}$$

In fact we have:

$$(8.10) \qquad |\mathrm{Re}\,(T_\varepsilon u,u)_{\scriptscriptstyle 0}|\leqslant \|T_\varepsilon u\|_{\scriptscriptstyle 0}\|u\|_{\scriptscriptstyle 0}=\frac{1}{2\sqrt{\varepsilon}}\|T_\varepsilon u\|_{\scriptscriptstyle 0}\cdot 2\sqrt{\varepsilon}\|\dot u\|_{\scriptscriptstyle 0}\leqslant \varepsilon\|u\|_{\scriptscriptstyle 0}^2+\frac{1}{4\varepsilon}\|T_\varepsilon u\|_{\scriptscriptstyle 0}^2,$$

and consequently

(8.11)
$$\operatorname{Re}\left(T_{\varepsilon}u,\,u\right)_{0} \geqslant -\varepsilon \|u\|_{0}^{2} - \frac{1}{4\varepsilon} \|T_{\varepsilon}u\|_{0}^{2}$$

follows.

Now we shall give the following

Lemma 3. - We have the relation, $\forall \varepsilon > 0$

$$||A(x, D)u||_{0}^{2} \leqslant (K^{2} + 2\varepsilon) ||u||_{0}^{2} + \frac{1}{4\varepsilon} ||T_{\varepsilon}u||_{0}^{2}, \qquad \forall u \in L^{2}(\mathbb{R}^{n}).$$

In fact, this results from Lemma 2. We have:

$$(8.13) (T_{\varepsilon}u, u)_{0} = (K_{0}^{2} + \varepsilon) \|u\|_{0}^{2} - \|A(x, D)u\|_{0}^{2} - \|B_{\varepsilon}(x, D)u\|_{0}^{2};$$

 $(T_{\epsilon}u, u)_{\mathbf{0}}$ is hence real-valued. (We have used that $\overline{\mathcal{A}}^* = A$ and $\mathcal{B}^*_{\epsilon} = B_{\epsilon}$ being $b = \overline{b}$). Hence, we deduce thereof, using Lemma 2, the estimate

$$(8.14) (K^{2} + 2\varepsilon) \|u\|_{0}^{2} - \|A(x, D)u\|_{0}^{2} - \|B_{\varepsilon}(x, D)u\|_{0}^{2} \geqslant -\frac{1}{4\varepsilon} \|T_{\varepsilon}u\|_{0}^{2}$$

and therefore

(8.15)
$$\|Au\|_{0}^{2} + \|B_{\varepsilon}u\|_{0}^{2} \leqslant (K^{2} + 2\varepsilon)\|u\|_{0}^{2} + \frac{1}{4\varepsilon}\|T_{\varepsilon}u\|_{0}^{2}$$

and hence a fortiori

(8.16)
$$\|Au\|_{0}^{2} \leqslant (K^{2} + 2\varepsilon) \|u\|_{0}^{2} + \frac{1}{4\varepsilon} \|T_{\varepsilon}u\|_{0}^{2}.$$

which proves Lemma 3.

Extracting the square root and for $\sqrt{a+b} \leqslant \sqrt{a} + \sqrt{b}$, a,b>0, we have

(8.17)
$$||Au||_{0} \leq (K + \sqrt{2\varepsilon}) ||u||_{0} + \frac{1}{2\sqrt{\varepsilon}} ||T_{\varepsilon}u||_{0}$$

Preliminary theorem 9a is proved if we put $|u| = c_{\varepsilon} ||T_{\varepsilon}u||_{0}$ and if we observe that T_{ε} being compact in L^{2} the semi-norm $|u| = c_{\varepsilon} ||T_{\varepsilon}u||_{0}$ satisfies the required properties.

PRELIMINARY THEOREM 9b. – Let H be hilbertian; on H is defined a seminorm $| \cdot |$ such that

- 1) $|u| \leqslant c ||u||_H$, $\forall u \in H$,
- 2) for every bounded sequence $(u_n)_1^{\infty}$ there exists a Cauchy subsequence with respect to $|\cdot|$.

Then: $\forall \varepsilon > 0$, there exists H_{ε} —a closed linear subspace of H, such that $H\theta H_{\varepsilon} = H_{\varepsilon}^{\perp}$ is of finite dimension and $|u| \leqslant \varepsilon ||u||_{H}$, $\forall u \in H_{\varepsilon}$.

Let us begin by assuming that, given $\varepsilon > 0$, we have for every $u \in H$, such that |u| = 1 the estimate $||u||_{H} > 1/\varepsilon$. In this case, taken an arbitrary $u \in H$, such that $|u| \neq 0$, we have: |u/|u| = 1.

Hence, $||u/|u|| = (1/|u|)||u|| > 1/\varepsilon$; hence, $|u| < \varepsilon ||u||$ and if $u \in H$ and |u| = 0, we have also $|u| < \varepsilon ||u||$. Therefore, in this case, it is found $H_{\varepsilon} = H$.

Now we have to consider the situation when there is at least an element $u_1 \in H$ such that $|u_1| = 1$, $||u_1||_H \le 1/\varepsilon$. According to Hahn-Banach's theorem, we can build a linear functional on H, f_1 , such that $f_1(u_1) = 1$, $|f_1(u)| \le |u|$, $\forall u \in H$. As $|u| \le C||u||$, $|f_1(u)| \le C||u||$, hence f_1 is a continuous linear functional on H (1).

We define $H_1 = \{u \in H; f_1(u) = 0\}; H_1$ then is a closed subspace of H. In H_1 we reason as in H; in the «worst» case there is at least one element $u_2 \in H_1$, $|u_2| = 1$, $||u_2|| \leqslant 1/\varepsilon$; and hence we can build a continuous linear functional on H_1 , denoted with f_2 (2), such that

$$(8.18) f_2(u_2) = 1, |f_2(u)| \leqslant |u|, \forall u \in H_1$$

and we denote by $H_2 = \{u \in H_1, f_2(u) = 0\}$; H_2 is a closed subspace of H_1 .

We observe that $|u_1-u_2| \ge 1$. In fact $u_1 \in H$, $u_2 \in H_1 \subset H$, hence

$$|(u_1-u_2)| \ge |f_1(u_1-u_2)| = |f_1(u_1)-f_1(u_2)| = 1$$
.

Now, in H_2 we reason as in H and H_1 ; in the «worst» case there is at least an element $u_3 \in H_2$, such that $|u_3| = 1$, and $||u_3||_{H} \leq 1/\varepsilon$ and we can build a functional f_3 , which is linear continuous on H_2 (3), and such that

$$(8.19) f_3(u_3) = 1, |f_3(u)| \leqslant |u|, \forall u \in H_2.$$

⁽¹⁾ And $\exists e_1 \in H$, s.t. $f_1(u) = (u, e_1), \forall u \in H$.

⁽²⁾ And $\exists e_2 \in H_1$, s.t. $f_2(u) = (u, e_2) \ \forall u \in H_1$; so $(e_2, e_1) = 0$.

⁽³⁾ And $\exists e_3 \in H_2$, s.t. $f_3(u) = (u, e_3)$. $\forall u \in H_2$; so $(e_3, e_1) = 0$ and $(e_3, e_2) = 0$, etc.

We denote again

$$(8.20) H_3 = \{u \in H_2; f_3(u) = 0\};$$

then $H_3 \subset H_2$ as a closed subspace.

We observe that:

$$|u_1-u_3| \geqslant 1$$
, $|u_2-u_3| \geqslant 1$

and in fact

$$|u_1-u_3| \ge |f_1(u_1-u_3)| = |f_1(u_1)-f_1(u_3)| = 1$$

as $f_1(u_1) = 1$ and $f_1(u_3) = 0$ being $u_3 \in H_2 \subset H_1$ and $f_1(u) = 0$ on H_1 and besides:

$$|u_2-u_3| \ge |f_2(u_2-u_3)| = |f_2(u_2)-f_2(u_3)| = |1-0| = 1$$
.

We use successively the same reasonings, always considering the «worst» case. We obtain so a sequence of elements $(u_1, u_2, ...)$ such that

(8.21)
$$|u_{i}| = 1$$
, $||u_{i}||_{H} < \frac{1}{\epsilon}$ and $|u_{i} - u_{i}| > 1$ if $i \neq j$.

This sequence is necessarily finite, according to the property of «relative compactness».

In this way we can build a finite number N_{ε} of closed subspaces $H \supset H_1 \supset H_2 \supset \ldots \supset H_{N_{\varepsilon}}$, and everyone being of codimension 1 with respect to the preceding, then $H_{N_{\varepsilon}}$ will be of codimension N_{ε} ; hence $H_{N_{\varepsilon}}^{\perp}$ is of dimension N_{ε} .

More precisely: for any f_j there is $e_j \in H_{j-1}$, such that $f_j(u) = (u, e_j)$, $\forall u \in H_{j-1}$, $j = 1, 2, \ldots$ Here $H_0 = H$. Furthermore:

$$\begin{split} H_1 &= \{u \in H, \, (u, \, e_1) = 0\}; \qquad H_2 = \{u \in H_1, \, (u, \, e_2) = 0\} = \\ &= \{u \in H, \, (u, \, e_1) = (u, \, e_2) = 0\} \,, \quad \dots, \quad H_N = \{u \in H, \, (u, \, e_1) = (u, \, e_2) = \dots \, (u, \, e_N) = 0\} \,. \end{split}$$

Also we see that $(e_i, e_j) = 0$ for $i \neq j$.

The space H has then the obvious orthogonal decomposition

$$H = H_N \oplus Sp[e_1, e_2, ..., e_N].$$

See also our paper [3] where a similar result is proven.

Now, in $H_{N_{\varepsilon}}$ is obviously $|u| \leq \varepsilon ||u||_{H}$, $\forall u \in H_{N_{\varepsilon}}$. This proves Preliminary theorem 9b.

Finally, Theorem 9 is proven by the preceding results and by

PRELIMINARY THEOREM 9c. – Let H be a hilbertian space, and $A \in \mathcal{L}(H; H)$. Let us assume that $\forall \varepsilon > 0$, \exists exists a seminorm $|\varepsilon| \mid on H$ such that $||\cdot||_H$ is relatively

compact with respect to $|\cdot|$ and such that $|\cdot|u| < c||u||$, $\forall u \in H$ (*) and

$$||Au||_{H} \leqslant (K+\varepsilon)||u|| + {}^{\varepsilon}|u|, \qquad \forall u \in H.$$

Then:

$$\inf_{T \in G_0} ||A + T||_{\mathfrak{C}_{(H;H)}} \leqslant K$$
 (*).

In fact, it is sufficient to prove that for every $\varepsilon > 0$ we find a compact operator T_{ε} in H, such that

Let be $H_{\varepsilon} \subset H$; for $u \in H_{\varepsilon}$ we have, $|u| < \varepsilon ||u||$ and H_{ε}^{\perp} of dimension N_{ε} -finite. Let us put P_{ε} the orthogonal projection on H_{ε} ; hence, $(I - P_{\varepsilon})$ projects on a space of finite dimension and is therefore compact: $H \to H$.

Hence, we put $T_{\varepsilon} = A(I - P_{\varepsilon})$; this is obviously compact, and besides we have:

$$\|(A-T_{\varepsilon})u\| = \|AP_{\varepsilon}u\|, \qquad \forall u \in H.$$

By the hypothesis of the theorem, we arrive at:

$$\|(A-T_{\varepsilon})u\| \leqslant (K+\varepsilon)\|P_{\varepsilon}u\| + \epsilon|P_{\varepsilon}u|, \qquad \forall u \in H.$$

Being now $P_{\varepsilon}u \in H_{\varepsilon}$, we have:

$$|\varepsilon|P_{\varepsilon}u| \leqslant \varepsilon ||P_{\varepsilon}u|| \leqslant \varepsilon ||u||$$

therefore we get,

$$(8.26) ||(A-T_{\varepsilon})u|| \leq (K+2\varepsilon)||u||, \forall u \in H.$$

Applying Preliminary theorems 9a and 9c, Theorem 9 is proven.

9. - Some more estimates.

Considering the later applications, we shall prove here the following

THEOREM 10. – Let $a(x,\xi)$ be a symbol defined for $x \in \mathbb{R}^n$, $\xi \in \mathbb{R}^n - \{0\}$, Ω and open set in the «x-space», and $K_{\Omega} = \max_{\substack{x \in \Omega \\ |\xi|=1}} |a(x,\xi)|$. Then, for every $\varepsilon > 0$ there is a constant C_{ε} such that

$$\|A(x,D)u\|_{0} \leqslant (K_{\Omega}+\varepsilon)\|u\|_{0} + C_{\varepsilon}\|u\|_{-\frac{1}{2}}, \qquad \forall u \in C_{0}^{\infty}(\overline{\Omega}) \ (^{1}) \ (^{2})$$
 be verified.

$$||u||_{-\frac{1}{2}} \leqslant \varepsilon ||u||_{0} + C_{\varepsilon} ||u||_{-1}$$
.

^(*) The class \mathcal{C}_c of these semi-norms is obviously a linear space; this applies to the footnote at Preliminary Th. 9.a.

⁽¹⁾ We can replace $\| \cdot \|_{-\frac{1}{2}}$ by $\| \cdot \|_{-1}$ using: $\forall \varepsilon > 0$, $\exists C_s$, such that

⁽²⁾ $C_0^{\infty}(\overline{\Omega})$ means the class of C^{∞} functions with compact support contained in $\overline{\Omega}$.

We deduce this theorem from Theorem 6 (see (6.22)) by means of some additional reasonings. We have the following

LEMMA. – Let $a(x, \xi)$ be a symbol, Ω an open set of R^n , $K_{\Omega} = \max_{\substack{|\xi|=1 \ x \in \Omega}} |a(x, \xi)|$. Then, $\forall \varepsilon > 0$ there is an open set $\Omega_{\varepsilon} \supset \overline{\Omega}$ such that the relation $K_{\Omega_{\varepsilon}} \leqslant K_{\Omega} + \varepsilon$ is verified.

In fact, we have, for every $x_0 \in \mathbb{R}^n$, $|a(x,\xi) - a(x_0,\xi)| \leqslant \varepsilon$ if $|x - x_0| < \delta_{\varepsilon}$ and $\xi \in \mathbb{R}^n - \{0\}$; here δ_{ε} is independent of x_0 .

Let us consider here, if $\partial \Omega$ is the boundary of Ω , for every $x_0 \in \partial \Omega$ the sphere $\{x; |x-x_0| \leq \delta_{\varepsilon}\}.$

Let us take

$$(9.2) \hspace{1cm} \varOmega_{\epsilon} = \varOmega \bigcup \left(\bigcup_{x_{\epsilon} \in \partial \varOmega} S(x_{0}, \ \delta_{\epsilon}) \right); \hspace{1cm} S(x_{0}, \ \delta_{\epsilon}) = \left\{ x \, ; \, |x - x_{0}| \leqslant \delta_{\epsilon} \right\}.$$

Therefore, if $y \in \Omega_{\varepsilon}$, we have $y \in \Omega$ or $y \in S(x^*, \delta_{\varepsilon})$ for a certain $x^* \in \partial \Omega$. In the first case, we have

$$|a(y,\xi)| \leqslant \max_{\substack{|\xi|=1\\x\in D}} |a(x,\xi)| = K_{\Omega}.$$

In the second case we have

$$|a(y,\xi)| \leqslant |a(y,\xi) - a(x^*,\xi)| + |a(x^*,\xi)| \leqslant \varepsilon + K_{\Omega}.$$

Hence, for every $y \in \Omega_{\varepsilon}$, $\xi \in \mathbb{R}^n - \{0\}$ we have $|a(y,\xi)| \leqslant \varepsilon + K_{\Omega}$. Hence $K_{\Omega_{\varepsilon}} \leqslant K_{\Omega} + \varepsilon$.

PROOF OF THE THEOREM. – Given $\varepsilon > 0$, and $u \in C_0^{\infty}(\overline{\Omega})$ we build Ω_{ε} given in the Lemma. There exists also, a function $\zeta_{\varepsilon}(x) \in C_0^{\infty}(\mathbb{R}^n)$, equal to 1 on supp u, equal to 0 outside Ω_{ε} , contained between 0 and 1. Obviously $\zeta_{\varepsilon}(x)$ is a symbol, and $\gamma_{\varepsilon}(x,\xi) = \zeta_{\varepsilon}(x) a(x,\xi)$ is another symbol.

Furthermore $\gamma_{\varepsilon}(x,\xi)=0$ if $x\in \Omega_{\varepsilon}$; hence, we have

$$\max_{x\in\mathbb{R}^n\atop|\xi|=1}|\gamma_\varepsilon(x,\xi)|\!<\!\max_{x\in\Omega_\varepsilon\atop|\xi|=1}|a(x,\xi)|=K_\varOmega\leqslant K_{\varOmega_\varepsilon}+\varepsilon\;.$$

We define $\Gamma_{\varepsilon}(x,D)$ the pseudo-differential operator associated with $\gamma_{\varepsilon}(x,\xi)$. We have

(9.6)
$$\Gamma_{\varepsilon}(x, D) = A(x, D)(\zeta_{\varepsilon}(x)).$$

In fact,

$$(9.7) \qquad \widetilde{\varGamma_{\varepsilon}(x,\,D)}u(\xi) = (2\pi)^{-n/2} \int \exp\left(-\,ix\cdot\xi\right) \left(a(x,\,\xi)\,\zeta_{\varepsilon}(x)\right) u(x)\,dx = \\ = \widetilde{A(x,\,D)}(\zeta_{\varepsilon}u)(\xi)\,, \qquad \forall u\in\mathbb{S},\ \forall\,\xi\in R^n - \{0\}\,.$$

Hence we get

(9.8)
$$\Gamma_{\epsilon}(x, D) u = A(x, D) (\zeta_{\epsilon}(x) u(x)), \qquad \forall u \in S$$

(however, not necessarily is $\Gamma_{\varepsilon}(x, D) = \zeta_{\varepsilon}(x) A(x, D)!$).

Now we have the decomposition

$$(9.9) u(x) = \zeta_{\varepsilon}(x) u(x) + (1 - \zeta_{\varepsilon}(x)) u(x)$$

and

$$(9.10) A(x, D)u = A(x, D)(\xi_{\varepsilon}u) + A(x, D)((1 - \xi_{\varepsilon})u) =$$

$$= \Gamma_{\varepsilon}(x, D)u + A(x, D)((1 - \xi_{\varepsilon})u),$$

as it is $1-\zeta_{\varepsilon}(x)=0$ on supp u, then it is $(1-\zeta_{\varepsilon}(x))u(x)=0$ on \mathbb{R}^n , and therefore

$$(9.11) A(x, D)u = \Gamma_{\varepsilon}(x, D)u,$$

Hence, applying Theorem 6, we get

We will show, complementing Theorem 7, the following

Theorem 11 (1). – Let $a(x, \xi)$ be a symbol, A(x, D) the associated pseudo-differential operator; \mathfrak{F}_{-1} the class of operators of order $\leqslant -1$, $K = \max_{\substack{x \in \mathbb{R}^n \\ |\xi|=1}} |a(x, \xi)|$. We have

(9.13)
$$\inf_{x \in \mathcal{R}} \|A(x, D) + T\| \geqslant K$$

the norm being taken here in $\mathcal{L}(L^2(\mathbb{R}^n); L^2(\mathbb{R}^n))$.

Combining with Theorem 7 we deduce equality

(9.14)
$$\inf_{T \in \mathcal{C}} ||A(x, D) + T|| = K.$$

The following theorem is fundamental for Theorem 11. In fact, Theorem 11 is a simple corollary of it.

THEOREM 12. – Let $a(x, \xi)$ be a symbol, and $|a(x_0, \xi_0)| = c_0$ for a certain $x_0 \in R^n$, $|\xi_0| = 1$. Then, $\forall \varepsilon > 0$, $\exists u_{\varepsilon}(x) \in C_0^{\infty}$, such that $||u_{\varepsilon}(x)||_0 \neq 0$ and the estimates

$$||u_{\varepsilon}||_{-1} \leqslant \varepsilon ||u_{\varepsilon}||_{0}$$

are satisfied.

⁽¹⁾ If A is a p.d.o. of order ≤ -1 , we get in (9.13) K=0 (take T=-A).

Then $a(x,\xi) \equiv 0$ and A is the null operator.

⁽²⁾ In fact the stronger estimate $||[A(x, D) - a(x_0, \xi_0)]u_{\varepsilon}||_{0} \le \varepsilon ||u_{\varepsilon}||_{0}$ holds, as is easily seen from (9.27) and the subsequent estimates (see [3], Th. 9.1).

REMARK. – From foot-note (2) to Th. 12 we see that any value of $a(x, \xi)$ belongs to $\sigma(A(x, D))$. In fact, we find a sequence $u_n(x) \in C_0^{\infty}$, such that

$$\|(A(x, D) - a(x_0, \xi_0)E)u_n\|_0 \le \frac{1}{n} \|u_n\|_0$$

which implies that $(A(x, D) - a(x_0, \xi_0)E)$ has no bounded inverse.

COROLLARY TO TH. 12. – Let $a(x, \xi)$ be a symbol such that estimate $||u||_0 \le c(||A(x, D)u||_0 + ||u||_{-1}), \forall u \in S$, is verified.

Then, $\exists \alpha > 0$, such that $|a(x,\xi)| > \alpha > 0$, $\forall x \in \mathbb{R}^n$, $\xi \in \mathbb{R}^n - \{0\}$.

In fact, otherwise we could find a sequence $(x_p)_1^\infty \subset R^n$ and $(\xi_p)_1^\infty$ on the unit sphere, such that $|a(x_p,\xi_p)| \leqslant 1/p, \ p=1,2,...$. Then, $\forall p=1,2,...$, take $u_p(x) \in C_0^\infty$ corresponding to $\varepsilon_p=1/p$. We get $\|u_p\|_0 \leqslant c(\|Au_p\|_0+\|u_p\|_{-1})$ and using (9.15) we deduce

$$\|u_{p}\|_{0} \leqslant c \left(|a(x_{p}, \xi_{p})| \|u_{p}\|_{0} + \frac{1}{p} \|u_{p}\|_{0} + \frac{1}{p} \|u_{p}\|_{0} \right)$$

(when (9.16) is also used): it follows $1 \le 3c/p$, p = 1, 2, ..., which is impossible.

Before proving Theorem 12, we indicate how Theorem 11 is a corollary of Theorem 12.

If, reasoning ad absurdum, we have: $\inf_{T \in \mathcal{C}_{-1}} ||A + T|| = k^* < K$, there would be, taken k such that $k^* < k < K$ at least one $T_k \in \mathcal{C}_{-1}$ so that

$$(9.17) k^* \leqslant ||A(x, D) + T_k|| \leqslant k < K$$

and therefore

$$(9.18) k^* \leqslant \sup_{u \in I^*} \frac{1}{\|u\|_0} \|(A + T_k)u\|_0 \leqslant k < K$$

whence $\|(A+T_k)u\|_0 \leqslant k\|u\|_0$, $\forall u \in L^2$.

Being $k < K = \max_{\substack{x \in \mathbb{R}^n \\ |\xi| = 1}} |a(x, \xi)|$ we find at least one $x_0 \in \mathbb{R}^n$ and ξ_0 , $|\xi_0| = 1$ such

that $k < |a(x_0, \xi_0)| = c_0 < K$.

We apply here Theorem 12 and we find $u_{\varepsilon}(x) \in C_0^{\infty}$, such that

$$(9.19) -\varepsilon \|u_{\varepsilon}\|_{0} \leqslant \|Au_{\varepsilon}\|_{0} - c_{0}\|u_{\varepsilon}\|_{0}$$

or

$$(9.20) (c_{0} - \varepsilon) \|u_{\varepsilon}\|_{0} \leq \|A(x, D)u_{\varepsilon}\|_{0} = \|(A(x, D) + T_{k})u_{\varepsilon} - T_{k}u_{\varepsilon}\|_{0} \leq$$

$$\leq \|(A + T_{k})u_{\varepsilon}\|_{0} + \|T_{k}u_{\varepsilon}\|_{0} \leq k\|u_{\varepsilon}\|_{0} + c\|u_{\varepsilon}\|_{-1} \leq$$

$$\leq k\|u_{\varepsilon}\|_{0} + c \cdot \varepsilon \|u_{\varepsilon}\|_{0} = (k + c_{\varepsilon}) \|u_{\varepsilon}\|_{0}$$

and being $||u_{\varepsilon}||_{0} \neq 0$ we get, $\forall \varepsilon > 0$

$$(9.21) c_0 - \varepsilon \leqslant k + c \cdot \varepsilon$$

and as

$$(9.22) k < c_0$$

we have a contradiction, as easily seen.

We pass now to the

PROOF OF THEOREM 12. – Let us take $\varepsilon' > 0$; we have $|a(x,\xi) - a(x_0,\xi)| < \varepsilon'$ if $|x - x_0| < \delta_{\varepsilon'}$, $\xi \in \mathbb{R}^n - \{0\}$. Consider a function $\varphi_{\varepsilon'}(x) \in C_0^{\infty}$ with support contained in the sphere $\{x; |x - x_0| < \delta_{\varepsilon'}\}$, and the sequence

$$(9.23) u_{p,\varepsilon'}(x) = \exp\left(ip(x\cdot\xi_0)\right)\varphi_{\varepsilon'}(x)$$

where by hypothesis is

(9.24)
$$|a(x_0, \xi_0)| = c_0$$
 and $|\xi_0| = 1$.

Let be $f(\zeta) \in C^{\infty} = 1$ for $|\zeta| \le 1$, $0 \le f \le 1$, = 0 for $|\zeta| > 2$. Hence we write

(9.25)
$$\psi_p(\xi) = f\left(\frac{\xi - p\xi_0}{\sqrt{p}}\right).$$

The following estimate is valid: (obviously)

$$(9.26) |\operatorname{grad} \psi_{\mathfrak{p}}| \leqslant \frac{c}{\sqrt{\mathfrak{p}}}.$$

Let us consider now the operator $\psi_p(D)$ and observe the obvious decomposition (1)

$$(9.27) A(x, D)u_{p,e'} = a(x_0, \xi_0)u_{p,e'} + \psi_p(D)(A(x, D) - a(x_0, \xi_0)E)u_{p,e'} + (E - \psi_p(D))(A(x, D) - a(x_0, \xi_0)E)u_{p,e'} = a(x_0, \xi_0)u_{p,e'} + I_1 + I_2$$

and therefore we get

and hence

$$\begin{aligned} (9.29) \qquad & |\|A(x,D)u_{x,\epsilon'}\|_{0} - c_{0}\|u_{x,\epsilon'}\|_{0}| = \\ & = |\|a(x_{0},\xi_{0})u_{x,\epsilon'} + I_{1} + I_{2}\|_{0} - \|a(x_{0},\xi_{0})u_{x,\epsilon'}\|_{0}| \leq \|I_{1} + I_{2}\|_{0} \leq \|I_{1}\|_{0} + \|I_{2}\|_{0}. \end{aligned}$$

We consider hence the expression

(9.30)
$$||I_1||_0 = ||\psi_p(D)(A(x, D) - a(x_0, \xi_0))u_{p,\epsilon'}||_0$$

⁽¹⁾ E being the identity map.

which is estimated by

where

(9.32)
$$\widetilde{A(x_0, D)}u(\xi) = a(x_0, \xi)\widetilde{u}(\xi), \qquad \forall u \in S.$$

Hence, we have

$$\begin{split} &(9.33) \qquad \|\psi_{\nu}(D)\big(A(x_{0},\,D)-a(x_{0},\,\xi_{0})\big)u_{\nu,\varepsilon'}\|_{0} = \\ &= \|\psi_{\nu}(D)\big(A(x_{0},\,D)-a(x_{0},\,p\,\xi_{0})\big)u_{\nu,\varepsilon'}\|_{0} = \Big(\int |\psi_{\nu}(\xi)|^{2}|a(x_{0},\,\xi)-a(x_{0},\,p\,\xi_{0})|^{2}|\tilde{u}_{\nu,\varepsilon'}(\xi)|^{2}d\xi\Big)^{\frac{1}{2}}. \end{split}$$

By the inequality (2.21) we have

$$\begin{aligned} |a(x_0,\,\xi)-a(x_0,\,p\xi_0)| &< c\,\frac{|\xi-p\xi_0|}{|\xi|+|p\xi_0|} < c\,\frac{|\xi-p\xi_0|}{p}\,,\\ p&=1,\,2,\,\ldots,\,\,\xi\in R^n-\{0\},\,\,|\xi_0|=1,\,\,x_0\in R^n. \end{aligned}$$

Therefore, considering too that

$$(9.35) \psi_{p}(\xi) = 0$$

for $|\xi - p\xi_0| > 2\sqrt{p}$, we have

$$\begin{aligned} (9.36) \qquad & \|\psi_{r}(D)\big(A(x_{0}\,,\,D)-a(x_{0}\,,\,\xi_{0})\big)u_{r,\epsilon'}\|_{0} \leqslant \\ & \leqslant c\,\bigg(\int\limits_{\|\xi-r\xi_{0}\|<2\sqrt{p}}\frac{1}{p^{2}}\,|\xi-p\xi_{0}|^{2}\,|\tilde{u}_{\nu,\epsilon'}(\xi)|^{2}d\xi\bigg)^{\frac{1}{2}} \leqslant \frac{c_{1}}{\sqrt{\tilde{p}}}\,\|u_{\nu,\epsilon'}\|_{0}\;. \end{aligned}$$

Besides, we observe that we have also estimate

If $b(x, \xi) = a(x, \xi) - a(x_0, \xi)$ is the symbol associated with the operator $A(x, D) - A(x_0, D)$, we have

$$(9.38) |b(x,\xi)| \leqslant \varepsilon' \text{for } |x-x_0| < \delta(\varepsilon'), |\xi| = 1.$$

On the other hand, the functions $u_{\nu,\varepsilon'}$ in (9.23) belong to $C_0^{\infty}(\{x;|x-x_{\varepsilon}|<\delta_{\varepsilon'}\})$ and hence (by Theorem 10), we have, given $\varepsilon'>0$, a constant $e_{\varepsilon'}$, such that

Up to now, we have arrived at estimate

$$||I_1||_0 \leqslant \frac{c}{\sqrt{p}} ||u_{p,\epsilon'}||_0 + 2\epsilon' ||u_{p,\epsilon'}||_0 + c_{\epsilon'} ||u_{r,\epsilon'}||_{-1}, p = 1, 2,$$

We will consider the expression for I_2 .

Obviously, we have

$$(9.41) I_{2} = (A(x, D) - a(x_{0}, p\xi_{0}))(E - \psi_{p}(D))u_{p,\epsilon'} - [A(x, D) - a(x_{0}, p\xi_{0})E, E - \psi_{p}(D)]u_{p,\epsilon'}.$$

On the other hand, we see that the considered commutator is equal to the commutator $[A(x, D), \psi_v(D)]$, and therefore

$$(9.42) I_2 = (A(x, D) - a(x_0, p\xi_0))(E - \psi_p(D))u_{p,s'} + [A(x, D), \psi_p(D)]u_{p,s'} = I_3 + I_4.$$

Hence, first of all we have (being $|a(x_0, p\xi_0)| \leq c$) that

$$\|I_3\|_0 \leqslant c \| \big(E - \psi_{\nu}(D) \big) u_{\nu,\varepsilon'} \|_0 \leqslant c \Big(\int \big(1 - \psi_{\nu}(\xi)^2 \, |\tilde{u}_{\nu,\varepsilon'}(\xi)|^2 \, d\xi \Big)^{\frac{1}{4}} \, .$$

Now we observe that we have $\psi_{\nu}(\xi) = 1$ for $|\xi - p\xi_0| < \sqrt{p}$; hence $1 - \psi_{\nu}(\xi) = 0$ for $|\xi - p\xi_0| \le \sqrt{p}$ and besides it is

$$(9.44) \qquad \tilde{u}_{r,\varepsilon'}(\xi) = \int_{\mathbb{R}^n} \exp\left(-ix \cdot \xi\right) \exp\left(ip(x \cdot \xi_0)\right) \varphi_{\varepsilon'}(x) \, dx = \\ = \int_{\mathbb{R}^n} \exp\left(-ix \cdot (\xi - p\xi_0)\right) \varphi_{\varepsilon'}(x) \, dx = \tilde{\varphi}_{\varepsilon'}(\xi - p\xi_0)$$

and therefore

$$\|I_3\|_0 \leqslant c \Big(\int\limits_{|\xi-x\xi_0| \geqslant \sqrt{p}} |\tilde{\varphi}_{\varepsilon'}(\xi-p\xi_0)|^2 \,d\xi\Big)^{\frac{1}{2}} = c \Big(\int\limits_{|\xi| \geqslant \sqrt{p}} |\tilde{\varphi}_{\varepsilon'}(\xi)|^2 \,d\zeta\Big)^{\frac{1}{2}}$$

and we have:

$$\left(\int\limits_{|\xi|\geqslant\sqrt{p}}|\tilde{\varphi}_{\varepsilon'}(\zeta)|^{\,2}d\zeta\right)^{\frac{1}{2}}\leqslant \varepsilon' \Big(\int\limits_{\mathbb{R}^n}|\tilde{\varphi}_{\varepsilon'}(\zeta)|^{\,2}d\zeta\Big)^{\frac{1}{2}}=\varepsilon'\,\|u_{p,\varepsilon'}\|_0\qquad \text{if}\ \ p\geqslant P_0(\varepsilon',\,\tilde{\varphi}_{\varepsilon'})\,.$$

Then we have

We see that

$$|\psi_p(\xi)-\psi_p(\eta)|\leqslant |\xi-\eta| \left|\operatorname{grad} \psi_p(\zeta)\right|\leqslant cp^{-\frac{1}{2}}(1+|\xi-\eta|^2)^{\frac{1}{2}}, \qquad \xi,\,\eta\in R^n.$$

Hence we get, $\forall f = 1, 2, ...$

$$(9.47) \qquad \left| \int \tilde{a}'(\xi-\eta,\,\xi) \left(\psi_{p}(\xi) - \psi_{p}(\eta) \right) \tilde{u}_{p,\varepsilon'}(\eta) \, d\eta \right| \leq \frac{c_{f}}{\sqrt{p}} \int (1+|\xi-\eta|^{2})^{-f+\frac{1}{2}} |\tilde{u}_{p,\varepsilon'}(\eta)| \, d\eta$$

from where we arrive easily at estimate

(9.48)
$$||I_4||_0 \leqslant \frac{c}{\sqrt{p}} ||u_{v,\bullet'}||_0 , \qquad p = 1, 2,$$

Adding the different inequalities obtained up to now, we have

$$\begin{split} (9.49) \qquad & \left| \| A(x,D) u_{\nu,\varepsilon'} \|_{0} - c_{0} \| u_{\nu,\varepsilon'} \|_{0} \right| \leqslant \frac{c}{\sqrt{p}} \, \| u_{\nu,\varepsilon'} \|_{0} + 2\varepsilon' \| u_{\nu,\varepsilon'} \|_{0} + \\ & + c_{s'} \| u_{\nu,\varepsilon'} \|_{-1} + \varepsilon' \| u_{\nu,\varepsilon'} \|_{0} + \frac{c}{\sqrt{p}} \, \| u_{\nu,\varepsilon'} \|_{0}, \end{split}$$

for $p \geqslant P_0(\varepsilon')$.

Now let us prove that

for every $\varepsilon'' > 0$ there is $\tilde{p}(\varepsilon'', \varepsilon')$ such that we have

In fact, we have

$$\begin{split} (9.51) \qquad \|u_{p,e'}\|_{-1}^2 = & \int (1+|\xi|^2)^{-1} |\tilde{\varphi}_{\varepsilon'}(\xi-p\xi_0)|^2 \, d\xi = \int\limits_{|\xi-x\xi_0|>r} |\tilde{\varphi}_{\varepsilon'}(\xi-p\xi_0)|^2 \, d\xi + \\ & + \int\limits_{|\xi-x\xi_0|< r} (1+|\xi|^2)^{-1} |\tilde{\varphi}_{\varepsilon'}(\xi-p\xi_0)|^2 \, d\xi \quad \text{ for every } r>0 \, . \end{split}$$

Given now $\varepsilon'' > 0$ there is $r^*(\varepsilon'', \varepsilon')$ such that:

(9.52)
$$\int_{|\xi|>r^*} |\tilde{\varphi}_{\varepsilon'}(\xi)|^2 d\xi \leqslant \varepsilon''^2 ||u_{p,\varepsilon'}||_0^2.$$

We observe that if $|\xi - p\xi_0| < r^*$, it results $|\xi| > p - r^*$ and therefore, for $p > r^* + 1$, we get

$$(9.53) \int_{|\xi-\nu\xi_0|\leqslant r^*} (1+|\xi|^2)^{-1} |\tilde{\varphi}_{\varepsilon'}(\xi-p\xi_0)|^2 d\xi \leqslant (1+(p-r^*)^2)^{-1} \Big(\int |\tilde{\varphi}_{\varepsilon'}(\xi-p\xi_0)|^2 d\xi\Big) = \\ = (1+(p-r^*)^2)^{-1} \|u_{\nu,\varepsilon'}\|_0^2 \leqslant \varepsilon^{u^2} \|u_{\nu,\varepsilon'}\|_0^2 \quad \text{if } p > \max(r^*+1, P_{\varepsilon'})^2 + \varepsilon^{u^2} \|u_{\nu,\varepsilon'}\|_0^2$$

and therefore, for $p \geqslant P_1(\varepsilon', \varepsilon'')$, we get

$$\|u_{p,\varepsilon'}\|_{-1} \leqslant 2\varepsilon'' \|u_{p,\varepsilon'}\|_{0}.$$

Hence we arrive at inequalities

$$(9.55) \qquad |\|A(x,D)u_{p,\varepsilon'}\|_{0} - c_{0}\|u_{p,\varepsilon'}\|_{0}| \leq \frac{c}{\sqrt{p}} \|u_{p,\varepsilon'}\|_{0} + 2\varepsilon' \|u_{p,\varepsilon'}\|_{0} + 2c_{\varepsilon'}\varepsilon'' \|u_{p,\varepsilon'}\|_{0}$$

$$\text{for } p > P(\varepsilon', \varepsilon'')$$

and

$$\|u_{p,\varepsilon'}\|_{-1}\!\leqslant\! c\varepsilon'' \|u_{p,\varepsilon'}\|_0 \qquad \qquad \text{for } p\!\geqslant\! P_{\scriptscriptstyle\mathbf{1}}\!(\varepsilon',\,\varepsilon'')\,.$$

Let us take $\varepsilon''(\varepsilon')$ small enough to have $c\varepsilon'' < \varepsilon'$ and $2c_{\varepsilon'}\varepsilon'' < \varepsilon'$; hence, for $p \geqslant Q(\varepsilon')$, we have $\|u_{r,\varepsilon'}\|_{-1} \leqslant \varepsilon' \|u_{r,\varepsilon'}\|_{0}$ and

$$|\|A(x,D)u_{p,\varepsilon'}\|_{0}-c_{0}\|u_{p,\varepsilon'}\|_{0}|\!<\!\frac{c}{\sqrt{p}}\|u_{p,\varepsilon'}\|_{0}+3\varepsilon'\|u_{p,\varepsilon'}\|_{0}\!<\!4\varepsilon'\|u_{p,\varepsilon'}\|_{0}\qquad\text{if }p\!>\!Q_{1}(\varepsilon')\,.$$

Finally, given $\varepsilon > 0$, let us take $\varepsilon' < \varepsilon/4$ and the result is proven (we find a sequence of functions $(u_{\lambda,\varepsilon})_{\lambda=1}^{\infty}$ verifying Theorem 12).

We will give now, in addition to Theorem 9 (Ch. VIII) the following

THEOREM 13. – If $a(x, \xi)$ is a symbol, A(x, D) the associated pseudo-differential operator, \mathcal{C}_c the class of the compact operators, $L^2 \to L^2$, $K = \max_{\substack{x \in \mathbb{R}^n \\ |\xi|=1}} |a(x, \xi)|$, we have

(9.56)
$$K \leqslant \inf_{T \in G_r} ||A(x, D) + T||$$

the norm in $\mathfrak{L}(L^2; L^2)$.

Remark. - As a simple corollary of (9.56) we get also the estimate

$$(9.56-bis) K \leqslant \inf_{T \in \mathcal{G}_s} \| \mathcal{A}(x,D) + T \|_{\mathcal{L}(L^1;L^1)}.$$

In fact, if we take an arbitrary $T_0 \in \mathcal{C}_c$, we get

$$A(x, D) + T_0 = A(x, D) - A(x, D) + A(x, D) + T_0 = A(x, D) + T_1$$

where $T_1 \in \mathcal{C}_c$ (by Theorem 8). Consequently, using (9.56), we have $\|\mathcal{A} + T_0\| = \|A + T_1\| > K$. As T_0 is arbitrary in \mathcal{C}_c , the desired result follows. Combining with (8.1) (Theorem 9), we obtain equality

$$\inf_{T\in\mathcal{C}_c} \|\mathcal{A} + T\|_{\mathfrak{C}_{(L^2;L^2)}} = K.$$

COROLLARY. - Combining with Theorem 9 we have the interesting result

(9.57)
$$\inf_{T \in \mathcal{G}_*} \|A(x, D) + T\| = K.$$

PROOF. - First of all, we have the following

LEMMA 1. – Let $a(x,\xi)$ be a symbol, and $c_0=|a(x_0,\xi_0)|$ for a certain $x_0\in R^n$ and $|\xi_0|=1$. There is then, for every $\varepsilon>0$ a sequence $u_n(x)\in C_0^\infty(\Omega_n)$; $\Omega_n=\{x;|x-x_0|<1/n\}$ with $\|u_n\|_0=1$ and $c_0-\varepsilon<\|Au_n\|_0$.

As we have seen in Theorem 12, given $\varepsilon > 0$, the function $u_{\varepsilon}(x)$ is obtained $= \exp\left(ip(x\cdot\xi_0)\right)\varphi_{\varepsilon}(x)$, where $\varphi_{\varepsilon} \in C_0^{\infty}\{x; |x-x_0| < \delta_{\varepsilon}\}$. Hence, for $n \geqslant n_0$ we get $1/n \leqslant \delta_{\varepsilon}$, and all the functions

$$(9.58) u_{n,s}(x) = \exp\left(ip_n(x,\xi_0)\right)\varphi_n(x)$$

(with p_n big enough, fixed, dependent from $\varepsilon > 0$ and from φ_n), verify estimate

$$(c_0 - \varepsilon) \|u_{n,\varepsilon}\|_0 \leqslant \|A(x,D)u_{n,\varepsilon}\|_0$$

Dividing by $||u_{n,\varepsilon}||_0$, we can have the sequence of norm 1. Now we have

LEMMA 2. - We have:

$$\lim_{n \to \infty} \int u_{n,\varepsilon}(x) g(x) dx = 0$$
, $\forall g \in L^2(\mathbb{R}^n)$.

In fact we have:

$$(9.60) \qquad \int u_{n,\varepsilon}(x)g(x)\,dx = \int_{|x-x_n|>\rho} u_{n,\varepsilon}(x)g(x)\,dx + \int_{|x-x_n|<\rho} u_{n,\varepsilon}(x)g(x)\,dx.$$

For n big enough, $u_{n,\varepsilon}(x) = 0$ when $|x - x_0| > \varrho$ and therefore

$$(9.61) \qquad \int u_{n,\epsilon}(x) \, g(x) \, dx = \int\limits_{|x-x_n| < \varrho} u_{n,\epsilon}(x) \, g(x) \, dx < \|u_{n,\epsilon}\|_0 \Big(\int\limits_{|x-x_0| < \varrho} |g(x)|^2 \, dx\Big)^{\frac{1}{2}} = \Big(\int\limits_{|x-x_0| < \varrho} |g(x)|^2 \, dx\Big)^{\frac{1}{2}}.$$

Hence, given $\nu > 0$, we take $\varrho(\nu)$ such that

(9.62)
$$\left(\int_{|x-x| \le g(y)} |g(x)|^2 dx \right)^{\frac{1}{2}} < y.$$

At last, we take n big enough to have $u_{n,\varepsilon}(x) = 0$ when $|x - x_0| > 1/n$.

PROOF OF THE THEOREM. - We assume, ad absurdum, that

(9.63)
$$\inf_{T \in \mathcal{G}_c} ||A(x, D) + T|| = k < K.$$

Hence, taken k' such that k < k' < K there is at least a $T \in \mathcal{C}_c$, such that ||A + T|| < k'. Hence we get

Being k' < K, we find at least one $x_0 \in \mathbb{R}^n$, $\xi_0 \in \mathbb{R}^n - \{0\}$ and $|\xi_0| = 1$ such that $k' < |a(x_0, \xi_0)| = c_0 < K$.

Hence, we have, for $u = u_{n,s}$ (applying Lemma 1), that

$$(9.65) (c_0 - \varepsilon) \leqslant ||A(x, D) u_{n,\varepsilon}||_0 \leqslant ||(A + T) u_{n,\varepsilon}||_0 + ||T u_{n,\varepsilon}||_0 \leqslant k' + ||T u_{n,\varepsilon}||_0.$$

If $n \to \infty$, $Tu_{n,\varepsilon} \to 0$ strongly in L^2 ; hence $c_0 - \varepsilon \leqslant k'$, absurd for ε small enough.

REMARK. - There is a different proof of (9.56-bis)—and hence of (9.56), which is independent of Th. 12 (cfr. for a more general case, the paper [6]).

If $K_N = \sup_{|x| \leq N, |\xi|=1} |a(x,\xi)|$, then $\lim_{N \to \infty} K_N = K$, and it suffices to see that

$$K_{N} \leqslant \inf_{T \in \mathcal{G}_{c}} \|\mathcal{A} + T\|, \qquad \forall N = 1, 2, \dots.$$

Take then $|x_0| \leqslant N_0$, $|\xi_0| = 1$, such that $|a(x_0, \xi_0)| = K_{N_0}$; then a $C_0^{\infty}(|x| \leqslant N_0)$ function $u(x) \not\equiv 0$ and the sequence

$$u_{\nu}(x) = \nu^{n/4} u((x - x_0) \sqrt{\nu}) \exp(i(x \cdot \xi_0) \nu),$$
 $\nu = 1, 2,$

It follows $||u_v||_{L^2} = ||u||_{L^2}$ and weak $\lim u_v(x) = 0$ in L^2 . By direct computation one gets

$$\mathcal{A}u_{\nu} = \nu^{n/4} v_{\nu} ((x - x_0) \sqrt{\nu}) \exp (i(x \cdot \xi_0) \nu),$$

where

$$v_{\nu}(x) = (2\pi)^{-n/2} \int a \left(x_0 + \frac{1}{\sqrt{\nu}} x, \ \nu \xi_0 + \eta \sqrt{\nu} \right) \tilde{u}(\eta) \exp\left(ix \cdot \eta \right) d\eta;$$

it follows $\|\mathcal{A}u_r\|_{L^2} = \|v_r\|_{L^2}$; some simple estimates give also that $\lim_{r\to\infty} |v_r(x)|^2 = |a(x_0, \xi_0)|^2 |u(x)|^2$, uniformly on bounded sets in \mathbb{R}^n .

Then apply Fatou's lemma to sequence $|v_r(x)|^2$. We obtain

$$\int\limits_{\mathbb{R}^n} |a(x_0,\,\xi_0)|^2 |u(x)|^2 dx = |a(x_0,\,\xi_0)|^2 ||u||_{\mathbb{R}^2}^2 \leqslant \liminf_{r \to \infty} ||\mathcal{A}u_r||_{\mathbb{R}^2}^2 .$$

Take now arbitrary $T \in \mathcal{C}_c$. Then it follows readily estimate

$$\|\mathcal{A}u_{\nu}\|_{L^{2}}^{2} \leq (\|\mathcal{A} + T\|_{L^{2}}\|u\| + \|Tu_{\nu}\|_{L^{2}})^{2}$$

and consequently

$$\liminf_{v o \infty} \|\mathcal{A}u_v\|_{L^2}^2 \leqslant \|\mathcal{A} + T\|^2 \|u\|_{L^2}^2$$

(as weakly $u_{\nu} \to 0$, it follows $||Tu_{\nu}||_{L^{2}} \to 0$ as $\nu \to \infty$). We got this way the inequality $|a(x_{0}, \xi_{0})|^{2}||u||_{L^{2}}^{2} \leqslant ||\mathcal{A}+T||^{2}||u||_{L^{2}}^{2}$, hence $K_{N_{0}} \leqslant ||\mathcal{A}+T||$, which gives the desired result.

10. - Non-homogeneous symbols.

Most of the previously exposed theory can be extended, with the pertinent modifications, to the case of certain symbols $a(x, \xi)$ which do not have the properties of homogeneity with respect to the variable ξ , and besides $a'(x, \xi)$ has a more general behavior than the one corresponding to the appartenence to the space S.

We will define as non-homogeneous symbol a function $a(x,\xi)$ with complex values, defined for $x \in \mathbb{R}^n$, $\xi \in \mathbb{R}^n - \{0\}$; the limit $a(\infty,\xi) = \lim_{x \to \infty} a(x,\xi)$ exists for every $\xi \in \mathbb{R}^n - \{0\}$. We assume that $a'(x,\xi) = a(x,\xi) - a(\infty,\xi)$ is in $S'(\mathbb{R}^n_x)$, and for its Fourier transform $\tilde{a}'(\lambda,\xi) = \mathcal{F}_x(a'(x,\xi))$ we admit that it is a measurable function in $\lambda \in \mathbb{R}^n$, verifying estimates

$$(10.1) |\tilde{a}'(\lambda,\xi)| \leqslant k(\lambda), \forall \lambda \in \mathbb{R}^n, \ \xi \in \mathbb{R}^n - \{0\}$$

$$(10.2) \qquad |\tilde{a}'(\lambda,\xi)-\tilde{a}'(\lambda,\eta)| \leqslant k(\lambda) (|\xi-\eta|) (|\xi|+|\eta|)^{-1}, \qquad \forall \lambda \in \mathbb{R}^n, \ \xi,\eta \in \mathbb{R}^n-\{0\}$$

where $k(\lambda)$ belongs to the class K of measurable functions such that $(1+|\lambda|^2)^p \cdot k(\lambda) \in L^1$ for p=0,1,2,...

Furthermore, we suppose to have $|a(\infty,\xi)| \leq L, \ \xi \neq 0$ and

$$|a(\infty,\xi)-a(\infty,\eta)| \leq c \left(|\xi-\eta|\right) \left(|\xi|+|\eta|\right)^{-1}, \qquad \forall \xi,\eta \in \mathbb{R}^n-\{0\}.$$

Finally, let us suppose that for $x \in \mathbb{R}^n$, $\xi \in \mathbb{R}^n - \{0\}$, the formula

(10.4)
$$a'(x,\,\xi) = (2\pi)^{-n/2} \int \exp{(ix\cdot\lambda)} \tilde{a}'(\lambda,\,\xi) \,d\lambda$$

is verified.

We can give an instructive example of a non-homogeneous symbol, verifying the preceding hypothesis:

Let us take $a(x, \xi) = a(x)f(x)$, where $a(x) \in S$ and

(10.5)
$$f(\xi) = |\xi| \quad \text{for } |\xi| \le 1, \quad f(\xi) = 1 \quad \text{for } |\xi| > 1.$$

Obviously, it will be sufficient to show that

$$|f(\xi)-f(\eta)| \leqslant c \frac{|\xi-\eta|}{|\xi|+|\eta|}, \qquad \xi, \eta \in \mathbb{R}^n - \{0\}.$$

- a) For $|\xi| \le 1$ and $|\eta| \le 1$ we have the desired estimate.
- b) For $|\xi| \geqslant 1$ and $|\eta| \geqslant 1$ we have

$$(|\xi| + |\eta|)(|f(\xi) - f(\eta)|) = 0$$
.

c) For $|\xi| > 1$ and $|\eta| < 1$, we get

$$(10.6) \qquad (|\xi| + |\eta|)(|f(\xi) - f(\eta)|) = (|\xi| + |\eta|)(1 - |\eta|) \leqslant (1 + |\xi|)(1 - |\eta|).$$

We define: $\varepsilon = |\xi| - 1$, $\delta = 1 - |\eta|$; we have

(10.7)
$$(1+|\xi|)(1-|\eta|) = (2+\varepsilon)\cdot\delta.$$

On the other hand, it is $|\xi - \eta| > |\xi| - |\eta| = \varepsilon + \delta$.

Hence, it is sufficient to prove that with a constant c>0

and in fact we see that

(10.9)
$$\frac{(2+\varepsilon)\delta}{\varepsilon+\delta} = \frac{2}{\varepsilon/\delta+1} + \frac{\delta}{1+\delta/\varepsilon} < 2+1=3;$$

we get henceforth

$$|f(\xi)-f(\eta)| \leqslant 3 \frac{|\xi-\eta|}{|\xi|+|\eta|}, \qquad \forall \xi, \eta \in \mathbb{R}^n - \{0\}.$$

Acknowledgement. This paper is essentially an english translation with some modifications of a set of lectures that I gave in September 1967 at the University of Ferrara.

I must thank prof. LAMBERTO CATTABRIGA who invited me there, and all people from Ferrara and Bologna who assisted to the talks.

BIBLIOGRAPHY

- J. J. Kohn L. Nirenberg, An algebra of pseudo-differential operators, Comm. Pure Appl. Math., 18 (1965), pp. 269-305.
- [2] S. Zaidman, Some nonhomogeneous symbols and associated pseudo-differential operators, Ann. Scuola Normale Sup. Pisa, 21 (1967), pp. 547-574.
- [3] S. Zaidman, Certaines classes d'opérateurs pseudo-differentiels, Journal of Mathematical Analysis and Applications, vol. 30, no. 3, June 1970.
- [4] S. Zaidman, Axiomatic approach to pseudo-differential operators, Boll. U.M.I., vol. IV, 1971, pp. 36-44.
- [5] S. Zaidman: A characterization of elliptic pseudo-differential operators, Boll. U.M.I., vol. III, 1970, pp. 656-669.
- [6] G. Gussi S. Zaidman, Estimates for pseudo-differential operators, Rev. Roumaine Math. Pures et Appl., T. XVI no. 9, 1971, pp. 1391-1395.