Pseudo-Differential Operators (*) ().

S. ZAatpMAN (Montréal, Canada)

Summary. — We present here a number of results on some aspects of Kohn-Nirenberg's theory
of pseudo-differential operators. We hope that some parts of Kohn-Nivenberg’s paper [1] are
presented here in a more detailed and explicit form; this could help a larger audience to under-
stand thetr ideas and methods.

1. — Preliminaries.

We assume basic knowledge of distribution theory; the spaces 8, &', Hs; the
Fourier transform in these spaces; we use the usual notations:

N a & & &, 3 & &, a
Dsz—“@admsa D= (Dyy ..., Dy), D =Dy ..oy Dpt, §%= 1 ooy &0%y as“‘:éza
0= (alv vees On) s o == (0 veny By i“l=“1+---+ &y H ;ls: H “Hs,

E=(by k), [EP=E&H4 &

We say that the linear operator L, from § into 8 is of order r, if |Zu|,< C|u| 4,
Vue 8 and for any real s.

We define the Friedrichs operator ¢(D); @(D)u= F-Yp(£)d(£)).

We assume that @(£) applies § in §8'; Fu= 4 is the direct Fourier transform,
F-1 the inverse Fourier transform.

ExawrrLe 1. — Let us consider a measurable function @(&) such that, Vé&e Rr
[p(&)] <C(141]£]%)7; it maps § into 8",
If ue 8, =ade$ and |p&)a(&)] <0, (14 |£]2)>, Vp=1,2,.... Hence

FplE)HE) = (2m) " [exp (i0- £)p(£)i(8) db

ig an absolutely convergent integral, and ¢(D)w is continuous and bounded on x e R*.
We have estimates:

2
5+20 ¢

lp(D)uli=[(1+]&1p() Fla@)*as < [ (1 + |67 a@)| ag = Ofu]

Hence, the operator ¢(D) is of order 2¢.

(*) Entrata in Redazione il 3 giugno 1971.
(*) This research is supported by a grant of the N.R.C. of Canada.
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Examrre 2. — If (&) has compact support in R* and is continuous, then,
VéeR® and p=1,2,..., = (1+ féiz)g’iw(ﬁ)l <0,. It follows [y(D)u],<Coplulss,
p=1,2,.... Hence, the inf. of the orders (named true order) is — co.

Another operator in S; if a(z)€ S, then a(z)u(x)€ S, Vue S. Moreover, we have
the estimate [ew],<C|u|,, which shows that this multiplication operator is of or-
der 0. In order to prove this estimate, we see first that:

~

Fit(§) = (@ % )(§) = (2m) =2 @& — )il diy
Therefore:
el = (1| £12)(2) g — ) ) dp o =
= [ [ (L4 8125 (1+ ) aE— )L+ [n]*) > ) dn e

We know the inequality:

(1+i$i2

sfz
Bl ] 282 Y
14| l) <2M (14 [ & —g|2)elz;

furthermore, if |f(&)] <|g(6)] = [flo<{glo- Consequently, as

[ 1820 )2 — ) (L Dt dg = 16) <
<2 (14 | & — | 2)elaE — )| (14 [l ) i) dy = 918),
it follows that

A1) oul<@me2te) (14 |E =gl fae —ml (L7l dn

Let us remember Minkowski’s inequality for integrals

2 Foor ¥
(1.2) (J( e mian) ag) < [( [156& mieag) an
Changing the variables: £—# =19 in (1.1), we have obviously

(13)  Jaul,<@mabie] (L4 20 ae)] (14 | E— el — o) dn .

Let be f(&, )= (1+§n12)18m]§(?})§(1+ff—mz}““}ﬁ(é——n)l; we have then, by (1.2)-(1.3)

@) loulo< 0 [( 16 man) ag) <o.[( [ mag) an=
= ([ Inl Wi (1+ [ —nl )l — )| ag) dn =
— 0.t i)l (14 & —nisyIaE —n)| ag) dn =
= O.ful.[(1+ [nl2)el )] dn = Cn.ul.-
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Finally, an other example of operator which maps S into S.

Let Io(D)u= F-Y({(&)|&|°#(&)), VueS, where ((&)e C=(R") is =0 for |§|< §,
and is =1 for || >1. Then obviously, {(£)|&{l°e O0=; furthermore, as &-> oo, it
increases polynomially and we remark also that all derivatives 0°({(£)|£|°) have
the same property.

This shows that ((£)|&|°%(£)e 8 if @#eS; consequently, (D) maps 8§ into 8.

This operator ig useful in the successive study of pseudo-differential operators
of a more general form (see [11).

We see also that [0,(8)|<O(1- [E[F)2, VE€ R (Lo(8) = £(£)€]°). Hence, oper-
ator (D) has order <o.

2. — Symbols.

Let a{x, £) be a complex valued function defined for we R", feR»—{0} and
assume a(w, £) € O°(R*X B*—{0}). Suppose that a(z,tf)=a(x, & for t>0, and
assume also that [111320 a(m, &) = a(oo, §) exists for &£eR*—{0} and a(co, &) is a

C>-function; define then a'(zx, &) == a(x, &) — a(co, &), and assume the estimates
(2.1 (1 + Ixiz)y iDgaga’,(% < Chaps Vze R,

and & such that [&]=1 (}); here p=1,2, ..., a=(xq, ..., %), f= By, ..., fn)-arbitrary
multi-indexes. We see some corollary of Definition (2.1), which are remarked
without proof in [1].

THEOREM 1.
a) We have |a(oco,&)— a{co, 17)1<O(({§——n})/((§}+}m)), V& w arbitrary in
R»—{0}: The estimates
b) (14+{A2)" 1@ (4, 8)<C,,  VAeRr, Ee R —{0}, p=1,2,..;
o) (1-+1A2)1a"(4 & —a' A, )l < ClE—nl (18 +nl) VieR", &neR"—{0},
p=1,2,.. being
d'(4y &)= (2n}*"’2fexp (—iw A (x, £)dw , Vie R, £e R»—{0}
are verified.
ProOF OF a). — a(co, 1£) = a(oco, &), Vi>0, £ R*—{0}, as easily seen. Hence
(oo, §) is also homogeneous of order 0, and by hypothesis is also C*(R»—{0}).

Let us put §/[§| = {, n/ly| = p; we have |{] = |u| = 1, a{co, &) = a(co, {), afco, n)=
= a0, u), and on the other hand

2.2) E—nl _[el&l—plml| _| 14

-,
EE R EE =M

[&] + 9]

() Remark that Dja'(z, t&)= Dja’(z, &), V1> 0. Then, from (1+ |z|2)’| Dia'(w, &)|< 0,
valid for x€ B", |§| =1, it follows that same estimate is valid for ze R, £eR"—{0}.
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Immediately it can be seen, considering OIEOiBIIGC + (1—0)(—w)|, or geometrically

that |67+ (1 —0)(—u) >3+ (—m)|, for [{]=|p|=1 and henece is, as we have
E1 /(€] 1m1) + In} /(1] ] ) = 1, the estimate

§—nl _1,.
2.3 > ZE—uls
if we show here that
(2.4) [a(co, C)”MOOM)K}/IC”//LI 3 V(:yﬂ

on the unit sphere in R~, we will have shown a) for O = 2y.
Let us suppose hence, reasoning ad absurdum, that there are two sequences
Lny My 18al = |a) =1, m==1,2, ... 80 that

(2'5) ia(oo, Cn)_a’(oo9ﬂn)‘>niCn"“Mn‘ ’ Vn:l’z; b
Now we can assame, choosing two subsequences, that

(2.6) lim £, =y, r}gg Hon == g 5 Do = || = 1.

n—>0

With use of (2.5) we shall get now:

1
—2sup e .
" |C|=I1) } {00, 4 I

Ign —A{’Lnl <
This gives £, = i, 28 the continuous funetion a(co, &) is hounded on the unit sphere
in R*. On the other hand, it results that: a(co, {,)—a(0o, a) = {{n— tin, grad a{oco, Za) )-
scalar product in R*; here 2,=0,{,-+ (1—0,)u,, 0<<0,<1; this is true for » large
enough.
(In fact, for these n, the vectors {, and u, belong to same small neighbour-
hood: |¢—&| < d where a(oo,() is of class C=, the origin being outside of this
neighbourhood). We have then:

|a(00, £a) — a(00; fha)l <[En— il e lgrad a(co, 2)| < M[5n—fin] -

Tt can be deduced that is valid the inequality
(2'7) Vb%in‘—ﬂnﬁ<ta/(0€>7 Zn)_a(oo}#n)]<M¥C%—Mﬂ} ’ ?1»:1,27..‘

whicl is impossible. Hence estimate a) is satisfied. More precisely: we proved that
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a{co, £) is in the Lipschitz class on the unit sphere, é.e.

fa(oo: &) — afoo, 77)[

Sl‘ - - A
15;33 {&— 7| V<o
Ini=1
Then we obtained that
|a(oo,§)~a(oo,9?)]<\2}/jf—?ﬂ, VE, ne R — {0}
Proor oF b). — Obviously, we have equality
(2.8) (14| A2 (2, §) = (@2 [exp (—iw- (I — A a'(a, ),
n az
AeR*, EcRr—{0}, AF%@T@
and therefore ig verified the estimate
(2.9) (1 14)2)7d' (4, &)<
dx
<Of 1-4-Jz2 i —A)ra (x, ) (1+ )2 'Qdm<01f——-——-—z C,
(1 [e2)lI— ) a' (@, ] (1+|2]?) Axjey—

for g large enough.
Proor OF ¢). — Obviously, we have the equality
(2.10) (14 |A|2)7[@ (A, &) — @' (A, n)]=
= (2m)exp (— ia 2)(T — A,)7 [0’ (2, £) — o (&, ) o =
= (2) =2 exp (—iz (14| a]2)e (L — 4,7 [’ (@, &) — ' (2, (1 + ] )oda
Let us put now
(2.11) boolty &) = (14 |a]2) (I — A,)va' (2, £),  @eRr, e R —{0}.
We obtain then the estimate
(212) (T4 1A12)2]@ (2, &) — @' (2 )] <
< @) (14 0] b (o, &) — by (o, )| de,  VACE®, & qeRr(0).
Consequently, it will be sufficient to show here that

with a constant independent of ze R* we have, for xze R, & neR*—{0}, the
estimate

(2.13) [Dyo(®y €) — b, o, )| < CLE—n| (1&] + ] ).
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Let us observe that b, (2, £) € C*(R;—{0}) and is also homogeneous of order 0
with respect to &, as follows without any difficulty from (2.11) and properties
of a'(z, &).

It will consequently be enough, by repeating the reasonings in a), to show that
we have the inequality

(2.14) [by.o(#y §) — by (s )| <p|L—p]

for £, 4 on the unit sphere, and xe¢ R®, because this will imply estimate (2.13)
after use of (2.3}, and then ¢) is proved if we use (2.12) for ¢ large enough in
order to have f(1+]m[2)~qdw< oo.

In the opposite case, (i.e. if (2.14) is not true) there are three sequences
()7 (L) (pe)T, such that (z,)y cRBY |L=|mi=1, k=1,2,... and the following
holds:

(2.15) 105,001 &) — Yoo @y )] > K| Co— ] 5 Vk=1,2,..
we may suppose, by extracting subsequences, that

(2:16) Imb=25,  limm=p,

exist, where |{,| =|u] = 1. Hence, from (2.15),

1
wk"’:kkﬁ sup | b, (@, {)] =0
|g{=1

zcR”

with k-» oo (a8 easily seen) and consequently (,= -
On the other hand, we have

(2.17) by ol @iy i) B o( X Iuk) = (ik_/*‘k’ grade b, o(@s, zk))

where 2, = 0,0+ (1 —Cu)pey, 0<<0, < 1.
Now we remark that for {,, g, (and hence z,) in a small neighbourhood of {,
we have

(2'18) ] gradf bm,q(wl\:y zls)] < C.
In fact, first of all, we see that, for any multi-index o= (0, ..., %)
(2.19) | 03h, o(2, &) < C, Vo e R, |£| =1, holds.

Thereafter, for any £ R»—{0}, we get:

Cebua( &) |=

£\|1 © .
— SVl X0, ifE>0>0
‘afibﬁ&(w7 5)} aéibiﬂxq (wi %EI‘) ;1§§ < IE& < C 1 :51 = >

(as in the neighbourhood of {, which we have considered).
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We have used here the fact that 0:b, (%, &) is homogeneous of order —1 in
respect to & Having then, from (2.15), (2.17), (2.18), the estimates

(2.20) R\ Co— ] <[ Bpory Ca) — byol @iy )] < O Li— i
we arrive at a contradietion, q.e.d.

CoROLLARY. — With an absolute constant, we have:

(2.21) |z, 5)—a(w,n)1<0[|5_’7|
for ze R", & ne R*—{0}. In fact, we have

(2.22) a(z, §) — a(@, 1) = a(o0, &) — a(oo, ) + a'(w, &) — a'(w, 1) =
= a(o0, &) —a(co, n) + (Zﬂ)_”lzfeXP (i - A)[@'(Ay &) —d'(4, )] dA

from where we get the inequalities

[&—n| ‘E""‘?l -
2.23 a(x, &) —alx, <C + 0, 1+ {Al2)7ddg

<Cé—n|(|&l+1nl)*,  VaeRw &neRr—{0}: g.e.d.

OBSERVATION. — We have implicitly proved, considering in (2.13) b, (x, £) with
p =0, that the following inequality
(2.24) (I+]al2) e’ (@, &) —a' (2, )| < ClE—7| (€] 4[] ),

VeeR» & neRr—{0}, q=1,2,...
is also satisfied.

3. — The operator A(z, D).

Let a(x, &)=a(co, &)+ a'(x, £) be a symbol, and, as previously, Vie R, &éc R»—{0}
a'(Ay &) = (2n)—"’2fexp (—ix-A)a'(z, E)dw. Obviously, it results that a'(4, &) e S(R})
uniformly for £e.R"»— {0} (1).

Let us define, for any we 8 and weR", a function v(v)= (A(w, Dyu)(=), by
(3.1) Al Dyw= (2m)[exp (in-£) (&) &

(1) Use for that the formula

(1 |2) DFA'(, &) = (2m) "2 exp (— iz I — 4,07 ((— iz)*a'(a, &)da,

and the definition of a symbol.
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where, V&e R —{0}, the function G(£) is given by
(3.2) G(&) = a(oo, §)(E) + () [@'(§ —n, £)tln)

Evidently, it has to be proved that G{(£) is Fourier transformable; in fact, we have
G(&) e LY(R*) as

la(oo, £)i(£)] <max [a(eo, §)| (&) € L,

then obviously, it is sufficient to show that
[[1aE—n, &yau)anas < oo;
we have in fact, Vp=1,2, ..
[1@&—n, &y dn<0,[(1+ & —nl*) ] an.

This last expression is the convolution between (1-+[£|2)2 and [#(£)| both inte-
grable for p sufficiently large.
Hence A(z, D)w i3 continuous and bounded on E*; we can say then that

(3.3) A(@, Dyu= aloo, &) + @) [a’ (e —1, E)itly)dy

is verified the Fourier transform being taken in 8.
Another formula of representation is given in

ProrosiTION 1. — If alz, &) is a symbol, we have

(3.4)  (Ale, D)u)(e) = @n)2[exp (io-£)( (@) [exp (— iy £ aty, uly)dy) dé
for every ue 8, xe R*.
It will be sufficient to show that
1) The integral f exp (—iz-Eya(z, &)u(x)de is absolutely convergent.
2) We have G(§)= {‘-’n)—”’%{ exp (—1y-&)aly, §uly)dy, Vie B*—{0}.

We have 1). In fact, as a(®, £) = a(co, &) + a'(x, &), it is sufficient to prove the
absolute convergence of
fexp {(—iz-Eya{oo, E)ulz)dz = a{oo, S}fexp {(—iz-Eulx)dr
which is obvious, and gives a(co, £)i(E) for ue S, and of Jﬂexp (—ix- &)o' (z, E)u(x)dz,
for ueS. As |a'(x, £)] < C,(1+ |2]*)-? for every p, we have

f} exp (—iz-&a'(x, E)ulz) dz < 0,,[(1 + )2 )P lu(e)| do
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In order to prove the 2), it is sufficient that
(3.5) (@)@ (E—1, &)iily)dn = @) [oxp (—iv-E)a'(w, &) ulw) do

be verified. By Fourier’s inversion formula (valid in the case which is considered
here) we have

(3.6) o' (@, §) = (2m)—""> j exp (iz- )@ (A, £)d2,  zeR®, EcR*—{0}

the integral being absolutely convergent.
Or, the « double » integral, for ue 8

(3.7) f f exp (—iw-£) exp (ie- )@ (A, &) ulw) dwda
i3 absolutely convergent:
(3.8) ”]d’(l, &) ule)| dudi < oo .
Hence, by Fubini’s theorem, we have
(3.9) (2g7)~n'2 f exp (—iz-&)a/ (z, &) ule)dw —
= @) [ @) exp [— i~ (6 — 213 (4, £)ak] u(@)do
By making in the infernal integral the substiution
(3.10) Ei— A=ty iy &A=,
we arrive at equality between (3.9) and
G11) (2 (@m) [exp (— o) @' (E— g, ) uier) do =

= (2m)—'2 f (2n)—”/2( f exp (—iw - u) u(@) dx) (& — pty &) dp = (2m)n'2 f @&~y &) () du
g.e.d.

A fundamental property of the operator A(x, D) is given in

THEOREM 2. — We have the inequality |A(z, D)u],<C.jul., Yue$, s being real
arbitrary.

We have in fact the immediate decompogition:
A(x, D)= A(oco, D)+ A'(w, D).

We must remark that for we 8, we have by definition:

(oo, Dyut) = a(oo, e, 4w, Dyue) = (22 [@(¢ —, )bty

23 — dnnali di Matematica
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Then we see first of all

812) | 4(oo, Dyul=[(1-+182) aloo, I8 < sup (oo, &) Flul?,
A( |<( sup|afeo, &)

i (o0, &) )[ul. .

(313) |
&l=1

GOy D}uis

Less trivial is the cstimate for A'(z, D)u. Its Fourier transform (in 8') equals

(27)~'2 j a'(E—n, &) dy .

And then (using the definition of H,), we will have to estimate the norm Z2 of
the expression

(3.14) (@2 (14| £12)0 (/6 —n, ) dn

which is equal to
(3.15)  @m (L 182 (L[] @ E =, L+ Inl2)>dln) dn = U (8).

Now, the proof is similar to that given in Preliminaries for a more special case.
Again we shall use the eslimate (some time credited to J. PEETRE)

(3.13 bis) (L4 &2) (142t < 214 [E—y[2),  V real t, & neRn:
We observe first of all that
3.16) |Ufd)] < (27!)‘”’22‘3"2[(1—% [&—n|2)ll= 1@ (& —mn, O (1 9] 2)72|d(n)] dn <
< 0,,,3[(1 + | & — | 2)elzr(1 - || 2)2 i) |l
Then, making the substitution &—#==7' we arrive at the inequality
(T < O (1 [ [2) 5L+ 16— o [ — )| g = €[ (S, )

where

(3.18) K& n'y= (1+|y/|2)deo(1 4 | & —g'|2)2 [ 0(E—7)] .

Hence |U,(8)]*< O, [K(&,7)dy')* and ([[U.6)|2a8)! < €, [( [E & n)an' ) dE)" which
i8, by Minkowski’s inequality for integrals, estimated in

(319) 0o, ( [KxE ) a2) an'=
= [ [t 2ot | & =2 lae — ) /=
= [ (1 by )02 (L | £ 2 () 2) = .l

(when we take p sufficiently large).
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Now Theorem 2 is a consequence of the relation
I(A(coy D)4 A'(w, D))t < | A(c0y DYth|l e+ | A" (@) D)t e < C e,

It proves that the operator A{z, D) is of order <0.

By density arguments we may extend A{wx, D) to a linear continuous map of H*
in H¢, and this for any real s.

In the next Chapter we define a similar, but different operator associated to a
given symbol a(x, £); we study its properties and relationship with A(x, D).

4. —~ The operator A(x, D).

Let a(x, &) be a symbol; we define an operator A(x, D) of S in 8 by means of
the formula

(4.1) 4w, Dyu= @) [exp (iz-£) H(§) &
where, for we 8§, the function H(£) is defined by the relation
(4.2) H(&) = a(oo, §)(&) + (Qn)'"’zfd’(f—n, nin)dn,  EeR"—{0}, ues.

With the same proof used for A(w, D) we have: the funetion Az, D)u is conti-
nuous and bounded, for we R*. Besides, we see that if the symbol a(z, &) does
not depend on x, we have A(D)= A(D).

Another formula of representation is given in

ProrosITION 2. — We have:

~

Az, DY = (2n)~”/2J exp (ix -n)a(x, n)i(y)dy , Vues.
PROOF. ~ As a{z, ) = a(oco, 5) + a/(2, %) and d(n) € S, the integral is absolutely
convergent.

‘We have, then:

(4.3) (2e0) [exp (iar-§) [ (220) 2 [ (6 —, )T | 2
is absolutely convergent because

@4 [f1aE—nmlam)|aas<
<O,[ [+ 16 —n*)slatm)| dnag = o [laop] ( [(14 16 —nl2)+ag) dn < oo

for p large enough.
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Furthermore we see that (4.3) equals
(65)  (2m)[exp (io-(E—) exp (-0 [@(E—n, ) it =
— (Qn)'"f(vfexp (i@ (£ —n)) @ (€ —1, n)dg) exp (i) (1) dn =
= (2m) f ( f exp (iz- 1) (4, ay)dz) exp (i ) i) d =

— (2m) f %/ (1, 1) -exp (i ) dil) dy .

This will prove Proposition 2.

ExaMpLE. — As an useful application of Prop. 2, let us take a fixed funection
w(z)e €y, and then the sequence

() = v u({w— @o)t) exp (i(@-&)v) , y=1,2,..,
where #,eSuppu, and [§]=1. Then it follows
(A, DY, ) (@) = w50, (2 — @) ot) exp (i(z-&)v) ,
where v,{z) are defined by
ni@) = (2)72 alay + vba, v, + 1) Bln) exp (i) dy
We see that (v,(w));";l is an uniformly bounded sequence, and it can be proved that

lim 0,(@) = alxy, &)u(®)

Ve O

holds, uniformly on bounded sefs in R".
In fact, we got easily that

x

L vk 75 ) —alos, &) |tn) exp i) .

0,{) — (@, &) ulw) = (277)—%;2] [a (970 +

Moreover we have, being a(x,, &) = a(z,, v&), v=1,2, ..., the estimate

a(%“{* %, vEo + 77\/?7)—05(%, &)< | a(:vo + %, vEy -+ yi\/a)_a(%, VEy - 54/7) |
= )
+ }(a(“’m v -+ 7?\/7') — (%, "’Eo)g<%s$:§p §g1‘adxa,g + T/E%I ?

(we use here (2.21) and (2.1)).
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Consequently we have
Clo| [, . C .
o4(®) — a(@y, &) u(@) §<:7gfi%é(??) [ +- wau{m \dr

which proves the result.
It can be shown, exactly as with the operator A(z, D) that, V real s, the
estimate

”‘7‘(—'(507 D)u‘|s<os“u|ls’ ue S,

is verified.
Considering only the case s= 0, and by the density of 8§ in L% we can extend
Al{z, D) and Az, D) by continuity, to linear operators of L*® in Z° Now we have

PRrOPOSITION 3. — Lat a(z, &) be a symbol, and @{z, &) ils complex conjugate, oper-
ator A(x, D) associated to a(x, £), operator A(x, D) associated to @(w, £). Then we have
the equality:

(A(w, D) uy v) = (u, Az, D)v),, Yu, ve L.
It will be sufficient to show that for w,ve 8. We have first of all:
(4.6) H(z, D)o = (275)—&&[ exp (iz-n) @@, n)B(n)dy,  YoeS (Prop. 2).

Henece we get, when (u,@)pzfu(w}ﬁ(x)dm, the equality

(£.7) (u, Az, D)v) = (Zn)“"’zfu(m)(fexp (— i@ -n)a(z, n)ﬁ(ﬂ)dﬁ) dx =

— (2m)-"'2 f f oxp (— iz n) (e, ) u(@)5(n) de dr .

Now, by Prancuerer’s formula we obtain, using also Proposition 1

—— e

(48) (A, D)uy v)= (A(s; DYy )= [ Az, Dyu(&)(8) ds =

= ()2 [exp (—iy-Ba(y, Huly)dy) Fe)ae= @ny2| [exp (—iy-8)-

“aly, §)uly)v(5)dé dy
which is exactly (4.7).

REMARK. — Let a(z, §) be a symbol of special type:

(@, &) = a(w)b(é) .

Then we have

(4.9) Az, Dyu = a(z)b(D)u, Az, Dyu=b(D){a(x)u(z)) , YueS.
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In fact, we see that
Ay D) == (2n)“"’2fexp (tx-n) a(@)b(n)i(n)dn = a(®)b(D)u
A(w, Dyu= (2m)7 [exp (—iy - £)a(y)bl§) u(y) dy = DO Tu(&) = bDYaw)(§)  Vues,

and this gives the remark.
Now we are able to prove the following

ProrosiTiON 4. — We have the relation
(4.10) 1(A(z, D) — Az, D))u| < O] YueS.

It is known that A(x, D)uec 8 and that

~

Au(§) = aloo, §)u(&) + (2n)'”’2f€?’(§—— 1, §)ii(n)dny

(Fourier transform in 8’). The same is valid for Az, D)u and

H@, Dyu(§) = aloo, )UE) + () [@'(§ —n, ity dy .
Hence, we obtain, with Fourier transform in §’
(4.11) (A= uE) = @) (@' (E—n, ) — &' (E— 1, )l dn .
Therefore, we will have to estimate the norm L2 of the expression

(412) U8 = @u)(1+ |62 (@G —, § — @' —n, n)) ) dy =
= (2= | (14 [§]2)7=(L 4 || 2} (@ ( —m, &) — &' &=y m)) (L + || *) i) iy .

We have
(413) (U] <O (1 [E— )@ (E—n, &) — & E—my ml (14 |n] ) aim)] dm <
eyl —pl2Y—p Ig—"nl 2\s12 177 d
<Oy | (14 [E—7]2)ol (14 |£—7]?) HERE (14 |nl2)7fa(n)] dn

Vp=1,2,.., &n5eRr—{0}

(we used here Theorem 1, ¢)).
We have now the following

LEMMA. — For every &, ne R*—{0} we have the inequality:

(4.14) [&—nl (1] + ) )< C(1+ [ —nl2 (149l 2) 2.
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In fact, we have, for & neR"—{0}, the evident relation |&—un|+|&—n||y| <
<l&l+{nl +ni[é—n| +|&[|§—n|, which is equivalent to

[E—nl 1+ [f—7l

< &, ne R —{0}.
HERT/ S EAT "
Now, it will be sufficient to observe that, for 0 <e¢<< €, we have
o< (14+[L))(1+125) <0, VieRn

and to substitute

(14 [E—n) <O+ 1E—nl®}, (L4 ]nl)>e(1+|q2)i.
Continuing now the estimates, from (4.13) we have for £c R»—{0}, that
{4.15) [U(&)] < Cs.p| (1418 —npl2)eliz=stH{(1 |- ] 2} {ai(m) | dg
and reasoning as in the proof of Theorem 2, we deduce the result.

REMARK 1. — The result above means that 4 — A is an operator of order
<—1; for any real s, 4 — A extends to a linear continuous map of H* into H*;
this implies that 4 — A& has a certain «regularizing » effect. The property is also
useful in the following way: suppose to have an estimate for operator 4; then we
can get same kind of estimate for the operator £ by writing that A= A— A4 A,
applying (4.10) and the known estimate for 4. Finally, sometimes we may neglect
operators of order <-—1. Then we can say that 4 = A (mod operators of
order <—1).

REMARK 2. - Proposition 3 means that # is the L®-adjoint of A; for real sym-
bols A= A*. Hence A= A* iff A= #; this happens for special symbols like a(£)
or b{x); we don’t know a necessary and sufficient condition on a(z, &) in order that
Alz, D)= A*(x, D).

Let us give now another proof of Proposition 3. We will use the definition
(in case a(oo, &)= 0):

(416)  Au(@) = @) [a(¢ —, Oy,  &u(®) = @) [a(E 1, m)itly) iy

and the relation to be proved becomes, when we use Plancherel’s theorem again

@1n  [( fate—n, it an) 5@ 3= [a@)( [@e —n, myotnan) ag

or

(4.18) [fae—n namde aan = [a©)7e —n, nimazay
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Let us observe here that:

athy 1) = (2n>‘”’2f exp (—ixz-A)a(w, n)de,
(4.19) _
a(hy m) = (2m)~ 2f exp (i - Mafw, n)dw = a(— 4y 1) .

Therefore, the relation to be proved becomes:

(4.20) J[ae—n, s asan = [ [am—& mya@sn aag

changing the variable: £ =1, = §, it becomes obvious.
The case a(co, &) 7% 0 does not introduce any new difficulty. Let {(§) e C* =0,
for &< %, =1 for {¥]|>1, and {(D)= \’F—I(C(S)J‘T), the asgociated operator.
Define two new operators:

A(w, D)= {(D) A(z, D)

and

HAe(xy D)= A(w, D){(D), Az, D)—Alw, D)= ({(D)— E)A(z, D)
where (D)-— E has true order = —o0; similarly A:(x, D)— Az, D) is an operator
of order = —oo. It follows that

A¢(a, D) — #g(w, D) == Alx, D) — A2, D)+- T,
where T has order —oo. By (4.10) we deduce, Vu & §, relation
[(Ae— A uls < fufomg+ [Tuls<cgul— .

Furthermore, the L*-adjoint of Az, D) is A*(x, D){(D) = %z, D){(D)= #(z, D);
this because Z(D) is self-adjoint for real-valued ((£).

5. — Product and commutators.

ProPOsITION. —~ Let a(x, &), b(z, &) be two symbols. Then oz, &) == a{w, &)b(z, &)
is & symbol too.

Obviously, ¢(z, §)e O°(R*x R*—{0}) as alx,£) and b(z, &) are in this space.
Begides, Vi> 0,
o(m, 18) = a(w, 1&)blx, 1&) = alw, E)b(z, £) = c(z, &), w=eR* e R*—{0}.

Ag
lim a(z, §) = a(co, &), ]iliglm bz, &) = b(co, £)

z]~—rw
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exist, for £e R*— {0} the same is valid for ¢(z, &);

lim ¢(z, &) = ¢(oo, &) = a(oo, &)b(o0, &)

|2| —>o

which exists for &e R*—{0}.
Hence: if we put ¢'(z, &) = ¢(z, &) — ¢(o0, §), we have:

oz, &)= (a"(m’ &) -+ afco, 5))(17,(3’/'7 &) -+ b{oo, 5)) =
=a'(z, £)b' (@, §) 4 a(oo, §)b'(w, &)+ b(o0, &) a'(®, &) -+ a(o0, &) b(oo, &) = ¢'(2, §) - ¢(o0, §)
where

¢'(2, §) = o' (2, H)V'(@, &) + a(o0, §)b'(w, §) +- bloo, §)a/(w, £) .

Obviously ¢(co, &) € C°(R"—{0}).
Let us now remark now that:

(6.1) (1+ |o*) D30k (@, £)|< Oy
vaRny .EER”———{O}, P=1,2, ..., 0= (0, ecp %), ﬁ: (ﬁu ey ﬁn)
(consequence of Leibniz’s theorem).
Let C(x, D), A(z, D), B(x, D) be the operators corresponding to c¢(x, &), a(w, &),
b(z, &), respectively. We have
A(z, D)= A(o0, D)+ A'(z, D), B(x, D) = B(oco, D)+ B'(%, D)3
(5.2) A(x, D)B(x, D)= A(co, D)B(co, D)+
-+ A'(x, D) B(oco, D) - A(co, D)B'(z, D)+ A'(x, D)B'(%, D).

We denote a{oo, £)b(o0, &)= p(&) = c(o0,§); a'(w, £)b'(w, §) = k(, &), a(oo, £)b'(w, &)=
= ky(w, &), b(oo, §)a’ (w, &) = ky(x, &). Then,

(5.3) C(z, D)= y(D) -+ K(x, D)+ K(=, D)+ Ky(x, D).
Hence; we have some simple results:

LEMMA 1. — We have y(D)u= A(co, D)B(co, D)u for ue 8.

In fact,

YD) (&) = p(£)T(E) = a(co, &)b(co, £)iH(E) =
= a(oco, &){B(co, D)u)(&) = A(co, D)(B(co, D)u)(&);

hence, by Fourier’s inversion formula, valid in 8, we arrive at Lemma 1.
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LeMMA 2, — We have K, (v, D)= A(co, D)B'(2, D).
In fact,

Ky, Dyu(f) = (2)" [a(co, B (E— 1, ln)

(a8 %y(oo, &) =0, and Fey(Ay &) = a0, £)' (4, &)). Hence

(5.4) K (5, DYu(&) = a(co, &) B (w, D)u(&) = A(co, D) B (&, D)u)(&)
and this is true for any ue §; whence the Lemma follows.

LEMMA 3. — We have K,(x, D)= B(co, D)A'(z, D).

The proof is the same, as in Lemma 2. Let us examine here the difference

A(w, D)B(w, D)— C(w, D) = A(co, D)B(co, D)+ A'(z, D) B{oo, D) +
+ 4 (o0, D)B'(z, D)+ A'(2, D) B'(w, D) — A (o0, D) B{oo, D) — A{co, D)B' (%, D) —
— B(oo, D)A'(w, D) — K(z, D)=[A'(z, D), B(co, D)1+ A'(x, D) B'(», D) — K(x, D)

where [ ] means the commutator between the two operators, and K(xz, D) is the
pseudo-differential operator associated with k(x, &) = a'(x, £)b'(z, &).
Let us begin by proving the

PROPOSITION 5. — We have the relation (*)
(5.5) I[A(z, D), Bloo, D)Ju|l,< Ouluf s » Vues$, ¥ real s.
In faet, we apply the formula

(5.6)  A'(w, D)B(oo, D)u(&) = (2m)"'2 j & (& — 1, £) Bloo, D)uln)dy =

= (22)2 @' (§—n, &)b(oo, MUmdn .
Besides, )

B(co, DY A (w, D)u(&) = b(oo, &) A'(m, D)u(£) = b(co, 6)(2n)””’2fﬁ'(§—n, &) i) dn

and hence
[A'(z, D), B{co, DY]u(§) = (27v)“"’2f@’(§ — 7,5 &)(b(c0, ) — b0, &)) d(n)dy .

As b(oco, &) is homogeneous of order 0 in & and O0>(R»—{0}), we have, as seen at
the beginning, for &, ne R*—{0}

(3.T)  |b(oo, &) —b(co, )| < Cl&—n|(1&] +|n]) 1< O(14 [E—n|=)}(1+[7]2)*.

(*y Obviously the same holds if we replace 4’(m, D) by o&'(z, D) and B(co, D) by
HB( o0, D) = B(oo, D).
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Hence, we are obliged to estimate the norm L? of the expression

(5.8)  U)= (1+ [&2)(2m) 2@ (E—1, &)(bloo, & —bloo, n))if)dy
‘We have:
(U < Cun (L4 18—l (L [ E— 2243 (L4 =)= )| iy =

- = Cop | (1 [§ =2 )oretbos(1 - [g|2) =721t p) ] i

from where we arrive, as before, at the desired estimate.
A more refined technique is neeessary in order to prove (*)

THEOREM 3. — We have the relation
(5.9) |(4'(z, D)B'(z, D)— K(z, D))u],<0,|%],., Yue$§, V real s.

Let us consider the operator K(z, D) associated with k(x, &):

E(@, Dyu($) = (20)" k(& — 1, §) () dn
but we have, for k(z, &) = a'(x, £)b' (2, &) that

(5.10) k(2 &)= (2m)m f @' (2 — py E)b' (1, ) dps

whence we arrive at

(G:11) Ko, Dyu(d) = @) [atn){ ['(E—n—p, OF (1, &)du) dn =
= @ [( [a'€—n—p O )8, .

In the interior integral, we make: N4 p==1; dyp=dr; it follows

(G.12) )= @o[( [a¢ -, e —wac) b, Hau=

= em[([a€— 85, O —wau) dr =
= o) [@ €~ 8 [, Ot —p ) dx

And once more, in the interior integral, we make: v —pu =y, du= dy.

(*) Same estimate holds for operator #'(z, D)R'(w, D) — K{z, D) which equals
(&' (w, D)— A'(z, D)) B/ (2, D) + A’(x, D)B'(%, D) — K(, D) +

+ A'(%, D)(%'(2, D) — B'(w, D)) + K(z, D) — K(z, D)
as easily seen,
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We have now
(3.13)  Ku(&) = (@m)— j}z'(g.— 7, 5)( f?;’(r—v, 5)&(«»)@) dr =
= @2m) Jf &(E—7, b (v —v, Hap)dvdr .

Hence, we arrive at

(6.14) Ku(§) = @) [@(6— =, 5 (c —, it dndx

o

On the other hand, we have

(5.13) A'(@, D)B @, Dyue) = (2)[&'(§—n, &) B (@, Dyuln)dy
and besides:

(5.16) B'(w, Dyuly) = (272 (8 (9 — 7, m)ii(z)dz ;

and henece we shall obtain

(.17)  X'(@, DYB @, Dyul) = ()~ [@(E =, E){ [501— v, m)a(e) dv) dy =

_ (m)wﬂ&/(&-n, 85/ (g — 7, n)(z) dv dy .
By making substitution 9= 7, v=7, we arrive at
(5.18) Az, DB @, Diud) = o) [#(E— 7, §F (v—7, D dndz.

The absolute convergence of the « double» integrals here considered results from
the estimates

(319) |¥E—78]<C1+]E—712)7, [B—n l<C, laml<Co1l+|y*)7,

Vp=1,2,...
Therefore, we can express the difference (A'(x, D)B'(z, D) — K(=, Dm(E) by the
« double » integral

(5.20) @[ [@(&— 7, (5 (@ —n, vy —B'(r—n, H) by dy dr
Let us examine here the norm L2 of the expression

(3.21) U= <2n>~"f f (1 |&]2)a (& —, E(F (v—n, ) —b' (v —n, 7)) Glp)dy dr .
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We have, first of all, the pointwise estimate, V&e R»— {0}

(5.22)  [U(8)<C f(l—Hfiz)”z(H‘|§—T|2)"’(1+17—77[3)"“’15—71(I§I+IT])“1W(n)ld77d‘f<
< O [ 1)1 1E— 22214 £ — 221§ — w214 [2]2) ) dndr =
= O [(14- £ (14 [ = ]2 2441 T — ) 2(1 22| dn e

Let us denote now:

(5.23) HEnyv)= (147 —ny*)?(14 | —z]2)7H(1+ |2]2)?
(5.24) (5, )= (&j[fl)(zﬁ, f (&, T)dr

We remark that it follows, Vée Rr— {0}

(5.25) U8 <0, f J’(l + | E|2)2H (£, g, 7) i(n)| dn dr .

Therefore, we have only to prove the inequality

(5.26) ([([[@+ig)mmE n, oo anaz) ag) < 0.Jul.a Vues.

In order to do that we shall prove here a more general result, which is given in

LeMumaA 1. - Let v(&, 5, 1)> 0 be a function such that fr(f,n, T)dT < 00 for every
&, n fized in R»—{0}.

We denote
s/2
0u(Eym) = (—(—i} ll ')l_,,,z f (& my 7,
and we suppose
Jesemae<z,  [oe,min<1, & ne R —{0}.

Then, there is a constant C, such that the inequality
x ~ 2 \b
(5.27) (f(ff(l—}—[{-’}z)"%(f,n,1)]u(n)|d17dr) df) <Clul s, Vue$, V red s
is verified.
ProoF oF LEMMA 1. - We remark that in fact, we have

(5.28) ff P(€,my T) (1 | &) il ldndr-f o0& ML 4|l 2)e-vr2 ()| dy .
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Let us put () = (14|7n|2)22|d(n)|. We remark that (*)

(5:29)  [ody mvindn=[VeuE m)Veol& nvinn
<([ouemany ( [oue,mer >dn) <VI( [oe, moraan)’,
G300 [[r& n D+ 1E) = Al dydr<VI( [ede motndn) ,  geRr—{o0}.

Hence we have also:

1” £, 7, DL+ | £2)2]aily dvydr\; <\/L(f(fgs(§,n)wg(n)dﬂ)dfj)%z
= VEI( [([eute mag)oreman) <I( [oronan) = Ll

We shall apply Lemma 1 taking »(&, n, 7) = H(E, n, T) and o4&, ) = K& 7).
We see readily that ( f H(&,n, T)dT << 00, and it remains to prove

LevmA 2. — We have

(5.31) [xigmae<n, K& min<L.

In fact,

—_ (1+Is) 2\—gp — 2 Y-t 21—
K& =0 )(s_n,zj(lﬂL%T——??! (A g — (i o) R e

Because we have the known estimate (1-4-|7|2)<28(1+4[&]2)}(1+|&—1]*)}, we
obfain

(5.32) K7 <( %ni)(% f (14 [7—n]2)#(1+ |E—1]2)rdr<
<01+ 1§ e (L Jr —l2) (14 | —el2) e =
= 0.f(1 g r (1 1§ )
Now we have, (1-4|&—n|)s< O(14 |£— rj2)s-12(14 |7 —p]?)e-1%, and henee
(5.33) K (&) <0, f (14 | & — 7]2)-ratletio(1 - | —gg|2)-rHitizdr
(*) This proof, quite well-known in fact, was communicated to us some years ago by

the colleague 8. TAKAHASHI (see however Seeley’s lectures in Stresa, C.IM.E., 1968).
(Y For sufficiently large p.
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We denote at this stage:
l(t) — {(1 -+ It_“l 2)-—:0+ls—1l/2(1 -+ {u{ 2)~p+1+1s~1!/2du , te R”,

where p is large enough.
We gee that A(f) c L* as eonvolution of two integrable functions; hence, we have:

,1(5,_.??) :f(1+ 15_?} _ulz)—p+;s—1z;z(1+ Wﬁ 2)-7}-{~1+Is—1¥/?d{% -
== (by substituting 4= &—1) mf(l + |77

2)~p+1s—1uz(1 + | — 7| 2)etitstizgy

Hence, we get
K (& n<0,Aé—n)

and obviously:

f%(f~—9ﬂd§< 0, V(ﬂ»(§~n}cl7]<oo

which proves the Lemma 2.
Hence, for Liemma 1 we have that

(5.34) 1O < Clt]s-a » Yue§
and this proves Theorem 3.

CorROLLARY. — If A(x, D), B{w, D) are two pseudo-differential operators, the com-
mutator [A{z, D), B(x, D)] i3 of order <—1.

In fact, we have that
Az, D)B{w, D)— (ab)(z, D) = [A"(%, D), B(x, D}]+ A'(x, D)B'(», D) — K(z, D)

is of order <—1 as by Theorem 3 and Proposition 3.
In the same way, we ean prove that Bz, D)A(x, D)— (ab){z, D) is of order
<—1. Hence we arrive at the desired result (¥).

REMARK. 1. — Let a(», &) be a symbol such that la(z, &)|>a>0, VeeRr,
Vée B"— {0}. Then one can see that b(z, §) = (a(», &))" is again a symbol. Hence
a(@, &)b(x, £) =1 Vowe R, £eR*— {0}. The operator # associated to c{z, &) =1 is
the identity operator. Hence we get

I— BAYul,<elul-,, Yue§.
Furthermore we have

4=y BAu + BAu, Vue§,

(*) Same result holds for the commutator [A(x, D), B(x, D)] as follows from footnotes
to Prop. 5 and Th. 3.
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We derive inequality
lulo<elu]—+ [ Bleanm | Aulo<er(|Aulo+ Jul-), Vue L.

Same estimate holds when we replace # by A.
We have also the interesting

REMARK 2. — Let a(x, £) be a symbol and A(z, D) the associated p.d.o. Assume
that 4,€(V is an eigen-value of A(z, D) (in L*(R")), such that |a(z, £) — 4| > a> 0
Vze R®, [£|=1. Then, any eigen-vector #,(x) corresponding to 7, is a O~-function.

In fact, bz, &) =(a(=, &)—7)* is a symbol. If B(z, D) is associated to it we get,
as in Remark 1, that B(z, D)(A(w, D) — 2,B)=E+ T, where ¥ is the identity
operator and T has order <—1. It follows: 6= B(A — A F)u,= o+ Tu,, i.e.
= — Tu,. Being u,e L?, it follows that Twu,c H* and u,c H* too.

In the same way we get that u,e () H?, which implies, as wellknown, that
wo() € C=(R"). ”=0

Let us consider now the operator I,= (1 |D|2)2, defined by I;&(E):
= (14| &2 (&), YueS. A useful result is given in

THEOREM 4. — Let a(z, &) be a symbol, A(x, D) the associated pseudo-differential
operator. We have:

(535) ” [A(LL‘, D)7 Is] HL’(R")< CU“HE“* ? VueS.

In fact, we have:

(5.36)  A(a D)L u(f) = a(oo, &)(1-| &2} a(8) +
+ (2m)2 (@ (E—n, &1+ n|*) = alnydn ,
and also
(3.37)  LA(@ Dyu(f) = (14|82} Az, Dyu() = (1-+]£2)"=a(o0, &)(&) +
+ @) [@(E—n, L+ [§]2) 2 ) dn

and hence it ean be deduced that

(5.38)  [A@, D), Tju(d)=(2m)~2[& (E—n, (1) —(L-+ €)= Taln)dn =T (&),
e R*—{0}.

By estimating the norm L2 of U, &) we have first of all the point-wise estimate
(5.39) OB < O (L 1E—nl®) (L4 [a]2) ™ — (14 18]2) =kt oy -
Let us remark here the elementary inequality, for 0<<0<1

(5'40) (1+ l"7 + 9(5_,7)! 2)(3—1)/2<2Is——11/2(1_!_ M] z)<s-1>/2(1+ lg(g_mlz)lsql/z
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and therefore, as |s—1]/2>0, 0<O<<1: (14 (8(5—n)|?)s-vie< (14 |&—p|2)e-02
whence

(BA1) (1 [+ O —m)[2) 02 2L ] )L o | g 2]

By Taylor's formula, we have

(3.42) (&R — (14 nl2) = (E—n) grad (14 €))L}, E=n+0(E—n)
(5.43)  J(L4+ &%) — (14 In)°)" | <] £ —nl|grad (1 + |§]°)E | .

As we have
(L& = {4 [8]o)e,
it follows that
(5.44) (grad (14| &)%) = [£]]s] (1| 8|2} <] (L4 [ £]2) -0

and hence

(5.45) 1+ &) — (1+ g@lz)s{z{Qlf—nHS (1+ I+ 6(&—n)|2)evieg
<|s|(1+ |E—n|= {1+ |+ (& —n)|2)evr<
<[] (1 | & —n|2)R2l-02(1 - || 2)o-0r2(1 - | § — | 2)pe-aiiz

Introducing (5.45) in (5.39) we shall obtain
(546) U < Cpaf (14 [ E—n]2) 2 (L | E— ] 030021 || )30 )|y =

= Oy (1 [§ |2 )rste=tsmrn (1 |2} )]y
From here on the proof finishes as in Theorem 2, when we take large enough p.

REMARK. — Same proof works for the commutator [#(z, D), I,] (just replace
in (5.38) @'(§—n, &) by d@'(E—n,7)).

6. — Some inequalities,

We want to prove the following (*)

THEOREM 5. - Let A(w, D), L*— L* be a pseudo-differential operator associated
with the symbol a(xz, &), such that a =8 and

(6.1) a(@, &)=y

{*) Bame result holds for the operator A(x, D); also, nonreal valued symbols a(w, & such
that Rea(», & >» can be considered. The proof uses (6.2) and (4.10), (cfr. with our paper [4],
Th. 3).

24 — Annali di Matematicn
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for |&|=1, xeR* Then for every &> 0 there is a constant C'(e) such that, for ue 8

(6.2) Re (A(x, D)u, u),+ (&) |ulit> (y —e) fulz

i8 verified.
Proor. - In fact, we have obviously, for arbitrary ¢> 0, the inequality

(6.3) alw, §)—y +e>e,

for |£]=1, weR".

Let be bz, &) = (a{z, &) —y+¢)}, e R, [§]| =1; for arbitrarily {e B*—{0} we
put b(w, &) = b(x, £/|&|). Hence b(x, §) is homogeneous of order 0. It is «easy» to
verify that, when z€ R* and |£]=1 we have

(6.4) (14 |2|*)" D080’ (@, )| < Opncty

if we are based on the same property valid for a'(z, &) and upon the fact that
a(z, &) —y +e>¢ for e B*—{0}, zc R,

Hence, b(z, &) is a symbol in the sense of KoHN-NIRENBERG. We consider hence
the operators B(z, D) and $(x, D) associated with the symbol b(w, £). We have

1) The operator A-—(y—e)l—B-B is of order <—1.

In faet, B(z, D)B(x, D)—b(x, D) is of order <—1, as shown in Chapter 5.
Being b%(x, &) = a(x, §) —v + ¢, we have that b*(w, D)= A(z, D)— (y—e¢)l, and
hence we deduce that Bz, D)B(z, D)— Az, D)+ (y—e&)I is of order <-1.

Hence: B-B=A —(y—e&)I+ T, and BB= (B —B)B+ B-B; here T, is an
operator of order <—1; whence we get
(6.5) A—(y—e)l-BB=A—(y—e)I—B-B+4 (B—B)B=

Ae(y—e)I—A+(y—)[—T ;+(B—B)B=T,+ U,

as B—$ being of order <—1 and B of order 0 their product is of order <—1.
Hence, we have also

2) Let T be an operator of S in 8" such that |Tul,<Clul.. (). Then T s
continuous of L* in L2, and we have

(6.6) Re (Tu, u)y=>—C'|ully, Vue 8.
In fact, we obtain obviously the estimate

(6.7) |Re (Tu, w)o| <| (T, w)o| < || Tuf|u]-

() For any real s.
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by ScawarZ’s inequality (generalized)

(6.8) | (uy 0)o] < Ju]o]0]-s Vu,ves.
Henee:
{6.8) | Re (Tuy w)ol < Clullsaful-s, V real g, uc§;

we take s= 1} and we obtain

(6.9) [Re (Tu, u)y| < C'|ulZy
therefore is
(6.10) Re (Tu, u)y>—0"|uly .

By combining 1) and 2), we dedunce that

(6.11) Re (4 —(y—&)I— B-B)u, u),>— C'|ul% Yues,
or
{6.12) Re (Au, u),—(y—¢) H%Hg_Re (B-Bu, u)y>—0C' ﬁ“ﬂia H

as b(z, &) = b(x, &), it follows that $ is the L? adjoint of B whence

(6.13) Re (Au, u)y— (y — &) [ufs — | Buls>— 0" |u|;
and therefore

(6.14) Re (Au, u)+ O'|u|2y > (y —e)|u]s, VueS.
By using this result, we arrive ab the following main

THEOREM 6. — Let a{z, &) be a symbol, A(x, D) the associated pseudo-differential
operator. Let be K= me%nx[a(oc, &) . We have that Ye> 0 there is a constant C, such

that the inequality l8l=1

(6.15) 4@, D)yulo< (K4 e)|ufo+ Ccfuf-1,

for ue 8, is verified.

REMARK. — Let be K = max la(z, £)] and, VN =1, 2, ...
1&1=1

Ky= %12)15_ la(x, £)] .
151=1

Then obviously we have K, <K,<...<K.
Furthermore we can sce that %ml K.=K.
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Proor. — In fact, let be b=2a-a=|al?; we see that b(zx, &) is a symbol too.
We put B(z, D) as the associated pseudo-differential operator; then consider #(xz, D)
associated with @z, £); #(z, D) is the L*-adjoint of A(z, D).

We have B—#&A4 is of order «<-1.

In fact, B—AA=T_, is of order <—1; hence:

B—AA=AA—FA+T  =(A—FB)VA+ T,

is again of order <—1.
Hence, by 2) of Theorem 5 we deduce

(6.16) Re (B—#A)u ,u)p>—c'Julyt, Vue$§

{

and therefore:
(6.17) Re (Bu, u);— Re (% Au, ) = Re (Bu, u),— [|4ulo>—¢ |u]?y, Vues.

Let us consider now the symbol a(z, &) == K*—a(x, §)a(x, &) which satisfies ob-
viously the conditions of Theorem 5. Hence, we obtain, taking y=0 in Theorem 5,
that Ve'> 0, dc'(¢’) such that, for ue S

(6.18) Re (K*—B)u, u),+ o' (') Ju]2y > —e'[uls,

is verified.
By adding (6.17) and (6.18) we arrive at the inequality

(6.19) B |uls— [[Aufs+ ¢ () ]u]iy>—¢ [u] —e'|u]s

(6.20) Auls— (B* + &) Jula< Cule) [ulZs

that is

(6.21) JAu < (B*+ &) |ulo+ Cule) w2, Yue§, Ve'>0

and we may assume Ci(¢/)>0; using now Va-+ b<Va-+ Vb, a,b>0 we have
(6.22) [Au o< (K + /&) o+ Oole) |ae]-s -

On the other hand, Ve¢'> 0, Ip(e"), sueh that [uj_y<e’|ul,+ y(e”)|u]-. whence we
obtain, from (6.22), the estimate

(6.23) 1 Awly< (B -+ /&) 1]+ Cale'e” [ulo+ p(e") Oule) 0] -

Let ¢> 0 be given; we take ¢’ such that 1/&'<Ce/2; and ¢ such that Oy(e')e"<e/2;
this is trivially done. We have, with a constant I'(, &") = y'(e)

(6.24) [Aulo< (BE+ &) ulo+ 7/ () ]2 Ve>0, Yues.
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COROLLARY. — If we have
K = max|a(x, £)] ,
ZER
[&j=1

then for every real s and Ve> 0 there is a constant C., such that

(6.25) [Aul.<(E+ &) |ulls+ Coolw]ss s
is verified.

In fact, we observe here that, using some previous results, we obtain

(6.26)  Auf.=[(I+]D|*)dulo<|A(I+]|Di*)ulo+
+ 1[4, (I+ D) ]uf< (B + o) |l + Coll(I+ [D]2)uf+
+ Clulsa= K+ &)ul.+ C:lu]s.

We will prove now, as a consequence of the foregoing result, the following

TurEoREM 7. ~ Let alx, £) be a symbol; K= né%;ai{a(as, &) and Alw, D) the asso-

|&=1
ciated pseudo-differential operator. Then we have

(6.27) inf [A@, D)+ T|<K

where G, is the class of operators of order <—1, and the norm is the one of
Q(Lz(Rn); LZ(Rn))_

In fact, we must prove that Ve>>0 there is an operator T. of order <—1

such that
(6.28) A+ Touly< (K + o)ul, Vue L¥(B).

We build such an operator T, by considering a function in C°(R"), px(£) dependent
on parameter K> 0, such that 0<px(é) <1, @a(é)==1 for |§| <R, @x(&) =0 for
€| >2R.

The operator Tp= — A@,(D) is of order «—1; in fact, we have for every ue 8§,
the estimates

(6.29) [ Taul,= [Apx(D)ul,<C, zf‘?fi{D}uﬂs =

— o [a+ gy g@laena) <of [ @rgeyla)ae)

[El<ar

= O [+ 18 @O0+ 1807) d6) <0+ 4RO fu] = Cuglt]n.

l§]<2r
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By applying here Theorem 6, we have, Ve> 0 and ue 8,

(6.30) MA‘—AQQB(D})W’QO"—" 1%A(I“93E(D))uﬁo<
<K+ &) (I —@a(D))ullo+ C|(I—@a(D))u]...

Remark that we have
(6.51) HI—gaD) ko= ( [(1—pa(®) 2@ 2d8)' < Jul, wes

and also that

632)  [(T—gaD)ula=  [(1— @) Pla€)1(1+ 1817)228) <

< [@+1aaea) <( [a+ roHae)sas)
whence we get =

(6.33) I A+ T ulo< (E+ e)fulo+ Oc(1+ B2)Hul,.
We choose R, such that €./V1-+ R:<¢; hence we get finally
(6.34) MA+ TR ule< (K4 2¢)ul,, Vuel?

and this proves Theorem 7.

7. — Some results on compactness.

In this paragraph we will prove the following

THEOREM 8. — Let a(z, £) be a symbol, A{x, D) and A{x, D} the associated pseudo-
differential operators. Then A — A is compact linear operator, L*(E")— L*(R").

Let alw, &), blw, &) and c(x, &) = alw, £)b(x, &) be three symbols, and A(w, D),
B(z, D), C(z, D) the associated pseudo-differential operators. Then A(z, D)B(w, D)—
— C(z, D) is a compact operator, L*(E")— L*(RB").

RuMARK 1. — Let al{w, &), blw, &) be two symbois such that a{x, &) bz, &) = 0
Vee R, &€ R*— {0}. Then the operator A(w, D)B(w, D) is compact in L2

In fact AB— ( is compact, where € is associated to a(w, &) b(w, &) =0.

8o, € is the null operator, and the resuit follows.

REMARK 2. - Let ¢(z), w(x) be C= functions with disjoint supports, and a(, &)
be a symbol. Theu the operator
p(@) Az, D) p(@)

is compact, L?— L2
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We have in fact g(z)yp(x) = 0. Furthermore

pdy = (A)y + [p, Aly = Algy) + [, A1y = [p, A]p.

But [p, A] is compact, as follows also from Th. 8, because ¢(x) is a symbol.
Proor¥ oF THEOREM 8. — In the present case, we use the following
CRITERION OF COMPACTNESS. — Let 8c L3 R*) be a set, such that

a) Nulw = ( [(1-+18) @)1 2d) < for ue s and

b) lim [ (g + 7) — @) 2aE = 0 uniformly for ue S, for any fized B> 0.

v

1&g <r

The 8 is precompact in L*, and therefore a subsequence of every sequence in 8 is
convergent in L2,

As a set 8 is precompact in L2 if, and only if, the set 8, of FOURIER'S trans-
forms is precompact in I?, it will be sufficient to prove that:

Every set S which is bounded in Liy, s and is L-equicontinuous on every sphere
{£;1&] <R} s relatively compact in L*(R%).

This last result is a consequence of the well-known criterion of M. RIEsZ.
A set K in L*RY) is relatively compact if, and only if

a) f l0(6)|*dE<C, VoeK
b) lim f]v(&—%— 7) — 0(£)]2dE = 0 wniformly for ve K
¢) }eiq\rg f{@(g)gzdg—-— 0 wuniformly for ve K.

1{E2

Let us consider now the set & which is bounded in Lf sy, hence it is bounded
in L2, and a) is verified.

Besides, as f(1+}§12)}v(§)12d§<0, it follows that f(1+}§12)le>(§)12d§<0 and

consequently (1+ E?) [I0(&)|2d6 < ¢ and therefore LE
€ =r
(1.1) [l@as<oa+ roy, VR>0, Voe®;
|&l=nr

hence, ¢) is verified.
We observe here the following inequality, valid for ve R%, |7i<1

(1.2) [+ v —v@lras<2[lols+ 0)*at + 2[lo@l2a  tor B>0, vee.

&l =r+1 |&+2]=r |&>&
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In fact; for [&| >R+ 1, 7] <1 we get |&+ 1| >|&| —|7]| > B+ 1—1= R and besides
we have |a—b|2<2]a|?--2]b|%, whence we derive first of all

(7.3) [0t + ) — 0(&)] a <2 lo(é + 712d¢ + 2 [o(@)] a5 .

14 Sri1 [&l=r+1 &=E+1

As the set {£;]&] >R+ 1} is included in {&; &4 | > R} when |7| <1 we deduce thab

(7.4) Jioe+ Dlras< o + o2

{251 |ét+zl=r

and hence we get

@5 [+ n—v@)|ae<
[f=rt1 - -
<2 io(@)2a + 2 lo@ s <4[lo(@)| {aE <401+ B, Voe@.

él=r 18] =a+1 i
We have, then, for every R> 0 and |7] <1, the estimate

(7.6) [+ 0 —v@I2a < [loE + 7 —o()|*dE + 4L+ B, Vre®, VE>0.

|El<z+1

Taken ¢> 0 let us take R, such that 4C(1- R})™ < ¢/2, and then |7| < dg,. such
that

o4+ 1) —0() s < 2, Voe®

|€l<mr+1

(according to the hypothesis). Hence, we have, for |7|<d:

kY

(1.7) JoE+ 0 —v(@)2ds<e Voe®.

As a), b) and ¢) have been so verified, the set & is precompact for the criterion
of M. RiEsz.
We will now prove the

THEOREM 8a. — If a(w, &) is a symbol, the operator A — 4 is compact in L2

We define 7= A4 — #; let 2 be a set which is bounded in L*(E*). We will
show that the set T(£) is relatively compact in L2(E"); or that m = {TN@;, we 0}
is relatively compact in L°(R%).

By a preceding result (Proposition 4) we have

(1.8) 4 —Aufm<Olufy;
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henee, for ue 2, the set {Tu},o is bounded in H'. Therefore the get 7(Q) is

bounded in Lfgs-
Besides, we have to prove that for every K> 0, it is

(7.9) lim {Tu(& -+ ©) — Tu(&)]2dE = 0
! O\EKI@
uniformly for < Q.

The first (preliminary) resulf is given here in

Lemma 1. — We have, in the case of a symbol «{z, &) such that a{co, &) =0

(7.10) lim [ [du(E+ v)— du@)|*as =0
1g<z

uniformly for uc Q2N 8.
Let us remember the formula which we have proved before (Proposition 1).

~

(7.11) Au()= (Zn)—”’zfexp (— it E)alw, Eu(z)da , YVue§

(the Fourier transform in the sense of &', belongs to L*R)) and therefore we
obtain

(7.12) Au(g + 1) = @)~ [exp (—io-(§+ )alw, &+ Du(@)da
and consequently
(7.13)  Au(E+ o) — Lu(@ = @) [exp (—ia-(E+ o) )a(a, § + 7)u(o)do—
— (2m)~"[exp (—in-§)alw, §)u(w) do = (2m)~ [ [exp (— o+ (¢ + 7)) — exp (— io-8)] -

o

-a(@, &+ T)u(z)do+ (27)72 [exp (—ia-)alz, £+ 1) — a@, §)]u(e)do =
=1 (Sa 7) 4+ 1§ 7).
Hence, we have the estimate
(114 L& D <ef lexp (—in- 1) — 1) lae, &+ 1) ju(e)] do<
<0U{u(w}§2dm)%(f{exp (—iz-7)—1]%]a(z, £+ t)izd:}s\)é .

On the other hand, we have:

lexp (—iw-7)—1|2=|cosw T —1—ising 7| =2—2co8 " r—ésmzw;:

as: [sina] <|e| we deduce that |exp (—iw-7) —1|><|#|?|r]* whence we obtain

(7.15) (¢, 7)| < O] nuﬁo(fiwl 2la(w, &+ 7] 2dac)l% Cyle) fulo



378 8. ZAIDMAN: Pseudo-differential operators

as obviously |x]|a(z, £)| € L* uniformly with respect to £e R»— {0} (we remember
that we took a(oo, &) =0, so a'(z, &) = a(x, £)).
And on the other hand we have the estimate concerning I,(&, 1)

(7.16) 16, Ol < Cluly( [ @, £+ v —a(w, &)2a0)’
Let us remember here that in the case a(oo, &) = 0 it follows

(7.17) (1+z)2pla(@, &)l < 0, , zeR, EeR*—{0}, p=1,2,...
7]

[&l+ 16+

zc R & ve R — {0}, p=1, 2,

(7.18) (14 wi*)la(@, &€+ 1) —alw, &)< 0,

and therefore we have, for every fixed B> 0

(119)  [lAu(E+ 1) — Au@)| 2t =[ILE, 7) + L&, 7)|dé <

[HES |$[<:1e
<218 v)j*dg + 2[ |16, )| *de<
eSS lé|<r
< Owpaftlfuls-+2[ L D aE+ 2[ILE D2dE,  Ve>0, g<E.
&l=<e ASHEY

For |£] <o, We estimate I,(£, 7) in the following way (using (7.16) and (7.17)):

@200 (L& D <20 uly( [(la(e, &+ DI*+ o, H])ds) <
<Oalo2i0,( [(1+ol2)da) = Cusluls

where p is sufficiently large.
For |£] >0 we use the estimate (deriving from (7.18))

(7.21) 116 D < G [(1 + lal)o do) Jul 71 (81)> 5 VEeEr— {0}, [rl<1

and hence we obtain, using (7.19), (7.20), (7.21), the inequality

@22 [l + o~ duopa<osrluli+ oful sfae+

i<z fél<e

vo( [ g <ottt %)+ ouisfae.

e<lél<r 1<

If ue QNS we have |ul,<H. We take ¢ > 0, and choose at first g,(¢) such that

(7.23) Cﬂzfd§<~§ )

14]<<ay
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Once g,le) fixed, we take 7,(¢) such that

(7.24) Cylv,H? (1+ S ) <z.
HE)

We arrive hence for |7| <|7,| and Vue 2N 8 at the estimate

[Hute + 7 — fu@)sas <e .
lEl<m

Lemma 1 is proved.
Hence, we can obsgerve that:

~ ~—~

(1.25)  Tu(f) = Au(&) — #u(g) = a(co, £)a(£) +
1 Au() — a(oo, E)ii(E) — Aulf) = (A— A)u(f), EeRr— {0}

and similarly for TZ(E—-}— 7}, and it will be henceforth sufficient to prove

Lieymma 2. — We have, in the case of a symbol a(x, &) with a(co, §) =0

(7.26) lim [ u(E + ) — () pag =0
R

uniformly for ue QM 8, YV fized B> 0.

In fact, we have

(1.27) A+ ) — ZalE) = @[ (@ + v — gy ) —EE— 7, 1)) dy
and
(128)  |du(E 4 1) — &u(@)2< O [atn)an)( [\ + = —n, m) —a(E — o, o)l 2dn) =

= Oful3[18E + v —n, ) — a(E—n, p]*dn.
We apply TAvror’s formula; we obtain, if d = d@(4,#), the relation
(7.29) a(E—n+ vy n)—aE—n, n= (7, grad @ —n+ 67, n)), 0<lixl
and therefore the estimate
(7.30) (& —n+ 75 1) — &€ —n, )| < |7 Igradz &(§ —n + 07, )] .

Let us remember now that d(4, n)e 8(R3) uniformly for e R*— {0} and we get
therefore

)
(14 1Ap)r z-dldy ) | < O VieRr,
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whieh gives
(7.81) |grads@(& —n -+ 07, n)| < C,(1+ | £ —n + O7[2), Vp=1,2,...

and by integrating with respect to % we arrive at the result (in estimate (7.28)).
Now, to finish the proof of Theorem 8¢, we have to prove also (*)

Levmyma 3. — We have in the case a{oo, &) =0, that, VR>0

(7.32) lim [ | Au(E + ) — du()|2de = 0
lEl<r

(7.33) lim [ |&u(E 4 7) — &u(@)] 4 = 0
lel<r

uniformly for we Q2-bounded set in LA(E").

We have already shown this relation for ue 2N S. Let us remember that the
spece S is dense in L2. Given £>0, and £ a bounded set in L*(R"), there is
Yue (1), an element wu.€8, such that [u—u.|,<e. Hence, for ue 2 we have
[u]o< L, and

(7.34) fwelo< e —tis]o+ [ufo<e+ L<L+1.

and therefore the set

(7.35) {ue; w e 2}

is a set ©, bounded in L? and included in 8.
Here we have, for |1] <|7,(¢)] that in the case a{co, §) =0

(1.36) [1Bue 4 v — dudg) e <e, Vi R,
&<z

(7.37) J'gEuE(H ) — duo(E)|PdE<e Yuee ;.
e

Hence, we deduce the inequalities

38) [l — Du@)pds<3 ]l AuiE+ 1) — Aue(s + o) a5+

&<z lél<r

+ 3 Uua(& + 7) — Aua(&) a8 + 3 [|Au(6) — du(e) g <
{e<n |f<z
(*) Remember that for w e I? but u ¢ 8, the definition of Au aund su is by continuity

from the definition on ne S.
(1) At least, obviously; we choose a fixed one, for any u.
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<3[| A wE + )28+ 8 [l unE + 1) — Aul§)|*dk + 3 (w— ) (§)]dk =

IHES R"

= 6 A () 3 3 | (6 -+ ) — (&) Pz < 6] u—, 48 [ | A& + 7) — dun(8) .

él<a |f<r

For |7] <|7,(e)| the seecond integral is < & and also 6c¢]u — u.|s< 6es’; the result is
80 proven.

The proof for A(x, D) is similar. Theorem 8a is herewith proven (see Appen-
dix to [3]).

Our Theorem 8 will be completely proved when we will have proven

THroREM 8b. - If al(a, &), biw, & are symbols, and their product is e{x, &), then
A{z, D)B(z, D)— C{z, D) is compact operator, L2 — L2,

The operator T'= A-B—C is of order <—1 (!); hence, if ue 2 where 2 is a
bounded set in L2, then T(2) is bounded in L{, gy, as easily seen. Therefore, we
have to prove that, VR>0

(7.39) lim [ | Fu(s + 7) — Tu()|*ds = 0

lél<zr

uniformly for e Q.

use Theorem 8¢ we get, VR>0

frl—0

(7.40) tim | |Cu(E + ©) — u(g)|*as = 0
léi<r

uniformly for ue Q. It is only left to consider

> m——— o ——

(7.41) j [ABu(& + 7)— ABu(&)pdt .

18R

Let us remember Lemma 3. Then, Ve> 0, 38,(¢), such that

(7.42) fijﬂj(g-{— T)— Av(E)jdE<e, if |1| < O,(e) and o], <L.

{él<n

Remark that if » is arbitrary in L?, w/[u], is of norm 1, therefore

— p—

(7.43) ﬁAﬁ—@qu)—Aﬁ@ Cae<e it 7] < &ife),

e I o \
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that is
(7.44) [ i+ 0 — Au)de<elul, it 7 < bye), Yue LR,

&<z

We apply this relation to ABwu, uwe L*; we have then

(7.45) | ABus+ o) — ABu(e)Fds<e|Buli,  [r|<bule), we LR,

|sl<m

But [Bul,<clu],; the relation is proven then, as easily seen.

In the case a{oco, &) 20, bl{oo, £} 20 there is the additional term A'(x, D)-
- B(co, D) — B(oo, D) A’(x, D) which is of order <-—1 (see Ch. 5).

Moreover, the symbol of B(oo, D)A'(x, D) is b(co, &)a’(x, &) which -»0 as
|#| - co. For the term A'(z, D)(B(oo, D)) we use that {B(co, D)u} is a bounded
gset in L? when « is in a bounded set of L2,

REMARE. — As a corollary of Th. 8b. we get the following: let a(wx, &) be a symbol
associated with A(z; D) and A, belongs to the continuous spectrum of A(z, D);
then |A)|< sup |a(, &)

e ", |El=1

Z

In fact, otherwise, Ju> 0, such that
(@, &) —Ao|> >0, Vee R, [E[=1.

Applying the (simple) result in [5], we find a positive € and a compact operator
T}*M L2 L2, s.t.
J#) < O(N(A — Ao B) s s+ | Ta,n]) 5 Vue L.

On other hand, from J,¢€ o,(4), we deduce a sequence (u,); C L?, of unit norm,

snch that [(4— AeE)tn|s— 0.
For a subsequence (U, );.1 We have also [T1,un[»—>0. We obtain 1<c-¢,,

where ¢, 0, contradiction.

8. — Other inequalities (norms of p.d.o. modulo compact operators).

In this paragraph we will prove the following

THEOREM 9. — Let alwz, £) be a symbol, and K= xl‘rglla}lx lafe, E)|; let A(x, D) be the
aeB™

associated pseudo-differential operator. Let G, be the class of linear compact oper-
ators L2 in L2,
Then we have the upper estimates

(8.1) Tlél“Gf | A, D)+ Pllea,m< XK, %é% f#@, D) + Tleam< K.
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The result is a consequence of some preliminary theorems.

PRELIMINARY THEOREM 9a. — Let a(x, &) be a symbol, A(z, D) the associated pseudo-
differential operator. Then, for every ¢> 0 there is a semi-norm °| | on L2, de-
pendent of &, such that every L2-bounded sequence coniains a subsequence convergent
in ¢| |, such that the inequality

(8.2) A (@, Dyulo< (K + &) |ul, -+ |}, Yue LHE")
i8 verified (*).

In fact, let us put be(w, &) ={(K*—a(x, &)a(x, &)-+¢)t which is still a (homogeneous)
symbol as we can «easily » see, and besides is

be(@y &) = be(, ) , >0, ze R EeR"—{0}.

Let us consider the operators Bz, D), B o, D) associated with bz, &) and
Az, D) associated with @(z, £). We have then the following

LEMMA 1. — The linear operator
T.=(K2+te)I—K-A—B. B,
i8 compact, L*— L2,

In fact, we have first of all the relation
(8.3) \(-68‘38: (355“‘83)'89-{‘ Bﬁz Ti_i_Bi

where T, = ($,— B.) B, is compact according to Theorem 8. So we arrive at the
relation

(8.4) Te=(K*+¢)l—%-A—B.:—T,.

On the other hand, we have the equality

(8.5) AA=(A—-A) A+ AA=T,+4-4

where T, is ecompact, L?— L2, again according to Theorem 8; and hence we get
(8.6) Te=(K*+e)—A-A—Bi—(T,+ T,).

Finally, we have: B,-B,— (K*+ ¢— (@ a)(2, D)) = T,-compact, L*—> L* and hence
we derive

(8.7) Be(@, D)-Bi(w, D)= B(x, D)= K’ ¢ — (@-a)(w, D) + T,

(*) We have also ||A(w, D)ulo< (K + &)|uly + *|u| + (A, D) — A (@, D))u],.
The map u—>°lu| + ||(4~— A)ull, is a semi-norm on L2 like ¢| | because -4 is compact;
this will imply second estimate in (8.1).
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and therefore
(8.8) T.=K*+e—A-A—(K*+¢)+ (@ a)x, D) —
— (T4 Ty To) = (@-a){w, D)— A A — (T, + Ty -+ Ty) = T,

where T, is compact linear, L?— L? (by Theor. 8) (we have made here good use
of the notation a(x, D) instead of A(z, D), by an obvious necessity).
Hence, Lemmsa 1 is proven. Then we have also the following

LeMMA 2. — Given arbitrary &> 0, we have the relation

1

(8.9) Re (T.u, u), + gjfu!§§>-;‘-€ 1T, Yue Lt
In fact we have:
810 [Re (T, wh < |Talofuls = 5z | Toula-2 vEfuly <eluli+ 1 | Teali
and consequently
®.11) Re (Ty wly > ellully— - | Toul}
follows.
Now we shall give the following
LEMMA 3. — We have the relation, Ve >0
(812) |4 (2, Dyuls< (B + 26) [ul + 1 [Tl VueL(RY).
In fact, this results from Lemma 2. We have:
(8.13) (Tory w)y = (K + &) uls— |A(@, DYuls— | Bela, D)uls;

(T s, %), is hence real-valued. (We have used that Z*=A and B} = B, being b= b).
Hence, we deduce thereof, using Lemma 2, the estimate

(8.14) (B> 26) [uli— | A (@, D)ul3— | Bz, D)ufs>— j— |Teuls
and therefore

2 2 ., 1
(8.15) [Aufi+ [ Bewli< (B4 26) fulo+ - [T 1]

and hence a fortiori

1 N
(8.16) [Auls< (K4 2e) s+ = 1T ulo.

which proves Lemma 3.
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Extracting the square root and for vV d:|r— b <\/07 4+ 5, a, b> 0, we have
1
7/
Preliminary theorem 9a is proved if we put *ju|= ¢ |T:u], and if we observe

that T, being compact in L* the semi-norm °ju|= ¢|T.uf, satisfies the required
properties.

(8.17) lAulo< (K 4 v2e)|ul,+ s—= | Teul,

PRELIMINARY THEOREM 9b. — Let H be hilbertian; on H is defined a seminorm
[ | such that

1) |ul <elula. VueH,

2) for every bounded sequence (u,)y there exists a Cauchy subsequence with re-
spect 1o | |.

Then: Ye>> 0, there ewists Ho~a closed linsar subspace of H, such that HOH .= Hy
is of finite dimension and |u| <elulz, VueH,.

Let us begin by assuming that, given £>0, we have for every weH, such
that |uw|= 1 the estimate |u]z>1/e. In this case, taken an arbitrary we H, such
that |u |50, we have: |u/|u||=1.

Hence, [uf|«||=(1/|u|)|u]>1/e; hence, |u| <e|u] and if we H and |u| =0, we
have alse |u| <e]u]. Therefore, in this case, it is found H,= H.

Now we have to consider the sitnation when there is at least an element
w, € H such that |u,| =1, Ju,]a<1/e. According to HABN-BANACH’s theorem, we
can build a linear functional on H, f,, such that f,(u,)=1, |fi(u)| <|u|, YusH.
As |u] < Clull, |f.(u)] < C|u], hence f, is a continuous linear funetional on H (3).

We define H, = {uc H; f,(u)= 0}; H, then is a closed subspace of H. In H, we
reason as in H; in the « worst » case there is at least one element w,e Hy, |u,| =1,
fu,] <1fe; and hence we can build a continuous linear functional on H,, denoted
with f, (?), such that

(8.18) foluy) =1, Uz(u)

< |ul , YueH,

and we denote by H,= {ueH,, f,(u)=0}; H, is a closed subspace of H,.
We observe that |u,—u,|>1. In fact u,€ H, u,c H,c H, hence

i(”x“'uz)i >If1(’“1“‘uz)! = ‘fl(ul)—fl(uz) =1.

Now, in H, we reason as in H and H,; in the « worst » case there is at least an
element w, € H,, such that |u,] =1, and Jus]z<1/e and we can build a functional f,,
which is linear continuous on H, (®), and such that

(8.19) falus) =1, [falw)] < |, YVueH,.
(M) And e, H, 8.t fi(w) = (4, ), Vuec H.
(®*) And Fe,e Hy, s.b. flu) = (u, &) Vue Hy; 50 (e, ) = 0.

(®) And Fe;e H,, st. fy(u) = (1, 65). VucH,; 80 (6, 6) = 0 and (e;, ¢,) = 0, ete.

25 — dnnali di 3atematica
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We denote again
(8.20) H, = {ue Hy; fy(u) = 0};
then H,c H, as a closed subspace.
‘We observe that:
[y — sl > 1, [y — tgf > 1
and in fact

|8ty — U] ,>{f1(%1—713)f == l,fi(“l) "'ft(u’a}l =1

as fi{y,) =1 and f,(4,) = 0 being u,e H,c H; and f(u)=10 on H, and besides:
luz"us‘ >Ifz(uz—ua)l = |foltts) — folws)| =11 —0] = 1.

We use successively the same reasonings, always considering the « worst» case.
We obtain so 2 sequence of elements (u,, U4, ...) such that

1
(8.21) ul=1, Juls<7 and ju—ul>1 i i

This sequence is necessarily finite, aceording to the property of « relative compact-
ness ».

In this way we can build a finite number N, of closed subspaces HOH,DH,D>
5...0Hy,, and everyone being of codimension 1 with respect to the preceding, then
H,, will be of codimension N,; hence Hj, is of dimension N..

More precisely: for any f, there is e;€H,,, such that f(u) = (u,¢;), VuecH,,,
j=1,2,.... Here Hy=H, Furthermore:

H = {ucH, (u,e)=0} H,={necH, (u,e)=0}=
= {ueH, (u,6)=(1,0) =0}, .., Hy={uel, (4 e6)=_(u,6)=..(4ey)= 0}.

Also we see that {e;, ;) = 0 for ¢=j.
The space H has then the obvious orthogonal decomposition

H=H,;®8ples, 05, ... 5] .

Sece also our paper [3] where a similar result is proven.

Now, in Hy, is obviously |u|<elu|s, Vu€Hy,. This proves Preliminary the-
orem 9b.

Finally, Theorem 9 is proven by the preceding results and by

PRELIMINARY THROREM 9¢. — Let H be a hilbertian space, and Aef(H; H). Let
us assume that Ye>>0, 3 exists a seminorm ¢| | on H such that || |z is relatively
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compact with respect to °| | and such that *|lu| <clu], VuecH (*) and
(8.22) |Au|z< (K -+ &)|lu] -+ ¢ul , YuecH.
Then:
g A+ Tlean<E ().
In fact, it is sufficient to prove that for every ¢> 0 we find a compact oper-
ator 7. in H, such that
(8.23) [A—Tul| <(K - &)lul, YueH.
Let be H,c H; for we H, we have, *u| <elu]| and Hy of dimension N,-finite.
Let us put P. the orthogonal projection on H,; henece, (I — P.) projects on 3

space of finite dimengion and is therefore compact: H -> H.
Hence, we put T'.—= A(I — P,); this is obviously compaet, and besides we have:

{8.24) A —T)u] = [|APul, YueH.
By the hypothesis of the theorem, we arrive at:
(8.25) [(A—T)ul| < (K -+ &) | Peu] + *|Pou] , YueH.
Being now P,ue H,, we have:

1Pou| <e| Poul<e|w]
therefore we get,
(8.26) (A —T)u| < (K4 2¢)|ul, VuecH.

Applying Preliminary theorems 9a and 9¢, Theorem 9 ig proven.

9, — Some more estimates.

Considering the later applications, we shall prove here the following

TEEOREM 10. — Let a(x, &) be a symbol defined for we R", £ R*— {0}, Q an
open set in the « w-space », and Kq= max la(a, &)} . Then, for every >0 there is a
&
{él=1

constant O, such that
(9.1 [A(@, D)ulo<(KEo+&)|ullo+ Collufy, Vue 07 (2) (1) (3)
be verified.

(*} The class B, of these semi-norms is obviously a linear space; this applies to the foot-
note at Preliminary Th. %.a.

(Y) We can replace || [_; by || |-, using: Ve> 0, 30,, such thas
lul-s <ellulo+ Oeflul-, -

(*) OF(2) means the class of ¢ functions with compact support contained in 3.
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We deduce this theorem from Theorem 6 (see (6.22)) by means of some addi-
tional reasonings. We have the following

LEvMA. — Let alx, &) be a symbol, 2 an open set of E*, Ko= 1}1}{1} la(z, &Y. Then,
- o
Ye> 0 there is an open set Q.0 such that the relation Ko < Ho-+ e is wverified.
In faet, we have, for every z,eR*, |alz, &) —alr, &) <e if |2—ax| < b, and
£e R»—{0}; here ¢, is independent of ;.
Let us consider here, if 02 is the boundary of Q, for every x,e 0f2 the sphere
o lo—a,] < 8.}
Let us take
(9.2) 2 —QU( U 8 %7&:)) Sy, 0e) = {m; |w— 2, <be}

€080

Therefore, if y€ 2., we have yeQ or yeS(@* J) for a certain 2*c2f. In the
first case, we have

(9.3) la(y, &)= HKyp.
mE,Q
In the second case we have
(9.4) la(y, &) <|aly, &) —alx*, &)| +|a(z®, &) <e+ Ko.

Hence, for every y € 2., £€ B*— {0} we have |a(y, §)|<e+ Ko. Hence Ko, <Ko s.

PROOF OF THE THEOREM. — Given &> 0, and we 5 (£2) we build Q. given in
the Lemma. There exists also, o funection .(#)c Cy(R"), equal to 1 on supp u,
equal to 0 outside £,, contained between 0 and 1. Obviously l.(#) is a symbol,
and y.(x, &) = ((r)a(x, &) is another symbol.

Furthermore v,(z, £) = 0 if we [Q.; hence, we have

(9.5) max y.(z, §){<max ja(z, §)| = Ko< Ko +¢.
1&=1 [&l=1

We define I':(z, D) the pseudo-differential operator associated with y.(z, §). We have

(9.6) Iz, D)= A(x, D)(c;(m)) .
In faet,

©0.0) T, DYuE) = ()" [exp (—iw-£) (aln, £)Ldo) julr) do =

A(m, )(Ceu)(é) Yue 8, Véc R»—{0}.
Hence we gef

(9.8) '@, Dyu = A(z, D){C.(x)u(x)) , Yue 8

(however, not necessarily is ['y(w, D) == Eolw) A, DYY).
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Now we have the decomposition

(9.9) w(w) = Co(w)u(w) + (1 — Lelar) )ulz)
and
(9.10) Ax, D)u= Aw, D)(Cen) + A(w, DY(1—Co)u) =

= L@, D)yu -+ Az, DY(1—ZL)u),
as it is 1 —Z.(@)==0 on suppw, then it is (1—Cl.(#))u(z)=0 on R~ and therefore
(9.11) Ay Dyu = Fla, D)u,

Hence, applying Theorem 6, we get

(9.12) [ Az, Dyuli, = | I, D)ul,< (1}}2;{ lys(y &)] 3) o ]lo 4+ Cellu] 1<

Jél=1
< (Ko 2e)|ulo+ Ccu]y,

We will show, complementing Theorem 7, the following
THEOREM 11 (Y). — Let alx, &) be o symbol, A(x, D) the associated pseudo-differential

eperator; BG_; the class of operators of order <—1, K= maX la{z, £). We have
2ER™

[€l=1

(9.13) Jinl [A(@ D)+ T|> K

the norm being taken here in $(L*(R); L¥R")).

Combining with Theorem 7 we deduce equality

(9.14) i [4le, D)+ 7] =K.

The following theorem is fundamental for Theorem il. In fact, Theorem 11
is a simple corollary of it.

THEOREM 12. — Let a(x, &) be a symbol, and |alz,, &) = ¢, for a certain z, € Er,
1] =1. Then, Ve>> 0, Ju.(x)e 07, such that [u(x)], %0 and the estimates

(9.15) 4@, Dyusly— eluelol<elu, )

(9.16) lotell s <efue]o

are satisfied.

() I 4 is a p.d.o. of order <—1, we get in (9.13) K =0 (take T'= — 4).

Then a(xz, £) =0 and 4 is the null operator.

(*) In fact the stronger estimate [A{x, D) — a(w,, &)1l < lluglly holds, as is easily seen
from (9.27) and the subsequent estimates (see [3], Th. 9.1).
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ReMARK. — From foot-note (2) to Th. 12 we see that any value of a(z, &) belongs
to o{4(z, D)). In fact, we find a sequence u,(x) € Cy, such that

(A, D) —a(e0, &) B)ualo< o

which implies that (4(z, D)— a(z, &)E) has no bounded inverse.

CoROLLARY To TH. 12. — Let a(x, &) be a symbol such that estimate [u],<
<o |Alw, Dyulo+ lu]—), Vues§, is verified.

Then, Jo> 0, such that |a(z, &)|>a>0, Voe R, £cR*— {0}.

In fact, otherwise we could find a sequence (x,); CB” and (&,)7 on the unit
sphere, such that |a(z,, &)/ <1/p, p=1,2,... Then, Vp=1,2,..., take #u,(z)e (7
corresponding to &, =1/p. We get [u,[,<e(]Au,]o+ [%,]-) and using (9.15) we
deduce

. 1 i,
fintoze (Jaen &) Irlo 3 [ala-+ 3 1)

(when (9.18) is also used): it follows 1<3e¢/p, p==1,2, ..., which iy impossible.
Before proving Theorem 12, we indicate how Theorem 11 is a corollary of
Theorem 12.
1f, reasoning ad absurdum, we have: Tiel%,f_l |4+ T = k* < K, there would be,

taken & suech that k* < k<K at least one T.e T_, so that

(9.17) < |A(@, D)+ T <k< K
and therefore

1
(9.18) k* < sup Tall 4+ Thule<b< K
uEL® | ]

whence |(A-+ T ulo<kluly,, Yue L
Being k< K= max la(z, &)] we find at least one z,€ R and &, |&|=1 such
TE|=1
that k< |a(#,, &)| = ¢, < K.
We apply here Theorem 12 and we find u.(z)e Gy, such that
(9.19) —&|tte]lo < [ Atefo — Colitels
or
(9.20) (6 — &) | te o < | A2y DYtioflg = [(A(2y D)+ T)ue— Ttte]s <
<A+ T uelo + [ Trurtelo<Foltello + cfus] 1<
<oty =+ € euc]o = (k+ o) jue]o
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and being [u, 7 0 we get, Ve>0

(9.21) co—e<k+c e
and as
(9.22) k<e,

we have a contradiction, as easily seen.
We pass now to the

Proor oF THEOREM 12. - Let us take &> 0; we have |a(z, &) —alx,, &) <&’ if
o —3,] < 8y, E€R*—{0}. Consider a function ¢.(x)e €y with support contained
in the sphere {x;|2— x| <0}, and the sequence
(9.23) Uy, (@) = exp (ip(@- &) ) pe ()
where by hypothesis is
(9.24) fa(@, &) =¢ and [&|=1.

Let be f({)e C~ =1 for |{|<1, 0<f<1, =0 for [{]|>> 2. Hence we write

tpgo) .

(9.25) v} =] ( v

The following estimate is valid: (obviously)
(9.26) grad g, <
' Y/

Let us consider now the operafor y,(D) and observe the obvious decomposition ()

(9'27) A(OS, D)“p,s' = “(‘xaa 50)%9,6' + ‘%(D)(A(x? -D) _“(350; SQ)E)’“»,S' +
-+ (E“ "/)v(D))(A(wy D) — a(x,, EO)E)uT).S' = @y, Eo) Up,er + L; 4 I

and therefore we get

(9.28) “A(w7 D)un,E' liaz “a’('ro, 50)'”’17.6’ + Il+ I, ”0
and hence
{9.29) 1 ﬁfi(m’ Dy, Hu — Gy “up,s' Ho} =

= ||l a(@y; &ty + Iy + Lollg— |a(ay, &)t lol < 1M a+ Leflo< [ Lufio + [ Lelo -
We consider hence the expression
(9.30) HII !o = “'Pr(D)(A(x’ D) —a(m,, 50))"'29,8' “o

{(*) B being the identity map.
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which is estimated by

(9.31) ilQPp(D){A(xa y— Az, D))”p,e' Eio+ HQ/)p(D}(A(Wm D)“‘@(u%, 50))’%9,5' ﬁo
where
(9.32) Az, D)ulE) = al,, £)i(E), Yues.

Hence, we have

(9.33) ﬁ%ﬁ’p(D}{A(%, Dy —alx,, 50))'3%,8' ifo =

= g;y)m(D)(A(woy D) —a(w,, p‘fo))uzzﬁ’ %0’"‘"’ (J Wﬂ(&)lgia(xo; £) —a(xy, P3y)

By the inequality (2.21) we have

T Pso 1§— 0
(9.34) otany ) — oy pE| <o s <o S P

p=1,2, ..., §eR"— {0}, [§] =1, o, € B,
Therefore, considering too that
(9.35) p,(6) =0

for [&—p&) > 247, we have

(9.36) (D) {A(woy D) —a(z,, 50))“17,6’ “0 <

- . " ‘
< S E— D BB PAE) < = fue ]
<o N CITg e S )

| & nfy| <24/

Begides, we observe that we have also estimate

937)  [puD) (A, D) — Ay, D))tipe o< (A, D) — Ay, D))ty

If b(w, &) = a(x, &) —a(x,, &) is the symbol associated with the operator A(z, D)—
— A(x,, D), we have

{9.38) [Bw, &) <&’ for |w—m,| < 8(e), |&]=1.

On the other hand, the functions u,. in (9.23) belong to O ({z; |z — x| < d}) and
hence (by Theorem 10}, we have, given &> 0, a constant ¢-, such that

(9.39) [(Alw, D) — A(@y, D))t o< (26") Jthpeflo + Cor [t |15 Vp=1,2,..

Up to now, we have arrived at estimate

f
=
s

(9.40) ey Emp,_a’ lo 4 26" [upe o+ €o [ Uperf-1 s p

| < On
0\\/2—) i

We will consider the expression for I,.
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Obviously, we have

(9.41) L= (A(x) D) — a{z,, 'p‘fn))(E_ ?’ﬁ(D})%p,S’ —
—[A(®; D) — a(m,, p&,) E, E—w,(D)]u, . .

On the other hand, we see that the congidered commutator is equal to the com-
mutator [A(z, D), y,(D)], and therefore

(9.42; Iy== (A(xs D) —a(x,, p&;))(E— "l)p(D))up,S’ + [A(z, D), Wp(D}}up.S’ =I,+ 1.

Hence, first of all we have (being |a{%,, p&,)| <c¢) that

3

(9.43) Lslo< el (B— D)) s lo <l [(1—sf8)710,.0(6)|202)

Now we observe that we have y,(§)=1 for |&—p&|<+/P; hence 1 —y,(&)=0
for |&—p&,| <+/P and besides it is

(0.44)  i1,0(8) = [exp (—in-) exp (ip(@-5)) pe (@) do =

:feXp (—iw- (£ — p&))po (@) do = e (€ — p&,)

and therefore

(9.45) [ Lsle<< 0( ‘. 19?8'(5"—2350)}2&5)%: c(
I

and we have:

[peona) <e( [po@a) = lucde i p>Poe, §o)-

121=v5 &

Then we have

1

(9.46) Lalo= | [/ (6=, £, — 1,0 e ) O]

We see that

0

[9.(8) — ()| < E—n] lgrad p,(0)| < ep {1+ | E—n|2)}, & ne R
Hence we get, Vi==1,2,...

041 [0, 80— ) Ty < f (L[ &= |73 o o] i

from where we arrive easily at est'mate,

4
(9.48) 2o 5 Vsl P=1,2,...
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Adding the different inequalifies obtained up to now, we have

(9.49) A @y DYttye o — ol %o Hoi< 45,0 o+ 26" [hger o +

\/H
¢
+ Co HumS' ;!—«1 + &' “ums’un +— Uum'i‘o,
Ve

for p= Py(&').
Now let us prove that

for every &> 0 there is P(e", &) such that we have

(9.50) N, |2 << €& [0 fo for p=>ple’y €').

In fact, we have

9.51) Uy |?

=[(+ 18I —pe)rae= [ IgoE—paiag+

ff-—azéubr
+ j (14 ]&|2) |G (E—pé&,)|2dE  for every »>0.
|E~p&y] <r

Given now &"> 0 there is 7*(¢", ¢’) such that:

(9.52) [1geontdr <emue -

[Z]o> ¥

We observe that if [£— p&,| < 7, it vesults |&[>p—r* and therefore, for p > 1*- 1,
we geb

(9.53) i (14 €2 g (£ —pE)2AE< (14 (p— 1‘*)2)”1( Ja!sfe'(é-p&)} "dé) =
[&opy|<r*

= (1+ (p—r)) e li<e™|upels i p>max (7* + 1, Pe)

and therefore, for p>P,(c, &"), we get
(9.54) (2,6 |1 <26 [[thp,e o -
Hence we arrive at inequalities

(9.55) || A (25 D)ty |0 — Col|ths,er HO[ <\-j§ [, [0 - 28" [t 00 }o + 2e&" %0, [0
for p> P(e', &")

and
[t -1 <ee" | Une |0 for p>Py(e’, &').

Let us take &'(¢') small enough to have ce’< ¢ and 2¢,¢"<< ¢'; hence, for p>Q(e'),
we have [U,o ]l <& |4y, and

it

HlA(x? Dy, H Huﬂe OJ< ’“o+ 35,”“1},2’ “o<4eluuw,e’ “o if p>Q1(8')'

\/— l Ugp,e
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Finally, given ¢> 0, let us take ¢'<e/4 and the result is proven (we find a
sequence of functions (ua.)f, verifying Theorem 12).
We will give now, in addition to Theorem 9 (Ch. VIII) the following

THEOREM 13. — If a(x, &) is a symbol, A(x, D) the associated pseudo-differential
operator, G, the class of the compact operators, L* — L*, K = max la(z, &)}, we have
1&j=1
(9.56) Kggerxéc |A(@, D)+ T

the norm in L(L%; L2),
REMARK. - As a simple corollary of (9.56) we get also the estimate
(9.56-bis) K< jnf | 4@, D)+ Tloamn-
In fact, if we take an arbitrary T,€ 6., we get
Ha, Dy + Ty = Ao, Dy — Alw, D) + Alz, D) + Ty = Az, D) + T}
where I',e T, (by Theorem 8). Consequently, using (9.56), we have [ +T,|=
={A+T,|>K. As T, is arbifrary in G,, the desired result follows.

Combining with (8.1) (Theorem 9), we obtain equality

Tlél'lgc &+ Tlegam =K.

CoROLLARY. — Combining with Theorem 9 we have the interesting result

(9.57) |d(z, D)+ T| =K.

inf
TG,

Proo¥. — First of all, we have the following

LeMuMA 1. — Let a(x, &) be a symbol, and ¢, == |a(z,, &)| for a certain z,€ R* and
[0l =1. T'here is then, for every e> 0 a sequence u,(x)e C5(2,); 2,= {z; lp—a,| <1/n}
with “u’nglﬂ: 1 and O &< !‘Aungge'

As we have seen in Theorem 12, given &> 0, the function w.(x) is obtained

= exp (ip(#-&,))gp.(»), where @.€ 0y {z;|z—a,|<d,}. Hence, for n>n, we get
1/n<d., and all the functions

(9.58) Uy, o{@) = eXP (ipa(®, &)) pa(@)
(with p, big enough, fixed, dependent from &> 0 and from ¢,), verify estimate

{9.59) (€o—&) | Un,elo< || A{a, D)ty efly -
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Dividing by |#..|ls, We can have the sequence of norm 1. Now we have

Lrvyma 2. — We have:

lim [uyo(e)gia) do=0, Vge L.
In fact we have:
(9.60) fun,a(m)g(x) dr = ‘ U o(2) g() do - ' Un,o(@) g(x) doc .
Ja—agl>p iw—x:,l <g

For » big enough, #,.(xz)=0 when | —ux,] > ¢ and therefore

~un,e(a;)g(m)dm= f un,s(m)g(w)dmg[‘iun,aﬂc( ( %g(m)}sdm)*}:( J ]g(m)"\‘zdm)*.

[x—ayl <o Jw—~aq| <o lz—ayl <o

(9.61)

Henee, given v> 0, we take g(y) such that

(9.62) ( J g@)|2dn) <.

Loizg) <)
At last, we take n big cnough to have u,.(#)=0 when |&— ] > 1/n.
Proor or THE THEOREM. — We assume, ad absurdum, that
(9.63) }g%c |4z, D)+ T|=k< K.
Hence, taken % such that k< k'<K there is at least a TeT,, such that
|4 - T|<k'. Hence we get

(9.64) A+ Tyul,<k'[ul, YVue L.

Being k'< K, we find at least one x,€R", §eR*—{0} and [§]=1 such that
E<|a(@y, &) = ¢, < K.
Hence, we have, for u=u,, (applying Lemma 1), that

(9.65) (eo—e) < | A(@y DYty < (A + T thello + [ Tthnelo<E - | Tn,ello -
If #-> oo, Tu,.—> 0 strongly in L*; hence ¢,—e< k', absurd for ¢ small enough.

REMARK. — There is a different proof of (9.56-bis)—and hence of (9.56), which
is independent of Th. 12 (cfr. for a more general case, the paper [6]).
If Ky= sup la(w, )|, then lim Ky= K, and it suffices to see that
Koo

[l<w, [El=1

inf 14 | N=1,2,...
KN<1%ED_§CJJ{‘,+TL, YN=1,2,
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Take then |r)| <Ny, [&|=1, such that |a(x,, &)|= Ky,; then a O(jz|<XN,) func-
ction u(x) £ 0 and the sequence

() = v/ (x — @) A/7) exp (i(z-&)v) , ry=1,2,...

It follows |u,)2= [u];: and weak limu,(#) =0 in L2 By direct computation one
gets

_7-’{;7/“} — ’;)"/4’1/‘,,((50 —_— w{)) \/;‘7) exp (/'/(mf(’) 'V) ’
where

o) = 2 [a (2,4 =y va-t ) ) ex Gz )

it follows [lAu,|2= [|v,],2; some simple estimates give also that lim v, (z)2=
y—>0
= {a(%,, &) [ lu(x) |*, uniforrly on bounded sets in K=
Then apply Farou’s lemma to sequence |v,(x)|2. We obtain

a

[1at@o, &) ut@) dm = la(ay, &) a3 <lmint | w3

Rn
Take now arbitrary Te G,. Then it follows readily estimate

A Tl + [Tuyfe)?

ey | 72 << (

and consequently
Tim inf | o, [ 3 < 4+ T

(as weakly wu,— 0, it follows |Tw,[;:—0 as v —~oo0). We got this way the ine-
12

quality |a(z,, &) *|w|s< | A+T|*| |3, hence Ky < | AT, which gives the desired
result.

10. — Non-homogeneous symbols.

Most of the previously exposed theory can be extended, with the pertinent mod-
ifications, to the case of certain symbols a(w, & which do not have the properties
of homogeneity with respect to the variable &, and besides &'(x, £) has a more general
behavior than the one corresponding to the appartenence to the space S.

We will define as noen-homogeneous symbol a function a(z, £) with complex
values, defined for xeR", £ R*— {0}; the limit a(co, §)=11i_)1§ a(z, &) exists for
every e R*—{0}. We assume that ao'(®, &)= a(z, &) —a(co, §)mis in 8'(R;), and for
its Fourier transform d'(, &)= F,.(a'(x,£)) we admit that it is a measurable fune-
tion in Ae R, verifying estimates

(10.1) 1@ (4 E) <k(A), VieR#, £e R"—{0}
(10.2) (@5 =& 09| <kD(E—n)) (& +Inl)?,  VieRr, &neRi— (0}
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where k(1) belongs to the class J. of measurable functions such that (1 |A]z)z-
‘k(A)e Lt for p=0,1,2,....
Furthermore, we suppose to have |a(oo, &) <L, £5£0 and

(10.3) la(00, £) —afoo, )| <e(lé—n| ) (1€l + | ), VEneRr—{0}.
Finally, let us suppose that for ze R, £ R*— {0}, the formula

(10.4) o'(@, &) = (2m)-"> J'exp (i)@' (2, £)dA

is verified.
We can give an instruetive example of a non-homogeneous symbol, verifying

the preceding hypothesis:

Let us take a(x, &) = a(x)f(x), where a(z)e 8§ and
(10.5) f(&)=1§ for [§l<1, f(§)=1 for [§>1.

Obviously, it will be sufficient to show that

If(f)—f(n)Kc%, &, meRr— {0}

a) For [£] <1 and |7} <1 we have the desired estimate,.

b) For |£]>1 and || >1 we have
(&l + 1)) (f& —fampl)=0.
¢) For [ >1 and |5] <1, we get
(10.6) (1&1+1m)) A& —Fl) = (18] + 1)) X —|nl) < (X + [E) (X —Inl) -

We define: e= (£ —1, d=1—|y|; we have
(10.7) (A+1)A—lgl)=2+e)3.

On the other hand, it is |£§—n|>|& —|y| =& 6.
Hence, it is sufficient to prove that with a constant ¢> 0

(10.8) (24 e)d<e(e+ 8), Ve>0, 0<d<1
and in fact we see that

24806 2 0 2.
(10.9) e 8 TipLiTigeesiti=s
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we get henceforth

& —n]
10 (&) —f()| <3 =T Y&, ne Rt — {0}.
(10.10) A& —fon <8 & e Rr— {0}
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