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Summary. — In a recent paper [1]1 Ezeilo considered the nonlinear third order differential equa-
tion @+ p@') 2"+ px)x' 4+ 6z, #', ") = p(t). He proved the wltimate boundedness of the
solutions on rather general conditions for the nonlinear terms v, @, 0. These conditions (in a
little weaker form) are also sufficient in order fo prove the existence of forced oscillations in
the case when the excitation is w-periodie. For this purpose the Leray-Schauder principle
in a form suggested by G. Giissefeldt [2] is applicable.

We study the differential equation
ey a"+ y(@') o'+ pl@)a'+ 0, @, o', 2") = p(t)

where the functions v, ¢, 0, p are continuous and w-periodic with respect to ¢.
According to [1] we define

4

PO)=[p(mar, Ow)=[p@)d, Plm)=|p@E)d.

[
THEOREM. — Suppose, that

(i) Pz, sgnm, — -+ oo a8 |2,] — oo
(ii) [0(, #y, ...)| = F for all values of the independent variables,

0(t, @y, ...)8g0n2, =0 for |z = h
(i) |D@)—byl M {b> 0 constant)
@v) |P@l=m  for all ¢ (i.e. fp(t)dr:()).

[1}
Then there exists at least one w-periodic solution of equation (1).

Proor. — Choosing an arbitrary constant ¢ = 0 we introduce the following first
order system depending on a parameter pe[0,1]:

By = Ty
(2) Xy == 2y -+ {(bml— Oy, ) — W@y, p) + /‘P(t)}
g = — 0y — b0y + {owy — g(t, 2y, @, By, p)} -

{*) Entrata in Redazione il 21 ottobre 1971.
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These equations are regarded as components of a vector differential equation

Ly 0
(3) x'=Ax-+f(t, x, pu); x=1a,], [f=\bo,—P—-V+4pP
Ty o, —g
The homogeneous linear equation
(4) x'= Ax

admits only the trivial o-periodic solution x(f) = 0 since the characteristic equation
Det{(AE—A)= A*+bl+4+¢c=0

has no purely imaginary root.
The following denotations are used:

B(@) 1— ro
D(2y, p) = ”_(_‘QIEZ‘_?J___Z D(— ) =f¢(¢’ paé,

pa) | 1—p
m(ml,y)z:__—lﬁ—{—g—_;(p(-%},

[@(0&1, 0)= %{@(ml) — P(— w1)} = — P(—wq, 0), D(wy, 1) = @(Wlﬂ 3
P(w,, u) and p(x,, u) are defined in an analogous way,

, x

Gty @y, By, gy ) = pO(ly Tyy By o) 4 1—pmF mm'l“l
T,

14|z

I:g(ts By gy gy 0) = Odd} .

Tividently, the succeeding relations are valid:

— 0o (uniformly with respect to x€[0, 11);

Yix,, p) sgna, - oo as o,

l9(t, mumz,xs;#)iéﬂ{gi-{"(1—#)F§.F for pel0,1];

g(...)sgnmlz(lmp)F1+!xr>(}(lm1{=h) or pel0,1);
1

\ Dy, ) —bwy| < M by virtue of z, = ofu_;:’;(mml).

System (2) respectively (3) is equivalent to the third order differential equation
(6) a5 yla', w)a" -+ elo, p)o'+ gt »,...) = pp) B ==&y

which is identieal with the original equation (1) if w==1.
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For g =0 the nonlinear terms ¥, @, ¢ are odd with respect to =y, #,, #, (the
last component does not occur); that is

f(t7 —x,0)= '—f(t’ x, 0)

where f(f, x, u) is the nonlinear perturbance term in equation (3). This term is a
continuous function of

(ty %, u) € [0, 0] X R*X[0, 1].

For 0={< o the w-periodic solutions x(t) of equation (3) can be represented
as the continuous solutions of an integral equation of HAMMERSTEIN type:

]

(7) x(t) = T{x(t), u} _—_fc(t- ) f (7, 5(7), 1) dv

or shortly
Vix = x(t) — T{x(t), u} = 0.

The Green matrix G(s), s€[—w, -+ @] is continuous for s=£0, and it fulfils
the jump condition

G(+0)—G(—0)=E.

Let B be the BanacH space of continuous vectors x(f), 0 <t< o with the
boundary condition x(0) = x(w) and normed by virtue of

Jooe | = sup ()] .
[0,w]

The operator T generates a continuous and compact (i.e. completely continuous)
mapping of the normed product space Bx[0,1] into the BANACH space B. The
periodic solutions of (3) correspond to the fixed points of T or to the null vectors
of V,. ‘

Let

Sp={x(t)eB: |x(t)|=R}, Br= {x()eB: |x@)|<R}.

On the sphere S, we study the veetor field V, (V,x=x— T{x, u}) for every
fixed u€[0,1]. If there is no null vector on S, the vector fields V, and V, are called
homotopic. The rotations of homotopic vector fields are identical. Since V, is an
odd vector field,

w

Vo(—2) = — x(f) —fG(t—r)f(r, —x(7), 0)dv = — TV, x,

[

its rotation is an odd number. The rotation of V, on the sphere S, being different
from zero the ball B, contains at least one null vector of V,. This result is also true
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of all vector fields V, (0<u=1). Consequently, for every parameter value system
(2) admits at least one w-periodic solution x(f) the norm of which is less than R.
(For further defails see [2] and [3].)

If we can show that the solutions of integral equation (7) on the parameter
interval 0 <z <1 are a priori bounded (|«()|< R, R a uniform bound) then only
two alternative possibilities exish:

a) for y=1 there is at least one solution x{f) with norm E of integral equa-
tion (7}

b) such a solution does not occur, the vector field V, (0 < ¢ < 1) has no null
vector on the sphere 8., but at least one null vector within B;.

At any case the asserted theorem is proved, the differential equation (1) has
a periodic solution bounded by R.

For the purpose of an a priori estimate we consider a periodic solution of system
(2) where 0= pu<<1. At first we study the components x,(t), #,(f) with the aid of
the positive auxiliary function

(b + @3) — (| o+ | @] — || —|)]) sgn (@3) + 1J1: o

b [ =

W(x,, z;) =

tending to infinity as |#,| + |2, — oo, ep. [4].
Let W’ be the total time derivative by virtue of (2); evaluating this expression
(which is depending on t, #y, #,, %3, ) We could eagily show that

W<—1  if Max(|o,| — H,, |a;| —Hy) 2 0

this domain being the same for all . The calculations are omitted because they are

similar to those carried out in [4].
Now, following LiAPUNOV’s second method we should obtain the estimates

(8) [@, ()] < B, , las(f)| << By

where the bounds B,, B, are determined by the system characteristics (b, m, M, F
and the properties of ¥). Of course, they do not depend on .

In order to obtain some information about the component x,(f) we integrate the
differential equation (6) from =0 {0 {=w:

o

fg(ta 21(8); (85 @5(t), !"’)dt: 0.

¢

This equation contradicts to relation (5) if |2y(f)| = b for all {. Consequently,

la () < h for a value 7€ (0, w) .
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On the interval 1 <¢< 17+ @ we have

[2(8) — @4 (7)| = (E — 7)| 0o+ F(t— 7)) < 0B, ,
9) wa(t)i <By=h+ CU'BZ .

By virtue of periodicity this estimate must hold for all ¢.
Finally, introducing R = VB?+ B2+ B! we realise the alternative statements a)
and &) on which the proof of our theorem is based.

RuEMARK 1. — The theorem remains true if we assume
0(t, xy,...) 8800, = 0 {instead of = 0) for oy = h .

In this case we should define

Ly

14|y

g=upl—(1—p)F

preserving the previous argumentation.

REMARK 2. — The theorem remains true if we assume
P(z,) sgne, —>— oo (instead of 4 oo) as |#,] = o0

Namely, introducing the new independent variable s=--t and denoting %= dx/ds
we derive from (1)

b — p(—B) &+ (@) & —0(—s, 7, — &, B) = —p(—3)

written as
(10) B+ P@E) T+ P@)d + O(s, w, &, B) = B(s) .
We obtain
Plo) = [§(&)de=—[p(— §ds=P(—a,),
P(w,) sgna, = P(—x,) 8gna, >+ oo (|,] = 00)
and

O(s, 2y, ...) sgna, = —B(—s, 2, ...)sgna, < 0 (] = 2) .

According to the preceding remark equation (10) admits a periodic solution x(s).
Thus, equation (1) possesses the periodic solution

o(—t)[o(—t+ o) =o(—1) or s(—¥) =a(—(+ )] .

If the function f in equation (1) only depends on # the theorem can be completed
by the following
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Appendix 1.

Differential equation (1) possesses a periodie solution, too, if
(i) O(w,) sgna, =0 (o, = 1)
(i) |D{zy) —bo, | S M {b =< 0 constant)
(i) |P@)=m.
Proor. — In equation (6) the function g==g(x, u) is constructed by means of

an arbitrary positive number F since 0(x) must not be bounded. Multiplying this
equation by «’ and integrating from 0 to » we obtain the result:

h%%ﬁMMMM+Wﬁ@M%+ﬁ@M%~WTMK—

0

_ f (@' + B, p) — pP(t)) dt = 0.

Assuming that «(f) is a periodic solution the result will be simplified:

[

J’x”(xa_g_ ba -+ (@(a‘;’ ) — b,;z;) ”N‘P(t)) dt=10.

¢

Because of
| B, p)—bo| <M,  |P@)<m
and
2" wdt = —| o' dt
Joron=—]

we have the equation

@ w

f o dt—b fmfzdt + j o {( D@, ) — bw) — pP(H)} dt = 0

from which we conelude:

f 2 < w(m -+ M),

Q

x(t) being periodic the derivative »'(t) must have a zero on [0, w], say 7. Then

1

2’ (1) :J‘w”(s)ds, 12tsTt4 o

T
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and
(11) (o' ()] < o(m + M) for all ¢.

Now, following the same conclusion as above (applying condition (i)) we should
estimate

(12) o)) <h-+ om-+ M)  if pel0,1).

The estimates (11) and (12) are already sufficient in order to complete the proof.
Namely, the third component of the vector integral equation (7) can be omitted
since the nonlinear term f only depends on the components #,=2 and o,=o'.

Evidently, condition (i) of the Appendix can be modified into

O(x;) sgnay, < 0 (o) = 1) .

ExampLE. — The equation

w

(13) 2"=pt),  [p@=0,

g

fulfils the conditions of the appendic (p(z') =0, ¢(#) =0 and b= 0, f§(x) =0).
Let (ag above)

i
P(t) =fp(‘t) dr  (w-periodic);
]
moreover, let

JP(';)dr == P,(¢) 4 ot

o

[Pl(t—i— w)=P@t), ie. c¢= c% fP(t)dt]
and '

3

[Piwrar = Pyt + st

Then

# 7y Ty

f ( fp('fa) drs) drz) dry= P,(t) + ¢, 1+ _g 1

0 0 0
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and equation (13) possesses the general solution

a(t) = a+ ot + a,8 4 Pyft) + ot t°

(a, a,, a, arbitrary constant values).
Choosing

e
A= —01y Ap = )
we obtain a family of w-periodic solutions:

o(t) = a -+ P,(1) .

In two further special cases based on the assumption § = 6(x) the conditions
of the general theorem can be weakened considerably, too.

Appendix 2.

Equation (1) admits a periodic solution if
(i) 0(x,) sgne, =0 (£0) for |@| =R
s 47?
(ii) | D(2y) —bany| = M (0 <b< ——)
(i) PO =m.
PROOF. — Again, agsuming 0= u <1 and 2(f) =2(t+ ») we multiply equation
(6) by #' and integrate from 0 to w:

(14) f w"dt—b f o dt - f o {(B(w, p)—bar) — pPH)}dt=0 .

Let % be any positive integer and

w

k 2k
ai =2 [2(t) cos 2—“@ rdt = sak [ '(8) si i tdt= """,
w w? w

0 0
- 2 Cmk | 2l Sk
b};—_——%f "(t) 8in iktolt n,, x'(t) cos s ot =—""aj.
o ) ? ) ®
[t} 0

Applying the PARSEVAL equations for 2" and o’ we obtain the following estimate:

'S

w
< /19 4: 2
(15) fw”zdt "E’g (@ 4+ by ==
0

o 8
M8

il

k

kg - b = 2 f @dt .
1 w?2
0
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Now, we derive from (14):

b({)z) w w w - W
1—-—}|a?di < {2 —blodt < /oM L m}V z"dt,
(1) [eae o] J

dm?(M 4 m)
e
l/f = be 47m® —bo? Vo

On the basis of this result the proof can be completed by means of the same con-
sideration as above {Appendix 1).
The last Appendix refers to the special case

0=10(x), pl@)=a=0.

Appendix 3.

The equation

(16) @+ au"+ @)z’ + 6(@) = p(t)

has a periodic solution if

O(,)

M

(i) |P@)|<m.

>0 (@]~ o0), f(@;)sgna, =0 (Z0) for (@) =R

Proor, — This time we define the auxiliary system (3) in the following way:

0 1 0 0
A:( 0 —a 1), f=|—D+puP
—c 0 0 €y —

It is evident that the characteristic equation of the linear part x'= Ax,
Det(AE—A)= 23+ al*-+0c=0,

has no purely imaginary root.
The funetions D(z,, u) and g(x;, u) are introduced as above. The constant F

(in the definition of g) is arbitrarily chosen (as in the proofs of the foregoing appen-
dices).

We consider the third order differential equation which is equivalent to (3):
7 #"+ aa’ - (@, w)a' - gl@, p) = pp(t) , T==2% .

Let 2= a(t) be a periodic solution and let 0= u< 1.
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Multiplying this equation by # and integrating from 0 to » we obfain

{18) J'{,uP——am’)x’dt —}-fg(w, pledi=10

whence we conclude

1a|6(m i mvwl/ofw t - xw] szt

if we set

G=GR)=F+sup|f(@), R=-supl|e@).

eSS 0,3

A further caleulation yields:

(19) l/fm'~dtg-———<1+]/1+w 3Vi;edt>§7ﬁi§f—;+] Ial\/GR

Taking into account that the nonlinear perturbance term f in equation (3)
depends on ¢, #, and u we need only an a priori estimate of =2, in order to
complete the proof.

Let 7 be such that [z(r)] <hk. Then we have for 1<i<7-+ o

3 7+ﬂ)
2(t) — z(7)] §f ;d8<~v/w}/ s)ds,

hence

'/(1]
R<h+ \/(El/fw”ds .
4]
Now, we obtain with the aid of the estimate (19):

(20) 1< (h + mw) I, 1 Gy

|a] N

We could easily show that condition (i) implies:

up |6(w)| -0 as BE—>oo.
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as

11
(2]
{31
[4]
[5
(6]
{7]

Thus, we derive from (20):

supla{f)l = B R, (only dependent on a, m, w, )

[9,0]

required.
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