## Periodic Solutions of a Third Order Nonlinear Differential Equation.

Rolf Reissig (Boehum) (\*)

Dedicated to Professor Wolfgang Hahn on his 60th birthday

**Summary.** The differential equation  $x''' + \psi(x')x'' + \varphi(x)x' + f(x) = p(t)$  is considered where the forcing term p is an  $\omega$ -periodic function of t. In the special cases  $\varphi(x) = k^2$  respectively  $\psi(x') = a$  the existence of periodic solutions is proved on the basis of the Leray-Schauder fixed point technique. The conditions imposed on the nonlinear terms do not include the ultimate boundedness of all solutions.

It is obvious that the linear differential equation

(1) 
$$x''' + k^2 x' = p(t), \quad p(t+\omega) \equiv p(t)$$

possesses ω-periodic solutions if the conditions

$$0 < k 
eq rac{2n\pi}{\omega}$$
 ( $n$  positive integer) 
$$\int\limits_0^\omega p(t)\,dt = 0$$

are satisfied.

These conditions play a role, too, for a certain class of nonlinear equations which comprises the special case (1):

(2) 
$$x''' + \psi(x')x'' + k^2x' + f(x) = p(t), \qquad p(t+\omega) \equiv p(t),$$

$$[\psi(y), f(x), p(t) \text{ continuous functions}].$$

The following theorem is valid:

Theorem 1. – Differential equation (2) admits at least one  $\omega$ -periodic solution if

(i) 
$$0 < k \neq \frac{2n\pi}{\omega}$$
  $(n = 1, 2, 3, ...)$ 

<sup>(\*)</sup> Entrata in Redazione il 18 settembre 1971.

(ii) 
$$\int_{0}^{\omega} p(t) dt = 0 \text{ [that is, } P(t) = \int_{0}^{t} p(\tau) d\tau \text{ $\omega$-periodic]}$$

(iii) 
$$|\Psi(y)| \leq G \Big[ \Psi(y) = \int_{0}^{y} \psi(\eta) d\eta \Big]$$

$$(iv_1)$$
  $\frac{|f(x)|}{|x|} \to 0$   $(|x| \to \infty)$ 

$$(iv_2)$$
  $f(x) \operatorname{sgn} x \ge 0$   $(|x| \ge h)$ .

The proof by means of the Leray-Schauder method is simple. We consider a differential equation containing the parameter  $\mu$ ,  $0 \le \mu \le 1$ :

(3) 
$$x''' + k^2x' + cx = \mu\{p(t) - f(x) + cx - \psi(x')x''\}$$

where c is an arbitrary positive constant. For  $\mu=0$  we obtain a homogeneous linear equation the only  $\omega$ -periodic solution of which is the trivial one; for  $\mu=1$  equation (3) is identical with the original one (2). It is a well-known fact (cp. [2], [5], [6]) that equation (3) admits at least one periodic solution for each parameter value  $\mu \in [0,1]$  if for  $0 < \mu < 1$  all periodic solutions as well as their derivatives of the first and second order are uniformly bounded. Consequently the stated theorem can be proved with the aid of an a priori estimate.

Let  $x(t) \equiv x(t+\omega)$  be a solution of equation (3) and let  $0 < \mu < 1$ . We denote

$$R = \max_{[0,\omega]} |x(t)| , \qquad F = F(R) = \max_{|x| \leq R} |f(x)| .$$

The derivative y = x' fulfils the equation

$$y'' + k^2 y = \mu \{ p(t) - f(x(t)) - \psi(y(t)) y'(t) \} - (1 - \mu) cx(t) \}$$

which can be considered as a nonhomogeneous linear one:

(4) 
$$y'' + k^2 y = q(t), \quad q(t+\omega) \equiv q(t).$$

Introducing the Green matrix

$$\begin{split} G(t-\tau) = \begin{pmatrix} g_{11}(t-\tau) & g_{12}(t-\tau) \\ g_{21}(t-\tau) & g_{22}(t-\tau) \end{pmatrix} \\ [g_{21} = g_{11}', \ g_{22} = g_{12}'; \ \ g_{21}' = -\,k^2g_{11}, \ g_{22}' = -\,k^2g_{12}] \end{split}$$

of the boundary value problem

(5) 
$$y'=z\;, \qquad z'=-k^2y+q(t) \qquad \qquad \text{for } 0\leq t\leq \omega\;;$$
 
$$y(0)=y(\omega)\;, \qquad z(0)=z(\omega)$$

we obtain the following representation of the solution y(t), z(t):

(6) 
$$y(t) = \int_{0}^{\omega} g_{12}(t-\tau) q(\tau) d\tau, \qquad z(t) = \int_{0}^{\omega} g_{22}(t-\tau) q(\tau) d\tau$$

where

$$g_{12}(t-\tau) = \frac{\sin k|t-\tau| + \sin k(\omega - |t-\tau|)}{2k(1-\cos k\omega)}, \qquad 0 \le t, \ \tau \le \omega$$

and

$$g_{22}(t- au) = \left\{ egin{array}{ll} rac{\cos k(t- au) - \cos k(\omega-t+ au)}{2(1-\cos k\omega)} \,, & 0 \leq au < t \ rac{\cos k(\omega- au+t) - \cos k( au-t)}{2(1-\cos k\omega)} \,, & t < au \leq \omega \end{array} 
ight.$$

Replacing q(t) by the term  $\psi(y)y' = (d/dt)\Psi(y)$  which occurs in the expression for q(t) we obtain instead of (6)

$$\begin{split} \int\limits_{0}^{\omega} g_{12}(t-\tau) \, \frac{d}{d\tau} \, \Psi \big( y(\tau) \big) \, d\tau &= \big[ g_{12}(t-\tau) \, \Psi \big( y(\tau) \big) \big]_{0}^{\omega} \, + \\ &+ \int\limits_{0}^{\omega} g_{22}(t-\tau) \, \Psi \big( y(\tau) \big) \, d\tau = \int\limits_{0}^{\omega} g_{22}(t-\tau) \, \Psi \big( y(\tau) \big) \, d\tau \, , \\ \int\limits_{0}^{\omega} g_{22}(t-\tau) \, \frac{d}{d\tau} \, \Psi \big( y(\tau) \big) \, d\tau &= \big[ g_{22}(t-\tau) \, \Psi \big( y(\tau) \big) \big]_{0}^{t-0} \, + \, \big[ g_{22}(t-\tau) \, \Psi \big( y(\tau) \big) \big]_{t+0}^{\omega} \, - \\ &- k^{2} \! \int\limits_{0}^{\omega} g_{12}(t-\tau) \, \Psi \big( y(\tau) \big) \, d\tau = \Psi \big( y(t) \big) \, - k^{2} \! \int\limits_{0}^{\omega} g_{12}(t-\tau) \, \Psi \big( y(\tau) \big) \, d\tau \, . \end{split}$$

Inserting the explicit expression for q(t) in equations (6) and having regard to the preceding transformations we derive estimates of the type

$$\begin{aligned} |y(t)| &\leq \varrho(m+F+G+cR) \;, \\ |z(t)| &= |y'(t)| \leq \sigma(m+F+G+cR) \end{aligned}$$

where  $\varrho$  and  $\sigma$  are determined by the Green matrix and therefore only depend on k and  $\omega$ .

Now a term by term integration of differential equation (3) (for the periodic solution) yields:

$$[x''(t) + \mu \Psi(x'(t)) + k^2 x(t) - \mu P(t)]_0^{\omega} + \int_0^{\omega} \{(1 - \mu) cx(t) + \mu f(x(t))\} dt = 0,$$

i.e.

$$\int_{0}^{\omega} f_{\mu}(x(t)) dt = 0 , \qquad f_{\mu}(x) = (1 - \mu) ex + \mu f(x) .$$

Because of  $1-\mu > 0$  we have

$$f_{\mu}(x) \operatorname{sgn} x = (1 - \mu)e|x| + \mu f(x) \operatorname{sgn} x > 0$$
 for  $|x| \ge h$ .

Consequently,  $|x(t)| \ge h$  for  $0 \le t \le \omega$  is excluded, we have  $|x(\tau)| < h$  for some  $\tau \in (0, \omega)$ .

Applying the mean value theorem to an arbitrary interval  $[\tau, t] \in [\tau, \tau + \omega]$  we find

$$\begin{split} |x(t)-x(\tau)| &= (t-\tau)|y\big(\tau+\vartheta(t-\tau)\big)| \\ &\leq \omega\varrho(m+F+G+cR)\;, \\ |x(t)| &< h+\omega\varrho(m+F+G+cR)\;. \end{split}$$

It is obvious that this estimate must be valid for all t; hence

$$\max_{[0,o]} |x(t)| = R < h + \omega \varrho(m + F + G + cR).$$

Choosing  $0 < c < 1/\omega \rho$  we obtain

$$1 < \frac{h + \omega \varrho(m + G)}{1 - \omega \varrho c} \frac{1}{R} + \frac{\omega \varrho}{1 - \omega \varrho c} \frac{F(R)}{R}.$$

An immediate consequence of assumption (iv<sub>1</sub>) is

$$\frac{F(R)}{R} \to 0$$
  $(R \to \infty)$ .

Therefore we conclude from (7):

$$R = \max_{[0,\omega)} |x(t)| \le R_0$$
 (independent on  $\mu$ ), 
$$F(R) = \max_{|x| \le R} |f(x)| \le F_0 = \max_{|x| \le R_0} |f(x)| \ .$$

The resulting a priori estimates

$$|x(t)| \le R_0$$
,  $|y(t)| \le \varrho(m + F_0 + G + cR_0)$ ,  $|z(t)| \le \sigma(m + F_0 + G + cR_0)$ 

ensure the existence of a periodic solution of equation (2) as we stated in our theorem.

REMARK. - In the case

$$(iv_3) f(x) \operatorname{sgn} x \le 0 (|x| \ge h)$$

we introduce a new independent variable

$$\tau = -1$$

and obtain a differential equation of the previous type. Thus, Theorem 1. remains valid if assumption ( $iv_2$ ) is replaced by ( $iv_3$ ).

By a similar procedure the following theorem can be proved:

THEOREM 2. - The differential equation

(8) 
$$x''' + ax'' + \varphi(x)x' + f(x) = p(t) \equiv p(t+\omega)$$
$$[\varphi(x), f(x), p(t) \text{ continuous functions}]$$

admits at least one  $\omega$ -periodic solution if

(i) 
$$a \neq 0$$

(ii) 
$$\int_{0}^{\infty} p(t) dt = 0$$

(iii) 
$$\lim_{|x| \to \infty} \frac{|\varPhi(x)|}{|x|} = 0 \qquad \left[\varPhi(x) = \int_{0}^{x} \varphi(\xi) d\xi\right]$$

(iv) 
$$\lim_{|x| \to \infty} \frac{|f(x)|}{|x|} = 0$$
$$f(x) \operatorname{sgn} x \ge 0 \qquad (|x| \ge h) .$$

Again the proof is based on an a priori estimate of the  $\omega$ -periodic solutions of the system

(9) 
$$x'=y\;, \qquad y'=z\;, \qquad z'+az+cx=\mu\{p(t)-\varphi(x)y-f(x)+cx\}$$
 
$$(0<\mu<1,\;c>0\;\;\text{properly chosen})\;.$$

Considering a periodic solution and writing the last equation (9) in the form

$$z' + az = q(t)$$

the component z(t) can be represented as

$$(10) \qquad z(t) = (1-e^{-a\omega})^{-1} \int\limits_0^t \exp\left(-a(t-\tau)\right) q(\tau) d\tau + (e^{a\omega}-1)^{-1} \int\limits_0^\omega \exp\left(-a(t-\tau)\right) q(\tau) d\tau \; .$$

Replacing q(t) by  $\varphi(x)x'$  we obtain by virtue of partial integration the term

$$\begin{split} \varPhi\!\left(x(t)\right) - \frac{a}{1 - \exp\left(-\,a\omega\right)} \int\limits_0^t \! \exp\left(-\,a(t - \tau)\right) \varPhi\!\left(x(\tau)\right) d\tau \\ - \frac{a \exp\left(-\,a\omega\right)}{1 - \exp\left(-\,a\omega\right)} \int\limits_0^\omega \! \exp\left(-\,a(t - \tau)\right) \varPhi\!\left(x(\tau)\right) d\tau \;. \end{split}$$

Inserting the expression for q(t) in formula (10) and applying the preceding result we can derive an estimate of the type

(11) 
$$|z(t)| \le \sigma(m + G + F + cR), \qquad \sigma = \sigma(a, \omega)$$

where

$$R = \max_{[0,\omega]} |x(t)| ,$$

$$G = \max_{|x| \leq R} |\Phi(x)| ,$$

$$F = \max_{|x| \leq R} |f(x)|.$$

Since the trivial case  $p(t) \equiv 0$  is excluded we must have

$$\operatorname{Max} y(t) > 0$$
,  $\operatorname{Min} y(t) < 0$ .

The application of the mean value theorem yields the result

$$\operatorname{Max} y(t) - \operatorname{Min} y(t) < \omega \sigma(m + G + F + cR)$$

from which we conclude:

(12) 
$$|y(t)| \leq \varrho(m + G + F + cR), \qquad \varrho = \omega \sigma.$$

Following the same argumentation as above we finally attain to the required boundedness result.

The previous remark concerning the function f(x) is true again.

## BIBLIOGRAPHY

- [1] J. O. C. Ezeilo, A generalization of a theorem of Reissig for a certain third order differential equation, Ann. Mat. Pura Appl., 87 (1970), pp. 349-356.
- [2] R. Reissig, On the existence of periodic solutions of a certain non-autonomous differential equation, Ann. Mat. Pura Appl., 85 (1970), pp. 235-240.
- [3] R. Reissig, Note on a certain non-autonomous differential equation, Acc. Naz. Lincei, Rend. Cl. Sci. fis. mat. nat., Ser. VIII, Vol. 48 (1970), pp. 246-248.
- [4] R. Reissig, Periodic solutions of a nonlinear n-th order vector differential equation, Ann. Mat. Pura Appl., 87 (1970), pp. 111-124.
- [5] G. VILLARI, Contributi allo studio dell'esistenza di soluzioni periodiche per i sistemi di equazioni differenziali ordinarie, Ann. Mat. Pura Appl., 69 (1965), pp. 171-190.
- [6] G. VILLARI, Soluzioni periodiche di una classe di equazioni differenziali del terz'ordine quasi lineari, Ann. Mat. Pura Appl., 73 (1966), pp. 103-110.