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Summary. — The differential equation z" -+ w(@’)a" + p(@)a’+ f(z) = p(t) s considered where
the forcing term p is an w-periodic function of t. In the special cases p(x) = k* respectively
w(@') = a the existence of periodic solutions is proved on the basis of the Leray-Schauder fixed
point technique. The conditions tmposed on the nonlinear terms do not include the ultimate
boundedness of all soluiions.

It is obvious that the linear differential equation
1) 2"+ k' =pll),  pl+ ) =p()

possesses o-periodic solutions if the conditions

20 cpe
0< ks . (n positive integer)

fp(t)dt: 0

are satisfied.

These conditions play a role, too, for a ecertain class of nonlinear equations
which comprises the special case (1):

@) o'+ pl@)e"+ a4 fla)=p(t),  plt+ o) =pl),
{w{y), f(z), p(t) continuous funetions].
The following theorem is valid:

THEOREM 1. — Differential equation (2) admits at least one m-periodic solution if

) O<k#2—)~

nw
p (n=1,2,3,...)
{*) Entrata in Redazione il 18 settembre 1971.
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(i) f p)dt =0 [that is, P(t)= f p(r)dr w-periodic}

@) W) S 6P —[vonan)

{iv,) =20 (l2] = o0)

(iv,)  fle)sgne=0 (o] =n) .
The proof by means of the LERAY-SCHAUDER method is simple. We consider a
differential equation containing the parameter p, 0= u<1:

(3) 2"+ k2 + en = pu{p(t) —f(x) + cw —p(a')a"}

where ¢ is an arbitrary positive constant. For p= 0 we obtain a homogeneous
linear equation the only w-periodic solution of which is the trivial one; for u=1
equation (3) is identical with the original one (2). It is a well-known fact (ep. [2],
[51, [6]) that equation (3) admits at least one periodic solution for each parameter
value pe[0,1] if for 0 << u< 1 all periodic solutions as well as their derivatives
of the first and second order are uniformly bounded. Consequently the stated theorem
can be proved with the aid of an a priori estimate.

Let x(t) = 2(t + w) be a solution of equation (3) and let 0<u<1. We denote

B = Max|a(®)], FzF(R):l

[UN) ]

ax|f(x)| .

<R
The derivative y = &' fulfils the equation
y'+ by = p{p(t) — f(2()) — p(y(®)y' ()} — (1 — ) ca(t)
which ean be considered as a nonhomogeneous linear one:
(4) Y+ky=q0, qt+ow)=q0.

Introducing the GREEN matrix

Gli—1) = gu(l—1) glz(t_"f))
Ger(t—7) Gt —7T)

[021== 11y G0z = G125 Gn="—KGus, Jor = — E*01s]
of the boundary value problem
(5) eI 2 = — K2y + q(t) for 0215 w;

¥0) =ylw),  #0)==2)
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we obtain the following representation of the solution y(?), 2(¢):

®) yit)=[gult—nawdr, =0 =[gut—vam)ar
4] 0
where
__sink{t—1] + sink(o —|t—1]) -
fult—7)= 2k(1 — cos ko) - 0=t 750
and
cosk(t~r)~cosk(m—t+r), 0<v<t
furlt —7) 2(1 — cos kw)
o\ — T )=
cos k(w — T -+ t) — cos k(T —1)
2(1 — cos kw) ’ i<rizo

[goo(+ 0) — goe(—0) =1].

Replacing ¢(t) by the term y(y)y’ = (d/dt)¥(y) which oceurs in the expression for
g{t} we obtain ingftead of (6)

W

d
[t —) 2 Pl 5 = [gutt— 1Pl +

k4] W

+ f Gealt— ) P(y(0)) 8 = [ goalt — 1P (y()) v

[}
®

Joutt—) g2 Plo(e) a7 = [gatt = PN+ [galt = P00

0 w (2]

— szgm(t“" ) ¥(y(v))dr = P(y(t)) — k*| gra(t — ) P(y(z) ) d .

0 0

Inserting the explicit expression for ¢(f) in equations (6) and having regard to
the preceding transformations we derive estimates of the type

ly@®)| < o(m + F + G+ ¢R) ,
2@ =1y’ S om+ F4 G+ cR)

where ¢ and ¢ are determined by the Green matrix and therefore only depend on
k and w.

Now s term by term integration of differential equation (3) (for the periodic
solution) yields:

[0 (8) + p¥(a' (1)) + keat) — pPE)]° + f {1 — pyea(t) + pf(o))}dt =0,
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i.e.

@

[idaw)ar=0,  f,@=0—wew+ufe).

[t}

Because of 1 —pu >0 we have
ful@)sgna = (1 —p)e|x| -+ uf(x) sgnae >0 for || =h .

Consequently, |#(f)| = b for 0 1< w is excluded, we have |a(7)] < h for some
7€{0, w).

Applying the mean value theorem to an arbitrary interval [r,{t]c {7, 14+ w]
we find

la(t) —a(z)| = (t—1)|y(z + it —1))|
= wg(m+ F - G+ cR),

le®)| <h+ wo(m-+ F 4+ G4 cR).
It is obvious that this estimate must be valid for ail ¢; hence

Max |#(t)| = R<<h -+ wo(m -+ ¥+ G+ cR).

fo,m1

Choosing 0 <<e<1/wp we obtain

. htogmt-6)1 oo F(®)
® 1< 1—wpe E " 1—wpe R

An immediate consequence of assumption (iv,) is

F%i)—ﬂ) {R—o00).

Therefore we conclude from (7):

R =Max|2{l)] £ R, {independent on u),

[0, w1
F(E) = Max|f(z)] = Fo = Max (@)l -

The resulting a priori estimates
W) <Ry, |y®|Selm+Fo+ 6+ cRy), |zt So(m+ Fy+ 6+ oRy)
ensure the existence of a periodic solution of equation (2) as we stated in our theorem.

REMARK. — In the case

(ivy) fle)sgnaz <0 (|#| = h)
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we introduce a new independent variable
1T=—1

and obtain a differential equation of the previous type. Thus, Theorem 1. remains
valid if agsumption (iv,) is replaced by (iv,).
By a similar procedure the following theorem can be proved:

THEOREM 2. — The differential equation
(8) #"+ ax'+ ple)e’ 4 f() = p(t) = p(t + w)
lp(@), fl@), p(t) continuous functions]
admits at least one w-periodic solution if
i) a0

(i) jp(t)dt=o

@i Jim ‘f;f” —0 |ow=| «p(s)ds]
(iv) lim Ei(m—)in 0

fl@)sgnae=0 (el =h).

Again the proof is based on an a priori estimate of the w-periodic solutions of
the system

(9) d=y, Y=z, &4a+w=up{plt)—e@)y—7i@) -+ o}
(0 <<p<<1, ¢>>0 properly chosen).

Considering a periodic solution and writing the last equation (9) in the form

2’4 az= ¢(t)
the component 2(f) can be represented as

3 w

(10)  2(t) = (1 — gmom)-1 J‘exp (—a(t—1))q(x)dr + (00— 1)~ fexp (—alt—1))q(v)dr.

8 ¢

Replacing ¢(f) by g(x)»’ we obtain by virtue of partial integration the term

a -
1—exp(—aw)

fexp (—a@t—1))D(n(r))dv

0

D(w(t)) —

aexp(—aw) [
T ot

£
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Inserfing the expression for ¢{f) in formula (10} and applying the preceding
result we can derive an estimate of the type

(11) |2(t)] < o(m + G+ F + ¢R), o= ola, o)
where

BE=Max|a(l)] ,

G = Max| ()| ,

lel<r

F=Max|f(z) .

el <z
Since the trivial case p(f) = 0 is excluded we must have
Maxy({t) >0, Miny(t) << 0.
The application of the mean value theorem yields the result
Max () — Miny () < wo(m + G+ F -4 cR)
from which we conclude:

(12) lyt) = om+ G+ F+cR), o=wo.

Following the same argumentation as above we finally attain to the required bound-
edness result.
The previous remark concerning the function f(x) is true again.
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