Remarks on an Inequality of Schulenberger and Wilcox (*) (**).

LEONARD SARASON (a Seattle, U.S.A.)

Summary., — J. B. Schulenberger and C. H. Wilcox [1], [2], have proven a coerciveness ine-
quality for a class of nonelliptic first-order partial differential operators of the form A =
= B-1A;D;, where A; (=1, ...,n) is a conslant mXxXm Hermitian matriz, K = FE(x) is
uniformly positive definite, bounded, and uniformly differentiable Hermitian m X m matriz,
and where the symbol A(p, @) = E(w)~*A;p; has constant rank for all pe R*— {0} and
ze R*. They prove coerciveness on N(A)L, the orthogonal complement of the null space N(A)
relative to the inner product

{u, vy = |u{w) - Blx)v(z)do .
RY‘
Their proof is rather long, a simpler and shorter proof is given here. This proof leads na-
turally to a generalization of their results to the case where the A;'s need not be Hermitian.

Let A, ..., 4, be constant Hermitian m Xm matrices with the property that
the symbol

A(p) = 2 A;p;
has constant rank for all real p=(p,, ..., p»)5=0. Let E(z) be a matrix function

of == (x,,..., x,) € R* which is uniformly positive definite, bounded, and with uni-
formly bounded first derivatives in B~ Let

(1) A=E@ > A,D,, rzeR, D, = % 8/0x;.

SCOHEULEMBERGER and WiLcox define the space J€ as the completion of the space
07 with respect to the norm

(2) Julife = Cu, w) = [u(@) B@)u(w) o,

and prove the following theorem:

THEOREM 1. — Let N be the null space of A. There exists ¢> 0 such that if u is
in the domain of A and is orthogonal (with respect to the J¢ inner product) to ¥,
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then the first derivatives of « are J and satisfy
(3) 2. [ Dulge< o(|ulse + | Aulse) -

We now present our shorter proof.

We first observe that because of the conditions on H, the spaces JC and L,(B*)=H
have the same elements and equivalent norms, and that the operations of multipli-
cation by E(z) ot E-(x) are bounded in J, H, and in the space H* with norm

Jwly = [wi*+ 2 | Dw?,
where [.| denotes the norm in L,(R"). Also, one can write
{uy v = (u, Bv),

where (,) denotes the inner produect in H.
Let L be the operator

L= zA;.D;Z BA s

and let N be its null space. Because of the above remarks we can restate Theorem 1
in the following form:

THEOREM 1’. — There exists ¢> 0 such that if « is in the domain of L and in
orthogonal in H to EN, then u is in H', and

3" fuly<e(fu] - | Luf).

Proor oF THEOREM 1. — Denote the orthogonal complements in H of N and
of BN by N+ and (EN)* respectively.

We first prove a coerciveness inequality of the form (3') for functions
we D(L)N N+ Setting Lu = f, we take Fourier transforms and find

(4) A(p)a(p) = F(p)

If we N+, then for each pe R, @(p) is orthogonal to the null space N(p) of A(p).
Since A(p) is Hermitian and has constant rank for p 540, the eigenvalues 1; of A(p)
are bounded above k|p| for some %> 0 for all ps=0. Hence the restriction of A(p) -

to N{p)* has an inverse with bound (k|p|)~, and we conclude immediately that
1Dul = [psu] <k |f] = k]| Lu],

which implies (3’) with ¢= k"L
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Next, suppose that weD(L)N (EN)- N H.
Write % = a; + %, With 4, € N and u,eN. Since we (BN)*, we have
(1, + g, Htty) =0
and hence
(1, Buy) = — (the, Fu,) .
Thus

LB ] ool > [y Buy| = (14, Bts) > Ol |?
where € is a lower bound for F, and we conclude that
(5) Jue[| <O [ B ]w,] -

We can also estimate the first derivatives of u, in terms of %, and its first deriva-
tives. As we cbserved above, ve N+ implies that »(p)e N(p)* for all p. Similarly,
veN implies that v(p) e N(p) for all p. Hence D;u, € N+ and Du,elN, j=1,..., n.

If weXN, then w,, defined by

0, p|>1"

is in NN H', and D,w, is in N. Further, as I —> oo, we have ED w,—~ ED w in
the topology of H-1, the dual of H.
Since we H* N (EN)*,

(4, ED ) = ;}_1)1010 (4y ED w,) =0
and we have

(6) (D;u, Bw) = (u, (D; Eyw) + (u, ED;w) = (%, (D, B)w) .
Substituting D;u, for w in (6) gives
(1) (Dyu, BD,u,) = (u, (D;B)D,u,)

which implies, because of the positivity of E, that with some positive constants ¢
all ¢,

@) el Dy |* < (v, (D;E)Dyue) + | Dy | |BY [ Dsus | <orun ]| Dywa] + eylas | | D] -
Now (8) together with (5) implies

(9) 1Dy, < Olusy,
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and (9) together with (5) implies
(10) g ], < Cfuy ]|y, some C> 0.

Since u, € N+, we have already shown that #, obeys (3'):
(11) lud <e(fu] + L[]} = e(w | + [ Luf).
Combining (10) and (11) and using the inequality

lufu<fuds + oy,

we see that u does satisfy (3').

There remains to drop the assumption that we H:. To do this we use molli-
fiers, which we now describe. Let je 07 (R") be and even, non-negarive function
satisfying

f @)y do=1.
Then the mollifiers J, (H — H, defined by

i) = M [j(N(@—y) uy) dy
satisfy
(1) [xl =1,
(ii} J,—1I strongly as M — oo,
(iii) J, commutes with constant-coefficient differential operators, and if I,

is a first-order partial differential operator with coefficients uniformly
in ¢, then

J Ly — Lyd ,, — 0 strongly as M — oo,
iv J,, is self-adjoint.

Now suppose that weD(L)N (EN):. Define the sequence of approximating
funections
(12) y, = B, Bu.
Because of (i), ]}% u,, = B! %}_I)l(ln J (Bu) = B By = u.

Next we claim that w, e D(L)N (EN)L. Since J,(Bu)e H' u, e H*c D{L). To
show that u,€(BEN)', we let weN. Because of (iii), J,w is also in N. Thus

(g, Bw) = (B~ ,, Bu, Bw) = (J ,, Bu, w) = (4, BJ , w) = 0.



LEONARD SARASON: Remarks on an inequality of Schulenberger and Wilcox 27

Since u, € D(L)N (EN) N HY, u, satisfies (3'):

(13) 1, 1< e

gl L )

Congider now

Lu, = LE'J , By = J , Lu + [(LEYJ ,,—J (LE] % .

Using (ii) and (iii), we find that j}{gl}o Lu, = Lu. Taking the limit of (13) as M — oo,
we conclude that » satisfies (3').
Theorem 1’ is easily extend to the following:

THEOREM 2. — The statement of Theorem 1’ remains true if we drop the require-
ment that the A;'s be Hermitian.

The proof of Theorem 1 carries over to Theorem 2 except that we must reprove
the existence of k> 0 such that

(14) A(pyw|>klw|pl, we N(p)*:, p#0.

Because of the homogeneity of A(p) it sufficies to prove the inequality for
lw|=1. Because N(p) has constant dimension and because 4 (p) depends continuously
on p for p+#0, N(p) and N(p)* depend continuously on p for peS»1. If there
did not exist k> 0 as claimed, we could construct two sequences, p,€8*! and
w;€ 87 such that w;e N(p,;}* and such that A(p,)s;~>0 as j—> co.

Because of the compactness of 8 and of 8= and of 8=, and because of the
continuous dependence of N(p) on p for peS~?, we could then find pe S~
and we 8™ N N(p)- such that A(p) w =0, a contradiction. Theorem 2 is proved.

REMARK. — SOHULENBERGER and WILcOX assumed that the matrix B(z) tends to
a constant matrix F, as |#|— co. This assumption was for convenience in applying
pseudodifferential operators and plays no part in this paper.

REMARK 2. — Most of the technical work in the proof of Theorem 1’ lay in
proving the inequality (10). Evidently if we had assumed that E(z) was uniformly
in C*, we could have gone on inductively to prove

sl s < Ofu sy s a positive integer.

Note that if we introduce the orthogonal projector P into N, then ue (EN)L is equiv-
alent with PEu =0, or 4= F-'(1—P)Eu. We thus have the following lemma:

Lemma 1. - Let E(w) be a matrix funetion of weR* which is Hermitian, uni-
formly positive, and uniformly in € s a positive integer. Let P be an orthogonal
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projection operator which commutes with differentiation:
P == P*= P and D;P=PD,.

Then there exists ¢,> 0 such that all functions v e H° and which satisfy PHu =10,
also satisfy

(13), 1Pul,<e. (1 —Pul,
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