Remarks on an Inequality of Schulenberger and Wilcox (*) (**).

Leoxard Sarason (a Seattle, U.S.A.)

Summary. - J. R. Schulenberger and C. H. Wilcox [1], [2], have proven a coerciveness inequality for a class of nonelliptic first-order partial differential operators of the form $\Lambda=$ $=E^{-1} A_{j} D_{j}$, where $A_{j}(j=1, \ldots, n)$ is a constant $m \times m$ Hermitian matrix, $E=E(x)$ is uniformly positive definite, bounded, and unitormly differentiable Hermitian $m \times m$ matrix, and where the symbol $\Lambda(p, x)=E(x)^{-1} A_{i} p_{j}$ has constant rank for all $p \in R^{n}-\{0\}$ and $x \in R^{n}$. They prove coeroiveness on $N(\Lambda)^{\perp}$, the orthogonal complement of the null space $N(\Lambda)$ relative to the inner product

$$
\langle u, v\rangle=\int_{R^{n}} u(x) \cdot E(x) v(x) d x
$$

Their proof is rather long, a simpler and shorter proof is given here. This proof leads naturally to a generalization of their results to the case where the A_{j} 's need not be Hermitian.

Let A_{1}, \ldots, A_{n} be constant Hermitian $m \times m$ matrices with the property that the symbol

$$
A(p)=\sum A_{i} p_{j}
$$

has constant rank for all real $p=\left(p_{1}, \ldots, p_{n}\right) \neq 0$. Let $D(x)$ be a matrix function of $x=\left(x_{1}, \ldots, x_{n}\right) \in R^{n}$ which is uniformly positive definite, bounded, and with uniformly bounded first derivatives in R^{n}. Let

$$
\begin{equation*}
A=E(x)^{-1} \sum A_{j} D_{i}, \quad x \in R^{n}, D_{j}=\frac{1}{i} \partial / \partial x_{j} \tag{1}
\end{equation*}
$$

Schulemberger and Whcox define the space \mathscr{H} as the completion of the space O_{0}^{∞} with respect to the norm

$$
\begin{equation*}
\|u\|^{2} \mathbb{S}=\langle u, u\rangle=\int_{R^{n}} u(x) \cdot E(x) u(x) d x \tag{2}
\end{equation*}
$$

and prove the following theorem:
Theorma 1. - Let N be the null space of A. There exists $c>0$ such that if u is in the domain of Λ and is orthogonal (with respect to the \mathscr{H} inner product) to N,
(*) Entrato in Redazione il 31 marzo 1971.
${ }^{* *}$) Work supported in part by NSF grant GP-17526.
then the first derivatives of u are $\mathscr{H C}$ and satisfy

$$
\begin{equation*}
\sum\left\|D^{i} u\right\| x \leqslant 0(\|u\| x+\|\Lambda u\| \mathfrak{X}) \tag{3}
\end{equation*}
$$

We now present our shorter proof.
We first observe that because of the conditions on E, the spaces \mathcal{H} and $L_{2}\left(R^{n}\right)=H$ have the same elements and equivalent norms, and that the operations of multiplication by $E(x)$ or $E^{-1}(x)$ are bounded in \mathscr{K}, H, and in the space H^{1} with norm

$$
\|u\|_{1}^{2}=\|u\|_{1}^{2}+\sum_{j}\left\|D_{j} u\right\|^{2}
$$

where $\|\cdot\|$ denotes the norm in $L_{2}\left(R^{n}\right)$. Also, one can write

$$
\langle u, v\rangle=(u, E v),
$$

where (,) denotes the inner product in H.
Let L be the operator

$$
L=\sum A_{j} D_{j}=E A
$$

and let N be its null space. Because of the above remarks we can restate Theorem 1 in the following form:

Theorem 1^{\prime}. - There exists $c>0$ such that if u is in the domain of L and in orthogonal in H to $E N$, then u is in H^{1}, and

$$
\|u\|_{1} \leqslant c(\|u\|+\|L u\|)
$$

Proof of Theorem 1^{\prime}. - Denote the orthogonal complements in H of N and of $E N$ by N^{\perp} and $(E N)^{\perp}$ respectively.

We first prove a coerciveness inequality of the form (3') for functions $u \in D(L) \cap N^{\perp}$. Setting $L u=f$, we take Fourier transforms and find

$$
\begin{equation*}
A(p) \widehat{u}(p)=\widehat{f}(p) \tag{4}
\end{equation*}
$$

If $u \in N^{\perp}$, then for each $p \in R^{n}, \widehat{u}(p)$ is orthogonal to the null space $N(p)$ of $A(p)$. Since $A(p)$ is Hermitian and has constant rank for $p \neq 0$, the eigenvalues λ_{i} of $A(p)$ are bounded above $k|p|$ for some $k>0$ for all $p \neq 0$. Hence the restriction of $A(p)$ to $N(p)^{\perp}$ has an inverse with bound $(k|p|)^{-1}$, and we conclude immediately that

$$
\left\|D_{i} u\right\|=\left\|p_{j} u\right\| \leqslant k^{-1}\|f\|=k^{-1}\|L u\|
$$

which implies (3^{\prime}) with $c=k^{-1}$.

Next, suppose that $u \in D(L) \cap(E N)^{\perp} \cap H^{1}$.
Write $u=u_{1}+u_{2}$, with $u_{1} \in N$ and $u_{2} \in N$. Since $u \in(E N)^{\perp}$, we have

$$
\left(u_{1}+u_{2}, E u_{2}\right)=0
$$

and hence

$$
\left(u_{1}, D u_{2}\right)=-\left(u_{2}, E u_{2}\right)
$$

Thus

$$
\|E\|\left\|u_{1}\right\|\left\|u_{2}\right\| \geqslant\left|u_{1}, E u_{2}\right|=\left(u_{2}, E u_{2}\right) \geqslant C\left\|u_{2}\right\|^{2}
$$

where C is a lower bound for E, and we conclude that

$$
\begin{equation*}
\left\|u_{2}\right\| \leqslant C^{-1}\|E\|\left\|u_{1}\right\| \tag{5}
\end{equation*}
$$

We can also estimate the first derivatives of u_{2} in terms of u_{1} and its first derivatives. As we observed above, $v \in N^{\perp}$ implies that $v(p) \in N(p)^{\perp}$ for all p. Similarly, $v \in N$ implies that $v(p) \in N(p)$ for all p. Hence $D_{j} u_{1} \in N^{\perp}$ and $D_{j} u_{2} \in N, j=1, \ldots, n$.

If $w \in N$, then w_{F}, defined by

$$
\widehat{w}_{\tau}(p)= \begin{cases}\widehat{w}(p), & |p| \leqslant T \\ 0, & |p|>T\end{cases}
$$

is in $N \cap H^{1}$, and $D_{j} w_{p}$ is in N. Further, as $T \rightarrow \infty$, we have $E D_{j} w_{T} \rightarrow E D_{j} w$ in the topology of H^{-1}, the dual of H^{1}.

Since $u \in H^{1} \cap(E N)^{\perp}$,

$$
\left(u, E D_{i} w\right)=\lim _{r \rightarrow \infty}\left(u, E D_{j} w_{r}\right)=0
$$

and we have

$$
\begin{equation*}
\left(D_{i} u, E w\right)=\left(u,\left(D_{j} E\right) w\right)+\left(u, E D_{j} w\right)=\left(u,\left(D_{j} E\right) w\right) \tag{6}
\end{equation*}
$$

Substituting $D_{j} u_{2}$ for w in (6) gives

$$
\begin{equation*}
\left(D_{j} u, E D_{j} u_{2}\right)=\left(u,\left(D_{j} E\right) D_{j} u_{2}\right) \tag{7}
\end{equation*}
$$

which implies, because of the positivity of E, that with some positive constants c an c_{1},

$$
\begin{equation*}
e\left\|D_{j} u_{2}\right\|^{2} \leqslant\left(u,\left(D_{j} E\right) D_{j} u_{2}\right)+\left\|D_{j} u_{1}\right\|\|E\|\left\|D_{j} u_{2}\right\| \leqslant c_{1}\left\|u_{1}\right\|_{1}\left\|D_{j} u_{2}\right\|+c_{1}\left\|u_{2}\right\|\left\|D_{j} u_{2}\right\| \tag{8}
\end{equation*}
$$

Now (8) together with (5) implies

$$
\begin{equation*}
\left\|D_{i} u_{2}\right\| \leqslant C\left\|u_{1}\right\|_{1} \tag{9}
\end{equation*}
$$

and (9) together with (5) implies

$$
\begin{equation*}
\left\|u_{2}\right\|_{1} \leqslant C\left\|u_{1}\right\|_{1}, \text { some } C>0 \tag{10}
\end{equation*}
$$

Since $u_{1} \in N^{\perp}$, we have already shown that u_{1} obeys $\left(3^{\prime}\right)$:

$$
\begin{equation*}
\left\|u_{1}\right\|_{1} \leqslant c\left(\left\|u_{1}\right\|+\left\|L u_{1}\right\|\right)=c\left(u_{1}\|+\| L u \|\right) . \tag{11}
\end{equation*}
$$

Combining (10) and (11) and using the inequality

$$
\|u\|_{I} \leqslant\left\|u_{1}\right\|_{I}+\left\|u_{2}\right\|_{1},
$$

we see that u does satisfy $\left(3^{\prime}\right)$.
There remains to drop the assumption that $u \in H^{1}$. To do this we use mollifiers, which we now describe. Let $j \in C_{0}^{\infty}\left(R^{n}\right)$ be and even, non-negarive function satisfying

$$
\int j(x) d x=1
$$

Then the mollifiers $J_{M}: H \rightarrow H$, defined by

$$
J_{M} u(x)=M^{v} \int j(N(x-y)) u(y) d y
$$

satisfy
(i) $\left\|\cdot J_{M}\right\|=1$,
(ii) $J_{3 z} \rightarrow I$ strongly as $M \rightarrow \infty$,
(iii) J_{M} commutes with constant-coefficient differential operators, and if L_{1} is a first-order partial differential operator with coefficients uniformly in C_{1}, then

$$
J_{H} L_{1}-L_{1} J_{H} \rightarrow 0 \text { strongly as } M \rightarrow \infty
$$

iv J_{M} is self-adjoint.
Now suppose that $u \in D(L) \cap(D N)^{\perp}$. Define the sequence of approximating functions

$$
\begin{equation*}
u_{M}=E^{-1} J_{M} E u \tag{12}
\end{equation*}
$$

Because of (i), $\lim _{M \rightarrow \infty} u_{M}=E^{-1} \lim _{M \rightarrow \infty} J_{M}(E u)=E^{-1} E u=u$.
Next we claim that $u_{M} \in D(L) \cap(E N)^{\perp}$. Since $J_{M}(E u) \in H^{1}, u_{M} \in H^{1} \subset D(L)$. To show that $u_{M} \in(E N)^{\perp}$, we let $w \in N$. Because of (iii), $J_{3} w$ is also in N. Thus

$$
\left(u_{M}, E w\right)=\left(E^{-1} J_{M} E u, E w\right)=\left(J_{M} E u, w\right)=\left(u, E J_{M} w\right)=0
$$

Since $u_{M} \in D(L) \cap(E N) \cap H^{1}, u_{M}$ satisfies (3^{r}):

$$
\begin{equation*}
\left\|u_{M H}\right\|_{1} \leq c\left(\left\|u_{M}\right\|+\left\|L u_{M}\right\|\right) \tag{13}
\end{equation*}
$$

Consider now

$$
L u_{M}=L E^{-1} J_{M} E u=J_{M} L u+\left[\left(L E^{-1}\right) J_{M}-J_{M}\left(L E^{-1}\right)\right] u .
$$

Using (ii) and (iii), we find that $\lim _{\mu u \rightarrow \infty} L u_{M}=L u$. Taking the limit of (13) as $M \rightarrow \infty$, we conclude that u satisfies (3^{\prime}).

Theorem 1^{\prime} is easily extend to the following:
Theorem 2. - The statement of Theorem 1^{\prime} remains true if we drop the requirement that the A_{j} 's be Hermitian.

The proof of Theorem 1 carries over to Theorem 2 except that we must reprove the existence of $k>0$ such that

$$
\begin{equation*}
|A(p) w| \geqslant k|w \| p|, \quad w \in N(p)^{\perp}, p \neq 0 \tag{14}
\end{equation*}
$$

Because of the homogeneity of $A(p)$ it sufficies to prove the inequality for $|w|=1$. Because $N(p)$ has constant dimension and because $A(p)$ depends continuously on p for $p \neq 0, N(p)$ and $N(p)^{\perp}$ depend continuously on p for $p \in S^{n-1}$. If there did not exist $k>0$ as claimed, we could construct two sequences, $p_{j} \in S^{n-1}$ and $w_{j} \in S^{m-1}$ such that $w_{j} \in \mathcal{N}\left(p_{j}\right)^{\perp}$ and such that $A\left(p_{j}\right) s_{j} \rightarrow 0$ as $j \rightarrow \infty$.

Because of the compactness of S^{n-1} and of S^{m-1} and of S^{m-1}, and because of the continuous dependence of $N(p)$ on p for $p \in S^{n-1}$, we could then find $p \in S^{n-1}$ and $w \in S^{m-1} \cap N(p)^{\perp}$ such that $A(p) w=0$, a contradiction. Theorem 2 is proved.

Remark. - Schulenberger and Wilcox assumed that the matrix $E(x)$ tends to a constant matrix E_{0} as $|x| \rightarrow \infty$. This assumption was for convenience in applying pseudodifferential operators and plays no part in this paper.

Remark 2. - Most of the technical work in the proof of Theorem 1^{\prime} lay in proving the inequality (10). Evidently if we had assumed that $E(x)$ was uniformly in $C^{\text {e }}$, we could have gone on inductively to prove

$$
\left\|u_{a}\right\|_{s} \leqslant C\left\|u_{1}\right\|_{s}, \quad s \text { a positive integer. }
$$

Note that if we introduce the orthogonal projector P into N, then $u \in(E N)^{\perp}$ is equivalent with $P E u=0$, or $u=E^{-1}(1-P) E u$. We thus have the following lemma:

Lemma 1. - Let $E(x)$ be a matrix function of $x \in R^{n}$ which is Hermitian, uniformly positive, and uniformly in O^{s}, s a positive integer. Let P be an orthogonal
projection operator which commutes with differentiation:

$$
P=P^{*}=P^{2}, \text { and } D_{j} P=P D_{j}
$$

Then there oxists $c_{s}>0$ such that all functions $u \in H^{\varepsilon}$ and which satisfy $P E u=0$, also satisfy
$(15) s$

$$
\|P u\|_{s} \leqslant c_{s}\|(1-P) u\|_{s}
$$

BIBLIOGRAPHY

[1] J. R. Schulenberger - C. H. Wilcox, Coerciveness inequalities for nonelliptic systems of partial differential equations, Ann. Mat. Pura Appl., 87 (to appear, 1971).
[2] J. R. Schulenberger - C. H. Whlcox, A coereiveness inequality for a class of nonelliptio operators of constant deficit, Technical Summary Report no. 8, Department of Mathem. atics, University of Denver (October 1970).

