Dirichlet Problem for a Class of Linear Second Order Elliptic Partial Differential Equations with Discontinuous Coefficients.

Maurizio Chicco (Genova) (*) (**)

Summary. - I give a sufficient condition in order that a Dirichlet problem is solvable in $H^{2}(\Omega)$ for a class of linear second order elliptic partial differential equations. Such a class includes some particular cases for which the result is known.

Sunto. - Si prova una condizione sufficiente affinchè un problema di Dirichlet sia risolubile in $H^{2}(\Omega)$ per una classe di equazioni differenziali alle derivate parziali lineari ellittiche del secondo ordine. Tale classe comprende alcuni casi particolari per i quali il risultato è noto.

1. - Introduction.

Let us consider the uniformly elliptic operator

$$
\begin{equation*}
L=-\sum_{i, j=1}^{n} a_{i j} \frac{\partial^{2}}{\partial x_{i} \partial x_{j}}+\sum_{i=1}^{n} b_{i} \frac{\partial}{\partial x_{i}}+c \tag{1}
\end{equation*}
$$

defined in an open set Ω of R^{n}. Given f in $L_{2}(\Omega)$, we want to solve the Dirichlet problem

$$
\begin{cases}L u=f & \text { a.e. in } \Omega \tag{2}\\ u \in H^{2}(\Omega) \cap H_{0}^{1}(\Omega) & \end{cases}
$$

under suitable hypotheses on the coefficients of L.
While for $n=2$ such a problem has one and only one solution (at least with proper e) even if the coefficients $a_{i j}$ are only in $L^{\infty}(\Omega)$, this assumption is not sufficient for $n \geqslant 3$. In such cases additional hypotheses are necessary, for example the following ones: $a_{i j} \in C^{0}(\bar{\Omega})$ (see [1], [8], [4]), $a_{i j} \in H^{1, n}(\Omega)$ (see [9]), essinf $\left(\sum_{i=1}^{n} a_{i i}\right)^{2}$. $\cdot\left(\sum_{i, j=1}^{n} a_{i j}^{2}\right)^{-1}>n-1($ see $[12],[2],[3])$.
(*) The present work was written while the author was a member of the "Centro di Matematica e Fisica Teorica del C.N.R.» at the University of Genova, directed by professor J. Cecconi.
(**) Entrata in Redazione il 25 febbraio 1971.

The aim of the present work is to find a more general condition for the coeffcicnts $a_{i s}$ which assures the solvability of problem (2), at least for some value of c. All the types of equations mentioned above satisfy this condition and therefore are particular cases of the class here considered.

2. - Notations and hypotheses.

The following hypotheses will be assumed in the sequel without mention. Let Ω be a bounded open set in R^{n} with $n \geqslant 3$. We suppose that $\partial \Omega$ (boundary of Ω) is represented locally by a function with continuous second derivatives. Let $H^{1, p}(\Omega)$, $H_{0}^{1, p}(\Omega)$ be the spaces obtained by completing $C^{1}(\bar{\Omega}), C_{0}^{1}(\Omega)$ respectively according to the norm

$$
\|u\|_{\pi^{1, y_{(S)}}}=\|u\|_{L_{p}(\Omega)}+\sum_{i=1}^{n}\left\|u_{x_{i}}\right\|_{L_{p}(\Omega)}
$$

For $p=2$ we shall write simply $H^{1}(\Omega), H_{0}^{1}(\Omega)$ instead of $H^{1,2}(\Omega), H_{0}^{1,2}(\Omega)$. Let $H^{2}(\Omega)$ be the space obtained by completing $C^{2}(\bar{\Omega})$ according to the norm

$$
\begin{equation*}
\|u\|_{\mathbb{B}^{*}(\Omega)}=\|u\|_{L_{2}(\Omega)}+\sum_{i, i=1}^{n}\left\|u_{x_{t} x}\right\|_{L_{\Omega}(\Omega)} \tag{3}
\end{equation*}
$$

It can be proven (see e.g. [8]) that in $H^{2}(\Omega) \cap H_{0}^{1}(\Omega)$ a norm equivalent to (3) is the following:

$$
\left\|u_{x x}\right\|_{L_{i}(\Omega)}=\left\{\sum_{i, j=1}^{n}\left\|u_{x_{i} x_{j}}\right\|_{L_{2}(\Omega)}^{2}\right\}^{\frac{1}{2}}
$$

If $u \in H^{1}(\Omega)$ and h is a real number, we say that $u \leqslant h$ on $\partial \Omega$ in the sense of $H^{1}(\Omega)$ if there exists a sequence $\left\{u_{j}\right\}_{j \in N}$ such that $u_{j} \in C^{1}(\bar{\Omega}), u_{j} \leqslant h$ on $\partial \Omega(j=1,2, \ldots)$ and $\lim _{j \rightarrow+\infty}\left\|u-u_{i}\right\|_{H^{1}(\Omega)}=0$. Then we suppose $a_{i j} \in L_{\infty}(\Omega), a_{i j}=a_{i j}(i, j=1,2, \ldots, n)$, $\sum_{i, j=1}^{n} a_{i j} t_{i} t_{i} \geqslant \nu_{0} \mid t^{2}$ a.e. in Ω with ν_{0} positive constant, $b_{i} \in L_{n}(\Omega) \quad(i=1,2, \ldots, n)$, $c \in L_{q}(\Omega)$ with $q=2$ if $n=3, q>2$ if $n=4, q=n / 2$ if $n \geqslant 5$.

Let L be the operator defined in (1), let ν be a positive real number. Let us denote with $A(y)$ the following class of square matrices of order n :

$$
A(v)=\left\{\left[\tilde{a}_{i j}\right]: \tilde{a}_{i j} \in H^{1, n}(\Omega), \tilde{a}_{i j}=\tilde{a}_{i i}(i, j=1,2, \ldots, n), \sum_{i, j=1}^{n} \tilde{a}_{i j} t_{i} t_{j} \geqslant \nu|t|^{2}\right\}
$$

Finally we set

$$
G=\left\{g: g \in L_{\infty}(\Omega), \underset{\Omega}{\operatorname{essinf}} g>0\right\}
$$

3. - Main result.

The aim of the present work is to prove
Theorem 1. - Besides the above mentioned hypotheses, vee assume that

$$
\begin{equation*}
\inf _{v>0} v^{-2}\left\{\inf _{g \in G} \inf _{\left[a_{i, j J}\right](v)} \operatorname{ess} \sup _{\Omega} \sum_{i, j=1}^{n}\left(\tilde{a}_{i j}-g a_{i j}\right)^{2}\right\}<1 . \tag{4}
\end{equation*}
$$

Then there exists a positive constant a_{0}, depending on n, Ω and the coefficients $a_{i j}, b_{i}$ of L, such that if $e \geqslant c_{0}$ a.e. in Ω problem (2) has one and only one solution. If moreover is $u \in H^{2}(\Omega) \cap H_{0}^{1}(\Omega), L u \leqslant 0$ a.e. in $\Omega, c \geqslant c_{0}$ a.e. in Ω, it follows $u \leqslant 0$ a.c. in Ω.

The proof of this theorem is found in n .5.
We observe that condition (4) is certainly verified in the following cases:
i) $a_{i j} \in H^{1, n}(\Omega)$: it is immediate with $y=v_{0}, g=1, \tilde{a}_{i j}=a_{i j}$.
ii) $a_{i j} \in C^{0}(\bar{\Omega})$: again with $\nu=\nu_{0}, g=1$, remembering that $H^{1 . n}(\Omega)$ is dense in $C^{0}(\bar{\Omega})$ in the uniform metric.
iii) Equations «of Cordes type», i.e. with ess $\inf _{\Omega}\left(\sum_{i=1}^{n} a_{i i}\right)^{2} \cdot\left(\sum_{i, j=1}^{n} a_{i j}^{2}\right)^{-1}>n-1$. In this case (see [2], p. 704) inequality (4) is verified with $\nu=1, \quad \tilde{a}_{i j}=\delta_{i j}$, $g=\left(\sum_{i=1}^{n} a_{i i}\right) \cdot\left(\sum_{i, j-1}^{n} a_{i i}^{2}\right)^{-1}$.
4. - Some preliminary lemmata.

Lemma 1. - Let $\left[\tilde{a}_{i j}\right] \in A(v)$ and $0<\varepsilon<v$. Let \tilde{L} be the operator

$$
\begin{equation*}
\tilde{L}=-\sum_{i, j=1}^{n} \tilde{a}_{i j} \frac{\partial^{2}}{\partial x_{i} \partial x_{j}}+\sum_{i=1}^{n} b_{i} \frac{\partial}{\partial x_{i}}+c . \tag{5}
\end{equation*}
$$

Then there exists a non negative constant λ_{0}, depending on ε, n, Ω and the coefficients of \tilde{L}, such that if $\lambda \geqslant \lambda_{0}$ we have

$$
\left\|u_{x x}\right\|_{L_{\Omega}(\Omega)} \leqslant(v-\varepsilon)^{-1}\|\tilde{L} u+\lambda u\|_{L_{\mathrm{e}}(\Omega)}
$$

for any $u \in H^{2}(\Omega) \cap H_{0}^{1}(\Omega)$.
Proof. - Let us start for example from [8], p. 175-178. Here it is foundamentally proved what follows: for any $\eta>0$ there exists a positive constant K_{3},
depending on η, n, Ω and the coefficients of \tilde{L} such that

$$
\begin{equation*}
v^{2}\left\|u_{e x}\right\|_{L_{2}(\Omega)}^{2} \leqslant \eta^{2}\left\|u_{x x}\right\|_{L_{2}(\Omega)}^{2}+\|\tilde{L} u\|_{L_{2}(\Omega)}^{2}+K_{1}\left\{\|u\|_{L_{8}(\Omega)}^{2}+\left\|u_{s}\right\|_{L_{3}(\Omega)}^{2}\right\} \tag{6}
\end{equation*}
$$

for any $u \in H^{2}(\Omega) \cap H_{0}^{1}(\Omega)$. Using known results (sec e.g. [6], p. 122) from (6) we get at once

$$
\begin{equation*}
\nu^{2}\left\|u_{x x}\right\|\left\|_{L_{i}(\Omega)}^{2} \leqslant 2 \eta^{2}\right\| u_{x x}\left\|_{L_{2}(\Omega)}^{2}+\right\| \tilde{L} u\left\|_{L_{2}(\Omega)}^{2}+K_{2}\right\| u \|_{L_{8}(\Omega)}^{2} \tag{7}
\end{equation*}
$$

valid for the same functions u, where the constant K_{2} depends on η, n, Ω and the coefficients of \tilde{L}.

Moreover it is easy to get

$$
\begin{align*}
& \|\tilde{L} u+\lambda u\|_{L_{q}(\Omega)}^{2}=\|\tilde{L} u\|_{L_{2}(\Omega)}^{2}+\lambda^{2}\|u\|_{L_{i}(\Omega)}^{2}+2 \lambda \int_{\Omega}^{2}(\tilde{L} u) u d x= \tag{8}\\
& =\|\tilde{L} u\|_{L_{j}(\Omega)}^{2}+\lambda^{2}\|u\|_{L_{2}(\Omega)}^{2}+2 \lambda \int_{\Omega}^{2}\left\{\sum_{i, j=1}^{n} \tilde{a}_{i j} u_{x_{i}} u_{x_{j}}+\sum_{i_{i=1}}^{n}\left[b_{i}+\sum_{j=1}^{n}\left(\tilde{a}_{i j}\right)_{x_{j}}\right] u_{x_{i}} u+c u^{2}\right\} d x \\
& \sum_{i, j=1}^{n} \tilde{a}_{i j} u_{x_{i}} u_{x_{j}} \geqslant v\left\|u_{x}\right\|_{L_{q}(\Omega)}^{2} \tag{9}
\end{align*}
$$

where we have written, for shortness,

$$
\left\|u_{x}\right\|_{L_{2}(\Omega)}=\left\{\sum_{i=1}^{n}\left\|u_{x_{i} i}\right\|_{s_{s}(\Omega)}^{2}\right\}^{\frac{1}{2}}
$$

Using known properties of the space $H_{0}^{1}(\Omega)$ we find, for any $\delta>0$:

$$
\begin{equation*}
\sum_{i=1}^{n}\left[b_{i}+\sum_{j=1}^{n}\left(\tilde{a}_{i j}\right)_{x_{i}}\right] u_{x_{i}} u+c u^{2}\left\|_{x_{\mathrm{s}}(\Omega)}^{2} \leqslant \delta\right\| u_{x}\left\|_{L_{2}(\Omega)}^{2}+K_{\mathbf{s}}\right\| u \|_{L_{i}(\Omega)}^{2} \tag{10}
\end{equation*}
$$

satisfied for any $u \in H_{0}^{1}(\Omega)$, where the constant K_{s} depends on n, δ, Ω and the coefficients of \tilde{L}.

Now, choosing $\delta=v / 2$ in (10), from (8), (9), (10) it follows

$$
\begin{equation*}
\|\tilde{L} u+\lambda u\|_{L_{2}(\Omega)}^{2} \geqslant\|\tilde{L} u\|_{L_{2}(\Omega)}^{2}+\lambda^{2}\|u\|_{L_{2}(\Omega)}^{2}+\lambda \nu\left\|u_{x}\right\|_{L_{2}(\Omega)}^{2}-2 \lambda K_{3}\|u\|_{L_{2}(\Omega)}^{2} \tag{11}
\end{equation*}
$$

From (7), (11) we get

$$
\begin{equation*}
\left(\nu^{2}-2 \eta^{2}\right)\left\|u_{x x}\right\|_{L_{2}(\Omega)}^{2} \leqslant\|\tilde{L} u+\lambda u\|_{L_{z}(\Omega)}^{2}+\left(K_{z}+2 \lambda K_{3}-\lambda^{2}\right)\|u\|_{L_{2}(\Omega)}^{2}-\lambda v\left\|u_{x}\right\|_{L_{2}(\Omega)}^{2} \tag{12}
\end{equation*}
$$

Let us choose η such that $0<2 \eta^{2}<2 \varepsilon v-\varepsilon^{2}$; in this way the constant K_{2} also is
determined. Then put $\lambda_{0}=K_{3}+\left(K_{3}^{2}+K_{2}\right)^{\frac{1}{2}}:$ from (12) we conclude

$$
\left\|u_{x x}\right\|_{L_{2}(\Omega)} \leqslant(v-\varepsilon)^{-1}\|\tilde{L} u+\lambda u\|_{L_{2}(\Omega)}
$$

valid for any $\lambda \geqslant \lambda_{0}$ and any $u \in H^{2}(\Omega) \cap H_{0}^{1}(\Omega)$.
The following lemmata are very similar to the corresponding ones in [3]; I repeat them for readers' convenience.

Lemma 2. - Let us suppose that the coefficients $a_{i j}$ of L satisfy condition (4). Then there exist a function $g \in G$ and two positive constants λ^{*} and K_{4}, depending on n, Ω, g and the coetficients of L, such that

$$
\begin{equation*}
\left\|u_{x x}\right\|_{L_{2}(\Omega)} \leqslant K_{4}\|g L u+\lambda u\|_{L_{2}(\Omega)} \tag{13}
\end{equation*}
$$

for any $u \in H^{2}(\Omega) \cap H_{0}^{1}(\Omega)$ and uniformly for any $\lambda \geqslant \lambda^{*}$.
Proof. - Since by hypothesis inequality (4) is satisfied, there exist a positive constant ν, a function $g \in G$ and an operator \tilde{L} like (5) such that

$$
\begin{equation*}
0 \leqslant h<y \tag{14}
\end{equation*}
$$

where

$$
\begin{equation*}
k=\left\{\underset{\Omega}{\operatorname{ess} u_{0}} \sum_{i, j=1}^{n}\left(\tilde{a}_{i j}-g a_{i j}\right)^{2}\right\}^{\frac{1}{2}} \tag{15}
\end{equation*}
$$

From (14), (15), by proceeding as in [2], it follows

$$
\begin{align*}
\|(g L+\lambda I) u-(\tilde{L}+\lambda I) u\|_{L_{2}(\Omega)}^{2} & =\left\|\sum_{i, j=1}^{n}\left(g a_{i j}-\tilde{a}_{i j}\right) u_{x_{i} x_{j}}\right\|_{L_{2}(\Omega)}^{2} \leqslant \tag{16}\\
& \leqslant \operatorname{ess} \sup _{\Omega} \sum_{i, j=1}^{n}\left(g a_{i j}-\tilde{a}_{i j}\right)^{2}\left\|u_{x x}\right\|_{L_{\psi}(\Omega)}^{2} \leqslant h^{2}\left\|u_{x x}\right\|_{L_{2}(\Omega)}^{2}
\end{align*}
$$

for any $u \in H^{2}(\Omega) \cap H_{0}^{1}(\Omega)$. From lemma 1 there exists a positive constant λ_{0} depending on ε, n, Ω and the coefficients of \tilde{L}, such that

$$
\begin{equation*}
\left\|u_{x x}\right\|_{L_{z}(\Omega)} \leqslant(v-\varepsilon)^{-1}\|\tilde{L} u+\lambda u\|_{L_{z}(\Omega)} \tag{17}
\end{equation*}
$$

for any $\lambda \geqslant \lambda_{0}$ and any $u \in H^{2}(\Omega) \cap H_{0}^{1}(\Omega)$. Let us choose now ε such that $0<\varepsilon<$ $<\nu-k$. From (14), (15), (16), (17) and known theorems (see e.g. [5], p. 584) if $\lambda \geqslant \lambda_{0}$ there exists the inverse operator $(g L+\lambda I)^{-1}$ and inequality (13) is satisfied with $K_{4}=(v-k-\varepsilon)^{-1}$.

Lemma 3. - Hypotheses: the coefficents $a_{i_{j}}$ of L satisfy condition (4), g and i^{*} are defined as in lemma $2, \lambda \geqslant \lambda^{*}, f \in L^{2}(\Omega), z \in H^{2}(\Omega)$. Conclusion: there exists one and
only one solution w of the Dirichlet problem

$$
\left\{\begin{array}{l}
g L w+\lambda w=f \\
w-z \in H^{2}(\Omega) \cap H_{0}^{1}(\Omega) .
\end{array} \quad \text { a.e. in } \Omega,\right.
$$

Moreover it it is $f \leqslant 0$ a.e. in $\Omega, c \geqslant 0$ a.c. in $\Omega, z \leqslant M$ on $\partial \Omega$ in the sense of $H^{1}(\Omega)$, then it follows $w \leqslant M$ a.e. in Ω.

Proof, - Let us prolong the definition of the functions $\tilde{a}_{i j}(i, j=1,2, \ldots, n)$ satisfying (14) to all of R^{n} in such a way that, denoting by the same letters the prolonged functions, it turns out

$$
\begin{equation*}
\tilde{a}_{i j} \in H^{1, n}\left(R^{n}\right) \quad(i, j=1,2, \ldots, n), \quad \sum_{i, j=1}^{n} \tilde{a}_{i j} t_{i} t_{j} \geqslant v|t|^{2} \quad \text { a.e. in } R^{n} . \tag{18}
\end{equation*}
$$

This is possible because $\partial \Omega$ is sufficiently regular: see for example [6]. Then we put

$$
\alpha_{i j}=\left\{\begin{array}{ll}
g a_{i j} & \text { in } \Omega \tag{19}\\
\tilde{a}_{i j} & \text { in } R^{n}-\Omega
\end{array} \quad(i, j=1,2, \ldots, n) .\right.
$$

Let ϑ be a function such that $\vartheta \in C_{0}^{\infty}\left(R^{n}\right), \vartheta(x)=0$ if $|x|>1, \int_{R^{n}} \vartheta(x) d x=1$.
For any positive integer m and for $x \in R^{n}$ put

$$
\begin{equation*}
\tilde{a}_{i j}^{(m)}(x)=m^{n} \int_{\boldsymbol{R}^{n}} \vartheta(m x-m y) \tilde{a}_{i j}(y) d y \quad(i, j=1,2, \ldots, n) \tag{20}
\end{equation*}
$$

and similarly define $\alpha_{i j}^{(m)}$. Then we have, for $m=1,2, \ldots$ and $i, j=1,2, \ldots, n$:

$$
\begin{gather*}
\alpha_{i j}^{(m)}, \tilde{a}_{i j}^{(m)} \in C^{\infty}\left(R^{n}\right), \quad \sum_{i, j=1}^{n} \tilde{a}_{i j}^{(m)} t_{i} t_{j} \geqslant v|t|^{2} \quad \text { in } R^{n}, \\
\max _{\bar{\Omega}} \sum_{i, j=1}^{n}\left(\tilde{a}_{i j}^{(m)}-\alpha_{i j}^{(m)}\right)^{2} \leqslant \operatorname{ess} \sup _{\Omega} \sum_{i, j=1}^{n}\left(\tilde{a}_{i j}-g a_{i j}\right)^{2} . \tag{21}
\end{gather*}
$$

Besides the sequence $\left\{\alpha_{i j}^{(m)}\right\}_{m \in N}$ converges to $g a_{i i}$ in every $L_{p}(\Omega), 1 \leqslant p<+\infty$, and the sequence $\left\{\tilde{a}_{i j}^{(m)}\right\}_{m \in N}$ converges to $\tilde{a}_{i j}$ in $H^{1, n}(\Omega)$.

If we suppose $0<\varepsilon<\nu$ and denote by $\tilde{L}^{(m)}$ the operators

$$
\begin{equation*}
\tilde{L}^{(m)}=-\sum_{i, j=1}^{n} \tilde{i}_{i j}^{(m)} \frac{\partial^{2}}{\partial x_{i} \partial x_{j}}+\sum_{i=1}^{n} b_{i} \frac{\partial}{\partial x_{i}}+c \quad(m=1,2, \ldots) \tag{22}
\end{equation*}
$$

it is easy to prove, through the proof of lemma 1 , that the inequality

$$
\begin{equation*}
\left\|u_{x x}\right\|_{\Sigma_{2}(\Omega)} \leqslant(v-\varepsilon)^{-1}\left\|\tilde{L}^{(m)} u+\lambda u\right\|_{L_{4}(\Omega)} \quad(m=1,2, \ldots) \tag{23}
\end{equation*}
$$

is verified for any $u \in H^{2}(\Omega) \cap H_{0}^{1}(\Omega)$ and for any $\lambda \geqslant \lambda_{0}$ uniformly with respect to m (that is, there exists a constant λ_{0} not depending on m such that (23) is satisfied for any $\lambda \geqslant \lambda_{0}$). Let us define the operators

$$
\begin{equation*}
L^{(m)}=-\sum_{i, j=1}^{n} \alpha_{i j}^{(m)} \frac{\partial^{2}}{\partial x_{i} \partial x_{j}}+\sum_{i=1}^{n} b_{i} \frac{\partial}{\partial x_{i}}+c \quad(m=1,2, \ldots) . \tag{24}
\end{equation*}
$$

Remembering lemma 2 with its proof and (14), (21), (23) we get

$$
\begin{equation*}
\left\|u_{x x}\right\|_{L_{2}(\Omega)}<K_{4}\left\|L^{(m)} u+\lambda u\right\|_{L_{2}(\Omega)} \quad(m=1,2, \ldots) \tag{25}
\end{equation*}
$$

valid for any $u \in H^{2}(\Omega) \cap H_{0}^{1}(\Omega)$ and any $\lambda \geqslant \lambda^{*}$, with λ^{*} and K_{4} independent on m. As $L^{(m)}$ has regular coefficients, from known theorems and (25) the Dirichlet problem

$$
\left\{\begin{array}{lr}
L^{(m)} u^{(m)}+\lambda u^{(m)}=f & \text { a.e. in } \Omega, \tag{26}\\
u^{(m)}-z \in H^{2}(\Omega) \cap H_{0}^{1}(\Omega) & (m=1,2, \ldots)
\end{array}\right.
$$

has one and only one solution $u^{(m)}$ as soon as $\lambda \geqslant \lambda^{*}$. From (25) we get the existence of a sequence extracted from $\left\{u^{(m)}\right\}_{m \in N}$ which converges weakly in $H^{2}(\Omega)$ to a function w such that

$$
\begin{cases}g L w+\lambda w=f & \text { a.e. in } \Omega \tag{27}\\ w-z \in H^{2}(\Omega) \cap H_{0}^{1}(\Omega) & \end{cases}
$$

This can be easily verified by passing to the limit for $m \rightarrow+\infty$ in (26). The uniqueness of the solution w is a direct consequence of lemma 2.

Finally let us consider the case $f \leqslant 0, \varepsilon \geqslant 0$ a.e. in $\Omega, z \leqslant M$ on $\partial \Omega$. For known results (see e.g. [11]) we have

$$
\begin{equation*}
u^{(m)} \leqslant M \quad \text { in } \Omega \tag{28}
\end{equation*}
$$

$$
(m=1,2, \ldots)
$$

and since $u^{(m)}$ converges weakly to w we get $w \leqslant M$ a.e. in Ω.
Lemma 4. - Let us suppose that the cocfficients $a_{i j}$ of L satisfy condition (4) and that $e \geqslant 0$ a.e. in Ω. Then there exists $g \in G$ such that among all the eigenvalues of the operator - gL there is one, say λ_{1}, with maximum real part. Besides, λ_{1} is real and is the infimum of the real numbers λ such that: $(g L+\lambda I) u \leqslant 0$ a.e. in Ω, $u \in H^{2}(\Omega) \cap H_{0}^{1}(\Omega)$ implies $u \leqslant 0$ a.e. in Ω.

Proof. - Let g be chosen as in lemma 2. From lemma 3 if λ is sufficiently large there exists the inverse operator $(g L+\lambda I)^{-1}$ from $L_{2}(\Omega)$ to $H^{2}(\Omega) \cap H_{0}^{1}(\Omega)$. So the resolvent set of $-g L$ is not empty and since $H^{2}(\Omega) \cap H_{0}^{1}(\Omega)$ is compact in $L_{2}(\Omega)$ the spectrum of $-g L$ is discrete and countable. From lemma 3 this
spectrum has empty intersection with the set $\left\{\lambda: \lambda \in R, \lambda \geqslant \lambda^{*}\right\}$. Moreover, if we set $G_{\mu}=(g L+\mu I)^{-1}$ when $\mu \geqslant \lambda^{*}$, lemma 3 proves that it turns out $G_{\mu} f \leqslant 0$ a.e. in Ω if $f \in L_{2}(\Omega), f \leqslant 0$ a.e. in Ω.

From known results ([7], Theorem 6.1, p. 262) there exists a real eigenvalue t_{1} of G_{μ} having maximum modulus among all the eigenvalues of G_{μ} :

$$
\begin{equation*}
|t| \leqslant t_{1} \quad \forall t \text { eigenvalue of } G_{\mu} . \tag{29}
\end{equation*}
$$

Moreover it is easy to see that if λ is an eigenvalue of the operator $-g L$, the number $t=(\mu-\lambda)^{-1}$ is an eigenvalue of the operator G_{μ} and conversely. Therefore, if we put $t_{1}=\left(\mu-\lambda_{1}\right)^{-1}$, (29) yields

$$
\begin{equation*}
|\mu-\lambda| \geqslant \mu-\lambda_{1} \quad \forall \lambda \text { eigenvalue of }-g L \tag{30}
\end{equation*}
$$

Since (30) is valid for any sufficiently large μ, we can let μ tend to $+\infty$ in it and get

$$
\begin{equation*}
\operatorname{Re} \lambda \leqslant \lambda_{1} \quad \forall \lambda \text { eigenvalue of }-g L . \tag{31}
\end{equation*}
$$

It remains to show that λ_{1} is characterized as the present lemma claims.
Let us consider the following set of real numbers:

$$
B=\left\{\lambda: g L u+\lambda u \leqslant 0 \text { a.e, in } \Omega, u \in H^{2}(\Omega) \cap H_{0}^{1}(\Omega) \Rightarrow u \leqslant 0 \text { a.e. in } \Omega\right\}
$$

This set B has the properties:
i) B contains the half line $\left\{\lambda: \lambda \geqslant \lambda^{*}\right\}$ (see lemma 3).
ii) B is open on the left (for this argument see [10]). In fact let μ be in B and $0<\mu-\lambda<\left\|G_{\mu}\right\|^{-1}$, then there exists G_{λ} and

$$
G_{\lambda}=\sum_{j=0}^{\infty}(\mu-\lambda)^{j} G_{\mu}^{j+1}
$$

whence $\lambda \in B$.
iii) If $\mu \in \bar{B}$ and μ is not an eigenvalue of $-g L$, then $\mu \in B$. In fact in this case it is easy to verify that $\lim _{B \exists 2 \rightarrow \mu}\left\|G_{2}-G_{\mu}\right\|=0$ (see again [10]).

This is sufficient to conclude that B is an open half line whose right extreme is an eigenvalue, therefore $B=\left\{\lambda: \lambda>\lambda_{1}\right\}$.

5. - Proof of Theorem 1,

It is sufficient to show that there exists a positive constant c_{0} depending on n, Ω and the coefficients $a_{i j}, b_{i}$ of L such that if $c \geqslant c_{0}$ a.e. in Ω the operator $g L$ is invertible for a suitable $g \in G$. In fact it is clear that problem (2) is equivalent
to the following

$$
\begin{cases}g L u=g f & \text { a.e. in } \Omega, \tag{32}\\ u \in H^{2}(\Omega) \cap H_{0}^{1}(\Omega) . & \end{cases}
$$

Let us choose g af is lemma 2. Consider the operator

$$
L_{0}=-\sum_{i, j=1}^{n} a_{i j} \frac{\partial^{2}}{\partial x_{i} \partial x_{i}}+\sum_{i=1}^{n} b_{i} \frac{\partial}{\partial x_{i}}
$$

i.e. the operator L where we set $c \equiv 0$. From lemma 4 among all the eigenvalues of $-g L_{0}$ there exists one, denoted by $\hat{\lambda}$, with maximum real part. Now let us suppose essinf $c>\operatorname{ess} s u p \hat{\lambda} / g$ and let us show that in this case λ_{1} (i.e. the eigenvalue of - $g L$ having maximum real part) is negative. From Theorem 6.1 of [7] there exists a non negative eigenfunction w_{1} corresponding to $\lambda_{1}: w_{1} \in H^{2}(\Omega) \cap H_{0}^{1}(\Omega)$, $w_{1} \geqslant 0$ a.e. in Ω, w_{1} not identically zero in Ω,

$$
\begin{equation*}
g L w_{1}+\lambda_{1} w_{1} \equiv g L_{0} w_{1}+g c w_{1}+\lambda_{1} w_{1}=0 \quad \text { a.e. in } \Omega \tag{33}
\end{equation*}
$$

Now choose λ such that $\hat{\lambda}<\lambda \leqslant g c$. If it were $\lambda_{1} \geq 0$ we should get from (33)

$$
g L_{0} w_{1}+\lambda w_{1}=-\lambda_{1} w_{1}+(\lambda-g c) w_{1} \leqslant 0 \quad \text { a.e. in } \Omega
$$

and from Lemma 4, applied to the operator L_{0}, this would imply $w_{1} \leqslant 0$ a.e. in Ω, a contradiction. Therefore $\lambda_{1}<0$ and from lemma 4 we get that $u \in H^{2}(\Omega) \cap H_{0}^{1}(\Omega)$, $g L u \leqslant 0$ a.e. in Ω implies $u \leqslant 0$ a.e. in Ω.

So Theorem 1 is proven taking for c_{0} any number greater than ess sup $\hat{\lambda} / g$.
Remark. - If $n=3$ we can take any positive number as e_{0} in Theorem 1. This can be proven exactly as in [3]. As far as I know, the problem of extending this result to $n \geqslant 4$ is open. It would be sufficient to know whether for other values of n the eigenfunctions of the operator L are sufficiently regular.

REFERENCES

[1] R. Caccioppolx, Limitazioni integrali per le soluzioni di una equazione ellittica alle derivate parziali, Giorn. Mat. Battaglini, (4) 4 (1951), pp. 186-212.
[2] S. Campanato, Un risultato relativo ad equazioni ellittiche del secondo ordine di tipo non variazionale, Ann. Scuola Norm. Sup. Pisa, (3) 21 (1967), pp. 701-707.
[3] M. Chicco, Equazioni ellittiche del secondo ordine di tipo Cordes con termini di ordine inferiore, Ann. Mat. Pura Appl., (4) 85 (1970), pp. 347-356.
[4] M. Chicco, Sulle equazioni ellittiche del secondo ordine a coefficienii continui, Ann. Mat. Pura Appl., (4) 88 (1971), pp. 123-133.
[5] N. Dunford - J. T. Schwartz, Linear operators, New York, Interscience (1958).
[6] E. Gagliardo, Proprietà di alcune classi di funzioni in piu variabili, Ricerche Mat., 7 (1958), pp. 102-137.
[7] M. G. Kreîn - M. A. Rutman, Linear operators leaving invariant a cone in a Banach space, Amer. Mat. Soc. Transl., (1) 10 (1962), pp. 199-235.
[8] O. A. Ladyzhenskaya - N. N. Ural'tseva, Linear and quasilinear elliptic equations, New York, Academic Press (1968).
[9] C. Miranda, Sulle equazioni ellittiche del secondo ordine di tipo non variazionole a coefficienti discontinui, Ann. Mat. Pura Appl., (4) 63 (1963), pp. 353-386.
[10] M. H. Protter - H. F. Weinberger, On the spectrum of general second order operators, Bull. Amer. Math. Soc., 72 (1966), pp. 251-255.
[11] M. H. Protter - H. F. Weinberger, Maximum principles in differential equations, Prentice Hall, Englewood Cliff (1968).
[12] G. Talenti, Sopra una classe di equazioni ellittiche a coefficienti misurabili, Ann. Mat. Pura Appl., (4) 69 (1965), pp. 285-304.

Note added in proofs (December 27, 1971).
Other boundary value problems (Neumann, oblique derivative) for the same kind of equations will be considered in a subsequent paper. On that occasion condition (4) will be expressed differently and its local character will be proven. In this connection the following work must be added to the references:
M. Giaquinta, Equazioni ellittiche di ordine $2 m$ di tipo Cordes, Boll. Un Mat. Ital., (4) 4 (1971), pp. 251-257.

