On a Duality of Modules over Valuation Rings (*) (++).

Laszro Fuces (New Orleans, La. U.S.A.)

Sunte. — Rispondendo ad una questione posta da A. Orsaiti in [8], si d& esempio di dualitd, non
soddisfacente alle proprietd di estensione di caratteri, sopra un anello di valutazione discreto
completo e si otliene una caralterizzazione dei domini noetheriani per cut une tale dualite esiste.

Let R denote a commutative ring with 1. All modules considered in this note
are unital RE-modules.

In his paper [8], ORSATTI considers, for any E-module , two classes of R-modules:
D{E) consists of all R-submodules of products of copies of #, while C(E) consists of
all closed R-submodules of fopological products of copies of K where F is viewed in
the diserete topology. A character of M e D(F)[e C(H)] is an R-homomorphism
[continuous R-homomorphism] of M into the discrete module E.

The dual M* of M is the R-module of characters of M ; if M € D(H), it is given the
topology of simple convergence and M* e C(H), while if M e C(H), then M* carries
no topology and belongs to D(F). There is a canonical homomorphism w1 M — M**
acting via z > & (v € M) where Z: & — &(x) (£ € M*). If wy is a (topological) isomor-
phism for every M in D(E) and in C(E), we then say that the pair (R, E) defines a
duality.

This duality has been investigated by Orsatti in order to get a general setting
for several dualities studied previously (see the bibliography of [8]). His main con-
cerns were dualities with the socalled extension property of characters, and he raised
the question of existence of dualities without this property. Our purpose here is
to show that there is such a duality, namely (R, R) where B is a complete discrete
valuation ring. We complement this by showing that if R is a noetherian domain
and (R, R) defines a duality, then R has to be a complete discrete valuation ring.

The author wishes to express his gratitude to Prof. A. OrsaTTI for his numerous
comments and suggestions, and to Dr. Claudia MENINI for the simplified version of
the second part of the proof of Theorem 1.

Let E be a complete discrete valuation ring and let Bp be its unique maximal
ideal. The field ¢ of quotients of R as well as K = @Q/R are injective R-modules.
Every rank 1 torsion-free E-module is isomorphiec either to R or to Q.

(*y Entrata in Redazione il 17 maggio 1977.
(**) Thigs paper has been written while the author was visiting professor in Dept. of
Methematics of Universitd di Padova.
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It is easy to see that for a complete discrete valuation ring R, the class D(R)
consists of all torsion-free R-modules which are reduced (i.e. they do not contain
any copy of Q). R is a cotorsion R-module (see MATLIS [6]) whence we deduce that
every finite rank pure submodule H of an R-module M € D(R) is a free summand
of M (H pure means M/H torsion-free).

In order to get acquainted with our class C(R), let us note that every M e C(R)
is algebraically isomorphic to a product of copies of R. To verify this, we consider R
both in its discrete topology and in its p-adic topology; we use the notations B and R,,
respectively, to distinguish between these topologies. Both tepologies make R linearly
compact. Now any M € C(R) can also be considered as a topological submodule M,
of a product [] R, with the relative topology. Clearly, 1,: M — M, is a continuous
map, and since M is linearly compact, so is M,. Kaplansky’s duality [4] implies
that M, is topologically isomorphic to Homy (N, K) for some discrete R-module N.
Since M is reduced torsion-free, N cannot have any summands isomorphic to R,
@ or R/Rp~ for any n = 1. Hence N is a direct sum of copies of K whence M alge-
braically is isomorphic to & product of Hom, (K, K) = R.

We now exhibit an example for an Orsatti type duality without the extension
property.

THEOREM 1. — For any complete discrete valuation ring R, (R, R) defines a duality.

Before entering into the proof, let us note right away that .o, is always an alge-
braical and topological isomorphism between M and w,(M) (see ORSATTI [8]); this
is an easy consequence of the definitions of the classes. Thus it suffices to show that
wy 1s always surjective.

Tirst, let M € D(R) and ae M**. Thus o is a continuous character M* — R,
s0 its kernel containg the annihilator H-+ of some finitely generated submodule H
of HM. Since R is torsion-free, H can be replaced by ifs pure closure; in other words,
we can assume that H is a pure submodule of finife rank in M. Then H is a free
summand of M, M = H@ N for some submodule N of M. Thus M* = H*D N*
where N* = H*. Let m: M* — H* be the projection map with kernel H*, and §
a character of H* satisfying o = Sn. Duality evidently holds for H, so § =& for
somexc H. Writing\é € M* in the form § = & < &y with &, € H*, &y € N¥, we have:

w(§) = Pty -+ &y) = Pbu = ¥&y) = Enlw) = E(@) = &(§) ,

i.e. o is induced by some x € H; thus my is surjective.

Secondly, let M e C(R). We prove that wy,(M) is dense in M**; since wyu(M)
a8 a continuous image of a linearly compact module M is closed in AM**, this will
suffice to establish that wy is surjective.

We show that if o € M** and F is any finitely generated submodule of M*, then
some x € M satisfies « — & € F'*, i.e. o|F = &|F. Without loss of generality, F' can
be assumed to be pure in, and hence a summand of M*. Let j: FF — M* be the in-
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clusion map, so that j*: M** - F* is the restriction map « > a|F. By the stacked
basis theorem on P.I.D., we argue that the free R-module F* ~ F has a basis 5, ..., 7
such that for suitable ry,...,7,ER, 771, .5 %??: form a basis of *{wM). Let
N1y +e-y 7]n D@ the dual basis of F, i.e. n; (1) = 0y for i, k = 1, ..., n. Then, for every 4,
we have

P#(@(3)) (n;) = rim; Bn.= Rr,.

Observe that each 7, is surjective, since Ry, is pure in M* (if Imy, = p*R(k-= 1),
then p—*y5, would again be a character of M). Consequently,

Po(M) () = @n)lwe M} = {nim)we M} =5,(M)=R.

We conclude that all the r; are units of R, whence j*(w(M)) = F* follows at once.
This establishes our claim that «|F is equal to some Z/F. The proof of Theorem 1
is completed.

Note that CHASE [1] has established an interesting duality between certain mo-
dules in D(R) and all modules in C(R) where Ris a P.I.D. His correspondence M > M*
for M € D(R) is canonical, but this is not the case for M e G(R). If R is a complete
diserete valuation ring, then Chase’s result gives a duality between all of D(R) and
C(R), and in order to derive our theorem 1 from his result it suffices to show that
Our @, is an isomorphism for every M € C(R). He proved that for each such M there
is an N € D(R) along with a topological isomorphism ¢: N* — M. Thus in the com-
mutative diagram

N9 oy

().)N*J/ le

N o e

@’6’5

the maps ¢, ¢** and wy. are all isomorphisms. Therefore, w,,is likewise an isomorphism.
Now we turn our attention to the converse result.

THEOREM 2. — Suppose that R is a commuiative noetherian domain such thai (B, R)
is o duality. Then

either R is a field (and the duality is the one of Lefschetz’s [5])

or R is a complete discrete valuation ring {(and the dualily is the one above).

To prove this, suppose (R, R) yields a duality and R is not a field. We verify
Theorem 2 through a number of steps.

1) R is reflexive in the sense of MATLIS [7], i.e. for all R-modules M of finite
rank in D(R), wy is an isomorphism (here no topology is involved in forming M*).
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By induction of the rank, it follows readily that M is finitely generated, hence
its dual M* e C(M) carries the discrete topology. We are therefore justified in view-
ing our M** as the R-module of all R-homomorphisms of M* into B. Thus if (R, R)
is a duality, then R is reflexive.

2) Let H be a finite rank submodule of M € D(R) such that M/H is torsion-free.
Then every character of H extends to a character of M.

The sequence 0 — Homy (M/H, R) = H*+ — M* s H* is exact where j: H - M
stands for the inclusion map; here §* is continuous. By duality, there is a finite rank
R-module C such that Im j* = C*, and the surjection f: M* — C* induces an injec- .
tion f*: C = C¥* — M (where {, if followed by the injection ¢: C* — H¥*, equals j*).
If C* had a smaller rank than H*, then some non-zero submodule of H would be
annihilated by all characters of M, which is impossible. Thus H*/C* ig a torsion
module and i*: H — C is an injection. Since M cannot contain any submodule
of the same rank as H that properly contains H, it follows from j = f*¢* that ¢*
is an isomorphism and §* = if is surjective.

Recall that a torsion-free module M over an integral domain R is called slender
if every homomorphism

g:RY > M

satisfies g@e,s~0 for at most a finite number of indices «; here e, e RN denotes the
vector whose coordinates are 0 except for the n-th coordinate which is 1. It also
follows that ¢P,, = 0 for some m € N where P,, consists of all vectors in RN whese
first m coordinates are 0. If these P,(m cN) are taken as a base of neighborhoods
for a linear topology 7 of R™, then (RY, z) is a non-discrete, metrizable complete
R-module.

3) R is not slender as an R-module.

By way of contradiction, suppose R is slender and let a € R be a non-unit in &,
@ 7% 0. The R-module

M = &_RN+ R(N}

is a submodule of RI that consists of all vectors almost all of whose coordinates are
multiples of a. It is evident that H = R(a, ..., a,...) is & rank 1 submodule of M
such that M/H is torsion-free. The character ¢: H — R which sends (g,..., a,...)
onto 1 extends, by 2), to a character ¢: M — R. Clearly ¢ induces a homomorphism
aRY > R. Since a-RY ~ R" and R is slender, there is an me N such that ¢ aP,, = 0.
By torsion-freeness, ¢ has to annihilate all vectors in M with 0 first m coordinates.
Setting @(e; -+ ... + ¢,) = be R, we see that g(a,...,q,...) = glae; + ... + ae,) = ab.
This has to be 1, in contradiction to a being a non-unit.
For the next result, see DE MARCO and ORSATTI[2] and HEINLEIN [3].
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4) R is complete (Hausdorff) in & non-discrete metrizable linear topology o where
a base of neighborhoods about 0 is formed by principal ideals.

By 3), R is not slender, thus there is a homomorphism ¢: BRY — R such that
e, = 1,5+ 0 for every n € N. Choose again some ¢ 5 0 in B which is not a unit of K.
There is an endomorphism # of RY acting as

BBy cony By o0n) == (Bry AT Bay cony "Iy e s By o)

Then the map ¢7: BY — R also satisfies gne,#0 for every n. The ideals I, =
= gnP, = ey, ... 7, B form a descending chain with 0 intersection (since
¢nP,C Ra* and () Ra" = 0 in a noetherian domain). If R is now furnished with

the linear topology ¢ where the principal ideals I, form a base of neighborhoods
about 0, then gz becomes a continuous open map of the complete R-module (RY, 7)
into (R, 0); hence (R, ¢) is complete.

5) R is complete in the R-iopology.

Let (B, o) be the topological R-module R, furnighed with the R-topology. Then
the identity map of R is a continuous map (R, ¢) —> (R, o), thus 1, has a unique
extension f to the respective completions: f: (R, §) — (R, ¢). We infer that there
is an algebraic direct decomposition B = R@ X for some R-module X. Since R is
a torsion-free R-module, in view of Maftlis [6], ¢ is the R-topology of R. Thus the
lagt direct decomposition holds in the topological sense, too, and so R iz complete
in the R-topology.

Let us note that HeEiNLEIN [3] also derives the completeness of B in the E-topo-
logy from the property stated in 4); the simple proof given here is due to A. ORSATTI.

6) R is a complete discrete valuation ring.

By 5), R is complete in the R-topology, so by MAaTLig [6], B is cotorsion and sc are
its ideals. By Marris [7], R reflexive and complete in the R-topology implies that
every torsion-free E-module of finite rank is a submodule of a free R-module of finite
rank provided that it does not contain any copy of the field of quotients of E. Hence
it follows by induction on the rank that all torsion-free R-modules of finite rank
are cotorsion. We refer again to a result by Matlis [6] to conclude that R is a com-
plete discrete valuation ring.

This completes the proof of Theorem 2.

Needless to say, if the restriction to domains in the above discussion is removed,
then we can get more dualities. For instance, R can be a product of complete discrete
valuation rings.
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