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Sammary. - The properties of a physical system S, where k== — 1, of oot trajectories
C. in a Riemannian space V, are developed. The intrinsic differential equations
and the equations of Lagrange, of a physical system S, are derived. The Lagrangian
function L and the Hawiltonian function H, are siudied in the conservative case.
Also included are sysiems of the type (G), curvature trajectories, and natural families.
The Appell transformation T of a dynamical system S, in a Riemannian space V.,
is obtained. Finolly, contact transformations and the tramsformation theory of a
physical system S; where k==-—1, are considered in detail.

1. Physical systems S,. - Consider a field of force whose force vector
acting at any point z = «* of a Riemannian space V,, is ¢ = @' = @;. The
force vector @, is considered to be a vector function of position only, and
to be class two throughout a certain region of V,. Therefore, each of the
contravariant components @' or of the covariant components @; of the
force vector @, is a continuous function of z = (%, % ..., z™), and possesses
continuous partial derivatives of the first and second orders with respect
to the zf, throughout the given region of V,. Such a field of force is said
to be a positional field of force ® in the Riemannian space V,.

We omit from consideration the trivial case where the force vector @
is identically zero, in which case the physical curves under discussion are
the oo®"—% geodesics of V,.

By a path C in V,, we shall mean a locus of points # in the region
of definition of the field of force ®, given by the parametric equations
#t=2a¥t) for i=1, 2, ..., ..., n, where the parameter { is considered to
be the time ¢ and varies in the closed interval o <¢<b with a<<b. It is
understood that each #i(f) is of class three in a<#<?b. Thus if dots denote
differentiations with respeet to the time ¢, then each of the 4n functions

Zi(t), éi(t), ;c"(t), ‘éi(t) for i=1, 2, ..., n, is a continuous funcfion of the time ¢
in a <t<b. Also the condition is imposed that at least omne zi(f), is not
identically zero in o <#<b. A path C is called a curve C in V,,.

(*y Kasnmr, Differential geometric aspecte of dynmamics, The Prineeton Colloquium
Lectures, 1909. Published by the « American Mathematical Society, Providence, Rhode
Island, 1913, and reprinted 1934,
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A physicat system S,, or more simply, a sysiem S,, of o' curves
in the given positional field of force @ of the Riemannian space V,, is
composed of curves O along each of which a constrained motion is possible
such that the force vector @ is tangent to the osculating geodesic surface of
the curve C at each point z of C, and the pressure P, along the principal
normal to the curve C, is proportional to the normal component N of the
force vector . Thus P—=%N where (k==— 1), is the constant factor of
proportionality, along each one of the oc®*=' curves O of the physical
system S,.

THEOREM 1.1. - A physical system S, of oo*"~* curves C of the Rieman-
nian space V, , is given by the system of n ordinary second order differential
equations

B .
(gan O )w‘,

(1.1) m(at + Migara?) = (1 4 kD! — =222 —
(gocﬁwmws)

for i=1, 2, .., =

In these equations, m > 0, is the constant mass of the particle traver-
sing the curve C. The g,; form the metric symmetric covariant tensor of
second order of the Riemabpnian space V,, and the I, are the Christoffel
symbols of second kind of V,,.

Of course v = guaa®z® >0, along any curve C of the physical
system S,.

It is assumed that each omne of the g,; is of the class three throughout
the given of V,. Then the Ti are all of class two in this region of V,.

From the equations (1.1), it is deduced that each «({) of the curve C
of a physical system S, is at least of class four in a <{<0.

The important special cases of physical interest of a physical system
Sy are the four following ones.

(@) For k=0, this is the system S, of dynamical trajectories. These
are the paths of motion of a particle due to the influence of the given
field of force Q.

(b) For k=1, this is the system S, of general catenaries. These are
the curves in the reversed field of force — @, formed from the resulting
equilibrium where an inextensible flexible homogeneous string is suspended
from two distinet points in the given region.

(¢) For k= — 2, this is the system S_, of gemeral brachistochrones. 1f
the field of force @ is conservative, the system S_, is composed of true
brachistochrones. In this case, these are the curves along which the time
of constrained motion between any two distinct points is least. Whether or
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not the field of forece ® is conservative, we call the curves of a system
S_;, general brachistochrones.

(d) For k = oo, this is the system S, of wvelocity curves. Of course,
Sy is the limit of a system S, as k becomes infinite. A  welocity curve C
is one to which there corresponds a fixed speed v,>0, such that a
particle, starting from any lineal element E of ¢ with the speed »,, describes
a dynamical trajectory which initially osculates the curve C.

Physical systems of curves have been studied by Kasxer and Dr Cicco,
on a Euclidean plane, in Euclidean space, and on a surface of Euclidean
space [1]. In the present arficle, we shall give extensions of some of these
theorems to a Riemannian manifold V,. In the case of a conservative
tield of force, a discussion is given for a physical system S, of the
equations of Lagrange, the infinitesimal contact transformation of mechanics
studied extensively by Lie and Vessiot, and certain related dynamical
theorems of KAsNEr. Finally some theorems are obtained for arbitrary
positional fields of force whether conservative or not.

2. Preliminary formulas, - Consider a Riemannian manifold V, Where
the square of the differential ds of arc length s of a curve C, is given by
the positive definite quadratic differential form

2.1 ds* = g,,dxtdx’,
3

The g;; form the metric symmetric covariant tensor of second order with
g=1gi|>0. For this V,,, the Christoffel symbols of the first and second
kinds, arve

(2.2) ,7].;,‘.;%(99;& 9_9&,%),

doc? ot Oxh
F;k = giq‘jk;z .

The wunit tangent vector of a curve O in V, is dzi/ds. The wvector curva-
ture % of this curve C, is

dPut i doeo dxc
2.3 ¢ oyl = 20 [ etediihiadl
(2:5) = ds? + T ds ds '

It [ %|°=gix»i >0, at a point = of the curve (, its curvature is
|% | >0, at this point « of C. Then its radius r of curvature at this
point z, is r=1/]=|.
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At a point z of the curve (, the unit tangent vector g% and fthe unit

(principal) normal vector %¥/ | x | = rx}, when | x| > 0, are orthogonal.
Consider a point z of the curve O for which |x|=1/r > 0. The

2
pencil of vectors spanned by the wunit tangent vector %2 and the unit

normal vector r«f, is composed of all vectors of the form
dzx? ;
a —dg —l" br%t,

where o and b are arbitrary scalars. If at least one of the two scalars o
and b is not zero, there is a unique geodesic defined by x'= 0, touching
a given one of such vectors. The resulting totality of oo’ geodesics describe
the osculating geodesic surface at the given point z of the curve C.

Let a particle of mass m >0, traverse a given curve C: &' = zi(f), for
i=1, 2, ..., »n of the Riemannian space V.. The wvelocity wvector of this

. . . 1
particle is V= 2f and its speed is v = (giz'z?)2 > 0. The acceleration vector
a of this particle, is

2.4) at = it I‘iﬁo'caobﬁ; or o; = g,,&éf + I, X7k,

The first is the contravariant form af and the second is the covariant
1
form a; of the acceleration vector a. The magnitude of a is | a | = (gyaiaf)z.

The kinetic energy T of a particle of mass m > 0, traversing @ curve
C inV,, is

@.5) T = %’i = %? )

By the preceding formulas, it is evident that

aET\ T
(2.6) mo, = —| | — .
at\ozt/ Ouxt
Let a, and @, denote the tangential and normal components of the
acceleration vector a. These are given by the equations

- . dv v
2.7 W =v=0v_, U = -
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The acceleration vector a is tangent to the osculating geodesic surface
of the curve C at the point z of C. Then

l
2.8 at = a,cz + a, vt = 'v —l— v,

Therefore
29 = at— Lot

3. Elementary properties of an arbitrary positional field of foree.
Consider a curve C in V, such that for every point z of O, its vector
geodesic curvature » is not the zero vector. Let 7T, and N, = N, denote the
tangential and normal components of the force vector @ relative to this
curve C. Then

B
3.1) T, = gaBQa%% = d » Ny =N = r¢,g®%E = r® =

If a particle of mass m >0, traverses this curve O, then its pressure
P along the curve C isg

2 v 2
(3.2) P="0 _N="" g 0mt =" 1@
r r r
. .. DO o s
The space derivative ds of the force @, is its absolute derivative along
the curve C with respect to arc length s. The contravariant and covariant
forms of this space derivative ]';—(SD , are

DOt ddt i dzb

a5 = gs Tl ® 555
(3.3)

DO, do, d:cB

ds  ds — 2,

Let T, and N, denote the tangential and normal components along the

curve C of the space derivative D—(D, with respect to the arc length s, of
ds

the force vector @, along this same curve C [2]. Then

DO dz? DD, da= DD Do,

= ey =
3-4) T =9u0 G5 G5 = as ds’ De =10 gy W =15

®*,
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It is clear that

‘ aT, N
(6‘5) ds -_— 2 —I— 7 .
Also it seen that
dN __dN, _ N dr Dxe
85) as = s et gty

This can be written in the from

dN _ dN, _ D(rx)
S ds —ds =t s ds
Consider a fixed point z of the curve C. [3]. The first principal unit
vector t,, is the unit tangent vector 1, = g—f . The second principal unit

veclor T, or the first principal unit normal vector <,, is the unit vector in
the direction of the vector geodesic curvature so that t, = x. The scalar
r=1,, is the first radius of curvature. Then

D’cl—w-——l—'c
ds — T 2

(3.8)

At the fixed point x of the curve O, the third principal unit vector =,
or the second principal unit normal vecior Ty, and the second radius r, of
curvature, are defined by the vector equation

Dr, 1 1
(3-9) %‘—- —‘—T]_-I'_Tg.

71 T2

It may be that;1 =0, in which case t;, is any unit vector if it exists
2

which is orthogonal to =, and =,.

Suppose that the curve C is of class (¢ 4-1) in the closed interval
a<t<b with a < b, where ¢>2. The principal unit vector t;, of order
(¢ 4+ 1), or the principal unit normal vector v, of order i, and the radius r;
of curvature of order i, at the fixed point x of the curve C, are given by
the Serrei-Irenet formulas

B DTi _ 1 1
(3.10) s r Tima + r Tit1>
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1
where i =21, 2, ..., #. Here it is understood that /;1—-_—_—0, and — =0. It

o Tn
may be ﬁhat;——:(), in which ecase 7t;{;, is any unit vector if if exists,

which is orthzogonal t0 Ty, Tay ey Tis

In general, a curve C at a fixed point z, possesses (n — 1) radii of
curvature, namely, 7y, %2, w0y "Ty—a-

By (3.8) and (3.9), it is found that (3.7) can be written in the form

ay _an,

® T 1 o
(3.11) '%——- ds M;Nz—;“"r—zq)a’c..

THEOREM 3.1 - At a fixed point = of a curve C of a Riemannion space

.. ar dN __dN,

V., the first variations %and T = s

and the normal component N = N,, of the force vector ®, are given by the
iwo expressions

: , of the tamgential component T,

dT]__ .N dN_ T],
312 @ = Bt gg =N

if and only if either;— =0, or the force vector ® is orthogonal to the third
2

unit principal veclor 15, at this point x of the curve C. In particular, these
two formulas are valid if the force wvector ® is tangent to the osculating
geodesic surface of this point z of the curve C.

This proposition follows from equations (8.5) and (3.11).

As a particle of mass m > 0, traverses a curve C from a fixed point
%, to a variable point z, then the work W of the particle is given by the
line integral

@ ®

3.13) W= / Tyds = / ®,dz=.
o

If a particle of mass m >0, is constrained to move along a given
curve C from a fixed point x, to a fixed point x, then

. dv dx%
(3.14 mo =mo 7o = Tl__@a%.
Therefore
&
2 2
(3.15) mév ___Wgﬁ = [‘I’adx“ =W.
Zo

Annali di Matematica 4
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This states that the work W of the particle is equal to the change in
its kinetic energy

A Faraday line of force C of the given field of force ® is one such
that the force vector ¢ is tangent to the curve C at every point z of C.
Evidently N=DN, =0, and 7., = | ® |, along a line of force C.

The system of n ordinary first order differential equations defining
the lines of force (C, is

det @
(3.16) etk
for i=1,2, ..., n. There are ooc"*~1 Farady lines of force in an arbitrary
positional field of force .

The equations (3.12) along a line of force C, are

an

——— Tl
ds ’

3.17) =T, 0=N2—7

Therefore if N,==0 at a point z of a line of force C, its radius r of
curvature at this point x, is

T,
(8.18) r= -

4. Conservative fields of foree, It is assumed that the region of defi-
nition of the field of force @, is simply connected. The given positional
field of force @, is said to be conserative if and only if the work W is
independent of the path [4].

For a conservative field of force @, there exists a polential function
V = V(z) which is of class three in the given region, such that

oV
4.1) D= —3,
for ¢=1, 2, ..., n. This states that the force vector @, is the negative of

the gradientg;, of this potential function V. Any two such potential

functions V, differ by a constant.
By equations (3.14) and (4.1), the energy equation

4.2) T+ V=K,



J. D Cicco: The Ricmannian Geometry Of Physical Systems, ete. 347

mv’
2
is the kinetic energy, V is the potential energy, and E is the constant
total energy.

is valid in a conservative field of force @. In this equation, 7 =

In a conservative field of force @, a Riemannian space of dimension
(n—1), along which the potential function V is constant, is called a
potential surface.

There are oo potential surfaces given by the equation
4.8) V = V(z) = constant

The oo®* Faraday lines of force of a conservative field of force @,
are given by the system of n ordinary first order differential equations

oV
o
dax* g aa;"
o
for i=1, 2, ..., n. The co®~* Faraday lines of force of a conservative field

of force ®, are orthogonal to the oo' potential surfaces.

In a conservative field of force ¢, the oc* Faraday lines of force are
geodesices if and only if the magnitude | @ | of the force vector ¢, is a
function of the potential function V = V(z), alone.

5. The differential equations of a physical system S, where k=—1,
oo [5]. A physical system S, where k== — 1, oo, of co®*! curves in V,,
is defined by the equations

. dv dxh dz>
mo =mv s = 1= 0ap e = Cug s
6.1) mv® = (1 4 BN,
dx?
t— 7 ‘
© = 7, + rix.

THEOREM bD.1. - A physical system S, where k= — 1, co, of oo?n—1
curves C, in a Riemannian space V,, is given by the equations

dv dxzP
MY o = g,p P> ——, mv®* =14+ krN,
5.2 ds ds
dzP\ doot
20,0 — i —_— & _—
ol = (1 RO — (L4 ) (g0 )
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For, the two systems of equations (3.1) and (5.2), are equivalent.

TarorREM 5.2. — Either one of the two systems of n ordinary second
order differential equations

mot = (1 + k)Pt —
(gdgmo‘wﬂ)
(6.3)

(gaﬂq) .'B )
ma; = (1 + kD,— (01275,
) G272 Gio

for i=1, 2, .., u, defines a physical system S where k== — 1, oo, of oo™
curves C in a Riemannion space V..

For, by (2.9) and (5.2), it is seen that

5.4 mat = (14 kD' —Ek (gag(b do? )03;‘

Changing the arc length s into the time #, the first set of equations
(6.3), is found.

The first set of equations (5.3), is the contravariant form of such a
physical system S,. The second set of equations (5.3), is the covariant form
of such a physical system S,.

It is remarked that Theorem 1.1, is an expanded form of Theorem 5.2.

TurOREM b5.3. - The equations of Lagrange for a physical system Sy
where k4= — 1, oo, in o Riemannian space V,, are

apErTy °T T T
(5.5) at (3 ) — (1 + £)D; + Z"T(Qaa@ xB)g ; =0,

for i=1, 2, ..., n.

This result follows from equations (2.5), (2.6), and (5.3).

For k=0, the equations (5.5) become the Wwell-known equations of
Lagrange for a dynamical system S;.
Upon eliminating the speed v from the equations (6.2), it is found that

d dmﬁ
(5.6)
d:c‘

da:B
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TaeorEM b5.4. - Adlong a curve C of a physical system S, where

, anN

k= —1, oo, of a Riemannian space V,, the first variations gg and ds

of the radius r of curvalure and of the normal component N of the force
vector @, ore

dr _(34+k
v =) -

r—dg=—-—-T1+rN,.

This is deduced from equations (8.12) and (5.6).

THEOREM b.D. - The intrinsic differential equations of the oco®"—* curves
C of a physical system S, where k== — 1, co, of a Riemannian space V, , are

N@” (3 + k) — N,

14-%
dN
5.8) " = — LA+,
d £
rNwt®t =@t — T, T

for i=1,2 .., =n.
This proposition is a consequence of equations (5.6) and (5.7).

The three systems of differential equations (5.2), (5.3), and (5.5), are
equivalent. This means that any integral solution of any one of these three
systems, is an integral solution of the other tWo systems. Such an integral
solution is called an actual frajectory C of the physical sistem S,. Every
actnal trajectory C of the physical system S,, satisfies the intrinsic dif-
ferential equations (5.8). However, there do exist curves C which obey
the intrinsic differential equations (5.8) but Wwhich obey neither one of the
three systems of differential equations (5.2), (5.3), and (5.5). Such an integral
solution is called a virtual trajectory C of the physical system S,. The
complete Physical system S, is composed of actual and virtual trajectories
C. Thus the complete physical system S, consists of all the integral
solutions of the intrinsic differential equations (5.8).

The virtual trajectories C of a physical system S, of a field of force
are the actual trajectories C of the physical system S, of the reversed
field of force — @, for which the original force vector @ is multiplied by
the scalar (— 1).
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6. The differential equations of a velocity system S,. A velocity system
S of co*—t curves in V,, is defined by the equations

dz? dx>

mo = mv@ =T\ = g,p0* g5 = q)d% ,

ds

(6.1) _
mv:=rN, @& =1, 0%; + rNxi.

THEOREM. 6.1. - A welocity system Sy of oo curves O in Riemannion
space V., is given by the equations

dv dzP
mv%zgagdﬂd—s, mvg:rN,
(6.2)
. ; dz P\ dxt
rit =& ‘(gaﬁ‘r’“ a;)as' )

for i=1, 2 .., n.
For, the two systems of equations (6.1) and (6.2) are equivalent.

THEOREM 6.2. - Either one the two systems of n ordinary second order
differential equalions

. e Doy R
mulat = (g2 x?)® 4- M (V: — g,pzoaf)rt;
(ganaxB)
(6.3) Dot
M= (gp2*2F)D; + G 2*o") W; — gapa*2P)(gi52%);
(gaﬁwum )

for i =1, 2, .., n, defines a velocity system Sy of oo™ curves C in Rieman.
nian space V,.

For, by (2.9) and (6.2), it is seen that

. ; D2yf ’
(6.4) muiat = v*®f 4 (g2p2707) “sz ) (v — vz,
Since v* = g,pa*xf, the first set of equations (6.3) is obtained.
The first set of equations (6.3), is the contravariant form of a veloeity
system S,. The second set of equations (6.3), is the covariant form of a
velocity system S..
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THEOREM 6.3. — The equations of Lagrange for a velocity system Sy, in
a Riemannian space V,, are

a (eTy oT o _ (9p072?) T _
dt(aa}i)" }_27@—4 N —2T)55="0,

(6.5) rN Py o

for i=1, 2, .., n
This follows equations (2.5), (2.6), and (6.3).

TaroREM 6.4. - The intrinsinc differential equations of the oo®—1 curves
C of a velocity system Sy, of a Riemannian space V,, are

dr dN . , da’
(6.6) stz Tl—r_Nz, 7'78 = — T1+TN2, TNX‘Z(D/’/— T]_Eg,
for i=1, 2,.... n. 4 velocity system Sy, is the limiting case of a physical

system Sy as k becomes infinite.

The equations (6.6) are obtained by eliminating the constant speed v, > 0,
from the equations (6.2) and using the equations (3.12).

As k becomes infinite, the limiting set of the intrinsic differential equa-
tions (0.8) of a physical system Sk, is the set of intrinsine differential equa-
tions (6.6) of a velocity syistem S,. Therefore a velocity system S, is the
limiting case of a physical system 8. as k becomes -infinite.

The three systems of differential equations (6.2), (6.3), and (6.5), are equi-
valent. Any integral solution of any one of these three equivalent systems,
is called an actual velocity curve C. An integral solution of the intrinsic dif-
terential equations (6.6), which does not satisfy any one of the three equi-
valent systems (6.2}, (6.3), and (6.5), is called a wvirtual velocity curve C. The
complete velocity system S, is composed of the actual and virtual velocity
curves (. Therefore the complete velocity system S, consists of all the inte-
gral solutions of the intrinsic differential equations (6.6).

The virtual velocity curves C of a velocity system S, of a field of force
@, are actual velocity curves C of the velocity system S, of the field of
force — @, for which the original force vector @ is multiplied by the sca-
lar (— 1).

7. The explicit form of the differential equations of a complete physical
system S where k== —1. Let j denote a fixed index. The symbol A for
i=1, 2,..., n, denotes the expression

R ; dz* dzb i dz® dxf dat
. A"’:——. 1—*A——- J—‘—-——-.
@1 () + Lo dz! dad “® de? dzd de?
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Evidently A/ = 0. The expanded form of this, is

P d"’ﬂc" i i 4
A:E(x—.’)*z—l—rn—l-'(?r” )dj+2:;jraid-7
dzt da? dx> dat
i i az™ ot
+ (T — 20 oo + 22 (o —T2) s
(7.2) _ i 9 detdat 5 gy dodat do

“dxd dzl? dz’ s, § " Az dad dz?

i dz* daf dgt
vy ® dad dzd dz?”
(AR

The vector geodesic curvature » of a curve C in V,, is given in terms
of the symbol A? by the equations

dmi .d.’l:j
i ] i 2
(7.3) W=k —]—A(d8>,

where j is fixed and i =1, 2, ..., n.
The vector geodesic curvature » of a curve C in V,, is parallel to the
unit tangent vector 11:%, if and only if » is the zero vector. Therefere

since the conditions for a geodesic C of V,, are »* =0, for i=1, 2,..., n,
it follows that a curve C, of V., is a geodesic of V, if and only if

(7.4) A =0,

fori=1, 2,..., n

For a physical system S where k= — 1, oo, it is found by (5.2) and
(7.8), that

7.5) m(%xtj)z A= (1B (cw Y g.g) ,

where 4 is fixed, and ¢ =1, 2, ..., n.
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Therefore for a physical system S where k=— 1, we must have

daxt

e I3 2

6 A T
- F= T gn
i __ i

e

where j is fixed, and 4, I=1, 2, ..., n. These equations are true for a velocity
system Sy since it is the limifting case of a physical system S as k ap-
proaches infinity.

Differentiate the equalion (5.5) with respect to /. The answer can be
written in the form

&
Lo dof\dAi v AP (o oA
e D T AT e AT i WA iAg

(@ s e = — Dk <@2(® 5

i

77

ddt  dd’ di i dxe dzP j dz* dzP dat
____________ - Y AL AN oF R Gl el
do?  da? dz? + o ( *® de? da? Lo da’ da’ dwj)

i

By (6.3} and (7.5), it is found that

2,
—pdx : 2 | g,p0e 327
__ar ((pi _ %\ N = | oo 7 dar AiAd
(g@f : EEEJ‘) = |7 L 1 Jofg,, 22 daf
i) (095 323 3)

(7.8)

: da dzB (.. dz®y .
Qg T e i i T H
+ 20 dxj<q> ® dm}.)A.

TurOREM 7.1 — The ewplicit differential equations of a complete physical
system Sy where k<= — 1, in a Riemannian space V,, are

dz?
I 7
S "
O ¢ il

dz’

Anneli di Matematica 45
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dx®
. 2&( Gup D W—A)
. dat\ dA? ®T dxd -
—PF e e J i
(@ ® dw’) dz? 307+ Lk dz* dzf AcAf
(1 4 )(Qaﬁ o @3)
(7.9)
ad dd/ dxt ¢ da*dxbf i dx* dz? dat
il il J iR AT ki ttatiiiadl
dz?  da? da? +@ ( ® Az da? T da! dx? dxd )
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where the two indices i and § with i==j are held fixed, and 14, j, is allo-
wed fo vary over the remaining infegers 1 fo n. This is a system of (n— 1)
ordinary differential equalions in which there are (n — 2} ordinary second
order differential equaiions and one ordinary third ovder differential equation.
As k becomes infinite, the lmiling sel of (1.9, is composed of the explicit dif-
ferentinl equations of a complele velocity system S .

For, the system of ordinary differential equations (7.9), is found by
means of equations (7.6), (7.7), and (7.8). By Theorem 6.4. the limiting set of
{(7.9), is composed of the explicit differential equations of a complete velocity
system S.

From (7.9}, the number of constants of integration is (B — 2)2 4 3 =
=21 —4 4 3 =2n — 1. Therefore, a complete physical system S where
k= -—1, consists of co®1 trajectories C.

By equations {7.9), it is clear the oc®*—t geodesics C of the Riemannian
space V., belong to every complele physical system Sp where k==— 1. These
are the trajectories C of the complete physical system Sx, which correspond to
infinite initial speed.

A system of ordinary differential equations in Riemannian space V,, is
said to be of the fype (@), if and only if it can be written in the form

dz?

LAY ¢ ¥ el

A‘_"_CD (Dd:c?

BT
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@ © da’

(7.10)
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where the two indices i and j with éd=j, are held fixed, and Id=%, j, is
allowed to vary over the remaining integers 1, 2, .., n. For a fixed ¢
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Gt and HY, are two single valued functions of at least class one in a (2n-1)

. . . . dx'  d«®
dimensional region of B of lineal elements HE(x', z% ..., a"; dzi’ dai’
dxi—1 dxiTt dz” ) ) .
doi w0 dwl )" For ¢ =1,2, ..., n, the @ form a contravariant vector

z

function of at least class two in this same region R of lineal elements E,
such that the contravariant vector @¢ is nof the zero vector, and its
direction is wof identical with that of the corresponding lineal element E,
for all lineal elements E in this region E.

The collection of all curves C which are integral solutions of the system
of ordinary differential equations (7.10, is said to be a syslem of the type
(@) [6). A system of the type (@), possess co®»—1 curves C.

The totality of oc®—2 geodesics of the Riemannian space V,, is part
of every system of the fype (G).

Every system of co?*—* curves C of the type (&), possesses the Property 1.
This may be described in the following manner. For a given lineal element
E of the region R, there are oo' curves C of the system of the type (G),
which pass through the point z of E, in the direction of E. Depending on
this lineal element K, there is determined one and only direction t, which
is the direction t of the non-zero contravariant vector @f such that this
direction t is in each osculating geodesic surface at the point z of the
lineal element E, of every one of the curves C of the system of the type
(@), which passes through the point z of E, in the direrection of E. This
direction t does nof coincide with that of E.

Upon comparing the equations (7.9) and (7.10), it follows that every
complete physical system S, where k==—1, is of the type (&). However,
not every system of type (@), is a complete physical system S, where
E4+—1.

A physical system S, Where k==—1, possesses the stronger form of
Property I. This signifies that the direction t of Property I, is a function
of the position z only.

TueoREM 7.2 - Cownsider a fized k= — 1, which may be infinite, such
that k4=— 3 if the dimension n of the Riemannian space V., is two. Two
arbitrary positional fields of force @ and @, possess the same complete
physical system S,, if and only if the force vector @, is a non-zero constant

scalar wmultiple ¢ of the force vector ®. Thus © =c ®, where ¢+0, is a
constant scalar.

Essentially this proposition states that there are only oo* positional
fields of force @, which possess the same complete physical system Sy
where k=—1, and k3=—3, if n=2.

If ¢>0, the actual and virtual trajectories of the complete physical
system S, of the positional field of force @, correspond respectively, to the
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actual and virtual frajectories of the same complete physical system S,
of the positional field of force ® = ¢ ®, On the other hand, if ¢< 0, the
actual and virtual trajectories of the complete physical system S, of the
positional field of force ¢, correspond respectively, to the virtual and actual
trajectories of the same complete physical system S, of the positional field
of force @ = ¢ ®. Thus when ¢ < 0, the actual and virtual trajectories are
interchanged.

The above proposition is nof true when n =2, and k= —3. This is
demonstrated by the following example. In the Euclidean plane, let (z, y)
denote rectangular coordinate of a point P. The totality of oo® circles and
oo? straight lines in the Huclidean plane, is a complete physical system
S ;. The rectangular components of any positional field of force which
possesses this complete physical system S_,, are ¢'=az+ h, ®*=oay + ¥,
where a, h, k, are three constants, not all zero. According as a==0, or
a =0, the positional field of force @, is elastic or Galilean. Therefore,
there are oo® positional fields of force @ in the Fuclidean plane, which
possess the same complete physical system S_;, composed of the oo® circles
and the oo” straight lines. Consequently When » = 2, and ¥ = — 3, Theorem
7.2, is mot ftrue.

The proof of Theorem 7.2, is as follows.

The condition @ =c¢ @, Where ¢=0, is a constant scalar, is a sufficient
condition even in the case when n =2, and k= — 3. This is demonstrated
by substituting @ =c ¢, into the equations (7.9).

The major part of the proof, is to show that ® =c¢ @, Wwhere c==0, is
a constant scalar, is a necessary condition provided that k4 —1, and
k’—‘i=—-3, it n=2.

Accordingly, let ® and @ denote two arbitrary positional fields of
force which possess the same complete physical system S, Where k4=—1,
and k== — 3, it n=2.

It will be proved that a necessary condition for this, is that there
exist a non-zero scalar function p = p(z), of class two in the given region
of points 2z, such that

(7.11) @i = @i,

for i=1, 2, .., n.

Let »n>3. By the first (n-2) equations of (7.9), a necessary condition
for the validity of the proposition, is that the following set of (n-2) identities
hold, namely

@_q_)jd_”l @l_@jd_x’
7.12 dz’ _ dxd
(.12) o’ v’

Dt — ds L i I 22
()] o G () ) o
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where ¢ and j with ¢d=j7, are fixed, and /=4, j, varies over the remaining

integers 1, 2, ..., n.
Set ;Li =0, in (7.12). From the resulfing identities, it is found that
L
(7.13) = e0,

Where ¢ and j with ¢s=7, are fixed, and I3=4, §, varies over the remaining
integers 1, 2, ..., n. From these, are deduced the equations (7.11). By (7.11),
the identities (7.12), are wvalid.

Consequently the necessary set of conditions (7.11), have been established
when »n>3.

From (7.9), another necessary condition for the validity of the propo-
sition, is

v

ds ds 14+%) % ds ) ds
(7.14)
dzi . 2k da*\ da’
o = —— ||— 3®: - 1=
< ds @ ds ){ 37+ (1 + k)(q)”' ds)ds

where ¢ and § with id=j, are fixed.
When n==2. the indices ¢ and j can be taken as 4=1 and j=2 The
preceding condition ban be Written as

— — 2k \/= da* -~ da? dx? dz*
3@ — diary [ 2P Vg, 9 A2\ (2 42° g0 A2
( ) (1+k>(®‘ds + ds>(® is — ds>

(7.15) B
2k LAt dxt
+(1+k)< ' ds o s><® %’_@%)“0
From this identity, the following three conditions are found, namely

(7.16) (? 1‘ ’;)@1@2 Dy, = 0,

where ¢, j=1, 2,

Since ¢ =g.ug. — g1z >0, and since k<=-—1, —3, it follows from
(7.16), that the mnecessary set of conditions (7.1 1), must be valid even
when n =2, provided that kg=—1, — 3.
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Therefore, under all possible circomstances, the necessary set of
condifions (7.11), has been derived.

With the aid of (7.11), it is seen by (7.9), that the final necessary
condition for the validity of the proposition, is

ad:  adi dxzt

_ 1] d ; a Laxt]
(7.17) o170 PP = g ?®) g | = g a aw

¢ |dxi

where ¢ and j with ¢35, are fixed. Then

dp ; dat\

Since 4 and j with ¢=Fj, can be so selected that(®i~®jgg)¢0, it

follows that %:O. This means that ¢ =¢==0, is constant.
_ Therefore under the given bypotheses, the sufficient condition that
O=c¢ @, where ¢3+0, is a constant scalar, has been proved to be a

necessary condition. Consequently the proof of Theorem 7.2, is complete.

8. Kasner’s theorem concerning the initial eurvatures of the rest
trajectories of a complete physical system S, where Z—1, —3. [7]. 4
rest trajectory C of a complete physical system S, where k= —1,but where %
mdy be infinite, is a trajectory C of the given S,, which starts from a
given initial point x, with velocity vector equal to the zero vector. In a
given complete physical system S, where Lk=— 1, of oo™ trajectories,
there are oo™ rest trajecories, under certain general conditions.

In this section, a proof of a theorem of KASNER concerning the initial
curvature of a rest trajectory of a complete physical system S, where
k4 —1, —3 but where k& may be infinite, in a Riemannian space V,,
will be given. This result has been proved only for the cases of a
Euclidean plane, a Euclidein space of three dimensions, and a surface.

By (38.8), (8.12), and (5.8), the intrinsic differential equations of a
complete physical system S, where k== — 1, can be written in form

at, . N aN_ . T
81 %‘Tg_{_?’ ds_N2 r

3 k i i T
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From (8.9) and the above equations, it follows that

¥F = Ty} + N,
(8.2)
DO i i N
s = Tyt Nz'Ver W,‘z'tsa
where r, is the second radius of curvature of a trajectory C of the complete
physical system Sy for k= — 1.

TuEoREM 8.1 - In a given complete physical system S, where ka4 — 1,
there are oo' trajectories C which confain a given lineal element E. By
varving k, there are oo such irajectories C. All these oo* trajectories C
which contain the given lineal element E, have the same osculating geodesic
surface at E. Moreover, at this lineal elemeni E, they possess the same second

curvature | %, | = 1/r., given by the formula
N Do
(8_3) le‘Z]:E:c?A' s .

This result is a consequence of the equations (8.1) and (8.2).

TaEoREM 8.2 - The rest trajectory C of any complete physical system S,
where k= — 1, which passes through a fixed point x, is tangent fo the line

of force at this point x. Also the space derivative %—s@, of the force vector

©, relative to this rest trajectory C, evaluated at the initial point x, is
tangent to the osculating geodesic surface of the rest trajectory C, at this
point .

For, since C is the rest trajectory of the complete physical system S,
. i
where k== — 1, at the given point «, then xizofl—jzo, for a particle
on the rest trajectory C at the point z. From the equations

m (‘il—“’—i)z A= (1 4 k) (cI)z — i %)

dt dxi
(8.4)
daxt
A O — P 7ol
AP =
A @ — I az’

dz’

where ¢ and j with é==j, are fixed, and I3, j, varies over the remaining
integers 1, 2, ..., n, it follows that the direction of the rest trajectory C
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at this point x, is given by

dz* D=
(8.5) dzi = @i’

where j is fixed, and «=j, varies over the remaining integers 1, 2, ..., n.
Of course, 7 is chosen so that @®/==0. Therefore, the rest trajectory C is
tangent to the line of force at the inifial point .

From the proof of the proceding paragraph, it follows that at the
initial point = of a rest trajectory C, the following relations must hold,
namely

(8.6) Tye=]|® =0, and N=0.

Do
ds ’
tor @, relative to the rest trajectory C, evaluated at the initial point z of C,
is tangent to the geodesic surface of this trajectory C at its initial point w.

By means of (8.2) and (8.6), the space derisative , of the force vee-

TaroreEM 8.2 -~ The Theorem Of Kasner Concerning The Initial
Curvature Of a Rest Trajectory, Let the curvature | x| =1/r,, of the line
of force at a given point x, be wnot zero. The rest trajectory C of the complele
physical system S, where k= —1, — 3, with this point « as ils initial
point, is tangent to the line of force at this point x. The curvature | x| =1/r,
of this rest trajectory C, is mot zero al ils initial point wx. The ratio
p=|f%)/]| % | =r| ¥, of the curvature | x| = 1/r, of the rest irajeclory
C, and of the curvature | %, | = 1/r,, of the line of force, at the initial
point x of the rest trajectory O, is

8.7 Tl | T TR

At the initial point x, the rest wvelocity curve C and the line of force,
possess the same curvature.

For, under the given hypothesis, #,+0, and T,=| ® |40, N,=+0, at
the initial point x. By (8.18), we have Ti=r,N,. By (8.1), and (8.6), it is
seen that

(8.8) p =

ﬁo_roNz 1+]5>’_1+k
| %o | r T (5"4‘]" R

This completes the proof of the above theorem of KASNER.

For dynamical trajectories, this ratio p is 1/3. For general catenaries,
this ¢ is 1/2. For general brachistochrones, this ratio g is — 1. For velocity
curves, this ratic p is 1.
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Elsewhere this ratio has been studied for directional fields of force in
which the force vector at any point depends nof only in the position of the
point but also on the direction passing through the point [8].

9. Curvature trajectories and veloeity families. A family Q of co?—2
curves ® in a Riemannian space V,, wWhich is wnof the geodesic family,
can be defined as the oo®—2 integral curves w of a system of # ordinary
second order differential equations of the form

©.1) 2t = @,

for 1, 2, ..., n, where the ®¢ for i=1, 2, ..., n, form a contravariant

vector function of at least class two in a (2n-1) dimensional region R of

Tdat’ dxi’ 7 dxi 7 dx? TV dat )

that the contravariant vector ®¢ is nof the zero vector, and its direction is

not identical with that of the corresponding lineal element E, for all lineal

elements K of this region R. The «' in these equations, are the contravariant

form of the vector geodesic curvature x of any curve w of this family Q.
Sometimes it is found convenient to think of the @ as being funetions

lineal elements E(xl, " A

Zig’ for i=1, 2, ..., n.
Then for each 4, the function ® is howogeneous of degree zero in the z.

A curvature frajectory C of the family @ of co—2 curves o, is defined
in the following manwer [°]. A geodesic C of the Riemannian space V,, is
regarded to be a curvature trajectory C of this family Q. Henceforth, let C
be a curve such that its vector geodesic curvature » is nof zero at every
one of its points z. To this curve C, there is associated a constant scalar
¢ 0. Such a curve C is said to be a curvature trajectory C of the family Q
if when the unique curve o of the family Q, is constructed such that w
passes through any given point z of the curve € in the direction of this
curve C, the two curves C and o possess the same osculating geodesic
surface at this point , and the curvature | x| =1/r, of O, is a constant
multiple ¢==0, of the curvature | %, | = 1l/r,, of ®, at this point =

The system T of co?—2curvature trajectures C of the family Q of ocon—2
curves o, is composed of the co? integral curves C of the system of
ordinary second order differential equations.

of (z; 2) = (¢*, %, ..., 2"; &', 2%, ..., z"), Where 2=

(9.2) %! == o,
for 4=1, 2, .., n, Where ¢ is an arbitrary constant of integration. If

¢ =0, these define the geodesic curvature trajectories of the family Q.
Henceforth, its is supposed that ¢=F 0.

Annali di Matematica 46
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By (7.3), the system of equations (9.2), is found to be equivalent to the
system of (n — 1) equations

9.3) <%’) (@i ®’ dW)

where j is fixed, and ¢4=4, varies over the remaining integers 1, 2,.., .
From (9.8), is deduced the set of (n — 2) equations

dxz!

g

©.4) s _ PV
. At B (Djd:c’ ’
dx!

where 4 and § with ¢4=4, are fixed, and [==4¢, j, varies over the remaining
integers 1, 2, ..., n.

TaworEM 9.1 -~ 4 system T of oot curvature trajectories C of a family
Q of oo curves v, is given by the set of (n— 1) ordinary differential equations

. dat
1__ o
A’ . ® ! da?
5 g 0
' dx?
dx
ndAt 20t D dat — O G
(9.5) Pt CI) i Rty — 3D [ s ) ————— | AAY
dm? dzi 32t oz dxi dz'?
10 LURNRE () 3 Jdadi
dei
30! aDida’\dar %q)‘_a_@f@(_p dz* du? ri, %, daf dzr
(axr da d.rf>dx7 dev v dal Paaidzr *lei dwi dwi‘)
+ A%
i dx® dzP ; da* dx® dx de> da® dat
i Lt \F 21 1 di ;s 2,
+¢ (P“B dz? dx? R qui dzl d:cf) + 20 507 dzi dz! ( ' dxf)

where i and j with i=£j, are fixed, and [==14, j, varies over the remaining
inlegers 1, 2,..., n.

This proposition is derived from equations (7.1), (9.3), and (9.4).

By comparing (7.10) and (9.5), it is seen that every system I' of oo~
curvature trajectories O, is of the type (G). However, nol every system of
the type (@), is a system I' of co®~* curvature trajectories C.

It is remarked that wof every complete physical system S; where
kd=—1, is a system I of co®— curvatare trajecories C. For example, KASNER
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proved that in a Euclidean plane, a complete dynamical system §; is a system
I' of oc® curvature trajectories € if and only if the corresponding positional
field of force ¢, is either central or parallel [10].

In a given positional field of force @, a wvelocity family F of co*—2 velo-
city curves C, is defined in the following manner. [11}. For such a curve C,
it is understood that a particle of unit mass is constrained to move along it.
A curve ( is a member of the velocity family I if and only if a particle of
unit mass, starting from any lineal element E of C with unit speed, describes
a dynamical trajectory which initially osculates the curve C.

TurorEM 9.2. - 4 welocity family F of oo®—% welocity curves C is given
by the inirinsic equations

, dzt
(9.6) rN=1, W':(Dl—ﬂ%’
where i =1, 2,..., n. The system of (n — 1) explicit ordinary differential
equations, each of the second order, of a velocity family F of oo*—2 welocity

curves C, is

. ; dat dz* dzP
(9.7) A= (‘D — @ ?ZE?) (gaﬁ dai @) ,

where § is fixed, and i==j, varies over the remaining integers 1, 2, .., n.

This result follows from equations (6.2), and (7.3).
A line of force C is a velocity curve O of a velocity family F of oo®—2
velocity curves C, if and only if C is a geodesic of the Riemannian space V,.

The center z of circular curvature at a given point @ of a curve C, is
given by the set of equations

(9.8) 2= i + %,

for ¢ =1, 2,.... n. If there is a constrained motion along this curve C for a
given positional field of force @, then

9.9) ®,(zi — o) = rN.

TarorREM 9.3. - Property A. A family F of o<*"—2 curves C in a Rie-
mannian space V,, is a velocity family F of oo™—2 wvelocily curves C of a
positional field of force @, if and only if at each point x of any curve C of
the family F, the force vector O is tangent fo the osculating geodesic surface
of C, and the center x of circular curvature of C, satisfies the condition

(9.10) O,(z¢ — 2i) = 1.
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For, the first part of Property 4, is equivalent to the set of » conditions
. dat .
9.11) O =T Is -+ rN¥,

for i=1, 2,..., n. By (9.9), and the second part (9.10) of Property 4, it is
seen that N = 1. Substituting +N =1 into (9.11), it follows by (9.6), that
Property A characterizes a velocity family F of oo?*~2 velocity curves C of
a positional field of force @.

The condition (9.10) states that if the tangent flat space B, of » dimen-
sions, of the Riemannian space V,. is constructed at a point x through
which pass oo*—1 velocity curves C of the velocity family F, then the cor-
responding centers « of circular curvature, describe a flat space R,_, of
(n — 1) dimensions in B, , which does wnof pass through the given point .

THEOREM 9.4. - A complete velocity system So, of oo curves C of a
positional field of force @ in a Riemannian space V,, is composed of the
oot =1 curvature trajectories C of the velocity family F of co—2 velocity curves
C of the same positional field of force Q.

This is a consequence of equations (6.2) and (9.6).

10. Conformal maps of Riemannian spaces. Consider two Riemannian
spaces V, and V, whose metrics are given by the two definite quadratic
differential forms ds® = gydaidei, and ds*® = g;dxidx’, where each one of
the functions g;;, gy, is at least of class three in an # dimensional region of
points ®. Two points of ¥V, and V,, are said to correspond if and only if
they are represented by the same curvilinear coordinates x = (2!, o ..., x"),
of the given region of points x. This establishes a point to point transforma-
tion T between V, and V,. Such a representation of V, and V., is called
a cartogram T.

Let p denote some positive scalar point function at least class three in
the given region of point x. The cartogram T is said to be conformal and
the two Riemannian spaces V, and V, are said to be conformally equivalent,
if and only if ds= pds, for some such positive scalar point function p.

Then e(},-,-:ng,-j, and jif:g-zg‘i. In this case, V, is called a conformal
image of V,.

It V, is a conformal image of V., then ds=pds, Where p>0, is
a positive scalar point function. If > 0, is a constant, then V, is said to
be a homothetic image of V,, and the cartogram is called a homothetic
tramsformation T. In particular, if p =1, then V,, is called an dsomelric
image of V,, or V, is said to be applicabile to V,, and the cartogram
is termed an dsomelric correspondence T.
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It is easy to see that a cartogram 7 between two Riemannian spaces
V, and V,, is conformal if and only it T preserves the magnitude of the
angle between any two curves C, and C, Which pass through an arbiftrary
point .

Consider a conformal cartogram 7T between two Riemannian spaces V,
and V, so that V, is a conformal image of V,. Then d@:pds where
p >0, a positive scalar point function. Clearly

— 1
(10.1) 95 = 004, g’*’———;gg”-

In this conformal cartogram 7, the Christoffel symbols of the first
kind, are related as follows

d d
(10.2) | PR Tig; 0+ H(gwk o ,‘l‘ Gin Bi‘ 9ij aik)

and the Christoffel symbols of the second kind, correspond by the equations
it

: M =¥ 7 i 9 9
(103) ]«k_ggrjk;lz Pyk"{“ (5,apk+ ka 7“‘911191192)

Under this conformal cartogram T, the absolute total derivatives with
with respect to arc length of a contravariant vector A% correspond as follows

Dy 1DM 1 dp_.de*  13n. .dof 1 dp da*

10.4 = T T 0 e

(104 ds p ds + p?dz®  ds + W ozl ds  pf ot Ind ds
Taeorem 10.1 - Let a Riemannian space V, be wmapped into a

Riemannian V., by a conformal transformation T. Under T, a curve C in
V., is converted info a curve C in V,. The vector geodesic curvatures » and »
atl corresponding points of C and C, are related by the expressions

(10.5) i — *1“2%‘+ 1 dpdad 1 3

1 wids ds psg 3zl
where i=1, 2, ..., #.

This result is found by substituting X = "= £ 3@, into (10.4).
n ds
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11. Natural families. The oc**—2 extremals C in a Riemannian space
V.., of the variation problem

2
(11.1) [;wls = mipimum,

1

are said to form a noafural fowmily I in V,. This is equivalent to saying
that a natural family F of oo*~2 curves C in a Riemannian space V,, is
a conformal image in V,, of the family F of oo®*—2 geodesics C of a
Riemannian space 17,,, which is a conformal representation of V,. Some.
times, the oo®—2 curves C of a natural family F in a Riemannian space
V, , are called conform-geodesics [12].

TuroREM 11.1. The inirinsic differential equations o natural fomily F
of oco*—2 curves C in Riemannian space V., , are

1 . 0p  1dp dat
b gl YT TV
(11.2) w= P«g axz }LdS dS )

where i =1, 2, ..., n.

For, upon sefting % =0, in equations (10.5), the conditions (11.2), are
found.

From the above proposition, it follows that a natural family F is
composed of the co2#—2 geodesics in the Riemannian space V,, if and only
if 01 >0, is a constant. Therefore, a conformal map T of a Riemannian
space V, onto a Riemannian space Tf,,, converts the family F of oco?#—2
geodesics C in V,, into the family F of oco—2 geodesics C in V,, if
and only if T is a homothetic transformation.

TaroreM 11.2. A family F of oo™ 2 curves C in a Riemannian space
V., is a natural family F for which the associated scalar point function

w> 0, is not a constant, if and only if it is a velocity family F of oo*—2

velocity curves C of a conservative field of force ® = — %5}7’ for which Vis a

potential function. In this case, the relations between the scalar point function
w> 0, and the potential function V, are

(11.3) V:log;, p=e"

For, by comparing (9.6) and (11.2), it follows that a natural family F
of co™—2 curves ¢ in V,, for which the associated scalar point function
>0, is not a constant, is a velocity family F of oc®™~2 velocity curves
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U of a conservative field of force @ = — g, for which a potential funec-

tion V, is V=log1/u.
Conversely, a velocity family F of oo®2 velocity curves C of a

conservative field of force @:—%—g, with potential function, V, is a
[

natural family F. The associated scalar point function is p = e~ V. Clearly
this is positive, and is not constant.

It is clear that. if a positional field of force ® in a Riemannian space
V., is mot conservative, then the velocity family F of oo®—2 velocity
curves C, is mnof natural family F.

TaroreEM 11.3. Under a conformal map T of a Riemannian space V,
onto a Riemannian space V,, every velocity family F of oc*—2 velocily
curves C in 'V, , is converted into o velocity family F of oc®—2 wvelocity curves
C in V,. The relations between the corresponding fields of force ® and
@, are

Q2

tor Ll 5 g

l~L
;L—z Psg axg7 [ g

(11.4) O gx-“

"o 1 e

for i=1 2, ..., n.

For, in V,, a velocity family F of oc*—2 vetocity curves C, is given
by the condifions

_ _ - B i
(11.5) = O — (gagcpadi)f’l_ﬁ.

Substituting (10.1) and (10.5) into these equations, it is found that this
family F in V,, corresponds by the conformal map 7, to the velocity
family F of co™—2 velocity curves C in V,, which is given by the equations

. = 1 o = dzf 1 dp
j— 2ht — it —- 2 o -
(11.6) %“—-(2” o+ n? aﬂ) (‘L 946 P* G5 1 ds)

ds ’

From these equations, the relations (11.4) are deduced.

By the last three propositions, it is an immediate consequence that
under a conformal map T of a Riemannian space V,, onto a Riemannian
space V,, every natural family F of oc®2 curves C in V,, is eonverted
into a natural F of oo®™—2 curves ( in V..

In the above paragraph, let F be represented as a natural velocity

family F of oo®*—2 velocity curves C of a conservative field of forece

(D:—%/, with a potential function V, in the Riemannian space V,
¢

H
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and let F be depicted as a natural velocity family F of oo velocity
27
%
function 7V, in the Riemannian space V,. Then under the conformal
map I of the Riemannian space V, onto the Riemannian space V., the
two potencial functions ¥V and V, are related by the single condition

curves C of a conservative field of force ® = — ~—, With a potential

aL7) Ve=V+logy,

except for an additive constant ¢ of integration.

12, Conservative physical systems S, where k= — 1, oo [13]. A physical
oV

system S, where k4 — 1, oo, of a conservative field of force @ = — % with
potential function V, is termed a comservative physical system Sy where
k4 — 1, oo, of oo {rajectories O, in a Riemannian space V,,.

TugoreM 12.1 - If L=T — (1 + BV = ?;-” gopad®— (1 + E)V, the La-

grangian differential equations of a conservative physical system S, where
E+ — 1, oo, of oot {rajectories C, in Riemannian space V,, are

k av
d dat L
(12.1) g(a_p oL at oL o,
di\3x?) dz' 2[L 4+ (14 kV]ozt
where i=1, 2, ..., n.
. oV, . =
For, substitute ® = — -, into equations (5.5). By use of the rela-

dz
tion T= L4 (1 +k)V, the equations (5.5) become the Lagrangian diffe-

rential equations (12.1) of a conservative physical system S, Where
EF—1, oo

For k=0, L becomes the Lagrangian function L=1T — V. Then the
equations (12.1) become the Lagrangian equations (12.1) of a conservative
dynamical system S, of co?*—t dynamical trajectories C.

TuEOREM 12.2 - A conservative physical system S, where k=4 — 1, oo, of
octn—1 ecyrves O in a Riemannian space V,, is given by the n ordinary
second order differentinl equations

v B (3 4V
(12.2) = 2B — V) !l ds ds )’
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for ¢ =1, 2, ..., n, where the lotal energy E, is a constant of integration.
For the equations (5.2) become the equations (12.2) upon substituting
D = — g—;;.; and mv®* = 2(E— V) = ({1 + kxN.

THEOREM 12.3. - Corresponding o the value of the total energy constant
E, a conservative physical system Sy where k3= —1, oo, can be separated
into o natural families Sp(E) each one of which is composed of oc?*"—2
trajectories C. Any such natural famiy Sy (E) consists of the oo—2 extremals
C of the variation problem

2
(12.3) fvl""" ds = minimum.

1

For, by (12.2), the associated positive scalar function p > 0, of the natu.
ral family Sx(E), obeys the conditions

ap (1+%k 3V

2 2AE — V) 3z’

1

for i =14, 2,..., n. Exept for a multiplicative constant ¢ >0, of integration,

(a+k)
PY— UH_k-

it is seen that p :{%(E— V)

For k =0, the integral (12.3), is the action integral of HamruroN. Thus
the dynamical family SyE) of oo~2 actual dynamical trajectories O, is
composed of the co*—2 extremals C of the variation problem

2

(12.5) /’Uds = minimum.

1

For k=1, the catenary family 8,(E) of co?—2 virtual catenaries C, consists
of the oco?—2 extremals C of the variation problem

2
(12.6) /vzds = minimum
1

Finally for k = — 2, the brachistochrone family S_,(E) of oc?*2 actual
brachistochrones O, is the set of oo?*~2 extremals C of the variation problem

2 2
(12.7) T = Time :[dt =/v—1ds = minimum.
1 1
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By (12.4), any natural family F of oo®~2 curves C for which the asso-
ciated positive scalar point function p > 0, is not a constant, can be depicted
as a physical family Sk(E) of co?—2 irajectories (, where k== — 1, co. Any
associated potential function V is of the form

(12.8) V=E — ap2/th

where a > 0, is an arbitrary constant.

THEOREM 12.4. — Under a conformal map T of o Riemannian space V,
onto a Riemannian space V., any physical family Si(E) where kd=—1, oo,
of oo trajectories C in V,, is converted into a physical family S« E) of
o2 frajectories C in V,, with the same value of E3d=-—1, co. The relation
between the two potential functions V and V of the two corresponding conser-

. -4 ~ 3V,
vative fields of force ® = ~ 3’ and © = — = i
u— — 2 pam—
(12.9) V=oap Oto)(V—E)+ E,

where a > 0, is an arbitrary positive consant.

For, let the c(lnformal map I of the Riemannian space V, onfo the

Riemannian space V, be represented by ds = pds. The physical family Sk(E)

where k== —1, oo, can be visualized as the natural family F of oco—2
2

extremals O of the variation problem: fvds = minimum. Similarly, the phy-
1

sical family Su(E) where k2= — 1, oo, can be depicted as the natural family

2
F of co—2 extremal C of the variation problem: /;dgzminimum. Under
1

the conformal map T, it follows that v = v/u. Therefore, by means of the
relation (12.8), it is found that

2 2

(12.10) Ve=E —ap @Oy i+k =gp 145V — )+ E,

where a > 0, is an arbitrary positive constant.

TrEOREM 12.5. - 4 conforinal transformation T befween lwo Riemannian
space V, and V., is a homothetic correspondence T, if and only if T converts
every conservative complete physical system S with k3= —1, oo, of oo trajectories
C in V., info a conservative complete physical system Sy with the same
k2= —1, oo, of oo trajectories C in V,. When the conformal transforma-
tion T is not homothetic, that is, when the associated positive scalar poini
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function pn. >0, is not a constant, then under T, there is one and only one
conservative complete physical system Sy with k4= —1, co, of o1 {trajecto-
ries O in V,, which is carried into a conservative .complete physical system
Sk with the same k== — 1, co, of oo™ trajectories C in V,. For this latter

case, the associated polential functions V and V, are

7 i 2

(12.11) V:—ap1+’°, Ve —aByp tHF,

where a <=0, is an arbitrary constant, and E==0, E==0, are the two corre-
sponding constant total energies.

For, by (12.9), it is seen that a conformal map 7 carries every conser-
vative complete physical system Sy with k4=—1, co, of oo frajectories
C in V,, into a conservative complete physical system Sk with the same
k= — 1, oo, of co? ! trajectories C in V,, if and only if n>0 is a con-
stant. This means that I is a homothetic correspondence.

Consider the case where the associated positive scalar point function
1> 0, of the conformal transformation 7, is not a constant. That is, T is
not a homothetic map. For this case, the two conservative complete physical
system Sy with k== —1, oo, and Sy with the same k== — 1, oo, are given
by the two conservative fields of force @:——%—Z}V, and @ = ~ m for
which the corresponding potential functions W and W, are

a
(12.12) We=—=V

where a=0, and E=0, E+0, are the total energies, that appear in
(12.9). From (12.9), these two potential functions W and W are related by
the condition

(12.13) W—«p"1+k=0%,p‘f-lz-—k(W—pI%).

. E . . , - .
Since af 18 an arbitrary constant and since p *+* > 0, is not a con-

stant, it follows that
(12.14) W= poath)  W=p —2lat+h,

Substituting (12.14) into (12.12), the equations (12.11) are found.
This completes the proof of Theorem 12.5.
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13. Conservative velocity systems S,. A velocity system S, of a
oV

conservative field of force @:—556—, with potential function V, is said

to be a conservative wvelocily system S, of oo {rajectories C, in a
Riemannian space V,.

TeEOREM 13.1 - The Lagrangian equations of o conservative wvelocily
system S, of oo~ frajectories O, in a Riemannian space V, , are

av
d T\ 3T oV dt oT
13.1 mv‘?[~ ~.—)__— 27 — - — (mvz——2T) —=0
15D "Ldt(axi’ axi}Jr 3 "o\ i
for i=1 2, .., n
This follows by substituting #N ==mw), and @;= — %, into equa-

tions (6.D).

THEOREM 13.2 - A conservative wvelocily system Sy of oo™ velocity
curves C in a Riemannian space V, , is given by the n ordinary second order
differential equations

i 1 20V  dVdz
T ot A St
13.2) w= mvﬁ( " ds ds)’

for i=1, 2, .., n where mvi>0, is a constant of integration.

This is obtained from equations (6.6) upon substituting rN = mw;, and
oV
q)i —_— a_x'i .
TarorEM 13.8 - Corresponding to the value of the constant speed v,> 0,
a conservative velocity system Sy, can be segregated into oo' natural families
S (o), each ome of which is composed of oo**—2 velocity curves C. Any such
natural family So(,) consist of the oo~ exiremals C of the variation
problem

2 g2
(13.3) [e 2’ §s = minimum.
i
For, upon comparing (11.2) and (13.2), it is found that p =e— V/mn®, except
‘ m

3 %, it is

for a multiplicative constant ¢+ 0, of integration. Since V=FE —

seen that the p can take the form p = e”/2%,
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Evidently the variation problem (13.3), is equivalent to the variation
problem

2
14
(13.4) [e Tmod ds = minimum,

1

THEOREM 13.4 - Under @ conformal map T of a Riemanwian space V, onto
a Riemanwnian space V,, any velocily family Se,(ve) of oo®~2 velocily curves
C in V,, is converted into a velocity family So(Vs) Of oo velocity curves
C in V,. The relation between the two potentiol functions V and V of the

2V — 2V
two corresponding conservative fields of force & = — et and ® = — 3 s
(13.5) _—V: = Vg -+ log p,
mo:  mv,

except for an additive constant c.

For, let the conformal map 7' between the tWwo Riemannian spaces Vi
and V,, be represented by ds= pds. In V,, the velocity family Sy (vo)

is composed of the oo™ extremals C of the variation problem

— 2 —
v v
(13.6) [e”ﬁ ds :_—fe*;,;—f,;z p ds = minimum.
1 1
This can be visualized as a variation problem in V,, for which the

extremals are the oo*-2 velocity curves C of the velocity family Sy (v,),
provided that

\4 v
(18.7) e mulp==e wmogd,

except for an arbitrary multiplicative constant e~¢>> 0. Solving this equation
for V/m +?, the condition (13.5), is found. '

THEOREM 135 - A conformal transformation T between two Riemannian
spaces V,, and V,, is a homothetic map T, if and only if T carries every
conservative complete velocity system S, of o=t welocity curves C in V, ,
into a comservative complete velocity system S, of oo™t welocity curves C
in V.. When the conformal transformation T is mnot homothelic, that is,
when the associated positive scalar point function p>0, is nol a constant,
then under T, there is one and only one conservative complete wvelocity
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system Sy of oo welocity curves C in V,, which is carried info «

conservative complete velocity system S., of oot wvelocity curves C in V,.

In this case, the associated potential funcltions V and V, are
(13.8) V=alogp, V=blogy,
where a=+0, b0, are two arbitrary constants for which

b a

—_— = ; + L.
wm v, MU

(13.9)
This is proved by means of equation (13.5) of Theorem 13.4.

14. The infinitesimal econfact transformation 7T of a Riemannian
space V,. Let the p; denote the covariant form of the unit tangent of any
curve C in a Riemannian space V,. Then

azt_ g =g &
(141) d‘s“'g Py D= gij ds *

By equations (2.2), (2.3), and (14.1), the covariant form x; of the vector
curvature » of a curve ¢ in a Riemannian space V,, is

9 iy, — i =i 2t BT 4T7
(14.2) n= =gy o +9@7 “®“ds ds  ds 2 oot ds ds
Therefore

. O 1394 o

= M’i —-—-Eé Q axi g ]g p]pk
(14.3)

dpl . 3gP dpz 1 3gi*
+ 9o 9" A p,pk +9 2z PP

TaEoREM 14.1 - The characteristic function I =T(x; p), of a Rieman-
nian space V,, is

(14.4) = I=z; p)=(9g"Bp.ps)=

This characteristic function [ is linear homogeneous in the p;, and has
the value unity along any curve C in V,. In terms of this characteristic

function I' = L(x; p), the contravariant form Z—? of the uwit tangent vector
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dx . .
n= g and the covariant form %, of the veclor geodesic curvalure » of a
s

curve C, are

dxt T " dp, , ol dp, 1 3gi*

(14.5) ”dgzé@:g”l’j, %= as T 3gi == +3 5 3 PiPr-

For, it is seen from (14.4), that I = I'(x; p), is linear homogeneous
in the p;. Also I' = I(x; p), is the magnitude of the unit tangent vector
T Zx, of the curve C, and hence has the value unity along C. Along

such a curve (, it is evident that

dz’ i ter ar
(14'6) &g —Q}}? P ap$ "Z'): ’
dp, 1 3gi* dp, , 1" _dap, , or
+9 gt PiPr= d9+['8x‘ +8x‘

The infinitesimal conlact transformation T of the Riemannian space V,,, is

oI 1 2gi®

— gi]pjssy apl = e e 8 T — _p]pk53

(14.7) Byt = =~ 5 3o

This is given the Lie symbol U F or the PorssoN parenthesis (I, F), by
means of the expression

(14.8)
i OF 1 3gi oF
—(971’7)@—5(555 i lc)%

The infinitesimal contact transformation T or the symbol U F, generates
the one-parameter dilatation group A, of the Riemannian space V,. The

path curves C of this one-parameter dilatation group A, obey the differential
equations

det _oT L dp or 1 ogik
14.9 R e—— s 1] . e .
(149 ds ~ p; IPis qs = T i T 29 Pilse

Clearly, the path curves C form the family F of oo®»—2 geodesic C of the
Riemannian space V,.
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A spatiol elemen! I in the Riemannian space V,, is composed of a point
x and a spatial direction of (» — 1) dimensions passing through this point w.
A spatial direction of (» — 1) dimensions at a point %, can be defined by a
non-zero covariant vector p = p;, which is orthogonal to it. Therefore a
spatial element E can be defined by a set of coordinates (x; p), where at
least one p;, is not zero. If two sets of coordinates (x; p) and (x; p), define
the same spatial element E, then x =, and p = pp, where p=0, is an
arbitrary factor of proportionality.

Any dilatation Dy of the one-parameter dilatation group A of the Rie-
mannian space V,, converts every spatial element E into a spatial element
E such that the points & and x of E and E, are on the same geodesic C,
the spatial directions of E and E are orthogonal to this geodesic C at the
points x and «, respectively, and the geodesic distance along this geodesic
O between the two points # and o of B and E, is the constant & >0.

A family of oo surfaces, V(x) = constant. each of (» — 1) dimensions, is
called a parallel family in the Riemannian space V,, if and only if this
family is orthogonal to a set of co"—* geodesics ¢ in V,. Such a family is
a parallel family if and only if it is left invariant by the one-parameter
dilatation group A of the Riemannian space V,.

A family of oo' surfaces, V(x) = constant, each of (n — 1) dimensions, is
a parallel family in the Riemannian space V,, if and only if the function
V(x) can be chosen so that it obeys the first order Hamilton-Jacobi pariial
differential equation

¢,§Za_K—1
ot dxi —

(14.10)
for this Riemannian space V,.

15. The infinitesimal conitact transformation T of a nalural family F
in a Riemanwion space V,. Let a Riemannian space Vs, be a conformal
representation of the Riemannjan space V,. Then ds = pds, where the asso-
ciated positive scalar point function is p > 0. Consequently, g = p’g,; and

g = - gii
pEe
For a curve C in T7n, the covariant form E of the unit tangent vector

m, is given by the relations

o= Y = g ¥ =

' ds ]ds Y
(15.1)

d_“’ci__ if _,1 Py

ds_g Pa—pg Pj-
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The characteristic function T = T'(x; p), of the Riemannian space V,, is
- _ 1 __ 1 _
(15.2) P'=1le; p)= @pape)®= T@; p).

It is evident that T' = I(x; p) =—;[‘(m; p) = I@; p), since p; = up;.

Since [(x; p) =1, along a curve C of V,, then I(w; p)=yp, along the
curve C of V., which is the conformal image of the curve C of V,.

The covariant form x; of the vector geodesic curvature % of a curve C
in V,, is

K

dp@ or 1(dp, Lo g{;)

i pids p 32 Az
. _1/ap,
(15.8) ~ (78‘ - o’iii + ax@)
1 ap; 1 3gi* — —
—;L(ds 8x’+2p8x“ppk)

The family F of co®—2 geodesics C in the Riemannian space V,, is
depicted as the natural family F' of co*—2 curves C in the Riemannian space
Vu. The infinitesimal contact transformation T of this family F of ocn—2
curves C in the Riemannian space V., is that of the Riemannian space V,. [14].

TaeoreM 15.1. ~ The characteristic function of the infinitesimal contact
transformation T of a wnatural family F of oo®—* curves C of a Riemannian
o= w o= 1 - — ~ .
space V,, is I'={x; p) = }—Lf(x; p), where I(x; p)= (g°Pp,pp)t, is the chara-

cleristic function of the original Riemannian space V,. This infinitesimal
contact tramsformagion T, is given by the equations

sz = oL 5s =1 (giip s,
ap; [
(15.4)

—  fop ol [ 1 2gi* — —

dzt 2p dat
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Also this is given by the symbol U F, namely

2
UF =@, ) o 9F _ 3L oF (a_*’i -—@)g
oxt dp,  Op; ozt 2zt 2x*/ Ip;
(15.5)
T 1 3giF — -\ oF
— ] e .
(g ’)7+<ax@ o 3ai P ap;

This follows from the previous discussion.

THEOREM 15.2. - The differential equations of a natural family F of
oco?—2 curves C in a Riemanwnian space V,, may be written in the form

dat ol lgwp
ds ap@

d@._ap ' A 1 3gi* _ _

ds 3zt dw aat 2p 357 PiPx:

for i=1, 2,..., n

This a consequence of the definition of the infinitesimal contact tran-
sformation T of a natural family ¥ of oc?»—2 curves C in the Riemannuian
space V.

The preceding infinitesimal contact transformation T, or its corresponding
symbol U F, generates a one-parameter group A of contact transformations Dy
in the Riemannian space V,. This one-parameter group A is the one-para-
meter dilatation group A of the Riemannian space V,, which is the conformal
representation of the given Riemannian space V,.

Any contact transformation Dy of the preceding one-parameter group A
in the Riemannian space V,, sends every spatial element K into a spatial
element E such that the points x and x of E and E, are on the same curve
C of the natural family F, the spatial directions of £ and E are orthogonal
to this curve C at the points x and x respectively, and the value of the

X
integral: fp.ds, evaluated along this curve C between the two points x and

of E and E, is the constant & >0.

TaeorEM 10.3. 4 family of oo surfaces, V(x) = constant, each of (n— 1)
dimensions, is orthogonal to a set of oo curves C of a natural family F
of the Riemannian space V, if and only if the function V(x) can be so chosen
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that it obeys the first order Hamillon-Jacobi partial differential equation

covav
(15.7) g]’c)vxia_ﬁ“"p'

For, each transformation D of the one-parameter group A, discussed
above, is a contact transformation Dy.

The Riemannian space V, may be visualized as an optical medium for
which the éndex of refraction is the positive scalar point function p > 0. The
set of oo?"—2 light rays O of this optical medium is composed of the oc#—2
extremals C of the variation problem

(15.8) T = Time =[ # d$ = minimum.

Therefore, this set of co~2 light rays C, is a natural family F of ooz#—2
curves (.

In this optical medium, a sef of oo' wave fronls is given by the equation
V(x) = constant, where the function V(x) is so chosen that it obeys the first
order HAMILTON-JACOBI partial differential equation (15.7). Each surface of
this set’ of oco' wave fronts, given by the equation V(x)= constant, is of
dimension (% — 1).

16. The Lagrangian and Hamitonian equations of a ,natural family F
of oo™ curves C. It is supposed that a particle of mass m > 0, is constrai-
ned to move alone a curve C of a natural family F' of co®—2 curves C, such

P

that it is influenced by a conservative field of force @ = _%E’ for which a
potential function is V = V(a).

For such a particle of mass m > 0, the vector ¢ is given in the contra-
variant form ¢' and in the covariant form ¢; by the formulas

w dat o dxt

(16.1) =m-_ —; (= m i g = Mp.

— 1
Evidently, I'x; p) =%F(w; @) It is clear that I'(x; ¢) = myp, along such

a curve (.

Under these conventions, the differential equations (15.6) of the natural
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family F of co*—2 curves C, can be written in the form

dat l(x; v v
= S0 D 0 g = Y g

at " g mp” T mp

(16.2)
dg: 81‘(96 q) v_dgi* A
at — + vax' T 2mp. 3at U+ R

q; with respect to the time ¢, along any one of the oco®—2 curves C of this

natural family, F, is

Dg; _ dq; v daxP op
(16.3) at = EZ— IN qu dt = mv a_xi’

for i=1,2 .., n
This is proved by using equations (16.2). It is seen that

Dg; dq, v dzB __0g; _myp v dz* dzP
(16.4) gt —ar el g =y I e g g

dor dof __dg; _ mp 8. do* dof

d(b my., 4z dzf
T A v Begr @t T at T v o at dt

Consequently
Dq,: d_g_l_, — 2 ajnBE agaB dqi
(16.5) =i gmp 9797 S T =g + gmp o o
dq, v 3gi¥ op
+ Imp 0w Ydn = MV 5 5

This completes the derivation of the equations (16.3)..

TaEOREM 16.2 ~ If the Lagrangion function L is defined as

(16.6) L=5’(T—V—|—E)—E
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then the set of oo™ exiremals C of the variation problem
2 ﬂ2
(16.7) fhu:jE§T~V+Jm~E}ﬁ=mmmmm
1 3

is the natural family F of oo*—2 curves C. Therefore, the system of Lagrangion
equations for this nofural family F of cc®2 curves C, is

(16.8) ﬁ(a—.’?)—%:ﬁ‘ i(ﬂ?)ﬂ i(%)]i??_mﬁ_v:o,
di\oxt) b v |df\ext ozt dt'v/ | ext ox?
for i=1,2, ..., n

For, if L denotes the Lagrangian function (16.6), then

i) ou = aas a5 5

at\ozi] B v dt\wi
E@_%(%_§g
(16.9) + v o\ g

A
v | dt\oz! oxt dt'\v/] ozt oxt

Since the EuLer-LAGRANGE differential equations for the set of oco®—2

extremals C of the variation problem (16.7), are%(;l—;_) _B_L. = 0, for
[i

i=1, 2, ..., n, it follows that the set of oo®—2 extremals C of the variation

problem (16.7), is given by the system of Lagrangian equations (16.8)

By substituting (16.1) info (16.3), the system of Lagrangian equations
(16.8). is obtained. Consequently, the set of oo?—2 extremals C of the
variation problem (16.7), is our given natural family F of co™—2 curves C.

The proof of Theorem 16.2, is complete.

From equations (16.1) and (16.2), the kinetic energy T of a particle
of mass m > 0, traversing such a curve, O, is

m  dat dx? U v? .
5 %i G5 ar Tt 99:q; = Syt T; ¢)

{16.10) T=

THEOREM 16.3 - If the Hamlionian function H is taken as

(16.11) Hszm=$w+V—m+E
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then the natural family F of 22 curves C, is composed of the set of oo™—2
integral solutions C of the system of Hamillonian equalions

dei  OH dgi oH
16.12 AL S
(16.12) at ~ aq. dt 3z’

for i =1, 2 ..., n. This Huamillonian function H is the constant total
energy E, along any. curve C of the oc®—* curves C of the natural family F.

For, when the Hamiltonia function H is given by (16.11), then subject
to the condition that 7'+ V= F, the expanded forms of the Hamiltonian
equations (16.12), are

dot _OH __ woT _ w . v
at 9. v oqi  mp 979 = mp %

dgi _ eH _ poT pdV 2 fu
at 91t w i %8_907_*(T+VME)@i('E})

__woT v
(16.18) =~ 3 + mp 50t

v dgi* i
T 2myp U+ e mp® ( drt y"c*w)

o
s @) +mug

v gi* u

- T 2myp dxt G T "3

By equations (16.2), it follows that (16.12) are the Hamiltoniann
equations of the natural family F of co®~2 curves (' for which the Hamil-
tonian function H is given by (16.11). Thus the proposition is proved.

It is remarked that the Lagrangian function L and the Hamiltonian
function H are related by the equations

(16.14) H—{—L:%‘T, H— L =— mon -+ 2E.

17. The infinitesimal contact transformation T associated with a
conservative physieal family S, (E) where k= — 1, oo, of oc®2 trajec
tories C. By means of Theorem 12.3 and Theorem 15.1, the following
proposition may be established.

TurorREM 17.1 - The conservative physical family Sy (E) where k= —1,
oo, 48 composed of the oo™ {rafjectories C of the one-parameter group A
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of contact transformations Dy, generated b_y thg infinitesimal contact transfor-
mation T whose characteristic function T = I'(x; p), is

Tz

(17.1) T=Tx; p= __ YopPaPe

2 (B V)f“”c

| |m

Ry I'; p)=

This is the infinitesimal conlact transformation T associated with the
conservative physical family S, (E) where k= — 1, oo, of oo*—2 {rajectories C.

This infinitesimal contact transformation T, is given by the equations

i = v=1=*(giip;)3s,
(17.2)
v 1, 09— —

8pi = [(1 + kp* 9" A Pipxlis.
Also it given by the symbol U F, namely
. a
UF = v=""*gip;) g
(17.8)

v 1 ogi* — — 1 9F

R" " a—1—h . il
+ (1 + k)U axi 2/0 axi p]pk ap?t .

Whe k£ =0, this reduces to the infinitesimal contact transformation T
of mechanies studied by Lie and Vessiot.

THEOREM 17.2 - If the Lagrangian function L is defined as
(17.4) L=vwT— V4 E)—E,

then the set of oo®—2 extremals C of the varialion problem

2 2
(17.5) j Ldt= [[v"(T—-— V + E)— E]di{ = minimum,

1 1
is the conservative physical fawily S, (E) where kF-—1, co, of oo
trajectories C.

This is a consequence of Theorem 12.3 and Theorem 16.2.
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When k=0, the above proposition reduces to the well-known result
concerning a conservative dynamical family S, (E) of co?"—2 trajectories C.

TarorEM 17.3 - The Hamiltonian function H of a conservative physical
fomily Sy(E) where k== — 1, co, of oo®— {rajectories C, is

(17.6) H=Hgz; ¢y =T+ V— E)+ E.

This follows from Theorem 12.3 and Theorem 16.3.
When k=0, this results becomes the well-known one concerning a
conservative dynamical family Sy(E) of oco®—2 trajectories C.

18. The infinitesimal econtact transformation T associated with a
conservative velocity family S, (v,) of oo velocity carves C. By Theorem
13.3 and Theorem 15.1, the following result can be established.

TaroREM 18.1 - The conservative velocity family So(ve) of oo®—2 velocity
curves C, is composed of the o2 frajectories C of the one parameter group
A of contact trawnsformations D, , generated by the infinitesimal conlact
transformation T whose characteristic function T = (x; p), s

v2 92 i
(18.1) I'=T@; p)=e = I(x; p)= {e g““"‘pam}ﬁ

This is the infinitesimal conlact transformation T associated with a
conservative velocity family S (ve) of o2 wvelocity curves C.

This infinitesimal contact transformation T is given by the equations

o
Sri=e 2¢(giip)3s,
(18.2)

Also it is given by the symbol UF, namely

UF=e¢ 2 (g"@;) gg
(18.3)

v 2w 1 _ % 3gik— —\3F
+ i)
opi

— e 2 1 — 208 pjpk
V2 ozt 2 dz?
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TrroreM 18.2. - If the Lagrangion function L is taken to be the expression

2

(18.4) L:%eév—oﬂ{T— V+E)—E,

then the set of oo extremals C of the variation problem

2 b4
(18.5) fL dt = ”}) e%os(T— V4 E)— Eldt = minimum,
i 1

is the conservative velocity family S.(ve) of oc?—2 wvelocity curves C.
This follows from Theorem 13.3 and Theorem 16.2.

THrOREM 18.3. - The Hamiltonian function H of « conservative velocily
family S.(v,) of o2 welocity corves C, is

(18.6) H = H(z; q):%} e?iﬁ(T-l— V—E)+ E.

This is a consequence of Theorem 13.3 and Theorem 16.3.

19. Infinitesimal eontact transformations T [15]. Consider a spatial element
transformation T in a space of dimension %, given by a system of 2n equatons

(19.1) Xi=X¥z; p); Pi= Piz; p);

for i = 1,2, ..., n, such that each one of the 2n functions X¥x; p); Pix; p);
is of class m >3, and the Jacobian matrix is of rank 2n, in a certain 2n
dimensional region of values (x; p).

A transformation T of this kind, is said to be a homogeneous contact
transformation T, or more simply, a contact transformation T, if and only
the differential expression p;dat, is invariant under 7.

A spatial element correspondence 7' is a contact transformation T if and
only if the following set of 2n conditions is valid, namely

9X= o X«
(19.2) Paw =pi7 -Pd ap,b :O’

fori=1, 2,.., n
An infinilesimal spatial element transformation T, is defined by a set
of 21 conditions of the form

(19.3) Szt = X! — ot = Lix; p)Bs; Bp; = Pi— p;i = niw; p)3s;
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for i=1, 2,..., n, where 3s, is an infinitesimal, and each one of the 2x
functions &{(x; p); nix; p); is of the class m>2, with at least one being
not identically zero, in a certain 2n dimensional region of values (x; p).

A given infinitesimal spatial element transformaiion 7, generate a omne-
parameter group @, of spatial element correspondences I, and conversely.

The preceding one-parameter group @, of spatial element correspondences
Tx, may be represented uniquely not only by its infinitesimal spatial element
transformation 7 as given by the equations (19.3), but also by its Lie symbol
U F. This symbol U F is given by the expression

 OF oF
w— g
(19.4) UF =3§ 3 + m@p; .
For this one-parameter group @,, there is a set of oo*—2 path spatial
element series S, which is the collection of the co*—2 integral solutions X of
the system of 2n first order ordinary differential equations

dxi d i
(19.5) 7 =8 p); gg = Niz; p);
for i =1, 2,..., n. This set is said to be the fundamental system of ordinary

differential equations of the given one-parameter group G,.
It every £ is independent of all of the p's, and if at lcast one &' is not

identically zero, then the path curves C of the path spatial element series &
of the one-parameter group G, form a set of oot path curves C.

Suppose that at least one & is nof independent of all of the p's. The
direction determined by the vector 3x with the contravariant components dx’
such that this vector 3z has ifs initial point x at that of the spatial element
{(w; p) and its terminal point X at that of the spatial element (X; P) where
these are related by the equations (19.3) of the infinitesimal spatial element
transformation T, is said to be fransversal to the direction of fhe covariant
vector p;.

Under these assumption, the transversality law defined by the infinitesimal
spatial element transformation 7, is given by the set of n equations

d:l)i___ s
(19.6) PR A O

fori=1, 2,..., 5

The infinitesimal spatial element transformation I' given by equations
(19.3), is an infinitesimal contact transformation T if and only if the following
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set of 21 conditions are satisfied, namely

o —0- X _ 0.
(197) pa_"l‘ni—oy pa@—();

ot

fori=1, 2, ..., n.

Under these conditions, set p,£* = ['(@; p). 1t is found that this characte-
ristic function T' = T'(x; p). of the infinitesimal contact transformation T, is
a non-constant function of class m > 2. in the given 2n dimensional region
of values (x; p), and is homogeneous of degree one in the p's. Moreover

. or oT
(19.8) E == @i, m—_"—x"
fori=1, 2, ..., n.

Therefore, an infinitesimal contact transformation T is defined by a

system of 2n equations

. ) .o oI
(19.9) 5x1=X¢—x’=@58; szzP,——-p@=-—ﬁ—i5s,
for i=1, 2,..., n, where the characteristic function I' = I'(; p), is not con-

stant, and is homogeneouns of degree one in the p’s.

This infinitesimal contact transformation 7' generates a one-parameter
group A of contact transformations Dy.

It is seen that a one-parameter group A of contact transformations Dy,
is represented uniquely, not only by its infinitesimal contact transformation
T, but also by its Lie symbol UZF. This symbol UZF is given by the
PoissoN parenthesis

(19.10) UF=(, Fy=LoF 3 oF

The infinitesimal contact transformation 7T is a point transformation T
if and only if its characteristic functions I' =T(x; p), is linear integral in
the p's. This infinitesimal point transformation 7, generates a one-parameter
group A of point correspondences Dr. For this one-parameter point group A
there is a sef of oo"— {rajectories C.

Henceforth, let the infinitesimal contact transformation T be nof a point
transformation 7. This is equivalent to saying that the characteristic function
I'=T(x; p), is not linear integral in the p's. The corresponding one-parameter
group A, is composed of contact transformations Dz, which are nof point
correspondences Dy.
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For, the preceding one-parameter group A, there is a sef of co®—2 {rajecto-
ries C. This is the collection of oo?—2 infegral solutions C of the fundamental
system of 2n first order ordinary differential equations

drt ol api _ or

(19.11) T apy ds = e
for ¢ =1, 2,.., n. Along each one of the co®#—2 trajectories C, the charecte-
ristic function I' = I'(w; p), is constant.

A non-singular trajectory C is an integral solution O of (19.11), along
which the characteristic function I' = ['(x; p), is nof zero. Thus the p’s may
be so chosen that the characteristic function I' = I'(x; p), is unity along any
non-singular trajectory C of the set of oo®—2 trajectories C.

If the characteristic function [ = I'(x; p), is nof linear integral in the
p's, the transversality, law of the infinitesimal contact transformation 7, is
given by the set of # equations

dzt oI
(19.12) =

fori=1, 2, .., n

20. The eommutator (U, U;)F' two infinitesimal contact transformations
U.F and U.F [16]. Two distinct infinitesimal contact transformations 7) and
T,, can be denoted by the two symbols UF =, F) and U,F=(T,, F),
where the two corresponding characteristic functions I'y = I'y(x; p), and T'; =
= I'y(z; p), are nof non-zero constant multiples of one another. Then the
commutator or alternant (U,, U,)F, as given by the equation

(20'1) (U1; Uz)F = (U102)F—' (UzU1)F,

represents an infinitesimal contact transformation 7.
The characteristic function I'; = I'yx; p) of the infinitesimal contact tran-
sformation (U,, U,)F, is given by the P0ISSON parenthesis

_ __ oIy ory ol ol
(20.2) Ps—(furz)—%w‘—@; P,
If ' =T'y(z; p), and ', = I'y(z; p), are each of class m >3, then I's =Ts(z; p),
is of class m —12>2, in the 2n dimensional region of values (z; p). Of
course, it is evident that I's = I'y(z; p), is homogeneous of degree unity, in the p's.
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Let UF and UF denote two distinct infinitesimal contact transformations
T and 7 such that neither one is a point correspondence. Then neither one
of the two associated characteristic functions I' = T'(z; p), and I =T(z; p), is
linear integral in the p’s. Of course, neither characteristic function is a
non-zero constant multiple of the other.

TuarorREM 20.1. - The two distinct infinitesimal -contact transformations UF
and UF, possess the same transversality law if and only if the two associated
characteristic functions I = [(z; p), and I = L(z; p), are related as follows

(20.3) I'=T@; p)= — N; 7)= %LP’

1
p(x)

where p(x) is al least of class two and never vanishes in o certain wn dimen-
sional region of points x.

For, by (19.12), the two distinct infinitesimal contact transformations UF
and UF, have the same transversality law if and only if

20.4) oL get _or jer Cfor 4, j=1,2, .., n.
epil op;  p;l op;

Hence T'=F; I by the theory of Jacobians. Since I' = I'(z; p), and T =
= I'(z; p), are each homogeneous of degree one in the p’s, it follows by
EULER’S theorem on homogeneus functions that

(20.5) P aP . QP aF I‘?i—%?:
3}% a}% 81’ r

1 |
Thus ¥ =— I, so that [ = T'(z; p, = ——
(@) § @5 2=

terentiability assumptions, it is seen that p(z) is at least of class two and is
never zero in an n dimensional region of points .

Let UF,_UJ:,N U,F, denote three distinct infinitesimal contact transfor-
mations T, Ti, T,, such that neither one is a point correspoodence. Then
each one of the three associated characteristic functions

- 1
T(z; p):a I'. Because of the dif-

T=T@; p), Ih="Lx; p), I,=Tyx; p), is not linear integral in the

P's. Also no one of these is a non-zero constant multiple of any other.
By Theorgm 90_1 these three distinct infinitesimal contact transfor-
mations UF, UF, UF, possess the same transversality law if and only
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if the three associated characteristic functions I' = I'(x; p, L,=TLz; p),
T, = I'y(z; p), are related by two equations of the form

1

20.6 T.=T, ; p) =
(20.6) (x; p)= o)

- ~ 1 _
T@; p), T2 =Tys; p)=m1‘(w; ),
where each one of the two point functions p,(x) and pu(z), is at least of
class two and never vanishes in a certain # dimensional region of points
. Furthermore, neither one of these two point functions p,(z) and p.(z),

is a non-zero constant multiple of the other.

TeroREM 20.2 - The characteristic function L, =T(z; p), of the com-
mutator (U,, U)F of the two distinct infinitesimal contact tramsformations
U.F and U, F for which the two chamctemstw functions are T, = I'yz; p)=

1

= Iz; p), and T,=Tyz; p)= (x) Na; p), s
e 1 [ 3 a\ 8
(20.7) T, =T, Ty = 291%(9 e ax,,)gp—d(l‘ ).

This follows by substituting (20.6) into (20,2).

The remaining theorems of this section are extensions of some theorems
of KASNER concerning the commutator (ﬁl, U,)F of two distinct infinitesimal
contact transformations U,F and U,F associated with two distinct dynamical
families.

The characteristic function I['= I'(z; p), of a given Riemannian space
Vo, is I'=1T(; p)= (g“ﬁpapg)é For this Riemannian space V,, the tran-
sversality law is that of orthogonality.

In the Riemannian space V,, a conservative physical family Si(E) where
k= — 1, oc, of co®—2 trajectories C, or a conservative velocity family S./(v,)
of oo™ velocity curves C, is a natural family F of oco** curves C, and
conversely. The characteristic function I'= I(z; p), of the associated infini-
tesimal contact transformation UF, of this natural family F of co?—2 curves G, is

R 1 - 1 - 4
20.8 I' =I'(x; = — I\(x; = — “Ba 2,
Thus the transversality law of the infinitesimal contact transformation UF,
is that of orthogonality in the Riemannian space V,.

TuroreM 20.3. - The commutator (U, U)F of two distinct infinitesimal
contact transformation U, F and U,F of two distinct natural families F, and
F. of the same Riemannian space V,, is a point transformation.
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For, by hypothesis, it is seen that [‘z—g“%dﬁg Then by (20.7) and
(20.8), the characteristic funcion T,=T,x;p) of the commutator (U,, U)F, is

1 Iy Mea -
20. = = B
( 0 9} I 3 Pg(ﬁ'}, p} P‘ipz ( :J’2 axa }’-‘1 axm> (g .pB)'

_ Since I,=Tyw; p), is linear integral in the p's, it follows that
(U, UnF, is a point transformation.

B THEOFEM 204 - If two distinct infinitesimal contact transformations
U,F and U,F, possess the same linear involutorial law of transversals, then
the commutator (Us, U)F, is a point correspondence.

This is a restatement of Theorem 20.3.

TuroreM 20.5 - The commutator U,, U,)F of two distinct infinitesimal
contact tramsformations U.F and U,F of two distinct natural families F,
and F, of two Riemannian spaces V, and V,, is a point correspondence T
if and only if V, and V, are conformally equivalent.

For, there is no loss in generality in assuming that the two character-
istic functions T,= Tyx; p) and I,= I‘z(x p), of the two distinet infinite-
simal contact tranformations U, F and UzF be of the forms

(20.10) Ty =Tyz; p)=(9"p.pp)"'?, To=Tux; p) = (@**p.pe)"

for which the two quadratic forms g¢**p,ps, and g**p,ps, are positive
definite. By (20.2), the characteristic function 1‘331‘3(90; p) of the com-
mutator (?71, _UZ)F, is

- _ — 1 ) aglj;c _ oty — - —
20.11 Po==Tyz; p) = —(g*=— __ gia i PiP &
(20.11) =1z p)=3 LT, (g — W)ﬁ PiPx

_ This is the characteristic function Ty =Ty(; p) of a point transformation
(U, Uy)F, it and only if I'y= I'sx; p), is linear integral in the p's.
Under these conditions, there exists a positive scalar point function

p(x) > 0, such that g_'":égif. This means that the two Riemannian spaces
V, and ¥, are conformally equivalent.

TE{EOREM 20.6 - Two distinct infinitesimal conlact transformations U, F
and UF with the same transversality law, possess a point transformation T
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for their commutator (U,. U)F, if and only if they are associated with two
distinct natural families Iy and B, of two conformally equivalent Rieman-

nian spaces V, fand V,.

For, under the given hypotheses, it follows by Theorem 20.1, that the
two characteristic functions 1‘1._1‘1(90 p), and T,= T,w; p), of the two
distinet infinitesimal transformations U,F and UzF can be taken to be

(20.12) T, =Tyz; p) = I(z; p), I =Tile; p) = 2&)(z; p),

where A(r) is a point function which is nof a constant in the given =
dimensional region of points x, The characteristic function L= Iye; p) of
the commutator (U, U)F, is

eI

(20.18) P =Ty=; p) = P I‘Z.

DO | st
%)IIQ)

Thus the commutator (U,, U)F, is a point transformation 7 if and

only if
(20.14) a ot
| 30 30,3530y

Suppose that at least one of the third order partial derivatives
awva@@aa@, is mof zero. Then (20.14), is a linear homogeneous partial
differential equation of first order in the funection ). By standard theory,
this possesses (2n-1) functionally independent solutions, and any other
solution is a fonction of these. Now evidently, (z;l, e, Pn), are n function-
ally independent solutions. Hence there exist (n-1) functionally independent
solutions Ai(x), ..., A,_.(@), depending on the points a, only. Replacing A
in (20.14) by each one of these (n— 1) expressions i (&), ..., A, _(x) it
follows that the quantities 3°I°/3p,8psdp,, are proportional to functions
of the points x only.

But T%/3pesp,, is homogeneous of degree zero in the p’s. Thus by
Euler’s theorem on homogeneous functions, it follows that

_

3p.dpelpy

Hence since the third order partial derivatives of I'" with respect to
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the p,,, are proportional to functions of the points « only, it follows that
they must vanish identically.

This is a contradiction of our supposition.

By the preceding argument, it is seen that

oI

9P2OPeopy

=0, for 3,8, v=1, 2, .., n

Therefore, I* is a homogeneous quadratic form in the p's. Moreover, I'?
is a positive definite quadratic form in the p's.

Substituting the positive definite quadratic form I® in the p's, into
(20.12), it is seen that the proof of Theorem 20.6, is complete.

21. Geodesically equivalent Riemannian spaces V, and 7V, [17]. A
projective transformation T between two Riemannian spaces V, and V,, is
a cartogram T or a correspondence T between V, and V., such that
under T, every geodesic C of V,, is converted into a geodesic C of V,.
Any two such Riemannian spaces V, and V, are said to be geodesically

equivalent.

TarorEM 21.1 - A correspondence T between lwo Eiemannian spaces V,
and V,, is a projective transformation T if and only if the Chrisloffel
symbols of the second Fwmd: T% and T of V. and V,, are related as
follows

T§Zc:F§k; for j=£1i, and k<=1,
(21.1)
G — 2 =Ti— 2T, for jai.

This system of equations is equivalent to the set of equations: Ai= Ai
for i=1, 2, ..., n.

For, by equation (7.1), the correspondence T is a projective transfor-

mation T' between the two Riemannian spaces V, and V,, if and only
if A'=A% for 4=1, 2, .., n. From (7.2), this set of equations, namely
At= A% for i==1, 2, ..., m, is equivalent to the system of equations

Ly = Iy, Ijj— 2L =TI} —2Ty, I.;="T,

(212 T — o= Th—or), T, — 0, =Ti, — T,

Th=Tk, DLi=T.L, Tl,="Tl,,
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for i3=j; a=4, j; B4, j. This system (21.2), is equivalent to the system
(21.1). Thus Theorem 21.1, is proved.

If the two Riemannian space V, and V, are nof geodesically equivalent
under a given cartogram 7, then all the possible geodesic C of V,, which
by T, are converted into geodesic O of V,, are integral solutions C of (n— 1)
explicit cubic differential eqnations, each of the first order. If these (n — 1)
cubic dfferential equations are all independent of one another, the maximum
number of geodesic C of V. so converted, is 3" oo" 1, This extends to =
dimensions, a corresponding theorem of KASNER for surfaces.

An affine transformation T between two Riemannian spaces V, and Ve,
is a cartogram T or a correspondence 7, such thai under 7, the CHRISTOFFEL
symbols of the second kind: I‘}k and I‘}k, of V,, and 1_77“ are invariant. That
is, I‘fk = I‘j:k, for 4, 4, k=1, 2,..., n. Then the two Riemannian space V, and
V, are said to be affinely equivalent.

An affine transformation 7 between two Riemannian spaces V, and V,,
is a projective transformation 7. Hence if two Riemannian spaces V, and
V., are affinely equivalent, then they are geodesically equivalent.

However, the converse of the above statement is nof always true. That
is, there may exist a projective transformation 7 between two Riemannian
spaces V, and V, which is not an affine correspondence T.

It is clear that an affine transformation T between two Riemannian
spaces V, and V,, preserves parallel displacements of vectors.

TarOREM 21.2, - If T is both a conformal map and a projective fransfor-
mation between two Riemamnian spaces V, and V,, them T is a homothetic
correspondence, and V, is a homothetic representation of V,. That is, ds = pds,
where p. > 0, is a constant.

For, let T denote a conformal cartogram T beftween two Riemannian
spaces V,, and V,. Then ds = uds, where p >0, is a positive scalar point

function. Thus g; = p°gy;, and g ::»gz-g"f. By (10.3), it is seen that

: =i v 1/ op i op D

If this conformal cartogram T is also a projective transformation T, then
necessarily, Tjx = Ik, for =4, and k=F¢. Thus a necessary set of conditions
for this, is

3
(21.4) gng" 5 =0,

for j=F 4, and k1.
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If gr =20, for all j=F¢, and all k=4, then since ¢ is a random index,
it follows that g; =0 for all 4, j =1, 2,..., n. Hence there is at least one
gix+ 0, for i, and k.

For this particular gjz =0, for j344, and k=14, it follows from (21.4) that

290
(21.5) gzl_P' =90

axq — ’

for i=1, 2,..., n. As the determinant }g“l:é:i: 0, it is seen that g_:l=0’

for 1 =1, 2,..., n. Therefore p. >0, is a positive constant.
As it is evident that the necessary condition ds = pds, where u > 0, is
a positive constant, is also a sufficient condition, the Theorem 21.2, is established.

From (21.8), it is seen that a homothetic fransformation 7' between ftwo
Riemannian spaces V, and T7n, is an affine transformation T. Therefore, if
two Riemannian spaces V, and V,, are homothetically equivalent, then they
are affinely equivalent.

The converse of the above result is nof always ftrue. Thus, there may
exist an affine transformation 7 between two Riemannian spaces V, and 7V,
which is nof a homothetic map 7.

22. Appell’s transformation 7 for a dynamical system S, of oo?—1 dyna-
mical trajeetories C, in a Riemannian space V, [18). From Theorem 7.1, the
explicit differential equations of a complete dynamical system S, of oo
dynamical. trajectories C, in a Riemannian space V,, are

. dat
b s
At ® ]dxf
AT o @i
da?
i . dzt\ dA? s
Pt — Df ) == = — 3DIAIA¢
( dxf) dx! SOIAA
apt  adi dat i (1 dz* dxP i de® dzf dzi
(22.1) del — dxl da B Gzt dz? T P azi dai CW)
+ +
i da® daB (. - dat
1 bt T hatad
+ 2l dzi dzi <(D @ dxi )

where the two indices ¢ and j with ¢=F4, are held fixed, and 4, 4, is
allowed to vary over the remaining integers 1 to .
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THEOREM 22.1. - Appell’'s Transformation T For A Riemannion Space V,.
A transformation T between iwo Riemanwnian spaces V, and V,, converts
every complete dynamical system S, of o<1 dynamical trajectories C in V,,
into a complete dynamical system S, of oot dynamical irajectories c
in 17,,, if and only if it is o projective transformation T between the two

Riemannian spaces V,, and V,, such thai the following set of g (n—1) con-
ditions, os valid, namely
d

e

s ; = .
(22.2) (T — Tu) = 37 (T — i),
for i==j, and 4, j,=1, 2, ..., n. Movorover, the two contravariant forms
@t and ®° of the two positional fields of force ® and O, satisfy the n
conditions

(22.3) @ = == 2P,

for i=1,2, ..., n, where p="w(x) >0, is a positive scalar point function
of al least class two in a certain w dimensional region of points x for which

19 i ;
(22.4) — g%‘ﬂ: Th — Tk,
for i=1,2,.., n. Any such correspondence is called Appell's transfor-
mation T.

For, let T be any point correspondence betWeen two Riemannian spaces
V., and V,, which carries every complete dynamical system S, of oot
dynamical trajectories C in ¥V, into a complete dynamical system S, of
oc®"—1 dynamical trajectories C in V,,.

Now the logical intersection of all complete dynamical systems S, in
V,, is the family F of oo®—2 geodesics C in V,. Similarly, the logical
intersection of all complete dynamical systems S, in V,, is the family F
of co—2 geodesics C in V,.

By these remarks, the required map I converts the family F of oo?—2
geodesics C in V,, into the family F of oo®—2 geodesics C in V,. Conse-
quently, it is necessarily a projective transformation I between the two
Riemannian spaces V, and V..

For this projective transformation 7, the set of conditions (21.1), is
dA' _ dA
deei — dacl

Because of the preceding conditions and because of equations (22.1),
the two corresponding positional fields of force @ and @, are related by

fulfulled. Thus Ai= Af{ and for all ¢, j=1, 2, ..., n.
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the conditions (22.8). If the plus sign is chosen in (22.3), the actual and
virtnal dynamical trajectories C of the complete dynamical system S, in
V,, correspond to the actual and virtual dynamical trajectories U of the
complete dynamical system S, in V,. On the other hand, if the minus
sign is chosen in (22.3), the actual and virtual dynamical trajectories C
of the complete dynamical system S, in V,, correspond to the virtual and
actual dynamical trajectories C of the complete dynamical system S, in V,.

By equations (22.1) and (22.3), the only remaining conditions that the
required projective transformation T must fulfill, are

adi adi g
dri  dxl dzi —; dx* dzP n Y i d’xt
= . dat Fded dxf T . — dzt| T d@i)
Qi — D7 — P — O ——
© dx? o ®7dx1
(22.5)
ddt  ddi dat
ded  dzi dyf ; dx* dzP i1y N
= - 2T — + ———{N 2],
. . dxt dal dal . dx? d(z?)
i Hi 2 - bl
o — @ Tt @ — @7 I

with ¢4, and 4, j =1, 2, .... n. Substituting R w’®i  these become
the single condition

1 dp

1 dat

dz® dx?

2. i A,
(22.6) dx! dat

+ (Top — Ilp)

By use of equations (21.1), this becomes

1dp
p dzt

+(T— T + 3 (-T2 1 =0,
a==

22.7
(22.7) 1_ e

This is the same as saying that
1 i i .
(22.8) — IL d}!’ = (Fii — Pii) ar.

The conditions (22.2) are those for the exact integrability of the
Pfaffian that appears on the right of equation (22.8). Finally the conditions
(22.4), are obtained from this equation (22.8) by equating the corresponding
coefficients of du'.
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Therefore a projective transformation T between twWo Riemannian spaces
V. and V,, is an Appell transformation 7 if and only if it obeys the

set of g(n~1) conditions (22.2).

This completes the proof of Theorem 22.1.

THEOREM 22.2 - Under a point correspondence T' between fwo Riemannian
spaces V., and V,, consider a change of the times t and it of the form

22.9) il = i at,

where p = ) >0, 98 a positive scalar point function p = px)>0, of at
least class two in a cerlain n dimensional region of points x. This is
called an associaled positive scalar time point function p= px)> 0.
The contravariant forms v* and v' of the two corresponding velocity vectors
v and v, are given by the set of wn conditions

(22.10) v =

for i=1, 2, .., n. The contravariant forms o and a' of the two corre-
sponding acceleration wvectors a and a, obey the set of n relations

- . 1 dp dzf | i \adxi dak
i — 1 2nt 2 A " .
(22.11) af = piat - p Wt 7+ (D T o i
for i=1, 2, ..., n. 4 point correspondence T is an Appell transformation T

between the two Riemannian spaces V, and V, if and only if

(22.12) @t = p’a,

for i=1, 2, ..., n

For, by (22.9),%—?: p,cg—t, and hence the equations (22.10), are

obtained.
By (22.9), it is seen that

dzt dat  d°xt d*zt dy dx?
= =p 2

22.13 T 20 .
#=19 a Va e " ae at at
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Then
— APt o dad dx® d*zt dp dai i dal dz*
=" - D — —— = p?— = — i —
i T o e T e TV
(22.14)
. 1dpdz dx? dz®
— n2qt
—““""”[pdtdt"'( at at
Thus the equations (22.11) have been derived.
The equations (22.11) may be written in the form
1~ 2, i\ de’ ot
Ez(a—-p.a) (pax“_l—[‘ I‘”> dt dt
(22.15)
19 | = i \dzt dxi dxi da®
+,£;(p~ 3 T 20— 2D1j)dt T2 (F i), at at*
k:i:z

From these equations, it is seen that ‘the conditions o= p®aé hold
identically, if and only if

Q)Q)
3 F

%L =T — I, Th—2T,=ThE—2Ii, for jj
(22.16)
Djp == I, tor j==i, ki,

Therefore the point correspondence T is an APPELL transformation T between
the two Riemannian spaces V, and V,, and conversely.

Consequently the proof of Theorem 22.2, has been completed.

It is remarked that if an associated positive scalar time point function
of an APPELL transformation 7, is p = p(@)> 0, then any other associated
positive scalar time point function of the same APPELL transformation 7, is
v =ap >0, where a > 0, is an arbitrary positive multplicative constant.

THEOREM 22.3 - A point correspondence T is an affine transformation T
between two Riemannion spaces V, and V,, and only if it converts every
complete dynamical system S, of_c>ozn—1 dynawmical trajectories C in V,, inlo

a complete dynomical system S, of oot dynamical trajectories C in V,,
such that an associated positive scalar time point function p > 0, is o constant.

Kor, such a point correspondence T is necessazi_ly an APPELL transfor-
mation T. Since p > 0, is constant, it follows that I';; = 1‘,,, by (22.4). From
equations (21.1), it is deduced that l‘,k_. I‘,k, for all ¢, j, k=1, 2,..., n.
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Thus the required point correspondence T is an affine transformation 7T
between the two Riemanmian spaces V, and V,.

Let i and « denote cartesian coordinates of points « and x in two
Euclidean spaces V, and V.. Then APPELL'S transformation T is

(22.17) P il o TR —

ajel 4 bo E(ajx? 4 bo)
for i=1, 2,.., n, where k>0, is a constant, and the matrix (a}; bh for
i=0,1,2 .., mand =1, 2,.... n, is of rank (» + 1).

Here the associated positive scalar time point function u > 0, is
(22.18) w = k¥ajzi 4 b°° >0

It is a constant if and only if a?=0 for j=1, 2,.., n, and b°= 0. Then
(22.17), is an affine transformation 7.

23. Transformation theory of physical systems Sx where k= —1,0, but
where & may be infinite, of oo**—* trajectories C, in a Riemannian spuce
V. [19]. Consider a point correspondence T which carries every complete
physical system S with k== — 1, 0, of oo trajectories ¢ of a Riemannian
space V,, into a complete physical system Sx with the same k= — 1, 0, of
oot trajectories C of a Riemannian space V,. Here & may be infinite in
which case, the transformation theory of velocity systems S, in included as
a special case. Of course, k=0, since the transformation theory of dynamical
systems 8,, has already been considered.

By an examination of equations (7.9), such a correspondence T is neces-
sarily a projective transformation T between the two Riemannian spaces V,
and V,.

If » >3, then under T, the following set of (# — 2) identities musi be
satisfied, namely

Qdzf — Qidat __ Oldgi — didat
Qidzi — pida’  Oidai — Qidat’

23.1)

where the two indices ¢ and j with ¢=j, are held fixed, and I=i4, j is
allowed to vary over the remaining integers 1 to n.
If » =2 or if »>3, that is, if #>2, then under 7, we must have the
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identity
3@ 0 — D'DI)
(Dida! — Qidad)pida! — @ida)

- (%)

and also the identity

(23.2)

g_agﬁ_)“dxﬁ Yap OBdxe
(Didai — Dida’)(gepda®da?)  (Didzi— DIzt (gapdadar)]

ot d@7 dat
dei ~ dxl dzi =i da® dzb O/ l—. dxt
—_— L i 2 ] o s T - Al _— N2
i — @i@f_ﬁ Tl dai doi t Dt — & gz d(=!)
dz! dx’
(23.3)
ol(I)1 a7 da?
dxi ~ dal dal ; dx* dzP @7 At
= g Gt | — ),
0i — i 2 dx dxi da’ i — Qi dz* d(z9)
dzi dxi

Where the two indices ¢ and j with ¢d=j, are fixed.

Therefore the required point correspondeuce 7' is a projective transfor-
mation T between the two Riemannian spaces V,, and V,, such that it
obeys the identities (23.1), (23.2), and (23.3).

When n =2, the two distinct indices ¢ and j may be taken as ¢=1,
j=2 I

U = gudz' 4 gioda?, V= gr.da* + guuda®,
(23.4)
U= budx‘l + .§1zdx2, V= gmda:l -+ g_zgdxz,

the identity (23.2) can be written in the form

34k _ o
(1 __:: k)((l) 0 — 0 O Uda* + Vda*)(Udz* + Vda?)
(23.5)

2 _
(1+k)(®1d‘” '\ D'ds” — @'Y TV — UV

Since £+ — 1, 0, it is deduced that this identity is valid if and _only
if either k% — 3, '®* — 0'®* =0, UV —UV =0, or k=—3, TV—UV=0.

Annali @i Matematica 51
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Hor either case, this states that 7 is a conformal map when % =2. Conse-
quently T is a homothetic transformation in the case of n =2 dimensions.
The following proposition is an extension of the above result to » dimensions.

TuEOREM 23.1. - 4 point correspondence T is a homothetic transformation
T between two Riemannian spaces V, and V,, if and only if it converts every
complele physical system Sp with k& — 1, 0, of oo™t {rajectories C in V,,
into a complete physical system Sy with the same k34 — 1, 0, of oc*—1 trajec-
tories C in V,.

When % is infinite, this includes a corresponding result concerning com-
plete velocity systems S, of co?"—* velocity curves C.

The above proposition has been proved when » = 2. It only remains to
prove it for the case when % > 3.

From the identities (23.1), there exists a scalar point function g = p(x)30,
which is never zero and at least of class two in an n dimensional region of
points x, such that

(23.6) D = p’,

for i=1, 2,.., n
Substituting (23.6) into the identity (23.2), it becomes the identity

(23.7) (9ap®*daf) _ (gapD*daP)
(gapd2®da?)  (gupdsda?)’

since k3 — 1, 0. Of course, k£ may be infinite.
Equating the corresponding coefficients of ®* in the above identity,
it is found that

gydei  gidai
(Gapdz®dz®)  (gapda®da®) ’

(23.8)

fori=1, 2,.., n

Upon equating corresponding coefficients of the da’ in the identities
(23.8), it is found that there exists a positive scalar point function p= px)> 0,
of at least class three in the » dimensional region of points z, such that

(23.9) ds = pds, or !}ii = p°gij.

Therefore, I' is necessarily a conformal map.

Since T is both a projective correspondence and a conformal correspon-
dence, it follows that 7 is a homothetic transformation T between the ftwo
Riemannian spaces V, and V,. This means that p > 0, is a positive constant.
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Substituting (23.6) and (23.9) where 1 > 0, is a positive constant, into the
identity (23 3), it is found that p 40, is a non-zero constant.

It follows that under these hypotheses, the identities (23.1), (23.2), and
(23.3), are satisfied.

Consequently, the proof of Theorem 23.1, is complete.
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