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Summary. - The properties of  a physical system S~ where k ~ = - - 1 ,  o f  c~n--~ trajectories 
C. in a Riemannian space V n are developed. The intrinsic differential equations 
and the equations of  Lagrange, of  a physical system S~, are derived. The Lagrangian 
function L and the HamiItonian function H, are studied in the conservative case. 
Also included are systems of the type (G), curvature trajectories, and natural  families. 
The Appell transformation T of  a dynamical  system So in a Riemannian space Fn, 
is obtained. Finally,  contact transformations and the transformation theory of  a 
physical system Sk where k = ~  L are considered in  detail. 

1. Phys ica l  sys tems S k . - C o n s i d e r  a field of force whose force vector  
act ing at any point x----z ~ of a Riemannian space Y . ,  is ( p -  q)~----(I)~. The 
force vector  (I), is considered to be a vector  function of position only, and 
to be class two throughout  a certain region of V,.  Therefore,  each of the 
contravar iant  components  (I) ~ or of the covariant  components  (I)~ of the 
force vector  (I), is a cont inuous funct ion of x - "  (x 1, x ~, ..., x"), and possesses 
cont inuous part ial  derivatives of the first and second orders with respect  
to the x ~, throughout  the given region of V.. Such a field of force is said 
to be a positional field of force @ in the Riemannian space V.. 

We  omit from consideration the trivial case where  the force vector  (I) 
is ident ical ly zero, in which case the physical  curves under  discussion are 
the cx~ 2"-~- geodesics of V.. 

By  a path C in V. ,  we shall mean a locus of points x in the region 
of definition of the field of force (I), given by the parametr ic  equat ions 
x~--x~(t) for i--" 1, 2, ..., ..., n, where  the parameter  t is considered to 
be the time t and varies in the closed interval  a ~ t ~ b  with a ~ b .  It  is 
unders tood that each xi(t) is of class three in a ~ t ~ b .  Thus if dots denote 
differentiat ions with respect  to the time t, then each of the 4n functions 

x~(t), x~(t), x~(t), x~(t) for i -  1, 2, ..., n, i s  a cont inuous function of the time t 
in a ~  t ~ b .  Also the condition is imposed that at least one x~(t), is not 
identically zero in a ~ t ~ b .  A path C is called a curve C in V. .  

(*) KASN~,R, Differential geometric aspecte of  dynamics, The Princeton Colloquium 
Lectures, 1909. Publ ished by the q ~.merican l~Iathematical Society, Providence,  Rhode 
Island,  1913, and reprinted 1934. 
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A physicat system Sh, or more simply, a system S~, of ~ " - ~  curves 
in the given positional field of force (P of the Riemannian space V. ,  is 
composed of curves C along each of which a constrained motion is possible 
such that the force vector (I) is tangent to the osculat ing geodesic surface of 
the curve C at each point x of C, and the pressure  P, along the principal  
normal  to the curve C, is proport ional  to the normal component  _N of the 
force vector q). Thus  P - - k h 7  where  (k=#=--1), is the constant factor of 
proportionality,  along each one of the ~ ' - ~  curves C of the physical  
system S~. 

TttEOREM 1.1. - A physical system S~ of ~ ' - ~  curves C of  the Rieman- 
nian space V , ,  is given by the system of  n ordinary second order di]Terential 
equations 

(1.1) 
(g~x~x~) 

for i --  1~ 2~ ..., n. 

In these equations, m ~ 0, is the constant  mass of the particle traver- 
sing the curve C. The gij form the metric symmetric  eovariant  tensor of 
second order of the Riema~nian space V,,, and the r~$ are the Christoffel 
symbols of second kind of V, .  

• • 

Of course v ~ --  g ~ x ~ x $ ~  0, along any curve C of the physical  
system S~. 

It is assumed that each one of the g~j is of the class three throughout  
the given of V,. Then the r ~  are all of class two in this region of V,. 

From the equations (1.1), it is deduced that each ~c~(t) of the curve C 
of a physical  system S~, is at least of class four in a ~ t ~ b .  

The important  special cases of physical  interest  of a physical  system 
Sh are the four following ones. 

(a) For  k -  0~ this is the system So of dynamical trajectories. These 
are the paths of motion of a part icle due to the inf luence of the given 
field of force O. 

(b) For  k---1 ,  this is the system S~ of general catenaries. These are 
the curves in the reversed field of f o r c e -  O, formed from the result ing 
equi l ibr ium where an inextensible  flexible homogeneous string is suspended 
from two distinct points in the given region. 

(c) For  k - - -  2, this is the system S_~ of general brachistochrones. If 
the field of force (I) is conservative,  the system S_2 is composed of true 
brachistoehrones.  In this case, these are the curves along which the time 
of constrained motion between any two distinct points is least. Whether  or 
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not the field of force (I) is conservative, we call the curves of a system 
S-2, general brachistochrones.  

(d) For  k-----~, this is the system S+ of velocity curves. Of course, 
S+ is the limit of a system S~ as k becomes infinite. A velocity curve C 
is one to which there corresponds a fixed speed Vo~-0, such that a 
particle, s tart ing from any lineal element E of C with the speed vo, describes 
a dynamical  trajectory which ini t ia l ly osculates the curve C. 

Physical  systems of curves have been studied by ]~ASI~ER and DE CIcco, 
on a Eucl idean plane, in Euclidean space, and on a surface of Eucl idean 
space [1]. In  the present article, we shall give extensions o f  some of these 
theorems to a Riemannian  manifold ~ .  In the case of a conservative 
field of force, a discussion is given for a physical system Sk of the 
equations of Lagrange,  the infini tesimal contact t ransformation of mechanics 
studied extensively by Lie and Vessiot, and certain related dynamical  
theorems of KASNER. Pinal ly  some theorems are obtained for arbi t rary 
positional fields of force whether  conservative or not. 

2. P r e l i m i n a r y  formulas.  - Consider a R i e m a n n i a n  mani fo ld  V, where 
the square of the differential  ds of arc length s of a curve C, is given by 
the positive definite quadratic differential  form 

(2.1) ds ~ _: g~jdx~dx ~. 

The gii form the metric symmetric  covariant  tensor of second order with 
g = I g~] I :> O. For this V,,  the Christoffel symbols of  the first and second 
kinds, are 

(2.2) l(~glh ~g,h ~go~ 

r~. k --  gaF/k; ~. 

The uni t  tangent vector of a curve C in V, is dx~/ds. The vector curva- 
ture x of this curve C, is 

(2.3) 
d2~c ~ ~ dx  ~ dx~ 

If  { x l  ~ =gijx~v. i~O,  at a point x of the curve C, its curvature is 
l x l  > 0 ,  at this point x of C. Then its radius  r of curvature at this 
point x, is r - - l / I x  I • 
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d x  i 
At a point  x of the curve C, the uni t  t angent  vector  d s  and the uni t  

(principal) normal  vector  z i /  [ z I - -  r×~, when  I z I ~ O, are or thogonal .  

Consider  a point  x of the curve C for which  I x l - 1 / r  ~ O. The 
d~ ~ 

penci l  of vectors  spanned  by the uni t  t angen t  vector  ~ and  the un i t  

normal  vector  rz  ~, is composed of all vectors  of the form 

d ~  ~ 
a d s  + brz~' 

where  a and  b are a r b i t r a r y  scalars.  I f  at least  one of the two scalars  a 
and  b is not  zero, there  is a un ique  geodesic def ined  by  z ~ :  0, touch ing  

a given one of such vectors.  The  resu l t ing  to ta l i ty  of cx~ ~ geodesics describe 
the osculating geodesic surface at the given point  x of the curve  C. 

Le t  a par t ic le  of mass m > 0, t raverse  a given .curve C: x ~-'x~(t), for 
i----1, 2, . . . ,  n of the R i e m a n n i a n  space IT.,. The velocity vector of this 

1 
par t ic le  is V--" x i, and its speed is v --  (g#x%J)~ > 0. The acceleration vector 
a of this part icle ,  is 

( 2 . 4 )  
a' = ~ +  ~ . . . . .  

The first  is the con t r ava r i an t  form a i, and the second is the covar ian t  
1 

form as of the acce le ra t ion  vector  a. The m a g n i t u d e  of a is [ a  ] : (g~ja%i)~.  

The  kinetic energy T of a par t ic le  of mass m > 0, t ravers ing  a curve 
C in V. ,  is 

(2.5) T - -  2 --  2~"3 • 

By the preceding  formulas ,  it is evident  that  

(2.6) ma, -- ~ \~x~ ] Ox' " 

Le t  at and a ,  denote  the t angen t i a l  and  normal  components  of the 
acce le ra t ion  vector  a. These  are given by  the equa t ions  

d v  v ~ 
( 2 . 7 )  a t = v = v _ w - ,  a n  - -  - - .  

6~8 r 
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The acceleration vector a is tangent  to the osculating geodesic surface 
of the curve C at the point x of C. Then 

(2.8) d #  v d X  t 
a* = a t  -ds + a . r x '  = ds  + v 'xt"  

Therefore 

(2.9) v2x t --  a t - -  - ~ # .  
V 

3. E lementa ry  propert ies of  an a rb i t r a ry  positional field of  force. 
Consider a curve C in V, such that for every point x of C, its vector 
geodesic curvature  x is not the zero vector. Let 2'1 and N ~ - - N ,  denote the 
tangential  and normal components of the force vector (I) relative to this 
curve C. Then 

(3.1) 
dx~ _ d x  ~ 

T~ - -  g ~ ¢ ) ~  ds  = (P~-ds  ' ~V~ = 1V = r g ~ @ ~ x ~  - -  rag~x~. 

If  a particle of mass m > 0, traverses this curve C, then its p r e s s u r e  

P along the curve C is 

~ $ V  2 m v  2 i v  2 
(3.2) P - -  - -  N - -  r g ~ O ~ x ~  - -  - -  r ¢ ~ x  ~. 

r r r 

DO 
The space  d e r i v a t i v e  - ~ -  of the force O, is its absolute derivative along 

the curve C with respect to arc length s. The contravariant  and covariant 

forms of this space derivative Do  ds  ' are 

(3.3) 

D O  t dffpt d ~  

ds  - -  ds  + r ~ ¢ ~  ds  ; 

D(I)~ d(I)~ pam d$~ 
ds  - -  ds  - - ' ~  ~ " 

Let T2 and N2 denote the tangential  and normal components along the 
D(I) 

curve C" of the space derivative ~ - ,  with respect to the arc length s, of 

the force vector (I), along this same curve G [2]. Then 

(3.4) T2 = g:~ - -  
DgP ~ d x  ~ D¢~ ~ d x  ~ 

ds  d s -  ds  d s '  
D ~  x~ D ~  x ~. 
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I t  is c lear  that  

(3.5) d T~ 25 
ds = T, + r "  

Also it seen tha t  

(3.6) d25 dN~ 25 dr (p Dz~ 
d s - -  d~ - -  25~ + r cl-s + r ~ -ds " 

This  can be wr i t t en  in the f rom 

(3.7) d25 d25~ D(rz~) 
ds --  ds - -  N~ ~- ¢P~ ds 

Consider  a f ixed point  x of the curve C. [3]. The first pr incipal  uni t  
dx 

vector ~ ,  is the uni t  t angen t  vector  z~- :  d~" The second principal  unit  

vector % or the first principal  unit  normal vector %, is the uni t  vector  in 
the d i rec t ion  of the vector  geodesic cu rva tu re  so tha t  %--r~¢. The scalar  
r - -  r~, is the first radius  of  curvature. Then  

(3.8) D~I 1 
- - - -  ~ - - "  - -  ~ 2  • ds r~ 

At the f ixed point  x of the curve  C, the third principal  unit  vector %, 
or the second principal  uni t  normal vector %, and  the second radius  r2 of  
curvature, are de f ined  by the vector  equa t ion  

(3.9) D% 1 1 
- -  ~ 1  - ~  - -  2:a. 

ds  r i r2 

I t  m a y  be tha t  -1 - - 0 ,  in which  case %, is a n y  uni t  vector  if it exis ts  
r 2  

which  is or thogonal  to ~ and  %. 
Suppose  tha t  the curve  C is of class (i + 1) in the closed in te rva l  

a ~ t ~ b  wi th  a < b, where  i ~  2. The principal  uni t  vector "c~+~ of order  
(i -{- 1), or the pr incipal  uni t  normal vectoi" z~+~ of  order i, and the radius  r~ 
of  curvature of  order i, at the f ixed point  x of the curve C, are given by  
the Serret-Frenet formulas  

(3.10) D~i 1 1 - - -  ~,_~ + ~ : ,+1,  ds r~_~ 
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where  i = . l ,  2, ... n. Here  it is unders tood that 1 1 , - - - - 0 ,  and --- = 0 .  It  
ro rn 

may be that l ~ - 0 ,  in which case "ci+~, is any unit  vector  if it exists, 
r i  

which is orthogonal to ~ ,  %, ..., ~ .  
In general,  a curve C at a f ixed point x, possesses ( n - - 1 )  radii of 

curvature:  namely, r~, r2 ,  . . . ,  r,~_~. 
By (3.8) and (3.9), it is found that (3.7) can be wri t ten  in the form 

(3.11) d N  d~V1 o T 1 
ds - -  ds ---:Na - -  r -}- r--~ O~xl . 

Tt~EOREI~ 3.1 - At  a fi~ed poin t  x of  a curve C of  a R i emann ian  space 

dT~ d N  dN~ of the tangential component T~ V , ,  the first variat ions ~ -  and ds - -  ds ' 

a n d  the normal  component ~ - - N ~ ,  of  the force vector ¢9, are given by the 
two expressions 

(3.12) dT~ N d N  T~ 
ds -~ T2 + r ' ds - -  N 2 - -  7 ' 

i f  and only i f  either 1 - -  0, or the force vector • is orthogonal to the third 
r~ 

uni t  pr incipal  vector z~, at this point  x of  the curve C. I n  part icular,  these 
two formulas  are valid i f  the force vector ¢ is tangent to the osculating 
geodesic surface at this point x of  the curve C. 

This proposit ion follows from equations (3.5) and (3.11). 
As a part icle of mass m ~ 0~ traverses a curve C from a f ixed point 

xo to a variable  point x, then the 
line integral  

(3.13) W "- ]" 

work W of the part icle is given by  the 

Tlds --/ 'O~dx~. 

xo 

If 
c u r v e  

(3.14) 

Therefore  

(3.15) 

a part icle of mass m :> 0, is constrained to move 
C from a fixed point xo to a f ixed point  x, then 

dv = dx ~ 
m;  = mv-  = Ti-  

2 2 
- - W .  

along a given 

AnnaH ~ Matemat~va 44 



346 J.  Ds Cicco: The ttiemannian Geometry Of Physical Systems, etc. 

This states that the work W of t h e  part icle is equal  to the change in 
its kinetic energy 

A Faraday line of force C of the given field of force (I) is one such 
that the force vector  (I) is tangent to the curve C at every point x of C. 
Evident ly  N - - N 1 - - 0 ,  and T 1 - - I f f )  I ,  along a line of force C. 

The system of n ordinary first order differential  equations defining 
the lines of force C, is 

(3.16) dx~ ~ 
--l+l' 

for i - - 1 , 2 ,  ..., n. There are ~ , - 1  Fa rady  lines of force in an arbi t rary  
positional field of force (I). 

The equations (3.12) along a line of force C~ are 

d T 1  T1 
(3.17) d s  - -  T2 , O - -  N 2  - -  ~ 

Therefore if £Y2=[=0 at a point x of a line of force C, its radius r of 
curva ture  at this point x, is 

(3.18) r - -  ~ .  

4. Conservative fields of  force. It is assumed that the region of defi- 
nition of the field of force (I), is s imply connected. The given positional 
field of force O, is said to be conserative if and only if the work W is 
independent  of the path [4]. 

For a conservative field of force (I), there exists a potential funclion 
V--V(x)  which is of class three in the given region, such that 

~V 
(4.1) ~P~ ~ ~x~ , 

for i - - 1 ,  2, ..., n. This states that the force vector q), is the negative of 
~V 

the gradient ~x~ , of this potential  function V. Any two such potential  

functions V, differ by  a constant. 
By equations (3.14) and (4.1), the energy equation 

(4.2) T + V --  E, 
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~ V  ~ 
is val id  in a conserva t ive  f ie ld  of force O. In  this  equat ion,  T = -  

2 ' 
is the k inet ic  energy,  V is the poten t ia l  energy,  and  E is the cons tan t  
total  energy.  

In  a conserva t ive  f ield of force (I), a R i e m a n n i a n  space of d imens ion  
( n - - 1 ) ,  a long which  the poten t ia l  func t ion  V is constant ,  is cal led a 
potent ial  surface. 

There  are ~ 1  potent ia l  sur faces  given by the equa t ion  

(4.3) V = V(x) - -  cons tan t  

The o0 ~-~ F a r a d a y  l ines of force of a conserva t ive  f ield of force (I), 
are given by  the sys tem of n o rd ina ry  first  order  d i f fe ren t i a l  equa t ions  

(4.4) 

SV 

d #  g~  ~x~ 
~ = - -  ~ ' 

for i - - 1 ,  2, . . . ,  n. The  c,o ~-~ F a r a d a y  l ines of force of a conserva t ive  f ield 
of force @, are or thogonal  to the ~ potent ia l  surfaces .  

I n  a conserva t ive  f ield of force (I), the c~ ~ F a r a d a y  l ines of force are 
geodesics if and  only  if the m a g n i t u d e  [(I) I of the force vec tor  (I), is a 
func t ion  of the poten t ia l  func t ion  V = V(x), alone. 

5. The dif ferent ial  equations of  a physical  system Sh where k =~= ~ 1, 
c~ [5]. A phys ica l  sys tem Sh where  k : ~ - - l ,  ~ ,  of c~ 2n-~ curves  in V,,, 
is de f ined  by the equa t ions  

dv dx~ d x  ~ 

(5.1) n~tv ~ = (1 + k)rlV, 

d x  ~ 
~ = ~'~-~ + rNx ~. 

TttEOREM 5. l. - A phys ica l  sys tem S~ where k=4=--1 ,  ~ ,  of  o0 2"-1 
curves C, in  a R i e m a n n i a n  space Vn, is given by the equat ions 

(5.2) 

for i = 1 ,  2, ..., n. 

dv dx~ 
my  ~-s - -  g~(P~ d s  ' m C  = (1 + k)rN,  

/ dx~\ dx~ ~ 
mv2x ' - -  (1 + k)(P' - -  (1 + k) {g~ ] 

ds ds / 
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For, the two systems of equat ions  (5.1) and (5.2), are equivalent .  

T~EO]aE~ 5 . 2 . -  E i ther  one of the two systems of n ord inary  second 
order differential equations 

(5.3) 

ma~ = (1 + k)~' 
( g ~ x ~ )  

ma, --  (1 -]- k)O,--  k(ge~_O_.~x~) (g,~x~), 
(g~x~x ~) 

for i = 1, 2, ..., n, defines a physical system Sh where k:~= - -  1, ~ ,  of  ~ ' - ~  
curves C in  a Riemannian space l~,. 

For, by (2.9) and (5.2), it is seen that  

(5.4) ma ~ --- (1 + k)¢ ~ - -  k (g~¢~ dx~l dx~ 
- -~]  d-~" 

Changing the are length  s into the t ime t, the first  set of equat ions  
(5.3), is found.  

The  first set of equat ions  (5.3), is the cont ravar ian t  form of such a 
physical  system Sh. The  second set of equat ions  (5.3), is the covariant  form 
of such a physical  system Sh. 

i t  is romarke4  that  Theorem 1.1, is an expanded  form of Theorem 5.2. 

TI-IEOI~EM 5.3. - The equations of Lagrange for a physical system Sh 
where k :~=-  1, c~, in a Riemannian  space V,,  are 

(5.5) ~ T ~ ' ]  ~z' 2 T \  ~ ] ~., - -  

for i - - l ,  2, ..., n. 

This resul t  follows from equat ions  (2.5), (2.6), and (5.3). 

For  k - - 0 ,  the equat ions  (5.5) become the we l l -known  equat ions  of 
Lagrange  for a dynamica l  system So. 

Upon  e l imina t ing  the speed v f rom the equat ions  (5.2), it is found that  

(5.6) 

d(rN) 2 ~ dx~ 
- - ( l~ -k )  g~(p ds ' 

[ dx ~\ dx ~ 
r l w ,  = ¢ ,  - d-7)  
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T~]~om~ 5.4. - Along a curve C of  a physical system S,, where 
dr din 

k ~ -  1, ~ ,  of  a Riemannian  space V,,, the first variations ~ and ds 

of the radius r of curvature and of  the normal component !V of the force 
vector ~ ,  are 

(5.7) 

dr 3 + k  

dN 
r--~ = - -  T~ + rN, .  

This is deduced from equations (3.12) and (5.6). 

THEOREM 5.5. - The intrinsic differential equations of  the ~ 2 , - 1  curves 
C of a physical system Sa where k :4: - -  1, c,% of  a Riemannian space iT,, are 

ds - -  ~ 1 - ~ ]  Vl - -  r N 2 ,  

diV 
(5.8) r - ~  = - -  T, + rN~, 

dx ~ 
rNu ~ ~9~- -~p~-  T1 ds ' 

for i - - l ,  2, ..., n. 

This proposition is a consequence of equations (5.6) and (5.7). 

The three systems of different ial  equations (5.2), (5.3), and (5.5), are 
equivalent.  This means that any integral  solution of any  one of these three 
systems, is an integral  solution of the other two systems. Such an integral  
solution is called an actual trajectory C of the physical  sistem Sh. Every 
actual t ra jectory  C of the physical  system S~, satisfies the intrinsic dif- 
ferent ial  equations (5.8). However,  there do exist curves C which obey 
the intrinsic different ial  equations (5.8) but which obey nei ther  one of the 
three systems of differential  equations (5.2), (5.3), and (5.5). Such an integral  
solution is called a virtual trajectory C of the physical  system Sk. The 
complete physical system S,  is composed of actual  and virtual  trajectories 
C. Thus  the complete physical  system Sk consists of all the integral  
solutions of the intr insic different ial  equations (5.8). 

The virtual  trajectories C of a physical system S~ of a field of force 
are the actual  trajectories C of the physical  system Sa of the reversed 
field of force - - O ,  for which the original force vector (p is mult ipl ied by 
the scalar  ( - - i ) .  
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6. The d i f f e ren t i a l  equat ions  of  a velocity system S~.  A velocity system 
So~ of c~ 2~-~ curves in E~, is de f ined  by the equat ions  

(6A) 

dv dx~ dx  ~ 
m y  - -  m v  ~ ---- T~ - -  g ~  ¢P~ ~ -  - -  ¢p~ ds  ' 

mv~ = rN, 
i x  i 

Oi = TI d s  + rlW*. 

THEOREM. 6.1. - A velocity s y s t em  S o  o f  ~2~-~  curves  C in  R i e m a n n i a n  
space V,~, is  g i ven  by the equat ions  

(6.2) 

dv  dx~ 
mV ds  -" g ~  ~ ds ' mv~o - -  rlV, 

ds ' 

for  i - - 1 ,  2 , . . . ,  n. 

For, the two systems of equat ions (6.1) and (6.2) are equivalent .  

THEOREM 6 . 2 . -  Ei ther  one the two sys tems  of  n o r d i n a r y  second order 
di]Terential equal ions  

(6.3) 

• ° 

mV~oa ~ - .  (g~x~x~)O9~ + 

mv~oa~ - -  (g~x~x~)O~ + 

(g~ .~'.~)m- (v~0 - -  g~x~x~)x~; 

(g~q)~x'~)~ ~ (v~-- g~x~x~)(g~x~); 
(g~x~x ~) 

for i - -  1, 2, ..., n, defines a velocity s y s t em  S ~  o f  ~ 2 , - 1  curves  C in  R i e m a n .  
n i a n  space V,,. 

For, by (2.9) and (6.2), it is seen that  

(6.4) m y r a  i = v~C~i + v ~ 

• o 

Since v ~ -  g~x~x~ ,  the first set of equat ions  (6.3) is obtained. 
The first set of equat ions  (6.3), is the contravar iant  form of a velocity 

system S:~. The second set of equat ions  (6.3), is the covariant  form of a 
velocity system S o .  
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THEOREM 6.3. - The equalioJ~s of Lagrange for a velocity system S~,  in  
a Riemannian space V, ,  are 

[ d (~T)  ~T] (g~c~x~) (r_N__ 2T) ~T O, 
(6.5) rN ~ ~x ~ - - ~ x  ~ --2TOp, 2T ~x ~ -  

for i = 1, 2,... ,  n. 

This follows equations (2.51, (2.6), and (6.3). 

TKEOnEM 6.4. - The intrinsine dtf[erential equations of the c ~ ' - ~  curves 
C of a velocity system S~,  of a Riemannian space V , ,  are 

(6.6) N dr  
ds - -  T~ - -  r_N2, r ds --  

d x  i 
T~ -[- rN2, rN'h ~ --  (P~ --  T~ ds ' 

for i - -  1, 2, .... n. A velocity system S~ ,  i.~ the limiting case of a physical 
system Sk as k becomes infinite. 

The equations (6.6) are obtained by el iminating the constant speed Vo > 0, 
from the equations (6.2) and using the equations {3.121. 

As k becomes infinite, the l imiting set of the intrinsic differential  equa- 
tions (5.8) of a physical  system Sk, is the set of intr insinc different ial  equa- 
tions (6.6} of a velocity syistem S~. Therefore  a velocity system S~, is the 
l imiting case of a physical system S~ as k becomes -infinite. 

The three systems of differential  equations (6.2), (6.3), and (6.5), are equi- 
valent. Any integral  solution of any one of these three equivalent  systems, 
is called an actual velocity curve C. An integral  solution of the intrinsic dif. 
ferential  equations (6.6), which does not satisfy any one of the three equi- 
valent systems (6.2t, ~6.3), and (6.5), is called a virtual velocity curve C. The 
complete velocity system S~, is composed of the actual  and virtual velocity 
curves C. Therefore  the complete velocity system S~ consists of all the inte- 
gral solutions of the intrinsic differential  equations (6.6). 

The virtual velocity curves C ~ of a velocity system S~ of a field of force 
(I), are actual  velocity curves C of the velocity system S~ of the field of 
force --(I),  for which the original force vector (I) is multiplied by the sca- 
lar (--  1). 

7. The expl ic i t  fo rm of  the differential  equations of  a complete physical 
system Sk where k:~=--1 .  Let j denote a fixed index. The symbol A ~ for 
i - - 1 ,  2, .... n, denotes the expression 

(7.1) h~ d2x ~ Fi dx ~ dx~ - i  dx~ d ~  dx ~ 
- -  d(x~) ~ -~ ~ ~ dx~ l:~ ~X ~ dxJ dx~ " 
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Evidently h i - - 0 .  The expanded form of this, is 

d(xJ)2 ÷ Fii ÷ (2F~j - -  F~i) dxl dx~ = -  3 ~ + 2  ~ r~  

+ (]~ - -  2rii) dxidx) dx: dx~ ÷ 2v~i,E i( F ivi - -  FJvi.) ~dxv dxJ dx~ 

dx i dx~ dx ~ 
(7.2) - -  Fi~ dx: dx: dx: 

2 E F~ dx~ dx~ dx~ 
v¢i,i dxJ dx~ dxJ 

F1 dx~ dx~ dx ~ 
a~:~,t dxJ dx .~ dx~" 

The vector  geodesic curvature  x of a curve C in V~, is given in terms 
of the symbol A i by  the equations 

(7.3) z ~ _ ~ x ~  + A~\ds]2,  

where j is f ixed and i - - 1 ,  2, ..., n. 

The vector geodesic curvature  z of a curve C in V,,  is parallel  to the 
dx 

unit  tangent vector  ~ 1 - - ~ ,  if and only if z is the zero vector. Therefere 

since the conditions for a geodesic C of V,~, are ×~--0,  for i - - 2 .  2,...,  n, 
it follows that a curve C, of V~, is a geodesic of V~ if and only if 

(7.4) A s --  0, 

for i - -  1, '2, ..., n. 

For  a physical  system Sk where k=t=--1,  c~, it is found 
(7.3), that 

by (5.2) and 

[dxJ\2 ( 
(7.5) = ( 2 + k) - dx ' l  

dxJ] ' 

where  ] is fixed, and i - - 2 ,  2, ..., u. 



J. D~ Czcco: The R iemannian  Geometry Of Phys@al Sys tems,  etc. 353 

Therefore for a physical  system S~ where k =~=--1, we must  have 

A t 

(7.6) h'q = 
dx$ 
d e  

dxJ  

where j is fixed, and i, l - -  i, 2, ..., n. These equation s are true for a velocity 
system Soo since it is the l imiting case of a physical  system S~ as k ap- 
proaches infinity. 

Differentiate the equat ion (5.5) with respect  to xJ. The answer  can be 
wri t ten in the ~ form 

(7. 7) 

[ \ ¢ ' -  ¢" ax;)-d-J- ~)Jh~A i 

d z x~ 

(¢ '  - -  cJ 
\~/-] 

+ [dx~ 
d@ j dx ~ ) f  ~ dx ~ dx~ 

dxJ dxJ + cp I ~ ~ dxJ dx 3 
F ~ d x ~  dx~ dx ~,1 . 

dxJ dx~ d~xJ)j A'" 

By 15.3) and (7.5), it is found that 

(7.8) 

2 d2xJ 

(dx~l~ (~ - -  dx~] 

h~ dx~\ dxJ] 

T~EORE~ 7.1 - T h e  explici t  di f ferential  equat ions  o f  a complete phys i ca l  
sys tem Sk where k =~= ~ 1, in  a R i e m a n n i a n  space V~, are 

dx  1 
As (~  __ ¢pJ _ _  dx j 

--- dx  ~ ' 

dx  ) 

Annal i  di Matemat l ea  45 
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(7.9) 

_ dx~\ dh ~ 
6pi - -  <q)~ --dx ~1/ ~d~ - -  

- -  30~ -~- A ~ A  i 

2- ! ~ dx~ \ -1 

- -  k" [ d x  ~ d x ~  \ |  

dO1 dx ~ ( ~ dx~dx~ F~ d x ~ d x ' ~ d # ) l  
dx,~ dx j ~ ~J F ~ dx,~ dx~ dxJ dxJ dxJ 

~S dx ~ __dx~ / (p,. c~ dx~ ) ] h~' 
+ 2 r ~  -d~ dxJ ~ - -  dxJ 

where the two indices i and j wi th  i :4:j are held fixed, and l :t:: i, j, is allo. 
wed to vary over the remaining integers 1 to n. This  is a system of ( n -  1) 
ordinary differential equations in  which there are ( n -  2) ordinary second 
order differential equations and  one ordinary third order dilTerenlial equation. 
As k becomes infinite, the l imiting set of  t7.9j, is composed of the explicit dif- 
ferential equations of a complete velocity system S~.  

For, the system of ordinary  different ia l  equat ions  i7.9), is found by 
means of equat ions  (7.6), (7.7), and (7.8). By Theorem 6.4. the l imit ing set of 
(7.9), is composed of the expl ici t  different ial  equat ions of a complete  velocity 
system Soo. 

F rom (7.9), the number  of constants  of in tegrat ion is (n--2)2--p-3 
- -  2 n - - 4 - ] -  3 - -  2 n - -  1. Therefore,  a complete  physical  s y s t e m  Sk where  
k =t=-- l ,  consists of c>o 2~-~ trajectories  C. 

By equat ions  (7.9), it is clear  the ~2~-~ geodesics C of the R iemann ian  
space V , ,  belong to every complete physical  system Sk where k : t : : - - 1 .  These 
are the trajectories C of the complete  physical  system Sk, which correspond to 
infini te  init ial  speed. 

A system of ordinary different ia l  equat ions  in R iemann ian  space V , ,  is 
said to be of the type (G), if and only if it ciln be wri t ten  in the form 

(7.10) 

h ~ q)z _ cpJ dx-_~ z 
dx~ 

• ~ - -  O~ dxff' 

dx ~ 

dA__i _ Gih ~ + H ~AIi~, 
dx ~ --  

where  the two indices i and j wi th  i:4:j,  are held fixed, and l:4:i, j ,  is 
allowed to vary over the remain ing  integers 1~ 2, ..., n. For  a f ixed i, 
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G i and H ~, are two single valued functions of at least class one in a (2n-l) 
dx 1 dx ~ 

dimensional  region of R of lineal elements E(x 1, x ~, ..., x ' ;  dxi '  dx~' ""' 

dxi ' dxi ' "'" ' dxi]" For i = 1, 2, ..., n, the (I) ~ form a contravar iant  vector  

funct ion of ~t least class two in this same region R of lineal elements E, 
such that the contravariant  vector (I) ~ is not the zero vector, and its 
direction is not identical with that of the corresponding lineal element E, 
for all lineal elements E in this region R. 

The collection of all curves C which are integral  solutions of the system 
of ordinary differential  equat ions (7.10, is said to be a system of the type 
(G) [6]. A system of the type (G), possess ~ 2 , - 1  curves C. 

The totality of ~ . ~ - 2  geodesics of the Riemannian space V, ,  is part  
of every system of the type (G). 

Every system of ~ 2 , - ~  curves C of the type (G), possesses the Property I. 
This may be described in the following manner. For  a given lineal element 
E of the region R, there are c~ ~ curves C of the system of the type (G), 
which pass through the point x of E, in the direction of E. Depending on 
this lineal element E, there is determined one and only direction ~, which 
is the direction z of the non-zero eontravariant  vector (I) ~, such that this 
direction ~ is in each osculating geodesic surface at the point x of the 
lineal element E, of every one of the curves C of the system of the type 
(G), which passes through the point x of E, in the direrection of E. This 
direction z does not coincide with that of E. 

Upon comparing the equations (7.9) and (7.10), it follows that every 
complete physical  system Sh where  k=~=--1, is of the type (G). t Iowever,  
not every system of type (G), is a complete physical  system Sk where  
k =~=-- 1. 

A physical  system Sh where  k::~=--1, possesses the stronger form of 
Proper ty  I. This signifies that the directiSn ": of Proper ty  I, is a function 
of th~ posit ion x only. 

T~EO~EM 7.2 - Consider a fixed k : ~ : - - l ,  which may be infinite, such 
that k : ~ - - 3  i f  the dimension n of the Riemannian space V , ,  is two. Two 
arbitrary positional fields of force ~9 and qS, possess the same complete 
phy.~ical system, Sk, i f  and only i f  the force vector ~, is a non-zero constant 
scalar multiple c of the force vector @. Thus ~9----c (~, where c:#O, is a 
constant scalar. 

Essent ial ly  this proposi t ion states that there are only cx~ ~ positional 
fields of force (I), which possess the same complete physical  system S~ 
where  k=~=-- l ,  and k=~=--3, if n - - 2 .  

If  c ~ 0, the actual  and virtual  t rajectories of the complete physical  
system Sh of the positional field of force (I)~ correspond respectively,  to the 
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actual  and vir tual  t rajectories of the same complete physical  system Sk 
of the positional field of force • - -  c (I), On the other hand, if c ~ 0, the 
actual  and vir tual  t rajectories of the complete physical  system Sk of the 
positional field of force (I), correspond respectively,  to the virtual  and actual  
t rajectories  of the same complete physical  system S~ of lhe positional field 
of force • ~--s (I). Thus when c ~ 0, the actual  and virtual  t rajectories  are 
interchanged.  

The above proposit ion is not true when n = :  2, and k ~ - - 3 .  This is 
demonstra ted by the following example. In the Eucl idean plane, let (x, y) 
denote rec tangular  coordinate of a point P. The totality of c~ ~ circles and 
c~ 2 straight lines in the Eucl idean plane, is a complete physical  system 
S ~. The rectangular  components  of any positional field of force which 
possesses this complete physical  system S_s,  are 01 ~-- ax d- h, ( D 2 ~ a y  d- k, 
where  a, h, k, are three constants, not all zero. According as a~=O, or 
a ~ 0 ,  the positional field of force O, is elastic or Galilean. Therefore,  
there are c~ ~ positional fields of force • in the Eucl idean plane, which 
possess the same complete physical  system S_~, composed of the ~ circles 
and the ~ *  straight lines. Consequently when n - - 2 ,  and /s = -  3, Theorem 
7.2, is not true. 

The proof of Theorem 7.2, is as follows. 
The condition ~)~___ e O, where  c =t=0, is a constant scalar, is a sufficient  

condition even in the ease when n-----2, and k - - - - 3 .  This is demonstra ted 
by subst i tut ing O ----c (O, into the equat ions (7.9). 

The major part  of the proof, is to show that (I) ---- c (I) , where  c=~0, is 
a constant  scalar, is a necessary condition provided that k ~ - - 1 ,  and 
k=t=--3,  if n - - 2 .  

Accordingly, let • and O denote two arbi t rary positional fields of 
force which possess the same complete physical  system Sh where  k :~=- -1 ,  
and k=t: : --3,  if n = 2 .  

It will be proved that a necessary condition for this, is that there 
exist a non-zero scalar function ~-~-~(x), of class two in the given region 
of points x, such that 

(7.11 ) ¢9 ~ -'- ~O ~, 

for i - - 1 ,  2, . . ,  n. 
Let  n ~ 3 .  By the first  (n-2) equations of (7.9), a necessary condition 

for the validity of the proposition, is that the following set of (n-2) identit ies 
hold, namely 

dxl  (D t - -  O~ dx~ 
gpz _ ~.~ dx~ dx~ 

(7.12) --  , 
CO, - -  ~;  dx--~ i (D~ - -  ¢P~ dx--~ 

dx~ dxJ 
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where i and j with i:~:j,  are fixed, and l:~:i, j, varies over the remaining 
integers 1, 2, ..., n. 

dx ~ 
Set d x ~ - - 0 ,  in (7.12). From the result ing identities, it is found that 

(7.13) q)~ (~ O~ 0 ~ - -  e ~ -  @J-- ~ = ~ 0 ,  

where  i and j. with i::~j, arc fixed, and l:4:i, j, varies over the remaining 
integers 1, 2, ..., n. From these, are deduced the equations (7.11). By (7.11), 
the identit ies (7.12), are valid. 

Consequently the necessary set of conditions (7.11), have been established 
when n > 3. 

FTom (7.9), another necessary condition for the validity of the propo- 
sition, is 

(7.14) 

d-s - -  ds ] [ 3~bi + O~ ds ] ds j 

_ @ d 'l 2k - 

where  i and j with i::~j, are fixed. 
W h e n  n ~ 2. the indices i and j can be taken as i =  1 

preceding condition ban be wri t ten as 
and j = 2 The 

(7.15) 

3(O@2 - -  ~~(I)~) - -  1 ~  @' ds- --F ~)~ ds / \ -ds ds J 

From 

(7.16) 

this identity, the following three conditions are found, 

3 + k / - -  • q) )gu O, - ,  = 

namely 

where  i, J =  1, 2. 

Since g - - g , ~ g 2 2 - - g ~ > O ,  and since k : 4 : - - 1 ,  - - 3 ,  
(7.16), that the necessary set of conditions (7.11), must 
when n - ~ 2 ,  provided that k : ~ = - - l ,  - - 3 .  

it follows 
be valid 

from 
e v e n  
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Therefore,  under  all possible circomstances, the necessary set of 
conditions (7.1]), has been derived. 

With the aid of (7.11), it is seen by (7.9), that the final necessary 
condition for the validity of the proposition, is 

(7.17) l[ x j (P(I)i) - -  (P(PJ') dxJl = dxi  dxJ dx~' 

where  i and j with i g : j ,  are fixed. Then 

(7~ 18) d p (®4_ +~ ~ / =  o. 
dx i \ dxi ] 

Since i a n d j  with i :Cj,  can be so selected t h a t ( O i - - O J  d x - i ] / ~  d x i / ~  O, it 
\ 

dp 
fo]lows that d~x/--0. This means that p : c ~ 0 ,  is constant. 

Therefore under  the given bypotheses, the sufficient condition that 
~)--~-e O, where  c ~ 0 ,  is a constant scalar, has been proved to be a 
necessary condition. Consequently the proof of Theorem 7.2, is complete. 

8. Kasne r ' s  theorem concerning the  ini t ial  curvatures  of  the  rest  
t ra jec tor ies  of  a complete physical system Sh where k g=- -  1 , - - 3 .  [7]. A 
rest trajectory C of a complete physical system S, where k ~ - - 1 ,  but where  k 
may be infinite, is a trajectory C of the given Sh, which starts from a 
given initial point xo with velocity vector equal to the zero vector. In a 
given complete physical system Sk where  k : ~ - - 1 ,  of c~ 2~-1 trajectories, 
there are ~ rest trajecories, under  certain general  conditions. 

In  this section, a proof of a theorem of KAS~ER concerning the initial 
curvature  of a rest t rajectory of a complete physical system Sk where 
k :4 : - -1 ,  - - 3  but where  k may be infinite, in a Riemannian  space V, ,  
will be given. This result  has been proved only for the cases of a 
Eucl idean plane, a Eucl idean space of three dimensions, and a surface. 

By (3.8), (3.12), and (5.8), the intrinsic differential  equations of a 
complete physical  system Sh where  k : # -  1, can be wri t ten in form 

(8 1) 
dvl= T2+N, ~y=N~_ T, 
ds r ds r 

N d r  (3 + k I T= - rN~ :v4~ = +,- ~'~,~. 
as = \1 + k] 
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From (3.9) and the above equations, it follows that 

(8.2) 
• ~ = 71z~ + N z z ,  

DOi ~ _N 
- -  "C3~ = T ~  + N ~  + 

ds r2 

where  r2 is the second radius of curvature  of a trajectory C of the complete 
physical  system Sk for k #  ~ 1. 

THEOREM 8.t - J~n a given complete physical system Sa where k # ~  1, 
there are c,o ~ trajectories C which contain a given lineal element E. By  
varying k, there are oo 2 such trajectories C. All these oo2 trajectories C 
which contain the given lineal element E, have the same osculating geodesic 
surface at E. Moreover, at this lineal element E, they possess the same second 
curvature I zz [ - - 1 / r z ,  given by the formula 

N DO 
(8.3) N I x 2 I  = - = % ' - -  

rz d8 

This result  is a consequence of the equations (8.1) and (8.2). 

THEOREM S.2 - The rest trajectory C of any complete physical system Sh 
where k ~ -  1, which passes through a fixed point x, is tangent to the line 

D(I) 
of force at this point x. Also the space derivative ~ , of  the force vector 

@, relative to this rest trajectory C, evaluated at the initial point ~c, is 
tangent to the osculating geodesic surface of  the rest trajectory C, at this 
point  x. 

For, since C is the rest t rajectory of the complete physical  system Sk 

where  k # -  1, at the given point x, then x~-- dxi dt - - 0 '  for a part icle 

on the rest t ra jectory C at the point x. From the equations 

(8.4) 

az i~ 
h i ----- (1 -{- k) (O ~ - -  O] d--X~/ dz U' 

A~ ~z Os dx~ 
- -  Y2  

A~ ~ ~ ~s dx ~ ' 

dx3 

where  i and j with i ~ j ,  are fixed, and l=#i, j ,  varies over the remain ing  
integers 1, 2, ..., n, it follows that the direction of the rest t ra jectory C 
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at this point ,x, is given by 

(8.5) 
dx ~ ~ 
dxi  - -  (Pi ' 

where  j is fixed, and ~:4:j, varies over the remaining integers 1, 2, ..., n. 
Of course, .i is chosen so that (I)J~0. Therefore,  the rest t rajectory C is 
tangent  to the line of force at the initial point x. 

From the proof of the proceding paragraph, it follows that at the 
initial point x of a rest t rajectory C~ the following relations must  hold, 
namely  

(8.6) T~-~ ]q) I=~0,  and N~-~0. 

DO 
By means of (8.2) and (8.6), the space derisative d-s- ' of the force vec- 

tor (I), relative to the rest t rajectory C, evaluated at the initial point x of C, 
is tangent  to the geodesic surface of this t rajectory C at its initial point x. 

TKEORE~i 8.2 - The Theorem Of Kasner  Concerning The In i t ia l  
Curvature Of a Rest Trajectory, Let the curvature [z0]  ~ 1/ro, of the line 
of force at a given point  x~, be not zero. The rest trajectory C of the complete 
physical  syste m S ,  where k = # - - I ,  ~ 3, wi th  t h i s  point x as its init ial  
point, is tangent to the line of  force at this point  x. The curvature ! z I -~-1/r, 
of this rest trajectory C, is not zero at its initial point  x. The ratio 

- -  f ~ t / 1~o I ~ r o  t r, of the curvature f z t --  1/r, of the rest trajectory 
C, and of  the curvature 1~o ]-~ 1/ro, of  the line of force~ at the ini t ial  
point  x of  the rest trajectory C, is 

i ro l + k  
(8.7) ~ ---~i :~o I r 3 ~- k" 

At the init ial  point  x, the rest velocity curve C and the line of force, 
possess the same curvature. 

For, under  the given hypothesis, r o ~ 0 ,  and T1--  I O I ~ 0 ,  N ~ 0 ,  at 
the initial point $. By (3.18), we have T 1 - ' r o N 2 .  By (8.1), and (8.6), it is 
seen that  

I ~ I ro roN2[1--~-k~ 1-~-k 

This completes the proof of the above theorem of K~S~ER. 
For dynamical  trajectories, this ratio ? is 1/3. For general  catenaries,  

this ,o is i/2. For  gener.il brachistochroues,  this ratio ~ is - - 1 .  For velocit:~ 
curves, this ratio ~ is 1. 
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E l sewhere  this  rat io has  been s tudied  for d i rec t iona l  f ields of force in  
which  the force vector  at any  point  depends  no~ only in the posi t ion of the 
point  bu t  also on the d i rec t ion  pass ing  through the point  [8]. 

9. Curvature trajectories and velocity families.  A family Q of c ~ - - 2  
curves  co in a R i e m a n n i a n  space IT., which  is not the geodesic fami ly ,  
can be def ined  as the oo~-~ in tegra l  curves  co of a sys tem of n o rd ina ry  
second order  d i f fe ren t i a l  equa t ions  of the form 

(9.1) x~ -~ Oi, 

for 1, 2, . . . ,  n, where  the 0 ~ for  i - - 1 ,  2, . . . ,  n, fo rm a con t r ava r i an t  
vector  func t ion  of at  least  class two in a ( 2 n - I ) d i m e n s i o n a l  region  R of 

x" dxl dx~ dxJ-" dx~+~ d x ~  
l ineal  e lements  E x 1,x 2, ..., ; ~ '  dx---)' ""'  dxi ' dxJ ' ""'  d x ] / '  such 

that  the con t r ava r i an t  vector  ¢~ is not the zero vector,  and  its d i rec t ion  is 
not iden t ica l  wi th  that  of the cor responding  l inea l  e lement  E, for all  l ineal  
e lements  E of this  region R. The x ~ in these equat ions ,  are the con t r ava r i an t  
form of the vector  geodesic cu rva tu re  z of any  curve  o) of this  f ami ly  ~. 

Somet imes  it is found  convenien t  to th ink  of the (I)~ as being func t ions  

of (x; x) (x 1, x ~-, , x";  " " x') ,  where  ~i dx~ : ... x', x 2, ..., ----dt- '  for i - - l ,  2, . . . ,  n. 

Then  for each  i, the func t ion  O ~ is homogeneous o f  degree zero in the x. 

A curvature  trajectory C of the f ami ly  12 of ~ ' - ~  curves  o), is de f ined  
in the fo l lowing manrfer  [~]. A geodesic C of the R i e m a n n i a n  space IT,, is 
r ega rded  to be a curvature  trajectory C of this  f ami ly  ~2. H e n c e f o r t h ,  let C 
be a curve  such that  its vector  geodesic cu rva tu re  x is not zero at every 
one of its points  x. To this curve  C, there  is associated a cons tan t  scalar  
c # 0 .  Such  a curve C is said to be a curvature trajectory C of the fami ly  ~2 
if  w h e n  the un ique  curve  (o of the fami ly  Q, is cons t ruc ted  such that  co 
passes th rough  any  given point  x of the curve  C in the d i rec t ion  of this  
curve  C, the two curves  C and  ~o possess the same oscu la t ing  geodesic 
sur face  at this  point  x, and  the c u r v a t u r e  1 z t = 1/r~ of C, is a cons tan t  
mul t ip le  c=4=0, of the cu rva tu r e  I xol - -  1/ro, of co, at  this point  x. 

The  sys tem 3: of ~ - ~  cu rva tu r e  t r a j ec tu res  C of the fami ly  .Q of c~2--~ 
curves  % is composed of the c<~-~ in tegra l  curves  C of the sys tem of n 
o rd ina ry  second order  d i f fe ren t i a l  equat ions .  

(9.2) ×~ ~ cO ~, 

for  i - - 1 ,  2, :.., n, where  c is an  a rb i t r a ry  cons tan t  of in tegra t ion .  I f  
c =  0, these def ine  the geodesic  c u r v a t u r e  t ra jec tor ies  of the f ami ly  g .  
Hence fo r th ,  its is supposed tha t  c #  0. 
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By (7.3), the system of equations (9.2), is found to be equivalent  to the 
system of ( n - - 1 )  equations 

\ ds ] . ~ c  ( ~ - - ~ :  dx i / '  

where  j is fixed, and i:~:/, varies over the remaining integers 1, 2,.. . ,  n. 
From (9.3), is deduced the set of ( n - - 2 )  equations 

d x  I 

(9.4) A'-- - -  ~b~ _ _  ~p~ dx~ ' 
d x ~  

where  i and j with i=~=j, are fixed, and l~=i, j,  varies over the remaining 
integers 1, 2, ..., n. 

TI~ORE~ 9.1 - A system £ of oo'..-~ curvature trajectories C of a fami ly  
~2 of ~-~-~- curves % is given by the set of  (n - -  1) ordinary dif[erential equations 

(9.5) 

+ 

A~ 

dg5 l 

dx: 
d x  $ 09~ _ ~) ~ _ _  
dx: 

_: d~c ~ dxP dx~ t 

dxi dx~ dx/ ] 

where i and j with i:4:j, are fixed, and l:~:i, j ,  varies over the remaining 

inlegers 1, 2, . . . ,  n. 

This proposition is derived from equations (7.1), (9.3), and (9.4). 
By comparing (7.10) and (9.5), it is seen that every  system r of c~ 2,~-1 

curvature  trajectories C, is of the type (G). However,  not every system of 
the type (G), is a system F of ~2n-~ curvature  trajectories C. 

It is remarked  that not every complete physical  system Sk where 
k =~= - -  1, is a system F of c~ 2~-~ curvature  trajeceries C. For  example, KAS~ER 
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p roved  that  in a E u c l i d e a n  plane,  a comple t e  d y n a m i c a l  system So is a sys tem 
I ~ of e~ 3 c u r v a t u r e  t r a j ec to r i e s  C if and  o n l y  if the c o r r e s p o n d i n g  pos i t iona l  
f ie ld  of force  O, is e i t he r  cen t r a l  or pa ra l l e l  [10]. 

In  a g iven  pos i t iona l  f ield of force  q), a velocity fami ly  F of ~2 ~-2  velo- 
c i ty  cu rves  C, is de f ined  in the fo l lowing  ma n n e r .  [11]. F o r  such  a c u r v e  C, 
it is unde r s tood  that  a pa r t i c l e  of uni t  mass  is c o n s t r a i n e d  to move  a long it. 
A cu rve  C is a m e m b e r  of the ve loc i ty  f ami ly  F if and only  if a pa r t i c l e  of 
un i t  mass,  s t a r t i ng  f rom any  l inea l  e l e me n t  E of C wi th  un i t  speed, descr ibes  
a d y n a m i c a l  t r a j e c t o r y  which  in i t ia l ly  oscu la tes  the cu rve  C. 

THEOREM 9.2. - A velocity fami ly  F of cx~:,-: velocity curves C is given 
by the intrinsic equations 

dx ~ 
(9.6) r N  --- 1, z~ - -  ~9 ~ - -  T~ d s  ' 

where i----1, 2, ..., n. The system of ( n -  1) explicit ordinary  differential 
equations, each of  the second order, of a velocity f ami l y  F of ~2~-2 velocity 
curves C, is 

dxi] g ~  ~ dxi ] ' 

where j is fixed, and  i~=:j, varies over the remaining integers 1, 2, ..., n. 

Th is  resu l t  fo l lows f rom equa t ions  (6.2~, and {7.3}. 
A l ine  of force  C is a ve loc i ty  c u rv e  C of a ve loc i ty  f ami ly  F of ~2~-2  

ve loc i ty  cu rves  C, if and  only  if C is a geodesic  of the R i e m a n n i a n  space  V , .  
The  c e n t e r  x of c i r c u l a r  c u r v a t u r e  at a g iven  poin t  x of a cu rve  C, is 

g iven  by  the set of equa t ions  

(9.8) x ~ - -  x ~ ~- r2x ~, 

for  i - - 1 ,  2, .... n. I f  there  is a c o n s t r a i n e d  mot ion  a long this  c u rv e  C for  a 

g iven  pos i t iona l  f ie ld  of fo rce  (I), then  

(9.9) ¢Pi~ ~ - -  x ~) : rN.  

THEOREM 9.3. - Property A. A fami ly  F of  ~2~-2 curves C in a Rie- 
m a n n i a n  space V~, is a velocity fami ly  F of  o, D2,-~ velocity curves C of  a 
positional field of force (~, i f  and only i f  at each point  x of  any  curve C of 
the fami ly  F, the force vector ¢b is tangent to the osculating geodesic surface 
of  C, and the center x of circular curvature of  C, satisfies the condition 

(9.10) O~(x ~ - -  x ~) - -  1. 
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For, the first part  of Proper ty  A, is equivalent  to the set of n conditions 

(9.11) 
dgc i 

• i = T, ds  -k r N  x~, 

for i = 1, 2,.. . ,  n. By (9.9), and the second part  (9.10) of Proper ty  A, it is 
seen that rN----1. Subst i tut ing r N - - 1  into (9.11), it follows by (9.6), that 
P roper ty  A characterizes a velocity family F of cx~ 2'*-= velocity curves C of 
a positional field of force ¢P. 

The condition (9.10) states that if the tangent flat space R,, of n dimen- 
sions, of the Riemannian space V,.  is constructed at a point x through 
which pass c~--* velocity curves C of the velocity family F, then the cor- 
responding centers x of circular  curvature,  describe a flat space R,~_I of 
( n - - 1 )  dimensions in R,,, which does not pass through the given point x. 

THEOREM 9.4. - A complete velocity system S~ of  ~ " - ~  curves C of a 
positional field of  force ¢ in a Riemannian space V,,, is composed of the 
~2~-~ curvature trajectories C of  the velocity family  F of  cx~=--2 velocity curves 
C of  the same positional field of force O. 

This is a consequence of equations (6.2) and (9.6). 

10. Conformal  maps of  Riemannian spaces. Consider two Riemannian 
spaces V, and V, whose metrics are given by the two definite quadrat ic  
differential  forms ds 2--  gqdx~dxJ, and ds 2 --  g~jdx~dx j, where each one of 
the functions gij, g~j, is at least of class three in an n dimensional  region of 
points x. Two points of V, and V~, are said to correspond if and only if 
they are represented by the same curvi l inear  coordinates x -  (m 1, x 2, ..., x"), 
of the given region of points x. This establishes a point to point transforma- 
tion T be tween  V, and V, .  Such a representat ion of V, and V, ,  is called 
a carlogram T. 

Let  ~t denote some positive scalar point function at least class three in 
the given region of point x. The eartogram T is said to be conformal and 
the two Riemannian spaces V, and V, are said to b e  conformally equivalent, 
if and only if d s - - ~ d s ,  for some such positive scalar point function ~t. 

- - . .  1 * i  Then gii = ~t2gii, and g*l = ~ g .  In this case, V, is called a conformal 

image of V, .  

If V--, is a conformal image of V ,  then d s - - ~ d s ,  where  ~ > 0 ,  is 
a positive scalar point function. If ~ > 0, is a constant, then IV, is said to 
be a homothetic image of V , ,  and the cartogram is called a homothetio 
transformation T. In particular,  if ~t ~ 1, then I],, is called an isometric 
image of V. ,  or V, is said to be applicabile to V , ,  and the cartogram 
is termed an isometric correspondence T. 
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It  is easy to see that a ear togram T between two Riemannian  spaces 
V, and V, ,  is eonformal  if and only if T preserves the magni tude of the 
angle between any two curves C~ and C~ which pass through an arbi t rary 
point x. 

Consider a conformal car togram T between two Riemannian spaces V, 
and V,  so that ~ r  is a eonformal image of 17,. Then d s - - p d s  where  

~ 0, a positive scalar  point function. Clearly 

- 1 : (10.1) g~ = P g~t, 

In  this conformal car togram T, the Christoffel symbols of the first 
kind, are related as follows 

(10.2) ~ ; ~ p  i j ; k + P  g ~ k ~ + g j ~ - - g , . i ~  , 

and the Christoffel symbols of the second kind, correspond by the equations 

(10.3) - 

Under  this conformal car togram T, the absolute total derivatives with 
with respect  to arc length of a contravar iant  vector ).~, correspond as follows 

I ~p dx~-b l ~ ) j d x  i 1 ~t  ~t-j dxa D)J 1 D)J T p2 )~ - -  
(10.4) ds - -  p ds --  ~x a ds p~ ~xJ ds ~ ~x ~ t g j h g  ~ d--s " 

TREOREM 10.1 Let a R i e m a n n i a n  space V,, be mapped into a 
R i e m a n n i a n  V,, by a conformal t rans format ion  T. Under T, a curve C in 
IT,,, is converted into a curve -C in  9 , .  The vector geodesic curvatures  x and  
at corresponding po in ts  o f  C and C, are related by the expressions 

1 g~ dx ~ 
(10.5) ~t __ x~ + pads ds 

where i - - 1 ,  2, . . . ,  n. 

This result  is found by substi tuting k ~ 

1 g~t ~P 
p8 ~x t , 

d x  i 

ds  

1 dx ~ 
, into (10.4). 

p ds 
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11. Natural  families.  The c~z ~-2 extremals C in a Riemannian space 
IT,,, of the variat ion problem 

2 

(11.1) / ~ds = minimum, 
g ,  

J 
1 

are said to form a natura l  fami ly  F in V,.  This is equivalent to saying 
that a natural  family F of c~ 2"-2 curves C in a Riemanniau space V, ,  is 
a conformal image in V, ,  of the family F of ~2~-2 geodesics C of a 
Riemannian  space V. ,  which is a conformal representat ion of V. .  Some. 
times, the oz2,~-2 curves C of a natura l  family F in a Riemannian space 
V,,, are called conform-geodesics [12]. 

TgEORE~ 11.1. The intrinsic differential equations a natural  fami ly  F 
of  o,z~-~ curves C in R i e m a n n i a n  space V , ,  are 

~ = l g~z ~ 1 d~ dx ~ 
(11.2) ~x t ~t ds ds ' 

where i - - l ,  2, ..., n. 

For, upon setting ~-i--0, in equations (10.5), the conditions (11.2), are 

found. 
From the above proposition, it follows that a natura l  family F is 

composed of the ~ - 2  geodesics in the Riemannian space V.., if and only 
if ~t ~ 0, is a constant. Therefore, a conformal map T of a Riemannian 
space Y, onto a Riemannian space V.,  converts the  family F of ~ 2 . - 2  

geodesics C in V, ,  into the family F of ~2 . -2  geodesics C in V. ,  if 
and only if T is a homothetic transformation.  

THEOREM 11.2. A fami ly  F of c~ ~"-2 curves C in a R i emann ian  space 
V , ,  is a natural  fami ly  F for which the associated scalar point  function 

~ O, is not a constant, i f  and only i f  it is a velocity fami ly  F of  ~ :~ -2  
~V  

velocity curves C of  a conservative field of  force (P --  ~x ' for which V is a 

potential  function. In  this case, the relations between the scalar point  function 
~ O, and the potential  function V, are 

1 
(11.3) V--- log : ,  ~ --- e -v  

For, by comparing (9.6) and (11.2), it follows that a natural  family /7' 
of cx~2n-2 curves C in V,,, for which the associated scalar point funct ion 
I ~ > 0 ,  is not a constant, is a velocity family F of c~ 2"-2 velocity curves 
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~V 
C of a conservative field of force (I)_ ~x ' for which a potential func- 

tion V, is V - - l o g  1/t~. 
Conversely, a velocity family F of ¢x~ 2n-2 velocity curves C of a 

~V 
conservative field of force ¢ - - - - ~ - ~ ,  with potential  function, V, is a 

na tura l  family F. The associated scalar point funct ion is ~ - - e  - v .  Clearly 
this is positive, and is not constant. 

It  is clear tha t . i f  a positional field of force (I) in a Riemannian  space 
V,,~ is not conservative, then the velocity family F of c~ ~'~-~ velocity 
curves C, is not natura l  family F. 

TI-IEOREM 11.3. Under a conformal map T of  a Riemannian space V, 
onto a Riemannian space V~,, every velocity family F of oc~-~ velocity 
curves C in V , ,  is converted into a velocity family  F of ~ '~-~ velocity curves 

in V,,. The relations between the corresponding fields of  force (~ and 
~ ,  are 

(11.4) (1) _ ~ ( P  - - ~ g  ~-xz ; O~_--4) i ~ ~x ~, 

for i - - l ,  2, ..., n. 

For, in V. ,  a velocity family F of c<) 2n-2 vetocity curves C, is given 
by the conditions 

(1L5) ~ op~ [ -  ~ dx~ \ dx ~ 
= 

Substi tut ing (10.1) and (10.5) into these equations, it is found that this 
family F in ~V,, corresponds by the conformal map T, to the velocity 
family F of ~ - 2  velocity curves C in V.,  which is given by the equations 

(11.6) 
( i g i t ~ t )  ( ~p~dx~ 1 d~) dx~ 

From these equations, the relations (11.4) are deduced. 
By the last three propositions, it is an immediate  consequence that 

under  a conformal map T of a Riemannian  space V. ,  onto a Riemannian 
space V. ,  every natura l  family F of c ~ - 2  curves C in V,,  is converted 
into a natura l  ]~ of ~3~-2 curves C in V,,. 

In the above paragraph,  let F be represented as a natura l  velocity 
family F of ~ - 2  velocity curves C of a conservative field of force 

~V 
( I ) - - -  ~ - ,  with a potential  function V, in the Riemannian  space V , ,  
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and let /v be depicted as a natural  velocity family f f  of cxD~n-: velocity 

curves C of a conservative field of force O - -  ~ x '  with a potential  

funct ion V, in the Riemannian space V,,. Then under  the conformal 
map T of the Riemannian space V. onto the Riemannian  space V,,, the 
two potencial  functions V and ~V, are related by the single condition 

(11.7) V = V -{- log ~, 

except  for an addit ive constant  c of integration. 

12. Conservative physical  systems Sk where k =4=--1, oc [13]. A physical  
~V 

system Sa where k =4= --  1, 0% of a conservative field of force (I) --  ~x ' with 

potential function V, is termed a conservative physical system Sa where 
k ~ -  1~ cx~, of c-.~ 2~-~ trajectories C~ in a Riemannian space V, .  

m g ~ x ~ _  (1 q- k)V, the La- THEO]~EM 12. t - I f  L - -  T - - ( 1  + k ) V - -  

grangian differential equations of a conservative physical system Sk where 
k ~ -  1, 0% of ~2~,-~ trajectories C, in Riemannian space V, ,  are 

d l~L I ~L dt ~L O, 
(12.1) dl \3x'] ~x' 2[L -f- (1 -4- k)V] ~x ~ "-- 

where i - - l ,  2, ..., n. 

~V 
For, subst i tute  @i-- ~x~, into equations (5.5). By use of the rela- 

tion T :  L-q-(1 q-k) t / ,  the equations (5.5) become the Lagrangian diffe- 
rential equations (12.1) of a conservative physical  system Sa where  
k ~ - - l ,  cx~. 

For  k ~  0, L becomes the Lagrangian function L ~ T = V. Then the 
equations (12.1) become the Lagrangian equations (12.1)of a conservative 
dynamical  system So of c~ -°"-~ dynamical  t rajectories C. 

T~EORE~[ 12.2 - A conservative physical system Sh n;here k ~ - - 1 ,  ~x~, of 
oc2~-~ curves C in a Riemannian space V, ,  is given by the n ordinary 
second order differential equations 

(12.2) z~ ( l + k )  (gu~V dV dx ~) 
- -  2 ( E - -  V )  ~x'  ds as ' 
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for i----1, 2, ..., n, where the total energy E, is a constant of  integration. 

For the equations (5.2) become the equations (12.2) upon substi tuting 
~V 

(I)~ -- ~e~, and mv ~ -- 2 ( E -  V) "-- (1 + k)rN. 

TI~EORE~ 12.3. - Corresponding to the value of the total energy constant 
E, a conservative physical system S~ where k : ~ -  1, c~, can be separated 
into c~' natural  families Sk(E) each one of  which is composed of  c~ 2"-2 
trajectories C. Any  such natural famiy Sh(E) consists of  the c,.z2~-2 extremals 
C of the variation problem 

2 

(12.3) Iv T M  ds ----- minimum. 

1 

For, by (12.2), the associated positive scalar funct ion ~ > 0, of the natu- 
ral family S~(E), obeys the conditions 

(12.4) 
1 ~t~ (1 + k )  3V 
1~ Sx ~ - -  2 ( E - -  V) ~x ~' 

for i----i, 2,..., n. Exept for a multiplicative constant c > 0, of integration~ 

it is seen that I~-- - - V )  ~ = v  t+e. 

P o r k  = 0, the integral (12.3), is the action integral of HAmILtON. Thus 
the dynamical  family So(E) of c, c2~-~ actual dynamical  trajectories C, is 
composed of the ~2~-2 extremals C of the variat ion problem 

2 

(12.5) f vds - -  minimum. 
l 

For k -- 1, the catenary family SI(E) of ~2~-2 virtual  catenaries C, consists 
of the cx~,~-2 extremals C of the variat ion problem 

2 

(12.6) [ v~ ds : minimum 
, 2  
1 

Final ly  for k - - -  2, the braehistoehrone family S_2(E) of ~2n-2 actual 
braehistochrones C, is the set of ~2~-2 extremals C of the variat ion problem 

2 2 

( 1 2 . 7 )  T ~  Time~fdt---fv-lds_~minimum. 
l 1 
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By (12.4), any natural  family F of ~ , - 2  curves C for which the asso- 
ciated positive scalar point function ~ > 0, is not a constant, can be depicted 
as a physical  family S~(E) of ~x~ 2~-2 trajectories C, where k=~:- -  1, cx~. Any 
associated potential  function V is of the form 

(12.8) V--- E - -  a~ ~t(~+ k) 

where  a > 0, is an arbi trary constant. 

TI-IEORE~ 12.4. - Under a conformal map T of a Riemannian space V~ 
onto a Riemannian space V,,, any physical family  S~(E) where k : 4 : - - l ,  ~ ,  
of c~ 2~-2 trajectories C in V~, is converted into a physical family  Sk(E) of 
~2~-2 trajectories C in l~,  with the same value of k ~ = -  1, ~ .  The relation 
between the two potential funcHons V and V-of  the two corresponding conser- 

~V ~ is vative fields of  force ( ~ - - -  ~-~, and ~ _  ~x '  

2 

(12.9) V =  a~ (~+k)(V--E)~ E, 

where a > O, is an arbitrary positive consant. 

For, let the conformal map T of the Riemannian space V~ onto the 
Riemannian space V, be represented by ds--~tds.  The physical  family Sk(E) 
where k=~=~ 1, ~ ,  can be visualized as the natural  family /7' of ~ 2 . - 2  

2 

extremals C of the variat ion problem: f v d s - - m i n i m u m .  Similarly, the phy- 
1 

sical family Sk(E) where k::~= ~ 1, c~, can be depicted as the natural  family 
2 

/~ of c<~"-~ extremal  C of the variat ion problem: f v d s - - m i n i m u m .  Under  
:t 

the eonformal map T, i~ follows that v ~---v/9. Therefore, by means of the 
relation (12.8), it is found that 

2 2 2 

(12.10) V ~ E - - a ~  (~+e) v ~ + k _ _ a ~  I + e ( V _ E ) _ ~ E - ~  

where  a > 0, is an arbi t rary  positive constant. 

TgEORE~ 12.5. - A conformal transformatio~ T between two Riemannian 
space V~ and I~, is a homothetic correspondence T, i f  a n d  only i f  T converts 
every conservative eomplete physical system S~ with k:4:--1, ~ ,  of c,~2~-1 trajeciories 
C in V~, into a conservative complete physical system Sk with the same 
k : ~ =-  1, ~ ,  of  ~2n-1 trajectories C-in V,.  When the conformal transforma. 
tion T is not homothetiv, that is, when the associated positive scalar point 
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function ~ > O, is not a constant, then under T, there is one and only one 
conservative complete physical system S~ with k =~= - -  1, c~, of  c,c 2'~-~ lrajecto. 
ries C in V,~, which is carried into a conservative .complete physical system 
S-~ with the same k =~=- 1, ~ ,  of  ~ , - z  trajectories C tn V,--~. For this latter 
case, the associated potential functions V and V, are 

E ~ 2 
(12.11) V--___---p.*+ ~ g = - - a E ~ t  ~+~ 

where a:~:0,  is an arbitrary constant, and E~=O, E:~=O, are the two corre. 
sponding constant total energies. 

For, by (12.9), it is seen that a conformal map T carries every conser- 
vative complete physical  system Sk with k :~=--1 ,  ~ ,  of c~ 2n-1 t rajectories  
C in V,,, into a conservative complete physical  system Sk with the same 
k :~=--1 ,  c~, of ~ ' - ~  t rajectories  C in F,,, if and only if ~t > 0, is a con- 
stant. This means that T is a homothetic correspondence.  

Consider the case where the associated positive scalar point function 
> 0, of the conformal t ransformation T, is not a constant. That  is, T is 

not a homothetic map. For  this case, the two conservative complete physical  
system Sk with k ~ - - l ,  c~, and S~ with the same k ~ = - - l .  ~ ,  are given 

by the two conservative fields of force @--  __ ~W~, and ( ~ - - - - ~ W ~ ,  for 

which the corresponding potential  functions W and W, are 

a 1 _ 
(12 .12)  w - -  - -  v ,  w - - - -  - v ,  

where  a ~ O ,  and E ~ O ,  E ~ O ,  are the total energies, that appear  in 
(12.9). F rom (12.9), these two potential  funct ions W and W are related by 
the condition 

(12.13) W - -  p l + k ~ - - ~  1-Y-~ W - - ~ - ~  . 

Since ~ ,  is an arbi t rary constant and since ~t 

stant, it follows that 

2 

1+7¢ ~ 0 ,  i s  not a c o n -  

(12.14) W "~-- p, 2 / O + k ) ,  W - -  p~ - 2/(1+~). 

Subst i tut ing (12.14) into (12.12), the equations (12.11) are found. 
This completes the proof of Theorem 12.5. 
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13. Conservative velocity systems S~.  A velocity system S~ of a 
~V 

conservative field of force ( I ) = - -  - with potential function V, is said 
~x ' 

to be a conservative velocity system S~ of ~2n-~ trajectories C, in a 
Riemannian  space V. .  

T]ZEOl~]~t 13.1 The Lagrangian equations of a conservative velocity 
system S~ of ~ ' - ~  trajectories C, in a Riemannian space V , ,  are 

dV 

(13.1) mv~ dt - - ~ # ]  + 2T--+~x * 27' mv2~-- 2 T .-=0,c~x, 

for i ~ l ,  2,  ..., n. 

This follows by 

tions (6.5). 

TI-IEORE~ 1 3 . 2 -  

~V 
2 and ¢ i - -  into equa- substi tuting r N - -  mVo, ~x i , 

A conservative velocity system S~ of oo~-~ velocity 
curves C in a Riemannian space V , ,  is given by the n ordinary second order 
differential equations 

1 [ ~V dVd#~  
(13.2) ~i = mv~ ~ ga - -  ~ z ~  ~ ~ ] '  

for i -- 1, 2, ..., n. where mV~o > O, is a constant of integration. 

This is obtained from equations (6.6) upon substi tuting r N =  mv~, and 
~V 

( I h  - -  ~ #  • 

Tw]~oaE~ 13.3 - Corresponding to the value of the constant speed vo > O, 
a conservative velocity system S~,  can be segregated into ~ natural families 
S~(Vo), 
natural 
problem 

(13.3) 

each one of which is composed of cx~2~-2 velocity curves C. Any such 
family S~(vo) consist of the ~ - 2  extremals C of the variation 

2 ~ 

.re ds = m i n i m u m .  

1 

For, upon comparing (11.2) and (13.2), it is found that ~t = e -  v/,~o ~, except 
m 

for a mult ipl ieative constant c ~ 0 ,  of integration. Since V - - E - - ~ v  ~, it is 

seen that the ~ can take the form ~t-----e¢] 2~¢. 
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Evidently the variation problem (13.3), is equivalent to the variat ion 
problem 

(13.4) 
2 

e rove= ds - -  minimum. 

1 

TKEORE)~ 13.4 - Under a conformal map T of  a R iemann ian  space V,  onto 
a R i e m a n n i a n  space V , ,  any  velocity fami l y  S~(vo) of cx~,-2 velocity curves 
C in V , ,  is converted into a velocity fami ly  ~;~(Vo) of  ~ - 2  velocity curves 

in VT,,. The relation between the two potential funct ions V and V7 of the 

two corresponding conservative fields of force ~) - -  - -  ~---~, and e 9 - -  ~ ,  is 

(13.5) V V _1_ log ~, 
m vl my;  

ex.cept for an additive constant c. 

For, let the eonformal map T between the two Riemannian  spaces V, 
and V,,, be represented by d s - - ~ d s .  I n  V, ,  the velocity family S~(vo) 

is composed of the ~ n - 2  extremals C of the variation problem 

(13.6) 

2 2 

e -~o ~ d s - -  e ~ o  ~ ~ds---- minimum. 
¢ 

1 1 

This can be visualized as a variation problem in 17,, for which the 
extremals  are the ~ - =  velocity curves C of the velocity family S~(Vo), 
provided that 

V 

(13.7) e ~;o~l~--e  .~o=, 

except for an r arbi t rary multiplicative constant e - e >  0. Solving this equation 
for V/m V~o, the condition (13.5), is found. 

TI~EORE]~ 13.5 - A conformal transformation T between two R iemann ian  
spaces V~ and V,,, is a homothetic map T, i f  and only i f  T carries every 
conservative complete velocity system S~ of ~=,~-1 velocity curves C in V, , ,  
into a conservative complete velocity system S~ of ~ - ~  velocity curves 
in V,,. When the conformal transformation T is not homothetie, that is, 
when the associated positive scalar point  function ~ > O, is nol a constant, 
then under T, there is one and only one conservative complete velocity 
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system S~ of  ~2~-~ velocity curves C in V . ,  which is carried into a 
conservative complete velocity system So~ of ~ - ~  velocity curves -C in V , .  
I n  this case, the associated potential  functions V and  F, are 

(13.8) V - -  a log ~, V - -  b log ~, 

where a ~ 0 ,  b ~  O, are two arbitrary constants for which 

b a 
_ _  - - ~ + 1 .  

(13.9) m Vo ~ - -  m Vo 

Th i s  is p roved  by means  of e q u a t i o n  (13.5) of T h e o r e m  13.4. 

14. The infinitesimal contact transformation T of  a Riemannian 
space V , .  Le t  the p~ deno te  the c o v a r i a n t  form of the uni t  t angen t  of any  
cu rv e  C in a R i e m a n n i a n  space  V, .  T h e n  

d$ ~ dxi 
(14.1) - -  = g~JPJ; P' -"  gq d---~" ds 

By equa t i ons  (2.2), (2.3), and (14.1), the cova r i an t  f o rm  zi of the vec to r  
c u r v a t u r e  x of a cu rve  C in a R i e m a n n i a n  space  V , ,  is 

(14.2) 
d2xi F] dx ~ dx~ dp~ 

x--~xt~---giJ-ds~- + g q  ~ ds ds - -  ds 
1 ~¢g~ dx ~ dx~ 
2 ~x ~ ds ds 

T h e r e f o r e  

(14.3) 

x .--~. x i  ~ d,8 
1 ~g~ g~ig~kpjp~ 
2 ~x ~ 

gpl , 1 . $g~k dp l  + 1 ~gik 

T~EO~EM 1 4 . 1 -  The characteristic function r - - r ( . ~ ;  p), of a Rieman.  
n ian  space IT,, is 

(14.4) 

This characteristic function ~ is l inear homogeneous in the p~, and  has 
the value uni ty  along any curve C in V , .  In  terms of  this characteristic 

function r --  g(x; p), the contravariant form d~d of the uni t  tangent vector 
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d~ 
~ -  d s '  a n d  the covar iant  form z~ of  the vector geodesic curvature  z o f  a 

curve C, are 

dx ~ ~ 
(14.5) d-s --" ~ --- g~ip~ , 

dpi OF ~ dpl  1 ~y~-"ik 

For, it is seen from (14.4), that  ] ~ =  I~(~c; p),  is l inear  homogeneous  
in the Pi.  Also l : -  l:(x; p), is the magni tude  of the uni t  tangent  vector 

dx  
z ~ - - d s '  of the curve C, and h e n c e  has the value uni ty  along C. Along 

such a curve  C, it is evident  that  

dx i 1 OF OI ~ 
(14.6) - -  ~ -  ~ - - - g  : P J -  P 0 p ~ -  3pi '  

dp~ 1 3gik dpl  I OF dpl 3F 
~ = - ~  + 2 TZx ~ p ] p k  - -  ds + I ~ 3x ~ - -  ds + 3xx ~" 

The in f in i tes imal  contact t rans forma t ion  T of the R iemannian  space V~, is 

3]? ~ 3F 1 3qJ k 
- -  ~.~ PiP~ ~s. (14.7) ~x~--- ~ p  = gi]pi~s, o p t =  3 x ~ S  ~- 2 x 

This  is given the Lie  symbol U F or the PoIsso~- parenthes i s  (F, F), by 
means  of the express ion 

(14.8) 

Dr 3 2  ~ Or 3 ~  
U F =  (r ,  F )  = ~p~ 0z ~ - -  3--- ~ Op~ 

3 F  1 (Ogik )3.F 
--- (gii pj) 3xi 2 \ 8x i P jPk  ff~ . 

The inf in i tes imal  contact  t ransformat ion  T or the symbol U F, generates  
the one-parame ter  d i la ta i ion  group h, of the R iemannian  space V..  The  
path  curves  C of this one -pa rame te r  di la ta t ion group 5 obey the dif ferent ia l  
equat ions  

(14.9) dx ~ 3P ,j dp~ OF 1 3gJ k 
ds - -  Op~ - -  g p j '  ds 3x ~ ~ 2 3x ~ PiPk.  

Clearly, the pa th  curves  C form the family ~' of ~2,.--2 geodesic C of the 
R iemann ian  space F~. 
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A spatial element E in the Riemannian space V, ,  is composed of a point 
x and a spatial direction of ( n - - 1 )  dimensions passing through this point x. 
A spatial direction of ( n ~  1) dimensions at a point w, can be defined by a 
non-zero c0variant vector p - - p ~ ,  which is orthogonal to it. Therefore a 
spatial element E can be defined by a set of coordinates (x; p), where at 
least one p~, is not zero. If two sets of coordinates (w; p) and (x; p), define 
the same spatial element E, then ~ - - -x ,  and /~ = pp, where ~ 0 ,  is an 
arbi t rary factor of proportionality.  

Any dilatation Dk o[ the one-parameter  dilatation group A of the Rie- 
mannian space V,,, converts every spatial element E into a spatial element 
/~ such that the points x and x of E and E, are on the same geodesic C, 
the spatial directions of E and /~ are orthogonal to this geodesic C at the 
points x and x, respectively,  and the geodesic distance along this geodes i c  
C between the two points x and ~ of E and E, is the constant  k ~ 0 .  

A family of c~' surfaces,  V(0c)- constant, each of ( n - - 1 )  dimensions, is 
called a parallel family  in the Riemannian  space V,,, if and only if this 
family is orthogonal to a set of ¢<~-~ geodesics C in Vn. Such a family is 
a parallel  family if and only if it is left invariant  by the one-parameter  
dilatation group A of the Riemannian space V~. 

A family of ~ surfaces, V(0c) --  constant, each of ( n - -  1) dimensions, is 
a parallel  family in the Riemannian space V,,, if and only if the function 
V(x) can be chosen so that it obeys the first order Hamilton-Jacobi parlial  
differential equation 

. 3 V  3V 
(14.10) g'J ~x ~ 3 x : -  1, 

for this Riemannian  space Vn. 

15. The infinitesimal contact transformation T of a natural family  F 
in a Riemannian space V~. Let  a Riemannian space V,,  be a conformal 
representat ion of the Riemannian space V~. Then ds "-~ds,  where the asso- 
ciated positive scalar point function is ~ > 0. Consequently, g ~ j - - ~ g j  and 

1 - - . .  . .  

g,J --- ~ gV. 

For  a curve C in Vn, the covariant form p~ of the unit tangent vector  
~ ,  is given by the relations 

(15.1) 

- =. dx: dx: 
Pl == g~l ds --" Fgii dss - -  FPl; 

dJ5 i 1 . 

d~ = g~:pj ~ ~ 9~JPi" 
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The characteristic function -~ = l ' ( x ;  p), of the Riemannian space Vn, is 

(15.2) F -  F-(x; ~)=~(g~p~p~)~/z__ _p,l P(x; p). 

1 P(x; /o) = r(x; p), s ince /~  = ~tp~. It  is evident that P - - r ( x ;  p ) - -~ t  

Since F(vc; p ) - - 1 ,  along a curve C of Vn, then F(vc; p ) ~  ~, along the 
curve C of V~, which is the conformal image of the curve C of Vn. 

The covariant form x~ of the vector geodesic curvature ~¢ of a curve C 
in ~ ,  is 

as ~x ~ ~ \ ds ~ ~x ~ + ~x ~ / 

1 [dl~ 8p, 3I' ) (15.~) - -  ~ \ ~  a~  + 

1 g~ 
- - ~ ( d s  ~x ~ q- 2~ ~-x¢ P~Pk • 

The family F of ~2~-z geodesics C in the Riemannian space V~, is 
depicted as the natural  family F of ~2~-2 curves C in the Riemannian space 
Vn. The infinitesimal contact transformation T of this family F of ~2n-2 
curves C in the Riemannian space V~, is that of the Riemannian space Y.. [14]. 

TtrEOnE~ 15 .1 . -  The characteristic function of  the infinitesimal contact 
transformation T of a natural family F of c:,o 2"-2 curves C of a Riemannian 

- 1 
space V,~, is F --  -F(x,; p) --  ~ l~(vc; p), where F(x; p) --  ( g ~ ) l / ~ ,  is the chara- 

cteristic function of the original Riemannian space V, .  This infinitesimal 
contact transformation T, is g$ven by the equations 

(15.4) 

a r  = 1 

8pi I x 

Annali dt Mat~atatttya 48 
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Also this is given by the symbol U F, namely  

/15.5) 

This follows from the previous discussion. 

TI=[EORE~I 15.2. - The differential equations of a natural  fami ly  F of  
~ . ~ - 2  curves C in a R i e m a n n i a n  space V,~, may  be writ ten in the form 

(15.6) 

dx ~ ~F 1 . . -  
g~JPi " 

ds ~p~ 

dp~ ~ ~F ~ l ~ g ~ k _ _  
- - ~ x  ~ ~x ~ ~x ~ 2~ ~x ~ PjPh, 

for i - - 1 ,  2, ..., n. 

This a consequence of the definition of the infinitesimal contact tran- 
sformation T of a natural  family /~" of ~2n-2 curves C in the Riemannian  
space V~. 

The preceding infinitesimal contact t ransformation T, or its corresponding 
symbol U F, generates a one-paramete r  group h of contact t ransformations D~ 
in the Riemannian space V~. This one-parameter  group h is the one-para- 
meter  dilatation group h of the Riemannian space V-~, which is the eonformat 
representa t ion of the given Riemannian space V..  

Any contact  t ransformation ])z of the preceding one-paramete r  group 
in the Riemannian space V.~ sends every spatial element E into a spatial 
element E such that the points x and x ' o f  E and ~ are on the same curve 
C of the natura l  family F, the spatial directions of E and E are orthogonal 
to this curve C at the points x and w respectively,  and the v-alue of the 

X 

integral:  f~ds, evaluated along this curve C between the two points x and 

of E and E, is the constant k ~ 0 .  

TKEOREM 15.3. A fami ly  of  ~ surfaces, V(~c)--constant, each of ( n - -  1) 
dimensions, is orthogonal to a set of ~ ' - ~  curves C of  a natura l  f ami l y  F 
of  the R i e m a n n i a n  space V~ i f  and  only i f  the function V(,x) can be so chosen 



J. DE CIcco: The Riemannia.~ Geometr V Of Physic¢d Systems, etc. 379 

that it obeys the first order Hamil ton-Jacobi  par t ia l  differential equation 

. . ~ V ~ V  
(15.7) g~ ~x ~ 3xJ - -  ~" 

For, each transformation D-~ of the one-parameter  group 5, discussed 
above, is a contact t ransformation Dk. 

The Riemannian  space V+, may be visualized as an optical medium for 
which the index of  refraction is the positive scalar point function ~t > 0. The 
set of c~ 2'~-2 light rays C of this optical medium is composed of the c~ 2"-2 
extremals C of the variat ion problem 

(15.8) T ~ Time ~ ; ~  ds -~- minimum. 

1 

Therefore, this set of c~2--2 light rays C, is a natural  family  F of O C )  2 ~ - 2  

curves C. 

In  this optical medium, a set of ¢~1 wave fronts is given by the equation 
V(x) - -cons tan t ,  where the function V(x) is so chosen that it obeys the first 
order HA~ILTO~C-JAcoBI part ial  differential  equation (15.7). Each surface of 
this s e t  of oo ~ wave fronts, given by the equation V(x) = constant, is of 
dimension ( n -  1). 

16. The Lagrangian and Hamitonian equations of a/natural family F 
of a<~ =~-2 curves C. It is supposed that a particle of mass m > 0, is constrai- 
ned to move alone a curve C of a natura l  fami ly  F of cx~2~-2 curves C, such 

?V for which a that it is influenced by a conservative field of force ( I ) -  ~ x '  

potential function is V - - V ( x ) .  

For such a particle of mass m > 0, the vector q is given in the eontra- 
variant  form q{ and in the covariant form q~ by the formulas 

(16.1) q~ ----- m ~ dx~ 
v d r '  

qi = m ~-g~ dxJ = mpl 
V ".t ~ 

1 
Evidently,  F(x; /)) "-- ~ F ( x ;  q). It is clear that F(x; q ) - - m ~ ,  along such 

a c u r v e  C. 

Under these conventions, the differential  equations (15.6) of the natural  
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family F of c~="-= curves C, can be wri t ten  in the form 

(]6.2) 

dx~-- "-" v $F(x--; q)__ v gq~, __ v 
dt ~q~ m F ~ m-~ q ' 

dq~ ~F(x; q) ~F 
d ~  - -  v ~x ~ + m y  ~ - -  

v ~glZ~ ~F 
2mF ~x ~ q~qa + mv ~x ~ . 

T~EOREM 16.1 

q~ wi th  respect to 
na tura l  family,  F, 

Dq~ 
- The absolute total d e r i v a t i v e ~  of the covariant vector 

the time t, along any  one of the ~ 2 , - ~  curves C of this 
is 

(16.3) Dq~ dq~ dx~ ~F 
dt - dt - -  F~q~ dt ---mV ~x,--~' 

for i - - l ,  2, ..., n. 

This is proved by using equations (16.2). It  is seen that 

(16.4) Dq~ _ dq~ F~ dx~ dq~ m F ~ F~ dx, ~ d~t~ 
dt - - ~  ~q~ ~ - - ~  v y ~  ~ gt 

dq~ m~t dx ~ gx~ dq~ m~ ~g~ dx ~ dx~ 
- - a t  v r~;~ d--[- d--t = d~{--- 2--v ~x - - y  -dt at 

Consequently 

(16.5) Dq~ ~ dq~ 
dt dt 2mF g g~-~x ¢ qjqa 

dq~ v $gi'~ ~ 
- -  g--i + 2m~ ~x~ qjqh = my ~-~$~. 

This completes the derivation of the equations (16.3). 

THEOREM 16.2 - I f  the Lagrang ian  funct ion L is defined as 

(16.6) L -- ~(T--  V + E) --  E, 
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then the set of ~-~-~ ewtremals C of the var ia t ion  problem 

2 2 

(16,7) ; L d t - - / [ ~ ( T - - V +  E)  - -  E ]  dt - -  minimum, 

is the na tura l  f a m i l y  F o f c ~  "-~-~ curves C. Therefore, the system of Lagrang ian  
equations for this na tura l  f a m i l y  F of  ¢:,c~-~ curves C, is 

- -  - - -  - -  ~ - - m v - -  ~ 0 ,  
dt ~c x ~ v ~ ~x ~ ~x ~ 

for i - - l ,  2, ..., n. 

For, if L denotes the Lagrangian  funct ion (16.6), then 

(16.9) 

v [dt\~x~/ ~x i ÷ ~x ~ Vx i 

Since the EULER-LAGRAN(~E different ial  equations for the set of ~'~'--~ 

extremals  C of the variat ion problem (16.7', a r e -  - - -  = O, for 

i - - 1 ,  2~ . . . ,  n, it follows that the set of ~ - ~  extremals  C of the variat ion 
problem (16.7), is given by the system of Lagrangian  equations (16.8) 

By subst i tut ing (16.1) into (16.3), the system of Lagrangian equations 
(16.8). is obtained. Consequently, the set of ~2~-~ extremals  C of the 
variat ion problem (16.7), is our  given natura l  family F of ~2~-~ curves C. 

The proof of Theorem 16.2, is complete. 
From equations (16.1) and (16.2), the kinetic energy T of a part icle 

of mass m >  0, t raversing such a curve, C, is 

(16.10) m dx ~ dxJ v~ ~i v 2  

T - -  ~, g~i dt dt ~ 2m~ 2 g q~qj - -  2m~ ~ [F(x; q)]~ 

THEORE~ 16.3 - I f  the Haml ton ian  funct ion H is taken as 

(16.11) H = H(x  ; q) - -  v 
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then the natural  fami ly  F of ~"-~ curves C, is composed of the set of ~ - ~  
integral solutions C of the system of Hamiltonian equations 

(16.12) dx ~ aH dqi ~H 
dt ~ q ~ '  t i t - -  Ox ~ ' 

for i :~ i, 2, ..., n. This Hamil tonian function H is the constant total 
energy E, along any: curve C of the ~2,-.~ curves C of the natural family  F. 

For, when the Hamil tonia  function H is given by (16.11), then subject  
to the condition that T~-  V : E ,  the expanded forms of the Hamil tonian  
equat ions (16.12), are 

dx i ~H ~ ~T _ v v . 

a-t =  q-5 = v m% g %  = q '  

dq~ ~H ~ ~T p. ~ V 
= d [ - -  ~ - -  v Vx t v ~x ~ 

~T $v 
(16.13) - -  v Ox ~ -}- mt~ 

v ~gJ k 1 ( ~ c~v\I~ )]2 ~v 
-- - -  2m~t ~x ~ qJq~ -~ ~ v ~ - - ~  p.~x~/[-}iI(x; q -{- m~ ~x ~ 

v ~gik ~t 
-- 2mp~ ~x ~ qJq~ + mv ~x ~ . 

By equations (16.2), it follows that (16.12) are the Hamil toniann 
equations of the natural  family F of ~2~-2 curves C for which the Hamil- 
ionian funct ion H is  given by (16.11). Thus the preposit ion is proved. 

It  is remarked that the Lagrangian funct ion L and the Hamil tonian 
function H are related by the equations 

(16.14) H -}- L -- 2~ ~/; 
V 

H -  L = - -  mv~ -]- 2E. 

t7. The infinitesimal contact transformation T associated with a 
conservative physical fami ly  Sh (E) where k ~ -  1, c~, o f  oc ~-2  trajec- 
tor ies  C. By means of Theorem 12.3 and Theorem 15.1, the following 
proposit ion may be established. 

TI:IEO:RE• 17.1 - The conservative physical family  S~ (E) where k ~ ~ 1, 
c% is composed of the oa2,-~ trajectories C of the one-parameter group 
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of contact transformations Dh, generated by the infinitesimal contact transfor. 
mation T whose characteristic function ~ - Y ( x , ;  p-), is 

(17.1) 1 ~ g~P~P~ -I ~/~ 

This is the infinitesimal contact transformation T associated with the 
conservative physical family Sh (E) where k =~=- 1, ~ ,  of c,~ ~-~ trajectories C. 

This infinitesimal contact t ransformation T, is given by the equations 

(17.2) 

~ = [(1 + k)v ~ ~v 
,)x i 

1 ~ a 3g~a 
v - -  ~x ~ pjph]~s. 

Also it given by the symbol U F, namely 

(17.3) 

- SF 
UF -- v-~-h(gqpj) 

_~ [(l ~_ k)v ~ 3v ~ ~ g J k - -  I 3F 
~x ~ -  ~ v -~-~ ~x ~ pjp~ ~ " 

Wile k = 0 ,  this reduces to the infini tesimal contact ~ransformation T 
of mechanics studied by Lie and Vessiot. 

THEOREM 17.2 - I f  the Lagrangian function L is defined as 

(17.4) L =  v~( T - V -+- E )  - -  E, 

then the set o f  ~ 2 . - 2  extremals C of the variation problem 

2 2 

- - 

1 1 

is the conservative physical family 8k (E) where k ~ - - 1 ,  ~ ,  
trajectories C. 

This is a consequence of Theorem 12.3 and Theorem 16.2. 

of (~2n--2 
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When  k = 0, the above proposition reduces  to the we l l -known result  
concerning a conservative dynamical  family So (E) of c~z~,~-2 trajectories C. 

T]=tEOnEM 17.3 - The Hamil tonian function H of a conservative physical 
family  Sk(E) where k :4=-  1, c~, of c~ ~''2 trajectories C, is 

(17.6) H =  H(x; q ) - -va(T-]  - V - -  E) + E. 

This follows from Theorem 12.3 and Theorem 16.3. 
When  k = 0 ,  this restflts becomes the wel l -known one concerning a 

conservat ive dynamical  family So(E) of c~ 2n-2 trajectories C. 

18. The infinitesimal contact transformation T associated with a 
conservative velocity family S~(vo) of ~2~-~ velocity carves C. By Theorem 
13.3 and Theorem t5.1, the following result  can be established. 

T]tEORE~¢[ 18.1 - The conservative velocity fami ly  Sw(vo) of  oz ~'~''~ velocity 
curves C, is composed of  the c,z~n-2 trajectories C of  the one parameter group 

of  contact transformations [)h, generated by the infinitesimal contact 
transformation T whose characteristic function ~ - - ~ ( w ;  /~), is 

(18.1) r --  F(x; p)  - -  e -  2~--~ F(x; p) --  e ~o' g~p~p~ .~ 

This is the infinitesimal contact transformation T associated with 
conservative velocity fami ly  Soo(vo) of c~z 2n-2 velocity curves C. 

This infinitesimal contact  t ransformation T is given by the equations 

a 

(18.2) 
~x i --  e ~o~ (giJpi)~s , 

\vo ~x' 2 

Also it is given by the symbol UF, namely 

(18.3) 

aft 

v ~__ ~ v ~ e - 2~ ~-~ pjPk) ~P~ -I- e 2~o~ ~x i _ . 
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THEOREm[ 18.2. - I f  the Lagrangian function L is taken to be the expression 

q)2 

(t8A) L - - -  e ~ ( T - -  V +  E) - - E ,  
v 

then the set of ~2~-2 extremals C of the variation problem 

(18.5) L dt = ) e ~ ( T - -  Vn t- E) - -  E dt "- minimum, 

1 1 

is the conservative velocity family S~(vo) of ~ - ~  velocity curves C. 

This follows from Theorem 13.3 and Theorem 16.2. 

TttEORE~ 18.3. - The Hamiltonian function H of a conservative velocity 
family S~(vo) of ~z ~n-2 velocity corves C, is 

(18.6) H - -  H(a; q) - - -  e2oo-~(T ~- V - -  E) -~ E. 
v 

This is a consequence of Theorem 13.3 and Theorem 16.3. 

19. Inf in i t e s imal  contact  t rans format ions  T [15]. Consider a spatial element 
transformation T in a space of dimension n, given by a system of 2n equatons 

(19.1) 

for i :  1, 2, ..., n, such that  each one of the 2n functions X~(x; p); Pi($; p); 
is of class m ~ 3 ,  and the J-aeobian matr ix  is of rank 2n, in a certain 2n 
dimensional region of values (x; p). 

A t ransformation T of this kind, is said to be a homogeneous contact 
transformation T, or more simply, a contact transformation T, if and only 
the differential  expression p~dx ~, is invariant  under  T. 

~_ spatial element correspondence T is a contact t ransformation T if and 
only if the following set of 2n conditions is valid, namely 

(19.2) P~ ~X~ ~X~ ~x ~ --p~; P~ ~p~ - - 0 ;  

for i ~-~ 1, 2, ..., n. 
An infinitesimal spatial element transformation T, is defined by a set 

of 2n conditions of the form 

(19.3) ~x~ --  X ~ -- x ~ --- ~(x; p)~s; ~p~ --  P~ - -p~ --  ~(x; p)~s; 
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for i - - 1 ,  2,... ,  n, where  ~s, is an infinitesimal, and each one of the 2n 
functions ~(x; p); ~(x ;  p); is of the class m ~ 2 ,  with at least one being 
not identically zero, in a certain 2n dimensional  region of values (x; p). 

A given infinitesimal spatial e lement  t ransformation T, generate  a one-  
pa ramete r  group G~ of spatial element correspondences T~, and conversely. 

The preceding one-paramete r  group G~ of spatial e lement  correspondences 
T~, may  be represented uniquely  not only by its infinitesimal spatial element 
t ransformation T as given by the equations (19.3), but also by its Lie symbol 
U /7'. This symbol U F is given by the expression 

(19.4) 

For  this one-paramete r  group G~, there is a set of ( , ~ - ~  path spatial 
element series E, which is the collection of the c~ 2~-2 integral  solutions ~ of 
the system of 2n first order ordinary different ial  equations 

(19.5) dx ~ dp~ _ 
ds --  ~(x; p); ds --  ~(x; P); 

for i - -  1, 2, ..., n. This set is said to be the fundamental  system of ordinary 
differential equations of the given one-paramete r  group G1. 

If every ~ is independent  of all of the p's, and if at least one ~i is not 
identically zero, then the path curves C of the path spatial element series v 
Of the one-paramete r  group GI, form a set of  cx~ ~-~ path curves C. 

Suppose that at least one ~ is not independent  of all of the p's. The 
direction determined by the vector ~x with the contravar iant  components 8z~ 
such that this vector ~w has its initial point x at that of the spatial e lement  
(x; p) and its terminal  point X at that of the spatial element (X; P)  where 
these are related by the equations (19.3) of the infinitesimal spatial element 
t ransformation 17, is said to be transversal to the direction of the covariant  
vector p~. 

Under  these assumption, the transversali ty law defined by the infinitesimal 
spatial element t ransformation T, is given by the set of n equations 

(19.6) d_xx~ _._ ~(x; p), 
ds 

for i - -  i, 2, ..., n. 

The infinitesimal spatial element t ransformation T given by equations 
(19.3), is an infinitesimal contact transformation T if and only if the following 
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set of 2n conditions are satisfied, namely 

(19.7) p ~ +  n~-o; p~=o; 

for i - - 1 ,  2, ..., n. 

Under  these conditions, set p ~ -  F(x; p). It is found that this characte- 
ristic function F -  Y(x; p), of the infinitesimal contact t ransformation T, is 
a non-constant  function of class m ~  2. in the given 2n dimensional  region 
of values (w; p), and is homogeneous of degree one in the p's. Moreover 

(19.8) ~ --  ~p~ ; ~ --  ~x~; 

for i - -  1, 2~ ..., n. 

Therefore,  an infinitesimal 
system of 2n equations 

contact t ransformation 

(19.9) 

T is defined by a 

~z ~__X~_x~ ~F ~F - - ~ s ;  ~p~-- P~--p~ = - - ~ - ~ s ;  

for i -  1, 2, ..., n, where the character is t ic  funct ion P----P(w; p), is not con- 
stant, and is homogeneous of degree one in the p's. 

This infinitesimal contact t ransformation T generates a one-paramete r  
group h of contact t ransformations Dk. 

It is seen that a one-parameter  group h of contact t ransformations D~, 
is represented uniquely,  not only by its infinitesimal contact t ransformation 
T, but  also by its LIE symbol UF. This symbol UF is given by the 
P o I s s o ~  parenthesis  

(19.10) UF = (F, E)  --  
~p~ ~x~ ~x~ ~p~" 

The infinitesimal contact  t ransformation T is a point transformation T 
if and only if its character is t ic  functions r - - i ~ ( x ;  p), is l inear  integral in 
the p's. This infinitesimal point t ransformation T, generates  a one-paramete r  
group A of point correspondences Dk. For  this one-paramete r  point group A 
there is a set of c~ -1  trajectories C. 

Henceforth,  let the infinitesimal contact  t ransformation T be not a point 
t ransformat ion T. This is equivalent  to saying that the character is t ic  function 
r --  l:(x; p), is not l inear integral in the p's. The corresponding one-paramete r  
group h, is composed of contact t ransformations Dk, which are not point 
correspondences  Dk. 
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For, the preceding one-parameter  group A, there is a set of cx~2,-~ trajecto- 
ries C. This is the collection of c<~ 2~-~ integral solutions C of the fundamenta l  
system of 2n first order ordinary differential  equations 

(19.11) dz ~ 3P dp~ 3[' 
d - - ~ = ~ ;  4 s - -  ~x ~; 

for i = 1, 2, ..., n. Along each one of the ~2n-2 trajectories C, the charecte- 
ristic function P = P(x; p), is constant. 

A ~on-singular trajectory C is an integral solution C of (19.11), along 
which the characteris t ic  function F = F(x; p), is not zero. Thus the p's may 
be so chosen that the characterist ic  function 1 ~ = r(x;  p), is uni ty  along any 
non-s ingular  t ra jectory C of the set of c~2~-2 trajectories C. 

If  the characteris t ic  function l: = P(x; p), is not l inear integral in the 
p's, the transversality, law of the infinitesimal contact t ransformation T, is 
given by the set of n equations 

(19.12) gx---~ = ~I~ 
ds ~p~ 

for i - - 1 ,  2,. . . ,  n. 

20. The commutator (G, G)F two infinitesimal contact transformations 
U~F and U2F [16]. Two distinct infinitesimal contact t ransformations T~ and 
/2,  can be denoted by the two symbols U~F=(P~ ,  ~') and U2F=(] :~ ,  F), 
where the two corresponding character is t ic  functions r l  = Fdx; p), and P~ = 
= Fdx; p), are not non-zero constant mult iples of one another. Then the 
commutator or alternant (G,  U2)F, as given by the equat ion 

(2o.1) (G, G)F = (GG)F- -  (GG)F, 

represents  an infinitesimal contact t ransformation t'8. 

The characteris t ic  function 1~3--rs(x; 1o) of the infinitesimal contact tran- 
sformation (U~, U2)F, is given by the POlSSO~ parenthesis  

(20.2) r s = ( r ~ ,  G)--  OF1 ~G ~P1 ~P2 
~p~ ~x~ ~x~ ~p~' 

If  P1 = Pl(x; p), and P2 = Fdx; p), are each of class m ~ 3 ,  then P s = F d x ;  p), 
is of class m - - 1 ~ 2 ,  in the 2n dimensional region of values (x; p). Of 
course, it is evident that P8 = Fdx ; p), is homogeneous of degree unity, in the p's. 
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Let UF and UF  denote two distinct infinitesimal contact  t ransformations 
T and T-such that nei ther  one is a point correspondence.  Then nei ther  one 
of the two associated characteris t ic  functions P - - F ( x ;  p), and ~ - - ~ ( x ;  Io), is 
l inear  integral  in the p's. Of course, nei ther  characteris t ic  function is a 
non-zero constant mult iple of the other. 

TKEOREh]: 20.1.-  The two distinct infinitesimal-contact transformations UF 
and  UF, possess the same transversalily law i f  and  only i f  the two associated 
characteristic functions [ - - P ( x ;  /~), and  ~ = £(x; p), are related as follows 

1 r(~; ~ ) = l r  (20.3) r = r(~; ~ ) =  ~ ~ , 

where ~(x) is at least of class two and never vanishes in a certain n dimen- 
sional region of  points  x. 

For, by (19.12), the two distinct infini tesimal contact t ransformations UF 
and UF, have the same transversal i ty  l a w  if and only if 

(20.4) , for i, j ~ 1, 2, ..., n. 

Hence  ~ - - / J (x ;  P) by the theory of 5acobians. Since ]~ --  r (x;  p), and ~ --  
----~(x; p), are each homogeneous of degree one in the p's, it follows by 
EULER'S theorem on homogeneus functions that 

(2o.5) p ~ - =  = p, = r F. 

- 1 1 
Thus F =  1 l:, so that P - - r ( x ; p j - -  r(x; p ) - - - - - r .  Because of the dif- ~(x) ~(x) 
ferentiabil i ty assumptions, it is seen that ~(x) is at least of class two and is 
never  zero in an n dimensional  region of points x. 

Let UF, U1F, ~72F, denote three distinct infinitesimal contact ~ransfor. 
mations T, T1, T2, such that nei ther  one is a point eorrespoodence. Then 
each one of the three associated character is t ic  functions 

r - - l : ( ~ ;  p), i ~ l ~ ( x ;  p), ~2~]~2(x; io), is not l inear  integral  in the 
~s .  Also no one of these is a non-zero constant mult iple of any other. 

By Theorem 20.1, these three distinct infinitesimal contact transfor. 
mations UF, U~F, U2F, possess the same transversal i ty law if and only 
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if the three associated characterist ic functions ] : =  l?(x; p), l?l--l?~(x; /)), 
r , - - ~ , ( x ;  p), are related by two equations of the form 

(2o.6) p~ = ~(~; ~) = i 

~(x) 
r(z; p), r~ ~(x; - ) -  1 r(x; ~), -" p _ ~  

where each one of the two point functions ~t~(x) and ~t2(x), is at least of 
class two and never  vanishes in a certain n dimensional  region of points 
w. Fur thermore ,  nei ther  one of these two point functions ~t~(x)and ~2(x), 
is a non-zero constan~ multiple of the other. 

T:~EOREM 2 0 . 2 -  The characteristic function Da--D~(x; [9), of the com- 
mutator (U~, U2)F of the two distinct infinitesimal contact transformations 
U~F and U2 F for which the two characteristic functions are r~ ~ lX~(x; /~)--- 

_- 1 r(~; i~), and ]:~ = ~(~', ~ ) - -  ~ r(x; i~), is ~(x) ~(~) 

(20.7) y~ (~ ,  ~,) 1 / v~l v~,) ~ ..~, 

This follows by substi tuting (20.6) into (20,2). 
The remain ing  theorems of this section are extensions of some theorems 

of KISSER concerning the commutator  (U~, rf2)F of two distinct infinitesimal 
contact  t ransformations U~F and U2F associated with two distinct dynamical  
families. 

The character is t ic  function [ - - - ] : (x ;  p), of a given Riemannian space 
1 

IT,, is ] : - - r ( x ;  p ) =  (g~p~.p~)~ For this Riemannian space V,,  the tran- 
sversali ty law is that of orthogonality.  

In  the Riemannian  space V,,  a conservative physical  family Sk(E)where 
k ~ - - 1 ,  c~-, of ~2~-~ trajectories C, or a conservative velocity family See(Co) 
of ~ ,~-2  velocity curves C, is a .natural family F of c~-''-~ curves C, and 
conversely. The character is t ic  function r - - - t - (x ;  /o), of the associated infini- 
tesimal contact t ransformation UF, of this natura l  family  F of ~2 , -~  curves C, is 

1 1 
(20.8) P -- l~(x ; p) --" ~ - )  F(x ; /~) - -  - ~ )  (g~p~p~)-i. 

Thus the t ransversal i ty  law of-the infinitesimal contact t ransformation UF, 
is that of orthogonali ty in the Riemannian  space V,~. 

TItEOREM 20.3. - The commutator (U1, U2)F of two distinct infinitesimal 
contact transformation UIF and U2F of two distinct natural families F1 and 
F~ of the same Riemannian space V, ,  is a point transformation. 
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For, by hypothesis ,  it is seen that  l: ~ -  g~p~p~. Then  by (20.7) and 
(20.8), the character is t ic  funcion  ~ ~-~-~(x;p) of the commnta to r  (~71, ~]~)F, is 

( 2 0 . 9 )  = p)= ( 

Since r~ ~ ~(~v; /)), is l inear  integral  in the p-'s, it follows that  
(~f~, T]~)F, is a point  t ransformat ion.  

THEOREM 20.4 - I f  tWO distinct infinitesimal contact transformations 
U~F and U~]~, possess the same linear involutorial law of transversals, then 
the commutator (~]~, U~)F, is a point correspondence. 

This  is a res ta tement  of Theorem 20.3. 

TI-IEOREM 2 0 . 5 -  The commutator U~, U~)F of two distinct infinitesimal 
contact transformations U~F and U~F of two distinct natural families ~'~ 
and F~ of two Riemannian spaces V. and V.,  is a point correspondence T 
i f  and only if V, and V. are conformally equivalent. 

For, there is no loss in general i ty  in assuming  that  the two character-  
istic funct ions  £~----~ r~(x.; p) and ~ 2 ~ £ ~ ( x ;  p-), of the two dist inct  infinite- 
simal contact  t ranformat ions  ~T~F and ~F~ be of the forms 

(20.10) F~ - -  £~(x; p) --- (g~pap~)~f~ ~ -- £~(x; p) --" (g~p~p~)~l~, 

for which the two quadrat ic  forms g~Ppapp~ and g~p~pp, are positive 

definite.  By (20.2), the character is t ic  funct ion ~--" ~(x; -p)  of the com- 

muta to r  (UI, U~)F, is 

(20.11) , - 

This  is the character is t ic  f u n c t i o n - ~ : ~ - 8 ( x ; p )  of a point  t ransformat ion  
(U1, U2)F, if and only if r s - - ~ ( x ;  p), is l inear  integral  in the ~)'s. 
Under  these condition% there exists a posit ive scalar  point  func t ion  

- . .  1 
l~(w) ~ 0, such that  g~J-'---~g~]. This  means  that  the two R iemann ian  spaces 

V,, and V,~ are eonformal ly  equivalent .  

T~EOnEM 20.6 - Two distinct infinitesimal contact transformations U~E 
and 7f2F with the same transversality law~ possess a point transformation T 
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for their commutator (U~, U~)F, i f  and only i f  they are associated with two 
distinct natural families F~ and 14'~ of two conformally equivalent Rieman. 
nian spaces V,, iand F,,. 

For, under the given hypotheses,  it follows by Theorem 20.1, that the 
two character is t ic  functions ~-~-------r~(x; p), and ~2~--~2(x; p), of the two 
distinct infinitesimal t ransformations /f~_F and U2F, can be taken to be 

(20.12) L - -  ?~(x; ~) = r(~; p), r~ = ~(x ;  ~) - -  x(x)r(~; b), 

where  ~.(x) is a point function which is not a constant  in the given n 
dimensional  region of points ~c, The characteris t ic  funct ion  ~-----~-8(x; p) of 
the commutator  (U~, U2)F, is 

(20.13) r3 --" I78(x; ~ -- 1 3), 3 
2 ~x ~ ?p~ 

Thus the commutator  (U1, U2)F, is a point t ransformation T if and 
only if 

3), ~ l  ~2 
(20.14) - -  O. 

Suppose that at least one of the third order part ial  derivatives 

~sr~/~p~3p~pv, is not zero. Then (20.14), is a l inear homogeneous partial  
differential  equation of first order in the function k. By standard theory, 
this possesses (2n-l) funct ional ly independent  solutions, and any other 
solution is a function of these. Now evidently, (Pl, ..., P,) ,  are n function- 
ally independent  solutions. Hence  there exist (n-l)  functionally independent  
solutions kl(x), ..., k,_l(~c), depending on the points x, only. Replacing ). 
in (20.14) by each one of these ( n - - 1 )  oxpressions ).l(x); ..., ).,_l(x), it 

follows that the quanti t ies  33r"/~p~3p~py, are proport ional  to functions 
of the points x only. 

But  32~2/3p~pv, is homogeneous of degree zero in the /~'s. Thus  by 
Eu l e r ' s  theorem on homogeneous functions, it follows that 

(20.15)  p--~ aaI'~ ~ O. 

Hence  since the third order part ial  derivatives of p2 with respect  to 
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the p~,, are propor t ional  to funct ions  of the points  x only, it follows that  
they mus t  vanish  identically.  

This  is a contradic t ion of our  supposi t ion.  
By the preceding  argument ,  it is seen that  

(20.16) 
~ a i ~ u  

- - 0 ,  for ~, ~, y = l ,  2, ..., n. 
3P~P~Pv 

Therefore,  I '~ is a homogeneous  quadrat ic  form in the p's. Moreover, r :  
is a posit ive defini te  quadra t ic  form in the p's. 

Subs t i tu t ing  the positive defini te  quadra t ic  form l? ~ in the p's, into 
(20.12), it is seen that  the proof of Theorem 20.6, is complete.  

21. (]eodesically equivalent Riemannian spaces V ,  and V. [17]. A 
projective transformation T between two Riemannian  spaces V. and V . ,  is 
a car togram T or a cor respondence  T between V. and V . ,  such that  
under  T, every geodesic C of V, ,  is conver ted into a geodesic C of V . .  
Any two such R iemann ian  spaces V. and V,, are said to be geodesically 
equivalent. 

TgEORE~t: 21.1 - A correspondence T between two Riemannian spaces V, 
and V. ,  is a projective transformation T i f  and only i f  the Christoffel 
symbols of the second k~nd: F~z: and ~ :  of l~ and I / . ,  are related as 
follows 

(21.1) 

~,~ --_ r ~  , fo~ j :#:i, and k ~=i, 

~ ,  - 2r[j  = r~, - 2r i j ,  for j + i .  

This system of equations is equivalent to the set of equations: ~ i =  A~, 
for i =  1, 2, ..., n. 

For,  by equat ion (7.1), the cor respondence  T is a project ive transfor- 
marion T be tween the two R iemann ian  spaces V, and V , ,  if and only 
if ~ - - .  h ~, for  i =  1, 2, ..., n. F rom (7.2), this set of equations,  namely  
h ~ - - A  ~, for i-----1, 2, ..., n, is equivalent  to the system of equat ions 

- - i  i - -  " ~ i  " i r i j = r , ,  r~ 2 r~j 2r~ i, -~ 

(21.~) ~ .  2~'.. r~. 2r~j ~ j  r ~ . -  r~; r ~. 
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for i=~:j; ~=~=i, j ;  ~:~=i, j. This system (21.2), is equivalent to the system 
(21.1). Thus Theorem 21.1, is proved. 

If  the two Riemannian  space V. and ]~  are not geodesically equivalent  
under  a given car togram T, then all the possible geodesic C of V~, which 
by T, are converted into geodesic d of ~ ,  are integral  solutions C of ( n - - t )  
explicit  cubic differential  equations, each of the first order. I f  these (n - -1 )  
cubic dfferential equations are all independent of One another, the maximum 
number of geodesic C of V~ so converted, is 3 '~-~ ~ , - ~ .  This extends to n 
dimensions, a corresponding theorem of KASlqER for surfaces. 

An affine transformation T between two Riemannian  spaces V~ and IV, 
is a ear togram T or a correspondence T, such that under  T, the C]ZRIS~O:~FEL 
symbols of the second kind:  I~jk and i~k, of V,, and V~, are invariant.  That  
is, ~ yk--]:1~, for i, j, k -~  1, 2, ..., n. Then the two Riemannian space Vn and 
TV~ are said to be affinely equivalent. 

An affine transformation T between two Riemannian spaces V~ and :7,, 
is a projective t ransformation T. Hence if two Riemannian  spaces V,~ and 
V~, are affinely equivalent,  then they are geodesically equivalent.  

However,  the converse of the above s tatement  is not always true. That  
is, there may exist a projective t ransformation T between two Riemannian 
spaces V~ and Vn which is not an affine correspondence T. 

It is clear that an affine t ransformation T between two Riemannian 
spaces V~ and ]Yn, preserves parallel displacements of vectors. 

THEOlCE:~[ 21.2. - I f  T is both a conformal map and a projective transfor- 
mation between two Riemannian spaces V~ and V~, then T is a homothetie 
correspondence, and V, is a homothetic representation of V,,. That is, d s - -  ~ds, 
~vhere t~ > O, is a constant. 

For, let T denote a conformal car togram T between two Riemannian  
spaces V~ and "IV.. Then  ds - -~ds ,  where ~ > 0, is a positive scalar point 

- - . .  1 ~y 
function. Thus g# ---- ~g#, and gV = ~:g . By (10.3), it is seen that 

(21.3) 

If this conformal car togram T is also a projective t ransformation T, then 
- - i  i necessarily,  l?jk --  l?ik, for j ~ i, and k :4: i. Thus a necessary set of conditions 

for this, is 

(21.4) gJkg iZ ~z ~ O, 

for j :~ i, and k =[= ~. 
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If g~z ~-0,  for all j # i ,  and all k # i ,  then since i is a random index, 
it follows that g ~ j = 0  for all i , j - ~  1, 2,. . . ,  n. Hence  there is at least one 
gjk =4 = 0, for j =# i, and k # i. 

For  this par t icular  gjk ~- 0, for j # i, and k 4= i, it follows from (21.4) that 

n~l~, ~ O, (21.5) ~ c~xZ 

- - - 1 # 0 ,  it is seen  that ~ 0, for i - - 1 ,  2, ..., n. As the determinant  ]gi~[ g 

for 1 - - 1 ,  2, ..., n. Therefore ~ > 0, is a positive constant. 
As it is evident that the necessary condition d s =  ~ds, where  ~t > 0, is 

a positive constant, is also a sufficient condition, the Theorem 21.2, is established. 

From (21.3), it is seen that a homothetic t ransformation T between two 
Riemannian  spaces V,~ and V.,  is an affine transformation T. Therefore,  if 
two Riemannian spaces V~ and V~, are homothet ical ly equivalent,  then they 
are aff inely equivalent .  

The converse of the above result  is not always  true. Thus, there may  
exist an affine t ransformation T be tween  two Riemannian spaces V~ and V, 
which is not a homothetic map T. 

22. Appel l ' s  t r ans fo rma t ion  T for  a dynamical  system So of  c ~ " - ~ d y n a -  
mical t ra jec tor ies  C, in  a Riemannian  space V,~ [18]. From Theorem 7.1, the 
explicit  differential  equat ions of a complete dynamical  system So of c~" -~  
dynamical ,  t rajectories C, in a Riemannian space V,,  are 

¢pz _ ~9i ~ .  
h t dxJ 
h~ 

dxi 

(22.1) 

+ [ drip s driP] dx ~ ( r  ~ dx ~ dx~ dx ~ dx~ dx i] 
axJ dx, axi ÷ ~i r~  ~ dxJ dxJ dx i  dxi dxi] 

dxi  dxi \ dxl ] 

h i, 

where the two indices i and j with i ~ ] ,  are held fixed, and l ~ i ,  i, is 
allowed to vary  over the remaining integers 1 to n. 
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THEORESI 22.1.- Appell~s Tran.sformation T For A t t iemannian Space V, .  
A transformation T between two Riemannian spaces V, and ~ ,  converts 
every complete dynamical system So of ~2,~-~ dynamical trajectories C in V~, 
into a complete dynamical system So of c~2~-~ dynamical lrajectories 
in V,~ i f  and only i f  it is a projective transformation T between the two 

n 
Riemannian spaces V,~ and If,,, such that the following set of ~ (n--l)  con- 

ditions, os valid, namely 

- '  r ( 2 2 . 2 )  ~x--) (Fu  - -  ~ )  - -  

for i=~:i, and i, j , - - 1 ,  2, ..., n. Movorover, the two contravariant /orms 
~ and ~ of  the two positional fields of  force ~9 and @, satisfy the n 
conditions 

(22.3) C~ - -  --~ F~(I)~, 

for i --- 1, 2, ..., n, where t~ --'°F(x) > O, is a positive scalar point function 
of  at least class two in a certain n dimensional region of points ~c for which 

(22.4) 1 ~F ~!. F~x~-- ~ - - P , ,  

for i - - 1 ,  2, .,., n. Any  such correspondence is called Appell 's transfor. 
mation T. 

For, l e t  T be any point correspondence between two Riemannian spaces 
V,~ and IV,,, which carries every complete dynamical system So of ~2 , -1  
dynamical trajectories C in V,, into a complete dynamical system So of 
~2 , -1  dynamical trajectories C in V , .  

Now the logioal intersection of all complete dynamical systems So in 
V,,  is the family F of c, o2,-2 geodesics C in V,,. Similarly, the logical 
intersection of all complete dynamical systems So in V,,, is the family ~7' 
of c~ ~n-2 geodesics C in V,~. 

By these remarks, the required map T converts the family /7' of cx~2~--~ 
geodesics C in V,,  into the family /7 of ~ - 2  geodesics C in V, .  Conse- 
quently, it is necessarily a projective transformation T between the two 
Riemannian spaces V, and V,.  

For this projective transformation T, the set of conditions (21.1), is 
d~ f d5~ 

fulfulled. Thus 5~__-- h~, a n d d w ~ . ~ d ~ j ,  for all i , j----1,  2, ..., n. 

Because of the preceding conditions and because of equations (22.1), 
the two corresponding positional fields of force (I) and ~ ,  are related by 
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the conditions (22.3). If the plus sign is chosen in (22.3), the actual and 
virtual dynamical trajectories C of the complete dynamical system So in 
V,, correspond to the actual and virtual dynamical trajectories C of the 
complete dynamical system ~ in V. .  On the other hand, if the minus 
sign is chosen in (22.3), the actual and virtual dynamical trajectories C 
of the complete dynamical system So in V,,  correspond to the virtual and 
actual dynamicaltrajectories C of the complete dynamical system So in IT,. 

By equations (22.1) and (22.3), the only remaining conditions that the 
required projective transformation T must fulfill~ are 

(22.5) 

dO ~ d @  dx  ~ 

=.  ax ~ [ d(xJ) ~] 

d O ~ d Oi dx ~ 

O i (~i dxi + dxi dxi + hi 
- -  d x ~  ¢ ~  - -  OJ dx~ g(x~)~l ' 

with i 4 : ] ,  and i, j = 1, 2, .... n. Substituting O i - -  ~ ~t~O i, these become 
the single condition 

(22.6)  1 d~ - i  ax • dx~ + (r=~ - -  r ~ )  - -  O. 
dxi dx] dxi 

By use of equations (21.1), this becomes 

(22.7) 1 d ~ t  - .  d x  ~ 
axJ + (r~j - -  r~;) + ~ (P~ - r:%) d~x~= o. 

This is the same as saying that 

(22.8) ---1 d~ --- (F~ - -  P~)~ dz. 

The conditions (22.2) are those for the exact integrability of the 
Pfaffian that appears on the right of equation (22.8). Finally the conditions 
(22.4), are obtained from this equation (22.8) by equating the corresponding 
coefficients of dx~. 
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Therefore a projective transformation T between two Riemannian spaces 
V,, and V,,  is an Appell transformation T if and only if it obeys the 

n 
set o f ~  (n-- l )  conditions (22.2). 

This completes the proof of Theorem 22.1. 

TI-IEOREM 22.2 - Under a point  correspondence T between two R iemann ian  
spaces V,, and  V , ,  consider a change of the times t and -[ of  the form 

(22.9) d i - -  I_ dt, 

where ~ = ~(x) > O, is a positive scalar point  funct ion ~ = ~(x) > O, of at 
least class two in a cerlain n dimensional  region o f  points x. This is 
called an  associated positive scalar time poin t  function ~ = ~t(x) ~ O. 
The conlravariant forms + v ~ and  ~ of the two corresponding velocity vectors 
v and  v, are given by the set of  n conditions 

(22.10) v i --~ ~v i, 

for i - - -1 ,  2 , . . . ,  n. The contravariant  forms a ~ and a + of  the two corre- 
sponding acceleration vectors a and a, obey the set of  n relations 

(22.11) a~ bt~a+_~ ~ [ 1 d~t dx+ ~+ dxa ] 
- -  ~ dt dt ~ ( j k - -  r~ )  dxi-~ dt ' 

for i - - 1 ,  2, .... n. A point  correspondence T is an Appell  transforntalion T 
between the two R i e m a n n i a n  spaces V, and ~r i f  and only i f  

(22.12) a + : -  l~2a i, 

for i - - 1 ,  2, ..., n. 

For, by (22.9), dx+ dx+ ~ - - -  ~ ~ - ,  

obtained. 

By (22.9), it is seen that 

(22.13) 
dx i 
di 

and hence the equations (22.10), are 

dx + d2x ~ __ ~ d'2x ~ d~t dx + 

dt ' d t  2 ~ + ~t d~t d--i" 
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Then 

(22.14) 

a~ d2x i --~ ~_~ dxi dx ~ 2 d~xi d~ dx~.~ ~t~-~ ~ dxi dx* 

= at  a i  - + a t  a t  

[1 d~ dx ~ -~ r~ dx~ ax ~ ] 

Thus the equations (22.11) have been derived. 
The equations (22.11) may  be wri t ten  in the form 

(22.15) 

1 _~ {1 3[z ~.. ~) dx ~ ax i 

-b E (  1 ~ -t- - -  ) dxi dxi ~ y' ( ~  - -  r- i "dxi dxa 

From these equations, it is seen that t h e  conditions a i - -  [~2al, hold 
identically,  if and only if 

(22.16) 
~ k = r i , ,  for ]~ - i ,  k=~=i. 

for j =~= i, 

Therefore  the point correspondence T is an APPELL transformation T between 
the two Riemannian spaces V~ and ]Tn, and conversely.  

Consequent ly the proof of Theorem 22.2, has been completed. 
It is remarked that if an associated positive scalar time point funct ion 

of an APPELL transformation T, is [~--~t(x) > 0, then any  other associated 
positive scalar time point funct ion of the same APPELL transformation T, is 
v = a~ > 0, where  a > 0, is an a rb i t ra ry  positive multplicative constant. 

THEORE}I 22.3 - A point  correspondence T is an affine transformation T 
between two R iemann ian  spaces V~ and ~V,, and only i f  it converts every 
complete dynamical  system So of  cx~ 2~-1 dynamical  trajectories C in V,~, into 
a complete dynamical  system So of  ~2,~-~ dynamical  trajectories C in ]7~, 
such that an associated positive scalar time point  function ~ > O, is a constant. 

For, such a point correspondence T is necessar i ly  an APPELL transfor- 
mation T. Since ~ > 0, is constant, it follows that ~ i -  r~ ,  by (22.4). From 
equations (21.1), it is deduced that ~i r~ i~-"  jk, for all i, ], k - - l ,  2,. . . ,  n. 
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Thus the required point correspondence T is an affine t ransformation T 
between the two Riemannian spaces V. and V,.  

Let x ~ and ~ denote cartesian coordinates of points x and ~ in two 
Eucl idean spaces V,~ and V,.  Then APPELL'S t ransformation T is 

a~xi + b ~ dt 
(22.17) x ~ - -  - -  , d t - -  

a~x~ + bo k~(a~g + bo) ~' 

for i ----1,  2 , . . . ,  n,  where k > 0 ,  is a constant,  and the matrix (a~; b ~) for 
i - -  0, 1, 2,.. . ,  n, and j --  1, 2, .... n, is of rank (n + 1). 

Here  the associated positive scalar time point funct ion ~ > 0, is 

(22.18) 2 0 " ~ k (aix~ ~ bo) 2 > 0 

It is a constant  if and only if aj ° - - 0  for j - -  1, 2, ..., n,  and b °=4:0. Then 
(22.17), is an affine t ransformation T. 

23. Transformat ion  theory  of  physical  systems Sk where k : 4 : - - 1 ,  0, but 
where k may be infinite, of  c~ 2~-1 t ra jec tor ies  C, in a Riemannian space 
~V. [19]. Consider a point correspondence T which carries ever.y complete 
physical  system Sk with k ~ -  1, 0, of ~2~-~ trajeciories C of a Riemannian 
space V~, into a complete physical  system Sk with the . same k ~ - - 1 ,  0, of 
c<~ 8~-~ trajectories C of a Riemannian space V,.  Here  k may  be infinite in 
which case, the transformation theory of veloci ty systems S~ in included as 
a special case. Of course, k:~ 0, since the transformation theory of dynamical  
systems So, has a l ready been considered. 

B y  an examinat ion of equations (7.9), such a correspondence T is neces- 

s a r i l y  a projecti~e t ransformation T between the two Riemannian spaces V~ 
and V~. 

If  n ~ 3 ,  then under T, the following set of ( n - - 2 )  identit ies must be 
satisfied, namely  

~ d x J  - -  ~)]dx ~ ¢ Z d x ] -  OJdx z 

(23.1) ~ d x i  - -  ~pidx ~ ~ (~dxi  - -  ~ idx i ' 

where  the two indices i and j with i ~ j ,  are held fixed, and l ~ i ,  j is 
allowed to vary  over the remaining integers 1 to n. 

If n : 2  or if n ~ 3 ,  that is, if n ~ 2 ,  then under T, we must have the 
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ident i ty  

(23.2) 

3(0~)~ - -  ~)~¢i) 

( ~dx~ ---~gx~)(o ~dx~ - ¢idx ~) 

( l ~ k ) [ ( ~ d x i  g~O~dxS ---- __ ~ d x ~ d x  ~) 
_ g,,~ O~4x ~' ] 

(O~dx]-- O~dx ~ (g~clx~c~x~)J ' 

and also the ident i ty  

(23.3) 

d~  ~ d~)J dx ~ 

dxi~ d x ] d x i  dx~dx  ~ O] dx ~ [-A~ d(xi)2d2x~ 1 
¢-_ ~dx~ ~- 2 ~  + - 

dx J dxi O~ ¢~ -d-xx~" 

de  ~ dCJ dx ~ 
dxi dxi dxi ~_] dx ~ dx~ @1 [ d2x ~ ] 

(I) ~ - -  ¢ i  - -  d ( x i ) 2 ]  ' 

dx] 

where  the two indices i and j with i ~ j ,  are fixed. 

Therefore the required point correspondeuce T is a projective transfor- 
mation T between the two Riemannian spaces V,~ and V, ,  such that it 
obeys the identit ies (23.1), (23.2), and (23.3). 

When  n---~2, the two distinct indices i and ~ may  be taken as i - - 1 ,  
/ = 2 .  If 

(23.4) 
U ~ g i idx  1 -~ gi2dx 2, 

= + 

V .-~ g12dx ~ -~ g2~gx 2, 

the ident i ty  (23.2) can be wri t ten  in the form 

(23.5) 

3 ~- k ) ( 0 1 ~  _ ~ ¢2)(Udx~ + ydx,~)(Udx ~ ~- ~dx~ ) 

Since k : 4 : - - 1 ,  0, it is deduced that this ident i ty  is valid if and only 
if ei ther k ~  - -  3, (I)1~ 2 - -  ~)1(I) 2 - -  0, U V - -  UV : 0, or k --~ - - 3 ,  UV--UV-----0. 

Annal~ di Matematica 51 
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For either case, this states that T is a conformal map when n - - 2 .  Conse- 
quently T is a homothetic t ransformation in the case of n - - 2  dimensions. 

The following proposition is an extension of the above result  to n dimensions. 

TI-IEOR:~h[ 23.1. - A point correspondence T is a homothetic transformation 
T between two R iemann ian  spaces V~ and  V , ,  i f  and only i f  i t  converts every 
complete physical  system S~ with k ~ = - - 1 ,  O, of  ~2~-~ tra]eclories C in V~, 
into a complete physical  System S~ with the same k = ~ -  1, O, of  ~z 2~-~ traiec. 

tories C in  ~V~. 

When k is infinite, this includes a corresponding result concerning com- 
plete velocity systems S~ of ~2~-~ velocity curves C. 

The above proposition has been proved when n---" 2. It only remains to 
prove it for the case when n ~ 3 .  

From the identities (23.1), there exists a scalar point function p -- p(x)~0, 
which is never zero and at least of class two in an n dimensional region of 
points x, such that 

(23.6) O~ - -  pO t, 

for i - - 1 ,  2,. . . ,  n. 
Subst i tut ing (23.6) into the identity (23.2), it becomes the identi ty 

(23.7) (g~a~ "dx~ ) (g, aC~dxa) 
(g,.~dx~dx~) (g~dx~ax ~) 

since k ~ - - 1 ,  0. Of course, k may be infinite. 
Equat ing the corresponding coefficients of 

it is found that 
q)~' in  the above identi ty,  

(23,8) 
~idxi  g~i dxi 

for i - - 1 ,  2, ..., n. 
Upon equating corresponding coefficients of the dx ~ in the identities 

(23.8), it is found that t h e r e  exists a positive scalar point function ~ - - ~ ( x ) > 0 ,  
of at least class three in the n dimensional region of points x, such that 

2 (23.9) ds - -  ~ds, or g~i - -  ~ "  g~i " 

Therefore, T is necessari ly a conformal map. 
Since T is both a projective correspondence and a conformal correspon- 

dence, it follows that  T is a homothetic t ransformation T between the two 
Riemannian  spaces V~ and V,.  This means that ~t > 0, is a positive constant. 
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Substi tut ing (23.6) and (23.9) where ~ > 0, is a positive constant, into the 
ident i ty  (23 3), it is found that ~ ~ 0, is a non-zero constant. 

It f"ollows that under  these hypotheses,  the identities (23.1), (23.2), and 
(23.3), are satisfied. 

Consequently,  the proof of Theorem 23.1, is complete. 
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