Generalized Minkowski Formulas for Closed Hypersuperfaces in Riemann space.

By Yoshie Katsurada (a Sapporo, Japan)
To Enrico Bompiani on his scientific Jubilee

Summary. - This paper generalized Minkowski formulas for a closed orientable hypersurface in a Riemann space with constant curvature which have been introduced by C. C. Hsiung, and studies on some properties of the hypersurface whose the ν-th mean curvature is constant, on making use of the generalized formulas.

Introduction. - We consider an ovaloid F in a Euclidean space E^{3} of three dimensions, and let H and K be the mean curvature and the Gauss curvature at a point P of F, then as well-known formula of Minkowski we have

$$
\begin{equation*}
\iint_{\vec{F}}(K p+H) d A=0, \tag{0.1}
\end{equation*}
$$

where p denotes the oriented distance from a fixed point 0 in E^{3} to the tangent space of F at P and $d A$ is the area element of F at P.

As generalization of this formula for a closed orientable hypersurface, C. C. Hsiung proved the following three theorems.

Theorem 0.1. - Let V^{m} be a closed orientable hypersurface twice differentiably imbedded in a Euclidean space E^{m+1} of $m+1(3)$ dimensions, then

$$
\begin{equation*}
\int_{V^{m}} \ldots \int_{v+1} p d A+\int_{V^{m}} \ldots \int_{\nu} H_{v} d A=0 \quad \text { for } \nu=0, \ldots, m-1 \text {, } \tag{0.2}
\end{equation*}
$$

where $k_{1}, k_{2}, \ldots k_{m}$ being the m principal curvatures at a point P of V^{m}, H_{v} is the v-th mean curvature of V^{m} at the point P which is defined to be the ν-th elementary symmetric function of k_{1}, \ldots, k_{m} divided by the nnmber of
terms, that is,

$$
\binom{m}{\nu} H_{\nu}=\Sigma k_{1} k_{2}, \ldots k_{\nu} \quad \nu=1, \ldots, m
$$

and $H_{0}=1([1])\left(^{1}\right)$.
Theorem 0.2. - Let V^{m} be a closed orientable hypersurface twice differentiably imbedded in a Riemann space R^{m+1} of $m+1 \geq 3$) dimensions, then

$$
\begin{equation*}
\int_{V^{m}} \ldots \int_{V^{m}} H_{1} p d A+\int_{V^{m}} \ldots \int d A=0 \tag{0.3}
\end{equation*}
$$

where p is the scalar product of the unit normal vector of the hypersurface V^{m} at the point P and the position vector of the point P with respect to any orthogonal frame in the space $R^{m+1}([2])$.

Theorem 0.3. - Let V^{m} be a closed orientable hypersurface of class C^{3} imbedded in an $(m+1)$ dimensional Riemann space R^{m+1} of constant RIEMANN curvature, then

$$
\begin{equation*}
\int \ldots \int_{V^{m}} H_{m} p d A+\int \ldots \int_{V^{m}} H_{m-1} d A=0 \tag{0.4}
\end{equation*}
$$

The purpose of this paper is to generalize more these formulas of Hsiung, in a Rimmann space. In $\S 1$ generalized Minkowski formulas are expressed and the special cases which inclose these formulas of HsIong are discussed in $\S 2$, and in $\S 3$ some properties for the closed orientable hyperusrface are obtained on making use of the generalized Minkowski formulas.
§ 1. On a generalization of Minkowski formulas. - We suppose an ($m+1$)-dimensional Rtemann space $R^{m+1}\left(m+1 \geqq 3\right.$) of class $C^{\nu}(\vee \geqq 3)$ which admits an infinitesimal point transformation

$$
\begin{equation*}
\bar{x}^{i}=x^{i}+\xi^{i}(x) \delta \tau \tag{1.1}
\end{equation*}
$$

and assume that the paths of the infinitesimal transformations cover simply R^{m+1}. Let us choose a coordinate system such that the path of the infinitesimal

[^0]transformation is a new x^{1}-coordinate curve, that is the coordinate system in which the vector ξ^{i} has the components δ_{1}^{i}, where a symbol δ_{j}^{i} denotes the Kronecker's delta, then (1.1) becomes as follows
\[

$$
\begin{equation*}
x^{\bar{i}}=x^{i}+\delta_{1}^{i} \delta \tau \tag{1.1}
\end{equation*}
$$

\]

and R^{m+1} admits a one-parameter continuous group G of transformations given by

$$
\begin{equation*}
\bar{x}^{i}=x^{i}+\delta_{1}^{i} \tau \tag{1.2}
\end{equation*}
$$

in the new special coordinate system. If the vector ξ^{i} is a Killing vector, a homothetic Killing, a conformal Killing etc., then the one-parameter continuous group G of transformations has been called isometric, homothetic, conformal etc. respectively ([3]).

We now consider a closed orientable hypersuperface V^{m} of class $C^{3} \mathrm{im}$ bedded in R^{m+1} which does not pass through any singular point of a tangent vector field of the paths, written in the expression

$$
x^{i}=x^{i}\left(u^{a}\right)
$$

$$
i=1,2, \ldots, m+1
$$

$$
\alpha=1,2, \ldots, m .
$$

We shall henceforth confine ourselves to that Latin indices run from 1 to $m+1$ and Greek indices from 1 to m.

Let us consider a differential form of $m-1$ degree at a point P of the hypersurface V^{m}, defined by

$$
((n, \delta_{1}, \underbrace{d x, \ldots, d x}_{m-1}))=\sqrt{g}\left(n, \delta_{1}, d x, \ldots, d x\right)
$$

$$
\begin{equation*}
=\sqrt{g}\left(n, \delta_{1}, \frac{\partial x}{\partial u^{\alpha_{1}}}, \ldots, \frac{\partial x}{\partial u^{\alpha_{m-1}}}\right) d u_{\sigma_{1}} \wedge \ldots \wedge d u^{\alpha_{m-1}} \tag{1.3}
\end{equation*}
$$

Where n^{i} is a unit normal vector at the point P of the hypersuperface V^{m} and $d x^{k}$ a displacement along the hypersurface V^{m}, i. e., $d x^{k}=\frac{\partial x^{k}}{\partial u^{\alpha}} d u^{\alpha}$, and g denotes the determinant of a metric tensor $g_{i j}$ of R^{m+1}, and let $g_{\alpha \beta}$ and ${ }_{j}^{*} b_{\alpha \beta}$ be the first fundamental metric tensor and the second fundamental tensor of the hypersuperface V^{m} respectively, and b_{α}^{β} means $b_{\alpha \gamma} g^{\beta}$. Then the exterior differential of the differential form (1.3) divided by $m!$ becomes as follows,
(on making use of the formula for the covariant differential of the unit normal vector along the hypersurface: $\left.\delta n^{i}=-b_{\alpha}^{\beta} \frac{\partial x^{i}}{\partial u^{\beta}} d u^{\alpha}\right)$

$$
\frac{1}{m!} d\left(\left(n, \delta_{1}, d x, \ldots, d x\right)\right)
$$

$$
\begin{equation*}
=(-1)^{m}\left\{H_{1} n_{i} \delta_{1}^{i} d A+\frac{1}{2 m} g^{* l k} \mathcal{s} g_{l k} d A\right\} \tag{1.4}
\end{equation*}
$$

Where $\mathscr{S}_{l k}$ is the LiE detivative of the tensor $g_{l k}$ with respect to the infinitesimal point transformation (1.1), and $g^{* l k}=g^{l k}-n^{l} n^{k}$.

Integrating both members of (1.4) over the whole hypersurface V^{m} and applying the Stokes' theorem, we obtain the formula
$\frac{1}{m!} \int_{\partial V^{m}}\left(\left(n, \delta_{1}, d x, \ldots, d x\right)\right)=(-1)^{m}\left\{\int_{V^{m}} \ldots \int_{1} H_{1} n_{i} \delta_{1}^{i} d A+\frac{1}{2 m} \int_{V^{m}} \cdot \int_{\xi^{m}} g^{* l k} g^{i k} d A\right\}$,
where ∂V^{m} means the boundary of V^{m}. On making use of that the hypersurface V^{m} is closed, it follows that

$$
\begin{equation*}
\int_{V^{m}} \ldots \int_{1} H_{1} n_{i} \delta_{1}^{i} d A+\frac{1}{2 m} \int_{V^{m}} \ldots \int_{\xi} g^{* l k} \mathscr{\xi}_{l \mid} d A=0 . \tag{1.5}
\end{equation*}
$$

If the space R^{m+1} assumes of constant Riemann curvature which includes a Euclidean space, we consider the following differential form of $m-1$ degree

$$
((n, \delta_{1}, \underbrace{}_{v} n, \ldots, \delta n, \frac{d x, \ldots d x)}{m-v-1} \stackrel{\text { def }}{=} \sqrt{g}\left(n, \delta_{1}, \frac{\delta n, \ldots, \delta n}{v}, \frac{d x, \ldots, d x}{m-v-1}\right.
$$

for a fixed integer \vee satisfyng $m-1 \geqq \vee \geqq 1$, and differentiating exteriorly, we have

$$
\begin{align*}
& d\left(\left(n, \delta_{1}, \delta n, \ldots, \delta n, d x, \ldots, d x\right)\right) \\
& \quad=\left(\left(\delta n, \delta_{1}, \delta n, \ldots, \delta n, d x, \ldots, d x\right)\right) \tag{1.6}\\
& \quad+\left(\left(n, \delta\left(\delta_{1}\right), \delta n, \ldots, \delta n, d x, \ldots, d x\right)\right)
\end{align*}
$$

because of $\delta \delta n^{i}=0$ for the space of constant Riemann curvature. On substituting $\delta n^{i}=-b_{\alpha}^{\beta} \frac{\partial x^{i}}{\partial u^{\beta}} d u^{\alpha}$ into the first term of the right-hand member of (1.6) we obtain

$$
\left(\left(\delta n, \delta_{1}, \delta n, \ldots, \delta n, d x, \ldots, d x\right)\right)=m!(-1)^{m-\nu} H_{v+1} n_{i} \delta_{1}^{i} d A
$$

And from that the vector $n \times \underbrace{\delta n}_{V} \times \ldots \times \hat{\delta} n \times \underbrace{d x \times \ldots \times d x}_{m-v-1}$ is orthogonal to the normal vector n and $\delta u^{i}=-b_{\alpha}^{\beta} \frac{\partial x^{i}}{\partial u^{\beta}} d u_{-}^{\alpha}$, the second term of the right-hand member of (1.6) becomes as follows

$$
\left(\left(n, \delta\left(\delta_{1}\right), u n, \ldots, \delta n, d x, \ldots, d x\right)\right)=m!(-1)^{m-\nu} \frac{1}{2 m} H_{\nu}^{\alpha \beta} \mathcal{S} g_{\alpha \beta},
$$

where $\varepsilon^{\alpha_{1} \ldots \alpha_{m}}$ being the ε-symbol of the hypersurface V^{m},

$$
H_{\gamma}^{\alpha \beta} \stackrel{\text { def }}{=} \frac{1}{(m-1)^{\varepsilon^{\alpha \alpha_{1}} \ldots \alpha_{m-1}} \varepsilon^{\beta \beta_{1} \ldots \beta_{m-1}} b_{\alpha_{1} \beta_{1}} \ldots b_{\alpha_{\nu} \beta_{\nu}} g_{\alpha_{\nu+1} \beta_{\nu+1}} \ldots g_{\alpha_{m-1} \beta_{m-1}}}
$$

and

$$
\mathcal{\xi} g_{\alpha \beta} \stackrel{\text { def }}{=} \frac{\partial x^{i}}{\partial u^{\alpha}} \frac{\partial x^{j}}{\partial u^{\beta}} \mathcal{E} g_{\xi i} .
$$

Accordingly we have
$\frac{1}{m!} d\left(\left(n, \delta_{1}, \delta n, \ldots, \delta n, d x, \ldots, d x\right)\right)=(-1)^{m-\nu}\left\{H_{v+1} n_{i} \delta_{1}^{i} d A+\frac{1}{2 m} H_{v}^{\alpha \beta}{\underset{\alpha}{\xi}}_{\xi} g_{\alpha \beta} d A\right\}$.
Integrating the above expression over the whole hypersurface V^{m} and applying the Stokes' theorem, it follows that
$\frac{1}{m!} \int_{\partial V^{m}}\left(\left(n, \delta_{1}, \delta n, \ldots, \delta n, d x, \ldots, d x\right)\right)=(-1)^{m-v}\left\{\int_{V^{n}} \ldots \int_{v i+1} H_{v+1} n_{i} \delta_{1}^{i} d A+\frac{1}{m!} \int_{V^{m}} \ldots \int_{\xi^{m}} H_{\varepsilon^{\alpha \beta}} g_{\alpha \beta} d A\right\}$.
Thus we have

$$
\begin{equation*}
\int_{V^{m}} \ldots \int_{v+1} H_{i} n_{i}^{i} d A+\frac{1}{2 m} \int_{V^{n}} \ldots \int_{v e d}^{\alpha \beta} H_{\alpha \beta}^{\alpha \beta} d A=0 \tag{1.7}
\end{equation*}
$$

by virtue of that the hypersurface V^{m} is closed.

We can see easily that in the general coordinate system, the formulas (1.5) and (1.7) become as follows

$$
\begin{equation*}
\int_{V^{m}} \ldots \int_{1} H_{1} n_{i} \xi^{i} d A+\frac{1}{2 m} \int_{V^{m}} \ldots \int_{\underline{\xi}} g^{* i j} \mathcal{L}_{\underline{\xi}} g_{i j} d A=0, \tag{I}
\end{equation*}
$$

and

$$
\begin{equation*}
\int_{V^{m}} \ldots \int_{\nu+1} H_{v i} \xi^{i} d A+\frac{1}{2 m} \int_{V^{m}} \ldots \int_{\stackrel{\alpha}{\alpha \beta}} H \stackrel{\Gamma}{\varepsilon} g_{\alpha \beta} d A=0 \quad(m-1 \geqq v \geqq 1) . \tag{II}
\end{equation*}
$$

We call such the formulas (I) and (II) the generalized Mrnkoski formulas for the closed orientable hypersurface V^{m} in R^{m+1}.
§ 2. The Minkowski formulas concerning some special transformations.
In this section, we shall discuss the formulas (I) and (II) for a special infinitesimal point transformation. Let the group G of transformations be conformal, that is, ξ^{i} satisfies an equation: $\underset{\varepsilon}{\{ } g_{i j} \equiv \xi_{i ; j}+\xi_{j ; i}=2 \Phi g_{i j}([32])$, p. 32), then we obtain

Therefore (I) and (II) are rewritten in the following forms
(I) ${ }_{c}$

$$
\int_{V^{m}} \ldots \int_{1} H_{1} n_{i} \xi^{i} d A+\int_{V^{m}} \ldots \int \Phi d A=0,
$$

(II)。

$$
\int_{V_{m}} \ldots \int_{\nu+1} n_{i} \xi^{i} d A+\int_{V_{n i}} \ldots \int_{\nu} \Phi H_{v} d A=0 \quad(m-1 \geqq v \geqq 1)
$$

and we can see
(I) ${ }_{h}$

$$
\begin{aligned}
& \int_{V^{m}} \ldots \int_{1} H_{1} n_{i} \xi^{i} d A+c \int_{V^{m}} \ldots \int d A=0, \\
& \int_{V^{m}} \ldots \int_{V^{m}} H_{\nu+1} n_{i} \xi^{\xi} d A+c \int_{V^{n}} \ldots \int_{v} H_{v} d A=0 \quad(m-1 \geq \nu \geq 1)
\end{aligned}
$$

in case of $\Phi=$ constant $(\equiv C)(G$ being homothetic), and
$(\mathrm{I})_{i}$

$$
\begin{aligned}
& \int_{V^{m}} \ldots \int_{1} H_{1} n_{i} \xi^{i} d A=0 \\
& \int_{V^{m}} \ldots \int_{v+1} H_{y} n_{i} \xi^{i} d A=0 \quad(m-1 \geq v \geq 1)
\end{aligned}
$$

in case of $\Phi=0$ (G being isometric).
Especially if our space R^{m+1} is a Euclidean space E^{m+1} and if the path of the infinitesimal point transformation (1.1) is the straight line which pass through a fixed point $0, x^{i}$ being the coordinate of a point P in E^{m+1} with respect to a Cartesian coordinate system with the point 0 as the origin, let the position vector x^{i} take as the vector ξ^{i}, then we have

$$
\mathcal{L}_{\xi} g_{i j}=2 g_{i j}
$$

according to $g_{i j}=$ constant and from the formulas $(\mathrm{I})_{h}$ and $(\mathrm{II})_{h}$ in the case $C=1$, we have

$$
\begin{aligned}
& \int_{V^{m}} \ldots \int_{-}-H_{1} p d A+\int_{V^{m}} \ldots \int_{V^{m}} d A=0 \\
& \int_{V^{m}} \ldots \int_{v+1} p d A+\int_{V^{m}} \ldots \int_{:}^{n} H_{v} d A=0 \quad(m-1 \geqq v \geqq 1) .
\end{aligned}
$$

The above results are nothing but the formulas (0.2) given by Hsiung.
Next, let our Riemann space R^{m+1} have more an assumption to admit a special coordinate system y, in which the components of the vector ξ^{i} are equal to the coordinate of the point P, that is, $\xi^{i}(y)=y^{i}$. Since the quantity $g_{i j}(x) \xi^{i}(x) \xi^{i}(x)$ is the homogeneous function of two degree with respect to ξ^{i}, it is requested that $g_{i_{1}}(y) y^{i} y^{j}$ is also the homogeneous function of two degree with respect to y^{i}. Therefore $g_{i j}(y)$ must be the homogeneous function of zero degree with respect to y^{i}, that is,

$$
\begin{equation*}
\frac{\partial g_{i j}(y)}{\partial y^{k}} y^{k}=0 \tag{2.1}
\end{equation*}
$$

On making use of the above relation (2.1), we can observe

$$
{\underset{\varepsilon}{\xi}}_{\mathcal{S}}^{i j} g_{i j}(y)=2 g_{i j}(y)
$$

in such the special coordinate system y, the formulas (I) and (II) are written in the form

$$
\int \ldots \int_{V^{m}} H_{1} n_{i} y^{i} d A+\int \ldots V_{V^{m}} d A=0,
$$

$$
\begin{equation*}
\int_{V^{m}} \ldots \int_{v+1} H_{v i} n_{i} y^{i} d A+\int_{V^{m}} \ldots \int_{y} H_{y} d A=0 \quad(m-1 \geqq v \geq 1) \tag{2.2}
\end{equation*}
$$

The formulas (0.3) and (0.4) of Hsiung are nothing but a special case of (2.2)
§. 3. Some properties of a closed orientable hypersurface. - In this section we suppose again that the group Q of tranformation (1.1) is conformal, then we can show the following four fheorems for a closed orientable hypersurface V^{m} in a Riemann space R^{m+1} of constant Riemann curvature.

Theorem 3.1. - If in R^{m+1}, there exists such a group of conformal transformations as \tilde{p} is positive (or negative) at each point of V^{m} and if H_{1} is constant. then every point of V^{m} is umbilic, where \tilde{p} denotes $n_{i} \xi^{i}$.

Proof. - Multiplying the formula (I$)_{c}$ in $\S 2$ by $H_{1}=$ const., we have

$$
\int_{V_{m}} \ldots \int_{V_{1}} H_{1}^{2} \tilde{p} d A+\int_{V^{n}} \ldots \int_{1} \Phi H_{1} d A=0
$$

and from the formula (II$)_{c}$ in $\S 2$

$$
\int_{V^{m}} \ldots \int_{2} H_{2} \tilde{p} d A+\int_{V^{m}} \ldots \int_{1} \Phi H_{1} d A=0 .
$$

Consequently it follows that

$$
\begin{equation*}
\int_{V^{m}} . \cdot \int^{2}\left(H_{1}^{2}-H_{2}\right) \tilde{p} d A=0 \tag{3.1}
\end{equation*}
$$

which holds if and only if $H_{1}^{2}-H_{2}=0$, since

$$
\begin{equation*}
H_{2}^{2}-H_{2}=\frac{1}{m^{2}}\left(\Sigma k_{i}\right)^{2}-\frac{2}{m(m-1)} \Sigma k_{i_{i}} k_{i_{2}} \tag{3.2}
\end{equation*}
$$

$$
=\frac{1}{m^{2}(m-1)} \Sigma\left(k_{i_{1}}-k_{i_{2}}\right)^{2} \geqq 0
$$

where i_{1}, i_{2} are distinct and run from 1 to m. From (3.1) and (3.2) we obtain

$$
k_{1}=k_{2}, \ldots=k_{m}
$$

at each point of V^{m}. Accordingly every point of the hypersurface V^{m} is umbilic.

We can see easily that if every point of a hypersurface in a Riemann space of constant Riemann curvature is umbilic, then the hypersurface V^{m} is also an m-dimensional Riemann space of constant Riemann curvature.

Theorem 3.2. - If in R^{m+1}, there exists such a groap G of conformal transformations as \tilde{p} is positive (or negative) at each point of V^{m}, and if the principal curvature $k_{1}, k_{2}, \ldots, k_{m}$ at each point of the hypersurface V^{m} are positive and H_{v} is constant for any $\vee(m-1 \geqq v \geq 1)$, then every point of V^{m} is nmbilic.

Proof. - From the formulas ($)_{e}$ and (II) $)_{c}$ in § 2, we obtain

$$
\begin{aligned}
& \int_{V^{m}} . \int_{V^{m}} H_{1} H_{\nu} \tilde{p} d A+\int_{V^{m}} \ldots \int_{V^{m}} \Phi H_{v} d A=0, \\
& \int_{V^{m}} \ldots \int_{\nu} H_{\nu+1} \tilde{p} d A+\int_{V^{m}} \ldots \int_{v} \Phi H_{v} d A=0
\end{aligned}
$$

because of $H_{\nu}=$ constant. Therefore we have

$$
\begin{equation*}
\int \ldots V_{V^{m}}\left(H_{1} H_{v}-H_{v+1}\right) \tilde{p} d A=0 \tag{3.3}
\end{equation*}
$$

which holds when and only when $H_{1} H_{v}-H_{y+1}=0$, since

$$
\begin{align*}
H_{1} H_{\nu}-H_{\nu+1}= & \frac{\nu!(m-\nu)!}{m m!}\left\{\mathbf{\Sigma} k_{i} \Sigma k_{i_{1}} \ldots k_{i_{\nu}}\right. \\
& \left.\quad-\frac{(\nu+1)!(m-\nu-1)!}{m!} \Sigma k_{i_{1}} \ldots k_{i_{v+1}}\right\} \tag{3.4}\\
= & \frac{\nu!(m-\nu-1)!}{m m!} \Sigma k_{i_{1}} \ldots k_{i_{\nu-1}}\left(k_{i_{\nu}}-k_{i_{\nu+1}}\right)^{2} \geq 0,
\end{align*}
$$

where $i_{1}, i_{2}, \ldots i_{y+1}$ are distinct and run from 1 to m, From (3.3) and (3.4) we have

$$
k_{1}=k_{2}, \ldots,=k_{m}
$$

at each point of V^{m}. Accordingly every point of V^{m} is umblic.
Theorem 3.3. - If in R^{m+1}, there exists such a group G of conformal transformations as \tilde{p} is positive (or negative) at each point of V^{m}, for which $\dot{H}_{1} \tilde{p}+\Phi \geqq o(o r \leqq 0)$ at all points of V^{m}, then every point of V^{m} is umbilic.

Proof. We can see

$$
\Phi=-H_{1} \tilde{p}
$$

according to the assumption that $H_{1} \tilde{p}+\Phi \geq 0(0 r \leqq 0)$ at all points of V^{m} and the formula (I_{c} in $\S 2$:

$$
\int \ldots \int_{V^{m}} H_{1} \tilde{p} d A+\int_{V^{m}} \ldots \int_{m} \Phi d A=0 .
$$

On substituting $\Phi=-H_{1} p$ into the formula (II) $)_{c}$ in $\S 2$, it follows that

$$
\int_{V_{m}} \ldots \int_{1}\left(H_{1}^{2}-H_{2}\right) \tilde{p} d A=0 .
$$

Thus, we have the conclusion from (3.1) and (3.2).

Thmorem 3.4. - If H_{1} is positive (or negative) at all points of V^{m} and if in R^{m+1}, there exists such a group G of conformal transformations as Φ is positive (or negative), for which either $\tilde{p} \leqq \frac{-\Phi}{H_{1}}$ or $\tilde{p} \geqq \frac{-\Phi}{H_{1}}$ at all points of V^{m}, then every point of V^{m} is umbilic.

Proof. - The formula $(\mathrm{I})_{c}$ in $\S 2$ is rewritten as follows

$$
\int_{V^{m}} \ldots \int_{1} H_{1}\left(\tilde{p}+\frac{\Phi}{\bar{H}_{1}}\right) d A=0
$$

By virtue of the assumptions: $H_{1}>0(o r<0)$ and $\tilde{p}+\frac{\Phi}{H_{1}} \geqq 0(0 \mathrm{r} \leq 0)$ at all points of V^{m}, we have the following relation

$$
\tilde{p}=\frac{-\Phi}{H_{z}}
$$

On substituting $\tilde{p}=\frac{-\Phi}{H_{1}}$ into the formula (II) ${ }_{c}$ in $\S 2$, we obtain

$$
\int_{V^{m}} \ldots \int_{1} \frac{\Phi}{H_{1}}\left(H_{1}^{2}-H_{2}\right) d A=0
$$

which holds if and only if $H_{1}^{2}-H_{2}=0$. Thus we can see the conclusion.
Such the method of calculation referring to a differential form is learned much from the paper ([4]) of H. Hope and K. Voss.

The present author wishes to express to Professor Dr. H. Hopf her very sincere appreciation for his kind suggetion.

REFERENOES

[1] C. C. Hsiung, Some integral formulas for closed hypersuperface, "Math. Scand. 2 (1954), 286-294.
[2] C. C. Hsiung, Some integral formulas for closed hypersuperface in Riemann space, - Pacific Jour. of Math, 6", (1956), 291-299.
[3] K. Yano, The theory of Lie derivatives and its applications, Amsterdam, 1057.
[4] H. Hopf und Voss, Ein Satz aus der Flächentheorie im Grossen, «Arch. Math. 3 », (190̆2), 187-192.

[^0]: (1) Numbers in brackets refer to the references at the end of the paper.

