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S u m m a r y .  We consider the Dirichlet problem for the equation Le(u)~-~xx+~Uyy-l-  
-~ A(x, y)~% -- B(y)uy-¢- C(x~ y)u -~ F~x, y) where B(y) ~ 0 and • is a small positive 
parameter. An asymptotic formula is proved, from which it follows that in a suitable 
part  of the domain of definition u(x, y, ~-) ~ U(x~ y) as e --* 0-}-, where U(x, y) is the 
solution of the corresponding boundary-value  problem for the reduced equation 
L0(U) --~ Uxx -¢- A(x, y) U x -- B(y) U-b C(x, y) U ~- F(x, y). 

1. We shall deal with the first boundary-va lue  problem for the elliptic 
equat ion 

(1) L~(u) ~ u ~  ~ eu~u -~ A(x, y)u~ - -  B(y)uu -Jr- C(x, y)u --  F(x ,  y), 

where ~ is a small positive paramete r  and B(y) ~ O. Let  the boundary  ~/¢ 
of the closed region /~, in which the equation (1) is considered, consist 
of a part  of the line y --  y~, of two cont inuous curves x ~ vx(y), ~v --" v2(y) with 
v~(y) < v2(y) for yl ~ ' y  < Y2 and, if v~(y2)< v2(y~), of a part  of the line y---y2.  
The aim of the present  paper  is to examine the asymptotic form of the 
solution u(~v, y, e) of (1) which satisfies the boundary  condition 

(2) u l ~ R =  ,~. 

w 

It  is to be expected that in a suitable part  of the region R, u(x, y, ~) 
converges, as e ~ 0 q-, to a suitable solution of the parabolic equat ion 

(3) Lo(U) --  U~, + A(x, y)U~ - -  B(y)Uu + C(x, y ) U - -  F(x, y). 

Since we cannot prescribe the complete boundary  condition (2) for the 
solution of the equation (3) the problem is of s ingular  per turbat ion type ;  
therefore the so-cal led boundary  layer terms will appear  in the asymptotic 
formula for u(x, y, e) (see [1]). 

The solution U(x, y) is determined in the following manner :  W e  choose Yo 
such that yo ~ Yl and Yo ~ Y~ if vl(y2)---v2(y~), Yo~-Y~ if v~(y~)~ v~(y~). Let  -~ 
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denote the part  of the region R which lies in the hal f -p lane  y ~ Yo and l~ the 
boundary  of .Q from which we extract  the line segment {(x, y)[ v~(yo)~ 0c< v~(yo), 
y ~  yol. Then U(x, y) is uniquely  determined by the boundary  condition 
U[ r - - V ;  in greater  detail  

(4) u(x,  y~) = +(x), u(v~(y), y) = %(y), g(v,(y), y) = ~(y). 

Equat ion  (1) was not chosen in the most general  fo rm:  a more general  
equat ion than (1) would be represented by 

a(x, y)u~,~ + ~ uuu + A(x, y)u~ - -  B(x, y)u u + C(x, y)u ~ F(x, y). 

It  is not important  that we restr icted ourselves to the case a(x, y ) ~  1, 
since the case with an arbi t rary  a(x, y) can be treated by the same 
method which is described in this paper, and the results  are the same. 
However,  the assumption that the coefficient B depends on y only is more 
essential  for our method, as we shall see  later. 

2. We assume the following propert ies  of the coefficients and the 
r ight -hand side of (1) in the region R and of the functions v~(y), v2(y), 
+(~), ~l(y), ~ (y) :  

a) B(y) > O. 
b) B(y) has a derivat ive of the third order, A(w, y) has part ial  deri- 

vatives of the third order, C(x, y) and F(x, y of the second order, and all 
these derivatives satify a Lipschitz condition with respect  to all their 
variables.  

c) v~(y), v~(y) and ~,(x) have derivatives of the fourth order and ~(y), 
¢~2(Y) derivatives of the third order and all these derivatives satisfy a 
Lipschitz condition. 

Our aim is to prove the following. 

TttEO~E~. - Let there be satisfied the assumptions a), b), c). Then in the 
region ~2 we have 

(5) u(x, y, ~ )=U(x ,  y) + h(x, y, ~) e ~ + 0  ~ , 

Y0 

where  h(x~, y, s) --  0(1) in ~) and ~(y) : f B ( s ) d s .  
y 

_ ~ { y )  

The term h(x, y, e ) e  ~ is a boundary  layer term since it becomes 
important  only near the line y----yo where  it equal ises  different  values 
of u(x,y, a) and U(x, y). 
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In this paragraph we shall only sketch the proof. It  will be apparent  
why  we are forced to restr ict  ourselves to the case of B depending on y 
only. Fi rs t  of all we may suppose y ~ - - 0 ,  Y o -  l, v~(0) ---- 0, v2(0)= 1. Fur the r  
we may assume ~(a~):~(y)=cC2(y)----0.  For  it is suff icient  to put  
u - -  v ~ :(x, y) where  

~--v~(y) _ x--v~(y) ] 

I ] x - -  v~(y) 
+ opt(y)-  %(0) vdy) - -  v~(yi' 

and it is seen that v I r = 0. Also, L~(v ) :  F(x ,  y) -- Lo(~(x, y ) ) -  ~vv(x, y). 
However,  the r ight -hand side of this equation depends on ~. But  put t ing 
v- -v~-] -~v= and taking v2 such that L ~ ( % ) ~ - - z v ~  and v = l ~ = 0 ,  we can 
easily prove by means of the maximum principle  that v=--0(1).  Concerning 
v~ we obtain L~(%) ---- F(x ,  y ) - -  Lo(~(x, y)) and, as v lr : v~ l ~ - -  0, v~ I r " -  0. 
By our assumptions,  the function Lo(z($, y)) has the same derivabil i ty  propert ies  
as F(w, y)~ and the funct ion Tvu(~c , y) is certainly continuous.  In  the sequel  
no new notation is used for the r ight -hand side F(x,  y)--Lo(~(x,  y)); the 
equation will have the form (1) and instead of (4) we shall have 

(6) U(x, O) --- U(v~(y), y) - -  U(vdy), y) - -  O. 

i~ow, following [1], let us seek the solution u(x, y, ~) in the form 

- g{=, y) 

u(~, y,  8) -~  U(x,  y) -t- h(x, y,  ~) e ~ -t- ~z(~, y, ~). 

Subst i tu ing into (1), the term of highest order on the left  is 1 2 --g. e~ g me 

If  we wan~ it to be zero we must choose g such that g , ~ 0 ,  i .e .  g---~(y).  
By  this choice of the exponent  the term of next  highest  order is 

1 h£(B ~ £)e - ~  7. As h -I_ = O, :¢ 5t= konst, we must  set £(y) - -  - -  B and conse- 

quent ly  B can depend on y only. In  order to obtain a boundary  layer  
1 

term near the line y - - 1 ,  we choose ~(y ) - -~ /  B(s)ds. Then the equation 
y 

for z(x,, y, z) reduces  to 

1 ~(Y) 
L~(z) = - -  Uuu(x2y ) - -  -e ~ L• (h), 
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where  

L~(h) ~ h ~  + shug -t- A($, 9)h, -k- B(y)hg "k- [B'(9) + C(~, 9)]h. 

Now it seems obvious to choose the function h in the following manner  

L * ( h ) - ' s ,  h i t - - O ,  h(x, 1) - -u (x ,  1, ~) ~ U(x, 1). 

By means of the maximum principle we can easily prove that h(x, y, ~) = 0(1). 

The function z(x, y, ¢) satisfies the equation L~(~) = - -  Uug- -  e ~ and the 
boundary  condition z [ a ~ 0 .  If  l)u~(x , y) were a bounded function, we 
should have, again from the maximum principle, z(~, y, ~ ) ~  0(1) so that the 
final result  would be bet ter  than formula (5), namely u(x, y, ~) ~ U(x, y) -{- 

_ ~(Y) 
h(~,y, s)e -7- .+_ 0(e). But  Uuu(~ , y) need not be bounded even if we choose 
the boundary  values arbi trar i ly smooth. For  the boundedness  it is necessary 
that at the points (0, 0), (1, 0) certain equations of conformity should be 
satisfied. Of course, such an assumption does not correspond to the nature  
of the original Dirichlet  problem. To do without  it, we shall apply a device 
used in the investigation of hyperbolic equations with a small parameter  
(see [2]). We shall replace the r ight -hand side F(x, y ) b y  the function 
F--(~, y) which differs from it for 0 <:' y ~  ~ only, where  ~ is a new parameter ,  
and such that the solution U(~,y) of Lo(U)=F,  U 1 r - - 0  has a bounded 
Uu~( x, Y). W e  will then be able to prove Uvu = 0(~-~). Denote .  F(x, y) - -  F (~, y) 
by @(~e, y ) a n d  construct  on ~ the solutions w, u, W o f _ t h e  following 
equat ions:  L~(~v) "- @(x, y) and w I ~  ~ 0, L~(u) : F(~, y)  and u } ~ ~ u I ~ ,  
Lo(W) " -  @(a~, y) and W t ; --" 0. 

Then we have u - - u - I - w ,  U ~  U +  ~ .  Coneernin u we can already 

set ~ =  f f -bhe  7.+.~z where  L*(h)~---e, h I t - - O ,  h(x, 1, ~)- -~ ,x ,  1, e) 
U(~, 1)---u(x,  1, ~ ) -  U(x, 1). The final result  is 

(8) u - -  U + h e  ~ - -  W - { - s z + w .  

On the basis of the est imate Uuu "- 0(~-~) we conclude z ~-~ 0(~ -~) (~). 
Concerning "W we shall prove W-J--0(8); this is qtfite reasonable since 

the r igh-hand side q) differs from zero for 0":= y ~ only. It then follows 

from (8) that u - -  U + he ~ q- 0(~) ~ ~0(~ -~) + w. 

(t) This means t z I ~ C~-t where C depends on neither ~ nor ~. 
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Put t ing  ~-----e ~ (and this is the best  choice) we obtain u-----Un u he 

(? -1-0 ~ -t-w. Now it is suff icient  to prove w - - - 0  ~?-. 

3. PROOF OF TI~E THEORE1K: All est imates will be carr ied through by 
means of the maximum principle, which, for our purpose we formulate  for 
an equat ion of the form 

(9) ~(~c, y ) u ~  -}- v(x,, y ) u ~  --{- c~(x, y)u~ - -  ~(x, y)u~, - -  y(x, y)u --- ~(x, y) 

in this w a y :  we suppose ~(~c, y ) >  0 and either v(w, y ) > O  or v(x, y ) = - O .  
In the first case the region R in which the equat ion (9) is considered 

can be any bounded domain;  in the second case the equat ion is considered 
in the domain Q introduced above, and we suppose ~(x, y) > 0 in ~. Let  be 

y ( x , y ) > 1 5 >  0 in both cases (i.e. either in R or in Q). Then we have, in 
~ ' o  

R or in ~ respectively~ 

(to) In(x ,  Y) I <--max(yoM:,  M2), 

where  ei ther M ~ = m a x l ~ ( x ,  y) [ , M2 -~ max  t u(x, y) [ or 

/ } I~- -max  I u(x, y)]  respectively.  
F 

M:-~ max l~(x , Y) I, 

First ,  from the maximum principle it follows that the solution u(x, y, ~) 
of the Dirichlet  problem (1), (2) is bounded with respect  to % i. e. 
u(x, y, ~ ) ~  0(1). To prove this it is sufficient  to set u ~ ekYv. W e  obtain 

We  choose k such that k B ( y ) - - C ( x ,  y )~_2  in /~ Then we have 
1 

k B ( y ) - - C ( x ~ y ) - - k ~  ~_.1  for ~ 7 ,  so that following (10) we have I v I 

max (max IF(u, y ) . e -  ~y t , max t e -  ey¢~ I ), i. e. v ----- 0(1), and thus u "-- 0(1). 

It is obvious that the same remark  holds for the equat ion L * ( h ) =  e if the 
boundary  values  of the funct ion h are bounded with respect  to e. 

Now let us define the function F(x ,  y). Set 

(:1) F(~, y) ---- ¢o F ( x ,  y), 
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where  to(s)is a three times continuously differentiable function such that 

1 o) ( s ) - - i  for s ~ l .  Obvio- 0~¢o ( s )~ - - i  for s~_0,  (o(s)-----0 for 0 < : _ s - - ~ ,  

1 
usly we have /~(x, y) - - -0  for y ~ 8 .  

Consider the solution U(x, y) of the equation L o ( U ) - - t ~ x ,  y) with 
x -  v~(y) 

condition U I~-----O. We introduce new independent  variables ~--- ~(y) - -  v~(y)' 
-~y .  The domain O, is mapped onto the square ~*: 0 ~  ~ 1 ,  0 ~  ~ 1 .  

If we also introduce a new unknown function Y by the relation ~]--;((x, y ) . V  
and choose X(x, y) conveniently,  we can obtain the equation for V in 
the form 

(12) v ~  - -  b(~) V~ + ~(~, ~) V = ~(~., ~, 8) 

with boundary condition 

(13) V I r , = O .  

where  F * - - ~ * - - { ( ~ ,  ~ ) i 0 ~ l ,  ~--" 1 }. The coefficients b, c do not depend 
on 8, they have derivatives of the second order satisfying a Lipschitz 
condition with respect to their  variables and b(~) is positive for 0 ~  ~ ~ 1. 
The r igh t -hand  side ~ ~7, 8) also has derivatives of the second order 
satisfying a Lispschitz condition with respect  to its variables, and 

! 

(14) I 7=o for f=  o(1) on e*, 

]~ = 0(1), -fr~ --- 0(1) for ~ ~ 8, f~, - -  0(8-1), f ~  - -  0(8 -~) for 0 ~-- ~ ~-- 8. 
\ 

We are to prove that the solution F(~, ~) has derivatives of the second 
order on ~* and these are 0(8-1). 

First, from the max imum principle it follows that V : 0 ( 1 )  (in the same 
manner  as that used in the proof of boundedness of u(x, y, ~)). Further ,  
from the theorem 2 of [3] it follows that V(~, ~) has continuous derivatives 
of the first order and a continuous V~ on ~* (note that the conditions 
of conformity in this theorem are satisfied since f(~, 0) ---~-- 0). From the 
lemma 2 of [4] it follows (2) that it is posible to differentiate  the equation 

(.2) This lemma also concerns the di f ferent ia t ion 8~ ~2, 8 ~  and ~ .  Therefore the 

assumpt ions  in t roduced in  it are s t ronger  than those which ensure  d i f ferent iabi l i ty  
8 ~-~. Fo r  this, in the case of the equat ion (J_2)and b o u n d a r y  condit ion (13), it  suffices 

to suppose the fo l lowing:  1, b(~)~O, 2, b(~) has a der iva t ive  sa t is fying a Lipschi tz  
condit ion,  3, c(~,~), T(~, ~ ~) satisfy a Lipschitz condit ion wi th  respect  to both variables,  
have  the der iva t ive  of the f irst  order  wi th  respect  to ~ sa t i s fy ing a Lipschitz  condi t ion 
and  c(~, 0) has a der ivat ive  sa t i s fy ing a :Lipschitz condition, ~, f(0, 0)~_f( l ,  0 ) - - 0 .  
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(12) with respect to ~ so that V~ satisfies the equation 

(~5) Q~ --  b(~)Q~ + (c(~, ~) - -  b'(~))Q - f~(~, ~}, 8) - -  c~(~, ~)V; 

obviously V., [ r . - "  0 as it follows from (13), (12) and (14). The assumptions 
of the theorem 2 of [3] are again fulfil led by the equation (15), so that the 
derivatives Q¢ and Q~, i. e. V~ and V ~ ,  are continuous on the bounded 
square l~*. The right,-hand side P~(~, ~) of (15) is 0(8 -1) for O ~  ~ ~-- 8. Pu t  

Q - - e  BY. Then  Y I r . - - - 0  and Y satisfies the equation 

- - ' 5  

~ - -  b ( ~ ) Y , ~  - -  8-1[b(~) - -  ~(c(~, ~ ) -  b ' (~ ) ) ]Y- -  e ~PI(~,  ~). 

Using the max imum principle on the region 0 ~ ' 1 ,  0 ~ 8 ,  we 
see that in this region we have Y ~  O(1) and accordingly Q-~ 0(l). For  
~ 8  there is PI(~, ~ ) ~  O(1) and therefore Q - - O ( l ) h o l d s  also for ~_~ 8. 
Consequently we have V ~  O(1) in ~2-*. From (12) we then get V ~ - - P ~ ,  
where  P2(~, ~ ) - -  O(1) on ~*. As _V(0, ~) ~ V(l, ~) ---~ O, there exists a 

fP~d~ and consequent ly O ~ ~ ( ~ ) ~  1 such that V~(~, ~)) O; thus V~--- 

V~----0(1) on ~*. As to V~.,, we agai n differentiate  equation (15) with 
respect to ~ (the conditions of conformity are again fulfilled because the 
r igh t -hand  side of this equation is zero for ~ : 0). The r ight -hand side 
of the result ing e.quation is 0(8 -~) for 0 ~ ~ 8, and in the same manner  
as for V~ we can prove V~----0(8 -~) on ~*. From (15) it follows that 
Q~ ~ 0(8-~), and on integrat ing V ~ -  Q~--0(8-~).  

Final ly  we must estimate z, W and w. Considering L ~ ( z ) - - - - ~ ] ~ u -  
__q,  

- - e  ~ O ( ~  -~) and z I 8~ ~- 0 it follows from the max imum principle 
(by means of the substi tution z-~ekY.v) that z =  0(8 -1) on if. Concerning 
W, we have W ] r - - O  and Lo(W)-~¢(x ,  y), where  O(x, y)----O(1) for 
O ~ y ~  8 and (I)(x, y ) - - O  for y~_8 .  TO prove W ~ 0 ( 8 )  we again make 

Y 

use of the substitution W- - - e  ~¥ .  Then Y I r : O  and 

- - Y  

Yxx ~ A(x, y ) Y x -  B(y )Yu- -8-1[B(y) -  8. C(~c, y ) ] Y ~  e ~ O(x, y). 

From the maximum principle it follows that : Y ~  0(8) and consequent ly 
that W - - 0 ( 8 )  for 0 ~ y ~ 8 .  For  y ~  there holds (I)---O so that 
L 6 ( W ) ~ O  and W I y = ~ O ( ~ ) ,  WI  ~=v1(u)'-- WI  ~=v~(y)-" O; again by means 
of the max imum principle we can prove W :  0(~) for y :~ 8. Consequently 
W =  0(8) on ~. 
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1 1 

Now we put ~ s ~ -  and it remains to prove w - - 0 ( s  ~-). 
1 

w -  e~p(e ~ y). Y, we obtain for Y the equation 

Setting 

1 1 I 

Y~x + ~YuuA(x, Y)Y~ + [ 2 ~ -  B ( Y ) ] Y u -  ~ ~ [ B ( y ) -  ~(C(x,  y) + 

1 

+ t)] Y =  exp(~ ~y). O(w, y). 

Fu r the r  we can proceed in the same manner  as in the est imate of ~ \  
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