The Parabolic Equation as a Limiting Case of a Certain Elliptic Equation.

Minos Zlamal (Brno, Cecoslovacchia)

To Enrico Bompiani on his scientific Jubilee.

Abstract

Summary. - We consider the Dirichlet problem for the equation $L_{\varepsilon}(u) \equiv u_{x x}+\varepsilon u_{y y}+$ $+A(x, y) u_{x}-B(y) u_{y}+C(x, y) u=F_{(}(x, y)$ where $B(y)>0$ and ε is a small positive parameter. An asymptotic formula is proved, from which it follows that in a suitable part of the domain of definition $u(x, y, z) \rightarrow U(x, y)$ as $\varepsilon \rightarrow 0+$, where $U(x, y)$ is the solution of the corresponding boundary-value problem for the reduced equation $L_{0}(U) \equiv U_{x x}+A(x, y) U_{x}-B(y) U+C(x, y) U=F(x, y)$.

1. We shall deal with the first boundary-value problem for the elliptic equation

$$
\begin{equation*}
L_{\varepsilon}(u) \equiv u_{x x}+\varepsilon u_{y y}+A(x, y) u_{x}-B(y) u_{y}+C(x, y) u=F(x, y), \tag{1}
\end{equation*}
$$

where ε is a small positive parameter and $B(y)>0$. Let the boundary ∂R of the closed region \bar{R}, in which the equation (1) is considered, consist of a part of the line $y=y_{1}$, of two continuous curves $x=v_{1}(y), x=v_{2}(y)$ with $v_{1}(y)<v_{2}(y)$ for $y_{1} \leq y<y_{2}$ and, if $v_{1}\left(y_{2}\right)<v_{2}\left(y_{2}\right)$, of a part of the line $y=y_{2}$. The aim of the present paper is to examine the asymptotic form of the solution $u(x, y, \varepsilon)$ of (1) which satisfies the boundary condition

$$
\begin{equation*}
\left.u\right|_{\partial R}=\varphi . \tag{2}
\end{equation*}
$$

It is to be expected that in a suitable part of the region $\bar{R}, u(x, y, \varepsilon)$ converges, as $\varepsilon \rightarrow 0+$, to a suitable solution of the parabolic equation

$$
\begin{equation*}
L_{0}(U) \equiv U_{x x}+A(x, y) U_{x}-B(y) U_{y}+C(x, y) U=F(x, y) . \tag{3}
\end{equation*}
$$

Since we cannot prescribe the complete boundary condition (2) for the solution of the equation (3) the problem is of singular perturbation type; therefore the so-called boundary layer terms will appear in the asymptotic formula for $u(x, y, \varepsilon)$ (see [1]).

The solution $U(x, y)$ is determined in the following manner: We choose y_{0} such that $y_{0}>y_{1}$ and $y_{0}<y_{2}$ if $v_{1}\left(y_{2}\right)=v_{2}\left(y_{2}\right), y_{0}=y_{2}$ if $v_{1}\left(y_{2}\right)<v_{2}\left(y_{2}\right)$. Let $\bar{\Omega}$
denote the part of the region \bar{R} which lies in the half-plane $y \leq y_{0}$ and Γ the boundary of Ω from which we extract the line segment $\left\{(x, y) \mid \nu_{1}\left(y_{0}\right)<x<\nu_{2}\left(y_{0}\right)\right.$, $y=y_{0}$. Then $U(x, y)$ is uniquely determined by the boundary condition $U \mid \mathrm{r}=\varphi$; in greater detail

$$
\begin{equation*}
U\left(x, y_{1}\right)=\psi(x), \quad U\left(\nu_{1}(y), y\right)=\varphi_{1}(y), \quad U\left(\nu_{2}(y), y\right)=\varphi_{2}(y) . \tag{4}
\end{equation*}
$$

Equation (1) Was not chosen in the most general form: a more general equation than (1) would be represented by

$$
a(x, y) u_{x x}+\varepsilon u_{y y}+A(x, y) u_{x}-B(x, y) u_{\nu}+C(x, y) u=B(x, y) .
$$

It is not important that we restricted ourselves to the case $a(x, y)=1$, since the case with an arbitrary $a(x, y)$ can be treated by the same method which is described in this paper, and the results are the same. However, the assumption that the coefficient B depends on y only is more essential for our method, as we shall see later.
2. We assume the following properties of the coefficients and the right-hand side of (1) in the region \bar{R} and of the functions $\nu_{1}(y), \nu_{2}(y)$, $\psi(x), \varphi_{1}(y), \varphi_{2}(y):$
a) $B(y)>0$.
b) $B(y)$ has a derivative of the third order, $A(x, y)$ has partial derivatives of the third order, $C(x, y)$ and $F(x, y$ of the second order, and all these derivatives satify a Lipschitz condition with respect to all their variables.
c) $\nu_{1}(y), \nu_{2}(y)$ and $\psi(x)$ have derivatives of the fourth order and $\varphi_{1}(y)$, $\varphi_{2}(y)$ derivatives of the third order and all these derivatives satisfy a Lipschitz condition.

Our aim is to prove the following.
Theorem. - Let there be satisfied the assumptions a), b), c). Then in the region $\bar{\Omega}$ we have

$$
\begin{equation*}
u(x, y, \varepsilon)=U(x, y)+h(x, y, \varepsilon) e^{-\frac{x(y)}{\varepsilon}}+0\left(\varepsilon^{\frac{1}{2}}\right), \tag{б}
\end{equation*}
$$

Where $h(x, y, \varepsilon)=0(1)$ in $\overline{\mathbf{Q}}$ and $\alpha(y)=\int_{y}^{y_{0}} B(s) d s$.
The term $h(x, y, \varepsilon) e^{-\frac{\alpha(y)}{\varepsilon}}$ is a boundary layer term since it becomes important only near the line $y=y_{0}$ where it equalises different values of $u(x, y, \varepsilon)$ and $U(x, y)$.

In this paragraph we shall only sketch the proof. It will be apparent why we are forced to restrict ourselves to the case of B depending on y only. First of all we may suppose $y_{1}=0, y_{0}=1, \nu_{1}(0)=0, \nu_{2}(0)=1$. Further we may assume $\psi(x)=\varphi_{1}(y)=\varphi_{2}(y)=0$. For it is sufficient to put $u=v+e(x, y)$ where

$$
\begin{gathered}
\tau(x, y)=\psi\left[\frac{x-v_{1}(y)}{v_{2}(y)-v_{1}(y)}\right]+\left[\varphi_{1}(y)-\varphi_{1}(0)\right]\left[1-\frac{x-v_{1}(y)}{v_{2}(y)-v_{1}(y)}\right] \\
+\left[\varphi_{2}(y)-\varphi_{2}(0)\right] \frac{x-v_{1}(y)}{\nu_{2}(y)-v_{1}(y)},
\end{gathered}
$$

and it is seen that $\left.v\right|_{\mathrm{r}}=0$. Also, $L_{\varepsilon}(v)=F(x, y)-L_{0}\left(\tau(x, y)-\varepsilon \tau_{\nu \nu}(x, y)\right.$. However, the right-hand side of this equation depends on ε. But putting $v=v_{1}+\varepsilon v_{2}$ and taking v_{2} such that $L_{\varepsilon}\left(v_{2}\right)=-\tau_{\nu y}$ and $v_{2} \mid \hat{\partial n}=0$, we can easily prove by means of the maximum principle that $v_{2}=0(1)$. Concerning v_{1} we obtain $L_{\mathrm{s}}\left(v_{1}\right)=F(x, y)-L_{0}(\tau(x, y))$ and, as $\left.v\right|_{\Gamma}=\left.v_{2}\right|_{\partial \Omega}=0,\left.v_{1}\right|_{\Gamma}=0$. By our assumptions, the function $L_{0}(\tau(x, y))$ has the same derivability properties as $F(x, y)$, and the function $\tau_{y y}(x, y)$ is certainly continuous. In the sequel no new notation is used for the right-hand side $F(x, y)-L_{0}(\tau(x, y))$; the equation will have the form (1) and instead of (4) we shall have

$$
\begin{equation*}
U(x, 0)=U\left(v_{1}(y), y\right)=U\left(v_{2}(y), y\right)=0 \tag{6}
\end{equation*}
$$

Now, following [1], let us seek the solution $u(x, y, \varepsilon)$ in the form

$$
u(x, y, \varepsilon)=U(x, y)+h(x, y, \varepsilon) e^{-\frac{g(x, y)}{\varepsilon}}+\varepsilon z(x, y, \varepsilon)
$$

Substituing into (1), the term of highest order on the left is $\frac{1}{\varepsilon^{2}} g_{x}^{2} e^{-\frac{g}{\varepsilon}}$. If we want it to be zero we must choose g such that $g_{x} \equiv 0$, i. e. $g=\alpha(y)$. By this choice of the exponent the term of next highest order is $\frac{1}{2} h \alpha^{\prime}\left(B+\alpha^{\prime}\right) e^{-\frac{\alpha}{\varepsilon}}$. As $h \equiv \equiv 0, \quad \alpha \neq$ konst, we must set $\alpha^{\prime}(y)=-B$ and consequently B can depend on y only. In order to obtain a boundary layer term near the line $y=1$, we choose $\alpha(y)=\int_{y}^{1} B(s) d s$. Then the equation for $z(x, y, \varepsilon)$ reduces to

$$
L_{\varepsilon}(z)=-U_{\nu \nu}\left(x_{2} y\right)-\frac{1}{\xi} e^{-\frac{\alpha(y)}{\varepsilon}} L_{\varepsilon}^{*}(h),
$$

where

$$
L_{\varepsilon}^{*}(h) \equiv h_{x x}+\varepsilon h_{y y}+A(x, y) h_{x}+B(y) h_{y}+\left[B^{\prime}(y)+C(x, y)\right] h .
$$

Now it seems obvious to choose the function h in the following manner

$$
L_{\varepsilon}^{*}(h)=\varepsilon,\left.h\right|_{\Gamma}=0, h(x, 1)=u(x, 1, \varepsilon) 二 U(x, 1)
$$

By means of the maximum principle we can easily prove that $h(x, y, \varepsilon)=O(1)$. The function $z(x, y, \varepsilon)$ satisfies the equation $L_{\varepsilon}(z)=-U_{\nu y}-e^{-\frac{a}{\varepsilon}}$ and the boundary condition $z \mid \partial \Omega=0$. If $U_{y y}(x, y)$ were a bounded function, we should have, again from the maximum principle, $z(x, y, \varepsilon)=O(1)$ so that the final result would be better than formula (5), namely $u(x, y, \varepsilon)=U(x, y)+$ $h(x, y, \varepsilon) e^{-\frac{\alpha(y)}{\varepsilon}}+O(\varepsilon)$. But $U_{y y}(x, y)$ need not be bounded even if we choose the boundary values arbitrarily smooth. For the boundedness it is necessary that at the points $(0,0),(1,0)$ certain equations of conformity should be satisfied. Of course, such an assumption does not correspond to the nature of the original Dirichlet problem. To do without it, we shall apply a device used in the investigation of hyperbolic equations with a small parameter (see [2]). We shall replace the right-hand side $F(x, y)$ by the function $\bar{F}(x, y)$ which differs from it for $0 \leq y \leq \delta$ only, where δ is a new parameter, and such that the solution $\bar{U}(x, y)$ of $L_{0}(\widetilde{U})=\bar{F},\left.\bar{U}\right|_{\mathrm{\Gamma}}=0$ has a bounded $\bar{U}_{y y}(x, y)$. We will then be able to prove $\bar{U}_{v y}=0\left(\delta^{-1}\right)$. Denote $F(x, y)-\bar{F}(x, y)$ by $\Phi(x, y)$ and construct on Ω the solutions w, \bar{u}, W of the following equations: $L_{\varepsilon}(w)=\Phi(x, y)$ and $\left.w\right|_{\partial \Omega}=0, L_{\varepsilon}(\bar{u})=\bar{F}(x, y)$ and $\bar{u}\left|\hat{\partial}_{\Omega}=u\right| \partial \Omega$, $L_{0}(W)=\Phi(x, y)$ and $W \mid \Gamma=0$.

Then we have $u=\bar{u}+w, \quad U=\bar{U}+W$. Concernin \bar{u} we can already set $\bar{u}=\bar{U}+h e^{-\frac{\alpha}{\varepsilon}}+\varepsilon z$ where $L_{\varepsilon}^{*}(h)=\varepsilon, h \mid \mathrm{r}=0, h(x, 1, \varepsilon)=\overline{u(x, 1, \varepsilon)-}$ $-\bar{U}(x, 1)=u(x, 1, \varepsilon)-\bar{U}(x, 1)$. The final result is

$$
\begin{equation*}
u=U+h e^{-\frac{a}{\varepsilon}}-W+\varepsilon z+w \tag{8}
\end{equation*}
$$

On the basis of the estimate $\bar{U}_{y y}=O\left(\delta^{-1}\right)$ we conclude $z=O\left(\delta^{-1}\right)\left({ }^{1}\right)$.
Concerning W, we shall prove $W=O(\delta)$; this is quite reasonable since the righ-hand side Φ differs from zero for $O \leq y \leq \delta$ only. It then follows from (8) that $u=U+h e^{-\frac{\alpha}{\varepsilon}}+O(\delta)+\varepsilon O\left(\delta^{-1}\right)+w$.

[^0]Putting $\delta=\varepsilon^{\frac{1}{2}}$ (and this is the best choice) we obtain $u=U+h e^{-\frac{\alpha}{8}}$ $+o\left(\varepsilon^{\frac{1}{2}}\right)+w$. Now it is sufficient to prove $w=0\left(\varepsilon^{\frac{1}{2}}\right)$.
3. Proof of the theorem: All estimates will be carried through by means of the maximum principle, which, for our purpose we formulate for an equation of the form
(9) $\mu(x, y) u_{x x}+\nu(x, y) u_{y y}+\alpha(x, y) u_{x}-\beta(x, y) u_{y}-\gamma(x, y) u=\psi(x, y)$
in this way: we suppose $\mu(x, y)>0$ and either $v(x, y)>0$ or $v(x, y) \equiv 0$.
In the first case the region R in which the equation (9) is considered can be any bounded domain; in the second case the equation is considered in the domain Ω introdnced above, and we suppose $\beta(x, y)>0$ in $\bar{\Omega}$. Let be $\gamma(x, y)>\frac{1}{\gamma_{0}}>0$ in both cases (i. e. either in R or in Ω). Then we have, in \bar{R} or in $\overline{\bar{\Omega}}$ respectively,

$$
\begin{equation*}
|u(x, y)| \leq \max \left(\gamma_{0} M_{1}, M_{2}\right) \tag{10}
\end{equation*}
$$

where either $M_{1}=\max _{\overline{\bar{B}}}|\psi(x, y)|, M_{2}=\max _{\partial \bar{R}}|u(x, y)|$ or $M_{1}=\max _{\bar{n}}|\psi(x, y)|$, $M_{2}=\max _{\Gamma}|u(x, y)|$ respectively.

First, from the maximum principle it follows that the solution $u(x, y, \varepsilon)$ of the Dirichlet problem (1), (2) is bounded with respect to ε, i. e. $u(x, y, \varepsilon)=O(1)$. To prove this it is sufficient to set $u=e^{k y} v$. We obtain

$$
v_{x x}+\varepsilon v_{y y}+A v_{x}+(-B+2 k \varepsilon) v_{y}-\left(k B-C-\varepsilon k^{2}\right) v=F e^{-k y}
$$

We choose k such that $k B(y)-C(x, y) \geq 2$ in \bar{R}. Then we have $k B(y)-C(x, y)-k \varepsilon^{2} \geq 1$ for $\varepsilon \leq \frac{1}{k^{2}}$, so that following (10) we have $|v| \leq$ $\leq \max \left(\max _{\bar{R}}\left|F(x, y) \cdot e^{-k_{y}}\right|, \max _{\partial R}\left|e^{-k y} \varphi\right|\right)$, i. e. $v=O(1)$, and thus $u=O(1)$. It is obvious that the same remark holds for the equation $L_{\varepsilon}^{*}(h)=\varepsilon$ if the boundary values of the function h are bounded with respeet to ε.

Now let us define the function $\bar{F}(x, y)$. Set

$$
\begin{equation*}
\bar{F}(x, y)=\omega\left(\frac{y}{\bar{\delta}}\right) F(x, y), \tag{11}
\end{equation*}
$$

where $\omega(s)$ is a three times continuously differentiable function such that $0 \leq \omega(s) \leq 1$ for $s \geq 0, \omega(s)=0$ for $0 \leq s \leq \frac{1}{2}, \omega(s)=1$ for $s \geq 1$. Obviously we have $\bar{F}(x, y)=0$ for $y \leq \frac{1}{2} \delta$.

Consider the solution $\bar{U}(x, y)$ of the equation $L_{0}(\bar{U})=\bar{F}(x, y)$ with condition $\left.\bar{U}\right|_{\Gamma}=0$. We introduce new independent variables $\xi=\frac{x-v_{1}(y)}{v_{2}(y)-\nu_{1}(y)}$, $\eta=y$. The domain Ω is mapped onto the square $\Omega^{*}: 0<\xi<1,0<\eta<1$. If we also introduce a new unknown function V by the relation $\bar{U}=\chi(x, y) \cdot V$ and choose $\chi(x, y)$ conveniently, we can obtain the equation for V in the form

$$
\begin{equation*}
V_{\text {绎 }}-b(\eta) V_{\eta}+c(\xi, \eta) V=\bar{f}(\xi, \eta, \delta) \tag{12}
\end{equation*}
$$

with boundary condition

$$
\begin{equation*}
\left.V\right|_{\mathrm{r}_{*}}=0 . \tag{13}
\end{equation*}
$$

where $\Gamma^{*}=\partial \mathbf{Q}^{*}-\{(\xi, \eta) \mid 0<\xi<1, \eta=1\}$. The coefficients b, c do not depend on δ, they have derivatives of the second order satisfying a Lipschitz condition with respect to their variables and $b(\eta)$ is positive for $0 \leq \eta \leq 1$. The right-hand side $\bar{f}(\xi, \eta, \delta)$ also has derivatives of the second order satisfying a Lispschitz condition with respect to its variables, and

$$
\left\{\begin{array}{l}
\bar{f}=0 \text { for } 0 \leq \eta \leq \frac{1}{2} \delta, \quad \bar{f}=0(1) \text { on } \overline{\mathbf{\Omega}}^{*}, \tag{14}\\
\bar{f}_{\eta}=0(1), \bar{f}_{r n}=0(1) \text { for } \eta \geq \delta, \bar{f}_{n}=0\left(\delta^{-1}\right), \bar{f}_{n n}=0\left(\delta^{-2}\right) \text { for } 0 \leq \eta \leq \delta .
\end{array}\right.
$$

We are to prove that the solation $V(\xi, \eta)$ has derivatives of the second order on $\bar{\Omega}^{*}$ and these are $0\left(\delta^{-1}\right)$.

First, from the maximum principle it follows that $V=0(1)$ (in the same manner as that used in the proof of boundedness of $u(x, y, \varepsilon)$). Further, from the theorem 2 of [3] it follows that $V(\xi, \eta)$ has continuous derivatives of the first order and a continuous $V_{\text {结 }}$ on $\bar{\Omega}^{*}$ (note that the conditions of conformity in this theorem are satisfied since $\bar{f}(\xi, 0)=0$). From the lemma 2 of [4] it follows (${ }^{2}$) that it is posible to differentiate the equation

[^1](12) with respect to η so that V_{η} satisfies the equation
\[

$$
\begin{equation*}
Q_{s \xi}-b(\eta) Q_{n}+\left(c(\xi, \eta)-b^{\prime}(\eta)\right) Q=f_{n}(\xi, \eta, \delta)-c_{n}(\xi, \eta) V ; \tag{15}
\end{equation*}
$$

\]

obviously $V_{n} \mid r_{*}=0$ as it follows from (13), (12) and (14). The assumptions of the theorem 2 of [3] are again fulfilled by the equation (15), so that the derivatives $Q_{\bar{亏}}$ and Q_{n}, i. e. $V_{n \xi}$ and $V_{\eta n}$, are continuous on the bounded square $\bar{\Omega}^{*}$. The right-hand side $P_{1}(\xi, \eta)$ of (15) is $O\left(\delta^{-1}\right)$ for $O \leq \eta \leq \delta$. Put $Q=e^{\frac{n}{\delta}} Y$. Then $\left.Y\right|_{r *}=0$ and Y satisfies the equation

$$
Y_{\text {欵 }}-b(\eta) Y_{n}-\delta^{-1}\left[b(\eta)-\delta\left(c(\xi, \eta)-b^{\prime}(\eta)\right)\right] Y=e^{-\frac{n}{\delta}} P_{1}(\xi, \eta) \text {. }
$$

Using the maximum principle on the region $0 \leq \xi \leq 1,0 \leq \eta \leq \delta$, we see that in this region we have $Y=O(1)$ and accordingly $Q=O(1)$. For $\eta \geq \delta$ there is $P_{1}(\xi, \eta)=O(1)$ and therefore $Q=O(1)$ holds also for $\eta \geq \delta$. Consequently we have $V_{n}=O(1)$ in $\overline{\Omega^{*}}$. From (12) we then get $V_{\xi \xi}=P_{2}$, where $P_{2}(\xi, \eta)=O(1)$ on $\bar{\Omega} *$. As $V(0, \eta)=V(1, \eta)=0$, there exists a $0<\xi_{1}(\eta)<1$ such that $\nabla_{\xi}\left(\xi_{1}, \eta\right)=0$; thus $V_{\xi}=\int_{\xi_{1}}^{\sum_{2}} P_{2} d \xi$ and consequently $V_{\xi}=O(1)$ on $\overline{\mathbf{Q}^{*}}$. As to $V_{\eta n}$, we again differentiate equation (15) with respect to η (the conditions of conformity are again fulfilled because the right-hand side of this equation is zero for $\eta=0$). The right-hand side of the resulting equation is $O\left(\delta^{-2}\right)$ for $O \leq \eta \leq \delta$, and in the same manner as for V_{n} we can prove $V_{\text {rn }}=O\left(\delta^{-1}\right)$ on $\overline{\mathbf{\Omega}}^{*}$. From (15) it follows that $Q_{\xi \xi}=O\left(\delta^{-1}\right)$, and on integrating $V_{n \xi}=Q_{\xi}=O\left(\delta^{-1}\right)$.

Finally we must estimate z, W and w. Considering $L_{\mathrm{f}}(\tilde{z})=-\bar{U}_{y y}-$ $-e^{-\frac{\alpha}{z}}=O\left(\delta^{-1}\right)$ and $z \mid \hat{c} a=O$ it follows from the maximum principle (by means of the substitution $z=e^{k y} \cdot v$) that $z=O\left(\delta^{-1}\right)$ on $\bar{\Omega}$. Concerning W, we have $\left.W\right|_{\Gamma}=0$ and $L_{0}(W)=\Phi(x, y)$, where $\Phi(x, y)=O(1)$ for $O \leq y \leq \delta$ and $\Phi(x, y)=0$ for $y \geq \delta$. To prove $W=O(\delta)$ we again make use of the substitution $W=e^{\frac{y}{\delta}} Y$. Then $\left.Y\right|_{\Gamma}=0$ and

$$
Y_{x x}+A(x, y) Y_{x}-B(y) Y_{y}-\delta^{-1}[B(y)-\delta \cdot C(x, y)] Y=e^{-\frac{y}{\delta}} \Phi(x, y)
$$

From the maximum principle it follows that $Y=O(\delta)$ and consequently that $W=O(\delta)$ for $0 \leq y \leq \delta$. For $y \geq \delta$ there holds $\Phi=0$ so that $L_{0}(W)=0$ and $\left.W\right|_{y=\delta}=O(\delta),\left.W\right|_{x=v_{1}(y)}=\left.W\right|_{x=v_{2}(y)}=0$; again by means of the maximum principle we can prove $W=O(\delta)$ for $y \geq \delta$. Consequently $W=O(\bar{\delta})$ on $\bar{\Omega}$.

Now we put $\delta=\varepsilon^{\frac{1}{2}}$ and it remains to prove $w=O\left(\varepsilon^{\frac{1}{2}}\right)$. Setting $w=\exp \left(\varepsilon^{-\frac{1}{2}} y\right)$. Y, we obtain for Y the equation

$$
\begin{gathered}
Y_{x x}+\varepsilon Y_{y y} A(x, y) Y_{x}+\left[2 \varepsilon^{\frac{1}{2}}-B(y)\right] Y_{y}-\varepsilon^{-\frac{1}{2}}\left[B(y)-\varepsilon^{\frac{1}{2}}(C(x, y)+\right. \\
+1)] Y=\exp \left(\varepsilon^{-\frac{1}{2}} y\right) . \Phi(x, y) .
\end{gathered}
$$

Further we can proceed in the same manner as in the estimate of W.

BIBLIOGRAPHY

[1] N . Levinson: The first boundary-value problem for $\varepsilon \Delta u+A u_{x}+B u_{y}+C u=D$ for small ε. «Annals of Math.s $01,1900,428-446$.
[2] M. Zlámal: Smesannaya zadaca dlya giperbolicesłih uravnenī̆s malym parametrom Czechoslovak «Math. Journ.» 10 (85), 1960, 85-122.
[3] 'I. D. Ventcel': O primenenii metoda konēnyh raenosteí k reseniyu pervō kraevō zadači dlya uravnenī̄ paraboliceskogo tipa. «Mat. Sbornik» 40 (82), 1956, 101-122.
[4] O. A. Oleinik i T. D. Ventcel': Pervaya kraevaya zadac̃a i zadaca Cauchy dya kvazilineinyh uravnenīparabol̄̈ceslogo tipa. "Mat. Sbornik» 41 (83), 1957, 105.128.

[^0]: (1) This means $|z| \leq C 0^{-1}$ where C depends on neither ε nor δ.

[^1]: assumptions introduced in it are stronger than those which ensure differentiability $\frac{\partial}{\partial \eta}$. For this, in the case of the equation (12) and boundary condition (13), it suffices to suppose the following: $1, b(\eta)>0,2, b(\gamma)$ has a derivative satisfying a Lipschitz condition, $3, c(\xi, y), \bar{f}\left(\xi, \eta^{\prime}, \delta\right)$ satisfy a Lipschitz condition with respect to both variables, have the derivative of the first order with respect to η satisfying a Lipschitz condition and $c(\bar{\xi}, 0)$ has a derivative satisfying a Lipschitz condition, $4, \bar{f}(0,0)=\bar{f}(1,0)=0$.

