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Summary. - We consider the Dirichlet problem for the equation L (u)= w,, -+ suyy 4
+ d(x, Yu, — B(y)uy + Clx, y)u = F &, y) where B(y) >0 and = is a small positive
parameter, An asymptotic formula is proved, from which it follows that in a suitable
part of the domain of definition u(x, y, &) — Ux, y) as ¢ — 04, where U{x, y) is the
solution of the corresponding boundary - value problem for the reduced equation
Ly(U) = Upp + Alx, ) U, — B(y) U+ Clee, y)U = F(w, y).

1. We shall deal with the first boundary-value problem for the elliptic
equation

(1) Le(“) = Ugy + EUyy + A(m7 y)“w - B(y)”y -+ O(-I', Y = F(w, 2/)

where ¢ is a small positive parameter and B(y) > 0. Let the boundary 3R
of the closed region R, in Which the equation (1) is considered, consist
of a part of the line y = y,, of tWo continuous curves x = v,(y), © = v,(y) With
vi(y) < voy) for ¥, =< y <y, and, if v,(y.) < vi(#.), of a part of the line y = y,.
The aim of the present paper is to examine the asymptotic form of the
solution wu(x, y, €) of (1) which satisfies the boundary condition

2) u|or = o

It is to be expected that in a suitable part of the region R, u(x, y, ¢
converges, as ¢ — 0 -4, to a suitable solution of the parabolic equation

(3) LoU) = Ugy + Az, y) U, — B(y)Uy + C(w; ?/)U= F(x, Y)-

Since wWe cannot prescribe the complete bouundary condition (2) for the
solution of the equation (3) the problem is of singular perturbation type;
therefore the so-called boundary layer terms will appear in the asymptotic
formula for wu(x, y, ) (see [1].

The solution U(x, y) is determined in the following manner: We choose ¥,
such that yo > o, and gy, < yo if vi(4) = va¥s), Yo=9: if vi(¥s) < va(ys). Let Q
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denote the part of the region R which lies in the half-plane y < y,and I' the
boundary of & from which we extract the line segment {(x, ¥)| vi(y.) < 1 < Valto),
y=19o!. Then U(x, y) is uniquely determined by the boundary condition
Ul p=1q; in greater detail

4 U, g:) = ), U0, 9)=o:ly), UO:W), ¥) = 99

Equation (1) was not chosen in the most general form: a more general
equafion than (1) would be represented by

ax, Yhue + € Uyy + A, Yu, — Ble, Yu, 4+ Clx, yu=F(x, y).

It is not important that we restricted ourselves fo the case a(x, y) =1,
since the case Wwith an arbitrary a{x, %) can be treated by the same
method Wwhich is described in this paper, and the results are the same.
However, the assumption that the coefficient B depends on y only is more
essential for our method, as we shall see later.

2. We assume the following properties of the coefficients and the
right-hand side of (1) in the region R and of the functions v,(), va(),
b(), Pu(), PoLW):

@) B(y) > 0.

b) B(y) has a derivative of the third order, A(x, y) has partial deri-
vatives of the third order, C(x, y) and F{x, y of the second order, and all
these derivatives satify a Lipschitz condition Wwith respect to all their
variables.

¢) vi#), vy) and ¢(x) have derivatives of the fourth order and oyy),
@y(y) derivatives of the third order and all these derivatives satisfy a
Lipschitz condition.

Our aim is to prove the following.

THEOREM. — Let there be satisfied the assumptions a), b), ¢). Then in the
region Q We have

_ ) v
(5) w, 9, ) = U, 9)+hiw, g, ¢ ¢ 408,

Yo
where Rz, 9, ¢) = 0(1) in Q and afy) = [ B(s)ds.
y
— g
The term h(w, y,¢) e = is a boundary layer term since if becomes
important only near the line y =y, Where it equalises different values

of u(x,y, ¢) and Ulx, ).
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In this paragraph we shall only sketch the proof. It will be apparent
why we are forced fo restrict ounrselves to the case of B depending on y
only. First of all we may suppose g, =0, yo =1, v,(0) = 0, v,(0) = 1. Further
We may assume ¢@@)=9(y)= () =0. For it is sufficient to put
# == v -+ t(®, y) Where

W, y)=1¢ [M] + [ () — @1(0)1 {1 "H

x — vi(y)

+ | 00) — i0)| 210

and it is seen that v |[p=0. Also, L(v)= F(, y) — L, ) — et (@, ¥).
However, the right-hand side of this equation depends on e. But putting
v = v; + ev, and taking v, such that L(v,) == — Ty, and v | =0, We can
easily prove by means of the maximum principle that v, = 0(1). Concerning
v We obtain Lg(v,) = F(x, y)— Lotx, y) and, as vlp=2]s0=0, v, | p =0.
By our assumptions, the function Ly(x(x, 3)) has the same derivability properties
as F(x, y), and the function t,,(x, %) is certainly continuous. In the sequel
no new notation is used for the right-hand side F(x, y) — Ly(x(x, 9)); the
cquation will have the form (1) and instead of (4) we shall have

6) U, 0)=Uv:(y), y)= UM(y), y) =0.

Now, following [1], let us seek the solution wu(®, y, ¢) in the form

— & y)

u(e, 4, &) = U(wa y) + h(w’ Y, e)e ¢ er(e, Y, &)

.y
Substituing into (1), the term of highest order on the left is i—z gee ¢

If we want it to be zero we must choose g such that g, =0, i.e. g = afy).
By this choice of the exponent the term of next highest order is

%— ho'(B -+ oc’)e—sz. As h=zz0, a==konst, We must set o ()= — B and conse-

quently B can depend on y only. In order to obtain a boundary layer
1

term near the line y=1, we choose a(y)= / B(s)ds. Then the equation
¥

for z(x, y, ¢) reduces to

x(y)

1 _
L) = — yy(wﬂ?/)“ge e L (),

19
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where

L:(h) == hyy 4 Ehyy + A(w; ?/)hac -+ B(y)hu + [Bl(y) + O(my y)]h

Now it seems obvious to choose the function % in the following manner
LIy =c¢, h|p=0, bz, 1)=ux, 1, &)= Uz, 1)

By means of the maximum principle We can easily prove that h(x, y, &) = 0(1).

The function z(x, ¥, ¢) satisfies the equation L(2)= — U,, —e ¢ and the
boundary condition 2 |0=0. If U,,(x, y) Were a bounded function, We
should have, again from the maximuam principle, 2, ¥, g) == (1) so that the
final result would be better than formula (5), namely u(x, y, ¢) = Ulx, ») 4
— oly)

M, y, e)e ¢ - O€). But Up,(x, y) need not be bounded even if we choose
the boundary values arbitrarily smooth. For the boundedness it is necessary
that at the points (0, 0), (1, O) certain equations of conformity should be
satisfied. Of course, such an assumption does not correspond to the nature
of the original Dirichlet problem. To do without it, We shall apply a device
used in the investigation of hyperbolic equations Wwith a small parameter
(see [2]). We shall replace the right-hand side F(x,y) by the function
Flx, ) which differs from it for 0 = y =3 only, where & is a new parameter,
and such that the solution U(x,¥) of LfU)=2F, U|pr=0 has a bounded
T,,(@, y). We will then be able to prove U, = 0@""). Denote Fx,y)— F (x,y)
by ®(x, y) and construct on R the solutions w, u, W of the following
equations: Lw)= ®(x, ) and w |z =0, Lu) = F(x, y) and u | sa=1u | sa,
Ly(W)=®(x, y) and W |p=0.

Then we have u=u+w, U= U+ W. Concernin # We can already

set W= U-+he * +cz Where LF(h)=¢, h|r=0, ki, 1, e)=ule, 1, &) —
— Uz, 1)=ufw, 1, &) — Ulw, 1). The final result is

o

8) w=U+he t— W ez + w.

On the basis of the estimate U,, = 0@~") We conclude 2= 0" ().
Concerning W, we shall prove W = 0(8); this is quite reasonable since
the righ-hand side @ differs from zero for O =y =07 only. It then follows

trom (8) that w=U+he ¢ + OF)+ c0F~ + m.

{#) This means |z | =< Cd-% where C depends on neither ¢ nor 8.
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1 ~2
Putting 3 =e? (and this is the best choice) We obtain uw==U--he :

1 1
-+ O(e 5) +w. Now it is sufficient to prove w=20 (e§>.

3. Proor or THE THEOREM: All estimates Wwill be carried through by
means of the maximum principle, which, for our purpose we formulate for
an equation of the form

® W, Pz += (X, Yoy, + alx, Pu, — B, Yu, — vz, yu = P, 3)

in this way: we suppose plx, y) > O and either v(x, y) > O or v, y)= O.

In the first case the region R in which the equation (9) is considered
can be any bounded domain; in the second case the equation is considered
in the domain @ introduced above, and we suppose B(x, %) > O in Q. Let be

1w, y)>%> O in both cases (i.e. either in B or in Q). Then we have, in
- 0 _

R or in Q respectively,

(10) | ulw, ») | < max (y.M., M),

where either M, = max |, y) |, M, = max | ulx, y)|or M, = max|d(x, )|,
B OR 0
M, =max | u(x, y) | respectively.
T

First, from the maximum principle it follows that the solution wu(x, ¥, ¢
of the Dirichlet problem (1), (2) is bounded Wwith respect to e 1i. e.
u(®, y, €)= O0(1). To prove this it is sufficient to set u = e*¥y. We obtain

Vpu + eVyy -+ AVy 4+ (— B + 2kew, — (kB — O —ek®v = Fe~%y,

We choose % such that kB(y)— Clx, y)=2 in R. Then we have
EBy)— Cle, y) — ke* =1 for e %, so that following (10) we have |v | <

< max (max | F(x, y)-e~* | ,max | e~ *¥9p | ), i. e. v= 0(1), and thus % = O(1).
B 2R
It is obvious that the same remark holds for the equation L)(h)=-¢ if the

boundary valués of the function % are bounded with respect to e,
Now let us define the function F(x, y). Set

(11) e, y)=o(§) Fw. 9
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where w(s) is a three times continuously differentiable function such that

O<oE) <1 for s=0, wis)=0 for OSSS%, w(g)==1 for s=1. Obvio-

usly we have F, y))=0 for y< % 3.

Consider the solution Ulx, y) of the equation Ly(U)= F(x, y) With

condition U | p=0. We introduce new independent variables E:fg)_—v@«),
VoY) — v4(y
7 =y. The domain Q is mapped onto the square Q*: 0 < < 1, 2O< 7 1< 1.

If we also introduce a new unknown function V by the relation U=y, )V
and choose y(x, y) conveniently, We can obtain the equation for V in
the form

(12) Vee —b()Vy, + o, )V =7 n, ?)
with boundary condition
(18) V| e =0.

where I'* =23Q% — {(§, 7)|0<<E<1, n=1!. The coefficients b, ¢ do not depend
on 3, they have derivatives of the second order satisfying a Lipschitz
condition with respect to their variables and b(x) is positive forO=17n < 1.
The right-hand side f(§, 7, 8) also has derivatives of the second order
satisfying a Lispschitz condition with respect to its variables, and

!/

f=0 for OSng%S, f=0(1) on Q%
(14)

Fo=001), for="01) for 1 =3, f, =03, fuy =00 for 0 <y <3.

We are to prove that the solution V(Z, %) has derivatives of the second
order on Q% and these are 0.

First, from the maximum principle it follows that V=0(1) (in the same
manner as that used in the proof of boundedness of u(x, y, ¢)). Further,
from the theorem 2 of [3] it follows that V(£ %) has continuous derivatives
of the first order and a continuous Vi on Q* (note that the conditions
of conformity in this theorem are satisfied since f, 0)=0). From the
lemma 2 of [4] it follows (*) that it is posible to differentiate the equation

. , i ik

(?) This lemma also concerns the dlfferentlatlona'g, Py mand Pl Therefore the
assumptions introduced in it are stronger than those which ensure differentiability
a—%. For this, in the case of the equation (12) and boundary condition (13), it suffices
to suppose the following: 1, &(n) >0, 2, (v) has a derivative satisfying a Lipschitz
condition, 8, ¢(5,7), f(§ 7, ?) satisfy a Lipschitz condition with respect to both variables,
have the derivative of the first order with respeet to v satisfying a _Lipschitz condition
and ¢(§, 0) has a derivative satisfying a Lipschitz condition, 4, £(0, 0) =f(1, 0) =0.
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(12) with respect to v so that V, satisfies the equation

(15) Qze — D@y + (G N — Q=146 7, 8) — 0,& MV

obviously V, | r,=0 as it follows from (13), (12) and (14). The assumptions
of the theorem 2 of [3] are again fulfilled by the equation (15), so that the
derivatives Q; and Q,, i. e. V,z and V,,, are continuous on the bounded
square Q% The right-hand side Py, %) of (15) is O@E—Y for O<n = 3. Put

7
Q=1¢3Y. Then Y |p,=0 and Y satisfies the equation
—
Yee — b(0) Y, — 7o) — 3§, M) — b)Y =e ° Pu§, 7).

Using the maximum principle on the region 0<<f{=<<1, 0<% <3 we
see that in this region we have Y= 0(1) and accordingly Q= O(1). For
1=28 there is Py, %)= O(1) and therefore Q= O(1) holds also for n=2.
Consequently we have V, = 0(1) in Q* From (12) we then get Vi = P,,
where PyE n) = O(1) on Q% As V(0, ) = V(l, n) = O, there exists a

e

0 <&(n)< 1 such that V&, n) = 0; thus V;_:szdE and consequently
&

V:=0(1) on Q* As to V,,, We again differentiate equation (15) with
respect to v (the conditions of conformity are again fulfilled because the
right~-hand side of this equation is zero for % = 0). The right-hand side
of the resulting equation is OF~?) for 0 <% < 8, and in the same manner
as for V, we can prove V,,= O(3~%) on Q% From (15) it follows that
Qe = O(™%), and on integrating V., = Q= 0(3—).

Finally we must estimate 2, W and w. Considering L.(z) = — E’W —

e = 0(@~") and 2| = O it follows from the maximum principle

(by means of the substitution z=e*v.v) that 2z= 0(3-%) on Q. Concerning

W, we have W/|pr=0 and Ly(W)=®(, y), where @z, y)= O(1) for

O0<y=2?% and @, )= 0 for y=2&. To prove W = 0(3) We again make
y

use of the substitution W==¢3Y. Then Y |p= 0 and

Oz, y).

Yoo + Al#, )Y — B@)Y, —37[B(y) — 8- Clx, y))Y = e

ol

From the maximum principle it follows that Y = 0O(3) and consequently
that W=0@) for 0 <y=2?% For y=07 there holds ®=0 so0 that
L{W)=0 and W /| ,.5=00), W|acyy)= W | amy = O; again by means
of the maximum prineiple we can prove W= 0(@) for y = 3. Consequently
W= 0@) on Q.
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1 1

Now we put S==¢> and it remains to prove w= 0(55). Setting

1
w==exple *y). Y, We obtain for Y the equation

1

— By)Y, —¢ 2[By)— e (Cle, y) +

(SRS

Yoo+ Y,y A, )Y, + (2

W4

FOIY=expc Fy). D, y)

Further we can proceed in the same manner as in the estimate of W.
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