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Summary. - We develop here some new ]ixed point theorem~ and apply them to the question o] 
existence o] nontrivial periodic solutions o] nonlinear, autonomous ]unctiona~ di]#rential 
equations. We prove that the standard results o] G. S. Jones and R. B. Gra#on can be 
obtained by our methods, and we prove periodicity results ]or some equations, ]or instance a 
neutral /unetional di]]erential equation, which appear inaccessible by previous techniq#es. 

Introduction. 

In 1962 G. S. JONES [t7], drawing extensively on earlier work of E. M. W~IGHT [26], 
proved that  the equation x ~ ( t ) ~ - - ~ x ( t - - 1 ) ( 1 - ~  x(t)) has nontrivial periodic solu- 
tions for ~ > z/2. Subsequently JO~ES applied his methods to a number of other 
equations and proved periodic behaviour. Jone's basic technique was to apply certain 
fixed point theorems in which the existence of a nontrivial fixed point of a compact 
map i~ was guaranteed; these fixed points corresponded to nontrivial periodic solu- 
tions of ~ functional differential equation. 

In  1969 R. B. G~AFTO~" at tempted to simplify and generalize Jones's methods. 
G~AFTO~ avoided the use of fixed point theorems and gave an abstract result based 

on a Krasnoselskii theorem concerning eigenvalues of compact maps of a cone into 
itself. GRAFTON derived as consequences Jones's basic examples and also proved 
that  the van der Pol equation with time lag x " ( t ) - - s x ' ( t ) ( 1 - - x 2 ( t ) )  -~ x ( t - - r ) :  0 

has nontrivial periodic solutions for e > 0 and r > 0. 
Both the Jones and Grafton theorems have obvious drawbacks. They can never 

apply to neutral FDE's  because they are restricted to compact maps and the opera- 
tion of translation along trajectories is never compact in that  case. Also, for technical 
reasons they do not apply to some retarded FDE's  for which periodicity results 

should hold. 
In this paper we proceed in the general spirit of Jones's ideas. In Section 1 we 

prove a new fixed point theorem (Theorem 1.1) which generalizes theorems of Browder 
and Jones. As we show Theorem 1.1 is directly applicable to a large number of auto- 
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nomous FDE's, though we should remark that  there are cases (e.g., Section 4) in which 

more general fixed point theorems are needed. 
Section 2 is basically designed just to show that  the standard examples of existence 

theorems for periodic solutions follow from Theorem 1.1, though at least some of the 
results (see, for example, Corollaxy 2.1) appear new. 

In Section 3 we prove that  the seemingly innocent generalization of Grafton's 
equation given by x"(t) - -  ex'( t)(1--  x~(t)) + x ( t - -  r) - -  kx(t) has a nontrivial periodic 
solution of period greater than 2r if - - k , <  k <  1~ where ko----rain (e/r, 2/#) ,  r > 0 
and e > 0. If k < 0 this result appears inaccessible by Grafton's methods, l~oughly 
the same arguments also give Grafton's theorems in [8], though we have not carried 
this through here. A technical point that  may be of interest here is the simplified 
treatment of the characteristic equation for the lineaxized FDE. 

In Section 4 we prove that  the equation x ' ( t ) = - - z t x ( t - - l - - l x ( t ) t ) ( 1 - - x 2 ( t )  ) 
has nontrivial periodic solutions for all e > ~/2. We are forced here to use a fixed 
point theorem different from Theorem 1.1, and in fact the interest of the equation 
stems from the nonstandard techniques it requires. 

In Section 5 we prove that  the neutral FDE 

k d ~ ] 
x'(t) = - ~x(t - 1 )  + m + 1 gt x + ~ ( t - 1 )  I1 -x'(t)] 

has nontrivial periodic solutions if r e > l ,  a > ~/2 and 

Ikl<---K-k if re=l). 

Even this seemingly simple equation raises a number of unanswered questions. 
In Sections 3, 4 and 5 we have not striven for the greatest possible generality; 

and a number of mechanical generalizations can be carried through. Instead we have 
tried to pose the simplest examples of equations which pose substantial technical 
difficulties. 

1. - Our goal in this section is to establish some fixed point theorems which will 
be directly applicable to most of the examples we will consider. We begin by  recalling 
some basic ideas. If (X, ~) is a metric space and A is a bounded subset of X,  
K~A~ows~:I [16] has defined y(A), the measure of noncompactness of A, to be 
inf {d > 0: A has a finite covering by sets of diameter less than or equal to d}. 
Of course if A is compact, y(A) = 0. I f  (X1, ot) and (X~, ~) axe metric spaces and 
/: X , - ~ X ,  is a continuous map, we shall call ] a (~ k-set-contraction ~ if for every 
bounded set A c X~, f(A) is bounded and ?2(](A))<ky~(A); this idea is also due to 
K~A~owstct  [16]. Examples of k-set-contractions are given in [22], Section A. 

The basic properties of the measure of noncompactness have been established by  
KL~AT0WSKI [16] and DAm3o [6]. If  X is a complete metric space and {A,} is 



ROGEt¢ D. NtrSSBAU~: Periodic solutions of some nonlinear, etc. 265 

decreasing sequence of closed, bounded subsets of X such tha t  F(A~) ---> O, KLrRATOWSKI 
proved tha t  A~ ~-N A~ is none mp t y  and compact  and An approaches A~ in the 

n ~ l  

Hansdorff  metric.  I f  X is a Banach space and co(A) denotes the  convex closure of 
a bounded subset A of X, DARDO proved t h a t  y(c-o(A))= F(A). I f  A and B are 
any  bounded subsets of X and A + B =  { a + b :  a e A ,  beB}, DAMP0 also proved 

tha t  y(A + B) <F(A) + y(B). 
There is nothing sacred about  the  par t icular  measure of noncompactness  defined 

above. Generally, suppose tha t  X is a Banach  space and suppose tha t  there  is a 
real-valued funct ion # which assigqls to each bounded set A c X a nolmegative real 
number  #(A). Suppose t ha t  (1) there  exists constants  m > 0 ,  M > 0  such t h a t  
m#(A)<y(A)<M/~(A) for eve ry  bounded set A, (2) # (c -o (A) )=#(A)  for eve ry  

bounded set A c X ,  (3) if A c B ,  # ( A ) < # ( B ) ,  (4) #(A U B ) =  max (#(A)), #(B)) 
and (5) #(A + B) <#(A)  + #(B). I f  # satisfied 1-5 above,  we shall call # a general- 
ized measure of noncompactness;  obviously m a n y  other  generalizations are possible. 
I f  D c X  and / :  D-->X is a continuous map such t h a t  /(A) is bounded  for e v e ry  
set A cD, we shall say / is a <~ k-set-contraction with respect  to /z  ~ if #(/(A)) < k#(A) 

for eve ry  bounded set A cD. 
We ment ion as an  example  one generalized measure of noncompactness  which 

will prove useful in Section 5. Le t  / denote  a compact  subinterval  of R and let  
C(I, R") denote the space of continuous maps from I to R". For  x e C(I, R"), define 

IIx[I = sup Ix<t) l, where I'[ denotes a fixed norm on R". I f  .4 is a bounded subset 

of c (L  R*) ana 8 > 0  we  ,ite A)= sup xeA, t, 8 Z, I*--sl 
and we define co(A), the  modulus of cont inui ty  of A, to be ~im ° co(O; A). I t  is p roved  

in [2~] tha t  ½co(A) <y(A)  <co(A), and the other  propert ies  for co to  be a generalized 
measure of noncompactness  a~re immediate .  I f  I = [a, b] and C~(I, R") denotes the 
space of cont inuously  differentiable maps from I to R ~ with the  norm IIxli = 
= Ix(a) + sup lxqt)], then  it  is proved in [25] tha t  if A is a bounded set in C1[I, R*), 

~,(A) = ~,~(A'), where ~,~ denotes the  measure of noncompaetness  in C(I, R ~) and A' 
denotes the  set of derivat ives of functions in A. I t  follows tha t  if we define 
#(A) = co(A') for bounded sets A c C~(I, R~), then  # is a generalized measure of 

noncompactness.  
We shall also need some results re la ted to the  so-called fixed point  index. I f  A 

is a compact ,  metr ic  space, recall t ha t  A is called a compact ,  metr ic  ANN if given 
any  metric space M, any  closed subset B of M and any  continuous m a p / :  B-+A,  
then  / has a continuous extension /: U->A, defined on some open neighborhood 

U of A. I f  A is a subset of a Banach  space X and A = LJ C~, where C, are compact ,  
i=1 

convex subsets of X, then  A is known to be a compact ,  metr ic  _4_Nt~. I f  G is an 
open subset of a compact  me t r ix  A_NI~ A and ]: O -+ A is a cont inuous map which 
has a compact  (possibly empty)  set of fixed points in G, t hen  there  is defined an 
integer i,(/, G), the fixed point  index of / over G. This fixed point  index can be 
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thought of as an algebraic count of the number of fixed points of ] in G. A summary 
of the properties of the fixed point index is given in [22], Section C; and a some- 
what more complete development can be found in [27]. We shall summarize here 
only those properties of the index we shall immediately need. If i~(/, G) is defined 
and nonzero, / has a fixed point in G; and if G1 and G2 are open subsets of A, 
i~(/,G) and i~(],G2) are defined, and f has no fixed points in GI(~G~, then 
i~(f, GI) ~- i~(], G~) = i~(f, GI w Gs) (this is the additivity property). If h is a home- 
omorphism of A onto a compact, metric ANI~ B, then i~(/, G) -~ i~(h/h -1, h(G)) (this 
is g special case of the so-called commutativity property). Finally, we have the 
normalization property: i~(f, A ) : A ( / ) ,  where A(]) denotes the Lefschetz number 
of ]. Recall that  A(]) -~- ~ (-- 1) ~ tr (]..~), where tr  (].~) denotes the trace o f / , . i ,  the 

induced map of ] on H~(A), the i-th homology group of A with coefficients in the 
rationals. 

In [22], Section D, a generalized fixed point index is defined for k-set-contractions 
with respect to /~, # a generalized measure of noncompactness, k<  1, and some 
other classes of maps defined in certain (noncompact) metric ANI~'s. The usefulness 
of this generalization derives from the fact that  all properties of the classical fixed 
point index generalize. Here, however, we shall only need the definition of tlle 
generalized index for maps defined on closed, convex sets. Suppose that  A is a closed, 
convex subset of a Banach space X and U is a bounded, open subset of A. Let 
]: U-~A be a k-set-contraction with respect to /~, k<  1, and assume that  ] ( x ) ¢ x  
for x ~ U-- U. Define K~ -~ KI(/, U) -~ co/(U) and generally define K~ : K~(f, U) ----- 
-~ co ]( U ~ K~_I). If  one sets K~ -~ K~ (f , U) == ~ K~ , it is not hard to verify that  

K~ is compact and convex (since ~(K~)<k~#(U)) and that  / ( U ~ K ~ ) c K ~ .  Now 
let K be any compact, convex set such that  K o K ~  and /(U(~ K ) c K ;  K~ itself 
is such ~ set, so the set of such K is nonempty. We define i~(/, U), the generalized 
fixed point index of ] on U, to be i~(], U(~ K) if K~ is nonempty and 0 if K~ 
is empty. I t  follows from Lemma l ,  page 239~ in [22] that  i~(], U (~ K) is in- 
dependent of the particular K as above. Furthermore, it is proved in [22] that i~(], U) 
agrees with the ordinary fixed point index if A is compact and simply equals the 
Leray-Schauder degree of I - - ]  if A ~ X and / is a compact map. 

For those who are familiar with Leray-Schauder degree, the above definition 
can be phrased differently. Let Q be any retraction of X onto K, where K is as above 
(such retractions are known to exist). Then f oQ: ~ - ' ( U ~ K ) - ~ K  is a compact 
map and degL~(I-- ] oQ, Q-~(UnK)) is defined, and one can prove that  it equals 
i~(], U) (i n particular, it is independent of the retraction o). 

For our subsequent work we also need to recall some geometrical results. 

L E n A  1.1 (K~EE [15]). - Let C be a compact, convex, infinite dimensional 
subset of a Banaeh space. Then C is homeomorphie to the Hilbert paratlelotope. 
Furthermore, if xo is any prescribed point in C, the homeomorphism h may be chosen 
to take xo into any prescribed point in the Hilbert parallelotope. 
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Using L e m m a  1.1 Browder  establishes the  following result  in [3]: 

LE~Lk  1.2 (BlcoWDER [3]). -- I f  C is an infinite dimensional compact ,  convex 
subset of a Banach  space X and {x~, x_., ... ,x~} is a finite subset of C, then  there  

exist  ~rbitrari ly small neighborhoods U~ of xj in C, 1 < j < r ~  such tha t  C - - ~ j  Uj 
is homeomorphie  to  the  t I i lber t  parallelotope. ~=~ 

]31¢OWDEI~ also in t roduced in [3] the notion of an eject ive fixed point  of ~ map ]. 
Wi th  a view to the  later  applications we have to weaken his definition somewhat.  
I f  C is a topological space, x0 e C, W is an open neighborhood of x0 and ]: W- -  (x0} --> C 
is a continuous map,  we shall say tha t  x0 is an (( e ject ive point  ,) of ] if there  exists 
an open neighborhood U of xo such tha t  for eve ry  x ~ U--{xo} there  is a posit ive 
integer m ~ re(x) such t ha t  f"(x) is defined and /~(x) ~ U. I f  ] is defined and con- 
t inuous at  xo and ](xo):  xo, this definition agwees with Browder 's ,  bu t  for some 
examples / cannot  be continuously defined at  x0. 

Our nex t  lemma is proved  by  BlCOWDEt~ for eject ive fixed points,  and the same 
argument  carries over to eject ive points.  

L E t ~ !  1.3 ( B i o w D E i  [3]). - Le t  C be a compact ,  t ~ u s d o r f f  space, xo e C, and 
/:  C--(xo} -> C--(Xo} a continuous map such tha t  x0 is an eject ive point  of ]. Then 
there  exists an open neighborhood U of xo such tha t  for ~ny open neighborhood V 
of xo, there  is an integer m(V) such tha t  f~ ' (C--V)c  C--  U for m>m(V) .  

The following lemma is in tui t ively  obvious, bu t  we include u proof for  completeness. 

L E ~  1.4. - Le t  G be a closed, bounded convex infinite dimensional subset 
of a Banach space X. Then there  exists a compact ,  convex infinite dimensional 
set K c (7. 

P~ooF. - Let  e~ be a sequence of posit ive real numbers  which approach 0. Le t  xl 
be any  fixed nonzero point  in G, and assume we have  selected points  x~, xs, ..., x .  e G 

such that  {xl, x2, . . . ,  x .}  is a linearly independent set and Ifx.- llT for > 1. 
Let  F .  denote  the linear subspace spanned b y  0, Xl, x2, ..., x ,  and let  G~ : /~ '~  n G. 
Since G is not  finite dimensional,  there  exists y~+l e G - - G , .  I f  we define x,+~ 
-~ (1--t)x~ + ty,+~, where t >  0 is chosen so small t ha t  ]lx~+,-xlH ~<e~+l, then it  is 
also easy to see t ha t  x~+~ e G and {x~,x~ ..., x~+~} is l inearly independent .  

We define K =  c-o (x, :  n~>l}. B y  Our construct ion K is closed, bounded,  convex 
and infinite dimensional.  I t  only remains to show tha t  K is compact ,  and since K 
is a complete metr ic  space, compactness will follow if ~,(K) : 0. B y  the  propert ies  
of the measu e of noncompactness ,  r ( K ) = r ( { x , :  n > l } ) .  Ir  we take  e > 0  and 

2/ 

select N so large t h a t  e~ < e/2 for  n > 2~ ~, we have  t h a t  {x,: n > 1} = ~J x~ (.J (.J x~. 
n=l u~/¢+l 

The set {x,: n > N }  has d iameter  less t han  e, so ~({x.: n>l})~<e .  Since ~ > 0  was 
arbi t rary ,  the  lemma is proved.  Q.E.D.  
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Our nex t  lemma is a ve ry  special case of Theorem 1 in [21]. I t  can also be estab- 
lished direct ly in a few pages of reasoning wi thout  the  elaborate  appara tus  used in [21]. 

L E ~ : ~  1.5 (See Theorem 1 in [21]). - Le t  C be a closed, convex subset of a 
Banach  space X, let  V be a bounded open subset of C and  suppose t h a t  ]:  V->  V 
is a continuous,  compact  map.  Assume t h a t  there  is a compact  set K c V such t h a t  
K is homotopic  in itself to  a point  and such tha t  / ' ( V ) c K  for n greater  t han  or 
equal  to some integer m. I t  then  follows tha t  io(/, V ) =  1. 

We are finally r eady  to s ta te  our main theorem. The following result  is a 
generalization of work of G. S. Jo~Es  [17,19] and F. E. B~0WDE~ [2, 3]. 

THE0~E~ 1.1. -- Let  G be a closed, bounded, convex, infinite dimensional subset 
of a Banach space X,  # a generalized measure of noncompactness  on X, x0 e G, 
and f: G - - { x o } - > G  a continuous map which is a k-set-contraction with respect 
to #, k < 1. Then if x0 is an eject ive point  of / ~nd U is an open neighborhood of xo 
such tha t  ](x) V= X for x ~ U - -  {Xo}, i~(/, G - -  U) = 1 and f has a fixed point  in G - -  U. 
I f  G is finite dimensional (not equal  to  a point)  and xo is an ex t reme point  of G, then  
the  same conclusion holds. 

P~ooF. - By  Lemma 1.4 (if G is infinite dimensional) there  exists a compact ,  
convex infinite dimensional subset K of G. Define Cl:c-o(Kuf (G--{Xo}) )  
6 '~=-~(KWf(C,_,--{xo}))  for n > 1, and C =  ~ C~. I t  is not  ha rd  to see t h a t  C 

is compact ,  convex and infinite dimensional and  t h a t  f ( (G--{xo})~c___C and 
OoK~(/ ,  G--  {xo}). I t  follows b y  our  definition tha t  iq(/, G--  U ) :  i~(], (G-- U ) ~  C), 
so if we define W =  G--U,  it sufficies to prove io(f, W ~  C ) =  1. 

By  the Krein.Millman theorem C has an ex t reme point  xl, and by  Lemma ! .1  
there exists a homeomorphism h of C onto C such tha t  h(x0)=x~.  By  one 
of the previously ment ioned propert ies  of the  fixed point  index, i~(], W n  C)= 
= ic(hfh-~ , h ( W ~  C)). I t  follows tha t  for the purposes of our theorem we ma y  as 
well assume originally tha t  xo is an ex t reme point  of C. I f  G originally is finite 
dimentional,  and not  equal to a point ,  we take  C = G originally, and b y  assump- 

t ion xo is an ex t reme point  of G. 
We now use a t r ick  f rom [3] and construct  an auxi l iary  funct ion ]~. Our purpose 

is to avoid the  technical ly bothersome possibili ty tha t  ](x)= xo for some x e G--{xo}. 
By  the  definition of e jec t iv i ty  there  exists an open neighborhood /#1 of Xo in C, 
U1 c U n C, such tha t  for each x e U~-- {xo} there  is an integer m = m(x) such tha t  
]~(x) is defined and f~(x) ~ U~. For  x e C, define e(x) = d(x, U~) -~ the  distance of x 
to  if1. Let  x~ be any  point  in C unequal  to xo and  define ]~(x) -~ (1--ee(x))f(x) + 
+ee(x)x~ for x eC--{xo} and posit ive e so small t h a t  cO(x)< I for all x eC .  
Since ] has no fixed points in W n  U - - ( G - - U ~ ) ,  the addi t iv i ty  p roper ty  of the 
fixed point  index implies tha t  i~(f, W(~ C)= io(f, C--U1) ;  and the so-called homo- 
topy  p roper ty  of the  fixed point  index implies tha t  for e small enough i~(/, C - -  U~) = 
= ie(]~ , C--U~). Thus it  suffices to prove  t h a t  i~(/,, C - - U ~ ) =  1. I t  is clear t ha t  
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o -  {xo) a n d  in  f a c t  C - -  ; for  • e = f (x ) ,  so  

cer ta inly  ](x) va xo for x E U1 and for x ~ U~, ]~(x) ~ xo because xo is an ex t reme  point.  
I t  follows according to Lemma L3  (since xo is cer ta inly an eject ive point  of ]~) 

tha t  there  exists an open neighborhood U~ of xo in C with the following p roper ty :  
given any  open neighborhood V of xo in C, there  exists an integer m(V) such t h a t  
] '~(C--V)¢  C--U2 for m>~m(V). I f  C is infinite dimensional,  then  b y  Lemma 1.2 
there  exists an open neighborhood U8 of x0 such t h a t  U3 ¢ U~ 6~ U~ and C - - U 3  
is homeomorphic  to the t t i lber t  parallelotope. I f  C ~ G is finite dimensional such 
a U3 exists such tha t  C - - U 8  is homeomorphic  to C. In  ei ther  case C- -U 3  ~ K~ 
is cer ta inly contract ible in itself to a point.  B y  definition there  exists a posi- 
t ive integer m such t ha t  ] ~ ( C - - U 3 ) c C - - U ~ c C - - U 3  for n>~m. I f  we define 
Bj ~ ]~(C-- U3) ~ a compact  set and V~ ~- C- -U3 ,  there  is an open neighborhood 
V~_I of B~_I such t ha t  /~(V,,_I) c Vm and xo ~ V~_x. Proceeding b y  finite ind~action, 
there  exist  open neighborhoods Vj of Bj for 0~<]~<m--1 such tha t  Xo~Vj for 
0 < j < m, f~ (Vj) ¢ Vj+I for 0 < j < m - -  1 and ]~(V~) c B0 ¢ Vo. I t  follows t h a t  V == [.J V~ 
is an open set such tha t  xo~V, ]~(V) c V  and K I - - ~ C - - U 3 c V .  Since xo~V, 
there  exists a positive integer m~ such tha t  / : (V )cK1  for n>~ml. I t  follows f rom 
Zemma  1.5 tha t  ie(/~, V)-~1, and b y  the addi t iv i ty  p rope r ty  i~(/,, C--U~)----i~(/~, V). 

Q.E.D. 

I f  ] happens to be defined and continuous at  an eject ive point  Xo, so tha t  i~(], U) 
is defined, then  somewhat  more detailed information can be obtained.  

COrOLLArY 1.1. -- Let  G be a closed, bounded convex and infinite dimensional 
subset of a Banach  space X,/~ a genralized measure of noncompactness ,  and ]: G -* G 

a continuous map which is a k-set-contraction with respect to #, k < 1. The~ if x0 
is an eject ive fixed point  of ] and U is a neighborhood of Xo such tha t  ](x)=/= x for 
x e U - -  {x0}, ia(], U) ~ O. Fur the rmore ,  / has a fixed point  in G which is not  ejective. 

P~OOF. - I f  C is as in Theorem 1.1, then  it  is easy to check b y  our definition tha t  

ia(/, U) -~ i~(/, U N C) and ia(/, G - -  U) ~ it.(/, C (~ (G--  U)). According to Theorem 1.1, 
iG(/, G - -  U) --~ 1 and by  the addi t iv i ty  p rope r ty  ia(], U) + ia(f, G - -  U) = i~(], C). 
Thus it  suffices to prove  t ha t  i~(/, C)---- 1. Bu t  we know t h a t  io(f, C )=  A(]]C), 
and A(/]C)-~ 1 because C is homologically trivial.  

I f  S denotes the  set of fixed points o f / ,  S clearly must  lie in C, so S is compact .  
I f  ] has no non-eject ive fixed points,  then  since each eject ive fixed point  is isolated, 
S = {xl, x2, ..., xn} is a finite set. Le t  Uj be an open neighborhhood of xj such t h a t  

f(x) ¢ x for x e Us--{xj} and define U---- 0 Us: Then b y  the  addi t iv i ty  p rope r ty  
n j ~ l  - -  

ia(f, U) ~ ~ i,(], Us)-~ O. I t  follows tha t  ia(], G- -  U) -~ iq(], G) -= 1, so ] has a fixed 
j = l  

point  in G - -  U, contradict ing the assumption tha t  ] has no noneject ive  fixed point .  

Q.E.D. 

1 8  - .Annali  di  3 latemat ica 
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COt¢0LLAI~¥ 1.2. -- Let  K be a closed, convex infinite dimensional subset of a 
Banach  space such tha t  O a K .  For  some R > 0  let G =  { x e g :  Hxli<R} and let  
]: G - - { 0 } - - ~ K  be a k-set-contraction, k <  1, with respect  to /~, # a generalized 

measure of noncompactness.  Then if ](x):/:tx for x e K ,  tlxl] = R and t > l  and if 0 
is an eject ive point  of ], ] has a fixed point  in G ~  {0}. 

P~ooF. - Let  ~ be the radial  re t rac t ion of K onto G: ~(x)-~ x if [Ixl[-<R and 

= Nx/l lxl l )  if [Ixl] > R .  The same proof given in [22], page 221, shows tha t  
is a 1-set-contraction with respect  to #. I t  follows easily tha t  if g ( x ) =  ~(](x)), 
g(G--{xo}) cG and g is a k-set-contraction with respect  to  #. I t  is also clear t h a t  0 
is also an ehect ive point  of g and t h a t  G is closed, bonnded,  convex and infinite 
dimensionM. I t  follows from Theorem 1.1 tha t  g has a fixed point  x~ in G--{x0}. 
If ~(](xJ)= ](xJ, we are done. Bu t  if ~(](x,))= xtV:/(x~), we must  have [Ix~l] = R 
and ](x~)= tx~, t > l ,  a contradict ion.  Q.E.D. 

2. - In  this section we wish to consider the re ta rded  funct ional  differential equat ion 

(2.1) 
y ' ( t ) - - - / ( y ( t - 1 ) )  for , > o  

y(t) =9)(t) for - - 1 - < t  < 0 .  

In  (2.1) q denotes a given continuous function and / a continuous real-valued function.  
We shall see later  t ha t  (2.1) contains some more general examples than  one might  
expect .  Our goal is to  place enough fur ther  conditions on f to  guarantee  t h a t  (2.1) 
has a nonzero periodic solution. 

Before stat ing our first lemma, we recall some s tandard  notat ion.  We shall denote 
the Banach  space X of real valued, continuous functions on [--1,  0] by  C([--1,  0]); 
if v c(c-1, 0]), livlI = sup lv(t)l, w e  shall denote by y(t; q~) (or y(t), if q~ need 
not  be emphasized) the  solution of (2.1) which equals q) on [ - -1 ,  0]. I f  x(t) is a 
continuous funct ion defined for - - l < t <  co, then for O<t<oo ,  we define 

xt e C([-- 1, 0]) by  xt(s) : x(t + s) for - -  1 < s  < 0. 

LE~/cIA 2.1. - Assume tha t  ]:I i - ->R is a cont inuous funct ion and tha t  
~oe C([--1,  0]). Then there  is a unique solution y(t) of (2.1) defined for all t > - - 1 .  
Fur thermore ,  y(t; qp) depends cont inuously  on ~0 in the following sense: given 
~Ooe C([--1,  0]), T > 0, and e > 0 there  exists • > 0 such t h a t  for all ~oa C([--1,  0]) 

with I]~--~Ool] < 5, sup ly(t; ~0)--y(t; ~Oo)]< e. 

t--I 

- I f  y(t) satisfies (2.1), then  on [0, 1] we must  have  y(t) = y(0)--J / (y(s))  l>go o~ ~ . d~, 
- -1  

and conversely, such a y satisfies (2.1) on [0~ 1]. On the intervM [1, 2], we have 
$--1 

--f](y(s) ) ds. Continuing in this way i t  is clear t ha t  y is uniquely  defined y(t) y(1) 
o 
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for - - 1  <~t< oo: The  cont inu i ty  s t a t e m e n t  of the  l e m m a  follows easi ly f rom the 

cont inu i ty  of ] and  the  explici t  fo rmula  given. Q.E.D. 

LE~r~A 2.2. - Assume t h a t  f is a cont inuous funct ion and  t h a t  y](y) > 0 for all 

y=/: 0. Assume t h a t  there  exists  a posi t ive  cons tan t  A such t h a t  e i ther  (a) it(y) > - - A  
for all y or (b) I](y)I<<.A if lyI<~A. Then  if ~v e G( [ - -1 ,  0]) satisfies O<~v(t)<A 
for  - - l<~t~<0 and if condit ion (a) on ] holds, i t  follows t h a t  y(t; q~)<A for all t > 0 ;  

if condit ion (b) on it holds, ly(t; q~)l<A for all t > 0 .  

PI~ooF. - Since it(y) > 0 for y > 0, y'(t) <0 on [0, zl A- 1], where zl denotes the  

first zero o f y  on [0, oo) and  we t a k e z l = o o  if y has no zero. I f  z l = o o ,  we are 
done, so suppose z l <  oo. I f  condit ion (a) holds there  are two possibilit ies: e i ther  

y(t) < 0 for all t>z~ ÷ 1, in which case we are done, or y has a first zero z~ e [z~ + 1,co). 

Since y'(t) > 0 on [zl ~- 1, z~ + 1], the m a x i m u m  of y(t) on [z~ ÷ 1, z., -[- 1] is achieved 
Z2 

at  z2 + 1. Bu t  we have  t h a t  y(z.~ + 1) = --f](y(s) ) ds < A, b y  our a s sumpt ion  on it. 
zs--I 

~owever, at this point we axe back in our original situation with y~,+~ serving as ~p. 

Thus if we repea t  the  a rgumen t  (formally use induction) we find t h a t  y(t; ~ ) < A  

for  all t > O. ~ 

find t h a t  ly(z~A-1)I=]it(y(s))ds<A. I f  y ( t )<  0 for I f  condit ion (b) hoIds, w e  

zz--I 

t>z~ + 1, we are done;  otherwise y(t) has a first zero z~ on [z~ + 1 ,  c~). J u s t  as above  y 

is increasing on [zl A-1, z~ + 1 ]  and  ly(z2 + 1 ) ]  ~<A. Continuing in this way  we ob- 

tain the  result .  Q.E.D.  

L E ~  2.3. - Le t  it be a cont inuous funct ion such t h a t  yf(y)> 0 for y~= 0. 

Assume there  exis t  cons tants  s > 0 a n d  e > 1 such t h a t  lit(y)] > ely 1 for y ¢ [-- s, el. 
for y e I - - s ,  s]. Suppose t h a t  ~0 e C([--1 ,  0]) is a nonnegat ive  funct ion with 9(0) > 0. 

Then if we define zl(~) = inf {z>0:  y(z; q~) = 0} and z,(~) = inf {z>z._~(?) + 1: 

each z,(~) is defined and  finite and y(t; q~) is monotonic  decreasing f rom 0 to zl(q) -¢-1, 

monotonic  increasing f rom zl(~0) + 1 to z.2(~) + 1, and  so on. Fm~thermore,  if M > 0, 

there exists  a cons tant  C(M) such tha t  z2(~)~< C(M) for all ~ as above  with n~011 ~<M. 

PI~OOF. -- Suppose t h a t  tl~ll < M .  Since it(y)>0 for y > 0, define a posi t ive  
n u m b e r  d =  rain {/(y): s < y < M } .  Since y ' ( t )<- -d  as long as Y(t > e, if y ( 0 ) >  e, 

there  exists  some first t ime  tl > 0  such t h a t  y ( t~)=  e and  t~<M/d. I f  y{0)~<e, we 

define t~ = 0. I f  y(z) ~ 0 for some n u m b e r  z, t~ < z < t~ + 1, we have  z~(9) -4< Mid + 1. 
Otherwise,  b y  the  assumpt ions  on it we have  y ' ( t )=- - i t (y ( t - -1 ) )<--e (y ( t - -1 ) )  < 
~<--ey(t~A-1) for t~-~-l<t<~t~+ 2. This implies t h a t  y mus t  have  a zero on the  

in terva l  [t~ + 1, t~ -~ 1 A- e-~]. Thus in a n y  even t  we find t ha t  z~(q~)<~M/d -4- 2 =M~. 
I t  is obvious f rom our assumpt ions  t h a t  y is monotonic  decreasing on [0, z~(~) A- 1]. 

I f  we define M '  - -  m a x  {/(x) : 0 ~< y ~< M}, it follows t h a t  y(z~ + 1) > - -  M ' ;  and now 
if we set d'=min{-- i t (y) :  M'<<.y<~--e}, the  same proof as before shows t h a t  y 

has a zero z~ and  z ~ ( z ~ + l ) < M ' / d ' + 2 .  Q.E.D. 
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LE~Cf~[A 2.¢. - Le t  K c  C([--1,  O]) denote the cone of monotonic  increasing func- 

tions 9 such tha t  ~(--1)  ~ 0. Assume tha t  / satisfies the conditions of Lemma 2.3. 
Then the map 9-+z~(~) is continuous f rom K - -{ 0 }  to R. The map F:K--->K 
defined by  ~(q)(t) ~ y(z~(q) + 1 + t; q), - - l < t ~ < 0 ,  for 9 ~  0, and F(0) = 0 is a con- 
t inuous compact  map of K into K.  

l ~ o o P .  - Take 9 e K - - { 0 }  and let  z~ denote the  first zero of y(t; q~) on [0, co); 

z~ > 0 since q(0) > 0. I f  z~>l, we have  y'(zl) = - - / ( y ( z ~ l ) )  < 0, because y ( z ~ - - l ) > 0 .  
I f  0 <  z~< 1 we also must  have y'(z~)< 0. Otherwise, y(z~- - l )=O-~9(z~- - l ) ,  
and since ? is monotonic  increasing this implies t h a t  9 ( t ) =  0 for - - l < t < z ~ - - l .  
I t  would then  follow tha t  y'( t)= 0 for 0 < t < z ~ ,  which would imply tha t  y(z~)= 
-----y(0) > 0 ,  a contradict ion.  The same proof shows tha t  y ' ( z , ) # 0  for all n > l .  

I t  is now easy to see (using L e m m a  2.1) t h a t  ~v-+z~(~) is cont inuous on K - - { 0 } .  
The fact  t ha t  F is continuous on K - - { 0 }  is now immediate .  To show t h a t  

is continuous at  0, recall t ha t  by  Lemma 2.3, there  exists a constant  C such hat  
z~(~) <~C if 9 ~ K  and II?ll <1 .  By  Lemma 2.1, given e > 0, there  exists ~ > 0 such 

tha t  if It~vlI < ~, ly(t; 9)1 < s for 0 < t <  c + 1. Bu t  this implies/~ is continuous at  0. 
Now suppose t ha t  A is a bounded subset of K, ]t~vll < M  for ? c A .  The proof 

of Lemma 2.3 shows tha t  ly(t; ~v)l < M'----- ma x  {/(y): 0 < y  ~< M} for z,(~v) < t<z.~(~), and 
the  same proof shows t ha t  [y(t; q~)l<M"=- max {/(y): O < y < M ' }  for z~(~)<t<z~(q~). 
I t  follows t ha t  IIE(~v)II<M" for ~ e A  and ly'(t;q~)l<M ~' for z ~ ( ~ ) < t < z ~ ( ~ ) + l .  
The Ascoli-Arzela theorem now implies tha t  F(A) has compact  closure in K.  Q.E.D. 

I t  is clear tha t  fixed points of F correspond to periodic solutions of (2.1). Our 
goal f rom here on will be to  impose fur ther  conditions on / which, with the  aid of the  
fixed point  theorems of Section 1, will guarantee  tha t  E has a nonzero fixed point.  

Our main lemmu is a f ragment  of Theorem 5 of E. M. W ~ I ~ T ' s  article [26]. 
I t  can also easily be proved directly. 

LEPTA 2.5 (see [26]). - I f  ~ > z / 2 ,  the equat ion ~ + ~e-~'= 0 has a complex 

root  1 such tha t  I~e ( 2 ) >  0 and 0 < I m  (X)< ~. 
The nex t  two lemmas comprise the  hear t  of our proof of the  existence of nonzero 

periodic solutions of (2.1). The basic idea fo~ the proof of the following lemma seems 
to be due to E. M. W~IG~T (see Theorem 4 of [26] and the argument  on p. 76). 

LE)~iA 2.6 (see [26]). - Le t  / be a continuous, real-valued funct ion such t h a t  
y/(y) > 0 for all y = 0. Assume tha t  / is cont inuously differentiable on some open 
neighborhood of the  origin and ~ = / ' ( 0 )  >~/2. Then there  exists a posit ive con- 
s tant  a ( independent  of ~) such tha t  for any  ~v e K with 9(0) > 0 (K as in L e m m a  2.4), 

lira lY(t; ~)l > a .  

1)~ooF. - Take ~v~K with 9 ( 0 ) > 0 ,  set y(t)--=y(t;9), and define z ~ = z , ( ~ )  
(z~(~) is well defined b y  Lemma  2.3). We can assume tha t  ly(t)I is bounded,  or we 
are done. Fur thermore ,  it is easy to see tha t  if y(t)= 0 for t in an in terval  of 
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length 1, then  ~ mus t  have  been identical ly  zero. Therefore for any  T > 0  we have  

sup [y(t) I > 0. 
t~>T 

Let ), ----- # + iv be the complex  so lut ion of ~ + ~ exp [ - -  2] = 0 which is guaranteed  
by  L e m m a  2.5 and take  a pos i t ive  number  e such that  s <  ½# cos v/2. Since ] is 
cont inuous ly  differentiable on a ne ighborhood of the  origin~ there exists  a pos i t ive  
number  a such that  l/(y)--~y] <sty t if IYl <a,  where ~ = fl(0). To prove  the  l e m m a  
it suffices ?~o show that  sup Iy(t)I > a for any  zero z~ of y. W~e prove  this  by  con- 

t ~ z n  

tradietion.  Thus  suppose  that  for some zero z of y, sup ty(t)l = ~< a. Since y 
t ~  z 

achieves  its local  m a x i m a  and m i n i m a  on [z, c~) at  the  points  z. ~-1, z,>~z, there  
exists  a zero z , ~ z  such that  ly(z. + 1 ) t > ( ~ / 2 .  For  nota t iona l  convenience  we  set  
T----z~ + 1, and we  a s sume  that  y ( T ) >  0, since the  proof in the  ease y (T)<  0 is 

I f  we  integrate fy ' ( t )ex  p [--)~t]dt by  parts we  obtain analogous.  
T 

(2.2) 
c o  co 

f y' (t) exp [ -  ~t]dt = - y( T) exp [-- ~'] ÷ ~ f y(t) exp [-- ~t]dt . 
T I' 

On the  other hand~ if we set 

y'(t) = - - / ( y ( t - - 1 ) )  = - - ~ y ( t - -  1) + [ - - / ( y ( t - -  1)) + ~ y ( t - - 1 ) ] ,  

we obtain 

oo 

f y' (t) exp [-- ~t]dt 
co 

= - ~ f y ( t -  1) exp [-- ~t]dt + 
I'  

¢Jo 

+fE-/(y(t-1))  + ~y(t- 1)] exp E-Zt]dt. 
T 

If  we  change variables in the  latter equat ion  we  obtain 

co i'+ 1 

(2.3) fy'(t)exp [ - z t ] e t = - ~ e x p  [-a]fy(t)exp [ - -Xt]dt- -~fy( t - -1)exp [--Zt]et+ 
T T ~" 

+ f [--](y( t --1))  + ~ y ( t - - a ) ]  exp  [-- 2t]dt. 
Y 

Set t ing  (2.2) equal  to  (2.3) and using the  fact  that  ~ -~ :¢exp [--) , ]  = 0 we  find that  

(2.4) 
T 

- -y(T)  exp  [- -  ).T] ÷ ~ e x p  [-- 2] fy(t) exp [--  ~tJdt = 
T--1  

=f[ - ] (y ( t -1) )  + ~ y ( t - -  1)) exp [- -  ~t]dt. 
T 
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I f  one in tegra tes  the  left  hand  of (2.4) b y  pa r t s  and  mult ipl ies  bo th  sides b y  

exp  [)~(T-- ½)] one obta ins :  

-- fy '( t)exp [-- ~(t-- T ÷ ½)]dt-= (2.5) 

co 

= t [ - / ( y ( t -  1)) + a y ( t -  1)] exp [ -  ~(t - r + ½)Jar. 

Taking the  real  pa.rt of the  left  hand  side of the  above  equat ion,  one finds t h a t  

Y 
I 
t f y'(t) exp [ -  ~ ( t -  T + ½)]4t > (exp [ -  #/s] cos ~/2) y(T); 
T--1 

and one can t r iv ia l ly  see tha t  the  modulus  of the r ight  side is less t h a n  sO exp .  

• [--#/2](#-1).  Since we are assuming t h a t  (~/2 <y(T), this  implies t h a t  ½cos v/2 ~< 

<s/#, a contradict ion.  Q.E.D.  
The conclusion of L e m m a  2.6 can also be obta ined  under  different hypotheses  

on /, as the  following l e m m a  shows: 

L E n A  2.7. - Let  / be a continuous,  rea l -valued funct ion such t ha t  y](y)> 0 
for all yV: 0. Assume tha t  l im](y) /y=-~co and tha t  ] is monotonic  increasing on Y--~O 

some open neighborhood of 0. Then there  exists a posi t ive cons tan t  a ( independent  

of q~) such t h a t  for any  ~ e K  with ~ ( 0 ) > 0 ,  l im sup ly(t; q~)]>a. 

P]~OOF. - J u s t  as before, if we let  y(t)= y(t; q~) and  z~-~z~(?), i t  suffices to  

prove  t h a t  sup ly(t)]>a for some a. Take  e to be a posi t ive n u m b e r  such t h a t  
t~zn 

k--~ min {½v(1--1/c) ~, V / ~ - - ] }  > 1. Since limo/(y)/y--= co, let a > 0 be a positive• 

num ber  such t ha t  ](y)/y > c if lyl<a and f(y) is monotonic  increasing on [ - - a ,  a] 

I f  for every  zero z of y, sup ly(t)lDa~ we are done. Thus we assume t h a t  for 
t ~ z  

some zero z sup ty(t)] : ~ <  a, and  we t r y  to get a contradict ion.  I t  follows as 
t ~ z  

before t h a t  there  exists  a~ zero z~>z such t h a t  l y ( z ~ l ) I  > (1 /k )~ ,  and  we m a y  
as well assume t h a t  y(z~ ÷ 1 ) >  0. 

Our first c laim is t h a t  z~+~ e (z~ -~ 1, z. ÷ 2 ~ v-~]. This will cer ta in ly  be t rue  if 

z~+~ ~ (z~ -~ 1, z~ ~- 2J, so assume t h a t  z.+l > z~ ~- 2. Equa t ion  2.1 immed ia t e ly  im- 
plies t h a t  y is concave downward  and decreasing on [z~ ~- 1, z~ ~- 2]. I t  follows t h a t  

y'(t) -~ --](y( t--  1)) < - -  ey(t-- 1) < - -  ey(z~ -~ 2) for all t s [z~ ÷ 2, z~ ~- 3], and this 

immedia te ly  implies the  claim. 
For  no ta t iona l  convenience we shall wri te u : z~ and  v----z,+~ f rom here on. 

I f  v e ( u + l , u ~ 2 J  we have  

v s--I 

(2.6) y(u + 1) =-fy'(s)es  =fl(y(s)les < (~ -  1 -  ~)/(y(~- ~)1. 
u-J-1 u 
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Since ](y(s)) is monotonic  increasing on [u, u + 1], Equa t ion  (2.6) implies 

u + l  

(2.7) f ](y(s)) as > (u - ~ + 21 i(y(v - 1)) >1 
V--1 

( u - - v +  1) (v_l 21y(u÷ . 

Since y is concave downward on [u + 1, u -[- 2], we must  have y ( s ) > ( v ~ u - - 1 )  -1. 
• (v--s)y(u ~ 1) for u +l<~s<~v. This implies tha t  

; ; o ; 
(2.8t ](y(s))ds>v y(s)ds>v__u__l  Y(U-~- 1/ (v--s) 

u+l u+l u + l  

dS= 1 c(v--u--  1) y(u-~ 1). 

Since we know tha t  [y(,0+x)[ :f](y(s))ds, Equat ions  (2.7) and (2.8) imply tha t  
~--1  

1 
(2.9) [y(v-~ 1)1> ( 1 - - x )  y(u ~- 1 ) +  ~ vxy(u + 1) 

X 

where x - - - - v - - l - - u  and O< x < 1 .  I t  is easy  to check t h a t  
A- ½ o x - = v / ~ - 1 ,  so ty(v ÷ 1) 1 > ky(u + 1) > 8, a contradict ion.  

I f  u + 2 < v ~ < u + 2 ÷ e  -1 , we observe t h a t  

(2.10) 
v u+~  

ly(1 + v/t =fi(y(s)) es. 
v--1 v--1 

rain ( 1 - - x ) / x  + 

Since y(s) is concave downward on [u + 1, u ~-2] and posit ive at  u ~-2, we have  
t ha t  ](y(s)) >cy(s)>e(u ÷ 2--s)y(u  ÷ 1) for u ~ l <~s<~u + 2. Using this es t imate  

in equat ion (2.10) we find t ha t  

(2.11) 

ly(1 ÷ v)l>½cy(u + 1)(u + 2 - v  + 1) 2 

> ½e(1 - e-1)~y(u + 1) 

>8.  

Thus we also obtain a contradict ion in this case. Q.E.D. 
We axe now almost  ready  to prove  our main theorem.  We need one more lemma. 

L E n A  2.8. - Let  ] be a continuous map which ei ther  satisfies the  conditions 
of Lemma  2.7 or Lemma  2.6. Then if F and K are as in Lemmg 2.4, 0 is an eject ive 

fixed point  of F.  

P~00F. - If  w ~ K  and Wee 0, so W(0) > 0, denote y(t; W) by  y(t) and z~(w) by  z~. 
According to Lemma  2.6 or 2.7 there  exists a positive constant  a such tha t  
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[y(z,, + 1)I > a/2 for infinitely m a n y  integers n. Let  b be a positive number  such tha t  
b < a/2 and max  {](y): 0 ~<y ~<b} < a/2. I f  y ( za .+ l )  <b  for every  integer n > N ,  then  the 
s tandard  argument  shows tha t  ly(zz~+l + l ) I <  a/2 for eve ry  integer n~>N. I t  fol- 
lows t ha t  there  mus t  be a positive integer n such tha t  y(z2~ + 1) = II/7.(?) I[ > b. Q.E.D. 

Our nex t  theorem gives a generalization (by weakening the conditions on f) of 

the existence par t  of Theorem 2.1 in [14]. We should emphasize, however,  t ha t  the 
real impor tance  of ¥ o ~ E  and KAPLA:~'S work is thei r  results on s tabi l i ty  of the  

periodic solution. 

T~E01CE~ 2.1 (compare Theorem 2.1 of [14]). - Le t  ] be a continuous real-valued 
map such tha t  ] is monotonic  increasing on an open neighborhood of 0 and y](y) > 0 
for all nonzero y. Assume tha t  there exists a positive constant  A such tha t  ei ther  
](y) > - - A  for all y or If(y)[ < A  if [yI<A. Finally,  suppose ei ther  t ha t  / is con- 
t inously differentiable on some op6n neighborhood of 0 and ] ' ( 0 ) ~  ~ > z/2 or t h a t  
li~m o ](Y)/Y-~ -4- c~. Then Equa t ion  (2.1) has a nonzero periodic solution y such tha t  
y[[--1, 0] is monotonic  increasing. Fur thermor% if ~ and K are as in Lemma 2.4, 
G-~ { v e K :  tt~tt <A} and [7 is an open neighborhood of the  origin in G such t h a t  

has no fixed points except  0 in U, io(F, U)---= 0. 

P~00F. - I f  F and K are as in Lemma 2.4, then according to Le mma  2.8, 0 is 

an eject ive fixed point  of F.  Lemma  2.4 implies tha t  F is a continuous,  compact  map  
(hence a 0-set-contraction),  and Le mma  2.2 implies t h a t  F ( G ) c  G. I t  is clear t h a t  G 
infinite dimensional, so Corollary 1.1 implies tha t  F has a non-ejective fixed point  
and tha t  ia(F, U) = 0. We have already noted  tha t  fixed points o f /~  give periodic 

solutions of (2.1). Q.E.D. 
As an example,  we ment ion the following apparent ly  new result,  which follows 

tr ivial ly f rom Theorem 2.1. 

C o r o n A r Y  2.1. - The equat ion y ' ( t ) : - - ( e x p  [ y ( t - - 1 ) ] - - l )  ~ has a nontr iv ia  1 

periodic solution y such tha t  y ( - -1 ) -=  0 and y[[--1,  0] is monotonic  increasing. 
Our nex t  lemma follows by  s tandard  arguments  in ordinary differential equations,  

and we leave it  to the  reader.  The only nove l ty  is t h a t  one does not  have  uniqueness 

in the differential equat ion below. 

LE~t-~A 2.9. - Let  H :  R - > R  be a continuous map. Assume tha t  there  exists 
a number  z~, - -  c o <  z l <  0 such tha t  H(zO = 0 and suppose there  exists a number  z~, 
0 <  z2< + c~ such t ha t  N(z2) = 0 if z~¢  + ~ .  Suppose tha t  N(z) > 0 for z~< z <  z~ 
and N(z)<A]z] + B  for some constants  A and B and eve ry  ze(z~,z~). Then the  
equat ion ]'(u)= N(/(u)) ,  ] ( 0 ) =  0, has a cont inuously differentiable solution ](u) de- 
fined for all real u ~nd such t ha t  z~ <](u)<~z~ for all u (the inequalities are strict  if N 

is Lipschitz). 

COrOLLArY 2.2. - I f  N is a continuous funct ion as in Le mma  2.9 and if ~N(0) > ½~, 
then  the equat ion x ' ( t )=--~x( t - -1)N(x( t ) )  has a nontr ivia l  periodic solution x(l) 
such tha t  x ( - - 1 ) =  0 and x][--1,  0] is monotonic  increasing. 
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P~ooF.  - Le t  f(u) be as in L e m m a  2.9 and consider the equa.tion u ' ( t )=  
- - - - - -~/(u( t - -1)) .  Since ]'(u)----l~(](u)) and /(0)----0, ] is monotonic  increasing and 
str ict ly monotonic  increasing on some open neighborhood of 0 and ~]'(0) ------ a/~(0) > ~/2. 
I t  follows from Theorem 2.:1 tha t  there  exists a nontr ivial  periodic funct ion u such 
tha t  u ' ( t ) - - - - - -~ / (u( t - -1) ) ,  u( - -  i)  ---- 0 and ~ is monotonic  increasing on [--1,0] .  
If  we define x(t)-~](u(t)),  x ' ( t ) -~/ ' (u( t ) )u ' (~)~-~x( t - -1)N(x( t ) ) ,  and we are done. 

Q.E.D. 
I t  is clear t ha t  Corollary 2.2 implies the s tandard  results in the  l i tera ture  (see [17] 

or [19]) concerning periodic solutions of x ' ( t )==- -ax ( t - -1 ) [ l÷x( t ) ]  or x ~ ( t )  - - -  

= - ~ ( t - 1 ) ( a : - x ( t ) ) ( x ( t )  + b), a, b > O. 

3. - Suppose tha t  r~, r~ rand r are nonnegmtive numbers  and  t h a t  @ = m a x  {r~, r2, r) 
is positive. Assume also t ha t  ~ is a positive number  and t h a t  k is a real  number .  
In  this section we wish to consider the following equat ions:  

(3.i) 

x'(t) = y(t) ÷ e(x(t--r~)--x3(t)/3) , t > 0  

y ' ( t ) = - - x ( t - - r )  ÷ kx(t--r~), t>0  

xI[--~,  0] = ? ~ a continuous function,  y(0)--- yo. 

Equat ions  (3.1) const i tu te  a generalization of equat ions considered b y  GlcAP~o~ 
in [7]. We wish to  ex tend  Grafton 's  periodici ty resul t  in [7] and show t h a t  i t  can 
be obta ined as a consequence of our Theorem 1.1. Graf ton 's  original proof was along 
different lines. Actually,  Grafton 's  periodici ty theorem in [8] can also be shown to 
follow from Corollary 1 .1--assuming Grafton 's  results on the qual i ta t ive behaviour  
of his equa t ions - - ,  bu t  we shall restr ict  ourselves to (3.1). 

I t  is a s t ra ightforward exercise (which we leave to the  reader) to show tha t  given 
and Yo, there  exists a unique solution (x(t), y(t)) of (3.1) defined for all t > 0 .  Our 
first lemma shows tha t  for a wide range of the  parameters ,  x(t) oscillates and  has 
infinitely m a n y  zeros. 

I~E~v~IA 3.1. - If  (x(t), y(t)) denotes the  solution of (3.1) and if k <  1 and r2<r 
when k > 0, then  if 9(0) > 0 there  exists a number  T1 > 0 such tha t  x(T1) < O. 

P~ooF. - We shall assume t ha t  x(t)> 0 for t >  0 and obtain a contradict ion.  Define 

M o =  m a x  [cf(t)] and kl = max  (k, 0) and denote  b y  ~ the largest positive root  of 
-o< t<o  

(3.2) y(o) + (t  + lki) qMo + kilo, + , ~ - - , ~ / 3  = 0 

(We take  ~ =  0 if (3.2) has no posit ive solution $). 
I f  M > m a x ( M o ,  ~), our first claim is t h a t  x ( t )<  M for all t > 0 .  To see this, 

suppose the  con t ra ry  and let T > 0 be the  ~ ' s t  t ime such t h a t  x ( T ) =  M. I t  f o l -  
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lows b y  tak ing  the  lef t -hand der iva t ive  a t  T t h a t  x'(T)~O. On the other  hand  we 
have  t h a t  

T--r  T ~ r  a 

(3.a) y(r)= y(0)-fx(s)ds + kfx(s)as 
- - r  - - ra  

<y(0)  + (1 + lkl) ~io + (k--1)fx(s)ds + k~e~ 
O 

<y(0) + (1 + Ikl) o~io + k ~ o i .  

I t  follows t h a t  we have  

(3.4) x'(T) = y(T) + ~[x(T--  r~) - -  x'(T)/s] 

~y(O) + (1 ÷ Ikt)o~Mo -~ ]~o~i -~ s i - - e M 3 / 3  

~ 0 .  

This is a contradict ion,  so we mus t  have  x(t)< M for a]l t > 0 .  
For  t>~2~ we see t h a t  

(3.5) 
~- - r  t ~ r  s 

y(t)=y( )-fx(s)es +  fx(8)es 
¢2--r ~=ra 

t - -q  t - -r  t~r~ 

0 t--~ t--O 

t - q  

<Y(e) + A ÷ keM--  (:t--   )fx(s)ds, 
Q 

Q 

where X = --fx(s)ds ÷ kfx(s)ds. I t  follows t h a t  unless x(t) is i~/tegrable on [0, co), 

y(t) approaches  - - c o .  However ,  if y(t) approaches  - - c o ,  x'(t) approaches  - - c o  as 

t approaches  co, and  this  would cont rad ic t  the  a s sumpt ion  t h a t  x(t) is a lways  non- 

negat ive.  I t  follows t h a t  x(t) is integrable,  t towever ,  this  immedia t e ly  implies t h a t  
0 0 co 

y(t) approaches  y(O)--fx(s)ds ÷ 4x(s)ds--(1--k)fx(s)ds as t a p p r o a c h e s  oo. S ince  

x'(t) = y(t) -Jr- e[x(t--rl)--x~(t)/3], we see t h a t  x'(t) is bounded  and  since x(t) is non- 
negat ive  and  integrable  on [0~ co), we m u s t  have  t h a t  l i ra  x ( t ) =  0. I f  we set  

B =  ~lim y(t), lira x ' ( t )= B, so we mus t  have  t h a t  B = O, 
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I f  k > 0 (so t h a t  r2<~r) we see t h a t  

0 0 t - - r  t--r$ 

y(t) = y (o ) - fx , s )as  + kfx(s)d --(1--k)rx(s)as. + kf (s)ds, 
- - r  - - r l  0 t - - r  

and if we compare  this to the  expression for l im y(t)= 0, we see t h a t  y(t)>O 
t--~cO 

for t>~r. I f  k< O, y(t) is monotonic  decreasing for t ~  ~o, so we m u s t  cer ta inly  have  

y ( t ) > 0  for t > ~ .  
We  are now a lmos t  done. Since l ira x(t) = 0, let s > @ be such t ha t  x(s) > 0 and  

t--->¢o 

x( t )<  ~/3 for t>s. For  t>s we then  have  

(3.6) 

t 

Since lira (xS(u)du 
t -~¢o 3 

t--rl 

t 

x(t) = x(s) + fx ' (u )du  
$ 

t t--r1 t 

s s - -r1  s 

$ t - - r  1 

t 

> x(s) - e/3 f . 
t ~ f  I 

= 0, equat ion  (3.6) implies t h a t  for t large enough x(t) > ½x(s), 

a contradict ion.  Q.E.D.  
Of course ]Semma 3.1 implies t h a t  x has infinitely m a n y  zeros, since the  same proof  

implies t h a t  there  exists  a n u m b e r  T~ > Yl such t h a t  x(T~)> 0, and  so on. 
The equat ions  (3.1) come f rom the  second order equa t ion  x" ( t )~ - - x ( t - - r )  + 

+ kx(t--r~)+sx'(t--r~)--sx~(t)x'(t). I f  one linearizes this  equa t ion  and  searches 

for solutions of the  fo rm exp  [2t], one is led to the  so-called character is t ic  equat ion:  

(3.7) 42 - -  e2 exp  [ - -  rl 2] + exp  [--  r~] - -  k exp  [ - -  r~ 2] --~ 0 .  

Our nex t  l e m m a  analyzes (3.7) for the  case r l ~  k =  0. I n  [7] Graf ton  outlines 

a different proof  f rom the one given here,  and  a detai led version of t h a t  proof  can 
be found in [11], pages 169-172. We believe our proof  is considerably simpler.  

LF~[~[_~ 3.2 (compare  [7] and  [ t l ] ,  pages  169-172). - I f  r > 0 and  if eyo > - -  sin rFo 
for eve ry  70 such t h a t  Xo2=cosryo and  0 <  Xo< =/r (in par t icular ,  if e > 0 ) ,  then  
the equa t ion  4 2 - e ~  -[-exp I - - r 2 ] - =  0 has precisely two solutions ~ (counted alge- 

braically) such t h a t  l~e (2) > 0 and - -  =/r < I m  (2) < z/r. 
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Pt~OOF. - :First we show tha t  if ~' >/s, A 2 -  e' )~ ~- exp [-- r~t] =/= 0 for 2~ = i4, 
0 < ~ < z / r o r ) ~ - ~ # ÷ i r ~ / r , # > 0 .  I f  ~ = i ~ , 0 < ~ < z / r ,  a n d ~ - - e ' % + e x p [ - - r 2 ] = 0 ,  
then  by  taking real and imaginary  parts  we find tha t  - - ~ - c o s r ~ = 0  and 
- - s ' ~ - - s i n r ~ =  0. I t  follows tha t  we have 0 <  v <  z / r  and v z =  eosrv, so by  tho 
assumptions e ' ~ > e ~ > - - s i n r ~  a contradict ion.  I f  ) . = / , + i ~ / r  and ) .~ - -e '%+ 
+ exp [--rR]---- 0, then by  taking real and imaginary par ts  we find t h a t / , ~ - - ( ~ / r )  ~ -  

- - e ' # - - e x p  I - - r / t ] =  0 and 2 # ( z / r ) - - e ' ( z / r ) - =  O. The second equat ion implies tha t  
/~= ~s,1, bu t  sett ing / z =  ½s' in the first equat ion gives a negat ive number.  I t  fol- 
lows by  taking complex conjugates tha t  ~ - - e ' 2 + e x p [ - - r ~ ] # : 0  for , ~ = - - i v ,  
O < v < z / r  and  ) . - - - # - - i z / r ,  # > 0 .  

Le t  e' be a posit ive number ,  e ' ) e ,  and let  R ~ =  (1 ÷ s'). I t  follows by  trivial 
est imates tha t  if s < s~ < e' and l~e (4) > R~, then  )~ - -  s~ ~ + exp [-- r~] V: 0. For  any  
R )  R~, define G~ = {2 e C: 0 < t{e (4) < R and IIm (4)[ < 7~/r}. I f  we def ine /~(2)= ~2_  
- -  (1 - -  t )s2 - -  te' ~ ~- exp [-- r2], 0 < t < 1, then  our calculations show t h a t  ft(4) ~ 0 
fro" ) . ~ f f , ,  0 < t < l .  I t  follows b y  l~ouche's theorem t h a t  L(,~)-= 0 has the  same 

algebraic number  of solutions in G, (R>R~) as /0 (2)=  0. 
Now we are almost  done. Let  b be a posit ive number  such tha t  (e')~/4< b<  

< (s')~/4 ~- (u~)/r ~ and select R~ > ma x  {1 ÷ s', b ÷ e'}. I t  is easy to check tha t  if 
I{e (.~.)) R~, then  ).*-- s' ~ -}- (1 - -  s) exp [-- r)~] ~- sb ~ 0 for 0 < s < 1 and l~e (~) > R~ 
and ~ - - e ' ) ~ - b  has precisely two roots (algebraically) in G~. To complete ~he 
proof, it suffices by  l~ouche's theorem to show tha t  2~- - s '2  ~- (1 - -  s) exp [ - - r ~ ] ÷  
+ s b v ~ O  for 0 < s < l  and 2----iv, 0 < ~ < ~ / r  or ~ - ~ t t + i ( ~ / r ) ,  # > 0 .  I f  ~ - - e ' , t ~ -  
+ ( 1 - - s ) e x p  [ - - r2]  ÷ sb---- 0 for ~-~ i~, 0 < v < u / r ,  the  same computa t ion  as before 
shows tha t  - -  v ~ + (1 - -  s) cos rv ~- sb =- 0 and - -  e ' v - -  (1 - -  s) sin ru - -  0. The second 
equat ion implies tha t  v =  0 (since s ' >  0), and this is impossible. I f  )~= / t  + i~ /r  

we find tha t  #~ - -  (~/r) ~ - -  e '#  - -  (1- -  s) -}- sb ----- 0 and 2#(7~/r) - -  e'(~/r) ---- O. The second 
equat ion implies tha t  tt = ~s', and subst i tut ing this value in the first equat ion we 
find t h a t - - ~ ( e ' ) ~ - - ( x ~ / r ) ~ - - ( 1 - - s )  + s b = O .  V[owever, since we chose b so tha t  
b <  (e~)~/r + (g/r) ~, this is impossible. Q.E.D. 

Our nex t  lemma generalizes Lamina 3.2 and indicates the  advantages  of using 

l~ouche's theorem in this context .  

ZE~CIA 3.3. - I f  s > 0 ,  r > 0 ,  0 < r ~ < r ,  0 < r ~ < ½ r  and 0 < k <  1, the equat ion 
) ~ - - e 2  exp [--r~ }~] + exp [ - - r ) . ] -  k exp [ - - r ~ ]  ---- 0 has precisely two solutions ~ such 
t ha t  l~e(~) > 0  and - -x~ /r< Im()~)< ~/r.  I f  s > 0 ,  r > 0 ,  0 < r ~ < r  ~nd - - (~/2r)~< 
< k <  0, the  equat ion ~* - - e~exp  [ - - r ~ ]  + exp [ - - r~ ] - -k - - - -0  also has precisely two 

solutions ~ such tha t  t~e (4) > 0 and - - ~ / r <  I m  (4)< ~/r.  

P~oo~. - Le t  the  parameters  be as in the  first case above and notice tha t  if 
! l 

Re ()0 >R~ = (1 ÷ e ÷ k), then  for a, n y  nonnegat ive  numbers  r~, r' ,  r, and any  non- 

negat ive k' < k, 

> ( 1  + s + k)(1 + k ) - - l - - k  > O. 
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I f  G ~ =  {4: 0 <  l ~ e 2 <  R1, - - s / r <  I m ( , l ) <  s/r},  then according to L e m m a  3.2 

2 ~ - - s 2 - [ - e x p [ - - r 2 ]  has precisely two zeros in GRI. B y  l~ouche's theorem it suf- 

rices to  show tha t  2 .2--egexp [--rl) ,]  A- exp [ - - r ) J - - k e x p  [--ra2]  = 0 can be de- 

formed into 2~--e2 ~-exp [ - - r2 ]  wi thout  introducing zeros on ~Gs. Thus, if we 

define ft(~) = 2~- -e2exp  [--trl 2] A- exp [ - - r ~ J - - t k e x p  [--r~,~], it suffices to show 

tha t  ]~(~)~0 for 0~<t~<l and ,~s~Gs . B y  the above remarks ft(~)ve0 for 2 such 

tha t  I~e(~)DR~, and b y  taking complex conjugates we only have to show tha t  

/~(~)v~0 for ~ = i ~ ,  O<~<~zr/r or ~ - ~ # A - i ~ / r ,  ~>0 .  I f  ,~= i~  and /~ (~ )=0  we 

axe led to the equations - -  v 2 - -  ev sin tr~v + cos rv --  tk cos r~v = 0 and - -  ev cos tr~v --  

- -  sin rv ~- k sin r~v -= O. I f  v ---- 0, the first equat ion reduces to 1 - -  tk > 0. I f  0 < v ~< 

<zt/2r, sin rv > sin ray and cos tr~v~> 0 so tha t  - -  ~v cos t r lv - -  sin rv A- k sin ray < 0. I f  

~/2r~<v< ~/r, we have c o s t l y > 0  (since 0 <~r~<½r), cosrv<~0, and --v2--evsintr~v A- 

-f-cos r v - - t k  cos r~v< 0. I f  2 = # + iz/r,  we are led to the equations [ / ~ - - ( z / r )  ~] - -  

- -  e exp [-- trite]I# cos tr~r/r ÷ ~r/r sin tr~/r]  ~ exp [--  r/~] - -  kt exp [-- r~u] cos r~z/r = 0 

and 2/z(z/r) - -  e exp [-- tr~/~] [z/r cos t r ~ / r ~  ~ sin r~z~/r] + kt exp [--  r .#] sin r~z~/r = O. 

If  O<tr~<~r/2, then the first equat ion implies tha t  /z ~ > e # e x p  [-- tr~#]eostr~/r  or 

(assuming # > 0) # > e exp [-- try#] cos trxz/r. Applying this es t imate  in the second 

equation,  we see tha t  2#(z/r) - -  (e exp [--try#])(~/r  cos trig~r) is positive, so the second 

equat ion is positive. I f  r /2< try<r, then we see immediate ly  tha t  costr~z/r<<.O 

so the  second equat ion is positive. This shows tha t  ]t(,~)=/= 0 for ,~ ~ ~G~, and com- 

pletes the  proof of the first par t  of the lemma. 

To avoid repetit ion we shall be sketchier in proving the second par t  of the lemma. 

Jus t  as before, it suffices to show tha t  g~(~)= , ~ - - e 2 e x p  [ - - t r~] - t - exp  [ - - r 2 ] - -  

- -  tk =/= 0 for 2 = iv, O<v<z / r ,  X = # -[- i~/r, ~t~>0, and 0~< t< l .  I f  g,(iv)=O, 

we obtain the equations - -  v ~ -  ev sin tr~v + cos rv ~ t k :  0 and - -  ev cos tr~v ~ sin rv = O. 

The same proof as before shows these equations cannot  be satisfied by  v such tha t  

O<~v<~/2r. I f  ~r/2r< v~<7~/r, the first equat ion is negative,  since k > ~ (g/2r) ~. I f  

g~(# A- izt/r) -~ O, we are led to the equations [#~ - -  (~r/r) ~] - -  e exp [--  try/z] [~e cos t r ~ / r  + 

+ z / r  sin t r~/r]  - -  exp [--  r#] - -  kt ---- 0 and 2#(z/r) - -  e exp [--  tr~#] [z/r cos tr~z~/r-- 

- - # s i n t r ~ / r ] - ~ O .  I f  O<~tr~<r/2, then since --(~r/r)2--kt< 0, the first equat ion 

implies as before tha t  # > e exp [--tr~/~] cos tr~z/r, and using this est imate we find 

tha t  the left-hand side of the second equat ion is positive (assuming # > 0). I f  r/2 < 

< tr~<<.r, we immediately  see tha t  the left-hand side of the second equat ion is 

positive. Q.E.D. 

Unfor tunately ,  Lemmas 3.1 and 3.3 const i tute about  all we can say about  equa- 

tions (3.1) in the s tated generality. Computer  numerical  studies s t rongly suggest 

t ha t  for a wide range of the parameters  e, r~, r~, r and k (rl, r~ and r commensurable),  

(3.1) has a non-zero periodic solution, bu t  our techniques seem to break down in this 

generality. To obtain fur ther  results we shall have to restrict  ourselves to the case 
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r~= r~ = 0, i.e. to the following equat ions:  

x'(t) = y(t) -~ six(t)--x~(t)/3], t>O 

(3.8) y'(t) = - -x( t - -r )  -}- kx(t) , t:>O 

xl[--r , 0] ---- ? = a given continuous func t ion ,  y(O)=yo 

Even  in this seemingly innocent  generalization of Grafton 's  original equat ion in. [7], 
there  are serious technical  problems (especially for k <  0) in t ry ing  to prove 
existence of periodic solutions. In  fact  our results will part ia l ly  answer ~ question 
raised by  G ~ T O ~  in [8], page 526, and which seems inaccessible b y  his techniques. 

The c~se k > 0  and k <  0 in (3.8) seem to demand different techniques. In  our 

nex t  few lemmas we s tudy  the case 0 < k < 1. 

LE~[:X 3.4. - In  equations (3.8) assume tha t  0 < k <  1, ~p is monotonic  in- 

creasing, F(-- r )  = 0, ~(0) ~> 0, Y0 ~> 0, max  {~(0), y(0)} > 0 and Y0 + e [ ~ ( 0 ) -  (~(0))~/3] > 0. 
Define T1 - - - - sup{ t>0 :x ' ( s )>0  for 0 < s < t }  and z 1 = i n f { t > 0 : x ( t ) = = 0 }  (we know 
by  Lemma  3.1 t h a t  bo th  T~ and z~ ~re finite). I t  then  follows t h a t  z, is an isolated 

zero of x and x ' ( t )<0  and y ' ( t ) < 0  for T~<t<z l+r .  

P~ooF. - First  we show tha t  x'(t)<0 and y'(t)<0 for T~ < t  < T~ + r. Obviously 
r 0 we must  have  x'(0) ---- 0 (if T~ ---- 0, one uses the assumption t h a t  x+( ) > 0  to  gua- 

rantee  this) and x'~(T0 = y ' (T~)<0.  There ~re technical problems if y ' (Tt)= O, so 
we use a technical  device. Take ~ > 0 and define a new functional  differential equa- 
tion for functions x~(t) and y,(t) ~s follows: 

(3.9) 

m'~(t) -~ y~(t) + s[x~(t)- x~(t)/3]- u(t-- T~), t~> T1 

y',(t) = - - x , ( t - - r )  + kx,(t), t >  ~'1 

x,~I[T~--r , 15] = x][ i%--r ,  ~'~], y,(i%) = y ( ~ ) .  

I t  is clear t ha t  limx~(t)---~x(t) and l imy , ( t ) : y ( t )  for T~<t<T~+r, so it suffices 

to  show tha t  x~ and y~ are monotonic  decreasing on [TI, T1 + r]. I f  we define 
t~---- sup {t: TI<t<T~ + r and x~(s)<O for Tl<s<t},  then  the int roduct ion of ~] 
guarantees tha t  x~(T1)<--~2 (derivatives are taken  from th~ right at  T1) so tha t  
t~ > T1 and x,(tl)< x~(T1). If  t~< T~ + r, then  we must  have  x',(t~) ---- 0; however  
we see tha t  x~(t~) • - -x , ( t l - -r)  + kx,(tO--~< --x,(T~--r)  ÷ kx,(TO--~7< - - 9 <  O, 
and this contradicts  the selection of tl. I t  follows tha t  x~ is decreasing (strictly) 

f 

on [TI, TI + r]. Therefore,  we see thut  yo(t) -~ - -x , ( t - -r)  + kx,(t)<. - -x ,  (T~--r) + 
kx( ,T1)<0 for T~<t<T~ +r,  so y, is decreasing (in fact  s t r ict ly decreasing) on 

[Y~, T1 + r]. 
Wi th  the aid of the above result,  our lemma now easily follows. Let  t~---- 

----sup(t>~T~:x~(s)<O for T1<s<t~. We have shown t h a t  t~>T~-?r; we assume 
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tha t  t~< z~ + r and obtain a contradict ion.  By  definition of t~ we have tha t  
x' (t~) ~ O, so it  follows t h a t  x'~(tz) -~ y' (t~) --~ - -  x(t., - -  r) ~ kx(t~) < (k ~ 1)x(t~-- r) < 0. 
This contradicts  the  selection of t2. 

I t  only  remains to prove  t ha t  z~ is isolated. B y  our work above we h~ve t h a t  
x'(z~)-~y(z~)<O. I f  x~(z~)< 0, zl is isolated~ so we assume x~(z~)-~O. I f  x~(z~)---- 

y'(z~) < O~ z~ is again isolated, so we assume y~(z~) ~ O. We now obtain a contra- 
diction f rom the  assumptions t ha t  x ' (z~)~ y ' (z~)~ O. B y  definition we know t h a t  
y'(z~) ~ - - x ( z l - - r ) ,  so tha t  if y'(z~) ~ 0 we have z ~ - - r <  0 and ~(z~--r) ~ O. Since 
is monotonic  increasing and ~ ( - - r ) - ~ 0 ,  we see t h a t  ~ ( t )~ -0  for - -r<~t<z~--r .  

t 

I t  follows tha t  for this range of t, y(t) ~-- y(O) -k kfx(s)ds and, in p~rticular,  y(z~) > 0 
O 

unless y ( 0 ) ~  0 and k=~ 0. Thus we must  assume tha t  y0-~ k :  0, and (3.9) re- 
duces to the ordinary differential equat ion x ' ( t ) ~  ~[x(t)--x~(t)/3], x(0)----~(0), for 
O<t<z~. However  it  is easy  to see tha t  if x (0 )<  ~/3, x(t) is increasing and x(t)< v ~  
for 0 ~ t < z l ;  if x(0):= %/3, x ( t ) ~  X/3 for 0<t~<z~; and if x(O) > C'3, x(t) is decreasing 
and x( t )>~/3  for 0<t~<z~: In  any  event ,  we find tha t  x(z~)>0, a contradict ion.  

Q.E.D. 
The same proof now shows t h a t  the  subsequent  zeros z~, z~, etc. of x are isolated, 

t ha t  x is ei ther monotonic  increasing or monotonic  decreasing on [z~, z ~ + r] depending 
on whether  x(z~ ÷ r) is posi t ive or negativ% and tha t  y is monotonic  increasing or 
decreasing on [z~, z~-~r]. Fur the rmore ,  it  is clear t ha t  for n > 2 ,  we must  have 
y'(z~) > 0 if x(z~ -~ r~ > 0 and y'iz~) < 0 if x(z~ ~- r) < O. 

At this point  we can describe our  me thod  of proof. Le t  G ~ {(% yo): ? is a 
continuous,  monotonic  increasing funct ion on [ - - r ,  0], yo~0 ,  ~(~r) - -~  0 and Yo+ 
-~ e[?(0)--(~(0))~/3]  >0}.  I t  is easy  to check t h a t  G is a closed, convex subset of 
the Banach  space X : C([-- r, 0]) × R. For  a given (~, Yo) e G ~ {0} (0 denotes the 
origin in X),  let (x(t), y(t)) be the corresponding solution of (3.8) and let z~(~) be the 

corresponding first posit ive zero of x. We define F (% Y0)~ (--~f,--Yt) ,  where 
~f(t)-~ x(z~(cf) + r + t) for - - r  <t  <O and yl ~- y(z~(c~) + r). Owing to the sy mme t ry  
propert ies of (3.9), fixed points of ~ correspond to periodic solutions of (3.9). 
Lemma  3.4 implies t ha t  L~(G--{0})cG--{0} .  I t  is easy to prove tha t  2' is con- 
t inuous on G- - (0} ,  though in general F is not continuous at  0. 

In  our nex t  lemma we show t h a t  F is ac tua l ly  a compact  map. 

LE~[_a 3.5. - The map F :  G--{0} --> (7--{0} defined above is a compact  map.  

P•.ooF. - Le t  A be a bounded subset of G - -  {0}, say If(% yoIl <Mo for (% yo )cA.  
To prove compa, etness we have  to show /~(A) has compact  closure in X. B y  the 
Ascoli theorem it suffices to show F(A)  is bounded and {~: (~f, Yl) e I~(A) for some Yl} 
is equicontinuous.  Since ~ satisfies the differential equat ion y/(t) = y(t + z~(q~) ÷ r) 
+ e [ F ( t ) -  (~(t))3/3], equieont inui ty  will follow if we prove there  exists a constant  M~ 
such tha t  max  {]x(t)l : zl(q~) < t  <z~(~) + r} <M~ and max  {ly(t)l: zl(q~)<t<z~(cf) ÷ r} <M~, 
where x and y are solutions of (3.8) corresponding to (% yo)EA. 



28~ t~o~EI~ D. NlYssBAI.~: Periodic solutions of some nonlinear, etc. 

I f  M is defined as in I~emrna 3.1 and (x(t), y(t)) is a solution of (3.8) corresponding 
to (9, yo)eA, then  the  same argument  used in Le mma  3.1 implies x ( t )<  M for 

O<t<~zl(9). Suppose t ha t  y ( t o ) = ( - - k r - - e - - 1 / r ) M  for some toe(0,  zl(9)]. Then 
since y'(t)<kx(t), 0-<< t<z l (9 )+ r  we must  have  y(t)<...(--e--1/r)M for to<t<to+r.  
This implies t ha t  x'(t) < (-- e - -  1/r) M + sx(t) < -- M/r as long as to < t < to + r and 
x(t) > 0 ; and since x(to) -<< M, it  follows tha t  to < z~(9) ~< to + r. Since y'(t) > - -  (1 + k) M 
for 0 < t<zx(9) ,  i t  follows tha t  y(t) > -- (kr + s + 1/r)M--r(1 + k) M for 0 < t < z l ( 9 ) .  
Of course if y ( t )>- - (k r  + s + 1/r)M for 0 < t < z l ( 9 ) ,  we have  an even be t te r  esti- 
mate .  In  ei ther  case, there  exists a posit ive constant  h r such y ( t ) > - - N  for 

o<t<z~(9). 
Obvious estimates now imply tha t  y(t) > - - N - - r M +  krx(t) for z~(9)<t<zl(9)-f-  r. 

I f  x ( t ) > - - V ' 3 ( e +  kr)/s for z l ( 9 ) < t < z x @ ) +  r, we are done; otherwise x(t~)----- 
= - - V / 3 ( s +  kr)/s, and for tx<t<z1(  9 ) +  r, we obtain tha t  x ' ( t )>  - - ( N +  rM). 
I t  follows tha t  in any  event  x(t) > - -  ~/3(s + kr)/s -- r (N + rM) for z~(9) < t < zx(9) + r. 

Q.E.D. 

Our previous lemma showed tha t  F takes bounded sets to  bounded sets. In our 

next  lemma, we wish to show tha t  if I](9, Yo)ll is large enough, II-~(% yo)ll < 11(9, yo)ll. 

L E p t A  3.6. - There exists a posit ive constant  R such tha t  if (9, Yo)~G--{0} 

and 11(9, Yo)II >R ,  theu IIF(% Yo)II < [[(9, y°)ll. 

P~OOF. - Given a posit ive constant  R, let  ~ be the  largest posit ive solution of 
R + kr~ + s(~--~a/3) = 0. I f  we write ~--~-- ~(R)R, i t  is clear t h a t  lira ~(R) = 0. 

R-'->c0 

Select R, such tha t  ~(R)< 1 for R > R1. I f  (9, Yo)e G and [I (9, Y0)II = max  (9(0), y0) > R~, 
then  we must  have 9 (0 )<  Yo, since it  is assumed tha t  y o + s ( 9 ( 0 ) - - ( 9 ( 0 ) ) ~ / 3 ) > 0 .  
I f  we write yo-~R>R~, then  the same argument  used in Le mma  3.1 shows tha t  

x(t) <~= 0(R)R for 0< t<z~(9) .  
Define M=max{x( t ) :O<t<z~(9)} .  The same argument  used in the  proof of 

Lemma  3.5 shows t ha t  y ( t ) > - - c M  for  O<t<<.z~(9), where c = 2 k r + e + l / r + r .  
Also ~he same proof shows t ha t  y(z~(9) + r) > --(c + r)M + krx(z~(9 ) + r) = h r and 
v0(z~(9 ) + r) >V/3(e + kr)/s --r(cM + rM). I t  follows tha t  If/~'(9, Y0)]] < K M ,  where K 
is a constant  independent  of R>R~; and if R~. is chosen so large tha t  ~ ( R ) K <  1 

for R > R ~ ,  then  fiE(9, yo)[[ < R = / / ( %  yo)ll for R>R2: Q.E.D. 
In  our nex t  lemma we establish the crucial step:  tha t  eve ry  nonzero solution of (3.8), 

no ma t t e r  how small 9 and Yo, grows to an a priori  size. The idea is to use the direct 
analogue of a previously ment ioned t r ick  of E.  hi. W]~I~HT (see L e m m a  2.6). We 

consider an integral  of the  form fx'(t).exp [--~tJbdt, where X' ( t )=  (x/(t), y'(t)), 2 is 
T 

an appropriate  root  of the characterist ic equation,  b is an appropria te  vector ,  and the 
inner product  of the two vectors is taken.  I t  is not  hard  to  see tha t  Wright ' s  t r ick 

is closely related to la ter  work of ttAr~E [11] and ttALE-P~ELr.O [12]. 

L ~ . ~ A  3.7. - Assume tha t  (9, Yo) e G - -  {0} and let  (x(t), y(t)) be the  corresponding 
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solution of (3.8). Then there  exists a positive constant  a, independent  of (~, Yo), 
such tha t  l ira sup Ix(t)l ~>a. 

t---~co 

PROOF. - An examinat ion  of the argument  in Lemma 3.6 shows tha t  it  also 
implies tha t  bo th  Ix(t)] and ly(t)l are bounded for all t>~0. According to Lcmma 3.3 
there  exist  precisely two solutions ~1 and 22 of ,~2 _ s2 + exp [-- r~] - -  k = 0 such tha t  
Re (2j) > 0 and --~r/r< I m  (2~)< ~/r. There are three possibilities: (1) Im  (,~1) > 0 

a n d  2 2 : 2 ~ 1 ,  ( 2 )  2~ 1 and 2~ are real  and 21< 22, 
is a double root  of ~t2--s2 + exp [ - - r ) , ] - - k  = 0. 

Our proof will va ry  depending on which case 
of the characterist ic  equat ion as above and T~> 

and (3)) t l  = ~2, ~tl is real, and ~tl 

holds. In  any  event ,  if 2 is a root  
0, then  integrat ion b y  parts  gives 

co ¢o 

(3.1o) fx'(t)(Aexp[--~t])dt+fy'(t)exp[--At]dt 
T T 

co ca 

= a*fx(t) exp [ -  ~t]dt--  2x(T) exp [-- 2T] - -  y(T) exp [-- 2T] + xfy(t) exp [-- ~t]dt. 
T T 

On the  other  hand,  if one subst i tutes  for x'(t) and y'(t) f rom equat ion (3.8), one 

obtains 
co co 

(3.11) fx'(t)(Xe~p [-- Xt])dt +fy'(t)e~p [-- )~t]dt 
T 

¢o ¢o 

=f (y(t) + sx(t)) 2 exp [-- ,~t]dt - -  sx/3fx~(t) exp [-- ,~t]dt 
'2 T 

o o  co 

-fx(t-r) exp [-- 2t]dt + kfx(t)exp [-- 2t]dt. 

Sett ing (3.10) equal  to (3.11) and using the fact  t ha t  
¢o 

= exp [--r2Jfx( t )  exp [-- ~t]dt, one finds tha t  
T - - r  

co 

f z(t  - -  r) exp [-- ,~t]dt = 
T 

(3.12) 

T 

- Xx(T)--y(T) +fx(t) exp [-- ~( t - -  T + r)]dt = 
T- -~  ¢o 

= --  sa/3fx3(t) exp [-- ~( t - -  T)]dt .  
T 

CASE 1. -- If  I m ( 4 ) > 0 ,  so tha t  2 = # + i v w i t h # > 0 a n d  0 < v < ~ / r ,  t h e n b y  

taking the imaginary  par t  of (3.12) we obtain 

T 

- - vx (T )  - - fx( t )  exp [-- # ( t - -  T ÷ r)] sin v(t - -  T + r)dt 

z-~ = - - I m ( e ) . / 3 f x ~ ( t ) e x p [ - - 2 ( t  - T)]dt) . 
T 

1 9  - A n n a l i  di  Matemat ica  
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I f  z is a zero of x, let  b = s u p l x ( t ) l > O  and  let  z~>z  be a zero of x such t h a t  
t ~ z  

sup l x ( t ) l :  c>½b. Let  T, z , <  T <  z~+~, be a po in t  such t h a t  [x(T)l = c; since x 
Z n ~ t ~ Z n + l  

is m o n o t o n i c  on [z~, z ,  + r], we k n o w  t h a t  T > z ,  + r. F o r  defini teness we can as- 
T 

sume x (T)  > 0. I t  follows t h e n  t h a t  ix(t) exp  [ - - # ( t ~  T + r)] sin v ( t - -  T + r)dt > O, 
so we ob t a in  t h e  i nequa l i t y  r-~ 

(3.14) 

co 

Ivx(T)[ < ez /3fx~( t )  exp [ -  ) , ( t -  T ) ] a t  . 
T 

I f  we e s t ima te  the  r i g h t - h a n d  side, us ing the  fac t  t h a t  lx~(t)] <b 3 for  t > T ,  we find 

t h a t  

(3.15) ½vb < (s/3)t.~Ib~(1//~) . 

Since one can  easi ly  prove t h a t  b > 0, (3.15) implies t h a t  b ~ > a ~ = ~(sI~l)-~#v , and  

the  t h e o r e m  is p roved .  

CASE 2. -- I f  t h e  charac te r i s t i c  e q u a t i o n  has  two  d is t inc t  rea l  roo t s  )~ < A~, 

t h e n  subs t i t u t i ng  re spec t ive ly  ~ and  )~1 for  ). in e q u a t i o n  (3.12) a n d  subtract ing~ 

one ob ta ins  

(3.16) - - ( A ~ - - , ~ ) x ( T ) + [ x ( t ) [ e x p [ - - ~ ( t - - T + r ) ] - - e x p [ - - 2 1 ( t - - T + r ) ] J d t  

= - ex~/3fx~(t) exp [ -  ;.~(t- T)]dt ÷ e;.J3fx~(t) exp [-- ~(t-- T)]dt. 
2' T 

Now, if z and  T are  chosen  as in Case 1 and  b is defined as there ,  one finds 

(3.17) }()L2-- ~l)b <~M/3 + eba/3. 

J u s t  as before,  this  implies t h a t  b ~ is la rger  t h a n  an  a pr ior i  pos i t ive  c o n s t a n t  
a s = 3/2e(2~ - -  ~) .  

CASE 3. - I f  t he  charac te r i s t i c  e q u a t i o n  has a real  roo t  ~ of mul t ip l i c i ty  27 then  A 

m u s t  also sa t i s fy  the  e q u a t i o n  2 ~ - - e - - r e x p  [--r~.] = 0. I f  one carries t h r o u g h  t he  

ca lcula t ions  p reced ing  (3.12) wi th  a n u m b e r  )~1 > A one ob ta ins  the  fol lowing equa t i on :  

(3.18) - -  A,x(T) - -  y (T)  + f x ( t )  exp  [ - -  Al(t - -  T + r)] dt 
T--r  

co 

÷ (2~ - -  s21 + exp [ - -  r~l] - -  k)fx(t) exp [-- ,~l(t ~ T)]dt 
T 

= - (ex,/3)fxo(t) exp  [ - -  i~ ( t - -  T)]dt .  



Ro~E~ D. NUSSBAU~[: Periodic solutions of some nonlinear~ etc. 287 

I f  one subtracts  (3.12) f rom (3.18), divides b y  ~- - )~ ,  and then  lets ~ approach ~, 
one obtains (using Lebesgue dominated  convergence) 

(3.19) 
T 

- -x(T)  -- fx( t)( t --  T + r) exp [-- ,~(t -- T ÷ r)]dt 
T - - I "  

c o  v ~  

= exp [ -  ) . ( t -  T)] + T) exp [--),(t-- f ) ]dt .  

The proof now proceeds essentially as in the  previous cases. Q.E.D. 

L]~L~vIA 3.8. - Le t  x(t) and y(t) be as in L e m m a  3.7 and let  z~, n > t ,  denote  

the  zeros of x. Then there  exists a posit ive constant  a*, independent  of (% Yo), such 
tha t  l im sup (maxlx(z~ ~- r)I, ]y(z~ + r)l ) >a* .  

n - - > ~  

P~ooF.  - By  Lemma 3.7 there  exists an a priori posit ive cons tant  a such tha t  
l i m s u p l x ( t ) [ ~ a .  Select zn such t h a t  m a x { l x ( t ) [ : z ~ t ~ z , , + l } : a > ½ a  and let 

Te[z~,z~+~] be such t ha t  Ix(T)l:c~. We know t h a t  T>z~-~r ,  and for conve- 

nience we can assume t h a t  x (T)>  0. Select /'1, T <  T I <  z~+~, such t h a t  x(TO 
~-- min (½~, ½V~) ~ ft. B y  our previous work we know tha t  x'(TO : y(T1) -~ ex(T1)" 
• [1--x~(Ti)/3]<O, and this implies t h a t  y(T~)<~--½efl. Since y is decreasing on 
[T~, zn+~ ÷ r], this implies our result.  Q.E.D. 

THEORE:~I 3.1. I f  e > 0 ,  r > 0  and 0~<k< 1, then  equat ion (3.8) has a nonzero 
periodic solution (x(t), y(t)) of period greater  t h a n  2r. 

P~ooF.  - Le t  G and ]7 be as in Le mma  3.5. By  Lemma 3.6 there  exists a 

constant  R~ such tha t  ]]F(V , Yo)tl <I](V, Y0)I[ if II(V, Yo)II>R~. I f  we define R2---- 
= sup (t]F(V, Yo)I1: I[ (~, Yo)[[ <R~}, then  it  is clear t h a t  if we define G~ = {(~, Y0) e G: 
il(v, yo)ll <R),  for R> ax(R , L e m m a  3.8 implies t h a t  
0 is an  eject ive point  of F ,  and Le mma  3.5 implies t h a t  F is compact .  I t  follows b y  
our fixed point  theorem tha t  F has a nonzero fixed point  in G, and in f~ct 
ie(E ~ G ~  U ) ~  1 for an appropr ia te  open neighborhood U of 0. This fixed point  

corresponds to a nonzero periodic solution of period greater  t han  2r. Q.E.D. 
We now want  to  consider equat ion  (3.8) for the case k < 0. ~umer ica l  studies 

s trongly suggest t ha t  even for ve ry  large negat ive  values of k, (3.8) has nonzero 
periodic solutions, t towever ,  as lkl increases the  period of the  periodic solution ap- 
pears to decrease and become less than  2r, and our techniques break down in this 
case. Thus we shall have to res t r ic t  the size of Ikl in order to guarantee  tha t  the 

zeros of x are a t  least a distance r apart .  
Our first step is to  define a new closed, convex set C of s tar t ing values. I f  ? is 

a continuous real-valued funct ion defined on I--r, 0] and Yo is a real  number ,  
we shall say t ha t  (%yo)~C if ~ ( t ) > 0  for - - r<t<O,  ~ ( 0 ) = 0 ,  ~nd yo<~0. I t  is 
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clear t ha t  C is in fact  a closed cone. As before,  we shall write (% Yo) va 0 if ei ther 
~(t) =/= 0 for some t or Yo< 0. 

I ~ E Y ~  3.9. - Suppose tha t  (% Yo)e C-- (0}  and (x(t), y(t)) is the corresponding 
solution of (3.8). Assume also tha t  k <  0 and - - k r <  s. Then i~ z~-~z~(%yo)= 
= sup {t > 0: x(s) >1 O for 0 ~< s < t} and t~ ---- sup {t >~ z~ : x'(s) <~ 0 for z~ ~< s < t}, it follows 
t ha t  z~< r and ei ther  x ( t ~ ) < - - ( ~ = - - % / 3 ~ / 1  ~-(D:]~-) or (t~--z~)>~r. 

P~oo~. - Given ~1 > 0, consider the  following I~DE: 

(3.20) 

x'~(t) = y~(t) q- s [ x ~ ( t )  - -  x ~ ( t ) / 3 ]  - -  ~]t 

y'~(t) = - -  x~(t - -  r) ÷ kx~(t)  

x , l [ - r ,  0] = ~ ,  y~(0) = y0.  

x',(0) = Y0 < 0, then  x',(t) < 0 for some nonzero length of time.; however,  if x',(0) = 0, 
x~(0) < - - ~  and consequent ly  x'~(t)<0 for some nonzero length of t ime. I f  we define 
Y,=sup{t>~O:x'~(s)<O for 0 < s < t } ,  then  the  above remarks  show t h a t  T , > 0  
for ~ > 0 .  We claim tha t  e i ther  Tn>~r or x~(T~)<- -6 .  For  suppose not ,  so tha t  
T~< r and x,(T,)  > - -  6. I t  is clear f rom our construct ion t h a t  x~(t)< 0 for 

t 

0 <  t < T ,  and y~(t)<kfx,(s)ds<ktx,(t)  for 0 < t < T n .  I t  follows tha t  x;(t)<krxn(t) + 
o 

+ex~( t ) - - s~ /3  for 0 < t < T ~ ,  and since it  is easy to see t h a t  kru + eu- - su~ /3< 0 
for - - ~ <  u <  0, it  follows t ha t  x~(T,)< 0, a contradict ion.  

We now suppose t h a t  z~ > r and obtain a contradict ion.  I f  there  existed a sequence 
~1¢-->0 such tha t  rain x~j( t)<--~,  we would immedia te ly  obtain a contradiction.  

o ~ t ~ r  

Thus we can assume tha t  x~ is monotonic  decreasing on [0, r] for ~ small enough, 
and by  taking limits, x is monotonic  decreasing for 0 ~ t ~ r .  I t  follows tha t  x(t)----0 
for O<~t~r and therefore  x ' ( t )=  y ( t )=  0 for 0 ~ t ~ r .  l~inally, we find tha t  y ' ( t )= 
= - - x ( t - - r ) - - - - 0  for O<~t<~r, and this implies (% Yo)= 0, a contradiction.  

The remainder  of the lemma follows jus t  as above if one considers for ~ > 0 the 
following F D E  : 

x'~(t) ----- y~(t) "k s[x~(t) - -  x](t)/3] - -  ~(t - -  Zl) 

(3.21) y'~(t) ~-- - -  x~ (t - -  r) + kx~(t) 

x~l[zl--r, z l ] = x ,  y~(z l )=y(z l ) .  Q.E.D. 

Owing to the general i ty  of the  s tar t ing va.lue (~, Yo) it  m a y  ve ry  well happen 
t ha t  z~ > 0. 

LEYI~A 3.10. - Le t  notat ions and assumptions be as in Le mma  3.9 and suppose 
in addit ion tha t  - -  ½kr ~ < 1. Then if z~ ~ inf (z > zl: x(z) ~ 0}, (z~-- zl) > r. 
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PlCOOF. - The previous work has a l ready shown that z2 > zl. We assume t h a t  
( z~ - - z l )<r  and obtain  a contradict ion.  

Let  tl be  the  last  point  on [zl, z2] where x achieves its min imum.  

CASE 1. - Assume that x(tl)>~--%/.3. Since we are assuming  t h a t  ( z2- - z~)<r ,  
the  same a rgum en t  as in L e m m a  3.9 implies t h a t  y(tl)<k(t~--z~)x(t~) and y ( t )<  
< y ( t d ÷ k ( t - - t ~ ) x ( t  0 for t~<t<~z~. I t  follows t h a t  for t~<~t<z~ x ' ( t ) = y ( t ) ~ -  
+ s[x(t)--x3(t) /3]~<y(t)<k(t~--z~)x(td + k( t - - t~)x( td .  I f  we in tegra te  bo th  sides of 

this inequal i ty  we obtain 

(3.21) I~(t~)l <tk l ( z~- t~ ) ( t~ -~) l~ ( t l ) l  + ~lq(~- t , )~l~( t~) l  . 

I f  we wri te  u =  (t~--z~) and replace (z~-- t  d b y  the  larger r - - u ,  we obta in  

(3.22) l <lkl(r-u)u + ½1kl(r--u)'-= ½]kl(r~- u~). 

This contradic ts  the  a s sumpt ion  t h a t  ½]k]r~<l. 

CASE 2. - Assume t h a t  x(t~)< - -~ /3 ,  define s ~ =  s u p ( s :  z~<~s<z2, x ( s ) < - - v z 3  
and  x ' (s ) -~  0}, and  define s2 to be the  first t ime  s a~ter sl such t h a t  x ( s ) = - - 1 .  
B y  our construct ion we mus t  have  x ( t ) > - - V / 3  for s~<t<~z 2. Because u - - u S / 3  is 

decreasing for - - c ~ <  u ~ < - - 1 ,  we find t h a t  for sx<~t<~s 2 

x'  (t) ~- y(t) -F s [ x ( t ) -  xS(t) /3] 

(3.23) < y(s~) -4- k(t - -  s~)x(sl) + s[x(s~) - -  x3(s~)/3] 

< k(t-- s~)z(sO. 

In t eg ra t ing  inequal i ty  (3.23) we obta in  

(3.24) - -  1 - -  x(s~) <~ ½kx(s,)(s~ - -  s~) 2 . 

For  s~<~t<z~ we find the  following es t imates :  

x'(t) = y(t) q: s[x(t) -- xa(t)/3] 

(3.25) <y(t)  

<y(s~) + k(t--s~)x(s~) 

< k ( t - -  s~)x(sl). 

In t eg ra t ing  inequal i ty  (3.24) we find 

(3.26) 1 < ½kx(sx)((z~ - -  s~) ~ - -  (s~ - -  sx)2}. 
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Adding inequalities (3.24) and (3.26) gives 

(3.27) 

This contradicts the assumptions tha t  (z~--s~)< r and ½1k[r2<~l. Q.E.D. 
Notice tha t  z~ is an isolated zero of x, for if x'(z~) -~ O, x"(z~) ~- y'(z.~) -~ --x(z~--r)  > O. 
Assuming - - k r  < s and - -½kr  < 1, we can now define a map F :  U--{0} --> C--{0} 

by  F(~,  Yo)= (--to,--Y~), where to(s )~  x(z.~ -~ s) for - - r 4 s < O  and y~ : - - y ( z 2 ) .  The 
fact  t ha t  F is continuous is not  difficult, and we leave it  to the  reader.  I t  is clear tha t  
fixed points of F correspond to nonzero periodic solutions of (3.8) with period greater  
than  2r. 

We also leave the nex t  lemma to the reader. I t  follows by  the same kinds of 
arguments  used for Lemmas 3.5 and 3.6 (only easier, since k < 0). 

LE~IA  3 . 1 1 . -  For  any  (~, y0 )eC- -{0} ,  the corresponding solution (x(t), y(t)) 
is bounded for t~> 0. The m~p F defined above is compact ,  and there  exists a constant  

R ~ > 0  such tha t  if R>R~ and It(% yo)II < R ,  then IIF(~, yo)]] 4 R .  

LEI~A 3.12. - Suppose tha t  k< O, - - k r <  e and --½kr~<~l. Then if (q~,Yo)~ 
e C - -  (0} and ($(t), y(t)) is the  corresponding solution of (3.8), there  exists an a priori 
positive constant  a ( independent  of (~, Y0)) such tha t  l im sup ]x(t)l~>a. 

PROOF. - Le t  (t be as in Lemma  3.9. If  l imsuplx( t ) I>~ , we are done. Other- 
wise, there exists a number  u such tha t  x(t)< ~ for t>~u. By  Lemma 3.9, if 
z > u  and x ( z ) ~  0, Ix(t)l is monotonic  increasing on [z, z + r], and therefore if z' is 
the  first zero of x af ter  z, tx(t)t achieves its m a x i m u m  on [z, z'] a t  some t ime T 
for which (T--z)>~r. Fur thermore ,  the condit ion t h a t  - - ½ k r 2 < l  implies tha t  
--(71/2r)~< k, so tha t  (by Lemma  3.3) the equat ion ~ 2 - - e ~ - ~ e x p [ - - r ~ ] - - k = = 0  
has precisely two roots ~ such t h a t  Re (~) > 0 and - - ~ / r  < I m  (~) < z/r. But  now 
exact ly  the  same argument  used in L e m m a  3.7 implies tha t  there  exists an a priori 
constant  a such tha t  l i m s u p  Ix(t)I>a. Q.E.D. 

$-- ) -co  

LE1WM~ 3.13. -- There exists an a priori posit ive constant  b such tha t  for any  

y0) e c -  {0}, lira sup IIF ( , y0)ll > b. 
n - - ~ ¢ o  

PROOF. - Le t  a be as in L e mma  3.12 and let  T be a number  such tha t  
Ix(T)] = ~>½a.  We can assume tha t  z~< T <  z~+~ (where z~ and z~+~ are succes- 
sive zeros of x) and x (T)>O.  I f  ( z ~ + ~ T ) < r  we are done. If  (T- -z , )~<r~de-  
fine v =  max  ( m a x  lx(t)l, y(z~)) and observe tha t  x'(t)-~ y(t) ~ sx(t)--sx(t)3/3<~ 

4 ( l ~ - r ) e ~ - e x ( t )  for z , < t < T .  Using this inequal i ty  we find t h a t  o : : x ( T ) <  
4:I /e(exp [sr]-- l )(r  ~-1)e, which implies a lower bound on e and gives the result.  
Thus we can assume ( T - - z ~ ) > r ,  or we are done;  and it  follows that. y'(t)< 0 
for T<t<z~+~. Define fi~--- rain (v/2 -8, ½~) and T~ : sup ( t~  T: x(t)----- fl}. Our deft- 
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nition of /'1 implies t ha t  x'(T~)= y(T~)~-sx(T~)[1--x~(T~)/3]<O, and this impIies 
that y(T~)<--sfl/2. Since y is decreasing on [T,z~+~], y(z,+~)<~--efl/2, and we 
are done. Q.E.D. 

Tm~o~E~ 3.2. - If  k <  0, - - k r <  s and --½kr~<l, equation (3.8) has a nonzero 
periodic solution of period greater than  2r. 

P~oos.  - Let  C~-= ((~, yo) e ¢:  H(% Yo)H <R}. By Lemma 3.11, there exists R > 0 
such tha t  F(C~--{O})cC~--(O}. By Lemma 3.13, 0 is an ejective point of F.  
I t  follows tha t  F has a nonzero fixed point. Q.E.D. 

4. - In this section we wish to consider the equation x'(t)------ax(t--1--Ix(t)[) • 
• ( 1 -  x2(t)), which was mentioned by Halanay  and Yorke in [10], page 67. We shall 
prove below tha t  this equation has a nonzero periodic solution for every a > ~z/2. 
We are less interested in the particular equation than  in the nonstandard  techniques 
which seem necessary for its s tudy;  in fact  the full force of the above periodicity 
result  a.ppears inaccessible by  Jones '  or Grafton's techniques. 

We begin with some existence and uniqueness results for the FDE.  Let  X denote 
the Banach space of IApschitz functions ~: [--2~ 0 ] - ~ R ;  if ~ a X ,  the norm is 

given by 

]1~[]1= max  ( max [~(t)l, max v ~ u  / .  

Given q~eX such tha t  l~(0)[< 1 we consider the following F D E :  

(4.1) x'(t) = --~x(t--1--[x(t) l)(1--x2(t))  x][--2 , 0]-~ q~, ( p e X ,  I~(0)[ < 1. 

L ] ~  4.1. - I f  ~ is as above, equation (4.1) has a unique solution x(t) ~ x(t; ~) 
which is defined for t~>0~ continuously differentiable for t > 0 ,  and such tha t  Ix(t)] < 1 
for t > 0 .  Fm'thermore,  given e > 0 ,  N > 0  and q ~ X  such tha t  [~(0)I< 1, there 
exists ~ > 0  such tha t  if ~oeX and l t~ -~ I [~<  8, then  sup [x(t;~)--x(t;~)[< s. 

P~ooF. - For O<t<l ,  consider the ordinary differential equat ion x ' ( t ) =  
= - - ~ q ( t - - 1 - - I x ( t ) l ) ( 1 - - x ~ ( t ) ) ,  x ( 0 ) =  ~(0). Since ~ is Lipschitz, this equation has 
a unique C ~ solution defined on some interval  [0, ~], ~ > 0. To show this solu- 
t ion can be extended to a C 1 solution on [0, 1], it suffices to show tha t  if x(t) is a C 1 
solution on [0, a], a < l ,  then  Ix(t)]< 1 on [0, a]. I f  not, let t*<a be the first t ime 
t on [0, a] t ha t  tx(t)[ = 1. Dividing both sides of the equat ion by  1--x~(t) and 
integrat ing from 0 to t* - -e ,  s > 0, gives 

(4.2) ~ l O g k l _ x ( t .  si --~ o g \ l _ ~ / - ~ - a  ~o(s--l--lx(s)l)ds. 
0 
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Since the  r ight  hand  side of (&2) is bounded  as e - > 0 ,  and  the  lef t  hand  side 

approaches  ~ co, we obta in  a contradict ion.  Thus equa t ion  (4.1) has  a unique C ~ 

solution on [0, 1], and  repea t ing  the  procedure  gives a unique C 1 solution on [0, co) 
such t h a t  [x(t)l< 1 for all t > 0 .  

The s t a t emen t  abou t  cont inuous dependence on initial da t a  follows b y  using 
continuous dependence on initial  da t a  for ord inary  differential equat ions on [0, 1], 

then  [1, 2] and so on. Q.E.D. 

Of course the  reason for L e m m a  4.1 and  one of the  technical  problems in con- 

sidering equa t ion  (4.1) is t h a t  (4.1) m a y  not  have  a unique solution if ~ is only con- 

t inuous.  

We. now wan t  to inves t iga te  the  qual i ta t ive  behav iour  of solutions of (4.1) for 
an  appropr ia te  class of s t a r t ing  values ~. Le t  Y =  C~([--2, 0], R) wi th  the  usual  

norm and  define S~-- (q~e I~: ~ ( - - 2 ) =  0, l~(t)I< 1 for  - - 2 4 t < 0 ,  and  there  exists  

a n u m b e r  zo (depending on ~), - -  1 < zo < 0, such t h a t  ~(t) > 0 for - -  2 < t < zo and 
? ( t ) < 0  for z 0 < t < 0 } .  I f  Zo-~0 this definition is m e a n t  to imp ly  ? ( t ) > 0  for 

- - 2 <  t <  O. 

LEiVI~ ~.2. - I f  ~ > 1, q e S, and x(t) is the  corresponding solution of equa- 

t ion (4.1), then  x(t) has infinitely m a n y  isolated zeros z¢, z~< z~+~ for ~>1  (z~ = zo 
if x(0) < 0), and x(t) ¢= 0 for t ¢ {z~}. I f  T¢-~ sup {t > z~: Ix(s)l is monotonic  increasing 
on [z~, t] if z¢ > 0 or lx(s)l is monotonic  increasing on [0, t] if zl < 0}, then  T¢ > z~. + 1 

and  lx(t)I is monotonic  decreasing on [T¢, z~+i]. Final ly,  the  de r iva t ive  of x is non- 

zero a t  a n y  zero z~ such t h a t  z¢>0.  

PlCOOF. - I f  ~ ( 0 ) >  0, then  since a > 1 essential ly the  same a r g u m e n t  used in 

Section 1 shows t h a t  x has some first zero zl > 0. Since x'(zx) = - - ~ x ( z l - - 1  --Ix(~al) 
and z ~ - l - l x ( z ~ ) l > - 2  , we have  t h a t  x ' ( z l )<  0. I f  q~(0)<0, we define ZoO--z1. 

I t  is clear t h a t  x ' ( t ) <  0 for 0 < t < z ~ + l ,  so t h a t  if we define T l = s u p ( t > 0 :  
x'(s) < 0  for 0 < s  <t}, /'1 > zl + 1 > 0. By  our const ruct ion we have  x'(T~) =- O, and 

therefore  we mus t  have  T I - - I - - l x ( T ~ )  I = zl. Since (d/dt ) ( t - - l - - lx( t )] )~z , -~  1 and 
since the  der iva t ive  is defined for x(t) =/= O, i t  follows t h a t  for t > T1 and  t n e a r / ' 1 ,  
t - l - l x ( t ) I  >z~.  I t  follows t h a t  x ' ( t ) > 0  for t >  T1 and t near  T~. Once again, 
since ~ > 1, essent ial ly  the  same proof  used in Sect ion i shows t h a t  there  exists  a 

first zero z~>zl  such t h a t  x(z2)=O, and we see t h a t  x ' (z2)=--c~x(z2--1)>O. 
I f  we define T ~ - s u p ( t > T ~ :  x ' ( s ) > 0  for Tx<s<t} ,  the  r emarks  above  show t h a t  

T2 > T~. I f  T~<z2, t hen  since x'(T~) = O, we mus t  have  T ~ - - I - - [ x ( T ~ ) l  : z~, and 
this is impossible,  because  T ~ - - I - - [ x ( T ~ ) ]  > TI--1--Ix(T~)[  = zx. In  fact  this r e m a r k  

shows we mus t  have  x'(t) > 0 for T I <  t<z2: I t  follows t h a t  T2 >z~,  and again be- 

cause x ' ( T ~ ) = 0  we m u s t  have  T ~ - - l - - [ x ( T ~ ) l = z ~  or T2--1--1i~(T2)I=z~. I f  

T ~ - - I - - x ( T ~ )  = z~, t hen  because ( d / d t ) ( t - - 1 -  lx(t)f)tt=zo = 1, we m u s t  have  z~< t - -  
- -  1 - -  lx(t)I < z2 for t > T~ and  t near  T~. This would imp ly  t h a t  x~(t) > 0 for t > T~ 
and t near  T~, contradic t ing  the  choice of T~. I t  follows t h a t  T2--1- - Ix (T~)  ] -~z2 
and in particular that T~ > z~ + I. 
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I t  is clear now tha t  the  same arguments  show there  exists a zero z3 > T~, x'(z3)< 0, 
and x ' ( t ) < 0  for T2<t<T3, where T 3 > z 3 + l .  I f  we define ~p(s)=x(z~+2 +s)  for 
- - 2  < s < 0, then  we have  V e S, so the arguments  above  apply,  and the  lemma is 

proved.  Q.E.D. 

Given ~ e S  we can define a map F:S- ->S  by  using Lemm~ 4.2: if ~ e S ,  
let  z 2 denote  the  second zero of the corresponding solution x(t) of (4.1) and define 
F(~)-----~, where y ~ ( s ) = x ( z ~ + 2 + s ) f o r - - 2 < s < 0 .  Using L e m m a  4.1, one can 
ver i fy  tha t  F is continuous in the  topology of Y. Obviously, fixed points of F cor- 

respond to  non-zero periodic solutions of equat ion  (4.1). 

LE~r~IA 4.3. - I f  A is a bounded subset of S, F(A) is a precompact  subset of Y. 

PnooF.  - Suppose tha t  qgeA, x(t) is the corresponding solution of (4.1) and z~ 
is the second zero of x on [ - -2 ,  c~). By  the  Ascoli t heorem it suffices to  show 
tha t  x"(t), which is defined except  a t  the  zeros of x, is bounded  on [z~, z2 ÷ 2] by  a 
bound independent  of ~. Since lx(t)l< 1 for all t~>--2,  we see tha t  [x ' ( t )[<a for 
t~>0; and because A is bounded,  there  exists a constant  fl ( independent  of ~ in A) 
such t ha t  Ix'(t)l <fl for t > - - 2 .  Differentiat ing both  sides of equat ion  (4.1)we now 
see tha t  x"(t) is uniformly bounded on [z2, z2 + 2] (where it is defined). Q.E.D. 

L E n A  4.4. - Suppose t ha t  ? e S, x(t) is the  corresponding solution of equa- 

t ion (4.1), and ~>~/2. Then if z > 0  is a zero of x and if ~=sup(max(lx(t)l,]x'(t)])) , 
t ~ z  

there  exists a posit ive constant  a, independent  of ~ and z, such tha t  /t> a. 

P~ooF. - By  Leanma 2.5 there  exists a solution A of the equat ion ~ + a exp [--2] = 0 
such t ha t  R e ( A ) > 0  and 0 < I m ( A ) < z .  I f  zj and T~ are as in Le mma  4.2, in- 

tegra t ion by  par ts  gives 

(4.3) 
co 

fx'(t) exp [-- ~t]dt -~ Afx(t) exp [-- At]dt-- x(Tj) exp [-- )~T~]. 
T 1 T j  

On the  o ther  ha~d, if we subs t i tu te  for x'(t) f rom equat ion  (4.1) a~d define LJ(t)----- 
= x(t - - 1 )  - -  x(t - - 1 - -  Ix(t) l) for nota t ional  convenience,  one obtains 

(4.4) 
r~ 

f x' (t) exp [ ~  ~t]dt 
T j  T j  

co 

= --  ~fx( t - -  1) exp [-- Xt]dt-- 
T~ 

¢o 

: -- ~f(x(t --  1) - -  z~ (t))(1 - -  x~(t)) exp [-- At]dt 

x( t -  1)x2(t) exp [-- 2t]dt ÷ 
T j  

m 

+ o~fzJ(t)(1- x~(t)) exp [--)~t]~t 
T t  
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If we define 

co co 

R(T) = - - ~ f x ( t - -  l)x~(t)exp [-- ,~.t]dt -H offal(t)(1-- x~(t)) exp [-- Z t ] d t ,  

equation (4.4) becomes 

(~.5) 
co 

f x' (t} exp [-- ,%t]dt = 
co 

- -~exp  [ - - i ] fx( t )exp [--At]dt + R(T¢). 

Combining equations (4.4) and (4.6) one finds 

(~.6)  exp [-- x]f (t) exp [-- i t]dt--x(T¢) exp [-- 2T~.] = R(T¢). 

If one integrates again by parts one obtains 

(&7) 
Tj 

exp [-- ;~]fx(t) exp [-- itJdt = x(Tj) exp [-- 2Y~.] --  
Tj--I 

Tj 

- -  x ( T ; -  1) exp [-- ~.(T~- 1)] --fx'(t) exp [-- ,~t] dt. 
~ - 1  

Substituting from equation (4.7} in (4.6) and multiplying both sides by exp[~(Ts-- ½)] 
yields 

(4.8) --  x(T~ --  1) exp [Z/2] -- fx '( t)  exp [-- i(t --  Tj + ½)] dt -= exp [i(Tj -- ½)]R(T~). 
T j - -1  

If 2 = # ÷ i~,, the real part of the left hand side of equation (4.8) can be written 
T$ 

--x(T~-- l )  exp [#/2] cos ~/2--fx'(t) exp [--#(t--T~. + ½)] cos ~(t -- T~ ~- ½)dt. Since xr(t) 
Ty--1 

and x(T~-- l )  have the same sign for Y ~ - - t < t < T ~  and since cos~( t - -T j+½)-  
• exp [-- t t ( t --  Tj + ½)] > exp [--/t/2] cos ~/2 for T~--- 1 < t < Tj, the absolute value of 
the above expression is greater than Ix(T~--l) exp [~t/2] cos ~/2 + exp [ -  z/2] cos ~/2. 
• (x(Tj)--x(T,--1))  l, which is greater than exp I-- t  t/2] cos~/21x(T~) I. 

If we define ~l-~sup Ix(t)I and (~2 = sup Ix'(t)l, it is clear that  (~= max (~,  ~). 
t ~  z t ~  z 

Select z~>z and the corresponding T~- such that [x(Tj)[> ½~. It  then follows from 
our previous remarks that  ½exp [--/~/2](cos ~,/2)~ < IRe (exp [2(Tj-- ½)]/2(T~))I" By 
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using ve ry  crude est imates  we find 

(4.9) lexp [2.(T; - -  ½)]/~(T~)I < :¢d~fexp [-- #(t - -  T¢ @ ½)]dt -~ 

'2 t 

¢o 

# 
f l  

I t  follows tha t  for an appropr ia te  constant  c > 0, 

(4.1o) cdl<d~ + ~d~.  

Since it is easy to see t ha t  ~1 > 0, this implies tha t  v<5~ ~-6~, which cer ta inly 

implies our result.  Q.E.D. 

LE~V~A 4.5. - If  ~ > ~/2, there  exists a posi t ive constant  b such tha t  for any  

E S there  exists an integer N such t h a t  x(T~N) > b (Tj is defined as in L e m m a  4.2). 

PJ~0OF. - According to Lemma  4.4, there  exists a posit ive constant  a such tha t  

ei ther l i m s u p  ]x ' ( t ) ]>a or l imsup  lx(t) l~a.  I t  follows from equat ion (4.1) t ha t  if 
~--->co $---->eo 

b-= lira sup ]x(t)l, l imsup  Ix'(t)] <~b, and this impliJs t ha t  we must  have l im sup lx(t)I > 

>a/o:. I t  is clear t ha t  l imsup  Ix(t)] = l i m s u p  Ix(T~)l, and using Lemma 4.2 one can 
~ --~cO 27---> cO 

see tha t  l i m s u p  Ix(T2,+~)l < 2 a l i m  sup Ix(T~)]. Thus we see tha t  l i m s u p  ]x(T2~)] > 

a/2o: ~. Q.E.D. 

L E n A  4.6. - Suppose tha t  a > 1, ~ e S and x(t) is the corresponding solution 
~Z of equation 4.1. Then if sup ( c, where 

e------ rain {a, 1 / ~  a/2 a(l --a2), a~/4 a(l --a~)(l -}- c,~)-i} • 

P~ooF. - We can assume for convenience t h a t  x(t)>O for z~<t<z~+~, so tha t  
a = x(T,) .  According to Lemma  4.2, t - - l - - [x( t ) l>~z~ for T,<t<~z,+~, and in fact  
(d/dt)(t--  1 --Ix(S)[) = 1 - -  x'(t) > 1 for T~ < t  < z~+~. I t  follows t h a t  x'(t) is decreasing 

for T ~ < t < m i n  (z~+~, T ,  ÷ 1); and thus  if z~+1<T. + 1 we find tha t  

~n+l  

a = --fx'(~) dt <. - -  x'(z~+~). 

I f  z.+l > Tn-~ 1, we define s~ to  be the  unique point  on (T , ,  z,+l) such tha t  
s ~ - - l - - I x ( s ~ ) l = T ~ .  There  are two subcases to consider. First ,  suppose t h a t  
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~,,+ 1 <~+1.  We claim that ~(1- -x~(~+, - -1) )  <1.  If not we have x ( t - 1 - l x ( t ) l )  > 
>x(z .~ l - -1 )  for z . + l - - l < t < z . + ~  and x ' ( t ) > x ( z . + l - - 1 )  for z~+l-- l<t<z.+~.  But  
this would imply tha t  x ( z )=  0 for some z, z .+~- - i  < z <  z.+~, a contradiction. 
Therefore we have tha t  a (1 - -  x2(z,+~ --  l)) <1 ,  so tha t  x (z .+~- - l )>V/(a - -1) /a .  I t  
follows tha t  x ' (z .+~)<--V/~(a--1) .  

Finally,  we have to consider the possibility tha t  s . <  z.+~< s. + 1. Since x(t) 
is convex do~mward and positive on [T. ,  T.+I], it follows tha t  x(u)>½x(T.)  if 
0 < u  < T .  ~- ½. Because t - -  1 --  Ix(l)] > f~  = s . - -  1 -- [x(s.) 1 for s.  < t < z.+~ and 
because l ( t - -1 - - t~( t ) l )  - - ( s o - - l - - t x ( s o ) l ) l  < (~--so) + ~x<T~)(t--s~), we see that 
T . < t - - l - - [ x ( t ) [ < T ~ + ½  if s . < t < ½ ( l + ~ a ) - ~ + s ,  and t<z~+~. If  we define 
f i - - r a in  (½(1 ÷ ~a) -x, z.+~--s.)  all of this implies tha t  x ( t - - 1 -  ]x(t)l ) > ½x(T.)= ½a 
for s~<t<fi  + s~ and consequently tha t  x ' ( t )<  --(c~/2)a(1--x2(s~)) for s . < t < s . + f i .  
There are two possibilities: I f  x(s.) < (~/4)a(1--x2(s.)) (1 + ~a) -~, then z~+~-- s. < 
< ½(1 + ~a) -~ and consequently x'(z.+~)< --  (~/2)a(1 --x~(s.)) < --(~/2)a(1 --a~). If  
we assume x(s~) > (~/4)a(1--x2(s.))(1 + ~a) -1, we must  have x(s.) > (~/4)a(1--a~) . 
• (1 + ~a)-' .  This implies tha t  x'(z.+~) = --  ~x(z.+~--l) < --  ~x(s.) < -- (~ /4)a(1- -  aS) • 
• (1 + ~a)-L Q.E.D. 

According to Lemma 4.5 there exists a constant  ao such t h a t  if ~ e S and x(t) 
is the corresponding solution of (4.1), l imsup  x(T~) > ao. Since trivial estimates 

imply tha t  x(T~)<2~Ix(T~_~)l, it  follows tha t  if x ( T ~ ) >  ao, [x(T~_~) t >a,/2~. There- 
fore Lemma 4.6 implies t ha t  there exists a constant  b0 such tha t  if x(T~;)>ao, 
x'(z~)>bo and x'(z~+~)<--bo. If  we take e0 to be a positive constant  such tha t  
e ,<  min(ao,  bo), then  for any  ? e S ,  if x(t) is the  corresponding solution of (4.1), 
there exists a positive integer N such tha t  x(T~) > co, x'(z~) > c0 and x'(z~+~)<--co. 

For a fixed constant  A > ~ ,  define U =  {q e S: q'(z)=~0 if ? ( z ) = 0  and 
sup t?'(t)t < A}. I t  is easy to check t h a t  U is a bounded open subset of the  closed, 

convex set { ~ 0 ~ Y : ~ ( - - 2 ) = 0 }  and tha t  F(S )cU .  If  V ~ ( U ) ,  it  is clear ~rom 
equation (4.1) tha t  sup tV'(t)]<= and (by taking second derivatives that)  

- 2 ~ g ~ o  

sup [~'(t)--V'(s)<B[t--s[,  where B----~A(3+ A). Finally,  if x(t) satisfies equa- 

tion (4.1), then we obtain 

(4.11) 

TS Ts 

zs ZS 

This implies tha t  x(Tz)<k< 1, where k is the largest solution of 

log \1 --  k] = 2:¢ 

such tha t  0 <  k <  1. 
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For  each c, O<v<eo, we define a subset M~ of S as follows: I f  ~ e S ,  then 
~ e M ¢  if 1) there  exists a t ime T, - - I < T < 0 ,  (T dependent  on ~) such tha t  ~ 

is monotonic  increasing on [ - -2 ,  T] and monotonic  decreasing on [T, 0]; 2) x'(t) 

is monotonic  decreasing for T < $ < 0 ;  3) sup Ix(t)l<k, sup [x'(t)l<.c~ and 

sup tx'(t)--x'(s)l <BIt--sf, where k and B are as above;  4) x'(--2)>c and x(T)>v. 

I t  is not  hard  to check tha t  Mc is a compact  subset of ~ and that/~(~o) satisfies con- 
ditions 1 - - 3  above for any  7~ e U. Fur thermore ,  condit ion 2) implies (by an ar- 

gument  used in Lenm~a 4.6) t h a t  if 7~eM~ and  7~(z)= 0 (necessarily z>~T), then  
we have  ~0'(z)< ~ c. I t  follows tha t  M~ c U. Observe tha t  if 70 e U our previous 
lemmas imply  t ha t  there  exists an integer  N such t h a t  ~'0 == F ~ o  satisfies ~'0(--2) > Co 
and sup %( t )>eo :  I t  follows tha t  if ~ U  is close enough to ?o then  W = F s ~  

-~t~<o 

also satisfies the  condition ~ ' ( - - 2 ) >  Co and sup ~ ( t ) >  Co. Since F ' ~  automatic-  
-~<t~<o 

ally satisfies conditions 1 -  3 for a n y  ~ ~ U, F~'~ ~ M~. 
Our nex~ lemma is an easy consequence of Le mma  1.5 and is an abst ract ion of 

our concrete situation. 

L E n A  4.7. - Suppose t ha t  G is a closed, convex subset of a Banach  space Y, 
U is a bounded open subset of G and ~ :  U - ~  U is a continuous,  compact  map. 
Assume tha t  there  exists a compact  set M e  U such t h a t  F ( M ) c  M and such t h a t  
for any  x e U there  exists an open neighborhood U. of x and an integer n ,  such 
tha t  F"=(y)E M for y e U~: Finally,  suppose t h a t  there  exists a compact  set K D M 
such t ha t  K is contract ible  in itself to  a point .  Then  we have  i~@ ~, U) = 1 and F 

has a fixed point  in U. 

P~ooF. - By  a simple compactness a rgument  there  exists an open neighborhood 
]7o of K in G and an integer  N such t h a t  c l F (V 0 )c  U and F~(Vo)c U for n > N .  
If  we define C~= cl (F(V)) and C.== F"-~(C~) for n>2, then  C~ is a compact  sub- 
set of U and C, c M for n >  N. There exists an open neighborhood V~_~ of C~_~ 
such t ha t  F(V~_,)c Vo, and continuing induct ively  there  exists an open neigh- 
borhood Vj of Cj for I < j < N - - 1  such tha t  F ( V j ) c  V~.+,, where V~ is defined to 

be V,. I f  we define V---- [J Vj, it  is clear t h a t  V is an open neighborhood of K ,  
j=0 

F ( V ) c  V, and F"(V)cM for  n > 2 N .  I t  follows f rom Le mma  1.5 t h a t  i~(LV, V ) =  1~ 

and since all of the  fixed points of F in U lie in M, ia(F, V)-~ i~(F, U). Q.E.D" 

T H ~ o ~  4.1. - I f  a > ~ / 2 ,  equat ion (4.1) has a nonzero periodic solution x(t) 
of period greater  t han  2. 

l ~ 0 o F .  - I t  suffices to show t h a t  F :  U -> U has a fixed point ,  and to  show this 
it  suffices to  reduce to the  s i tuat ion of Le mma  4.7. We take  ~ and U as above and 
define G =  { ? e  ~Y: ~( - -2)  ~- 0}. I f  Me, 0 <  c<co,  is as defined before, we have  seen 
t h a t  given ~ e U, there  exists an open neighborhood U~ of ~ in G and a posi t ive 
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integer n ~-n(F)  such t ha t  /7-(y~)e Mo for ~ e U~. Since Mo is compact  it  has a 
finite covering by  open sets U~ ~ U~ with corresponding integers n¢. We define 

N-----max{he} and consider M - ~  [J F¢(Mo), a compact  subset of U. We claim tha t  

F (M)  c M. To see this it  suffices to show t h a t  if F ---- F ~ (~) for some ~ e Mo, then  

/~(~f) e M. However ,  by  construct ion we have  F ~ U~ for some j, so E~J(~) e M~ and 
= e M .  

By Lemma 4.7 it  only remains to construct  a compact  set K ~ M ,  K c  U, such 
tha t  K is contract ible in itself to a point.  Since M is a compact  set, it follows tha t  
inf { sup ~p(t): y)eM} ~ ($~ is positive, and this easily implies (using Lemma 4.6) 

t ha t  inf {F'(--2) :  ~feM} = 6~ is positive. I t  follows tha~ if ~ =  rain (~ ,  3~), M e M o .  
We define M o =- K,  and it  remains to show M~ is contractible.  Le t  % be a C 1 rune- 

! 
t ion such tha t  y~o(~2)~>6, Fo is monotonic  increasing on [ - - 2 , - - 1 ]  and F0( t )=  
for ~ l < t ~ < 0 .  I t  is known tha t  such a F0 exists, and by  decreasing 6 one can also 
guarantee  t ha t  ~fo satisfies condition (3) in the definition of M~. I t  is clear t ha t  if 

~ e M ~  and 0~<#<1,  then  {1-- t t )y~o+tt~peM~, so M~ is contract ible  to  the  

point  Fo. Q.E.D. 
I t  is clear t ha t  the same arguments  also apply  to the  equat ion x ' ( t ) =  

=_--~x( t - - l - -s lx( t )J) (1--x~( t ) )  , ~>z~/2 and 0<e~<l ,  and imply existence of pe- 
riodic solutions. I f  s--~ 0, it  is known tha t  the  period of the  periodic solution is 4~ 
for eve ry  ~ > 7r/2. For  s > 0, numerical  studies suggest t h a t  the  period is not  
constant  with ~. However,  just  ~s for s--~ 0, as ~ increases the periodic solution 
looks more and more like a step-function a l ternat ing  between values + 1 and - -1 .  

For  e > 1, results can be obtained, bu t  technical  difficulties are increased. 

5. - In  this section we wish to consider the following neut ra l  F D E :  

[ k d ( x ( t_ l ) )~+~][ t_x~( t ) ]  (5.1) x'(t) ~- --  ~x(t --  1) + m -~ 1 dt 

x(t) .~ ~(t) for - - l ~ < t < 0 .  

I f  k-~ 0 this reduces to one of the best unders tood nonlinear I~DE's. Work  of 
Jo~Es  [18] shows t ha t  for each ~ > ~/2 there  exists a periodic solution of period 4, 
and a r emark  of A. J.  ~¢L~CI_~:~E (see [18]) actual ly  gives an explicit  formula in 
terms of the  elliptic funct ion sn(u). However ,  if k ¢  0, previous methods give no 
results on (5.1). We shall prove below tha t  if ~ > ~/2, m>~l, and 
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then  equat ion (5.1) has a nonzero periodic solution. Even  in this simple case this 
result  is far f rom best possible and leaves ~ large number  of open questions, which 

we shall discuss later.  

LE~r~t  5.1. - Let  ~0 be a continuous,  real-valued funct ion on [--1,  0] such t h a t  
? ( - - 1 )  = 0, ?"+~(t) is cont inuously  differentiable, (d/dt)?~+~(O): 0 : (d/dt)q~+~(--1) 
and 1~(0)t < 1. Then  equat ion  (5.1) has a unique solution x(t) = x(t; ~) defined for 
all t >  0 such t ha t  x(t) is cont inuously  differentiable for t >  0 and [x(t)l< 1 for all t>~ 0. 

P~OOF. For  O~<t~<l define x(t) b y  the equat ion 

(5.2) 
1 i 

- -  ~ log log \1 - -  x(t)] \1 --  qD(O)] 

t - - I  

k m 1 

--1 

This equat ion is obtained from (5.1) by  dividing b y  1--x~(t)  and integrating.  One 
can solve equat ion (5.2) for x(t) and check direct ly  tha t  lx(t)l < 1, x(t) is C ~ in [0, 1] 
and x+(0) (the r ight  hand  derivat ive)  is zero. Repeat ing this procedure  on [1, 2] 
we ex tend  x(t) in such a way t h a t  lx(t)l < I on [1, 2], xl[1 , 2] is cont inuously  dif- 
ferentiable,  and x(t) satisfies (5.1) on [1, 2 ]  Using the  condition tha t  x + ( 0 ) ~  0 = 
= (d/dt)qp,~+~(O), it  is easy to check t h a t  x + ( 1 ) =  J ( 1 ) ,  so x'(t) is cont inuous also 
at. 1. Continuing in this way, we obtain the  result  of the  lemma Q.E.D. 

IJE1KlV[A 5.2. -- Assume tha t  m is a posit ive integer a > ~/2, and q~ is a cont inuous 

monotonic  increasing funct ion such t h a t  ~ ( - - 1 ) =  0, ?"(t)  is cont inuously  differen- 
ti~ble and (d/dt)?~(O)= O. Then if ~ ( 0 ) >  0, there  exists a posit ive cons tant  a 

( independent  of 9~) such tha t  ei ther  sup{l(d/dt)x~(t)l: t > - - l } > ( g - - 1 ) m / I k  I or 

lira sup max  (lx(~)], Ix'(t)l) >~a. 
t ---~co 

P~ooF. - The assumptions imply the  ~,~+1= (~)~+1/~ satisfy the hypotheses  of 
Lemma  5.1, so x(t) is defined. I f  we have  sup I(d/dt)x~(t) l~(~-- i)m/]kl ,  we are 

done, so we assume for the  rest  of the  proof t h a t  sup l(d/dt)x~(t)]< (a - -1 )m/ lk  I. 

I f  t o : S U p  { t>0 :  ~ ( s ) :  0 on [0, t - - l ] } ,  then  it  is clear t h a t  x ' ( t ) :  0 for 0 < t < t o ;  
t > ~ - i  

a n d  for  t >to ,  we have  x ' ( t )=  x(t--1)[--c~ + (k/m)(d/dt)x~(t--1)][1--x2(t)]. Our 
assumptions imply tha t  - - ~  ÷ ( k /m) (d /d t )x '~ ( t - -1 )<- - f l<- -1  for t > 0 .  Jus t  as in 

Section 2 it follows t ha t  x(t) has infinitely m a n y  isolated zeros z~, n > l ,  t ha t  
z~+~--z~, > 1, Ix(t)] > 0 for t=/=z,, x(t) is monotonic  increasing on [z~_~ -t- 1, z~, -}- 1] 

and x(t) is monotonic  decreasing on [z~. -}- 1, z~.+~ + 1]. 
Le t  z > 0 be a zero of x and define ~ :  sup Ix(t)! and ~ , = s u p l x ' ( t ) l .  Our 

t~+l t ~ z  

assumptions imply  tha t  sup Ix'(t)l<~A~, where A =  2 a - - 1 ,  so (~< c~. If  we de- 
t~z+i 

fine u > z  to be a zero of x such t h a t  l x ( u + l ) l > ½ ~ ,  define T : u + l  and ~ to 
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be as in Lemma 2.5, then integration by  parts gives 

(5.3) 
co co 

exp [ -  i t]dt = - -  x( T) exp [-- iT]  + 2 fx( t)  exp [-- i t]dr.  

If we substitute from equation (5.1) for x'(t) we obtain 

(5.4) 
o o  ~o 

fx ' ( t )  exp [-- it]dt = - -  ~ exp [-- exp [ -  ~t]dt + 
T--1 

co co 

+ kfx,,(t-- 1)x'(t -- 1)(1 - -  x~(t)) exp [-- itJdt-- 1)x2(t) exp [-- ).t]dt. 

If we set equation (5.3) equal to (5.4) and simplify (recalling that  

T T 

~exp [-z]f (t).exp [- 2t]dt = x ( T ) e x p  [-- ,~T]--fx'(t) exp [-- ~t]dt), 
~ - - I  T - - 1  

we find that if we define 

oo 

(5.5) R(T)  = k f x " ( t - -  1)x'( t--  1)(1 --  x~(t)) exp [-- ),(t--  T + ½)]dt - -  
I' 

o~ 

--~fx(t--1)x~(t)exp[--2(t--T+½)], -- fx '( t)exp[--i( t--T+½)]dt 
g' 1' 

= R ( T ) .  

The usual estimates imply that  if A = # + iv, ]R(T)[ < ( ] k l ~ l  + ~3) exp [½#]#-L 
As before, we find the absolute value of the real part  of the left hand side of (5.5) 
is greater than ½ ~ exp [-- ½#] cost v/2. Dividing both expressions by  ~ we obtain 

(5.6) ½exp [ -~ ]~  cos v/2 < tk[~ ~-~ ~ + ~ .  

Equation (5.6) implies that  there exists a positive constant a (independent of 9) 
such that max(~, ~1)>a. Q.E.D. 

Observe that  to prove l imsupmax(]x(t)I  , Ix'(t)])>a it sufficed to know that x 
t - - ~ v O  

had the qualitative behaviour (existence of zeros, etc.) used in the seccnd half of 
the proof. 

Our next lemma is a trivial calculus exercise which we leave to the reader. 

L E n A  5.3. - If f l>0 and e#----- sup u~(1--u*), then co----1 and 
o < u ~ l  

Cfl = ~ , ~ !  ~,~} ~or ,8>o. 
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LEM_VIA 5 4  - Assume tha t  ~ is as in Le mma  5.1 and 

Then if 

k d ~<B -- ~+l ( t )  for --l~<t~<0 m@ l dt" 

]klc.~(~--+-B~B)<~l,lk]lx'~,(t)x'(t)I<B for all t > O .  

I f  q~(t) is cont inuously differentiable and 

then  if 

k/mdt~'~(t)<.B for - - l < t ~ < O ,  

[~ + B1 . 
N e~_~ [--B--] < ~' N I~'~-~(t) ~' (t) t< B for all t ~ O .  

I f  in this second case, e > 1, ~ is monotonic  increasing and ~ ( 0 ) >  O, B = ~, and 

21klein_l<1 , then  x(t) has a first zero z~, and x is monotonic  decreasing on [0, z~ ÷ 1]. 

P~ool~. - Fi rs t  suppose t ha t  Ik/(m + 1)(d/dt)~'~+~(t) t <B. Then for 0 < t  < 1 we have  

(5.6) Ik[ ]x"(t)x'(t)l <tkl lx(t) l~'(z-x~(t))(o:lx(t-z) l  + B) . 

Since O~<[x(t) l<l  , lx(t)[~*(1--x~(t))<~em, and we find tha t  [klIx,,(t)x'(t)[<B for 
O~<t~<l. GenerMly, if we assume tha t  ]k[lx'~(t)x'(t)l<~B for i ~ < t ~ < i + l ,  the  same 
argument  proves [k] Ix'~(t)w'(t)l <B for j ~- l < t ~ < j  + 2. 

Now assume ~'*(t) is cont inuously differentiab]e and 

m ~-t ~'~(t) <~B for - - l < t ~ < 0 .  

Then for 0~<t~<l the  equat ion (5.1) reduces to 

x'(t)= ~(t--1) [ - ~ +  k ~t ] ~n ~,~(t--1) [1--x~(t)]. 

Multiplying both  sides by  kx"-l(t) and taking absolute values gives tkx~-~(t)x'(t)l < 
< c,~_l[k](a -~ B)<B.  Generally, if [kx"-l(t)x'(t)l <B for i~<t~<j -F 1, the  same argu- 
ment  shows tha t  [kx'~-~(t)x'(t)[ < B for j ÷ 1 < t < i  ÷ 2. 

Final ly,  suppose t ha t  in addit ion a > 1, B----a, ? is monotonic  increasing and 
~ ( O ) > 0  and 21klem_~<l. Then by  the r e ma rk s  above Ikx~-~($)x'(t)]<a for 

2 0  - A n n a l i  eli  M a t e m a t i c a  
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O < t <  co: Since equat ion (5.1) can be wri t ten as 

and 

[ kd ] x ' ( t )=cf ( t - -1)  - - a +  m~tq~'~(t--1 ) [1--x~(t)] for 

x'(t) = x ( t - -  1)[ - -  a + ~x"-~(t--  ~ )x ' ( t - -  1)][1 - -  xq t ) ]  

O ~ t ~ l  

for t~>l ,  

it  follows t ha t  x(t) is monotonic  decreasing on [0, zl ~- 1], where z~ denotes the first 
zero of x (possibly zl---- -k oo). 

We wish to  show z~< -k c~, and to do this we proceed b y  contradict ion.  I f  
x(t)>O for  all t, let  b = l i m x ( t )  (since x(t) is monotonic  decreasing) and let 

t ._~c o , 

d =  x(0 )<  1. Then the argument  used above actual ly  shows tha t  ]kx~-l(t)x'(t)] <<.da 
for 0<~t~<l and generally [kx~-~(t)x'(t)[<~d~c~ for j - - l<~ t< j .  I t  follows tha t  
l im kx~-~(t)x'(t) = O, and therefore we have l im x'(t) = --ab(1--b2).  This implies 
t --~co t - + c o  

t h a t  b----- 0, bu t  if we select to so large t h a t  [ - - a  + kx~'-~(t--1)x'(t--1)][1--x~(t)]< --1 
for t~to,  the  usual a rgument  implies t h a t  x has a zero on [t0 , to -k l) .  Q.E.D. 

I f  z~>~l, then  it  is clear f rom the above remarks  t h a t  x ' ( z l )<0  and z~ is 
isolated. However ,  if z~ < 1 and if (d/dt)q~(z~)~ am~k, it is possible t h a t  z~ is not  

$ $ 
isolated. In  this case, it is not  hard  to see tha t  there  exists z~, z~ < 1, such tha t  

¢s $ 

x(t) = 0 for  z~<<.t<~z*, x(t) < 0 for z~ < t<~z~ -k 1, ~nd x is monotonic  decreasing on 
[z*, z* -k 1]. In  any  event ,  the same arguments  show t h a t  x has a first zero z~ > z* A- 1. 
Since [kx*~-~(t--1)x'(t)] <~  for t ~ l ,  it is easy to see t h a t x ' ( z ~ ) > 0  and z 2 is 
isolated. Now applying Lemma 5.4 to xI[z2, z~ -k 1], x has a first zero z3 >z~ -k 1, 
and z'(z3)< 0. Continuing in this way we find zeros zj, j > 2 ,  which are isolated 
for j~>2, and x is monotonic  decreasing on [0, z*-k 1], monotonic  increasing on 
[z*~ -k 1, z~ -k 1], etc. I f  c~ > z~/2 and [kl <~ (2c,~_~) -~, i t  follows b y  Le mma  5.2 and 

the  remark  following it tha t  lira sup Ix(t)[> a or lira sup ]x'(t)[ > a (a as in Le mma  5.2). 
t - + c o  t - > c o  

However  under  the assumptions on x, lkx'~-l(t--1)x'(t--1)[ < a for all t > 1, so b y  
equation (5.1) we must  have l im sup Ix'(t) l <<. 2a l im sup Ix(t)l and lira sup tx(t)I > a/2a.. 

t - -~co t ~  t - -~co 

We now proceed as usual. Le t  S denote  the  set of continuous monotonic  increasing 
functions ~ on [--1,  0] such t ha t  ~ "  is cont inuously differentiable, 

sup k d [ d ~ 0 
-~-<.t<o m d  tcf~(t) <a'-dtq~ ( ) = 0 ,  ~ ( - - 1 ) = 0  and 0 < ~ o ( 0 ) < 1 .  

I f  ~0 e S, a > 1 and Ikl <(2c~_1) -1, let x(t) denote  the corresponding solution of (5.1) 
and define F @ ) e  S by  F@i(s )= x(z~-k 1-k  s), - -1  <<.s <~0. I t  is not  hard  to show 
tha t  F is continuous on S in the sense tha t  given ~0 e S and s > 0, there  exists 

> 0  such tha t  if ~0eS and 

sup d .~ d ~ t I 
-l<t<0 at ~ ( t ) - ~ 0 ( )  < ~ ,  
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then sup ]y'(t)--y~(t)I< e, where y =  F(~) and Y0---- F(~0). I t  is clear tha t  fixed 
-l~t~<0 

points of F correspond to nonzero periodic solutions of (5.1), bu t  for technical 
reasons F is no t  quite the  r ight  map to consider and S is not  quite the r ight  set of 
initial functions. Our next  lemma suggests another  condition for functions in S. 

LEMY~A 5.5. - Assume tha t  q:~S, ~ > 1  and IkI<(2c~_~)-~. Then if x(t) is the 
corresponding solution of (5.1), lx(t)t<~A for t>zl ,  where A <  i and A is inde- 

pendent  of ~. 

P~oo~. - According to Lemma 5.4 and the remarks following it, sup Ix(t)] 
= sup {[x(z~ + 1)1: ~>1}. However, if x(z) = O, we then  obtain t~'~ 

f k d x,.+~(t_l)dt = - -~x ( t - -1 )  + m + l d t  
z 

z + l  

f k x~+~(z-- 1) -~ --:¢ x ( t - - 1 ) d t +  ~-~--~ 

k 

I t  follows tha t  [x(z + 1)[ < A ,  where A <  1 is the largest solution of 

~I--~--A/ = ~ +  ~ - - ~  . Q.E.D. 

We are now almost done. Let  G denote the set of continuously differentiable 
functions ~ on [ - -1 ,0 ]  such tha t  ~p(- -1)=0,  ~(0)~<A ~, ~p'(t)>0 f o r - - l ~ < t < ~ 0 ,  
~o'(0)=0 and I(k/m)(d/dt)v2(t)l.-<~ for - - l < t ~ < 0 .  If  we view G as a subset of 
C1([--1, 0]), then  it is clear tha t  G is closed, bounded and convex. :Now assume 
tha t  c~ > ~/2 and tkl < (2cm_0-t : ((m ÷ 1)/4)(1 + 2/(m--1)) (~-~):2 and define ¢ ( V ) :  
= (F(Vv~)) ~ for VEG--{0}.  I t  is not  hard to see (using Lemmas 5.4 and 5.5) 
tha t  ~ :  G--{0} -->G--{0} and ~b is continuous. Furthermore,  by  Lemma 5.2 and 
the remarks following Lemma 5.4~ if y:e G--{0} and x(t) is the solution of (5.1) 
corresponding to ~ :~ ,  then lira sup Ix(z, + 1) l ~> a/2~. Using this result~ it is easy 

to see t h a t  0 is an ejective point of ~.  
I f  for A c G  we define # ( A ) =  l i ms u p  {t~v'(t)--?,'(s)t: y e A ,  tt--sl<~(~}, to find a 

fixed point of ~ it suffices by the remarks in Section 1 to show tha t  #(q~(A))< 
~<c#(A) for some constant  v<  1, c independent of A. 

LEivr~.a 5.6. - I f  ~ >~/2 and ]kl~(2c,~_1) -1, there exists ~ constant  c <  1 such 

tha t  #(qb(A))<c#(A) for every subset A of G. 
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PnOOF. - Suppose tha t  A c G - - { 0 }  and # ( A ) <  d. Given yJeG, let x(t) denote 
the solution of (5.1) corresponding to W~/~(s). According to Lemma 5.4, 
Ikx~-~(t)x'(t)l<~ for all t > 0 .  I t  follows tha t  the set of funcLions x'*(t) 0 < t <  c~, 
corresponding to ~f~/~, yJ ~ G, is equicontinuous; and this easily implies tha t  the 
set of functions x(t), 0 < t <  oo, corresponding to W~/~, ~peG, is equicontinuous. 
Of course {~1/~*: ~eG} is equicontinuous. 

By applying the above remarks, i t  is easy to see t ha t  given e > 0 there exists a 
5 >O, (~ independent  of ~ e G ,  such tha t  [x(t--1)x~-~(t)(1--x~(t))--x(s--1)x~-~(s) • 
• (1--x~(s))l<s if t,s>~O and l t - s I <  8. S i n c e / t ( A ) <  d, by  taking ~ smaller we 
can also assume tha t  sup {lv'(t)-- V'(s)l: V ~A,  I t - - s  I < ~} < d. I f  x(t) is a solution 
of (5.1) corresponding to ~ with F e A ,  then for O<t, s<~l and It--s[< ~ we ob- 
tain the following equations: 

(5.8) d x~(t) - -  ~t x%s) < ~mlx(t --  1) x~-~(t) (1 --  x~(t)) --  x(s - -  1) x~-~(s) (~ - -  x'~(s)) 1 
~t 

+ Ikt I x ( t - 1 ) ~ ' ( t -  1)x~-~(t) (1 -x2(t)) - x ( s  - 1) ~y(s - 1)x~-~(s)(1 -x2(s)) l .  

The first te rm on the right is bounded by  c~ms, by  assumption. I t  is easy to check 
tha t  the second term on the right in equation (5.8) is less than  the following ex- 
pression: 

(5.9) lkl I v , ' ( t - 1 ) -  w ' ( s - 1 ) 1  I x ( t - 1 ) l ( 1 - x = ( t ) )  + 

+ I kl t w'(s - 1)1 lx(t - 1)x,,,-~(t)(1 - x ~ ( t ) )  - x ( s  - :[)x,,-~(s)(1 - x,(s)) I .  

Since tktlx~-~(t)(l_x2(t)) 1.~.z~<z and ly/(s--1)l<~zcm/k, the expression (5.9) is domi- 
nated by ½d+  come. Therefore, for (3 so small tha t  4ame< ld ,  we have 

l d m  t d m  ~t x ( ) - - ~ t  x (s) ~ d < d  if 0~<s, t~<l and t t - - s l< ~ .  

Since x(t) is monotonic decreasing on [0, 1] and monotonic increasing on [--1, O] 
i~ is easy to see t ha t  

d t d m < d  x~(t)--~t  x (s) if - - l < t ,  s < l  and It--st<(~. 

~ o w  assume tha t  ~f~A, x(t) is the solution of (5.1) corresponding to ~1~., and 
z = z ~  is the second zero of x, z > l .  I f  for r ~ > - - i  we define 

C . =  sup { t dx.,( t)  d ,. 8} ---~t x (8) : r<t ,  s < r + l ,  I t - - s l <  
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then  exac t ly  the  same proof used before shows 

(5.10) C~ < ½C~_1 + 2~m~. 

I t e ra t ing  this es t imate  we find that 

(5.11) 1 ( 1  1) 
C, < ~ C,_s-~ 2~ms 1 +  ~ -~ ... + 2-~_ ~ . 

If  we select ] such tha t  - - l < z - - ] < 0 ,  we a l ready have proved tha t  C~_¢< d, so 
we have C~<½d ~- 4~ms<~d.  

The es t imate  above shows tha t  #(~b(A))<~d,  and since d was any  number  

greater  t han  tt(A), ~(q~(A))<~t~(A). Q.E.D. 
Lemma  5.6 implies ( together with our  previous remarks)  t h a t  ~ has a fixed point.  

This in tu rn  gives a fixed point  of F and a nontrivial ,  C 1 solution of (5.1). Thus we 

have proved the following theorem:  

THEOI~E~ 5 . 1 . -  I f  ~ > ~ / 2 ,  r e > l ,  and ] k l<( (m+l ) /4 ) (1 -~2 / (m- -1 ) ) ( ' ~ -~ ) "  
(Ikl~<½ if m - - - l )  then  equat ion (5.1) has a nontr ivia l  cont inuously  differentiable 
solution x such t ha t  x ( - - 1 ) :  0, x is monotonic  increasing on [--1, 0] and 0 <  x(0)<  1. 
Fur thermore ,  if ~b and G are as above and U is an open neighborhood of the  origin 
such tha t  (h(x)V=x for x e f f - - { 0 } ,  ia(q5 , G - -  U)---- 1. 

Theorem 5.1 is not  best possible. Computer  numerical  studies suggest t h a t  non- 
tr ivial  periodic solutions occur for a larger range of k. However ,  these periodic solu- 

t ions m a y  not  be as nice as those guaranteed  b y  Theorem 5.1. For  example,  t h e y  
m a y  not  be monotonic  increasing f rom their  minima to their  max ima  and vice versa, 
or thei r  max ima  m a y  occur before z + 1, z a zero of the periodic solution. Fur ther -  
more, numerical  studies for the case m = 1 suggest t ha t  if k becomes too large, 
nondamped,  oscillatory, nonperiodic behaviour  occurs. I f  m is even, however,  it  
appears tha t  (( nice ~) periodic behaviour  occurs for a much  larger range of k than  tha t  
given b y  Theorem 5.1. I f  this is t rue ,  it  is completely myster ious  f rom the  stand- 

point  of our techniques.  
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