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Summary. — We develop here some new fimed point theorems and apply them io the question of
existence of montrivial periodic solutions of nonlinear, autonomous functional differential
equations. We prove that the standard results of G. 8. Jones and E. B. Grafion can be
obtained by our methods, and we prove pertodicity results for some equations, for instance a
neutral functional differential equation, which appear inaccessible by previous techniques.

Introduction.

In 1962 G. 8. Jongs [17], drawing extensively on earlier work of E. M. WrigHT [26],
proved that the equation #'(}) = —aw(t—1)(1+ 2(?)) has nontrivial periodic solu-
tions for « >z/2. Subsequently JoNms applied his methods to a number of other
equations and proved periodic behaviour. Jone’s basic technique was to apply certain
fixed point theorems in which the existence of a nontrivial fixed point of a compact
map F was guaranteed; these fixed points corresponded to nontrivial periodic solu-
tions of a functional differential equation.

In 1969 R. B. GrarToN attempted to simplify and generalize Jones’s methods.
GRrAFTON avoided the use of fixed point theorems and gave an abstract result based
on g Krasnoselskii theorem concerning eigenvalues of compact maps of a cone into
itself. GrAFTON derived as consequences Jones’s basic examples and also proved
that the van der Pol equation with time lag x”(t)—ew'(t)(l——wz(t)) + 2t—r)=20
has nontrivial periodic solutions for ¢ >0 and r>0.

Both the Jones and Grafton theorems have obvious drawbacks. They can never
apply to neutral FDE's because they are restricted to compact maps and the opera-
tion of translation along trajectories is never compact in that case. Also, for technical
reasons they do not apply to some retarded FDE’s for which periodicity results
should hold.

In this paper we proceed in the general spirit of Jones’s ideas. In Section 1 we
prove a new fixed point theorem (Theorem 1.1) which generalizes theorems of Browder
and Jones. As we show Theorem 1.1 is directly applicable to a large number of auto-
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nomous FDE’s, though we should remark that there are cases (e.g., Section 4) in whieh
more general fixed point theorems are needed.

Section 2 is basically designed just to show that the standard examples of existence
theorems for periodic solutions follow from Theorem 1.1, though at least some of the
results (see, for example, Corollary 2.1) appear new.

In Section 3 we prove that the seemingly innocent generalization of Grafton’s
equation given by 2'(f) — ex'(#)(1L— (1)) + #(t—#) — kx(f) has a nontrivial periodie
solution of period greater than 2r if —k,< k< 1, where &, = min{(e/r, 2/r?), r >0
and > 0. Tf k< 0 this result appears inaceessible by Grafton’s methods. Roughly
the same arguments also give Grafton’s theorems in [8], though we have not carried
this through here. A technical point that may be of interest here is the simplified
treatment of the charaecteristic equation for the linearized FDE,

In Section 4 we prove that the equation #'(f)= — awm(t—1— |o(t)])(1L— ()
has nontrivial periodic solutions for all & > m/2. We are forced here to use a fixed
point theorem different from Theorem 1.1, and in fact the interest of the equation
stems from the nonstandard techniques it requires.

In Section 5 we prove that the neutral FDE

k
(1) = [_ wrt—1)+ g d%m’"“(t — 1)] [1—22()]

has nontrivial periodic solutions if m>1, « >=/2 and

m-+1

|kl < 1

2 {m=1}/2 1
(1+m—1) (Jkl<% if m=1).

Even this seemingly simple equation raises & number of unanswered gquestions.

In Sections 3, 4 and 5 we have not striven for the greatest possible generality;
and a number of mechanical generalizations can be carried through. Instead we have
tried to pose the simplest examples of equations which pose substantial technical
difficulties.

1. — Our goal in this section is to establish some fixed point theorems which will
be directly applicable to most of the examples we will consider. We begin by recalling
some basic ideas. If (X, p) iz a metric space and 4 is a bounded subset of X,
KUrRATOWSKT [16] has defined »(4), the measure of noncompactness of A4, to be
inf{@d>0: A has a finite covering by sets of diameter less than or equal to d}.
Of course if 4 is compact, y(4)=0. If (X, o,) and (X,, ;) are metric spaces and
f: X, =X, is a continuous map, we shall call f a « k-set-contraction » if for every
bounded set 4 cX,, f(A) is bounded and y,(f(4)) <ky.(4); this idea is also due to
KUrATOWSKI [16]. Examples of k-set-contractions are given in [22], Section A.

The basic properties of the measure of noncompactness have been established by
KURATOWSKI [16] and DArBo [6]. If X is a complete metric space and {4,} is a
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decreasing sequence of closed, bounded subsets of X such that y(4,) — 0, KURATOWSKI
proved that A, =[) 4, is nonempty and compact and 4, approaches A in the

n<1 o
Hausdorff metrie. If X is a Banach space and co{4) denotes the convex closure of

a bounded subset 4 of X, DARDO proved that y{co(4)) =y(4). If 4 and B are
any bounded subsets of X and A + B= {a +b:ac A, be B}, DARDO also proved
that y(4 + B)<y(4) 4+ y(B).

There is nothing sacred about the particular measure of noncompactness defined
above. Generally, suppose that X is a Banach space and suppose that there is a
real-valued function x which assigns to each bounded set A c X a nonnegative real
number u{4). Suppose that (1) there exists constants m >0, M >0 such that
mp(A) <y(4)<Mu(A) for every bounded set A, (2) u{co(d)) = u(4) for every
bounded set AcX, (3) if AcB, uld)<u(B), (4) wu(4U B)=max (u(4)), u(B))
and (B) u(4 + B)<p(d) - u(B). If p satisfied 1-5 above, we shall call 1 a general-
ized measure of noncompactness; obviously many other generalizations are possible.
If DcX and f: D— X is a continnous map such that f(4) is bounded for every
set A c D, we shall say f is a « k-set-contraction with respect to p » if u(f(4)) <ku(4)
for every bounded set Ac.D.

We mention as an example one generalized measure of noncompactness which
will prove useful in Section 5. Let I denofe a compact subinterval of R and let
C(I, R*) denote the space of continuous maps from I to R". For e (I, R*), define
|#] = sup |«(2)], where |-| denotes a fixed norm on R If A is a bounded subset

€r
of (I, R*) and 6> 0 we write w(d; A)==sup {|a(t) —u(s)|: x€ 4,t,s€l, |t—s| <6},
and we define w(4), the modulus of continuity of 4, to be },1“1}01 w(0; 4). It is proved
in [24] that jo(d)<y(4)<w(4), and the other properties for w to be a generalized
measure of noncompactness are immediate. If 1= [a, 8] and O}, R*) denotes the
space of continuously differentiable maps from I to R* with the norm [z =
= |(a) + sup |#'(¢)|, then it is proved in [25] that if 4 is a bounded set in 1[I, R"),

ier
y(4) = y(4"), where y, denotes the measure of noncompactness in C(I, R") and A’

denotes the set of derivatives of functions in A. It follows that if we define
u(d)= w(A4’) for bounded sets 4 c C%(I, R"), then u is a generalized measure of
noncompactness.

We shall also need some results related to the so-called fixed point index. If 4
is a compact, metric space, recall that 4 is called a compact, metric ANR if given
any metric space M, any closed subset B of M and any continuous map f: B -4,
then f has a continuocus extension f: U > A, defined on some open neighborhood

U of A. If A is a subset of a Banach space X and A = {J O, where 0, are compact,
i=1

convex subgets of X, then A is known to be a compact, metric ANR. If G is an

open subset of a compact metrix ANR 4 and f: & — 4 is a continuous map which

has a compact (possibly empty) set of fixed points in @, then there is defined an

integer i,(f, @), the fixed point index of f over G. This fixed point index can be
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thought of as an algebraic count of the number of fixed points of f in G. A summary
of the properties of the fixed point index is given in [22], Section (; and a some-
what more complete development can be found in [27]. We shall summarize here
only those properties of the index we shall immediately need. If i,(f, &) is defined
and nonzero, f has a fixed point in &; and if &, and G, are open subsets of A4,
i {f, @) and ¢,(f, G;) are defined, and f has no fixed points in G, NG, then
i,(f, G) +i,(f, &) =1i,(f, G, U G,) (this is the additivity property). If A is a home-
omorphism of 4 onto a compact, metric ANR B, then i,(f, &) = ¢,(hfh, B(@)) (this
is a special case of the so-called commutativity property). Finally, we have the
normalization property: ¢,(f, A)= A(f), where /A(f) denotes the Lefschetz number
of f. Recall that A(f)= Y (— 1) tr (fx i), where tr (f; ,) denotes the trace of f, ;, the
=0

induced map of f on H,(4), the i-th homology group of 4 with coefficients in the
rationals.

In [22], Section D, a generalized fixed point index is defined for k-set-contractions
with respect to u, u a generalized measure of noncompactness, k< 1, and some
other classes of maps defined in certain (noncompact) metric ANR’s. The usefulness
of this generalization derives from the fact that all properties of the classical fixed
point index generalize. Here, however, we shall only need the definition of the
generalized index for maps defined on closed, convex sets. Suppose that 4 is a closed,
convex subset of a Banach space X and U is a bounded, open subset of 4. Let
f:U->A be a k-set-contraction with respect to u, k< 1, and assume that f(z)
for xc U— U. Define K, = K,(f, U)=co f(U) and generally define K, = K,(f, U)=
=cof(UNK,_,). If one sets K, = K_(f, U)= () K,, it is not hard to verify that

nzz1

K, is compact and convex (since u(K,)<ku(U)) and that (UNK,)cK,. Now
let K be any compact, convex set such that KoK, and (UNK)cK; K, itself
is such a set, so the set of such K is nonempty. We define 4,(f, U), the generalized
fixed point index of f on U, to be i (f, UNK) if K, is nonempty and 0 if K
is empty. It follows from Lemma 1, page 239, in [22] that i(f, UNK) is in-
dependent of the particular K as above. Furthermore, it is proved in [22] that ¢,(f, U)
agrees with the ordinary fixed point index if A4 is compact and simply equals the
Leray-Schauder degree of I —f if A=X and f is a compact map.

For those who are familiar with Leray-Schauder degree, the above definition
can be phrased differently. Let g be any retraction of X onto K, where K is as above
(such retractions are known to exist). Then fog: o {(UNK)~>K is a compact
map and deg,(I—f o0, 0(U N K)) is defined, and one can prove that it equals
t,(f, U) (in particular, it is independent of the retraction p).

For our subsequent work we also need to recall some geometrical results.

Levma 1.1 (KLER [15]). — Let ¢ be a compact, convex, infinite dimensional
subset of a Banach space. Then € is homeomorphic to the Hilbert parailelotope.
Furthermore, if z, is any prescribed point in €, the homeomorphism % may be chosen
to take z, into any prescribed point in the Hilbert parallelotope.
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Using Lemma 1.1 Browder establishes the following result in [3]:

LemMMA 1.2 (BROWDER [3]). — If C is an infinite dimensional compact, convex
subset of a Banach space X and {®,, @,, ..., %,} is a finite subset of C, then there

n
exist arbitrarily small neighborhoods U, of @, in 0, 1<j<r, such that C—U U,
is homeomorphic to the Hilbert parallelotope. -1

BrowDER also introduced in [3] the notion of an ejective fixed point of a map f.
With a view to the later applications we have to weaken his definition somewhat.
If C is a topological space, @, € ¢, W is an open neighborhood of @, and f: W— {x,} —> C
is a continuous map, we shall say that x, is an «ejective point » of f if there exists
an open neighborhood U of x, such that for every @ e U~ {w,} there is a positive
integer m == m{x) such that f=(x) is defined and f=(z)¢ U. If f is defined and con-
tinuous at @, and f(x,) == @,, this definition agrees with Browder’s, but for some
examples f cannot be continuously defined at a,.

Our next lemma is proved by BROWDER for ejective fixed points, and the same
argument carries over to ejective points.

Lemma 1.3 (BROWDER [3]}. ~ Let O be a compact, Hausdorff space, #,€ €, and
f: C—{wg} — C—{w,} a continuous map such that z, is an ejective point of /. Then
there exists an open neighborhood U of #, such that for any open neighborhood V
of z,, there is an integer m(V) such that f»(C—V)cC— U for m>m(V).

The following lemma is intuitively obvious, but we include a proof for completeness.

Lemma 1.4. — Let @ be a closed, bounded convex infinite dimensional subset
of a Banach space X. Then there exists a compact, convex infinite dimensional
set Kc@.

Proor. — Let g, be a sequence of positive real numbers which approach 0. Let o,
be any fixed nonzero point in @, and assume we have selected points @,, @, ..., 2. €@
such that {#,, %, ..., #,} is a linearly independent set and |w,—,| <e, for n > 1.
Let F, denote the linear subspace spanned by 0, 2y, #,, ..., 2, and let G,=F, N Q.
Since @ is not finite dimensional, there exists y,,,€G@—G,. If we define wx,,,=
= (L—1t)#, + tYn.1, Where ¢ >0 is chosen so small that ||#, ., —®,| <&€ny., then it is
also easy to see that x,.,€@ and {501, Dy eoey m,m} is linearly independent.

We define K = co {x,: n>1}. By our construction K is closed, bounded, convex
and infinite dimensional. It only remains to show that K is compact, and since K
is a complete metric space, compactness will follow if y(K)= 0. By the properties
of the measu e of noncompactness, y(K)==y({#.:n>1}). If we take £¢>0 and

N
select N so large that ¢, < £/2 for n>N, we have that {w,:n>1} = Uz, U U ..
n=1 AN+l
The set {#,:n>N} has diameter less than e, so p({#,: n>1}) <e. Since ¢>0 was

arbitrary, the lemma is proved. Q.E.D.
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Our next lemma is a very special case of Theorem 1 in [21]. It can also be estab-
lished directly in a few pages of reasoning without the elaborate apparatus used in {21].

Lemma 1.5 (See Theorem 1 in [21]). — Let C be a closed, convex subset of a
Banach space X, let V be a bounded open subset of ¢ and suppose that f: V=V
is a continuous, compact map. Assume that there is a compact set K ¢ V such that
K is homotopic in itself to a point and such that f*(V)c K for n greater than or
equal to some integer m. It then follows that i (f, V)=1.

We are finally ready to state our main theorem. The following result is a
generalization of work of G. 8. JonEs [17,19] and F. E. BrowDER [2, 3].

TrEOREM 1.1. — Let G be a closed, bounded, convex, infinite dimensional subset
of a Banach space X, u a generalized measure of noncompactness on X, x,€@,
and f: ¢— {m} -G a continuous map which is a k-set-contraction with respect
to u, k<< 1. Then if x, is an ejective point of f and U is an open neighborhood of x,
such that f(z) # = for w€ U — {m,}, 4,(f, #— U) = 1 and f has a fixed point in ¢—T.
If ¢ is finite dimensional (not equal to a point) and z, is an extreme point of @, then
the same conclusion holds.

Proor. — By Lemma 1.4 (if ¢ is infinite dimensional) there exists a compaect,
convex infinite dimensional subset K of @. Define 01=65(K Uf(G——{mo}))
G’,,:E(S(K UHChi— {mo})) for n>1, and C=[) C,. It is not hard to see that C

n=1
is compact, convex and infinite dimensional and that f((G—{wf,}) N G) cC and

0> K, (f, G— {m}). It follows by our definition that i,(f, ¢ — U)=i,(f, (¢— U)n 0),
so if we define W= & —U, it sufficies to prove i,(f, WN ()=1.

By the Krein-Millman theorem € has an extreme point #,, and by Lemma 1.1
there exists a homeomorphism h of ¢ onto € such that h(x)=ax,. By one
of the previously mentioned properties of the fixed point index, i,(f, WN C)=
=i, (hfl, R(W N 0)). It follows that for the purposes of our theorem we may as
well assume originally that x, is an extreme point of C¢. If G originally is finite
dimentional, and not equal to a point, we take (= & originally, and by assump-
tion z, is an extreme point of G.

We now use a trick from [3] and construet an auxiliary function f,. Our purpose
is to avoid the technically bothersome possibility that f(z)= =z, for some z € G —{z,}.
By the definition of ejectivity there exists an open neighborhood U, of %, in C,
U,c U0, such that for each zeU,— {x,} there is an integer m = m(z) such that
f™(x) is defined and f~(w)¢ U,. For ze O, define g(x) = d(x, U,) = the distance of &
to U,. Let @, be any point in € unequal to z, and define f,(z) = (1 —ep()) f(x) +
+ eo(w)w, for we O — {w,} and positive & so small that ep(x)< 1 for all xeC.
Since f has no fixed points in WN ¢ —(C—U,), the additivity property of the
fixed point index implies that i,(f, W O)=4,(f, C —U,); and the so-called homo-
topy property of the fixed point index implies that for ¢ small enough ¢,(f, C— U,)=
=i,(f,, 0—U,). Thus it suffices to prove that i,(f,, C— U,)=1. It is clear that



RoGER D. NUSSBAUM: Periodic solutions of some nonlinear, efc. 269

f,: CO—{m} —C and in fact f:C—{m} - 0—{x}; for we U,, f.(@)=f), so
certainly f(x) 5= x, for x € U, and for v¢U,, 1.(x) # x, because x, is an extreme point.
It follows according to Lemma 1.3 (since x, is certainly an ejective point of f,)
that there exists an open neighborhood U, of x, in ¢ with the following property:
given any open neighborhood V of x, in ¢, there exists an integer m(V) such that
fM0—7V)cC—U, for m>m(V). If C is infinite dimensional, then by Lemma 1.2
there exists an open neighborhood U, of @, such that U,c U,N U, and ¢ — U,
is homeomorphic to the Hilbert parallelotope. If C= @G is finite dimensional such
a U, exists such that ¢— U, is homeomorphie to . In either case C— U, =K,
is certainly contractible in itself to a point. By definition there exists a posi-
tive integer m such that f%(C—U,)cC—U,cC0—U, for n>m. If we define
;= f{(C— U,;) = a compact set and V,,= (—U,, there is an open neighbprhood
V,,,_1 of B,_; such that f,(V,,;)cV, and %4 ¢ Vyy. Proceeding by finite induction,
there exist open neighborhoods V; of B; for 0<j<m—1 such that mogéV,- for
0<j<m, f,(V;)c Vi for 0<j<m—1 and f(V,,) c Byc V,. It follows that V= UV,
is an open set such that z ¢V, 7(V)cV and K,=(C—U,cV. Since z,¢7V,
there exists a positive integer m, such tha‘c AM(Vyc K, for n=m,. It follows from
Lemma, 1.5 that i,(f,, V)=1, and by the additivity property i f,, C—U,)=if., V

Q.E.D.

If f happens to be defined and continuous at an ejective point x,, so that §,(f, U
is defined, then somewhat more detailed information can be obtained.

CoROLLARY 1.1. ~ Let & be a closed, bounded convex and infinite dimensional
subset of a Banach space X, 4 a genralized measure of noncompactness, and f: ¢ -G
a continuous map which is a k-set-contraction with respect to u, k<< 1. Then if x,
i3 an ejective fixed point of f and U is & neighborhood of #, such that f(x)=~ 2 for
rel— {wo}, 14(f, U) = 0. Furthermore, f has a fixed point in & which is not ejective.

Proor. — If Cis as in Theorem 1.1, then it is easy to check by our definition that

ig(fy Uy=1i,(f, UN C) and i,(f, 6 — U)=1i,(f, C N (G—T)). According to Theorem 1. 1
io(fG—U)=1 and by the additivity property i (f, U) + iy (f, ¢ —U) —i (f, C
Thus it suffices to prove that i,(f, C)=1. But we know that ¢(f, ¢ f|0

and A(f|C) =1 because C is homologically trivial.

If § denotes the set of fixed points of f, § clearly must lie in O, so § is compact.
If f has no non-ejective fixed points, then since each ejective fixed point isisolated,
8= {x,, 2, ..., z,} is a finite set. Let U, be an open neighborhhood of z; such that

f(#)5= @ for e U,— {z;} and define U= UU,: Then by the additivity property
n i=1 _
U) =Y i4(f, U;)=0. It follows that i (f, ¢ — U) = 4,(f, G) =1, so f has a fixed

point in G — U, contradicting the assumption that f has no nonejective fixed point.
Q.E.D.

18 — Annali di Matematica
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COROLLARY 1.2. — Let K be a closed, convex infinite dimensional subset of a
Banach space such that 0 K. For some R>0 let G¢={rcK: |#| <R} and let
f: G—{0} - K be a k-set-contraction, k< 1, with respect to u, x4 a generalized
measure of noncompactness. Then if f(#) s tw for x€ K, |o| = R and t>1 and if 0
is an ejective point of 7, f has a fixed point in ¢— {0}.

ProOF. — Let ¢ be the radial retraction of K onto G: o(x)=a if || <R and
o(w)= R(x/|«|) it |#|>R. The same proof given in [22], page 224, shows that o
is a 1-set-contraction with respect to u. It follows easily that if g(z)= o(f()),
9(6 —{w,}) c G and g is a k-set-contraction with respect to u. It is also clear that 0
is also an ehective point of g and that G is closed, bounded, convex and infinite
dimensional. It follows from Theorem 1.1 that g has a fixed point x; in Gw—{mo}.
If o(f(21)) =f(#), we are done. But if g(f(x;)) = @, % f(»), we must have [o;]=R
and f(x,)=tx,, 1>1, a contradiction. Q.E.D.

2. — Inthis section we wish to consider the retarded functional differential equation

y'(t)=—f(y¢—1)) for >0
(2.1)
yit) =t for —1<E<0.

In (2.1) ¢ denotes a given continuous function and f a continuous real-valued function.
We shall see later that (2.1) contains some more general examples than one might
expect. Our goal is to place enough further conditions on f to guarantee that (2.1)
has a nonzero periodie solution.

Before stating our first lemma, we recall some standard notation. 'We shall denote
the Banach space X of real valued, continuous funetions on [—1, 0] by C([—1, 01);
if pe0([—1,0]), |@] = sup |p(t)]. We shall denote by y(t; ¢) (or y(?), if ¢ need
not be emphasized) the solution of (2.1) which equals ¢ on [—1,0]. If z(t) is a
continuous function defined for —1<i< oo, then for 0<i< oo, we define
z,€ 0([—1, 01) by @(s)=a(t +s) for —1<s<0.

LevMma 2.1, - Assume that f: R—R is a continuous function and that
pel([—1, 0]). Then there is a unique selution y(t) of (2.1) defined for all ¢> —1.
Furthermore, %(t; @) depends continuously on ¢ in the following sense: given
@o€ O([—1,0]), T>0, and &> 0 there exists § >0 such that for all pe 0([—1,0])
with |p—gof < 8, sup |y(t; @) —y(t; @o)| < &

(B g
=1

Proovr. — If y(f) satisfies (2.1), then on [0, 1] we must have y(f)=y(0) —ff(y(s)) ds,
—1

and conversely, such a y satisfies- (2.1) on [0,1]. On the interval [1, 2], we have
-1

y(t) = y(1) mff(y(s))ds. Continuing in this way it is clear that ¥ is uniquely defined

a
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for —1<#< oo: The continuity statement of the lemma follows easily from the
continuity of f and the explicit formula given. Q.E.D.

LeEMMA 2.2. — Assume that f is a continuous function and that yf(y) >0 for all
9= 0. Assume that there exists a positive constant 4 such that either (a) f(y) >—A4
for all y or (b) |f(y)|<4 if |y<A. Then if pe0([—1,0]) satisfies 0<p(t)<A
for —1<t<0 and if condition (a) on f holds, it follows that y(t; ¢) <A for all 10;
if condition (b) on f holds, |y(t; p)| <A for all ¢>0.

Proor. ~ Since f(y) >0 for y >0, ¥'(1)<0 on [0, 2 + 1], where 2, denotes the
first zero of ¥ on [0, co) and we take 2, = oo if y has no zero. If 2, = oo, we are
done, so suppose z;< oo. If condition () holds there are two possibilities: either
y(£)< 0 for all t># + 1, in which case we are done, or y has a first zero 2, € [2; +1,00).
Since y'(t)>0 on [z, + 1, #, +1], the maximum of y(t) on [z, + 1,2, 1] is achieved

at 2, +1. But we have that y(s, +1)= ——ff(y(s)) ds< A, by our assumption on f.
z3—1

However, at this point we are back in our original situation with ¥, ., serving as g.

Thus if we repeat the argument (formally use induction) we find that y(¢; p)<4

for all 1>0.

If condition (b) holds, we find that |y{z + 1) =ff(y(s)) ds<A. I y{#i)< 0 for
21—3%

t>2 +1, we are done; otherwise y(¢) has a first zero 2, on [#, 41, co). Just as above y
is increasing on [ + 1,2, +1] and [y(2, +1)|<4. Continuing in this way we ob-
tain the result. Q.E.D.

Lemma 2.3. — Let f be a continuous function such that yf(y) >0 for y==0.
Assume there exist constants ¢ >0 and ¢ >1 such that |f(y)| > e|y| for ye[—s, ¢].
for y e[—e, ¢]. Suppose that ¢ € 0([—1,0]) is a nonnegative function with ¢(0) > 0.
Then if we define 2z(p)=inf{z>0:y(z; )= 0} and z.(p)=inf{&>2.4(p) +1:
each #,(¢) is defined and finite and y(t; ¢) is monotonic decreasing from 0 to z,(g) +1,
monotonic increasing from 2,(p) + 1 to 2,(¢) -+ 1, and so on. Furthermore, if ¥ > 0,
there exists a constant O(M) such that z,(p) < C(M) for all ¢ as above with |lp| < M.

ProoF. — Suppose that || <M. Since f(y) >0 for y >0, define a positive
number d=min {{(y): s<y<M}. Since y'({)<—d as long as y(t, >e, if y(0)>¢,
there exists some first time % >0 such that () =¢ and L <M/d. If y(0)<e, we
define ¢, = 0. If y(2) == 0 for some number z, t, < 2<% + 1, we have 2 ()< M/d+ 1.
Otherwise, by the assumptions on § we have y'(t) = —f(y(t—1)) < —e(y(t—1)) <
< —oylt, +1) for ¢ +1<i<t -+ 2. This implies that y must have a zero on the
interval [t; + 1, ¢, -~ 1+ ¢7]. Thus in any event we find that z{p)<M/d+2=M,.
It is obvious from our assumptions that y is monotonic decreasing on [0, 2,(p) 4-1].
If we define M’ = max {f(x): 0<y< M}, it follows that y(s;,+1)>— M'; and now
if we set d' =min {—f(y): M'<y<—e¢}, the same proof as before shows that y
has a zero 2z, and z,— (s, + 1)< M'/d'+2. Q.E.D.
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LeMMA 2.4, — Let Kc O( [—1, O]) denote the cone of monotonic increasing func-
tions ¢ such that ¢(—1)==0. Assume that f satisfies the conditions of Lemma 2.3.
Then the map ¢ —>2(p) is continuous from K — {0} to R. The map F: K—~K
defined by F(p)(t) = y(2:(p) +1 +¢; 9), —1<t<0, for ¢~ 0, and F(0)= 0 is a con-
tinuous compact map of K into K.

Proor. — Take pe K —{0} and let 2, denote the first zero of y(¢; ) on [0, oo);
2, > 0 since p(0) > 0. If z,>1, we have y'(2,) = —f(y(2:—1)) < 0, because y(z,—1)>0.
If 0<z<1 we also must have g'(s)< 0. Otherwise, y(# —1)= 0= ¢(z, —1),
and since @ is monotonie increasing this implies that ¢(#)=0 for —1<i<z,—1.
It would then follow that y'(f)=0 for 0<f#<#,, which would imply that y(&)=
==9(0) > 0, a contradiction. The same proof shows that y'(z,)5%0 for all n>1.
It is now easy to see (using Lemma 2.1) that ¢ —2,(p) is continuous on K — {0}.

The fact that F is continuous on K — {0} is now immediate. To show that F
is continuous at 0, recall that by Lemma 2.3, there exists a constant C such hat
z(p) <0 if peK and |¢|<1. By Lemma 2.1, given ¢ > 0, there exists é >0 such
that it || < 6, |y(t; ¢)|< ¢ for 0<i<C +- 1. But this implies F is continuous at 0.

Now suppose that 4 is a bounded subset of K, ¢ <M for e A. The proof
of Lemma 2.3 shows that |y(f; )| < M'==max {f(y): 0 <y < M} for z,(p) <t <2(p), and
the same proof shows that |y(f; o)) < M'= max {f(y): 0<y<M'} for z,(p)<t<2(p).
It follows that |F(p)|<M" for pcd and [y'(t; )| <M for 2z,(p)<t<z(p)+1.
The Ascoli-Arzela theorem now implies that F(4) has compact closure in K. Q.BE.D.

It is clear that fixed points of F correspond to periodiec solutions of (2.1). Our
goal from here on will be to impose further conditions on f which, with the aid of the
fixed point theorems of Section 1, will guarantee that F has a nonzero fixed point.

Our main lemms is a fragment of Theorem 5 of B. M. WRIGHT’s article [26].
It can also easily be proved directly.

LEMMA 2.5 (see [26]). — If «>m/2, the equation A+ we™* =0 has a complex
root, A such that Re (1) >0 and 0< Im ()< m.

The next two lemmas comprise the heart of our proof of the existence of nonzero
periodic solutions of (2.1). The basic idea for the proof of the following lemma seems
to be due to E. M. WR1GHT (see Theorem 4 of [26] and the argument on p. 76).

LeEMMA 2.6 (see [26]). — Let f be a continuous, real-valued function such that
yf(y) >0 for all y==0. Assume that f is continunously differentiable on some open
neighborhood of the origin and o= f/(0) >n=/2. Then there exists a positive con-
stant a (independent of ¢) such that for any ¢ € K with ¢(0) >0 (K as in Lemma 2.4),

lim [y(4; 9)] >a.

Proor. - Take pcK with ¢(0)>0, set y(¢)=y(t;¢), and define z,=2,(¢p)
(2n(g) is well defined by Lemma 2.3). We can assume that |y(¢)| is bounded, or we
are done. Furthermore, it is easy to see that if y(f)==0 for ¢ in an interval of
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length 1, then ¢ must have been identically zero. Therefore for any T>0 we have
sup |y(t)| > 0.

(>4

Let A= u + i» be the complex solution of 1 «exp [— A]= 0 which is gnaranteed
by Lemma 2.5 and take a positive number ¢ such that < §pcosy/2. Since f is
continuously differentiable on a neighborhood of the origin, there exists a positive
number a such that |[f(y) —ay|<e|y| if |y| <a, where a=f'(0). To prove the lemma

it suffices to show that sup [y(f)] >« for any zero 2, of y. We prove this by con-
2z,
tradiction. Thus suppose that for some zere z of ¥, sup |y(f)] =< a. Since y
=z
achieves its local maxima and minima on [z, co) at the points 2, + 1, 2,>2, there

exists a zero z,>z such that |y(z, -+ 1)|>6/2. For notational convenience we set
T=12,-+1, and we assume that y(T) >0, since the proof in the ease y(L)< 0 i

analogous. If we integrate fy’(t} exp [ At]dt by parts we obtain
T

«©

(2.2) fy’(t) exp [— At]dt = — y(T) exp [~ AT] + ny(t) exp [— At]dt.

T

On the other hand, if we set

y' () =—FHy@t—1)) = —ayt—1) + [~ f(y(t—1)) + ay(t—1)] ,
we obtain

@ -3

fy'(t) exp [— At]dt = —«afy(t— 1) exp [— At]dt +

r r

+[ [yt —1)) + eyt —1)] exp [— 2Jd .

If we change variables in the latter equation we obtain

© 7+1

(2.3) f y'() exp [— A]dt = — aexp [— A] f y(t) exp [— M]dt—a f y(t—1) exp [— At]dt -+

T r
«©

[ Ayt 1) + ayts—1)] exp [— 21

7

Setting (2.2) equal to (2.3) and using the fact that A + cexp[—A]=0 we find that

(2.4) —y(TYexp[— AT] + xexp [— Z]fy(t) oxp [~ Mldh =

:I[‘“f(?/(t"l)) + ay(t—1)) exp [— At]dt.

by
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If one integrates the left hand of (2.4) by parts and multiplies both sides by
exp [A(T — 1)] one obtains:

zr
(2.5)  —[y'®exp—a¢—T + pldt=

-1
)

=[[=lyt—1)) + ay(e—1)] exp [— 2¢— T + })1a.

4

Taking the real part of the left hand side of the above equation, one finds that

| [ @ exp [— 26— + 1] > (exp [— /2] conyj2) (T3

-1

and one can trivially see that the modulus of the right side is less than sdexp-
‘[~ /2] (u1). Since we are assuming that /2 <y(7'), this implies that }cosv/2<
<s&lu, @ contradiction. Q.E.D.

The conclusion of Lemma 2.6 can also be obtained under different hypotheses
on f, as the following lemma shows:

Lemma 2.7. — Let f be a continuous, real-valued function such that yf(y) >0
for all 5% 0. Assume that }gx(} )y = + oo and that f is monotonic increasing on

some open neighborhood of 0. Then there exists a positive constant a (independent
of ¢) such that for any peK with ¢(0) >0, lim sup lu(t; )| >a.

Proor. — Just as before, if we let y(¥) = y(t; ¢) and z,=2z.{¢), it suffices to

prove that sup |y(f)|>e for some a. Take ¢ to be a positive number such that
[ = __

k=min {}¢(1 —1/¢)?, V2¢—1} >1. Since lim f(y)/y = co, let a>0 be a positive.

number such that f(y)/y > ¢ if |y|<a and f(y) is monotonic increasing on [—a, a]

If for every zero z of y, sup |y(t)|>a, we are done. Thus we assume that for
tze

some zero z sup |y(f)| = 0< a, and we try to get a contradiction. It follows as
2z

before that there exists a zero z,>z such that |y(z.-+1)] > (1/k)d, and we may
as well assume that y{z,+1)>0.

Our first claim is that 2,.,6(2, +1, 2, + 2 -+¢"t]. This will certainly be true if
#n11 € (80 -+ 1, 2, + 2], s0 agsume that z,,, >z, + 2. Equation 2.1 immediately im-
plies that y is concave downward and decreasing on [2, -+ 1, 2, + 2]. It follows that
Y ()= —flyt—1) < —ey(t—1)< —oy(z, + 2) for all te[z,+ 2,2, 3], and this
immediately implies the eclaim.

For notational convenience we shall write u==#, and »=2,.; from here on.
If ve(u-+1,u--2] we have

v=-1

(2.6) yu+1) =—[y'(3)ds = [{{y(s)) ds < (0— 1 — )y (0 —1) -

u-+1 “
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Since f(y(s)) is monotonie increasing on [u, % -+ 1], Equation (2.6) implies

w1l

@.1) J Hy(e) ds> w—o + 2) f{y(o—1) >

v—1

(v —v-+ 2}

o g U

Since y is concave downward on [ -1, 4 2], we must have y(s)>(v—u-—1)7"-
“(v—8)y(u + 1) for u + 1 <s<v. This implies that

{2.8) f fy(s)ds>e fy(s)ds>?—)j§~:—iy(u+1) f('v——s)ds:%c(v—u—-l)y(@—%—l).

utl u+l uwtl

Since we know that |y(v + 1) =f7‘(y(s))ds, Equations (2.7) and (2.8) imply that

1

1—ua)
@

2.9) yo+ D> g+ 1)+ 3 ooylu+ 1)

where z=0—1—u and 0<a<l. It is easy to check that min (1—az)/z+
+ tew=12¢—1, so |y(v + 1)| > ky(u -+ 1) >, a contradiction.
If ut+2<v<u-+2-+ ¢t we observe that

ut2

(2.10) (1 + o) =1(y() ds> [1(y(s) s .

=1 vl

Sinece y(s) is concave downward on [# + 1, v + 2] and positive at « -~ 2, we have
that f(y(s)) >cy(s)>e(u + 2 —s)y(u + 1) for w4 1<s<w+ 2. Using this estimate
in equation (2.10) we find that
ly(1 + 0)| > doy(u + L) + 2 —v + 1)?
(2.11) >3o(l—o)y(u -+ 1)
>0.

Thus we also obtain a contradiction in this case. Q.E.D.
We are now almost ready to prove our main theorem. We need one more lemma.

LEemuma 2.8, — Let § be a continuous map whiech either satisfies the conditions
of Lemma 2.7 or Lemma 2.6. Then if F and K are as in Lemma 2.4, 0 is an ejective
fixed point of F.

ProoF. - If pc K and @30, so ¢(0) >0, denote y(t; @) by y(?) and 2,(p) by 2.
According to Lemma 2.6 or 2.7 there exists a positive constant a such that
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|y(2, +1)| > a/2 for infinitely many integers n. Let b be a positive number such that
b< a/2and max {f(y): 0<y<b} < a/2. If y(%.+1) <b for every integer n> N, then the
standard argument shows that |y(2.,: + 1)< @/2 for every integer n>N. It fol-
lows that there must be a positive integer n such that (2, +1)= | F"(¢)| >b. Q.E.D.

Our next theorem gives a generalization (by weakening the conditions en f) of
the existence part of Theorem 2.1 in [14]. We should emphasize, however, that the
real importance of Yorxr and KAPLAN’s work is their results on stability of the
periodic solution.

THEOREM 2.1 (compare Theorem 2.1 of [14]). — Lat f be a continuous real-valued
map such that f is monotonic increasing on an open neighborhood of 0 and yf(y) >0
for all nonzero y. Assume that there exists a positive constant A such that either
fly) >—A for all ¥ or [f(y)| <A if |y|<A. Finally, suppose either that f is con-
tinously differentiable on some open neighborhood of 0 and f'(0) =« >zn/2 or that
lim f(y)/y = + co. Then Equation (2.1) has a nonzero periodic solution y such that
y|[—1, 0] is monotonic increasing. Furthermore, if ¥ and K are as in Lemma 2.4,
6= {peK: |p||<4} and U is an open neighborhood of the origin in @ such that F

has no fixed points except 0 in U, i (F, U)=10.

Proor. — If F and K are as in Lemma 2.4, then according to Lemma 2.8, 0 is
an ejective fixed point of ¥. Lemma 2.4 implies that F is a continunous, compact map
(hence a 0-set-contraction), and Lemma 2.2 implies that F(G¢)c@. It is clear that G
infinite dimensional, so Corollary 1.1 implies that F has a non-ejective fixed point
and that i,(F, U)=0. We have already noted that fixed points of ¥ give periodic
solutions of (2.1). Q.E.D.

As an example, we mention the following apparently new result, which follows
trivially from Theorem 2.1.

COROLLARY 2.1. — The equation y'(f) = — (exp [3{(75—1)]“1)% has a nontrivial
periodic solution y such that y(—1)= 0 and y|[—1, 0] is monotonic increasing.

Our next lemma, follows by standard arguments in ordinary differential equations,
and we leave it to the reader. The only novelty is that one does not have uniqueness
in the differential equation below.

LevmA 2.9. — Let H: R+~ R be a continuous map. Assume that there exists
a number 2,, — co< z; < 0 such that H(z,) = 0 and suppose there exists a number z,,
0 < 2, < -+ oo such that N(z,) =0 if 2,7 - oo. Suppose that N(z) >0 for 2, <2< %,
and N(z)<A|¢|] + B for some constants 4 and B and every z€(2,,4,). Then the
equation f'(u)= N(f(»)), f(0)==0, has a continuously differentiable solution f(u) de-
fined for all real % and such that 2; <f{u) <z, for all » (the inequalities are strict if N
is Lipschitz).

COROLLARY 2.2. — If ¥ is a continuous function ag in Lemma 2.9 and if « N(0) > 4=,
then the equation #'(f) = —az(t—1)N(@(t)) has a nontrivial periodic solution x(t)
such that #(—1)=0 and «|[—1, 0] is monotonic increasing.
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Proor. — Let f(u) be as in Lemma 2.9 and consider the equation #/'(f)=
= —of(u(t—1)). Since f'(u)= N(f(»)) and f(0)=0, f is monotonic increasing and
strictly monotonic increasing on some open neighborhood of 0 and of' (0) = aN (0) >z/2.
It follows from Theorem 2.1 that there exists a nontrivial periodic function % such
that «'(t) = ~ocf(u(t~—1)), #(—1) =0 and w is monotonic increasing on [—1, 0].
If we define z(t) = f(u(t)), #'(¢) = f'(u(t)) w'(f) = aw(t — 1) N(2(#)), and we are done.

Q.E.D.

It is clear that Corollary 2.2 implies the standard results in the literature (see [17]
or [19]) concerning periodic solutions of #'(t)= —oaw(f—1)[L+ x@#)] or 2'()=
= —aa(t—1){a—a(®)) (=) + b), a,b> 0.

3. — Suppose that r,, 7, and r are nonnegative numbers and that o = max {r,, r,, 7}
is positive. Assume also that ¢ is a positive number and that % is a real number.
In this section we wish to consider the following equations:

@' (t) = y(t) + e(a(t—r)—a3F)/3), >0
(3.1) y'(t)=—a@t—r)+ kx(t—r,), =0

@|[— g, 0]= @ = a continuous function, y(0)=1y, .

Equations {3.1) constitute a generalization of equations considered by GrAFTON
in [7]. We wish to extend Grafton’s periodicity result in [7] and show that it can
be obtained as a consequence of our Theorem 1.1. Grafton’s original proof was along
different lines. Aectually, Grafton’s periodicity theorem in [8] ean also be shown to
follow from Corollary 1.l—assuming Grafton’s results on the qualitative behaviour
of his equations—, but we shall restrict ourselves to (3.1).

It is a straightforward exercise (which we leave to the reader) to show that given ¢
and y,, there exists a unique solution (x(t), (#)) of (3.1) defined for all ¢>>0. Our
drgt lemma shows that for a wide range of the parameters, z(¢) oscillates and has
infinitely many zeros.

LemMA 3.1. — If (#(3), y(¢)) denotes the solution of (3.1) and if k< 1 and r<r
when k>0, then if ¢(0) >0 there exists a number T; > 0 such that (T,)< 0.

PRroOF. — We shall assume that x(t) >0 for >0 and obtain a contradiction. Define

M,= max |p(t)| and %, = max (k, 0) and denote by £ the largest positive root of

-0

(3.2) 9(0) + (1 + [k]) 0 Mo + K108 + &5 — 2833 =0

(We take &= 0 if (3.2) has no positive solution &).
I M >max (M, &), our first claim is that z(f)< M for all £>0. To see this,
suppose the contrary and let 7 >0 be the first time such that »(7)= M. It fol-
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lows by taking the left-hand derivative at 7' that «'(T)>»0. On the other hand we
have that

I—r Tty

(3.3) Y(T)= y(0) —fm(s)ds + kfm(a)ds
e

<y(0) + (L + [4]) 2y + (b — 1) fals)ds + kg M

9

<y(0) + (l + Ik?) oM, + koM.
It follows that we have

(3.4) 2 (Ty=y(T) + e[@(T —r,) —2*(T)/3]
<y(0) + (1 + |kl) oMy + kyo M + e M — e M3/3

< 0.

This is a contradiction, so we must have w(t)< M for all ¢>0.
For t>20 we see that

—=r =1y

(3.5) y(t)= (o) —[(s)ds + kfa(s)ds
o-r =Ty
t—g frerr Ty
<ylo)+A4—(L— kl)fw(s)ds wfm(s)ds -+ Icfw(s)ds
e g t~g
-0

<ylo)+ 4 + koM — (L— ) [a(s)ds,

Q

e [4
where A4 = — j z(sids + k f x{s)ds. It follows that unless 2(f) is integrable on [0, co),
g-r =73

y(#) approaches — co. However, if y(¢) approaches —oco, @'(f) approaches —oo as
t approaches oo, and this would contradict the assumption that z(?) is always non-
negative. It follows that x(f) is integrable. However, this immediately implies that

8 w0

0

y(¢) approaches y(0)— f x(s)ds + ch z(s)ds — (1 — k)fm{s}ds as ¢ approaches oo. Since
- —rs o

z'(8) =y (&) + elo(t—r,) — 23(8)/3], we see that 2'(#) is bounded and since x(¢) is non-

negative and integrable on [0, oo), we must have that }ng w(t)y=0. If we set

B=1lim y(t), lim #'({) = B, so we must have that B =0,
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If >0 (so that r,<r) we see that

k] ] 7 t—ry

y(t) = y(O)——fw(s)ds + kfw(s)dsm(l — ) [a(s)ds + kfw(s)ds,

t—r

and if we compare this to the expression for tl_lgol y(t) =0, we see that %(#)>0
for t=r. If k< 0, y(t) is monotonic decreasing for ¢>> g, so we must certainly have
#() >0 for t>0.

We are now almost done. Since tlgg z{t)y= 0, let s > o be such that #{s) >0 and
@(t)< V3 for t>s. For t>s we then have

(3.6) x(t) = w(s) +fw’(u)du

—ry 3

— a(s)+ f y(w)du - f o(u)du — &3 fmw)du

a—ry ]

>a(s) + ef(m(u) — a*(u)[3) du — /3 | w*(u) du

8 Py

t
>w(s)—a/3fw3(u)du.
-y
]
Since }Eg o3(uw)du = 0, equation (3.6) implies that for ¢ large enough a(f) > ia(s),

ry

a contradiction. Q.E.D.

Of course Lemma 3.1 implies that # has infinitely many zeros, since the same proof
implies that there exists a number T, > T such that x(T,) >0, and so on.

The equations (3.1) come from the second order equation (1) =—x{t—r)+
+ ka(t—1r,) -+ e’ (¢ —r,) —ew*(t)o’(t). I one linearizes this equation and searches
for solutions of the form exp [At], one is led fto the so-called characteristic equatbion:

(3.7) At —elexp [—r A] +exp[—ri]l—kexp[—rA]l=0.

Our next lemma analyzes (3.7) for the case #,==Fk==0. In [7] Grafton outlines
a different proof from the one given here, and a detailed version of that proof can
be found in [11], pages 169-172. We believe our proof is considerably simpler.

LeMMA 3.2 (compare [7] and [11], pages 169-172). ~ If > 0 and if ey, >—sinry,
for every y, such that y}=cosry, and 0< y,< z/r (in particular, if ¢>0), then
the equation A?—gld + exp[—ri]= 0 has precisely two solutions A (counted alge-
braically) such that Re (1) >0 and —=z/r< Im(4)< n/r.
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Proor. - First we show that if &' >e A2—& A+exp[—rd]s20 for A=1il,
O<v<mfror A=pu+infr, u>0. If A=1iy, 0<v<afr, and 1*°—¢&'A +exp[—ri]=0,
then by taking ceal and imaginary parts we find that —#*-Fcosry=0 and
—¢g'v—sinry=0. It follows that we have 0< v< m/r and »*==cosry, 30 by the
assumptions e'»>ev>—sinry a contradietion. If A=pu +in/r and A2—¢ i+
4 exp [—7rA] = 0, then by taking real and imaginary parts we find that u? — (m/r)?—
—&'u—exp [—ru]l=0 and 2u(n/r)—&'(x/r)=10. The second equation implies that
u=%&', but setting y= %¢ in the first equation gives a negative number. It fol-
lows by taking complex conjugates that A*—s'A + exp[—ri]=£0 for A= —1r,
O<r<m/r and A= p—in/lr, p>0.

Let & be a positive number, &' >e¢, and let B, == (1 + &'). It follows by trivial
estimates that if e<s <& and Re (1) R,, then A% — gl + exp [—7ri]=£ 0. For any
B>R,, define G,={1eC:0< Re ()< R and [Im (4)| < z/r}. If we define f,(1)= A>—
—(1—t)gh—1ts' A +exp[—7rd], 0<i<], then our calculations show that f,{1)5=0
for Ae0G,, 0<i<1l. It follows by Rouche’s theorem that f,(1)==0 has the same
algebraic number of solutions in G, (B>R;) as fo(4)=0.

Now we are almost done. Let b be a positive number such that (¢)}/4< b<
< (¢")%/4 + (m?)/r? and select B, >max {1 +¢,b+¢'}. It is easy to check that if
Re(A)>R,, then 22—g'Al-+ (1 —s)exp[—ri] +sb520 for 0<s<l and Re(I)> R,
and A*—¢&'A 4 b has precisely two roots (algebraically) in G, . To complete the
proof, it suffices by Rouche’s theorem to show that 12—e¢'A 4 (1 —s) exp [—rA]+-
+8b50 for 0<s<1 and A=1y, O<o<z/r or A== p + i(njr), pu»0. If 12—e'A +
+ (L —s)exp [—rA] + sb==0 for A==1ir, 0<v<mfr, the same computation as before
shows that —»2 + (1 —s)cosry +sb=0 and —e'v— {1 —s)sinry=0. The second
equation implies that v=0 (since &> 0), and this is impossible. If A= pu -+ infr
we find that p?— (z/r)?—¢&'u— (1—8) -+ 8b=0 and 2u(zn/r) —&'(n/r)=0. The second
equation implies that == {¢’, and substituting this value in the first equation we
find that —}(e')?— (m/r)*— (1 —s) +sb=0. However, since we chose b so that
b<< (&')%/r -+ (/)% this is impossible. Q.E.D.

Our next lemma generalizes Lemma 3.2 and indicates the advantages of using
Rouche’s theorem in this context.

Lemma 3.3. — If 6>0, r>0, 0<ri<r, 0<r,<dr and 0<k< 1, the equation
At —clexp [—r Al + exp [—ri] —kexp [—#,A] = 0 has precisely two solutions A such
that Re(A) >0 and —ajfr<Im (A< zmfr. I €20, r>0, 0<r<r and — (7/2r)*<
< k< 0, the equation A*-—glexp [—r ] + exp [—ri]— k= 0 also has precisely two
solutions A such that Re (1) >0 and —z/r< Im (1)< z/r.

Proow. — Let the parameters be as in the first case above and notice that if
Re(A)>R,== (1 + &+ k), then for any nonnegative numbers r;, 7y 9'; and any non-
negafive k' <k,

[A2—g' Aexp [— 7, A] + exp [— ' A]—&'| > |A||A— ¢ exp [—r Al —1—k
>(1+e+ k1 +E—1—%k>0.
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If G, ={A:0<Rei< R, —ajr<Im(l)< =/r}, then according to Lemma 3.2
22—l + exp [—rA] has precisely two zeros in G, . By Rouche’s theorem it suf-
fices to show that A*—slexp[—mn ]+ exp[—rl]l—kexp[—rA]=0 can be de-
formed into A*—ed + exp[—rA] without introducing zeros on 0G,. Thus, if we
define f,(1)= A*—¢lexp[—1tr; A] + exp [—rl]—itkexp [—r,A]l, it suffices to show
that f,(A)#0 for 0<t<1 and A€0G, . By the above remarks f,(4)s4 0 for A such
that Re (1)>R,, and by taking complex conjugates we only have to show that
F(A)5%=0 for A==iv, O<v<mfr o A=u+in/r, p>0. I A=14y and f,(A)=0 we
are led to the equations —y®—eysinidry - cos rv — itk cos ryv = 0 and — sy cos tryy —
—ginry - ksinryy = 0. If y=0, the first equation reduces o 1 —t > 0. If 0< »<
<727, sinry >sinr,y and cosir,y>0 so that —epcostrny —sinsy+ ksinr,y< 0. If
7f2r <y < m/r, we have cos7,¥>0 (since 0 <r,<1r), cosry <0, and —v2—gysintryy +
+ cosry—tkeosryy < 0. If A= u + im/r, we are led to the equations [u*— (7/r)?]—
—g exp [—trip]lp cos trim/r 4 /v sintrior/r] — exp [—ru] — ki exp [—ryu] cos rymfr=10
and 2u(nfr)—eexp [—irypu] [w/rcostrimfr — usin rixfr] + ktexp [—ryu]sinr,zfr = 0.
If 0<¢r;<r/2, then the first equation implies that u®> eyexp [—tr,u]cos trum/r or
(agsuming x> 0) p > sexp[—iru]cosirm/r. Applying this estimate in the second
equation, we see that 2u(m/r)— (e exp [—#r,u]) (m/r cos tryn/r) is positive, so the second
equation is positive. If »/2<ir,<r, then we see immediately that cosirzn/r<0
so the second equation is positive. This shows that f,(1)7 0 for 1€?9@, and com-
pletes the proof of the first part of the lemma,

To avoid repetition we shall be sketchier in proving the second part of the lemma.
Just as before, it suffices to show that ¢,(1)= A*—elexp[—1ir,A] + exp[—ri]—
— tk 5= 0 for A = iy, O<v<m/r, A = pu + iafr, p>0, and 0<é<1. If g,(iv)=0,
we obtain the equations — »*— ey sin ¢r;y + cos #v —tk=0 and — ey cos tryy —sinry=20.
The same proof as before shows these equations cannot be satisfied by v such that
0<y<m/2r. I mf2r< v<m/r, the first equation is negative, since k > — (n/2r)2. Ii
g:{g + tm/r) = 0, we are led to the equations [u® — (7/r)?] — e exp [—try u]{p cos trymfr +
+ mfr sintriw/rl—exp[—ru]l — k=0 and 2u{xn/r)—cexp{—iru]ln/r costralr—
—usintrnfrl=0. If 0<tr,<r/2, then since — (n/r)2—kt< 0, the first equation
implies as before that u > eexp [—tru]costrm/r, and using this estimate we find
that the left-hand side of the second equation is positive (assuming p>0). If 7/2<
< tr,<r, we immediately see that the left-hand side of the second equation ig
positive. Q.E.D.

Unfortunately, Lemmas 3.1 and 3.3 constitute about ail we can say about equa-
tions (3.1) in the stated generality. Compufber numerical studies strongly suggest
that for a wide range of the parameters ¢, ry, r,, 7 and % (#,, 7, and r commensurable),
{(3.1) has a non-zero periodie solution, but our techniques seem to break down in this
generality. To obtain further results we shall have to restrict ourselves o the case
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r,=1r,==0, i.e. to the following equations:
o' (1) =y() + e[w() —ax*@#)/3], 1>0
(8.8) y' (@)= —a(t—r) + ka(t)y, >0

#|[—r, 0] = p==a given continuous function, y(0)=y,

Even in this seemingly innoeent generalization of Grafton’s original equation in [7],
there are serious technical problerns (especially for k<< 0) in trying to prove
existence of periodic solutions. In fact our results will partially answer a question
raised by GraFTON in [8], page 526, and which seems inaccessible by his techniques.

The case k>0 and k< 0 in (3.8) seem to demand different techniques. In our
next few lemmas we study the case 0<k< 1.

Levma 3.4. — In equations (3.8) assume that 0<k< 1, ¢ is monotonic in-
creasing, ¢(—7) = 0, p(0)>0, Y>>0, max {p(0), (0)} > 0 and y, + e[p(0) — (p(0))*/3] > 0.
Define T, = sup {t>0:2'(s)>0 for 0<s<#} and # =inf{f>0:2()=0} (we know
by Lemma 3.1 that both T, and #, are finite}. It then follows that 2, is an isolated
zero of x and ¥’ (1)<0 and ¥ () <0 for T <i<e, + 1.

Proor. — First we show that #'(t) <0 and %'(t)<0 for T, <i< T, + r. Obviously
we must have #'(0)=0 (if 7, =0, one uses the assumption that x;(0)>(} to gua-
rantee this) and #"(T) = y'(1,)<0. There are technical problems if y'(7T;)=0, so
we use a technieal device. Take 5 >0 and define a new functional differential equa-
tion for functions ,(f) and ¥,(t) as follows:

@, (1) =y, (t) + e, (1) —2(0) 8] —n(t—Ty), t>T)
(3.9) Yy(t) = —a,(t—r) + ka(t), t>T,
%;[TI_% Tﬂzwl[Tx”"'y 7], ?/n(TJ:?J(Tx)-

It is clear that 1}1_{& ,(t) = «(t) and };1—133 Yoty =y () for T <t<Ty+ 1, so it suffices
to show that », and y, are monotonic decreasing on [Ty, T; -+ 7] If we define
ti=sup {t: T, <t<T,+r and w,;(s)<0 for T,<s<i}, then the introduction of %
guarantees that mZ(T1)<—n (derivatives are taken from the right at T,) so that
5 >T, and (k)< m,?(Tl). ¥ t,< T, +r, then we must have w;(t1)=0; however
we see that w:(tl) =—a,(t, —7r) + ka,(t,) —n< — 2, (T1 —7r) + ko (T) — < —9 < 0,
and this contradicts the selection of ¢,. It follows that , is decreasing (strictly)
on [T, T, +r]. Therefore, we see that y,(t)= —x,(t—1) + ke, () < —, (T —7) +
+ ka2, T,) <0 for T, <i<T:+ 7, 80 y, is decreasing (in fact strictly decreasing) on
[Ty, Ty + 7]

With the aid of the above result, our lemma now easily follows. Let &=
=sup {>T,: #'(s)<0 for T,<s<t,}. We have shown that #>T; -+ r; we assume
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that #,< 2,4 r and obtain a contradiction. By definition of ¢, we have that
o' (t,) =0, so it follows that »'(},) = y'{t,) = —x(t, —7r) + k() <(k— 1o, —1r)< 0.
This contradicts the selection of 4,.

It only remains to prove that 2, is isolated. By our work above we have that
2'{z) =9y{z)<0. If #'(2,)< 0, 2, is isolated, so we assume #'(2,)=0. If 2"(z;)=
= ¥'(2,)< 0, 2, is again izolated, so we assume y'(z;) = 0. We now obtain a contra-
diction from the assumptions that #'(z) = y'(2;) = 0. By definition we know that
y' (@) = —a{s, —r), so that if y'(2;) =0 we have 2, —r< 0 and @(e,—r)=0. Sinceyp
is monotonic increasing and @(—r)=0, we see that @(t)==0 for —r<ti<z —r.

t

It follows that for this range of ¢, y(f) = y(0) + kfm(s)ds and, in particular, y(z) >0

0
unless %(0)=0 and k==0. Thus we must assume that y,==F =0, and (3.9) re-
duces to the ordinary differential equation «'(f) = e[a(t) — 2%()/3], » =(p( ), for
0<t<,. However it is easy to see that if 2(0) < \/3 x(t) 18 increasing and ()< V3
for 0<t<a;; if (0) =1/3, x(t) =3 for 0<t<z1, and if #(0) >+/3, »(t) is decleasmg
and () >+/3 for O<t<z1 In any event, we find that x(2;) > 0, a contradiction.
Q.BE.D.

The same proof now shows that the subsequent zeros z,, #;, ete. of z are isolated,
that @ is either monotonic increasing or monotonic decreasing on [2,, 2, -+ 7] depending
on whether »(z, -+ r) is positive or negative, and that y is monotonic increasing or
decreasing on [#,, 2, + r]. Furthermore, it is clear that for #>2, we must have
y'(2,) >0 if @z, +7)>0 and y'(e,)< 0 if x(z, +7r)< 0.

At this point we can describe our method of proof. Let G= {(¢, ¥): ¢ is a
continuous, monotonie increasing function on [—z, 0], ¥,>0, ¢(—7)=10 and ¥y, +
+ e[p(0) —((0))3/3] >0}. It is easy to check that & is a closed, convex subset of
the Banach space X = O([—r, 0]) x R. For a given (g, y,) € @—{0} (0 denotes the
origin in X), let (x(¢), y(t)) be the corresponding solution of (3.8) and let 2 (p) be the
corresponding first positive zero of x. We define F(p, y,) = (—p, —¥,), where
p(t) = w(2(p) +r+1) for —r<i<0 and y.= y(z(p) +r). Owing to the symmetry
properties of (3.9), fixed points of F correspond to periodic solutions of (3.9).
Lemma 3.4 implies that F(G—{0}) c@—{0}. It is easy to prove that F is con-
tinuous on G— {0}, though in general F' is mof continuous at 0.

In our next lemma we show that F is actually a eompact map.

LeMMA 3.5. — The map F: @— {0} - & — {0} defined above is a compact map.

ProoF. — Let A be a bounded subset of & — {0}, say |[(p, ¥.| <M, for (g, y,) € A.
To prove compactness we have to show F(4) has compact closure in X. By the
Ascoli theorem it suffices to show F(A) is bounded and {y: (v, y,) € F(4) for some #,}
is equicontinuous. Since y satisfies the differential equation '(t)=1y(t+2:(p)+7)
+ e[p(8) — (¢(1))*/3], equicontinuity will follow if we prove there exists a constant M,
such that max {|z(#)|: 2,(p) <t <2.(p) + r} < M, and max {|y(@)|: 2. (p) <t<e(p) + 7} < My,
where x and y are solutions of (3.8) corresponding o (g, y,) € 4.
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If M is defined as in Lemma 3.1 and {#(#), (?)) is a solution of (3.8) corresponding
to (¢, y,) €A, then the same a,rgument used in Lemma 3.1 implies «(f)j< M for
0<i<#{p). Suppose that y(f,)= (—kr—e—1/r)3 for some #e(0,z(p)]. Then
since y'(?) <kx(t), 0<E<e(p )+1~ we must have y(¢) < (—e—1/r) M for f,<t<ty+ 7.
This implies that #'(3)<(—e—1/r)M + ex(t) < — M/r as long as f,<t<t, -+ r and
z(t) >0; and since @(f,) < M, it follows that #,<2(¢) <b + 7. Since y'(?)> — (L +k) M
for 0 <t<2(p), it follows that y(t)> — (kr + &+ 1/r) M —r(1 + k) M for 0 <t <z (p).
Of course if y(¢) >— (kr + ¢+ 1/r) M for 0<¥<z(p), we have an even better esti-
mate. In either case, there exists a positive constant N such y{t)>—~N for
0 <t<z{gp).

Obvious estimates now imply that y{f) > —N —rM - kra(t) for &,(p) <tz (@) 7.
¥ o) > —\/3(8 -+ kr)fe for z(p)<t<e(p)+r, we are done; otherwise x(f)=

—V3(e+ kr)fe, and for t,<t<z(p)+r, we obtain that «'(t)> — (N4 rM).
It follows that in any event a{f) > — —V e+ krYle —r(N -+ r M) for z(p) <t<ay @)+ 7.

Q.ED.

Our previous lemma showed that I takes bounded sefs to bounded sets. In our

next lemma, we wish to show that if |[(g, %)| is large enough, |F(e, )| < |(®, %)

LEMMA 3.6. — There exists a positive constant B such that if (g, ¥,) € G — {0}
and ” (@) %) H >R, then “F(‘Py ?/0)” < H(% yo)”-

Proor. — Given a positive constant R, let & be the largest positive solution of
R+ krE+e(f—&3)=0. If we write &= d(R)E, it is clear that lim d(R)=10.
Select R, such that 6(R)< 1 for R>R,. If (p,9,) €& and ||(g, ¥o)]| = max (p(0), y,) > Ry,
then we must have @(0)< y,, since it is assumed that g, + &(p(0) — ((0))3/3) >0.
It we write 4,= R>R,, then the same argument used in Lemma 3.1 shows that
2(f) <&= 0(R)R for 0<t<2(p).

Define M = max {#(t): 0<t<2(p)}. The same argument used in the proof of
Lemma 3.5 shows that y(t)> —c¢M for 0<i<z(p), where e=2kr +e-+ 1/r 4.
Also the same proof shows that y(2(p)+ ) > — (¢ + r) M + kra(z(¢) +7) = N and

o(21(g) + 1) >V3(e +kr)je —r(eM + rM). Tt follows that |F(p, y,)| <KM, where K
is a constant independent of R> R,; and if R, is chosen so large that (R)K<1
for B> R,, then |F(p, v < B= ||(p, )| for R>R,: Q.E.D.

In our next lemma we establish the crucial step: that every nonzero solution of (3.8),
no matter how small ¢ and y,, grows to an a priori size. The idea is to use the direct
analogue of a previously mentioned trick of E. M. WRIGHT (see Lemma 2.6). We

consider an integral of the form f X'(t)-exp [— At]bdt, where X'(t) = (2'(), ¥'()), A is
r
an appropriate root of the characteristic equation, b is an appropriate vector, and the

inner product of the two vectors is taken. It is not hard to see that Wright’s trick
is closely related to later work of HALE [11] and HALE-PERELLO [12].

LEMMA 3.7. — Assume that (g, y,) € @ — {0} and let (2(2), y()) be the corresponding
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solution of (3.8). Then there exists a positive constant a, independent of (g, ¥,),
such that lim sup |#(t)| > a.

ProOOF. — An examination of the argument in Lemma 3.6 shows that it also
implies that both |#(?)| and |y(f)| are bounded for all £>0. According to Lemma 3.3
there exist precisely two solutions 4, and 4; of 42— gd+ exp [— 4] — k=0 such that
Re (4,) >0 and —az/r< Im (4;)< z/r. There are three possibilities: (1) Im(,) >0
and A, =4, (2) 4 and A, are real and A, < A,, and (3) A, = A,, A, is real, and J,
is a double root of A2—ed +exp[—ri]l—k=0.

Our proof will vary depending on which case holds. In any event, if 1 is a root
of the characteristic equation as above and 7'>0, then integration by parts gives

@

(8.10)  [z't)(Aexp [— ) dt + f y'(t) exp [— At]dt

7

= wa(t) exp [— At)dt — Ax(T) exp [— AT]— y(T) exp [— AT} + }Jy(t) exp [— At]dt .

On the other hand, if one substitutes for «'(¥) and y'(¢) from equation (3.8), one
obtains

(3.11) f &' (t)(Aexp [— At]) dt + f Y/ (¢) exp [— At]dt

T
©

= j (9(t) -+ ex(t) A exp [— M]di— eAj3 [@(t) exp [— A ds

T T
-]

—fw(t—-r) exp [— At]dt + kfm(t) exp [— At]dt.

T

Setting (3.10) equal to (3.11) and using the fact that fw(t—r) exp [— At]dt =
7

- =exp [—ri] f x(t) exp [— At]dt, one finds that

I—r

(3.12) — Aw(T)—y(T) + f 2(t) exp [— At — T+ 7)]dt =

T—r «©

= —gA/3|x3(¢) exp [— A(t— T)1dt .

CASE 1. — If Im (1) > 0, so that A= u -+ % with x>0 and 0<vy<a/r, then by
taking the imaginary part of (3.12) we obtain

—va(T) —fm(t) exp [— pu(t— T + r)]sinp(t — T + r)de

=—Tm (g;./3fms(t) exp [— At — T)]dt) .

19 — Annali di Matematica
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If 2z is a zero of w, let b=sup|z(f)]>0 and let 2,>% be a zero of » such that
(=7
sup |a(t))=c¢>1b. Let T, 2,< T< 2,,,, be a point such that |#(T)| = ¢; since »
ImSt<zns1
is moﬁo‘conic on {2,, %, + 7], we know that 7>z, ». For definiteness we can as-
Fd

sume #x{T) > 0. It follows then that fm(t) exp [—plt—T +»)]sinp—T + r)dt >0,
50 we obtain the inequality =y

(3.14) hio( T <leﬂ./3 #5(8) oxp [— At — T)]d .

If we estimate the right-hand side, using the fact that |#3(t)] <b® for 1> T, we find
that

(3.15) 1vb < (¢/3)|A|b3(1/p) -

Since one can easily prove that b >0, (3.15) implies that b® > a®= (e|1])~*u», and
the theorem is proved.

CAsE 2. — If the characteristic equation has two distinet real roots A, < A,
then substituting respectively 4, and 4, for 1 in equation (3.12) and subtracting,
one obtains

T
(3.16)  — (a— M)a(T) + [w(t) [exp [— Al — T + r)] —exp [— At — T + r)]] dt

Tp

= —gly/3|23(F) exp [— A (t — T)1dt + €4, /31 23(¢) exp [— A (¢ — T')]dt.

Now, if z and T’ are chosen as in Case 1 and b is defined as there, one finds
(3.17) A — 4)b <eb®/3 + ¢b3/3.

Just as before, this implies that 5® is larger than an a priori positive constant
a2 == 3/28(}.2 - 2.1).

CASE 3. — Ii the characteristic equation has a real root A of multiplicity 2, then A
must also satisfy the equation 21 —g¢-—rexp [—7A]= 0. If one carries through the
caleulations preceding (3.12) with a number /4, > A one obtains the following equation:

(318)  —Aa(T)—y(T) —I—fW) exp [— L(—T +r)]di

T~

+ (72— ek + exp [— ] — k) [2(t) exp [— At — T))dt

T

= — (eAy/3) | 2*(2) exp [— Ay(t — T)]dt.
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If one subtracts (3.12) from (3.18), divides by 4, — A, and then lets 4, approach 1,
one obtains (using Lebesgue dominated convergence)

3.19)  —a(T) —-fm(t)(t-- T + r)exp [— At — T & r)]dt

T—r

= —g/3{23(t) exp [— At — T)] + eA/3|w3(t)(t — T) exp [— At — T)]dt.

The proof now proceeds essentially as in the previous cases. Q.E.D.

Leama 3.8. — Liet x(¢) and y(i) be as in Lemma 3.7 and let z,, n>1, denote
the zeros of x. Then there exists a positive constant a*, independent of (g, ¥,), such
that limsup (max|e(z, + 7)), |y(e. + 7)]) >a*.

Proor. — By Lemma 3.7 there exists an a priori positive constant a such that
lim sup |#(#)| >a. Select #, such that max {lo@®)|: 2a<t<zn}=oa>%a and let

>0

T €[#,,%n41] be such that |#(T)]=a«. We know that T>z,-+r, and for conve-
nience we can assume that #(7) > 0. Seleet T,, T< Ty< 2,,,, such that (T,)=
= min (o, 14/3) = . By our previous work we know that @'(T:) = y(14) + ew(T,)-
-[1—a2(T,)/3]<0, and this implies that y(T;)<—4ef. Since y is decreasing on
[Ty, 2pe1 -+ 7], this implies our result. Q.E.D.

TaeorEM 3.1. If ¢>0, r >0 and 0<k< 1, then equation (3.8) has a nonzero
periodic solution (a(1), y(t)) of period greater than 2r.

Proor. ~ Let @ and F be as in Lemma 3.5. By Lemma 3.6 there exists a
constant B, such that |F(p, %) <|[(@, %) it [( ¥%)|>R:,. I we define R,=
= sup {|F(@; ¥o)|: | (@, 4)| <B.}, then it is clear that if we define G, = {(¢, %) € G:
@, 90)|| <R}, F(G,—{0}) cG,—{0} for R>max (R, B,). Lemma 3.8 implies that
0 is an ejective point of F, and Lemma 3.5 implies that F is compaet. It follows by
our fixed point theorem that F has a nonzero fixed point in @&, and in fact
i, (F, G— U)=1 for an appropriate open neighborhood U of 0. This fixed point
corresponds to a nonzero periodic solution of period greater than 2r. Q.E.D.

We now want to consider equation (3.8) for the case k< 0. Numerical studies
strongly suggest that even for very large negative values of %, (3.8) has nonzero
periodic solutions. However, as |k| increases the period of the periodie solution ap-
pears to decrease and become less than 27, and our techniques break down in this
case. Thus we shall have to restrict the size of |k| in order to gnarantee that the
zeros of ¢ are at least a distance r apart.

Our first step is to define a new closed, convex set O of starting values. If ¢ is
a continuous real-valued function defined on [—7,0] and ¥y, is a real number,
we shall say that (@, 9,)€0 if ¢()>0 for —r<i<0, @(0)=0, and y,<0. It is
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clear that C is in fact a closed cone. As before, we shall write (g, y,) 7 0 if either
()£ 0 for some § or y;< 0.

LemMMA 3.9. — Suppose that (g, 4,) € C— {0} and («(t), y(t)) is the corresponding
solution of (3.8). Assume also that k< 0 and —#&r< ¢ Then if 2z = &(p, 9¥) =
=gup {t>0: 2(5)>0 for 0<s<t} and ¢, =sup {i>2: 2'(s) <0 for & <s<}, it follows
that z,< r and either x()< —&=—V3V1 L (krfe) or (t,—z)>r.

Proor. —~ Given # > 0, consider the following FDE:

@, (1) = y,(t) + o, () — 23() /3] — 7t
(3.20) Y, (t) = —a,(t—7r) + Icw,](t)

m,;'[’“ra 0]=g, yn(o):yo'

If w’( 0)=y,< 0, then & (t) <0 for some nonzero length of time; however, if ({))
(O) < —n and eonsequently T (t) <0 for some nonzero length of time. If we deﬁne
T =sup {{>0: 2, ( y<0 for O <3<t}, then the above remarks show that T, >0
for n>0. We clalm that either T, >r or wﬂ(_’l’n)<—-—6. For suppose not, so that
T,<r and w/(T,)>—90. It is clear from our construction that =,(f)< 0 for

0<t<T, and y,(t) <Icfw )ds < ktw,(¢) for 0<¢<T,. It follows that w;(t)gkmn(t) +

-+ &x (t)—-ax*/S for 0< i<T,, and since it is easy to see that kru 4 su—eu?/3< 0
for —6< w< 0, it follows that z (T }< 0, a confradiction.
We now suppose that z; >r and obtam a contradiction. If there existed a sequence

n; =0 such that IQ}nr @, (t)<—~6, we would immediately obtain a contradiction.

Thus we can assume that w, is monotonic decreasing on [0, 7] for # small enough,
and by taking limits, # is monotonic decreasing for 0 <¢<r. It follows that «(¢)=0
for 0<t<r and therefore z'(t)==y(t)= 0 for 0 <t<r. Finally, we find that y'(})=
=—w{l—r)=10 for 0<i<r, and this implies (g, y,) = 0, 8 contradiction.

The remainder of the lemmma follows just as above if one considers for « >0 the
following FDE:

2, (1) = Y, (8) + e[, (8) — a2(1)/3] — a(t —2y)
(3.21) Yo(t) = — @, (t—7) + ka,(?)
wzx“:zl —ral=2, ¥Y(a)=y). QED.

Owing to the generality of the starting value (g, %) it may very well happen
that 2, > 0.

LeMmA 3.10. — Let notations and assumptions be as in Lemma 3.9 and suppose
in addition that —4kr2<1. Then if z,=inf{z >2,: 2(2) =0}, (2,—#) >7.
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Proor. — The previous work has already shown that 2, >2,. We assume that
(2,—2,) <7 and obtain a contradiction.
Let #, be the last point on [z, 2,] where x achieves its minimum.

CASE 1. — Assume that z(,)> —V/3. Since we are assuming that (2,—2) <7,
the same argument as in Lemma 3.9 implies that y(¢) <k{f,—=z)2{) and y{@)<
<ylt) + k(t—t)e(s) for £ <i<z,. It follows that for H<i<z,;, #'(@F)=y(t)+
+ ela(t) —23() /3] <y(t) <k{t, — ) w(t,) + k(¢ —1)w(t). I we integrate both sides of
this inequality we obtain

(3.21) [a(t)] <|K|(2s—11) (8 — &) |@(te)| +- HE| (2 —t)2|w(t)] .
If we write u= ({, —=2,) and replace (2,—1%,) by the larger v —u, we obtain
(3.22) 1<|k|(r—w)u + &|k|(r— u)> = §|F|(r*—u?).

This contradicts the assumption that %|k|r®<1.

CASE 2. — Assume that a(f,)< —+/3, define s, = sup {s: & <5<, 2(s)< —+3
and #'(s)= 0}, and define s, to be the first time s after s, such that a(s)=—1.
By our construction we must have x{f)> —1/3 for s,<t<z,. Because u— w33 is
decreasing for —oco< u<—1, we find that for s, <<t<s,

@' (8) = y(t) + ela(t) — »*(t)/3]
(3.23) <Y(81) + k(t — s)w(s,) + el(sy) — 2*(8,)/3]

<k{t—s)m(s;) .
Integrating inequality (3.23) we obtain
(3.24) 1 —(8y) < Fhw(8,) (85— 81)2.
For s,<t<», we find the following estimates:

@'(t) = y(t) + elo(t) —2*()/3]
(3.25) <y(t)
<Y(81) + k(t—s1)@(s1)
<k{t—s)x(s).

Integrating inequality (3.24) we find

(3.26) 1§%kw(sl){(22_31)2“(32_‘31)2} .
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Adding inequalities (3.24) and (3.26) gives
(3.27) lo(s:)| < 3]k [2(5)[ (22— 5,)°

This contradicts the assumptions that (z,—s,)<r and }k[r*<1. QE.D.

Notice that 2, is an isolated zero of o, for if #'{(2,) = 0, #"{2,) = y'(7,) = — {2, —7) > 0.

Assuming —kr< & and — }hkr< 1, we can now define a map F: (— {0} — C— {0}
by Flp, ¥) == (—p, —y;), where p(s) = x(z, -+~ 8) for —r<s<0 and y, = —y{z,). The
fact that F is continuous iz not difficult, and we leave it to the reader. It is clear that
fixed points of ¥ correspond to nonzero periodic solutions of (3.8) with period greater
than 2r.

We also leave the next lemma to the reader. It follows by the same kinds of
arguments used for Lemmas 3.5 and 3.6 (only easier, since k< 0).

LevmMA 3.11. — For any (g, ¥,) € 0—{0}, the corresponding solution (z(?), y(?))
is bounded for >>0. The map ¥ defined above is compact, and there exists a constant
R, >0 such that if B> R, and [(g, 50)]| <R, then |F(p, y,)| <B.

Lovyma 3.12. — Suppose that k< 0, —kr< e and —{kr*<1. Then if (g, y,)€
€ 0 — {0} and (w(f), y(t)) is the corresponding solution of (3.8), there exists an a priori
positive constant a (independent of (g, y,)) such that lim sup [@(t)] > a.

PrOOF. ~ Let 6 be as in Lemma 3.9. If lim sup |#(f)|>0, we are done. Other-
wise, there exists a number # such that z(f)< é for ¢{>u. By Lemma 3.9, if
z>u and ®(2)=0, |z(#)| is monotonic increasing on [z, z + r], and therefore if 2 is
the first zero of # affer z, |x(f)| achieves its maximum on [z, 2'] at some time T
for which (I'—z#)>r. Furthermore, the condition that — }kr?< 1 implies that
— (7/2r)2< k, so that (by Lemma 3.3) the equation A*—ed 4 exp[—rd]—k=0
has precisely two roots A such that Re (1) >0 and —=/r< Im ()< zfr. Bubt now
exactly the same argument used in Lemma 3.7 implies that there exists an a priori
constant a such that lirtr_l)’iup |z(t)| >e. Q.E.D.

Levma 3.13. — There exists an a priori positive constant b such that for any
(@ ¥o) € 0 — {0}7 lil}}j}’lp ”F"(‘P’ ?/o)” >b.

ProoF. — Let @ be as in Lemma 3.12 and let T be a number such that
|#(1)| = a>4%a. We can assume that z,< T< 2,,, (Where 2, and 2,,; are succes-
sive zeros of ») and 2(7)>0. If (2,.1— L)<y we are done. If (I'—z,)<r, de-
fine 0=max( max {m(t)],y(zn)) and observe that z'(f) = y(t) - ex(t) — ex(t)?/3 <

T
<(1--7e+ex(t) tor z,<t<T. Using this inequality we find that o=a(T)<
<1/e(exp [er]—1)(r -+ 1)¢, which implies a lower bound on ¢ and gives the result.
Thus we can assume (T —z,) >7, or we are done; and it follows that y'(f)< 0
for T<i<#,,;. Define f=min(V3, to) and T,=sup {{>T: ()= F}. Our defi-
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nition of 7, implies that z' (1)) = y(T,) + ex(T)[1—x*(T,)/3]<0, and this implies
that y(T))<—eB/2. Since y is decreasing on [T, 2,,.1), ¥(2ai1)<—2f/2, and we
are done. Q.E.D.

THEOREM 3.2. — If k< 0, —kr< ¢ and — }kr?<1, equation (3.8) has a nonzero
periodic solution of period greater than 2r.

ProoF. — Let C, = {(p, %) € C: |[(®, ¥o)| <R}. By Lemma 3.11, there exists £ >0
such that F(0,—{0})c C,—{0}. By Lemma 3.13, 0 is an ejective point of F.
It follows that F has a nonzero fixed point. Q.E.D.

4. — In this section we wish to consider the equation »'(f) = — aw(t — 1 — |2(t)]) -
-(l—wz(t)), which was mentioned by Halanay and Yorke in [10], page 67. We shall
prove below that this equation has a nonzero periodic solution for every « >x/2.
We are less interested in the particular equation than in the nonstandard techniques
which seem necessary for its study; in fact the full force of the above periodicity
result appears inaccessible by Jones’ or Grafton’s technigues.

‘We begin with some existence and uniqueness results for the FDE. Let X denote
the Banach space of Lipschitz functions ¢:[—2,0]—>R; if g€ X, the norm is
given by

ol = max (max fpin), _max [P0

~2<1<0 ~e<u<oo O U
Given gpe X such that |p(0)]< 1 we consider the following FDE:
(41) 2'({t)=—az(t—1—2@)|)(1—2?@®) «|[—2,0]=¢, ¢eciX, lp(0)] < 1.
LeEMMA 4.1. — If ¢ is as above, equation (4.1) has a unique solution z(f) = x(¢; @)

which is defined for ¢>0, continuously differentiable for ¢>0, and such that |#(t)| < 1
for ¢>0. Furthermore, given ¢ >0, N >0 and ¢eX such that [p(0)]< 1, there

exists 0>0 such that if yeX and |yp—¢[,< 8, then sup |a(t; ¢)—a(l; p)|<e.
) (€2
Proor. ~ For 0<it<l1, consider the ordinary differential equation '(f)=

= —oap(t—1—|o(t)|) (1 —2*(t)), #(0)=@(0). Since ¢ is Lipschitz, this equation has
a unique €' solution defined on some interval [0, 7], >0. To show this solu-
tion can be extended to a € solution on [0, 1], it suffices to show that if «(t) is a C*
solution on [0, a], a<1, then !m(t)[< 1 on [0,a]. If not, let t*<a be the first time
¢ on [0, a] that |#(f)] =1. Dividing both sides of the equation by 1—a*(f) and
integrating from 0 to #*—g, s> 0, gives

t¥g

(4.2)

1. (1d+a@*—e\ 1. (14 x(0)
N

o —a) 28\1 —x(O)) = “‘“J‘P(S —1— |a(s)]) ds.
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Since the right hand side of {4.2) is bounded as &0, and the left hand side
approaches -+ oo, we obtain a confradiction. Thus equation (4.1) has a unique !
solution on {0, 1], and repeating the procedure gives a unique (! solution on [0, co)
such that |#(f)]< 1 for all >0.

The statement about continucus dependence on initial data follows by using
continuous dependence on initial data for ordinary differential equations on [0, 1],
then [1, 2] and so on. Q.E.D.

Of course the reason for Lemma 4.1 and one of the technical problems in con-
sidering equation (4.1) is that (4.1) may not have a unique solution if ¢ is only con-
tinnous.

We now want to investigate the qualitative behaviour of solutions of (4.1) for
an appropriate class of starting values ¢. Let Y= C([—2, 0], R) with the usual
norm and define §= {pe¥:p(—2)=10, |p(t)]< 1 for —2<t<0, and there exists
a number z, (depending on ¢), —1 < 2, <0, such that ¢(f) >0 for —2< i< % and
@(t)< 0 for z,<t<0}. If z,=0 this definition is meant to imply @(t)>0 for
—2<t< 0.

Levma 4.2. - If «>1, ¢ 8, and x(#) is the corresponding solution of equa-
tion (4.1), then x(f) has infinitely many isolated zeros z;, 2;< 2,,, for j21 (3,=2,
if #(0)<0), and x(f) = 0 for t¢ {z,}. If T;=sup {t > 2,: |x(s)| is monotonic increasing
on [z;, t] if 2,>0 or [#(s)] is monotonic increasing on [0, #] if 2, < 0}, then 7', >z, 1
and |#(t)] is monotonic decreasing on [7;, z,.,]. Finally, the derivative of « is non-
zero ab any zero z; such that z;>0.

Proor. — If p(0) >0, then since « >1 essentially the same argument used in
Section 1 shows that # has some first zero #, > 0. Since @'(2;) = — aw(#, — 1 — [2(2,)|)
and 2;—1—|@(2)| >—2, we have that 2'(z)< 0. If ¢(0)<0, we define z=2,.

It is clear that #'(f)< 0 for 0<#<z -1, so that if we define 7)== sup {{>0:
2'(s)<0 for 0<s<#, T,>2 +1>0. By our construction we have z'(T;) =0, and
therefore we must have T, —1— |o(T})| =#,. Since (d/dt}(t—1—|(})]),,, =1 and
since the derivative is defined for x(¢)s¢ 0, it follows that for 7> T, and f near T',
t—1—|x(t)] >2,. It follows that »'(f) >0 for ¢+> 1T, and ¢ near T;. Once again,
since « > 1, essentially the same proof used in Section 1 shows that there exists a
first zero 2, >g; such that x(2,)=0, and we see that 2'(2,)=—aw(z,~—1)>0.
If we define T,=sup {t>7T:2'(s)>0 for T,<s<t}, the remarks above show that
T,>T,. If T,<#, then since #'(T,) = 0, we must have T, —1—|z(T,) =2, and
this is impossible, because T, —1— [@(T,)| > Ty, —1— |#(T1)| = 2. In fact this remark
shows we must have #'(t) > 0 for T, < t<%,: It follows that T, >2,, and again be-
cause z'(T,)=0 we must have T,—1—|a(Ts)|=12 or T,—1—|o(T,)|=2. If
Ty—1—(Ty) = 2, then because (d/df){t—1 — |w(t)])|.,, =1, we must have 2, <t—
—1—[x(t)| < #, for t> T, and ¢ near T,. This would imply that z'(f) >0 for t> T}
and ¢ near T,, contradicting the choice of 7,. It follows that Tp—1— [o(Ts)] = 2.
and in particular that T, >z, + 1.
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It is elear now that the same arguments show there exists a zero 2, > T,, #'(2;) <0,
and z'(})<0 for T,<t<T,, where Ty >z, + 1. If we define p(s) = u(2, + 2 + s) for
—2<s<0, then we have pe S, so the arguments above apply, and the lemma is
proved. Q.E.D.

Given p€8 we can define a map F:8 — 4§ by using Lemma 4.2: if geSf,
let 2, denote the second zero of the corresponding solution a(f) of (4.1) and define
F(p) =1, where y(s)=wu(s;+ 2+ s) for —2<s<0. Using Lemma 4.1, one can
verify that F is continuous in the topology of Y. Obviously, fixed points of F cor-
respond to mnon-zero periodic solutions of equation (4.1).

LeMMA 4.3. — If A is a bounded subset of S, F(A4) is a precompact subset of Y.

Proor. — Suppose that pe A, x(t) is the corresponding solution of (4.1) and 2,
is the second zero of # on [—2, co). By the Ascoli theorem it suffices to show
that «"(t), which is defined except at the zeros of ®, is bounded on [z,, 2, + 2] by a
bound independent of ¢. Since |#(#)|< 1 for all t>—2, we see that |#'(t)| <« for
t>0; and because A is bounded, there exists a constant 8 (independent of ¢ in A)
such that |#'(f)]<pB for t> —2. Differentiating both sides of equation (4.1) we now
see that z’(#) is uniformly bounded on [z, 2, + 2] (where it is defined). Q.E.D.

LemMA 4.4, — Suppose that e S, x(f) is the corresponding solution of equa-
tion (4.1), and & >m/2. Then if 2 >0 is a zero of » and if 6 = sup (max(]x(t)f, ]m’(t)])),
t2z

there exists a positive constant a, independent of ¢ and z, such that d>a.

PROOF. ~ By Lemma 2.5 there exists a solution A of the equation A+ x exp [—A]=0
such that Re(A)>0 and 0< Im(})<m. If 2, and T, are as in Lemma 4.2, in-
tegration by parts gives

(4.3) f o' (t) exp [— M]dt = A[a(t) exp [— M]dt — a(T,) exp [— AT;] .

Ty

On the other hand, if we substitute for #'(f) from equation (4.1) and define A()=
= p(t—1) —x(t—1—|x()|) for notational convenience, one obtains

(4.4) f 2'(t) exp [— M]dt = —a f (w(t—1)— A() (1 —2*(2)) exp [— A]dt

== —-zxfaz(t——— 1) exp [— At]di— acfm(t-— 1)w2(¢) exp [-— At]dt -+

T ]

+ a| A@)(1 — 22(t)) exp [— At]dt

T



294 RoGer D. NussBAUM: Pertodic solutions of some nonlinear, etc.

If we define

R(T) = —q f w(t—1)a(t) exp [— At dt + o A®)(1—22(t)) exp [— Mldt,

k4

equation (4.4) becomes

(4.5) fm'(t) exp [— Af]df — — o exp [— A}fx(t) exp [— At]dt + R(T,).

E 74~1

Combining equations (4.4) and (4.6) one finds

(4.6) o exp [— A]fx(t) exp [— AMldt—a(T;) exp [— AT, ] = R(T,).

r;—1

If one integrates again by parts one obtains

(4.7)  aexp[—a] f w(t) exp [— At]dt = (T} exp [— AT,] —

751

— (T, —1) exp [— AT, — 1)]—fm’(t) exp [— Af]di .

71

Substituting from equation (4.7) in (4.6) and multiplying both sides by exp[A(T;— 3)]
yields
7y

(48)  —a(T,—1) exp [4/2]—[w'(t) exp [— At — T, + §)]dt = exp [A(T,— H]B(T,) .

751

If A= u + i», the real part of the left hand side of equation (4.8) can be written

Ty
—a(T;—1) exp [u/2] cos »/2 —fw’(t) exp [—u{t—T;-+ 1) cosv(t— T, + ) dt. Since x'(1)
74~1
and #(T;—1) have the same sign for 7;,—1<#<T,; and since cosp{t—T,;+ )+
exXp [—ut—T,+ 3)]>exp [— /2] cosy/2 for T,—1<i<T;, the absolute value of
the above expression is greater than ]a;(T,»—-l) exp [n/2]cosv/2 + exp [— p/2] cos v/2-
“(®(T;)—®(T;—1)) |, which is greater than exp [— u/2] cos v/2|a(T}).
If we define élzsgp [#(#)] and 6,=sup [#'(1)], it is clear that d=max (d;, J;).
2z (>
Select #,>2 and the corresponding T, such that [#(T,)|>%6,. It then follows from
our previeus remarks that iexp [— u/2](cosv/2)d, < fRe (exp [A(T;,— DIR(T))) } By
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using very crude estimates we find

k=]

(49)  loxp [MT, — DIR(T,)| <o} f oxp [—plt — T+ $)]di+

73

o exp [—

- 0,0, exp [t — 7,4 1)1t = 158 4 5,0,).

T;
It follows that for an appropriate constant ¢ >0,

(4.10) 00, <8 -+ 8,0, .

Since it is easy to see that d, >0, this implies that ¢<d; + J,, which certainly
implies our result. Q.E.D.

LEMMA 4.5. — If o> 7/2, there exists a positive constant b such that for any
@€ § there exists an integer N such that »(T,,)>b (T is defined as in Lemma 4.2).

Proor. — According to Lemma 4.4, there exists a positive constant a such that
either 111;1_) sup |#'(t)] > a or lilfl, sup |2(t)| >a. It follows from equation (4.1) that if
b= liI}L sup |ao(t)], lix&syp |#'(8)| < b, and this implizs that we must have liliflaillp [w(®)] >
>aje. It is clear that HI}LSOPP ()| =liII\171_)s;1p [#(Ty)], and using Lemma 4.2 one can
see that ligajgp im(Tz,,H)]gzalifvn_}swup |#(T,,)|. Thus we see that liga_)scllp |#(Typ)| >
>a/202. QE.D.

LEMMA 4.6. — Suppose that « >1, pe§ and x(t) is the corresponding solution
of equation 4.1. Then if a= sup {|#(!)|: 2, <t <Znys}; |#'(¢as1)|>¢, Where

¢=min {a, Vala—1), /2 a(l —a?), a/4 a(l —a?)(1 + aa)}.

ProOOF. — We can assume for convenience that #(f)>0 for 2,<¢<#,;., so that
a=a(T,). According to Lemma 4.2, ¢ —1— [4(t)|>%, for T, <t<2,41, and in fact
(@ja)(t—1—|a@®)]) =1—a'()>1 for T,<t< 2ay,. It follows that #'(t) is decreasing
for T,<t<min (2,1, Tn-+1); and thus if 2,,,<T,+1 we find that

== —-fm’(t)dz < — &' (#nya) -

Tn

If 2,0 >T,+1, we define s, to be the unique point on (T, #,..) such that
8a—1—|w(s,)|=T,. There are two subcases to consider. First, suppose that
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$p+ 1<%y We claim that «{l—a*(2,.,—1)) <1. If not we have »(t—1— |a(t)]) >
5 B(2n.y— 1) for 2, —1<t<2y, and &'(1) > w(240—1) for 2, — 1<E<2,,. But
this would imply that z(2)=0 for some 2, 2,.,—1<2<2,.,, a contradiction.
Therefore we have that a(l—a(2,,,—1)) <1, so that #(ep.—1)>V(@—T)je. It
follows that #'(2,..) < —Vea(e—1).

Finally, we have {o consider the possibility that s, < 2,.,< s, 1. Since (1)
is convex downward and positive on [T,, T,.,], it follows that x(u)>ia(T,) if
0<u<T,+%. Because {—1—|o(t)]>T,=s,—1—|w(s,)] for s,<t<z,,, and
because |(t—1— |o(t)]) —(s,—1— [2(sa)])] < (t—s4) + o T,)(t—s,), We see that
T,<t—1—|ot)|<T,+ 4% if s,<t<}(l+xa)+s, and £<2,,. If we define
f=min (}(1 + «a)™, 2,1 —8,) all of this implies that (i —1— |2(t)|) > $2(T) = }a
for s,<t<f + s, and consequently that #'(f) < — («/2)a{1—x%(s,)) for s,<t<s,-+p.
There are two possibilities: If (s,)<(x/4)a(l—x*s,))(1 + ca)™?, then z,,,—$,<
<1(1 4+ xa) and consequently @'(2,.:)< — (#/2)a(l—a(s,)) < —(2/2)a(l —a?). If
we assume x(s,) > (cx/4)ce(1 —22(s,))(1 + aa)™, we must have a(s,) > (¢/4)a(l—a?)-
(14 aa)~t. This implies that 2'(2,.1) = —a@(Rn1—1) < —a@(s,) < — (¢?*/4)a(l—a?)-
(1 4eayl. QED.

According to Lemma 4.5 there exists a constant a, such that if ¢ &8 and x(f)
is the corresponding solution of (4.1), lilr& sup a(T,,) > a,. Since trivial estimates

imply that o(T,,) <2a|s(T,,_,)|, it follows that if #(T,,) > a,, |2(T,,_,)| > as/2e. There-
fore Lemma 4.6 implies that there exists a constant b, such that if o(T,,) > a,,
@' (#y,) >bo and @'(2,,,,) < —0b,. If we take ¢, to be a positive constant such that
¢, < min (a,, by}, then for any @8, if o) is the corresponding solution of (4.1),
there exists a positive integer N such that a(T,,) > 65, #'(2,,) > € a0d B (Zyyy,) <— €.

For a fixed constant A >a, define U= {pe8:¢'(2)*0 if ¢p(z)=0 and
sup |¢'(t)| < A}. It is easy to check that U is a bounded open subset of the closed,

—2t<g

convex set {yeY:y(—2)=0} and that F(8)cU. If peF(U), it is clear from
equation (4.1) that Sllp |v'(t)] <o and (by taking second derivatives that)
~2I0
sup |y'(t)—y'(s)<B|t—s|, where B=aA(3+ A). Finally, if () satisfies equa-
—2sssL
tion (4.1), then we obtain

Ty

1. (14T [,
(411)  log (1—_-’*”_%) =fw (1)1 — w2(t) dt = —o:fw(t—~1 — |w(t)|) At < 2.

£ 2

This implies that x(T,)<k< 1, where k is the largest solution of

e
élog(i—_—k)_ 2o

such that 0< k< 1.
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For each ¢, 0 < ¢<¢,, we define a subset M, of § as follows: If peg8, then
pe M, if 1) there exists a time 7, —1<T <0, (T dependent on ) such that y»
is monotonic increasing on [—2, T] and monotonic decreasing on [T, 0]; 2) 2/(f)

is monotonic decreasing for T<i<0; 3) sup [#(f)|<k, sup |2/()|<a and
250 ~2: D

sup_ @' (t)—a'(s)| < Blt—s|, where k and B are as above;4) #'(—2)>c¢ and #(T)>c.
—2RI<K0

It is not hard to check that M, is a compact subset of ¥ and that F(y) satisfies con-
ditions 1 —3 above for any ye& U. Furthermore, condition 2) implies (by an ar-
gunment used in Lemma 4.6) that if ye M, and p(z)= 0 (necessarily 2>T), then
we have p'(2)<—c. It follows that M,c U. Observe that if g, U our previous
lemmas imply that there exists an integer N such that y,= F"¢, satisfies zp;(——2) > 0
and sup wo(t) > ¢,: It follows that if ¢ € U is close enough to ¢, then y= F¥¢p

-0

also satisfies the condition »'(—2)>¢, and sgp p(t) > ¢,. Sinee F”¢p automatic-
—250E<0

ally satisfies conditions 1—3 for any pe U, Fge M,.
Our next lemma is an easy consequence of Lemma 1.5 and is an abstraction of
our concrete situation.

LEMmMA 4.7. — Suppose that G is a closed, convex subset of a Banach space Y,
U is a bounded open subset of G and F: U — U is a continuous, compact map.
Assume that there exists a compact set M c U such that F(M)c M and such that
for any xe U there exists an open neighborhood U, of 2 and an integer n, such
that F™(y)e M for ye U,. Finally, suppose that there exists a compact set K> M
such that K is contractible in itself to a point. Then we have i (¥, U)=1 and F
has a fixed point in U.

Proor. — By a simple compactness argument there exists an open neighborhood
V, of K in @& and an integer N such that ¢l F(V,)c U and F*V,)c U for n>N.
If we define 0, = cl (F(V)) and C,= F~((,) for n>2, then 0, is a compact sub-
set of U and C,c M for n>>N. There exists an open neighborhood V,_, of C,_,
such that F(V,_,)cV,, and continuing inductively there exists an open neigh-
borhood V; of O, for 1<j<N—1 such that F(V,;)cV,,,, where V, is defined to

N—1
be V,. If we define V= |JV,, it is clear that V is an open neighborhood of K,
j=0
F(V)cV, and Fr(V)c M for n>2N. It follows from Lemma 1.5 that i(F, V)=1
and since all of the fixed points of F in U lie in M, i,(F, V) =1, (F, U). Q.E.D-

THEOREM 4.1. — If « > n/2, equation (4.1) has a nonzero periodic solution z(?)
of period greater than 2.

Proor. — It suffices to show that F: U — U has a fixed point, and fo show this
it suffices to reduce to the situation of Lemma 4.7. We take ¥ and U as above and
define 6= {pe¥:p(—2)=10}. If M,, 0< ¢<0, is as defined before, we have seen
that given g U, there exists an open neighborhood U, of ¢ in G and a positive
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integer n=n(p) such that F~(y)e M, for pe U,. Since M, is compact it has a
finite covering by open sets U,= U, with corresponding integers n,. We define

N
N =max{n,} and consider M = |} F/(M,), a compact subset of U. We claim that
=0
P(M)c M. To see this it suffices to show that if y=F" (¢) for some g M,, then
F(yp)e M. However, by construetion we have pe U, for some j, so F(p)e M, and
FN+1((}D) — FN+1~M(F"’(¢)) eM.

By Lemma 4.7 it only remains to construect a compact set K> M, Kc U, such
that K is contractible in itself to a point. Since M is a compact set, it follows that
inf{~§1<1tp< , w(t): ye M} = 6, is positive, and this easily implies (using Lemma 4.6)
that inf {y'(—2): p € M} = &, is positive. Tt follows that if 8= min (J,, 8,), M c M,.
We define M,= K, and it remains to show M, is confractible. Let g, be a O funec-
tion such that 1/);(——2)>6, Y, i8 monotonic increasing on [—2, —1] and ,(t) = 0
for —1<t<0. It is known that such a v, exists, and by decreasing é one can also
guarantee that v, satisfies condition (3) in the definition of M. It is clear that if
pyeM, and 0<p<1l, then (1—pu)y, +uyeM;, so M, is contractible to the
point y,. Q.E.D.

It is clear that the same arguments also apply to the equation «'(t)=
= —ap(t—1—elo()|) (1 —2%(1)), «>n/2 and 0<e<1, and imply existence of pe-
riodic solutions. If &= 0, it is known that the period of the periodic solution is 4
for every o« >mn/2. For ¢>0, numerical studies suggest that the period is not
constant with «. However, just as for ¢=0, as « increases the periodic selution
looks more and more like a step-function alternating between values 4+ 1 and —1.

For &> 1, results can be obtained, but technical difficulties are inereased.

5. ~ In this section we wish to consider the following neutral FDE:

k_d
m -+ 1dt
2(t) =g@t) for —1<i<0.

(5.1) @' () = [— wn(t — 1) ((t — 1))m+1} [1 — w2(t)]

It k=0 this reduces to one of the best understood nonlinear FDE’s. Work of
JonEes [18] shows that for each o > m/2 thers exisis a periodic solution ef period 4,
and a remark of A. J. MACINTYRE (see [18]) actually gives an explicit formula in
terms of the elliptic function sn(u). However, if k=0, previous methods give no
results on (5.1). We shall prove below that if & > #/2, m>1, and

m-1 9\ (w12
"“K( % ) (1+;,;:r1) ’
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then equation (5.1) has a nonzero periodic solution. Hven in this simple case this
result is far from best possible and leaves a large number of open questions, which
we shall discuss later.

LeEMMA 5.1. — Let ¢ be a continuous, real-valued function on [—1, 0] such that
@(—1) =0, ¢mt'(t) is continuously differentiable, (d/dé)e™t1(0) = 0= (d/dt)p"+*(—1)
and |p{0)]< 1. Then equation (5.1) has a unique solution x(f) = x(¢; ¢) defined for
all >0 such that (¢) is continuously differentiable for £>0 and |#(t)|< 1 for all ¢>0.

Proor. For 0<t<l define z(f) by the equation

-1

1. (14ae@) 1, [1+0) ok
6.2 gl (1—w(t>) e (1_—%0(—0)) = ""“f PO

gt —1).

-1

This equation ig obtained from (5.1) by dividing by 1—a*{#) and integrating. One
can solve equation (5.2) for () and check directly that [z(t)] < 1, ®(¢) is C*in [0, 1]
and m;(()) (the right hand derivative) is zero. Repeating this procedure on [1, 2]
we extend x(f) in such a way that |#(f)]< 1 on [1, 2], #|[1, 2] is continuously dif-
ferentiable, and «(f) satisfies (5.1) on [1,2]. Using the condition that mj_(O)::O:
= (d/dt)p™*1(0), it is easy to check that a,(1)= 2’ (1), so &'(f) is continuous also
at 1. Continuing in this way, we obfain the result of the lemma Q.E.D.

LEeMMA 5.2, — Assume that m is a positive integer « > =/2, and ¢ i3 a continuous
monotonie increasing function such that ¢(—1) =0, ¢™(?) is continuously differen-
tiable and (d/dt)e™(0)= 0. Then if ¢(0)>>0, there exists & positive constant @
(independent of @) such that either sup {|(d/dt)am(8)|: t> —1} > («—1)m/|k| or
li%iup max (|@()], |#'(1)]) > a.

PROOF. — The assumptions imply the gmt!= (pm)mt1/= gatisfy the hypotheses of
Lemma 5.1, so «(t) is defined. If we have sup |(d/d)a™(t)|> (x—1)m/|k|, We are
done, so we assume for the rest of the proof that sup [(d/d)am(t)] < («—1)m/|k|.

==
If t,=sup {>0:¢(s)=0 on [0,¢—1]}, then it is clear that '(f)= 0 for 0 <i<t;
=1
and for t>1t,, we have a'(f)= a(t—1)[—« + (k/m)(d/dt)z(t—1)][1 —ax2(#)]. Our
assumptions imply that —e -+ (k/m)(d/dt)a™{t—1)< —f< —1 for ¢>0. Just as in
Section 2 it follows that x(f) has infinitely many isolated zeros 2., n>1, that
Zup1—%n > 1, |@(#)] >0 for t5~2,, #(t) is monotonic inereasing on 23,1 + 1, 22n +1]
and x(#) is monotonic decreasing on [2,, + 1, 2s.p5 + 1]
Let 2>0 be a zero of # and define d= sup [o(f)| and élzsllp |#'(#)|. Our
(222 (221
assumptions imply that sup |2'(t)] <A, where 4 =2a—1, s0 6,< co:. If we de-
izl

fine u>2z to be a zero of x such that |o(u 4 1)|>}9, define T'=w-+1 and 1 to
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be as in Lemma 2.5, then integration by parts gives

(5.3) f #'(8) exp [— M]dt = — a(T) exp [— AT] + A[w(t) exp [— ] d¢ .

T

If we substitute from equation (5.1) for z'(f) we obtain

(5.4) {‘m’(t) exp [— At]dt = — x exp [— A] | »(t) exp [— At]dt +

© [+2]

+ kfmm(t-—l)a;'(t—l)(l — (1)) exp [— At]dt——afm(z—l)we(t) exp [— At]dt .

T

If we set equation (5.3) equal to (5.4) and simplify (recalling that

T

o exp [—1] f o(t)-exp [— At]dt = o(T') exp [— AT] — @' (t) exp [— At]dt),

i § r—1

we find that if we define

(5.5) R(T)= kfa;m(t—1)m'(t~1)(1_m2(t>) exp [— At — T + })]dt —

r
o o

—afot— 1)zt exp [~ A —T + 1],  —[o'(exp [~ At—T + dlat= R(T).

T

The usual estimates imply that if A= u -+ iy, |R(T)|<(|k|6m0, + «03%) exp [Fulu.
As before, we find the absolute value of the real part of the left hand side of (5.5)
is greater than 1dexp [— fu]cost»/2. Dividing both expressions by ¢ we obtain

(5.6) texp [— plu cos v/2 < [k|0m 10, + wd?.

Equation (5.6) implies that there exists a positive constant e (independent of ¢)
such that max (4, ;)>a. Q.E.D.

Observe that to prove lirP sup max ([@(f)], |#'(f)|) > it sufficed to know that
had the qualitative behaviour (existence of zeros, ete.) used in the secend half of

the proof.
Our next lemma is a trivial caleulus exercise which we leave to the reader.

Lemma 5.3. - If >0 and ¢;= sup w(1 —u?), then ¢,=1 and
LR A §

ep = (E—:ﬁg)m(?j—_—é) for g>0.
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LeMMaA 5.4 ~ Assume that ¢ is a8 in Lemma 5.1 and

d
____éz(pmﬂ(t)kB for —1<it<0.
Then if

e (“’;B)d k| lzmt)a'(t)|<B  for all >0,

If ¢m(t) is continuously differentiable and

kfm @

dt(p BH<B for —1<i<0,

then if

m;cM(“';B)d,m;mm-l(t},x(tg<B for all  ¢>0.

If in this second case, « >1, ¢ is monotonic increasing and ¢(0)>0, B=g«, and
2|k|en_1 <1, then x(¢) has a first zero 2,, and @ is monotonie deereasing on [0, 2, 4 1].

Proor. — First suppose that [k/(m + 1)(d/dt)p™+1(1)| < B. Then for 0 <t <1 wehave

(5.6) |l Jam(t)a' ()| <[] | ()| (1 — %)) (|t — 1)] + B) .

Since 0<|z(t)|< 1, |o@)|™(1—2*(F)) <¢w., and we find that [k||z™(¢)a'(s)|<B for
0<t<l. Generally, if we assume that |k||o™(t)2'()|<B for j<t<j+ 1, the same
argument proves |k|[x™(t)a'(t)| <B for j+ 1<t<j+ 2.

Now assume ¢m(f) is continuously differentiable and

wa

Then for 0<t<1 the equation (5.1) reduces to

for —1<t<0.

s’f-llsm

3=

@'(t) = plt— >[ at o S gni— )] [1—a2)]

Multiplying both sides by kx™1(f) and taking absolute values gives |[ka™ (82’ (#)| <
< Cpa|k]( + B)<B. Generally, if [kami(t)x' ()| <B for j<i<j+ 1, the same argu-
ment shows that |k 1(#)z'(t)] < B for j+ 1<t<j+ 2.

Finally, suppose that in addition « >1, B=u«, ¢ is monotonic increasing and
®(0)>0 and 2|k|¢._i<1. Then by the remarks above |kx™1(i)a'(t)]<« for

20 — Adnnali di Malematica
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0<i< oo: Since equation (5.1) can be wrilten as

@' (t) = p(t—1) [—a+£‘%¢m(t—l)] [1—at)] {for O<i<l

and

2ty =ot—1)—a+ ket —1)o'¢—1)][1 —22@)] for t>1,

it follows that x(¢) is monotonic decreasing on [0, 2z, + 1], where 2z, denotes the first
zero of x (possibly 2, = + o0).

We wish to show 2z;< + oo, and to do this we proceed by contradiction. If
@(t)>0 for all 4, let b=Ilimu(#) (since a(f) is monotonic decreasing) and let
d=®(0)< 1. Then the argument used above actually shows that |ke"(t)o'(t)| <dx
for 0<t<l and generally |ka™'(t)o'(t)|<d’c for j—1<i<j. It follows that
%1_,11010 kaxm-1(t)a'(t) == 0, and therefore we have 11{2 2'(t) = —ab(1—b?). Thig implies
that b= 0, but if we select %, so large that [—o + ket —1)2' (¢t —1)][1 — 2?()]< —1
for t>1t,, the usnal argument implies that » has a zero on {4,% +1}. Q.E.D.

If #,>1, then it is clear from the above remarks that #'(z,) <0 and z, is
isolated. However, if 2, <1 and if (d/dt)p™(2,) = am/k, it is possible that #z, is not
isolated. In this case, it is not hard to see that there exists 2}, 2] <1, such that
w(t)=0 for & <t<e), x(t) <0 for 2} < t<2; + 1, and » is monotonic decreasing on
{z’f, z’: -+ 1]. In any event, the same arguments show that & has a first zero 2, > z’: +1.
Since |kam(t—1)z'(f)] <a for ¢>1, it is easy to see that #/(z,) >0 and 2, is
isolated. Now applying Lemma 5.4 to @|[2., 2, + 1], « has a first zero 2, >2 + 1,
and z'(z)< 0. Continuing in this way we find zeros z,, j>2, which are isolated
for j>2, and # is monotonic decreasing on [0,z 4- 1], monotonic increasing on
¢ +1,2,+1], ete. If a>n/2 and [k|<(26,_,)"" it follows by Lemma 5.2 and
the remark following it thatlirtrl) sup |#(¢)] >a or li% sup |#'(t)| >a (@ as in Lemma 5.2).
However under the assumptions on «, [kwm—l(t—-l)w’(t——l)[ < ¢« for all t>1, so by
equation (5.1) we must have lirgx_f;lp ' (1) <2a1ir?jwup Jo(t)] and lirinj;;p lw(t)] > a/2a.

We now proceed as usual. Let § denote the set of confinnous monotonic increasing
functions ¢ on [—1, 0] such that ¢~ is continuously differentiable,

sup
~1<E<0

d
<o¢,&-t(pm(0)=0, p{—1)=0 and O<e@(0)<1.

kd
poly A4 (t)

If pe8, a>1 and |k|<(2¢._)7", let @(:) denote the corresponding solution of (5.1)
and define F(p)e 8 by F(p)(s)=a(2, +1+s), —1<8<0. It is not hard to show
that F is continuous on 8 in the sense that given ¢,e8 and ¢ >0, there exists
4 >0 such that if pe S and

d i, )
sup mipm(t)-d—t%(t) <0,

—1st0
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then sup |y'(8) — 9, (8)] < &, where y= F(p) and y,= F(g,). It is clear that fixed
—1i0

points of F correspond to nonzero periodic seolutions of (5.1), but for technical
reasons F is not quite the right map to consider and § is not quite the right set of
initial functions. Our next lemma suggests another condition for funetions in §.

LEMMA 5.5. — Assume that pe 8, « >1 and |k <(26,_.)"*. Then if »(¢) is the
corresponding solution of (5.1), |#(#)|<A for ¢>z;, where A< 1 and A is inde-
pendent of .

PROOF. — According to Lemma 5.4 and the remarks following it, sup |2(t)| =
= sup {|w(z; + 1)|: j>1}. However, if (z) =0, we then obtain Za

1+w(z+1) i

z+1

= l—asz(t~1)dt+m k

2

k
<“+1m{-

1 xmti(z —1) }

It follows that |#(z + 1)| <A, where A< 1 is the largest solution of

1. (14+4) k
§lOg (i_——Z) = C(+ imt . Q.E.D.

We are now almost done. Let G denote the set of continuously differentiable
functions ¥ on [—1,0] such that p(—1)=10, p(0)<d™, p'(t)>0 for —1<I<0,
P (0)=0 and |(k/m)(d/dt)yp@#)|<a for —1<t<0. If we view & as a subset of
0([—1, 0]), then it is clear that G is closed, bounded and convex. Now assume
that o > /2 and |k| <(20._,) = ((m + 1)/4)(1 4 2/(m — 1))/ and define P(y)=
= (P(yp¥m))m™ for peG@—{0}. It is not hard to see (using Lemmas 5.4 and 5.5)
that @: G—{0} -G —{0} and @ is continuous. Furthermore, by Lemma 5.2 and
the remarks following Lemma 5.4, if yeG— {0} and () is the solution of (5.1)
corresponding to ¥~ then liItn_)S;lp |#(#, + 1)| >a/20. Using this result, it is easy

to see that 0 is an ejective point of ®.
If for AcG we define ;e(A):lil(xgljup {lw' @) —v'(s)|: ye 4, [t—s|<d}, to find a

fixed point of @, it suffices by the remarks in Section 1 to show that w(P(4)) <
<eu(A) for some constant ¢< 1, ¢ independent of 4.

LEMMA 5.6, — If & >n/2 and |k|<(2¢._.)"", there exists a constant ¢< 1 such
that u(P(4)) <eu(4) for every subset A of G.
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PROOF. ~ Suppose that 4cG— {0} and u(d)< d. Given pe @, let x(t) denote
the solution of (5.1) corresponding to ypVm(s). According to Lemma 5.4,
|kam1(t)a' (t)] <o for all +>0. It follows that the set of functions a™(f) 0<i< oo,
corresponding to V", we @, is equicontinuous; and this easily implies that the
set of functions x(f), 0<?< co, corresponding to y'», ped, is equicontinuous.
Of course {y'=: ype@} is equicontinuous.

By applying the above remarks, it is easy to see that given ¢ > 0 there exists a
0 >0, 6 independent of e @, such that |z(f—1)a™1(t)(1—a?(¥)) —a(s—1)am™(s)-
(L—a¥s))|< ¢ if t,5>0 and [f—s|< 8. Since u(d)< d, by taking ¢ smaller we
can also assume that sup {yp'(}) —y'(s)]: ye 4, |t—s|< d} < d. If o(t) is a solution
of (5.1) corresponding to y with pe A, then for 0<?, s<1 and [{—s|< J we ob-
tain the following equations:

{5.8) d%m”‘(t) — % am(s) | <omla(t — 1) 2-2(t) (1 — 2*(t)) —a(s — 1) @m(s) (1 —x°(s)) |
+ [k] lo(t — 1)y’ (t — L)am2 (1) (1 — 22(t)) — (s — L)' (s — L)am=2(s)(1 — 2%(s)) | -

The first term on the right is bounded by ame, by assumption. It is easy to check
that the second term on the right in equation (5.8) is less than the following ex-
pression:

(8.9)  |k||p't—1)—y'(s—1)| ot —1)|(1 —2%2)) +
+ [B] |9 (s — )| Ja(t — Lyam1(1) (1 — 22(8)) — (s — L)am2(s)(1 — 22(s))] .

Since |k||em1(1)(1—a22(t))| <} and [p'(s—1)|<om/k, the expression (5.9) is domi-
nated by }d -+ ame. Therefore, for ¢ so small that 4ame< 1d, we have

d
| Gomt) — 5,26

3 ;
7 <ld<d if  O0<s, t<1 and jt—s|<d.

Since »(f) is monotonic decreasing on [0, 1] and monetonic increasing on [—1, 0]
it is easy to see that

<d if —1<t, s<1 and [t—s|<$.

Now assume that ped, a(f) is the solution of (5.1) corresponding to ¥~ and
2=2, is the second zeroc of x, 2>1. If for r> —1 we define

r<t, s<r+1, 1t——si<6},

d d
C, = sup H 7 x™(t) — % x™(8)
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then exactly the same proof used before shows
(5.10) C, <10, + 20me.
Tterating this estimate we find that

1

1 1
(5.11) C: < 5; Ce s+ 20me (1 gt 2,,_1) .

It we select j such that —1<e—j<0, we already have proved that C,_;< d, so
we have C,<id+ dome<$d.

The estimate above shows that u({®(4))<2d, and since d was any number
greater than u(4), u(P4)) <iu(d). QE.D.

Lemma 5.6 implies (together with our previous remarks) that @ has a fixed point.
This in turn gives a fixed point of F and a nontrivial, 0! solution of (5.1). Thus we
have proved the following theorem:

THEOREM 5.1. — If «>x/2, m>1, and |k|<((m -+ 1)/4)(1 + 2/(m—1))m—vr2
(|k]<% if m==1) then equation (5.1) has a nontrivial continuously differentiable
solution # sueh that #{(—1)==0, z is monotonic increasing on [—1, 0] and 0 < »(0)< 1.
Furthermore, if @ and @ are as above and U is an open neighborhood of the origin
such that ®(@)+« for xelU — {0}, iy(®, G—U)=1.

Theorem 5.1 is not best possible. Computer numerical studies suggest that non-
trivial periodic solutions oceur for a larger range of k. However, these periodic solu-
tions may not be as nice as those guaranteed by Theorem 5.1. For example, they
may not be monotonie increasing from their minima to their maxima and vice versa,
or their maxima may occur before z + 1, z a zero of the periodic solution. Further-
more, numerical studies for the case m =1 guggest that if % becomes too large,
nondamped, oscillatory, nonperiodic behaviour occurs. If m is even, however, it
appears that «nice » periodic behaviour occurs for a much larger range of k than that
given by Theorem 5.1. If this is true, it is completely mysterious from the stand-
point of our techniques.

Acknowledgements. — I would like to thank my colleague, DoN ORTH, Who very
kindly ran computer numerical simulations of a number of the equations discussed
here. These simulations proved invaluable in gaining insight into the equations
and in fact encouraged substantial improvements in early versions of Sections 3-5.

REFERENCES

[1] F. E. BROWDER, On a genceralization of the Schauder fiwed point theorem, Duke Math.
Jour,, 26 (1959), pp. 291-304.

[2] F. E. BROWDER, Another generalization of the Schauder fized poini theorem, Duke Math.
Jour., 32 (1965), pp. 399-406.



306

RoGER D. NussBAUM: Periodic solutions of some wnonlinear, elc.

(3]

(4]
(5]

(6]
{7
(8]
(8]

[10]

[11]
[12]

[13]
[14]
[15]

[16]
[17]

[18]
[19]
[20]
[21]
[22]
23]
[24]
[25]
[26)

[27]

F. E. BROWDER, 4 further generalization of the Schauder fiwed point theorem, Duke Math.
Jour., 32 (1965), pp. 575-578.

F. E. BrROWDER, Asymplotic fized point theorems, Math. Ann., 185 (1970), pp. 38-61.
W. J. ConniNGHAM, A nonlinear differential-difference equation of growth, Proc. Nat.
Acad. Sei. U.8.A., 40 (1954), pp. 708.713,

G. DarBo, Punti uniti in trasformazioni a condiminio non compatio, Rend. Sem. Mat,
Univ. Padova, 24 (1955), pp. 353-367.

R. B. Grarron, 4 periodicity theorem for autonomous functional difrerential equations,
Jour. Diff. Eqns., 6 (1969), pp. 87-109.

R. B. Grarton, Periodic solutions of certain Liénard equations with delay, Jour. Diff.
Eqns., 11 (1972), pp. 519-527.

R. B. Grarrox, Lidnard equations with delay: existence and stability of periodic solutions,
Abstract of talk at the Park City, Utah, S8ymposium on Functional Differential Equa-
tions, March 1972.

A. HarANAY - J. YORKE, Some new resulls and problems in the theory of differential-delay
equations, SIAM Review, 13 (1971), pp. 55-80.

J. Harr, Functional Differential Equations, Springer-Verlag, New York, 1971.

J. Hawe - C. PErELLo, The neighborhood of a singular point of functional differential
equations, Contrib. Diff, Eqns., 3 (1964), pp. 351-375.

8. Kakuraxi - L. MAgxus, On the nonlinear difference-differential equation y'(t) =
== [4 — By(t — 7)1y(t), Contrib. Theory Nonlinear Oscillations, 4 (1958), pp. 1-18.

J. Kaprrax - J. YORKE, On the stability of a periodic solution of a differential-delay equa-
tion, to appear.

V. KLEE, Some topological properties of convex sets, Trans. Amer, Math. Soc., 78 (1955),
pp. 30-45.

C. KuraTowskr, Sur les espaces complets, Fund. Math,, 15 (1930), pp. 301-309.

G. 8. Joxms, The existence of periodic solutions of f{(x) = — af(x — 1)[1+ f{x)], Jour.
Math. Anal. Appl., 5 (1962), pp. 435-450.

G. 8. JoNES, On the nonlinear differential difference equation f'(x) == — of(w — )[1 4 f(2)],
Jour. Math, Anal. Appl., 4 (1962), pp. 440-469.

G. 8. Joxes, Periodic motions in Banach space and applications to punctional differential
equations, Contrib. Diff. Eqns., 3 (1964), pp. 75-106.

R. D. Nusssaum, The fived poini index and asymptotic fized poini theorems for k-sei-
contractions, Bull. Amer, Math. Soc., 75 (1969), pp. 490-495,

R. D. NussBavM, Asympiotic fixed point theorems for local condensing maps, Math. Ann.,
191 (1971), pp. 181-195.

R. D. NussBavwm, The fized point index for local condensing maps, Ann, Mat. Pura Appl.,
89 (1971), pp. 217-258,

R. D. NusspauMm, Some asymptotic fized point theorems, Trans, Amer. Math. Soc., 171
(1972), pp. 349-375.

R. D. NussBauM, 4 generalization of the Ascoli theorem and an application to functional
differential equations, Jour. Math. Anal. Appl., 35 (1971), pp. 600-610.

R. D. NussBavuM, Ewxistence and uniqueness theorems for some functional differential equa-
tions of nmeutral type, Jour. Diff. Eqns., 11 (1972), pp. 607-623.

E. M. WricHT, A nonlinear difference-differential equation, Jour. Reine Angewandte
Math., 494 (1955), pp. 66-87.

R. B. Broww, The Lefschetz Fized Point Theorem, Scott, Foresman and Company, Glen-
view, Illinois, 1971.



