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Summary. — The main resulls are some very general theovems about measurable multifunctions
on absiract measurable spaces with compact values in a separable metric space. It is shown
that measurability is equivalent fo the existence of a poiniwise dense countable family of
measurable selectors, and that the intersection of two compact-valued measurable multifunctions
is measurable. These resulls are used to obtain a Filippov type implicit function theorem,
and a general theorem concerning the measurability of y(t) = min f{{t} < I'(t)} when f is o
real valued function and I' a compact valued multifunciion. An application fo slochastic
deciston theory is given generalizing a result of Benes.

Introduction.

There are numerous situations (for example, in game theory, mathematical eco-
nomies, and decision theory) which give rise to multifunctions defined on an abstract
meagurable space and having compact values in a separable metrie space. The pur-
pose of this note is to prove for such multifunctions some general theorems which
arise frequently in applications. We consider when the intersection of two multi-
functions is measurable, and as a consequence obtain a Filippov type implicit func-
tion theorem. We also show the measurability of certain functions and multifune-
tions which arise naturally in optimization problems. In particular, we consider
the measurability of f(f, ) and of min f({#} X I'(¢)) given that f is measurable in ¢
and continuous in #, and that I" is measurable with compact values. Our results
and methods are natural extensions of those of CasTaiNG [C] and ROCKAFELLAR [R].
They differ from Castaing’s in that the multifunctions involved are defined on an
abstract measurable space instead of on a locally compact space with Radon meagure,
and they differ from Rockafellar’s in that values are allowed to be taken in a sepa-
rable metric space instead of in a Euclidean space. The paper coneludes with an
application to the stochastic decision problem considered by BeENES [B].

We generalize his results by requiring that admissible strategies be selectors,
except on a set of probability 0, for a given constraint multifunction.

(*) The research in this paper was partially supported by University of Kansas General
Research Fund Grants 3918-5038 and 3199-5038.
(**) Entrata in Redazione i1 20 dicembre 1972.
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1. — Measurable multifunctions.

A multifunction F: T'— X is a function whose value for each ¢ in 7T is a non-
empty subset of X. Equivalently, ¥ is a relation in 7' X X whose domain is 7. Through-
out this paper we assume that 7 is a measurable space with o-algebra A, and we
will refer to members of A as measurable subsets of 7. If X is a topological space
then F: T — X is measurable iff F-%(B)= {t|F(t) B @} is measurable for each
closed subset B of X. If U is a set of functions from 7' to X, then U(#) denotes
the set {u(t)jue U}. If u: T— X is a function such that u(f) € F(t) for all ¢, then u
is called a selctor for F.

TarOREM 1. — Let X be a separable metric space and F: T ->X be a multi-
function with compact values. Then ¥ is measurable iff there exists a countable

set U of measurable selectors for F such that F(¢)=U(#) for all teT.

Proor. — This theorem was proved by Castaing [C, Theorem 5.3] in case T is
a locally compact space and A is the g-algebra of y-measurable sets for some Radon
measure y on T. His proof of the «only if » part of the theorem does not use the
topological structure of T, and in fact works in the present circumstances. On the
other hand, let U be a set of measurable selectors such that F(f) = U(t) for each ¢,
and let B be a closed subset of X. Define B,={xcX|d(x, B)< 1/n}. Then, by the
compactness of F(t), F-(B) = {t|F(t) " B, for all n}. Since B,c B,,, when #>m,
the right hand side of this equation is {t|F(f) N B, 0 for all n}. But F(t)N B, 0

iff teu1(B,) for some we U. Thus, FYB)={] U «B,), and F-}(B) is meas-
urable since U is countable. nol ey

Recall from [HV] that F: T — X is (A, C)-measurable iff F-1(B) is measurable
whenever B is compact. Using this concept of measurability, Theorem 1 becomes

THEOREM 1'. ~ i) Let X be separable metric and F: T ->X be a multifunc-
tion with complete values. Then F is (A4, C)-measurable iff there exists a countable

set U of measurable selectors for F such that F(¢)= U(t) for all 1€ T. (For «if»,
the values of ¥ need only be closed instead of complete.)

ii) If X is separable metric and o-compact (i.e., X={J X, where each X,
is compact), and if F: T — X has closed values, then F is measurable (in the usual
sense) iff there exists a countable set U of measurable selectors for F such that

Fi)=U@) for all teT.

PrOOF. — (i) Without loss of generality assume X is complete, replacing X by
its completion if necessary. The « only if » part follows from the proof of the « only
if » part of [C, Theorem 5.4]. To prove «if », it is sufficient, in the proof of the «if»
part of Theorem 1, to prove that, if B is compact, then ¢t e F-Y(B) iff F(f) N B,+#0
for all n. Clearly F(t)y \B,+0 if tc F-1(B). So suppose F({)yNB,#@ for all =n.
For each =, choose z,cF(t)N B, and y.€B such that d(z,, y.)<1l/n. I B is
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compact, there exists a convergent subsequence (y,), of (y.), 88y ¥, —>y. Then
also z, —y. So ye BN F(l), and hence 1€ F~*(B). (Note that, for this «if» argu-
ment, it is sufficient for the values of ¥ to be closed and not necessarily complete).

(ii) Let X= X,, with each X, compact. Assume F is measurable. For
each n, let 7, be "the measurable seb FX,) and define F,: T, - X, by F,({)=
=F({#)NX,. Then F(t)= F,() for each teT, and each F, satisfies the condi-
tions of Theorem 1 {with me%,surabﬂity of F, defined in terms of the restriction of A
to T,). Hence, for each n, there exists a countable family ¥V, of measurable seleetors
for F, such that F,(f)= V,() for all teT,. Let u,: T—X be any fixed measu-
rable selector for F (u, can easily be constructed by piecing together parts of measu-
rable selectors for the F,’s), and let U, be the family of selectors for ' obtained by
extending each member of V, to agree with %, on '~ T,. Clearly each member
of U, is measurable. Finally let U= LnJ U,. Then U is a countable family of
measurable selectors for F and F(t)amagmag F.(t)=F(#). On the other
hand assume U is a countable set of measurable selectors for F such that Fty=TU()
for each t. Since, in the proof of the «if » part of (i), it is sufficient for the values
of F to be closed, it follows that F is (4, C)-measurable. So let B be closed in X,
Then F—1(B)= F~1(g (BNX,)= UFBNX,) e

THEOREM 2. — i) Let E be a separable metric linear space, and let ¥, F,: T —E
be compact valued measurable multifunctions. Then the multifunction F: 7 —>H
defined by F(t) = F,(¢) + F.(f) is measurable.

ii) If, in (i), measurability is replaced by (A, C)-measurability, then only one
of F(¢), F,(¢t) need be compact for each t, the other complete.

i) I, in (i), ¥ is algo o-compact, then only one of F,(t), F,(t) need be compact,
the other closed, for each ¢.

Proor. — We prove (i), (ii), and (iii) simultaneously, using Theorems 1 and 1,
and, in (i), the fact that F(t)= F,(f) + F,(t) is compact, in (ii), the fact that F(¢)
is complete, in (iii), the fact that F(?) is closed.

Let U,, U, be sets of measurable selectors for F,, F,, respectively as in Theorems 1
and 1'. Define U= {u,+ %s|u,€ U, we Uy}. Then for each ¢, we have Pty =

F\(t)+ Fot) 0 Uy(t) + U,(t) 2 Uy(t) + Us(t) = Fu{t) + Fy(t). So F(t)= U(1) for all . It
follows from Theorems 1 and 1’ that F is measurable ((#, C)-measurable in (ii)).

TuEOREM 3. — i) Let X be a separable metric space, and let P\, F,: T—X
be compact valued measurable mulfifunctions such that Fi(f) N Fy(t) £ 9 for all
tel. Then F: T -»X defined by F(i)= F,(f) N F,(t), is measurable,

ii) If measurability is replaced by (4, C)-measurability in (i), then the valnes
of 7, and F, need only be complete.

iii) If, in (i), X iz also o-compact, then the values of F, and F, need only be
complete.
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Proor. — (i) By an embedding theorem of Kuratowski and Wojdyslawski (see
[H, page 81]), X can be uniformly embedded in a separable normed linear space B
{where, if necessary, we replace the metric on X by a uniformly equivalent bounded
one). We regard F,, ¥, as multifunctions into 2. Now let B be a closed subset of E.
Define F,(t)=F,(t) N B, and T'= F;YE)={te T|F,(t) # 0} = F;(B). Then T'c £
and F; is & measurable multifunction from 7" to #. By Theorem 2(i), the multi-
function L: 7'-> H defined by L(t):F;{i)—Fz(t) is measurable. Hence

F(B)y = {t|F,(t) N Fy(t) N B # 0}

= {t|F,(1) N Fy(t) = 0}
= {t0 e Fy(t)— Fu(t)}
= L~({0}) .

Thus F is measurable,

(ii) Use the same proof as for (i), except now assume B is compact. Then FI'
has compact values and we can apply Theorem 2 (ii).

(iif) By (i), F is (A, C)-meagurable. Suppose X = {%JX“, where each X, is

compact, and let B be a closed subset of X. Then F-Y(B N X,) is measurable, and
hence so is F-4B)= Lﬂj P-Y(BN X,).

We are now able to prove the following implicit function theorem.

THEOREM 4. — (i) Let X be a compact metric space, and Y a separable metric
space. Let I': T-» X be a measurable multifunction with closed wvalues, f: T'X
XX — Y a function which is measurable in ¢ and continuous in #, and ¢: 7Y
a measurable function such that g(¢) e f({t}) xI'(¢t)) for all ¢ I. Then there exists a
measurable function y: T'—> X such that y(t)e I'(t) and g(¢)= f(¢, y(t)) for all teT.

(ii) In (i), X need only be a complete separable metric space, if we assume that ¥
is g-compact metric, and that measurability is everywhere replaced by (4, C)-measu-
rability.

ProOF. — i) Define K: T —X by K(f)= {|f(t, ) = g()}. Bach value of K is
closed and non-empty. If we show that K is measurable, it will follow from Theo-
rem 3 (i) that K N I is a measurable multifunction. Any measurable selector y of
E NI is then the desired function. (One exists by Theorem 1).

So lef us prove K is measurable. Let B be a closed subset of X and let D be a
countable dense subset of B. Then

E-(B)= {t|K(t) " B+ 6}
= {8|{(¢, ) = g(t) for some ze€ B}
= U {ilft, ») = g}
=N U {1l(f(t, 2), g(t)) < 1/n}

n  x€D
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To prove the last equality above, note on the one hand that for each ¢ in the
left hand side there exists € B and a sequence (z,) in D such that »,—x and
a{f(t, z,), g(t)) <1/n for each n. On the other hand, suppose for each n that there
exists ¢, €D such that d(f(f, #.), 9(t)) < 1/n. By the compactness of B there is a
subsequence (x, ) of (»,) which converges, say, to zeB. Then f({, #) = g(f).

To show KY(B)€ A, it is thus sufficient to show C'= {#]d(f(t, #), g(t)) < 1/n} e A
for allm and allze D. So fix nand € D. Define h: T — ¥ X ¥ by h(t) = (f(¢, 2), ¢(t)).
Then €=k {(y,2) € YX Y|dy,2)<1/n}). The set {(y,2)e Y X Y|d(y,2)< 1/n} is
the union of countably many closed rectangles 4, X B,,, and for each m, h~(4,,x
X B,) = {t|f(t, ) € A} N g~X(B,) is measurable. Hence €= l# WY4,%xB,) e #.

ii) Proceed as in the proof of (i), except now use Theorem 3 (ii) to show that
K NI is measurable, and Theorem 1’ to obtain a selector for K N I". The proof of
the measurability of K still works, since now we assume that B is compact, and we
Inay assume, by the g-compactness of Y, that each of the rectangles 4,, X B,, is compact.

We will conclude this section with a sufficient condition for the measurability
of minf({f} x I'(t)). We need the following theorem on the joint measurability of
f(t, ). The proof is from KuraTowskl [K, p. 378], where the same argument is
used to obtain a more precise result. The g-algebra on 7' X X is the product o-algebra
of A and the o-algebra of Borel subsets of X.

THEOREM 5. — Let X be a separable metric space, ¥ a metric space, and let
f: TX X — Y be a function measurable in ¢ and continuous in #. Then f is measurable.
In fact, for each closed subset B of Y, f~1(B) is the countable intersection of coun-
table unions of rectangles 4 X F with A€ A and F closed in X.

Proor. — Let D be a countable dense subset of X, let B be a closed subset of ¥,
and let B,= {ye Y|d(y, B)<1/n}. Then f(t,»)e B iff for each integer n there ex-
ists ae D such that d(x, a)<1/n and f(t, a)cB,. (The «only if » part of this sta-
tement is trivial. To see the « if » part, choose a,c D for each » such that d(z, a,) <
<1/n and f(¢, a,) € B,. Then a,—>x, so f{, a,) —f(, &) and

d(f(t, #), B) = lim d(f(t, a,), B) =0
Thus f(f, )€ B.) It follows that
B =1 U {ilft, a) € B.} x {wld(a, &) <1/n} ,
5o that f~1(B) is measurable.

THEOREM 6. — Let X be a separable metric space, let f: TxX X — R be measu-
rable in ¢ and continuous in », and let /: T'— X be a measurable multifunction
with compact values. Then the function y: T— R, defined by y(t)= min f({f} X I'(t)),
is measurable.
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Proor. ~ Using Theorem 1, let U be a countable collection of measurable fune-

tions from T to X such that I'(t)= U(t) for each te 1. Then for any real num-
ber r, we have

y{(—oo, 7)) = {tminf({t} x %)) <7}
== {t|nlinf(fm < T}
= {1] inf f({8 x U(W) <7}
= {t]f(t, w(t)) <r for some ue U}

- gj{t[f(t, u(t)) <r}.

Hence, it is sufficient to prove that {t|f(t, u(?)) < r} is measurable. But this follows
since the function t—7(¢, u(t)) is the composition of ¢ — (¢, u(?)) and (¢, ) —f(t,2)

The first is measurable in the sense that ~2(8) is measurable for each measurable
subset 8 of TxX. The second is measurable by Theorem 5.

2. — An application.

We can now apply the results of the previous section to generalize the stochastic
decision problem solved by Benes in [B]. Indeed, much of section 1 parallels & similar
development in [B]. For a more complete description of the background %o this
problem, we refer the reader to Benes’ article.

Let (2, P, B) be a probability space, and let {r(t, w)|0<t<1} be a measurable
separable stochastic process with values in B* and having continuous sample paths
with probability one. As does Benes, we use the process only to restrict the pattern
of information available in the formation of admissible strategies. In particular,
for each 1[0, 1], let J€, be the s-algebra on £ generated by all sets of the form

{weQla(s, w)e A}, with 0<s<t, A Borel in B~

Je, is the ¢-algebra representing knowledge of the past up to time ¢. Let &, be a sub-
o-algebra of J;.

We assume given a compact metrie space X of control peints; a function ¢: IX
X 2 X X — R* representing cost per unit time as a function of the time ¢, the event w
and applied control #; and a constraint multifunction I': Ix 2 — X. The function
e(t, w, ¢) is continuous in # and measurable in the variables ¢, w together relative to
the product o-algebra £X B on I X 2 (where £ is the family of Lebesgue measurable
subsets of I). Moreover, we assume that ¢(f, w, ») is uniformly bounded by a mea-
surable function r: Q — R* with finite expectation. [I'(t, ) is assumed to be measu-
rable relative to £x % and in addition F.measurable in o for each t.
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Let A denote Lebesque measure on £ and let AX.P denote the product probabi-
lity measure on. £X3B. An admissible strategy is a function y: IX £ -+ X which is:
(i) a selector for I: I X 2 — X with probability 1 (i.e., y(f, »)eI'(, w) for all (¢, o)
in some set of measure 1), (ii) measurable relative to £X$, and (iii) F,-measurable
in o for each te[0,1]. An optimal strategy is an admissible strategy which mini-
mizes the integral

1

Efc(t, w, y(t, w))dt.
0

The problem is to show that such optimal strategies exist.

Our description of this problem differs from Benes’ in two ways. He allows admis-
sible strategies to take values anywhere in X at all times, i.e., the constraint multi-
function I” has the constant value X. There is also a technical difference. Benes
deseribes full knowledge of the past in terms of ¢-algebras on the space C(I) of con-
tinuous functions from I to R», The cost function has I X C(I) X X for its domain,
and admissible strategies are defined on I X 0(I). The problem then is to find y: I'X
X O(I) - Rt minimizing

1

Efc(t, a(-, o), y(t, a(-, w)))dt.

1]

In his solution, Benes uses a measure theoretic lemma to recast the problem in terms
of Q and x(f, ). We prefer, for the sake of simplicity, to describe the problem in
terms of Q and x(}, ») to begin with.

TEEOREM 7. — There exists an optimal strategy.

Proow., — Let & be the sub-o-algebra of £xH formed of all measurable sets H
such that every {-section of F is in F,. Then the process # = x(f, ) is measurable
with respect to &, and the criteria for admissibility of y: IX£Q —X are equiva-
lent to:

i) y(#, 0) eI}, w) for all {f, w) in a member of & of Ax P-measure 1.

ii) y is measurable with respect fto F.

Let F be the completion of § with respect 0 A X P, and define K: IX 2X X —R*
by
K(t, w, 2) = E{c(t, v, ®)|F} .

K is, by definition, an F-measurable function of (i, w) for each . Moreover, K(f, w, ®)
is a continuous function of x for each (f, w) in a member M of F having AXP-
measure 1. (This latter fact is not entirely trivial. But using the fact that e(f, w, x)
(regarded as a stochastic process on I x £ with parameter set X) can be replaced by

a separable process, it can be shown, for each (f, w) in some member of F with
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AX P-measure 1, that

sup |E{e(t, w, 2,)|F} — E{c(t, w, mz)]‘f}KE{ sup le(t, w, x,) — e(t, w, aoz){]?}.

d(y,a) <h dixg,m,)<h

Since ¢(t, w, #) is bounded by r(w) with E(r(w))< co, it follows that for (f, ») in
some member of F with A X P-measure 1 that the right hand side of the inequality
above tends to 0 as A—0. Hence K{(¢, w, #) is a continuous funetion of » for (¢, w)
in a member M of F of measure l.)

By Theorem 6, the function y: M — R defined by

y(t, w) = min K({t, w} X I'(t, w}) , if (h,w)eM,

is F-measurable.
By Theorem 4, there exists on J-measurable function y,: M — X such that

7ty w)e I'(t, w), and y(t, w) = K(t, w, y:(t, w)) ,

for all (¢, w)e M. Let y, be any extension of y, over I X 2 to an F-measurable selec-
tor for I', and let y, be an F-measurable function obtained by altering y, only on a
set of measure 0. Then y, is an admissible strategy. It is also optimal. For let ¢
be any admissible strategy. Then

K(t, w, ys(t, 0)) <E(t, o, y{, o)) a.e.
By applying {B, Lemma 3], this inequality is equivalent to
E{c(ta o, vs(t w)) |J{T} <E{G(t; o, p(t, a))) ]3"'} a.e.

Then infegrating both sides and reversing the order of integration yields the desired
optimality of y,.
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