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Summary. - The main results are some very general theorems about measurable multi]unctions 
on abstract measurable sraces with compact values in  a separable metric space. I t  is shown 
that measurability is equivalent to the existence o] a pointwise dense countable ]amily o] 
measurable selectors, and that the intersection o] two compact.valued measurable multi]unctions 
is measurable. These results are used to obtain a Filippov type implicit ]unction theorem, 
and a general theorem concerning the measurability o] y ( t )=  min/({t}× F(t)) when ] is a 
real valued ]unction and F a cow, pact valued multi]unction. A n  application to stochastic 
decision theory is given generalizing a result of Benes. 

Introduction. 

There are numerous  situations (for example,  in game theory,  mathematical  eco- 
nomics, and decision theory)  which give rise to multi]unctions defined on an abstract  
measurable space and having compact  values in a separable metr ic  space. The pur- 
pose of this no te  is to  prove for such multifunction~ some general theorems which 
arise f requent ly  in applications. We consider when the intersection of two multi- 

functions is measurable,  and as a consequence obtain a Fil ippov type  implicit func- 
t ion theorem.  We also show the measurabi l i ty  oi certain functions and mult~unc-  
t ions which arise na tura l ly  in opt imizat ion problems. In  particular,  we consider 
the  measurabi l i ty  of f ( t ,  x) and of rain ]({t} × F ( t ) )  given tha t  ] is measurable in t 
and continuous in x ,  and t h a t / ~  is measurable with compact  values. Our results 

and methods  are na tura l  extensions of those of CAS~AI~G [C] and R O C ~ A F E I ~  [R]. 
They  differ f rom Castaing's in t h a t  the  mult i]unctions involved are defined on an 
abstract  measurable space instead of on a locally compact  space with Radon measure, 
and they  differ f rom Rockafellar 's  in tha t  values are allowed to be taken  in a sepa- 
rable metr ic  space instead of in a Eucl idean space. The paper  concludes wSth an 
application to  the  stochastic decision problem considered by  BENES [B]. 

We generalize his results by  requiring tha t  admissible strategies be selectors, 
except  on a set of probabi l i ty  0, for a given constraint  multi]unction. 

(*) The research in this paper was partially supported by University of Kansas General 
Research Fund Grants 3918-5038 and 3199-5038. 

(**) Entrata in Redazione il 20 dicembre 1972. 
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1. - M e a s u r a b l e  m u l t i f u n c t i o n s .  

A mult i funct ion ~ :  T - +  X is a funct ion whose value for each t in T is a non- 
empty  subset of X. Equivalent ly , /~  is a relation in T X X whose domain is T. Through- 
out  this paper  we assume tha t  T is a measurable space with ~-algebra A, and we 

will refer to  members  of ~ as measurable subsets of T. I f  X is a topological space 
then  F :  T - + X  is measurable iff F-~(B)--~ - { t lF ( t )~B#~  } is measurable for each 
closed subset B of X. I f  U is a set of functions from T to  X, then  U(t) denotes 

the  set {u(t)lu~ U}. I f  u: T-->X is a funct ion such tha t  u(t) e~(t) for all t, then 
is called a selctor for /~ .  

T~EO~E~ 1. - Let  X be u separable metric space and J~: T-+X be a multi- 
funct ion with compact  values. Then /~ is measurable iff there exists a countable 
set U of measurable selectors for F such tha t  F ( t ) =  U(t) for all t e T. 

PR00F. -- This theorem was proved by  Castaing [C, Theorem 5.3] in case T is 
a locally compact  space and ~ is the a-algebra of #-measurable sets for some Radon 
measure # on T. His proof of the  ~ only if ~> par t  of the theorem does not  use the 
topological s t ructure  of 27, and in fact  works in the present  circumstances. On the 
other  hand,  let U be a set of measurable selectors such tha t /~ ( t )  = U(t) fox" each t, 
and let  B be a closed subset of X. Define B~={zeXId(~ , B ) <  l /n}.  Then, b y  the 
compactness of F(t)~ l~-~(B)={tIF(t  ) n / ~ ¢ O  for all n}. Since B~cB.~, when n >m, 
the  r ight  hand  side of this equat ion is {tIF(t ) ~ B = # 0  for all n}. Bu t  F( t ) (3  B,=/= 0 

iff teu-~(B,) for some u e  U. Thus, /~-~(B)-~ N [_J u.-~(B~), and F-~(B) is meas- 
urable since U is countable. ~=~ ~ 

l~ecall f rom [HV] tha t  F :  T - >  X is (A, C)-measurable iff F-~(B) is measurable 
whenever B is compact.  Using this concept of measurabil i ty,  Theorem 1 becomes 

TrrEO~E~r 1'. - i) Let  X be separable metr ic  and F :  T-~-X be a multifunc- 
t ion with complete values. Then F is (~, C)-measurable iff there  exists a countable 
set U of measurable selectors for /~ such tha t  F ( t ) =  U(t) for all t e T. (For ~if ~>, 
the values of ~' need only be closed instead of complete.) 

ii) If  X is separable metr ic  and a-compact  (i.e., X =  U X~ where each X~ 
is compact) ,  and if F :  T - ~ X  has closed values, then  iv is measurable (in the usual 
sense) iff there  exists a countable set U of measurable selectors for F such tha t  
F(t) = U(t) for all t z T. 

P~ooF. - (i) Wi thou t  loss of general i ty  assume X is complete,  replacing X b y  
its complet ion if necessary. The <~ only if >> par t  follows f rom the  proof of the  <~ only 
if ~> par t  of [C, Theorem 5.4]. To prove ~ if >4 it  is sufficient, in the  proof of the  << if >> 
par t  of Theorem 1, to prove tha t ,  if B is compact ,  then  t ~ F-I(B)  iff _F(t) n / ~ , ¢  0 
for  all n. Clearly E(t)r~B~:/=O if teF-~(B). So suppose F ( t ) ¢ 3 / ~ : ~ O  for all ~. 
For  each n, choose ~ _ F ( t ) t 3 B ,  and y , ~ B  such t h a t  d(~ , y , )< l /n .  If  B is 
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compact, there exists a convergent subsequence (y.~), of (y~), say y.-->y. Then 
also x~-->y. So y~Bt~F(t) ,  and hence t~F-I(B). (Note that ,  for this ((if)> argu- 
ment,  it  is sufficient for the values of F to be closed and not  necessarily complete). 

(if) Let  X =  UX~, with each X~ compact. Assume F is measurable. For  
each n, let T .  be the measurable set F-I(X.) and define F , :  T~->X~ by  F~(t)= 
= F(t) ~ X~. Then F(t) = U F~(t) for each t ~ T, and each F~ satisfies the condi- 
t ions of Theorem 1 (with mensurabfl~ty o f / v  defined in terms of the restriction of A 
to T.). Hence, for each n, there exists a countable family V, of measurable selectors 
for F~ such tha t  F~ ( t )=  V,(t) for all t~T . .  Let  Uo: T - > X  be any fixed measu- 
rable selector for F (u0 can easily be constructed by piecing together parts of measu- 
rable selectors for the F,'s), and let U~ be the family of selectors for ~v obtained by 
extending each member of V~ to agree with Uo on T--~ T~. Clearly each member 
of U. is measurable. Finally let U =  ~J U~. Then U is a countable family of 

n 

measurable selectors for F and H(t)~ ~(~ D U ~  D y F.(t) = F(t). On the other 

hand assume U is a countable set of measurable selectors for F such tha t  E(t) = U(t) 
for each t. Since~ in the  proof of the (( if ~) part  of (i), i t  is sufficient for the values 
of F to be closed, it  follows tha t  F is (A, C)-measurable. So let B be closed in X. 
Then (B x . ) )  = 

Tt~EO~.~ 2. - i) Let  E be a separable metric linear space, and let F~, F~: T-->E 
be compact valued measurable multifunctions.  Then the mult ifunetion F :  T->E 
defined by F ( t ) =  F~( t )+  F2(t) is measurable. 

if) If, in (i), measurabil i ty is replaced by (A, C)-measurability, then only one 
of F~(t), F2(t ) need be compact for each t, the other complete. 

iii) If, in (i), E is also g-compact, then  only one of F~(t), F~(t) need be compact, 
the other closed, for each t. 

P~ooF. - We prove (i), (if), and (ii~) simultaneously, using Theorems i and 1', 
and, in (i), the fact  tha t  F(t) = F~(t) 9- F~(t) is compact, in (if), the fact tha t  F(t) 
is complete~ in (iii), the fact  t ha t  F(t) is closed. 

Let  UI, U: be sets of measurable selectors for F~, F~, respectively as in Theorems 1 
and 1'. Define U =  (u~÷ u~tux~ U~, @ss U~}. Then for each t, we have iw(t)= 
~(t )  + ~( t )  ~ ~L(t) + u~(t) :~ ~ ( t )  + ~h(t) = F~(t) + F~(t). So F( t )  .... u( t )  for  a n  t. ~t 

follows from Theorems 1 and 1 ' tha t  F is measurable ((~4, ~)-measurable in (ii)). 

TgEO~.E~ 3. - i )  Let  X be a separable metric space, and let F~, F~: T-->X 
be compact vs~lued measurable multifunctions such tha t  F~(t)~ F~(t):~(~ for all 
t eT .  Then 2': T - > X  defined by F(t)= F~(t) nFs(t), is measurable. 

ii) I f  measurabil i ty is replaced by (~, ~)-measurabili ty in (i), then the values 
of F~ and F~ need only be complete. 

iii) If,  in (i), X is also a-compact, then the values of F~ a~d F~ need only be 
complete. 
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P~ooF. - (i) By  all embedding theorem of Kuratowski  and Wojdyslawski (see 
l i t ,  page 81]), X can be uniformly embedded in a separable normed linear space E 
(where, if necessary, we replace the  metric on X by  a uniformly equivalent bounded 
one). We regard ~T1, F~ as multifunctions into E. Now let B be a closed subset of E. 
Define F~(t) ~- F l ( t  ) n B ,  and T ' =  F~I(E) ---- {t e TIF'~(t ) ¢ 0} : F~(B) .  Then T'e  A 
and 27,~ is a measurable mult i funet ion from /7' to E. By  Theorem 2(i), the multi- 
function L:  T ' - * E  defined by  L ( t ) :  F:( t)--F~(t)  is measurable. Hence 

F-I (B)  = {tIF~(t ) r~ F~(t) n B ¢ O} 

= {ttF~(t ) r~ F~(t) ~e 0} 

= (t]0 ~ F~(t) --  F~(t)} 

= L - I ( ( O } ) .  

Thus F is measurable. 

(if) Use the same proof as for (i), except now assume B is compact. Then F~ 
has compact values and we can apply Theorem 2 (if). 

(iii) By  (if), 1~ is (A, C)-measurable. Suppose X =  U X~, where each X~ is 

compact, and let B be a closed subset of X. Then F- I (B  n X,) is measurable, and 
hence so is F-I(B) = U F-~(B n X~). 

We are now able to prove the following implicit function theorem. 

T~tEogE~ 4. - (i) Let  X be a compact metric space, and Y a separable metric 
space. Let  F:  T - - > X  be a measurable mult ifunction with closed values, ]: TX 
xX--> Y a function which is measurable in t and continuous in x, and g: T---~ Y 

a measurable function such tha t  g(t)e]({t}) × I'(t)) for all t e T. Then there exists a 
measurable function y: T - ~ X  such tha t  y( t )eF( t )  and g( t ) - - ] ( t ,  7(t)) for all t e  T. 

(if) In  (i), X need only be a complete separable metric space, if we assume tha t  Y 
is a-compact metric, and tha t  measurabil i ty is everywhere replaced by (A, C)-measu- 
rabili ty.  

P ~ o o L -  i )Def ine  K :  T - + X  by K ( t ) :  { x t / ( t , x ) = g ( t ) } .  Each value of K is 
closed and non-empty.  I f  we show t h a t  K is measurable, i t  will follow from Theo- 
rem 3 (i) tha t  K n F is a measurable mult ifunction.  Any  measurable selector y of 
]~ r~ 1~ is then  the  desired function. (One exists by  Theorem 1). 

So let us prove K is measurable. Let  B be a closed subset of X and let D be a 
countable dense subset of B. Then 

K-~(B) ~- {tlK(t) ~ B ¢: O} 

= {t]/(t, x ) =  g(t) for some x e B }  

-~ [_J {tlf(t , x) = g(t)} 
mEB 

-= N LJ (t]d(](t, x), g(t)) < l/n} 
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To prove  the  last  equa l i ty  above,  note  on the  one hand  t h a t  for each t in the 

lef t  hand side there  exists  x e B and  a sequence (xn) in D such t h a t  x.-->x and  

d(](t, x.), g( t ))<l/n for each n. On the  o ther  hand,  suppose for each n t h a t  there  

exis ts  x . e D  such t h a t  d(/(t~x.),g(t))< 1In. B y  the  compactness  of B there  is a 
subsequence (x.~) of (x.) which converges,  say, to x ~ B .  Then f(t~ x)-~ g(t). 

To show K-I(B) ~ A, i t  is thus  sufficient to show C-~ (tId(/(t , x), g(t)) < 1In} ~ A 
for  all  n and  all x e D. So fix n and  x e D. Define h: T--> I7 × Y b y  h(t) ~ (f(t, x), g(t)). 
Then  C---- h-l({(y, z) e Y ×  ~[ld(y, z) < l /n}) .  The set {(y, z) e ~ ×  Yld(y, z) < 1In) is 
the  union of coun tab ly  m a n y  closed rectangles  A~ × B,,, and for each ca, h-~(A~ × 
× B~) = {t]/(t, x) e A,~} (3 g-~(B~(,) is measurable .  Hence  C-~ U h-~(A~ × B,~) e A. 

ii) Proceed as in the  proof  of (i), except  now use Theorem 3 (ii) to show tha t  
K (3 F is measurable ,  and  Theorem 1' to ob ta in  a selector for K (3 F. The proof  of 

the  measurab i l i ty  of K still works,  since now we assume t h a t  B is compact ,  and we 

m a y  assume,  b y  the  a-compactness  of Y, t h a t  each of the  rectangles A~ × B~ is compact .  

We will conclude this section wi th  a sufficient condition for the  measurab i l i ty  

of minf({t}×F(t)) .  We need the  following theorem on the  jo int  measurab i l i ty  of 
](t, x). The proof  is f rom KVR.ATOWSr:I [K, p. 378], where the  same a rgumen t  is 

used to obta in  a more  precise result .  The g-algebra on T × X is the  p roduc t  g-a3gebra 
of A and  the  g-algebra of Borel  subsets  of X.  

TKEO~E)~ 5. -- Le t  X be a separable  met r ic  space, :Y a met r ic  space, an4  let  

/ :  T × X -+ Y be a funct ion measurab le  in t and  cont inuous in x. Then ] is measurable .  

I n  fact ,  for each closed subset  B of Y, ]-~(B) is the  countable  intersect ion of coun- 
table  unions of rectangles  A × F  wi th  A ~ A and F closed in X.  

PlC00F. -- Le t  D be a countable  dense subset  of X,  let  B be a closed subset  of Y, 

and  let  B~= {ye  Y ld (y ,B)<l /n} .  Then ] ( t , x ) e B  iff for each integer  n there ex- 

ists a e D  such t h a t  d(x, a ) < l / n  and ](t, a )eBn.  (The <~ only if ~> pa r t  of this sta- 
t e m e n t  is t r ivial .  To see the  << if ~ par t ,  choose a~ e D for each n such t ha t  d(x, a~) < 
< 1/n and ](t, am) e B~. Then a , - +  x, so /(t, a~) --> ](t, v~) and 

Thus  ](t, x) ~ B.) 

d(/(t, B) = a(l(,, a.), B) = 0 .  

I t  follows t h a t  

f-l(B) = A [J {t[l(t, a) eBb} × {xld(x , a) < l / n } ,  
n n E D  

so t h a t  /-I(B) is measurable .  

T ~ E o m ~ f  6. - Le t  X be a separable  met r ic  space, let  f:  T × X - + R  be measu-  
rable  in t and cont inuous in x, and  let _F: T - +  X be a measurable  mul t i funct ion 

with compac t  values.  Then the  funct ion y: T - + R ,  defined b y  y(t) ~ rain ]((t) × T'(t)), 
is measurable .  
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Pl~OO]~. - Using Theorem 1, let U be a countable collection of measurable func- 

tions from T to X such tha t  F ( t ) ~  U(t) for each t e T. Then for any  real num- 

ber r, we have 

y-~((--~, r)) -{tlmin] @ × r(t)) < r} 

= (t]min]({t} x U(t)) < r} 

--  {t t in f  f({t} × U(t)) < r} 

= {t]i(t, u(t)) < r for some u ~ U} 

....... U {tl](t, u(t)) < r} .  
~tCU 

Hence, it is sufficient to prove tha t  {tl](t , u(t)) < r} is measurable.  Bu t  this follows 
since the funct ion t -+/ ( t ,  u(t)) is the  composition of t -~ ( t ,  u(t)) and (t, x) -+/ ( t , x )  

The first is measurable  in the  sense tha t  t-~(S) is measurable for each measur~ble 

subset S of T ×  X. The second is measurable  by  Theorem 5. 

2.  - A n  a p p l i c a t i o n .  

We can now apply  the results of the previous section to generalize the stochastic 

decision problem solved by  Benes in [B]. Indeed,  much of section 1 parallels a similar 
development  in [B]. For  a more complete description of the  background to  this 

problem, we refer the  reade1 to  Benes '  article. 
Let  (~2, P ,  33) be a probabi l i ty  space, and let {x(t, co)]0<t<]}  be a measurable 

separable stochastic process with values in R ~' and having continuous sample paths  
with probabi l i ty  one. As does Benes, we use the  process only to  restr ict  the pa t t e rn  
of informat ion available in the  format ion of admissible strategies. In  pal~icular, 
for each t e [0, 1], let JEt be the  a-algebra on D generated by  all sets of the form 

{ t o e , I x ( s ,  co )cA} ,  with 04s<~t ,  A Borel  in R ~. 

JEt is the  a-algebra representing knowledge of the  past  up to t ime t. Let  ~-t be a sub- 

a-algebra of JEt. 
We assume given a compact  metr ic  space X of control  points;  a funct ion c: IX 

× ~ × X--> R + represent ing cost per nn i t  t ime as a funct ion of the  t ime t, the  event  
and applied control  x; and a constraint multi/unction I': I X  ~---~X. The function 
e(t, co, x) is continuous in x and measurable in the variables t, co together  relative to 
the  produc t  a-algebra ¢-× 55 on I × ~ {where £ is the  family of Lebesgue measurable 
subsets of I) .  Moreover, we assurae t h a t  c(t, ~o, x) is uni formly bounded b y  a mea- 
surable funct ion r: .(2 . ~ R  + with finite expectat ion.  F(t , co) is assumed to be measu- 
rable relat ive to £ X 33 and in addit ion 5%-measurable in o~ for each t. 



C. J .  ]~ISfM]~LBEICG - ~ .  S. VAN VLECK: Multifunctions on abstract, etc. 235  

Let  2 denote  Lebesque measure on g and let ~ X P denote the product  probabi- 

l i ty  measure on ~×33. An admissible strategy is a funct ion 7: I × ~ - - ) - X  which is: 
(i) a selector for /~: I×.(-2--->X with probabi l i ty  I (i.e., y(t, o~)eF(t, ~) for all (t, co) 

in some set of measure 1), (if) measurable relat ive to £×33, and (iii) Yt-measurable 
in co for each t e [0, 1]. An optimal strategy is an admissible s t ra tegy which mini- 
mizes the  integral  

1 

Eft(t, o~, r(t, o~))dr. 
0 

The  p rob lem is to show t h a t  such opt imal  strategies exist,. 
Our  description of this problem differs from Benes'  in two ways. He allows admis- 

sible strategies t,o take  values anywhere  in X at all t imes, i . e ,  the  constraiat  multi- 
funct ion I" has ~he constant  value X.  There is also a technical  difference. Benes 

describes full knowledge of the  past, in terms of g-algebras on the  space C(I) of con- 

t inuous functions from I to R". The cost funct ion has 1 × C(1)× X for its domain, 
and admissible strategies are defined on I X  C(I). The problem then is to find 7: I X  

X C(I) -+ R + minimizing 
1 

0 

In his solution~ Benes uses a measure theoret ic  lemma to recast  the  problem in terms 
of £2 and x(t~ ¢o). We prefer ,  for t,he sake of simplicity, to describe the  problem in 

t e rms  of ~2 and x(t, o~) to  begin with. 

TH]~Ol~]~ 7. - There exists an opt imal  strategy.  

P~ooF.  - Le t  ~ be the  sub-a-algebra of £X 33 formed of all measurable sets E 
such t h a t  eve ry  t-section of E is in ~ t .  Then the  process x ---- x(t, o~) is measurable 

with respect, to ~-, and the criteria for admissibility of ~,: I X  ~ - - > X  are equiva- 

len t  t,o: 

i) y(t, ~o)EF(t, a)) for all (t, co) in a member  of W of 2 × P - m e a s u r e  1. 

if) 7 is measurable  with respect  to ~-. 

Le t  ~ be t,he complet ion of 9 7 with respect  to 2 X P ,  and define K :  I × Y 2 X X - ~ R  + 
b y  

K(t, o~, x) -~ E(c(t, oJ, x)[2"} . 

K is, by  definition, an W-measurable funct ion of (t, ~o) for each x. Moreover, K(t~ oJ, x) 
is a continuous funct ion of x for each (t, o)) in a member  M of ~ having ~ × P -  
measure ! .  (This la t te r  fact  is not  ent i re ly  trivial.  Bu t  using the  fac t  t ha t  c(t, ~o, x) 
(regarded as a stochastic process on I x / 2  with pa ramete r  set X) can be replaced by  
a separable process, it can be shown~ for each (t~ e)) in some member  of ~- with 
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2 ×-P-measure 1, t ha t  

sup ]E(c(t, co, x~)]Y} --E(c(t ,  09, x2)]Y}l<E{ sup le(t, co, x~)--c(t, co, x~.)[ ]57}. 
d(x~,xf)<h d(x~,x~)~h 

Since c(t, co, x) is bounded by  r(o)  with E(r(co))< c~, it follows tha t  for (t, co) in 
some member  of 5 ~ with ~ × P-measure  1 tha t  the right hand  side of the inequali ty 
above tends  to  0 as h--> 0. Hence K(t, co, x) is a continuous funct ion of x for (t, co) 
in a member  M of ~- of measure 1.) 

By  Theorem 6, the  funct ion y: M->]~  defined b y  

y(t, co )=minK({ t ,  co}×I'(t, co)), if (t, c o ) e M ,  

is ~-measurable .  

By  Theorem 4, there  exists on 3=-measurable funct ion y~: M - + X  such tha t  

y~(t, co) ~ F(t, co), and y(t, co) = K(t, co, y~(t, co)), 

for all (t, co) ~ M. Let  yo be any extension of y~ over I X  t9 to an ~-measurable  selec- 

tor  for F, and let Y3 be an ~--measurable funct ion obtained by  altering y~ only on a 
set of measure 0. Then y~ is an admissible strategy.  I t  is also optimal. For  let y 
be any  admissible s t rategy.  Then  

K(t,  co, y~(t, co)) <K(t ,  co, y(t, w)) a.e. 

By applying [B, Lemma 3], this inequal i ty  is equivalent  to 

co))I } <E{c(t, r(t, co))I } a.e. 

Then integrat ing bo th  sides and reversing the order of integrat ion yields the desired 
opt imal i ty  of Y3. 
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