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S u m m a r y .  - Let A be a symmetric N x N real-matri'x-valq~ed function on a connected region f2 
in R ~, with A positive definite a.e. and A,  A -1 locally integrable. Zet b and c be locally 
integrable, non.negative, real-valued functions on ~, with e positive, a.e. Put a(u, v) 
=~((AVu, Vv) +buv) dx. We consider the boundary value problem a(u, v) =f]vcdx, for all 

Y2 

v~ ©~(D), and the eigenvalue problem a (u , v )=  ~uvcdx,  for all v ~ Co(f2 ). Positivity of 

the solution operator ]or the boundary value problem, as welt as positivity of the dominant 
eigen]unetio.n (if there is one) and simplicity of the corresponding eigenvalue are proved to 
hold in this context. 

1 .  - I n t r o d u c t i o n .  

Consider a second-order self-adjoint boundary  value problem of the form 

(1.1) 

(1.2) 

Lu = --  Z ~= a.(x) ~= + b(¢)u = 1, 
i,~=1 (J~('i J 

/~u = #(x)u + ~ - - ~ u :  o ~u 

in /2,  

on ~/2, 

Hero /2 is a bounded region in R ~ having smooth boundary,  v is given by  r(x) = 
= A ( x ) n ( x )  where A ( x ) =  (%(x))~,~=1., ~ and n(x) is the uni t  outward normal to 3/2 
at  x; fl(x) is a reM-vMue4 function on ~/2 and ~ is a constant ,  and ei ther fl(x) -~ 1 

and ~ = 0 or # ( x ) > 0  and ~ = 1. Suppose tha t  /2 is connected and tha t  Z is uni- 
formly elliptic in ~ .  I f  b(x) and fi(x) do not  bo th  vanish identically (on ~ and 3/2 
respectively) then  the differential operator  £ on L2(/2) determined by  Z and B is 
positive definite a.nd has a compact  inverse. Under  these assumptions, together  
with the classical smoothness conditions on the boundary  3/2 and on the coefficients 
in L ~nd B,  it  follows f rom the  ma x i mu m principle tha t  the  Green's funct ion G for £ 
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satisfies 

G(x, y) > O , x :/: y , x, y e ~ . 

Under the same assumptions, the least eigenvMue of the eigenvalue problem 

(t.3) JSu = ;de(x)u in ~, B u  = 0 on 8[2 , 

where e ( x ) >  0 on £2, is positive and simple and the corresponding eigenfunction is 
of one sign and does not  vanish in ~2. FinMly, this eigenfunction minimizes the 
l~ayleigh quotient 

.,.,: I j °.,.,..°.. + +2'-'-"" ,.I/(s-.,.,.,x, ,-) 

in the class of hmctions u ~ C~(~) tha t  satisfy 

/~u = 0 on r -  {x e ~ : / ~ ( x )  > 0} .  

The purpose of this paper is to establish analogous results for the weak problems 
corresponding to (1.1), (1.2), and (1.3) when the coefficients are not necessarily con- 
tinuous~ when /~ is not necessarily uniformly elliptic, and when ~2 is not necessarily 
either bounded or smoothly bounded. For  problems of this generality there is avai- 
lable neither a strong maximum principle nor, even when b ( x ) ~  0, a t t a rnack  
inequali ty (see however the remark following the proof of Theorem 4.1). In  lact  
we obtain our results not  by  a local analysis of solutions of (1.1) bu t  rather by  ana- 
lysis of the properties of the Sobolev type function spaces natural ly associated 
with (1.1), (1.2). We are primarily in teres~d in the Diriehlet problem, and  the hypo- 
theses which we impose are too weak to permit formulation of general self-adjoint 
boundary  conditions. Thus we do not  a t t empt  here to t rea t  boundary  conditions of 
the generality of those discussed above. Our results however do apply to mixed 
boundary  conditions consisting of the Dirichlet condition on a portion of the boundary  
and natura l  boundary  conditions on the remainder of the boundary.  Formally, such 
boundary  conditions can be writ ten 

(1.4) q~ = 0 on /71 ~--~ = 0 on /'2, 

where  ~ is as above ,  r l n  Q = 0, r l u  r~  = f2. 
The relation between certMn of our methods and  the methods used in [3] should 

be emphasized. This connection is explained further in the remarks following the 
proofs of Lemmas 3.6 and 4.3. 

For  the classical existence and uniqueness theory of (1.1)7 (1.2) see M~A~DA [18]. 
Some references for positivity properties of solutions of (not necessarily self-adjoinQ 
second order boundary  vMue problems are [3], [8], [22], [27]. The indicated pro- 
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perties of the first eigenvaluc and its corresponding eigenfunetion are proved, at 
least for special cases, in [8], [11], [31]. In  general these follow from the theory  of 
positive operators [13], [14], [15], a l though the references cited generally make over- 
restr ict ive hypotheses which, in particular,  rule out the Dirichlet boundary  conditions; 
see however  the remark  on page 923, [13]. 

Some sources in which elliptic equations are t rea ted  under  boundedness and ellip- 
t ic i ty  conditions similar to (but in all cases somewhat stronger than) ours are KRUZKOV, 
[16], MIra~:HY and STA1VIPACCHIA, [21], and TRUDINGER, [29] and [30]. These authors 
t rea t  non-self-adjoint operators and al though they  are concerned with problems 
essentially different f rom those which arc our main concern, there is some overlap 
of ideas between our work and theirs. In  fact  we have been guided somewhat in 
our choice of nota t ion by  [30]. We note tha t  under  their  somewhat stronger assump- 
tions together  with some fur ther  addit ional  hypotheses,  the ItARNACK inequalities of 
KRUZK0V [16] and TRUDINGER [29] can be used to prove a posit ivi ty result of the 
sort we prove here. See the remark  following the proof of Theorem 4.1. 

The original mot iva t ion  for proving the results in this paper  came from certain 
problems arising in connection with the work [7] on uniqueness of positive solutions 
of quasilinear elliptic boundary  value problems. Indeed  the main result of [7], Theo- 
rem 1, can be regarded as a non-linear analogue of Theorem 5.1 below. 

2. - Preliminaries. 

Let  /2 be a connected open set in R ~. Below we shall use the following conven- 
tions and notations.  First ,  since such distinctions are not  critical for our purpose, 
we shall not  explicitly distinguish between an equivalence class of functions (with 
respect to equal i ty  almost everywhere) and a representat ive of such an equivalence 
class. By  a subset of /2 we will always unders tand  a measurable subset; set inclus- 
ions and set inequalities are to be unders tood as holding to within a set of measure 
zero. Finally,  an inequal i ty  asserted for a funct ion ] on a set E is to be understood 
as holding almost everywhere on E. 

We will denote Lebesgue measure b y  #;  the characteristic function, defined on /2 ,  
of the set /~ c / 2  will be denoted by  ;~,. For  a measurable function ] defined on /2, 

s(/) = (x e / 2 : / ( x )  # 0} .  

Following a s tandard nota t ion we will let HZ'Z/9~ denote the space of real valued look ~1  

functions which are locally of class ~5 z i n / 2  and are locally strongly JL 1 differentiable. 

F o r  ~ loo~.~/~ H z'z:o~ V u  will have the obvious meaning. 

L E ~  2.1. - .Let u ~  loo(/2). 

a) I]  u ( x ) =  const, a.e. on a measurable set G c_ [2 then Vu  = 0 a.e. on G. 
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b) I] .(2' is a connected open subset o] f2 and 

then 

Vu = 0 a.e. in Y2', 

u(x) = c a.e. in D', 

]or some constant e. 

.~r1,1 e) lul c ,oo(9.) and 

V l u [ =  sgn u Vu a.e. in f2. 

PROOF. - Assertion a) is Theorem 3.2.2 on page 69 of [20]. 
Assertion b) follows readily from the fact tha t  a distribution on D'  whose distri- 

but ion gradient is zero is a funct ion constant  almost everywhere,  [12], [24]. 
Finally,  assertion c) follows from a chain rule given in [17], since the function 

t )  - Itl satisfies the hypotheses of Theorem 2.1 of tha t  paper  and ]ul(x ) = g(x, u(x)). 
The space 1.1 H~oo(D), with its natural  topology, is a Frechet  space; the collection 

W'1~9~ • f ( t W l + l < ) d x < e }  where s > 0  and ~ is of all sets of the form { u e  ~ . . . .  • 
O 

bounded, O_c zg, forms a basis for the neighborhoods of zero in this topology. A 
family {N~} of semi-norms on H~;lo(zg) is a complete ]amily oJ semi-norms for Hlatzg~ 

loc\ / 

if the  set {u E H~o1¢(~?) : N~(u) < e} is open for each n and each e > 0, and the tota- 
l i ty of sets of this form is a subbasis for the neighborhoods of zero in ~'~ H~oo(t? ). For 
example, one complete countable family of semi-norms is given b y  

(2.1) 
Gn 

where {G~} is a countable cover for .Q consisting of bounded open sets G~ with G, _c D, 
n = 1, 2, .... If  the sequence {G~} is increasing then  the semi-norms given by  (2.1) 
satisfy 

(2.2) 1,1 

for n , m =  l , 2 ,  . . . , a n d  m > n .  

lgEMA~K 1. -- I f  {N~} is a countable family of semi-norms satisfying (2.2), if {N'.} 
is any  other countable family of semi-norms, and ii there exist constants k~, K,,, 
n = 1 , 2 ,  ..., such tha t  for uaH~;~(D)N~(u)<k,~N,~(u) for all n while N~,(u)<K~. 
• N~.(u) for all sufficiently large n, then  {N'~} is a complete family of semi-norms for 
Hlolo(D) provided {N~} is. 

1,1 RE~AgIC 2. - I f  (Nm} is a complete family of semi-norms on Hloc(zg) and if T is 
a linear mapping from a normcd linear space Z into HI"I/D~ then it is easily seen look l 
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tha t  T is continuous if and only if it is bounded with respect to each Nn, i.e. if and 
only if for each n there exists 2~ such tha t  N ~ ( T u ) < t ,  Ilul[ z for all u ~ Z .  Such a 
map  T is uniformly continuous and therefore has a unique continuous linear exten- 
sion, ~ :  2-->H~o~(Y2), to the completion 2 of Z. 

Finally,  a topological l inear space X contained as a linear manifold in ~'~ //~oo(D) 
will be called stronger than Hi'~cf)~oo~ , if the natural  embedding e: X-+H~o~¢(~2) is con- 
tinuous. 

LE~iWA 2.2. - f~et {G,} be an 

connected open subsets o] [2, with 
measurable set o] positive measure. 

increasing sequence o] bounded~ smoothly bounded 

G~_cY2, n = 1 ~ 2 ,  ..., f2---- 5 G~. ~Let So_Y2 be a 
Then {N~}, where "=~ 

an ~nan 

is a complete ]amily o] semi-norms ]or m g.~oo(Y2). 

P~ooF. - I t  is clear that each N'~ is a semi-norm. Thus by  l~emark 1 above it  
suffices to prove tha t  for all sufficiently large n, N'. is equivalent to the semi-norm N~, 
given by  (2.1). Suppose n is sufficiently large tha t  /~(S n G . ) >  0, bu t  t ha t  N '  is 
not  equivalent  to N~. Then there is a sequence {uk} in H~o(Y2) such tha t  

(~.4) 

and 

(~.5) 

N.(uD = 1 , k = 1, 2, ... 

lira N~'(u~) = 0 . 

Le t  u'~ denote the restrict ion of u~ to G~, k = 1, 2, .... Then N~(uk) is just  the 
HI.~(Gn) norm of u'k, so tha t  by  (2.4) and the Sobolev embedding theorem [20, p. 75] 

l 
we can assume the original sequence to have been chosen so tha t  (u~} is convergent  
in LI(G.). Then from (2.3) and (2.5) it follows tha t  {u'~} is convergent in H~,~(G..), 

! 
say to %. Thus by  (2.4) 

(2.6) 

while by  (2.5), 

(2.7) 

f,Vu'oldx + flU'ol = 
a ~  a n  

flVU'oldx + f ,U'o,dx = O 
Gn S n Gn 

The lat ter  equat ion implies that Vu~(x)= O a.e. in G~, and consequently, by  
! 

Lemma  2.1 b) t ha t  Uo(X ) = const, a.e. in G.. t towever  (2.7) also implies tha t  u'o(x ) = 
I 

= 0 a.e. in S n  G~ and thus tha t  uo(x ) = 0 a.e. in G~, which contradicts (2.6). 
Thus the lemma is proved. 
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Let  A be a measurable Zr×2V real mat r ix  valued function on D and let b be a 
measurable real valued function on D and assume tha t  A is a.e. self-adjoint and 
positive definite while b is a.e. non-negative. Let  

= ~E 1.1 : b~e 2) dx< 
D 

In  what  follows WI.~(A, b, D) and  linear manifolds in it are regarded as inner 
product  spaces with the semi-definite inner product  

(ms) <~, ~> = f ( (AW,  V~) + b~ dx). 
D 

Thus, a linear manifold X c_ Wx.~(A, b, D) is a pre- t I i lber t  space if <.,.> is positive 
definite on X;  if in addit ion X is complete with respect to <.,.> then  X is a Hilbert  
space. 

We shall be interested in t t i lber t  spaces X c_ W1.2(A, b, D) such tha t  C~' g X~ 
C°(D) (3 X is dense in X, and X is stronger than  H~£~¢(D). (This last condition is 
necessary and sufficient in order tha t  the Hilber t  space X c_ W1.2(A, b, D) be a 
#-measurable functional  t I i lber t  space in the sense of [3]; see also Lemma 3.4, below 
and the remark  following.) I f  such spaces exist  at  all then  it  is not  difficult to see 
tha t  there exists a (unique) smallest one which is characterized by  the proper ty  
tha t  it contains Co ° (D) as a dense linear manifold. 

D]~FI~ITIO?~ 2.1. - I f  there exists a I t i lbert  space in W1.2(A, b, D) which is stronger 
t H l ' l  hun lo~(D) and contains C o (D) as a dense linear manifold then  this uniquely deter- 
mined space will be denoted by  Ho(A, b, D). If  there exists a t t i lber t  space in WI.~(A, 
b, D) which is stronger than  ~'~ Hlo~(D ) and contains both  Co(Q ) and C ~ ( D ) n  
(3 W~,~(A, b, D), the  lat ter  as a dense linear manifold, then  this space, which is also 
uniquely determined,  will be denoted by  H(A~ b, D). 

The uniqueness assertions in the above definition are contained in Lemma 3.1 
below. Criteria for Ho(A, b, D) and H(A, b, D) to be defined are given in [30]. Similar 
criteria, appropria te  to the context  of this paper, will be developed in section 3. 

Another  p roper ty  which we shall generally require of the spaces under  considera- 
t ion here is tha t  they  be vector  lattices with respect to almost everywhere pointwise 
order. This is equivalent  to invariance of the space under  the non-linear mapping 
u--> lu]. Since it is this form of the lattice proper ty  which is most  impor tan t  for 
our purposes we shall invariably refer to it in this version and simply call the reader 's 
a t tent ion,  at  this point,  to the fact tha t  this p roper ty  is equivalent to the lattice 
property.  

3 .  - The space WI"2(A, b, D). 

Suppose now tha t  A and b are a s i n  §2. We first give a criterion for a pre- tI i lbert  
spaceinW1.2(A,b, D) to have a concrete eompletioninWl,~(A,b, D)which is stronger 
than  ~'~ Hloo(D). 
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L E ~ f A  3.1. - .bet Z be a pre-Hilbert space in WI.~-(A, b, f2) which is stronger than 
Hll'o~(~2). Then there exists a qznique Hilbert space X c_ WI.~(A, b, f2) such that X is 
stronger than HI'~tf2~ and Z is a dense linear mani]old in X .  loo x I 

RENaRE 3. - I f  b is pos i t ive  on a set of posi t ive measure  t h e n  X is un ique  even  

w i t h o u t  its be ing  requi red  to  be s t ronger  t h a n  H~'I(o~ • in  general ,  however ,  this 
is no t  t rue.  

P g o o ~ .  - Le t  e deno te  the  n a t u r a l  e m b e d d i n g  Z--> H1~l(f2); b y  hypothes i s  e is 

con t inuous .  L e t  o:  Z-~Z~(~2,  R g+~) be defined b y  

(3.1) g(u) ---- (A ½ Vu, b½u), 

t h e n  a is an  i some t ry  a nd  thus  ~(Z) can  be identif ied wi th  the  abs t r ac t  comple t ion  

of Z. N o t e  t h a t  if 

(g~, ..., g~+~) ~ ~(Z) 
t h e n  

(3.2) g~+~(x) = 0 a.e. on  ~ \ ~ o  

where  /Yo : {x E ~ :  b(x )>  0}. W e  now define 7: a(Z) -> H~oo(~ ) ~ ' ~  as follows 

(3.3) ~ = ea -1 . 

We  c lear ly  have,  for  g e a(Z) a n d  co = rg, 

(3.4) Vco = A - i #  a.e. on ~ ,  co : b-ig~+~ a.e. on So, 

where  ~5 = (gl, ..., g~). Since T, defined b y  (3.3), is a con t inuous  l inear  m a p  it  has,  

b y  R e m a r k  2, a un ique  con t inuous  extens ion  ~: a ( Z ) - +  HI'ltf2~ N o w  suppose t h a t  
IOC~ / • 

g ~ ~(Z) a nd  let {g~} be  a sequence in a(Z) converg ing  to  g, with  o~ = ~(g~), n = 1, 
/ / 2  1 2, ..., so t h a t  {co~} converges  to  co = f(g) in loo(f2). We  can  assume,  moreover ,  

t h a t  {g'} was selected so t h a t  g~(x) -~ g(x), Vco~(x) -+ V~o(x) an4  c%-~ co(x) for  

a lmos t  all x ~ ~2. I t  t h e n  follows t h a t  (3.4) holds for  g e a(Z), co = ~(g). W e  now 

show t h a t  ~ is one-to-one.  I n d e e d  if ~o = fg  a n d  c o ' =  ~g' and  co = co' t h e n  clear ly 
: I I gf .  

g~ g~ a.e. on f2 for  i = 1, 2, ..., N a n d  g~+~= g~+t on So, so b y  (3.2), g = Us- 

ing  aga in  the  re la t ion  (3.4) for  g e(;(Z), co = fg, we conclude t h a t  ~ ( a ( Z ) ) c  WI.2(A, 
b, [2)~ i.e. t h a t  (co, co) as defined b y  (2.8), is finite for co e f(~(Z)).  Le t  X be the  sub- 

space of W1.2(A, b, D) whose e lements  are just  the  e lements  of ~ ( a ~ ) .  I t  is easily 

seen f r o m  this  cons t ruc t ion  t h a t  the  i some t ry  a ex tends  to  a sur ject ive i somet ry  

~: X --> ~(Z), wi th  

~(u) = (A ~ Vu, b ~ u ) ,  u e X.  

Thus  X is a t I i l be r t  space wi th  Z dense in X.  The  na tu ra l  embedd ing  g: X - ~  H';~(D) 
satisfies g = f~  so t h a t  g is con t inuous  a n 4  thus  X is s t ronger  t h a n  H ~ ( D ) .  On  the  

o ther  hand ,  if X is a Hi lbe r t  space in W1.2(A, b, D) which  is s t ronger  t h a n  Hl'ltf2~ 
] oo \  / 
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and  if Z is dense in X then  the elements of X are E~o~o(.(2)-limits of Cauchy sequences 
in the pre- t t i lber t  space Z. I t  follows tha t  X is uniquely  determined.  

L]~M~A 3.2. - (a) In  order that C o (~2) ~_ W~.~-(A, b, D) it is necessary and suf]ieient 

that IIA II, b e ~oo(~) .  

(b) A linear maul]old Z c_ W~,~(A, b, D) satis]ies the hypotheses o] Lemma 3.1 

provided that either o] the ]ollowing holds: 

(i) Z ~ -Co(D) ,  D is bounded, and ][A-II[ ~Z~(~). 

(ii) Z is arbitrary, [[A-~[] ~ Z~o¢(D) and b is positive on a set o] positive 
~o~lea8~re. 

PROOF. -- The sufficiency of the  condition in assertion (a) is obvious. Conversely, 

suppose t ha t  C O (£2) _c W~.°-(A, b, D). Then necessarily (AVu, Vu) ~- bu ~ E Z~(D) for 
each u e Co(D ). F i rs t  we show tha t  this implies b e JL~o.(D ). To this end let G be 

an a rb i t r a ry  open set in D with  G compact ,  G _¢ D. Let  u o ~ C o (D) with u. ~ 1 on G. 
Then uo c W~'2(A, b, D) implies t ha t  b is integrable over G. Since G was a rb i t r a ry  

it follows tha t  b ~JL~o¢(D). 
Nex t  we show tha t  the  diagonal elements of A belong to ~5~o¢(D). Let  G and u0 

be as above and  let u(x) = X~Uo(X) so tha t  8u/8x~ = 1 on G, 8u/8x~ = 0 on G where i 
is a fixed index l < i<  N, j ve i. Then ou G (A Vu, Vu) ~ bu ~ = a ,  ~- bu 2. Since we 

already know tha t  b E Z~oo(D) , it follows tha t  a ,  mus t  be integrable over  G and hence, 

since G was arb i t rary ,  a~ ~ Z~o¢(D). Final ly  let G and u0 be as before and let u(x) = 

= (x~@ x~)Uo(X), so t ha t  on G 8u/Sx~ = 8u/Sxj = 1 and  ~u/Sx~, = 0 for k ve i~ j, where i 
and ] are distinct indices l~'~z, j < N .  Then on G, (AV~t, Vu)@ b u ~ - a ~ - a ~  
+ 2a,~-[-bu ~, and thus we conclude t ha t  a~ ~ L ~ ( D ) .  

Suppose now tha t  condit ion (i) of (b) is satisfied. F r o m  Sehwarz 's  inequal i ty  

and  (2.8) each u ~ Co(D ) satisfies 

flv l dx< (fllA '11 
D /2 

Since .Q is bounded there exists ~ > O such tha t  

(3.6)  f(lVul + lullex< flV ldx, 
Q 

see [20, p. 69]. Thus, combining (3.5) and (3.6) we see t ha t  (i) implies tha t  Co ( /2 )n  

n WI'2(A, b, f2) is a p re -Hi lber t  space stronger t han  H~'I(D), hence also stronger 
1 , I  t han  Hioc(D ). 

Now suppose t ha t  (ii) is satisfied and  let S be  a measurable  set of posit ive measure  

such t ha t  

b ( x ) ~ m > O ,  for x e S ,  
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for some posi t ive constant  m. We  can assume t h a t  S is contained in a compac t  subset  

of /2 .  Le t  G be a bounded,  open subset o~ ~q with 

S_cG_c~_c~2, 

then  for ~ e W~.~(A, b, ~2), 

+ [( 

I t  readi ly  follows f rom L e m m a  2.2 t ha t  WL2(A, b, f2) is itself a Hi lber t  space 

s tronger  t h a n  H~at/2~ and  thus any  linear manifold  Z c W~,~(A, b, ~) is a pre- l o c k  1 '  

Hilber t  space stronger t h a n  H~o~(~ ). 
As ~ consequence of Lem m a s  3.1 and  3.2 we have  the following. 

L~M~A 3.3. - ~et  ]lA]], b EZ~o¢(f2 ). I ]  ][A-~l[ ~Z~o~(~2) and b is pos i t ive  on a set 

o] positive measure then both Ho(A, b, ~)  and H(A,  b, ~) are de]ined. I] f2 is bounded 
and ]IA-~I] eZ~(~2) then Ho(A, b, f2) is de]ined. 

P~ooF.  - I t  is immedia te  f rom Lemmas  3.1 and  3.2 t ha t  under  the general hypo-  

thesis and  ei ther  of the two a l ternat ive  conditions of the above assertion, Ho(A~ b, ~2) 
is defined. Under  the  first of the  a l ternat ive  conditions H(A,  b, ~)  is defined as the  
complet ion of C ~ (/2) (3 W~,2(A, b, ~2) in W~."-(A, b, ~). 

LEMMA 3.4. -- Zet X be a ttilbert space in W1,2(A~ b~ ~) which is stronger than H ~'1~O~ 
l o c  \ ~ ] " 

(a) I] {u~) is a convergent sequence in X with limit u then there exists a sub- 
sequence (u,~) such that 

(3.7) Jim u,~(x)~  u(x) a.e. in 
/g---> o0 

and 

(3.8) lira Vu~(x)~-  Vu(x) a.e. in ~ .  
~--->co 

(b) I] {u,} is a weakly convergent sequence in X and i] (3.7) holds ]or some sub- 
sequence {u.~} then u is the weak limit o] (u.}. 

REMARK 4. -- The first assert ion of L e m m a  3.4 has the following converse. I f  X is 

any  Hi lber t  space in W~.2(A~ b, [2) and if every  convergent  sequence (u.} in X with 

Hloo(~2). l imit  u has a subsequence {u~} satisfying (3.7), then  X is stronger t h a n  1.1 

Indeed,  if X has this p rope r ty  then one can ver i fy  immedia te ly  tha t  the  graph of 

H~'~C~ is closed and  therefore t ha t  this imbedding the  na tura l  imbedding X - +  ~ . . . .  
is continuous. 

P~ooF. - Convergence of (un} to u in X implies convergence of {u~} to u in H~o~(/2), 
and  f rom this assert ion (a) readily follows. 
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To prove assertion (b) we can just as well assume tha t  the full sequence is a.e. 
convergent.  By  Mazur's theorem there  is a sequence {w~} whose terms are convex 
combinations of the u . ,  

w, ,=  y_a..~u,, a.,,>O, ~ a . , ~ =  1, 

such tha t  {w~} converges strongly in X to the weak limit of the sequence {u,~}. Since 
u belongs to the closed convex hull of the set {u~, u~+~...}, for any value of n, one 
can construct  the sequence {w.} in such a way tha t  

a,., = 0 for 1 < n, 

and then  {w~} will converge almost everywhere to u. As in (a), the sequence {w~} 
H~o ~ (.0) and its limit in this space clearly must  coincide with its a.e. is convergent  in ~'~ 

limit. The X- and the H~o~o(Zg)-limits of the sequence {w,} coincide and this completes 
the proof. 

L E n A  3.5. -- Whenever g ~  WL~(A, b, Y2) then so is lu]; hence WL2(A, b, ~) i8 
a vector lattice. Moreover, <u, u> --~ <]u], [g]>. I] H (A, b, [2) (Ho(A, b, Y2)) is defined 
and u e H(A ,  b, ~)  (u e H0(A, b,/2)) then [u I e H(A,  b, Y2) (]u] e Ho(A, b, f2)). Further- 
more whenever X is as in I, emma 3.4 and is invariant under the mapping u ~ tuI, (so 
that X is a vector lattice) then that mapping is continuous and so are the mappings 
U--->U+, U-+U_.  

]~ElVrA~K 5. -- An argument  similar to tha t  in the proof to follow shows tha t  u E 
e H(A,  b, Y2) (u e Ho(A, b,/2)) implies ](u) e H(A,  b, f2) (](u) e Ho(A, b, zg)) when- 
ever ] is uniformly Lipschitz continuous and ] ( 0 ) =  0. However  the proof of con- 
t inu i ty  of u -+  ](u) is more involved and will be given elsewhere. 

An immediate  consequence of the last assertion of Lemma 3.5 is the following. 

C0~0LLA~¥. -- Zet X be as in Zemma 3.4, and let X be invariant under u - ~  Iul. 
I] X~ is a subspace o] X and V is a dense linear mani]oId in X~ which is invariant under 
u - >  [u[, then X~ itset] is invariant under u - ~  laX. 

PnO0F OF LE~rA  3.5. - For  the first s tatement ,  note tha t  ]u] has the same norm 
as u as follows from Lemma 2.1 (c) and (2.8). To prove the second assertion suppose 
first tha t  u~C~( f2 )  (u~Co( f2) ) .  Then ]u I can be approximated uniformly by  a 
sequence {w,} in C°~(.Q) (Co(Y2)) with 

(3.9) ]grad w.(x)l < Igrad u(x)] ,  x~f2 .  

This can be done for example by  taking w~(x) = ].(u(x)), where in e C~(R), ]=(0) = 0, 
If,,]~<l and the sequence {]~} converges uniformly to ] = ]l. The sequence {w~} is 
clearly bounded in H(A,  b, Y2) because of (3.9) and the fact tha t  I](t)l< ltI, and thus 
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can be assumed to converge weakly in H(A, b,/2). In  view of Lemma 3.4 (b), this 
shows tha t  lu] e H(A, b,/2) ( ]u[ e Ho(A, b,/2)). 

For arbi t rary u ~ H(A, b,/2), (u ~ Ho(A, b,/2)) we first approximate u in H(A, b,/2) 
by a sequence {w,} in C~(/2) (in Co(/2)). By Lemma 3.4, (a) (wn} can be assumed to 
converge almost everywhere i n /2 ,  and thus, by  what  we have already shown~ {[w~]} 
is a bounded sequence in H(A, b,/2) (in Ho(A, b,/2)) converging almost everywhere 
in /2 to ]u]. Using Lemma 3.4 (b) as before, we conclude tha t  ]u] e H(A, b,/2) (lu] e 
e Ho(A, b,/2)). That  u and ]u] have the same norm follows as before. 

The cont inui ty  of the mapping u - >  ]ut is proved as follows. Let  {w~} be a 
sequence converging to u in X. Then by Lemma 3.4 (a) every subsequence of (w~} 
has a subsequence converging to u a.e. on /2 .  Thus every subsequence of (Iw~]} has a 
subsequence converging to ]u I a.e. l~owever, since (]w~]} is a bounded sequence 
in X, it  follows from Lemma 3.4 (b) tha t  ([wnl} converges weakly to ]u]. l~inally 
the facts 

]w.]-+ lu] weakly in X, 

illul If = lI ,I = l im [l'w.I II, 

together imply tha t  actual ly the convergence of {Iw.]} to Iu] is strong convergence 
in X. 

LE~_~A 3.6. -- I~et X be as in f~emma 3.4 and suppose in addition that X is invariant 
under the mapping u--~lu I. I] u ~ X is non-negative as a linear Junctional, i.e. i] 

(3.10) (v, u> >O 

]or all v e X  with v(x)~>O, a.e. on /2, then 

(3.11) u(x)~>0 a.e. on /2. 

PI~OO~. - Since u(x)< ]u(x)] a.e. on /2, the positivity of u as a linear functional 
implies 

(3.12) (u, u )<  (lu], u) .  

t towever since u and lul have the same X-norm, the Schwarz inequality implies 

(]u], u)<  (u, u) 

with equali ty only if u and lul are proportional, i.e. only if u is of fixed sign. The 
conclusion of the lemma then follows from (3.12). 

I~E~A~K 6. -- I f  K denotes the positive cone in X~ i.e. the set of functions in X 
which are a.e. positive on /2, and if K* denotes the dual cone 

K * ~ { u e X : ( v , u ) > ~ O  for all v e K } ,  
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then  L e m m a  3.6 asserts tha t  

K *  ~ K . 

I f  X is any  Hi lber t  space, K a proper  closed convex cone in X,  > the par t ia l  order 
induced in X b y  K~ and K* the dual cone then  the following are equivalent :  

(i) For every u E X there exists g E K  such that ~> ± u, I[(ell < Ilul], where II ]1 
denotes the X-norm. 

(if) For every u e K  there exists u ' c K  such that u '>u ,  []u'H< [lull. 

(ii i)  K *  _c K .  

For  a proof of the non-tr ivial  implication,  (iii) implies (i), see the proof of Theo- 
rem 1, [3]. 

~ o t e  tha t  if for some set E Z ~ u ~ X  for every  u a X  then  the  mapp ing  u - +  

--> ~/~u would necessarily be an orthogonal  projection,  since b y  L e m m a  2.1 (a) and  (2.8), 

<x,u, v> = f((AVu, Vu)÷ buv)dx. 

Concerning such sets E we have  the following result. 

LEPTA 3.7. - .Let X be a Hilbert space in W~.2(A~ b,/2) with Co(/2 ) c X .  I] E is 
a measurable subset o/ /2 with #(E) > O, and i] the mapping u --> ZEu, where Z~ deno- 
tes the characteristic ]unction o] E~ is an orthogonal pro]ection on X ,  then # ( / 2 \ E )  ~- O. 

P~ooF. - Assume u --> ;/~u is an orthogonal  project ion a n d / ~ ( / 2 \ E )  > 0. Le t  /2' 

be a connected,  open subset of /2 hav ing  compact  closure in /2 and  such tha t  

# (E  • / 2 ' )  > 0 a n d / ~ ( / 2 ' \ E )  > 0. Le t  ~ ~ Co (/2) with ~(x) - -  1 on /2', so t ha t  ~ e X. 
Then if g , ~  e X, we have  b y  L e m m a  2.1 (a) t ha t  V(~/~) = 0 a.e. o n / 2 ' ,  and  thus 

by  L e m m a  2.1 (c), Z , ~  is constant  a.e. on /2', which contradicts  #(YY\E)  > 0. We 

mus t  therefore have  # ( / 2 \ E ) = - 0  and  the result  is proved.  

4.  - T h e  G r e e n ' s  o p e r a t o r .  

Let  c be a real-valued measurable  funct ion on /2 with 

(4.1) c(x) > 0 a.e. on /2. 

For  b rev i ty  we shall denote b y  Y the  weighted real -L: space with weight c 

y = L~(/2, c (x )dx ) .  
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The inner  product  in Y will be denoted (.,.) 

(f, g) =- f j (x)  g(x) c(x) dx . 
£J 

I n  what  follows X will a lways denote  a Hi lber t  space in WI'2(A, b, ~(~). We shall 

say t h a t  such a space is admissible if it satisfies the following three conditions 

I) X is a t t i lber t  space in W1.2(A, b, f2) which is s tronger t h a n  HI'~(Y2~ loc~ /" 

I I )  X is invar ian t  under  the  mapp ing  u--> ]ul, i.e. X is a vector  lat t ice.  

I I I )  I f  /~ is a measurable  subset of K2 with  # ( E ) >  0 and  if ;/~u e X when- 
ever  u e X then  # ( f 2 \ E ) =  0. 

We will say t h a t  the pair  (X, I r) is admissible if X is admissible, Y is as above, 

the  functions in X have  finite Y-norm, i.e. 

(4.2) fu~(x )c (x )dx< ~ ,  for all u ~ X ,  

and X,  regarded as a l inear manifold  in Y, is dense in I7. 

I t  follows f rom L e m m a s  3.5 and  3.7 t ha t  the spaces H(A,  b, D) or Ho(A, b, D), 
whenever  they  are defined, are admissible. We will not  discuss in detail  the  various 
conditions which imply  (4.2) but  only record the  following tr ivial  criterion for the  
pair  (X, I7) to be admissible. 

LEM~A 4.1. - I] X is admissible, i] C~ ( f)) c_ X and i] there exists a constant M such that 

c(x) < Mb(x) , a.e. on .Q, 

then the pair (X, Y) is admissible. 

I n  the remainder  of this section we will always assume tha t  the  pair  (X, Y) is 
admissible. We will denote  b y  i the  na tura l  injection of X into 17. 

L E n A  4.2. - The operator i is continuous and has dense range in Y.  The adjoint 
operator i*. ~--> X is continuous, injective and has dense range in X .  

P~ooF. - Since b y  condit ion I above X is s t ronger  t h a n  H1 '1 (~  the elements  lock 1, 

of X are (equivalence classes of) measurable  functions (a fact  which we have  a l ready 
implici t ly assumed in the definition of an admissible pair). Therefore, in view of (4.2), 
i is well-defined with  domain  X ;  b y  (4.1), i is indeed an injection. Fur ther ,  because 
of Condition I it follows f rom L e m m a  3.4 (a) t ha t  the gwaph of i is closed, and  there-  
fore t ha t  i is continuous.  Tha t  i has dense range in ]7 follows immedia te ly  f rom 
the admissibi l i ty  of (X, ]~). The assertions concerning i* follow immediate ly ,  b y  

duali ty,  f rom the propert ies  of i. 
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We note tha t ,  for ] ~ Y, u = i*]  is the  solution of the  weak problem <u, v> = 

= (], iv) or 

f ( ( A V u ,  V v ) +  buv) d x =  f v ]e (x )dx ,  all v e X .  
D 

LE)~_A 4.3. - The operator i* is non-negative, i.e. f ~ Y and ](x)>O a.e. on f2 imply  
u(x)>O a.e. on f2, where u = i*]. 

PROOF. -- Le t  ] e Y ,  ](x)>~O a.e. on ~ .  Then if u = i * ]  we have  

(4.3) <u, v> = (1, iv) 

for all v E X.  Since the t e r m  on the r ight  in (4.3) is non-negat ive when v(x)>O 
a.e. on f2 it  follows tha t  the  solution u of (4.3) is non-negat ive  as a l inear functional  
on X. I t  follows immedia te ly  f rom L e m m a  3.6 t ha t  u ( x ) >  0 a.c. on zg. 

RE~iARK 7. -- Le t  8 denote the  collection of measurable  subsets/ iJ  of D with 

f c(x) dx < oo. 

Each  u e X determines a funct ion ~ on 8 b y  

(4.4) ~(E) = fu(x) o(x) d x .  

Let  2~ denote the  set {~: u e X} furnished with the inner product  

(4.5) [~, ~] = <u, v>,  u, v ~ X .  

Then X is a proper  funct ional  t t i lber t  space in the  sense of [3]; (X is a / t -measurab le  

functional  t t i lber t  space in the sense of [3]) As a proper  funct ional  Hi lber t  space, 

has a reproducing k e r n e l / ~  defined on g × 8, and  it  is easily seen tha t  

I f  u e X  and w =  lul, then  dea r l y  ff~(E)>g(E) for all E E S .  I n  view of this, since X 

is a space of real functions,  it follows f rom Theorem 1 of [3] t ha t  _~ is non-negat ive  

on g × g, and  this implies L e m m a  4.3. 
We  now consider the  operator  k = kx.r: Y--> l 7 defined b y  

(4.7) k----ii* . 
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LElv~IA 4.4. - The operator k is sel/-adjoint, positive de]inite and preserves non- 
negativity. 

PnooF.  - The self adjointness of k is clear f rom (4.7). Posi t ive definiteness fol- 
lows f rom the in ject ivi ty  of i* (Lemma 4.2) and  the  ident i ty  

(k], t) = <i ' t ,  i ' l > .  

Finally,  the  non-negat iv i ty  follows f rom the non-negat iv i ty  of i*. 

Recall  ~hat s(]) denotes the  set of points in £2 where ] is not  equal  to zero. 

LE~L~A 4.5. -- Let ] E Y,  / not identically zero, and 

](x)>O on  ,O. 

Then the sequence (s(k~])} is an increasing sequence with 

0 s(k~]) = .Q. 
1/1=1 

Pl~OOF. - Le t  ] be as above and  suppose G = s(])\s(k]). P u t  ]1 = Za] where Za 

is the  character is t ic  funct ion of G. ~ r o m  the non-nega t iv i ty  of k, since 0 < ]1 < / on Q, 

0 < k ] l<  k] on /2, 

and  thus /~]1 = 0 on G. B u t  b y  definiteness of /~ 

(tl, ~]1) > o 

unless ]1 = 0; thus we mus t  have  ]1 = 0, i.e. G of measure  zero. The increasing 

character  of the  sequence {s(k~])) obviously follows. Le t  now 

_F = 0 s ( k ~ / ) ,  E = ~ 9 \ F .  
n = l  

Let  g e ]( be  a n y  non-negat ive  funct ion with  s(g) c E, and suppose t h a t  s(kg) ~ F 
has posi t ive measure.  Then for su i tably  large n, s(kg) (h s(k']) will also have  posit ive 
measure ;  bu t  this leads via  

o < ( ~ / ,  kg) = (~-+it ,  g) = 0 

t,o a contradict ion.  Thus s(g) c_ E implies s(kg) c_ E, a t  least  for non-negat ive  g; bu t  
then  the  same immedia te ly  follows for a rb i t r a ry  g e I z Le t  now P denote  the  ortho- 

gonal project ion on :F define4 b y  

Pg  = Z~ g • 
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We have  shown tha t  

kP = P k P ,  

and f rom this it follows tha t  kP is self-adjoint and  hence P and k commute :  

kP ---- P k .  

Thus Y can be represented as the direct sum 

where g e N if and  only if 

(4.8) s(g) ~ .E,  

and h e m  if and  only if 

(4.9) s(h) g .F,  

and M and  N are invar ian t  manifolds for k. Since s( i i*g)= s(i*g), (4.8) implies 

s(i* g) c_ E 

and (4.9) implies 

sCi* h) c ~ , 

so tha t ,  b y  (2.8) and  L e m m a  2.1 (a), i * M  and i * N  are or thogonal  in X. Thus, 
since i* 17 is dense in X,  

x = u ® v  

where U is the closure of i*(M) and V is the closm'e of i*(N). B y  L e m m a  3.4 the 
functions in U vanish on E and those in V vanish on F.  This means,  however,  t ha t  
the or thogonal  project ion of X onto U is given b y  u--> )Csu, but  then~ by  condi- 
t ion I I I~ we mus t  have  # ( E ) =  0 and the  result  is proved.  

We now prove tha t  k is strictly posit ive in the sense t ha t  ] ~ Y, ]> 0 on if2 and 

] ~ 0 implies (k])(x) > 0 a.e. on /2. For  this we use L e m m a  4.5 and  the following 
device: we introduce an opera tor  kl with the  same propert ies  as k and  related to k b y  

(4.10) k - ~ = ~ [ ~ - - I ~  

so t h a t  k m a y  be expressed 

(4.11) k = ~ +  k i +  ... 
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To this end we introduce the Hilbert space X1 which is simply X furnished with the 
equivalent inner product 

(4.12) <~, vX = (~ ,  v> -F (iu, i v ) .  

We denote by j the identification 

j: X-> X~, 

snd  by  i~ the immersion XI-~  17. Then (¢.12), wri t ten more formally, becomes 

<u, v> = <iu, i v > ~ -  (iu, iv) 

o r  

(u, v> = <j* h~, v> - -  <i* iu, v )  , 

so t ha t  

(4.13) 

where I x is the ident i ty  on X. 

I x =  j ' j - - i ' i ,  

From (4.13)7 since il : ij  -1, we deduce tha t  

k~ 1 : ~1"*-1i-1-1 : i*-lJ* ] i-1 : i*-1i-1-~ I t :  k-l d - I z  . 

Finally to justify (4.11) we note tha t ,  since k is self-sdjoint 

]lk ]]-1 = {inf (k -~ ], ]): ] e domain of k -1, ]]] []~ = 1 ) ,  

and a similar formula holds for [lkl]1-1. Thus by (4.]0) 

II k li-1 = II ~1 II 1 _ 

and hence 

t}~lf = fikII/(~ + llkll) 

so that k l +  ~k~+  ~ +  ... converges for ~Ilkl[ < 1 + II~ll, in particular for ~ =  1. 
Since Lemmas 4.4 and  4.5 dear ly  apply to k~, if ] ~ Y, ] not  identically zero, 

and  ] > 0  on ~ then  from (4.11) 

s(~i) = 0 s(k~]) = .(2 

(~gain we emphasize that ~he equMity is only to within sets of measure zero). We 
thus have proved the following. 

TmSORE~ 4.1. - The operator k is positive in the sense that i f  ]~ Y, ]>~0 and ] is 
not zero almost everywhere then k / i s  positive almost everywhere on f2. 

1 5  - Annal i  di Maiematica 
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COI~0LLAI~y. - Zet ] be a non-negative eigenf~nction o] k. Then ] is posit@e almost 
everywhere. I] ] is any eigen]unction o] k wi~h 

(4.14)  A, = I1~II f 

then ] or --]  is positive almost everywhere on ~ and [Ik]] is a simple eigenvalue of k. 

PI~OOF. - Tha t  a non-negative eigenfunction of k must  be positive almost every- 
where follows immediate ly  from Theorem 4.1. 

Suppose now tha t  (4.14) holds for some ] ¢ 0 .  Then  since lk]t<<.kl]l, 

ilkl] II]li ~ = (~/ ,  ]> < (~l / l ,  I / I )<  tl~ii il]ll ~ , 

so tha t  by  Schwarz's inequMity I]] is an eigenfunction of k. We must  therefore have 
] = ~= I]] since otherwise ]+ would be a non-negative eigenfunction of k vanishing 
on a set of positive measure in contradict ion to the first assertion of the lemma. 

Suppose finally tha t  llkll were not  a simple eigenvMue of k, then  there  would be 
second eigenfunetion g of /c, corresponding to the eigenvMue Ilk [I and orthogonal 

to ]. This g would not  be essentially of one sign, and thus this supposition leads to 
the same contradiction. 

I~E~AI~K 8. -- Suppose tha t  ~Q is bounded,  b----0 and 

where t, s ~> 1 and 

]IA-1]] e~Cf2), ]IA-~]IlIAII ~eL~{f2), 

1 I 2 
)- + - ~ < N .  

Then in part icular  I[AII, IIA-111 ~ J51(f2) and thus, by  Lemma 3.3, Ho(A, 0, f2) is de- 
fined. I f  e is such tha t  (Ho(A, O, ~2), Y) is admissible (e.g. if c e ~8°(f2), 1/So~ 1/t = 
----2/~) then  in this case the conclusion of Theorem 4.1 follows from Le mma  4.4 and a 
t t a rnack  inequali ty proved by  TI~IrDI~GEI~ [29, Theorem 4.1]. (Indeed in this ease, 
when ] > 0  on ~Q, ] ~ 0 ,  then  st----i*] has a positive lower bound on compact  sub- 
sets of /2.) 

We next  prove tha t  if the operator  k has a non-negative eigenfunction ], say 

then necessarily 

]Ikll = ~ .  

We shall actually prove something more generM--we note first however tha t  in 
view of the Corollary to Theorem 4.1 and Lemma 4.4 we can assume tha t  the eigen- 
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funct ion ] is positive a.e. on ~.  The following result is trivial if k is compac~ bu t  the 
general result  is more subtle and does not  appear  to be contained in the extensive 
l i terature concerning positive operators. 

T~EO~E~ 4.2. - .Let k be a sel]-adjoint, bounded operator on ~ which preserves non- 
negativity. I] / ~  Y and 

and 

(~.15) 

then 

(~.16) 

](x) > 0 ,  a.e. on [2, 

( k / ) ( x ) < # ] ( x ) ,  a.e. on 9 ,  

l]kI[ < ~ .  

I] equality holds in (4.15), i.e. i] ] is an eigen]unction o] k, then ]Ik]l = #. 

1)ROOF. - Suppose first tha t  k is compact,  then  b y  the theory  of compact  self- 
adjoint  operators k has an eigenfunction g with 

kg = IIk]l g ,  

and by  the same argument  as tha t  used in the proof of the Corollary to Theorem 4.1 
g can be taken  to be non-negative. 

Bu t  from (4.15), 

0 >  (k ] - -~ ] ,  g) = (1, k g - -  []kIl g) + (I lk] l - -~)q,  g) 

SO 

o > (llkll - ~) (I ,  g ) ,  

and the result  follows since (], g ) >  O. 
5Tow consider the general case and let 

(4.17) z9 =/i71 u E~ w ... W/i7~ 

be a part i t ioning of /2 into measurable sets of positive measure. 

(4 .1s)  I~ = ~ 1  z ~ , t ,  i = 1 , . . . ,  n 

where X~, is the characterist ic funct ion of 1~ and where 

(fl )° a i =  2cdx 

Thus 

fix, ]J) = ~ J ,  

P u t  
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where b~: is the Kronecker delta. We have 

and 

t = c,~A+ . . . +  ant . ,  

< ~(], , /)  

5=1 

o r  

(4.19) K a < # a  

where K is the  non-negative symmetric  matr ix  defined by 

K = ((i , ,  

and the inequali ty in (4.19) has the obvious meaning. As in the case of compact k, 
inequali ty (4.19) for a having all positive components implies tha t  the ]argest eigen- 
value of K does not exceed /~. 

I f  P denotes the orthogonM projection of :Y onto the subspace spanned by ]1, ..., ],~, 
then K is the matr ix  of P k P  relative to the basis ]1, ..., ]~. By  choosing a sequence 
of finer and finer partitions (4.17) we obtain a corresponding sequence of projec- 
tions {P~} such that ,  because of (4.17) and the fact tha t  e(x) > 0 a.e. on ~9,/)~ tends 
strongly to I .  Thus also P,~kP~ tends strongly to k. Since ]IP~ kP~I1 < #  for each m 
it follows tha t  Ilkll < # .  The opposite inequality when ] is actually an eigenfunetion 
is obvious. 

RE~ARK 9. -- Note tha t  when k is defined by (4.7) then (4.15) even for a non- 
negative 1, ] ~ O, implies (4.16). 

5 .  - Applications. 

Let  (X, 17) be admissible and let u ~ X be in the range of i* 

u = i * g ,  g e Y .  

Pu t  

] = iu = kg .  

Then since k is positive definite 

(f, ]) = (kg, kg )<  llkl[(g, kg) -= [lkl[<u, u> , 
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which implies 

(5.1) <u, u> > Ilk]l-~(iu, in) 

for u in the  range  of i*. Since the  range  of i* is dense in X the  inequal i ty  is valid for 
all x e X.  We  are now in a position to prove  our main  result. 

THEOl~E~ 5.1. - Zet A ,  b be as in § 2, c > O, and let (X, 17) be an admissible pair. 

I]  the weak eigenvalue problem 

~9 
has a non-negative eigen]unction u~ corresponding to the eigenvalue t~ then u~(x) > 0 

u.e. on ~2, and /or all u e X ,  

(5 .3)  f (  ~ ai,(x)ux, g~,+ b(x)u2)dX~lfu2c(x)dx. 
D 1,i=1 D 

Moreover, AI is a simple eigenvalue and consequently (5.3) is strict unless u is propor- 

tional to ul. 

Pnoo]~. - The funct ion ul is ~n eigenfunction of (5.2), corresponding to the eigen- 

value t~ if and  only if 

ku 1 = ;~'~ u i , 

thus the  a lmost  everywhere  posi t iv i ty  of ul follows f rom the Corollary to Theorem 4.1. 
F r o m  Theorem 4.2, and  in view of L e m m a  4.4, i t  then  follows t h a t  llkl] ---- A? 1, and 
thus  the  s implici ty  of t l  follows f rom the Corollary of Theorem 4.1. The inequal i ty  (5.3) 

then  follows f rom (5.1). 
For  applicat ions it is desirable to relax the  requirements  on b an4  c. We do this 

in the following. 

TttEOI~E]~{ 5.2. -- Zet A be as be/ore with 

(5.4) ijA I], IIA-1/I eL~oo(~) 

and let b0, Co be real valued measurable /unctions on ~ with 

(5.5) bo, Co e 2~oo(9). 

~inaIly,  let there exist a linear mani/old V and a non-negative ]unction g such that 

HI,1  (a) ¢~ (9 )  c V c  ,oo(9), 

(b) v e V implies Iv] ~ V, 
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(5.6) 

(c) g~L~oo(~2), g ( x ) > O  a.e. on zg, 

(d) ]or all v ~ V, 

w ) +  (1 01 + Ic01+ g) v~) dx < c~ . 
t~ 

I] u ~  V, u~>O, u ~ O ,  and ]or some A~>O u~ satis]ies 

(5.7) w ) +  boU  )dx > 
/2 

then u~(x) > O a.e. on t9 and 

(5.8) f( vu, vu) + >   fU'Co X 
]or all u e V, with equality only i] u is proportional to u~. 

where 

Pnoo~.  - We pu t  

c = co-~ gl 

b = be ~- 2x gl 

9~ = ICol ÷ 2~.T~Iboi ÷ g .  

v~ V~ 

With  b defined as above, it follows from L e m m s  3.2, in view of (5.4), (5.5), and 
assumption (c) t ha t  W~.~(A, b, f2) is ~ Hi lber t  space stronger than  H~;~(.Q) and con- 
taining C~(~2). :By assumptions (a) and (d)~ V c W~.~(A, b, ~9); we define X to be 

the closure of V in W~.:(A, b, [2). By Lerama 3.5 W~.~(A, b,/2) is invariant  under  
u--> lul and therefore by  assumption (b) and the corollary to Le mma  3.5 so is X, 
consequently X satisfies condition I I  of § .i. By  (a), C~ (~2)_cX und therefore, by  
Lemma 3.7, X satisfies condition I I I  of § 4. Finally,  f rom the definitions of b, e and g~ 
we huve 

and therefore, since we have already seen tha t  Co (~(2) c X~ it follows from Lemma 4.1 
that  (X,  IF) is udmissible. 

By  ~dding ,~lfulvgldx to bo th  sides of (5.7) and tuking into account  the defini- 
Q 

tions of b and c we see tha t  ul is ~n eigenfunction of (5.2), thus the posit ivi ty asser- 
t ion concerning u follows from Theorem 5.1, us does the inequglity (5.3) for u 6 X. 
Upon subtract ing ~[g~ u ~ dm from both  sides of (5.3) we obtain (5.8). By  Theorem 5.1, 

equal i ty  holds in (5.3) only if u und ul ure proportionul,  hence the sume is t rue  of (5.8). 
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COEOLLAt~Y. - -  Zet 2<p<-.. c~, let A be as in Theorem 5.2 and in addition sup- 

pose that 

(5.9)  II All e L~'¢~-~'(9), 

and 

(5Ao) bo, Co e Z ' ( 9 )  

where 

(5 .~1)  r = 1, r >  1 or r = lcp/(~p-2(~-p)) 

according as p > LV, p = N or p < _~. 

I] u~E W~o.r(f2), u t > 0 ,  u ~ O ,  and u~ satis]ies (5.7) for all v ~  W~o'~([2) then u~ 
is positive almost everywhere and (5.8) holds ]or all u ~ W~'~(f2), with equality only 

i] u and Ul are proportional. 

PI~OOF. - B y  (5.9) 

f ( A V u ,  Vu) dx < 
Q 

for u e W1"~(tg) while by  Sobolev's theorem (5.10) and (5.11) imply 

for u e W1"(/2). 
implies 

~u~(lbol + l e o l ) d x <  ~ 

Finally,  one can choose g > O with g ~ Z~(f2). The last condition 

f u ~ g dx < 
~2 

for u ~ Wo~'~(zg). Thus, with this g and with V = W~'~(f2) the hypotheses of Theo- 
rem 5.2 are satisfied and the result follows. 

6.  - M a x i m u m  pr inc ip le .  

In  this section we discuss the dependence of the operator  k on boundary  conditions 
and prove a max imum principle and an eigenvalue estimate. The maximum principle 
which we prove can be regarded as an analogue, for the boundary  value problems 
which we t reat ,  of a result  of A ~ A ~  [2] for classical subsolutions of non-self-adjoint 
boundary  value problems, see also SE~RI~ [25]. A similar result for weak subsolu- 
tions of equations with discontinuous coefficients was proved by  Cn~cco [6]. We 
also prove a part ial  converse - -an  eigenvalue e s t ima te - - to  this max imum principle. 
This eigenvalue est imate is the  analogue of a theorem of BAx~mA [4] for the Laplace 
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opera tor  with Dirichlet  dat~. For  generalizations of ]3arta 's  result  see D v F F ~  [9], 

P~0TTE~ and WELNBERGEt¢ [23], and  C m c c o  [6]; the analogue of these la t ter  results 
for ordinary  differential operators  is given b y  a theorem of W I t T i E R  [33]. 

Le t  (X, Y) be an admissible pair  and  let l l (X,  Y ) -  ]lkx.rI] -~. l~ecall t ha t  b y  
L e m m a  3.5 whenever  u ~ WL2(A, b, f2), so are ]u], u+ and  u_. 

LEM~A 6.1. -- Zet 1 < ,~I(X, :Y) and let u ~ Wz.2(A, b, f)) be such that 

/or all v e X  with v>O on f2. 

u _ e X ,  

<u, v) > tfuvc(x) dx 
t2 

Then 

u > O  on K2. 

Pnoos .  - Since u_ e X we have,  b y  L e m m a  2.1 

<u_, u_> = -- <u, u_) <--  ~fuu_ c(x) dx 

< ;Lfu ~_ c(x) dx. 

I n  view of (5.1), since A <  11 this is only possible if u _  = 0. Thus the l emma  is 

proved.  

DEFI~ITIO~ 6.1. -- Le t  X be admissible and  let X '  be a subspace of X which is 
also admissible hence a vector  sublatt ice of X. We shall say t ha t  X '  is solid relative 
to X if whenever  u e X ' ,  w e X  and ]u]>]w] on [2 then  w e X ' .  

DEFI~ITIO:N 6.2. -- Le t  X be admissible and  l e t / ' b e  a closed subset  of ~ .  Then,  X r 
will denote the  closure in X of the linear manifold 

{u e X :  u = 0 o n ' a  neighborhood of /~}. 

_ c o  C t~EMA~K 10. Suppose t ha t  C O (K2)_ X and tha t  X n  C ~ (K2) is dense in X. I t  

can be shown tha t  if []A ]1 [b-l[ 6LI:'o(f2/K) for some compact  set K_CY2 then  for F =  8f), 

X r = H o ( A  , b, D )  . 

Actual ly  the  result  holds even wi thout  this assumpt ion  as will be shown elsewhere. 

:LElV~IA 6.2. - .Let F be a closed subset o/ 8Y2. Then X r is admissible and is solid 
relative to X .  1/ Co(~)¢_X and X ~  C~(K2) is dense in X then Ho(A, b, f2) is solid 
relative to X .  
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P~ooF.  - T h a t  X r is admissible  follows immed ia t e ly  f rom the  Corol lary  t o  Lem-  

m a  3.5 ~nd the  proof  of L e m m a  3.7. 

W e  now show t h u t  X r is solid re la t ive  to  X.  Le t  u ~ Xr~  w ~ X a n d  suppose 

t h a t  lu ]>  ]w] on tg. There  is no  loss of genera l i ty  in assuming,  as we shall~ t h a t  u >  

> w > 0  on zg. L e t  

u = l im u~ in X 
~---> ¢o 

where  for  each  n = 1, 2, ...~ u .  ~ X,  a n d  u~ vanishes  on a ne ighbo rhood  of F ;  b y  

t he  c o n t i n u i t y  asser t ion  of L e m m a  3.5 we can  assume u . > 0  on z9 for  each n. More- 

over,  for  each va lue  of n, 

v~ = u ~ -  (~ t~-  w)+ 

belongs to  X a nd  vanishes  on a ne ighborhood  of /~. Since 

(6.1) w = u - - ( u - - w ) + ,  

it follows f r o m  the  last  asser t ion of L e m m a  3.5 t h a t  w e X r .  
Suppose  now t h a t  C~°(~9)_cX a n d  t h a t  C~(f2)(~ X is dense in X.  Clearly t h e n  

Ho(A~ b, Y2) is defined a n d  con ta ined  in X.  Le t  U~Ho(A~  b, f2), w e X  with  u > w > 0  

on 9 ,  a n d  let 

u ~ lira u~ ,  w ~ l im w~, in X 
n --->¢o ~ . - - >  co 

where  the  sequences {u.} ,  {w~} are in C~(Y2) and  C~(~2) respect ively.  W e  can  as- 

sume  t h a t  these  sequences converge  a.e. in  f2. Consider  the  sequence {v.} where  

v.  = u~ - -  ( ~  - -  w . )+ .  

As before  i t  follows f rom (6.1) a nd  L e m m a  3.5 t h a t  

(6.2) w ---- lira v~ in X ,  
n --->co 

a n d  clear ly 

(6.3) s(v~) c_ s(u~) , n : 1, 2, . . . .  

For  a fixed n let v~ e C~(~)  be defined, for e > O, b y  

v~(x) = ( J , v . ) ( x )  = f i~ (x  - -  Y) v ,(y)  dy , 
t~ 

where  Jr is a mollifier defined as in [1]. F r o m  (6.3) it follows t h a t  v: ~ Co(D ) when  e 

is sufficiently small.  Moreover ,  since v~, Vv~ ~L~(f2)  (by L e m m a  2.1c),  

[<l, Iv<l< c on 9 ,  
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where, for n fixed, C is independent  of e. Finally, for n fixed 

(6.5) -II~ _~ ii~ VV~ --> VV~ a.e. on ~C2, 'U n V n , 

as m - +  co. In  view of the fact tha t  the v~ ~m all have their  supports in some fixed 
bounded set, it follows from (6.4) and (6.5) and the dominated convergence theorem 
tha t  

l im ~ l / ~  ~n -- v~ in X ,  
m-->eo 

and thus v~ c l io(A,  b, 9 )  for all n; it is then immediate  from (6.2) tha t  w Clio(A, b, 9) .  

TI£EOI~E~ 6.1. -- Let (X,  17) be an admissible pair, and let X '  be a subspace o/ X 
which is such that (X' ,  17) is admissible and X '  is solid relative to X .  Then 

(6.6) kx, r > kz, r 

in the sense that 

whenever / e 17 and />~O on 9 .  

PROOF. - Let /e 17, />0 on 9 and put 

u=i '*/ ,  w=i* /  

where i% i denote the inclusions X '  _c 17, X_c 17 respectively. Then u E X' ,  w e X 
and, by  Lemma 4.3, u, w>O on 9 .  Since ( w - - u ) _ < u  and X '  is full relative to X 
it follows tha t  (w - -  u)_ ~ X' .  We have, moreover 

( w - - u ,  z> = (/, i z - - i~z)  =- 0 for all z E X ' ,  

and thus, by  Lemma 6.1. 

w>~u a.e. oll 9 .  

Since / was an arb i t rary  non-negative element of 17 the result follows. 

COI~OLLARY. -- Let X ,  X '  and 17 be as in Theorem 6.1. / ]  A?I(X ', 17) is an eigen- 

value o/ kz. r and X '  =# X then 

(6.7) i l (X ' ,  17)> ,~I(X, 17). 

Pl~oor. - For  brevi ty  let k ' =  k(X' ,  17), k = k(X,  17), 2'1 ---- l l (X ' ,  17), ~ = t l (X,  17) 
By  the Corollary to Theorem 4.1, k' then  has an eigenfunetion u with 

~r u ~ ~ri-i ~ , 
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and  u > O a.e. on /2. I t  then  follows from Theorem 6.1 tha t  

ku>k~u 

and equali ty holds a.e. on /2 only if k = k'. Indeed if k ¢ /¢ '  then  there exists an 
] > 0  in ~9 such tha t  (k])(x)> (k'])(x), on a set of positive measure in 9 ,  bu t  then 

o < ( ( k -  k') 1, u) = (i, ( k -  ~') u ) ,  

so tha t  ku V= k'u. On the other hand if k----]¢', then  clearly i*----i'*. Since the 
ranges of i* are dense in X and X '  respectively, equal i ty of i* and i '* implies equali ty 
of X and Xq Thus if X=/=X' we must  have l]kullr> l]k'ul]r, and this implies (6.7). 

I tErAte :  11. -- The result is false if we do not  assume A;I(X ') is an eigenvalue of k'. 
This is easily seen from consideration of the o p e r a t o r - - d ~ / d x 2 - ] - l + p ( x )  with the 
boundary  conditions y'(0) ---- 0 and y(0) = 0 respectively. To pu t  these problems in 
the  sett ing of this paper  one takes /2 =-[0, co), A = 1, b = - 1 - [ - p ,  

X -= H(A, b,/2) = H(1,  1 -{- p, [0, co)) and X ' =  H0(A, b,/2) ----//0(1, 1 + p, [0, co)). 

One can choose p(x) in such a way tha t  the problem 

(6.8) 

(6.9) 

- y " +  ( l + p ( x ) ) y  = ~y on (o, ~ )  

y'(o) = o 

has a positive eigenfunction corresponding to the eigenvalue I and has spectrum 

[17 c~), while the boundary  value problem 

(6.10) y(O) ~-- 0 ,  

for (.6.8) has the same spectrum and [by the above Corollary then  necessarily] has no 
eigenfunction which is positive in (0, ~ ) .  Thus the Green's functions for bo th  pro- 

blems will have norm 1 as operators in ~'2(0, c~). 
Indeed we define 

1 
yo(X)-----, x > l  

0g 

and define yo(X) on [O, 1] in such a way tha t  Yo e C2[O, c~), yo(X) > O on [0, c~) and 

y'o(0) ---- 0. We then  take 

so tha t  

p(x) = y:(x) /y . (x)  , 

2 
p(x )=  ~i ,  x > l .  
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Thus Yo ~Z~(0, ~ )  and  satisfies 

y " - - p ( x )  y = O, y'(O) = 0 

i.e. Y0 is an eigcnfunction of (6.8), (6.9) corresponding to 2 = 1. Since p ~Lt(0,  c~), 
it follows h 'om [28, pp. 97-101]~ [32] t h a t  the spec t rum of bo th  (6.8), (6.9) and (6.8), 

(6.10) contains [1, c~). On the other hand,  by  Theorem 4.2, the  spec t rum of (6.8), 

(6.9) is contained in [1, c~), thus it  follows f rom Theorem 6.1 and  L e m m a  6.2 t ha t  
the  spec t rum of bo th  problems is precisely [1, oo). 

A simpler example  is provided b y  tak ing  p --= 0, however  in this case neither 
p rob lem has a dominan t  eigenfunction. 

THEO~E~ 6.2. -- JLet X ,  X ' ,  Y be as in  Theorem 6.1 . .Let  2<2~(X ,  Y) and let u ~ X 
satisJy 

~ - ~ X  ~ , 

(u, v )>  ~(iu, iv), 

]or all v ~ X '  with v >~ O on f2. Then  either X = X'~ 2 = 2~(X, J~) and u is an eigen- 
]unction o] (5.2) or u>~O in f2. 

PnOOF. - If 2 <  21(X, :Y)<~21(X', Y) ,  the assertion has already been proved in 
L c m m a  6.1. I n  any  case, as in the  proof of L e m m a  6.1, w - - u _  ~ X  ~ satisfies 

(6.11) ( %  w} < ~I(X, Y)( iw,  iw) 

and thus b y  the Corollary to Theorem 6.1 and (5.1), u_ = w = 0 if X '  ea X. Final ly  
if X ' =  X and (6.11) holds with u_ = w ~ 0 ,  then  w >  0 a.e. on ~9 and  w - - u +  = 
= -  u is an eigenfunetion of (5.2). 

RE~A~K 12. -- When  X '  is of the fo rm X r ,  then  the  condition u_ E X '  can be inter- 
pre ted  as (~ u~>0 on F~>, compare  Definition 1.1, p. 14, [26]. 

A par t ia l  converse to Theorem 6.2 is the following result. 

TItEOlCE~ 6.3. - I]  u e X ,  u > 0  on 9 ,  u ~ O  and ]or some 2 > 0  

(6.12) 

then 

(% v} >~ 2(iu, iv) ]or all v ~ X ,  v >~ O, 

21(X, Y) ~> ~ . 

PROOF. -- I n  (6.12) let ] = iu  and let v = i ' g ,  g e  Y,  then  (6.12) becomes 

(j, g)>~2(k], g) for all g~  Y, g~>O 
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which  implies (4.15), wi th  #----~-~. The  hypo thes i s  a n d  the  definit ion of ] i m p l y  

t h a t  ] is non-nega t ive  a nd  no t  ident ica l ly  zero. I t  t h e n  follows f r o m  Theo rem 4.1 

and  (~.15) t h a t  ] is posi t ive  a.e. on [2. The  resul t  t h e n  follows f r o m  Theorem 4.2 

and  the  defini t ion of ~ ( X ,  Y).  
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