A Function Theoretic Method for A%u - Q@)u =0 (*) (**).

R. P. GILBERT (***) - D. KUKRAL (*;*) (Bloomington, Indiana, U.8.A.)

Summary. — The approach used in this paper generalizes Colton’s treatment [4] of cerlain second
order elliptic equations in four independent variables to the fourlh order case. This method
is essentially a function theoretic one that is based on the earlier work of Tjong [11]. An
integral operator is found that permils one {o construct a complete family of solutions with
respect to uniform convergence in compact sets of R*. COonsequenily, one is provided with a
useful numerical procedure for solving the associated boundary value problems.

1. — Introduction.

BERGMAN [1] and VEKUA [12] developed the function theoretic approach for solving
elliptic equations in two variables with analytic coefficients. Recently, progress has
been made in extending these techniques to higher dimension, notably the work
of TJone [11], GLBERT and Lo [8], CorToN and GILBERT [5], and CovLToN [2], [3], [4].
These works have dealt with second order equations of the form

(L.1) A+ 3 Ax) 2 4 Qap=0, k=34
=1 1

and (x= (@4, &y, %) OF (@, &y, &5, 4,), depending on whether k=3, or 4, and special
instances where the coefficients A4,(x)=0. GILBERT and KUKRAL [7] then showed
that similar techniques permitted the treatment of the fourth order equation with
three variables,

(1.2) Alu+Qx)u=0.

This was the first time a function theoretic method was devised which generated all
real solutions of a higher order, elliptic equation in three variables with an arbitrary
coefficient. Furthermore, a scheme was given by which one could obtain complete
families of solutions in starlike regions.

In the present note we shall develop the analogous theory for the four dimen-
sional equation

(1.3) Ay +G(x)u=0.

(*) This research was supported in part by the Air Force Office of Scientific Research
through AF-AFOSR Grant no. 74-2592.
(**) Entrata in Redazione il 26 marzo 1973.
(***) Indiana University and University of Delaware.
(*+*) Indiana University and Wichita State University.



32 R. P. GiuBERT - D. KUKRAL: A function theoretic method, ete.

O(x) is assumed to be an entire function of the real variables @,, @,, #,, and ,, i.e. @(:\:)
is an entire function for xeC* and is real valued for zeR

In the case when Q(x) =), one obtains an operalor which generates sclutions
to the biharmonic equations, and bears a formal resemblence to the operator G, [6],
namely

(1.4) w(x) = G4(f1(//'7 £y n) + Y*fz(;ua g, 77)) .

where Y* = - 1@, p==$m+ 10;) + 5@ + 12, 0+ H—a5 + 1w,y + o — i)y,
and where the f,, f, are holomerphic funefions of their arguments.

2. — The integral eperaior.

We first establish an elementary result which will be quite useful to ug later on

LevMa 2.1, — Let Y= (o + 15,)/2, Y¥= (00,—i®.)/2, Z= (5, i1,)/2, Z*=
= (— 231 18,) /2, and let u(x) be a real valued C* solution of equation (1.3) in a neigh-
borhood of the origin. Then U(Y, Y*, Z, Z*) = u(x) is an analytic function of ¥, ¥*
Z, 7 in some neighborhood of the origin in C* and is uniquely determined by the functions
P(X, Z, 2%) = U(Y, 0, Z, Z*) and G(Y, Z, Z*) = Uy(¥, 0, Z, Z*%).

ProoF. - Since {J(x) is entire in C, the solution u(x) is analytic and
U(Y, Y* Z, Z*) iz analytic. Hence locally we can write,

2.1) UY, Y%, 2, 2% = > aYiY577%,
Wifl=0

(2.2) U(Y,0,2, 2% = 3 toon ViZELH,
Lhl=0

(2.3) Yy:«(Y, Y*, Z, Z*): Z j“i‘j'k.lYiY*j_l.ZkZ*l,
i let=0

(2.4) Uy X, 0,2, Z%) = 3 a5 Y ZP 2%,
dled=0

(2.5) U, Y* %z, Z*%) = z Oo,jp X FIZRLRY
SEI=0

(2.6) Up(Y, Y, 2, 2%) = S oy, 0, Y Y#I28 2%,
k=0

(2.7) Up(0, Y, Z, Z%) = 3 oy, YHZoZ .

ik=0
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Since u(x) is real valued, we have for @, #,, %;, ¥, real,
(2.8) Uy, ¥ 2, 2*)= U(Y, Y*, 2, Z*%) ,

where the bar denctes complex conjugation. This implies that for #,, #,, #;, o, real

(2.9) z gy Y X*IZEZ* = Z Go g Y Y (— Z¥)e(— Z)* .
iii=0 i3 KkI=0

Hence, it follows that

(2.10) iipa = (—1)"00 1 -

Equations (2.2), (2.5), and (2.10) now show that U(0, Y*, Z, Z*)is determined uniquely
by U(Y, 0, Z, Z*). Algo, equations (2.4), (2.7), and (2.10) show that Uy(0, Y*, Z, Z*)
is uniquely determined by Uy.(Y, 0, Z, Z*). In the Y, Y*, Z, Z* variables equa-
tion (1.3) becomes the equation

(2.11) Uyyyeys=2Uyyizze — Upggepe + QUY, X¥, 2, Z%)U =0,
where
(2.12) QY, Y%, 2, 2*)=Q(x) .

From Hormander’s generalized Cauchy-Kowalewski theorem [9] we have that
U(Y, Y* Z, Z*%) is uniquely determined by U(0, Y*, Z, Z*), Uy(0, Y*, Z, Z*)
U(Y,0,Z,Z%) and Uy.(Y,0,Z, Z*) which we have shown to be determined by
U(Y,0, Z, Z*) and Uy.(Y, 0, Z, Z*%) alone. So the lemma is proven.

We use the following ecoordinates infroduced by Corrox [3] for the second
order case,

(2.12) &= T*mC, &= Y*ml+ 2%y,
b=20%m+Y, &=2Z[+7,
p=&+&=Y+ 20+ Z%n+ Y*/Cn,
o= {1—tu.
THEOREM 2.2. — Let D be a neighborhood of the origin in the u plane,
B={({,nl—e<|fl<1l4el—e< |g|<1-+e}, & a neighbordhood of the origin

in the &, &, &, & space and T'= {i: |t|<1}. Let f(u,,n) be a function of three
complex variables analytic in the product domain DX B, and

B¥&, &, &y &y Ly )= B(Y, Y* Z, Z%, [, , t)

3 — dnnali di Matematica
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be a regular solution of the partial differential equation

(2.14) Efiss + Biias + Eioss + Egagg + 27154 + 2B 125
—2F{s54 + 2B284— 2B s — 2 F3554

1
o {Bfis + Pria + Eias— Bias}
(1—1?)

e

{Biiss + Eiiy + Eiogi— Elsar

+§ Ef 31— Efy | Bfw(l—1)?

2F2 R E — ()
Lvw dew e TTEe ’

in §XBXT where Q%(&:, &, &5, 80, &)= Q(X, Y*, Z, Z*) and the subsoripts denote
differentiation with respect to &, &, &;, &y, or {. Then

~1
(2.15) Uy, Y*,Z,Z*):E[;f f fE(Y, Y* 2, 7%, {,n, 1)

{l=1 Ipt=1 » dt  dndg
;f( H 177 '\/1—-——'52 17 C H
where y is a path in T joining t=—1 and t= -+ 1, is a (complex valued) solution

of equation (2.11) which is reqular in aneighborhood of the origin in ¥, Y*, Z, Z* space.

PRrOOF. — Since the Jacobian of the transformation (2.13) is equal to —1/(nf)25% 0
we can conclude that U(Y, Y*, Z, Z*) is regular in a neighborhood of the origin in
the Y, Y*, Z, Z* gpace.

Completely straightforward differentiation together with integration by parts
in the ¢ variable shows that if F = E* is a solution of equation (2.14) then equa-
tion (2.15) defines U as a solution of (2.11), which proves the theorem.

We must show that solutions of (2.14) do indeed still exist.

THEOREM 2.3. — If we formally define

(2.16) B =14 3w p(Ey, Euy &y 600 8o 1) s
n=1
(2.17) B = ink + }:tz’w”q“"(&, &,6,8,0m,
n=1

then a sufficient condition that E* and B* formally satisfy equation (2.14) is that
218) P ==}
PR =—4* Q>

4(121) =3 %5Q*
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and both the p™ and ¢ satisfy the following equation for n>1,

n —4 n n n n
(2.19) i1t = @ T 3En 1 1) {(2n 4+ 1)(pHs” + pd" + pisV —plad®) +
+ E2Q*p"™ + pitas + Pilks + Pi2ds + Phsis + 2piiae +

+ 2pishs + 2pioba—2P158s — 2D 15k — 2 PEBRa} -

Proor. — The proof is again accomplished by completely straightforward dif-
ferentiation.

THEOREM 2.4. — Let D, = {(&, &, &, &): |&:| <1, i=1,2, 3, 4}, where r is an ar-
bitrary positive number, and lot By= {(L,n): |E—Co|< 2¢, [n—10]< 26, 0< e< 3},
where &, and 1, are arbitrary with |{o| = {no)=1. Then for each n,n=1,2, ..., there

exists unique functions p(&1, &, &s, &1, §, ) and ¢™(&y, &, &, &4, , ) which are reg-
wlar in D, X By, and satisfy

(2.20) PV=0=¢"
P = — 87 Q"
] = — 41" 0°6,0*

and for n>1 both p=t® and ¢"+2 satisfy (2.19) such that for n=1,2, ...

(2-21) p(n)(o’ 527 53) 547 C? 77) == q(n)(()’ 527 537 547 C’ 77)
(2.22) 2P0, & &gy £y Ly = 0=¢{(0, &, &, &, Ly ) -

Furthermore, the functions

(2.23) B*(&yy &2y &ay €0y & 7yt =1+ Etzn,“"p(")(fly £y & 60,80 m)
n=2
(2.24) E*(Ely sy Esy &0y &y my 1) = 6+ Et”ﬂ"Q‘”’(fu &,60, 80,0, m)
n=2

are solutions of the differential equaiion (2.14) which are regular in the product domain
G X BX T where R is an arbitrary positive number and

Grp={(¢1,&,8,8): |6|< R, i=1,2,3, 4},
B={n):l—e<|ll]<l+te l—e<|pl<l-te 0<e<i,
T ={: fI<1},
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Also

(2.25) BY0, &, &, 6 Gy t) =1
(2.26) B} (0,8, 8,8, 0)=0
(2.27) N0, & &y £y Ly ) =0
(2.28) B0, &, &y E0y oy ) =10 .

ProoF. — For n=1, p"W =0 == ¢V satisfy the requirements. For n= 2, equa-
tions (2.20) have the solutions which satisfy (2.21) and (2.22)

& &)

(2.29) PREL, &, 65, 80y L) = ——%naczf fQ*(éﬁ, Exy &y, &, m)dELdE,
00

g &
0, b by b L) = — 40 [0, & &, &, 8 ) aELa,
00

and are uniquely determined and regular in -IT,XBZS (for arbitrary (,, n). By in-
duction p™ and ¢™ are uniquely defermined and regular in 5)—, X Byg-

Now consider the formal series defined by equations (2.23) and (2.24). Theorem 2.3
showed that if p™ and ¢ satisfy equations (2.19) through (2.22) then E* and B*
formally satisfy the differential equation (2.14).

It remains to be shown that E* and B* are regular in Gz X BX T, i.e. that series
(2.23) and (2.24) converge absolutely and uniformly in this region. In these proofs
the only essenfial differences between the series for £* and E* is the appearance of
«n22Q*» in one case and « 17353§1Q » in another case. Since we use only the fact
that «%*(2Q*» is regular in D ><B23, these proofs are essentially identical and we
will present only the proof for E*.

Since B is a compact subset of the ({, ) space, there are finitely many points
(syms) With |&)=|ns]=1, j=1,2,..., N such that B is covered by the union of
the sets N;={({,n): L —Cil< & Ip—mi|< —&} j=1,2,..., N. So it is sufficient
to show that the series converges absolutely and umformly in G ><N X T. To this
end we majorize the p* in D, X B, (Where « (£, 75,) » is taken to represent any (£;, 7,)).

Since @(Y, Y*, Z, Z*) is an entire function, it follows that @*(&, &, &, &, ) is

regular in D, X B,. and hence we have

P

Ay E\NT o ENT( _E= LN\ (=
(=) =) (=) )

(2.30) WQ*(&I,52,53,54,c,m<<o(1~?—1) (—i)
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where, as in usual practice, « < » means «is dominated by » or «is majorized by ».
Using a straightforward but lengthy procedure it can be shown by induction, using

properties of dominants, that in 17,— XI?Z; we have for k>»2

M(24 4 0)%-2 A A
B or V77 L 77 122 . '
(2.31) Pu K (2% —1)r+2 (1 7‘) (1 T)

. Ay &,\ -1 E—E¢\ N —n; —(&-1)
=) T T )

where M and ¢ are positive constants independent of k, and d is independent of ».
Using properties of dominants it follows from equation (2.31) that

(2.32) p(k) & M(24 + 5)k_2 ) (1 _é)_(k__l) .

P42k — 1)k (k —1 r

) (1 . é)—(k—l) (1 _ é)—(k—l) (1 _ é)—(k—l) ' (l _ ¢— Cj)—(k-—l) (1 = 77:')“(""”
r r ¥ 2¢ 2¢

and hence in f):XN ; we have

(2.33)  |p®|<

42k — 1) k(k —1) r

Now consider [t2"u"p™)| in D, X JF, X T where

M(24 + §)+2 (1 _ |§1])—(k—1).

D= {(51, &y &y 54)C|§¢[<£ je>1,1=1,2,3, 4}

in E,X—l_\f—;xT we have

‘ —1 .
(2.34) 1-@}"“ ,  i=1,2,3,4,
!C_Cal 1
1— >
2e >4’
In—mn_1
1 2¢e >4—1’

2r
],u[ = ]52 + 54]<;7

[t <1.
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So from eqgs. (2.23) and (2.34) we have in Dy, X N,x T

M(24 + 8)e—= 2 2r
(2.35) Stzkﬂkpml<Tk-4(2k_1}k(zg_1) (oc— 1) e 1)(“) -

B Mrig—1) 3203(24 + 6))*
T 16(24 + 5)2(2k-1)k(7c~—1)o¢4{ @—1)° }

8o that if we choose o such that
(2.36) 32(24 + ¥ —1)t< 1

then the series (2.23) converges absolutely and uniformly in ETXIT—,-X T. By taking

r=aR we can conclude that E*(&,§&,, &, &, L n, 1) is regular in C—T';x N;xT for
j=1,2,..., N and hence in GzX BX T, which completes the proof.

It follows from what has been shown in the previous theorems that since @(x)
is real valued (for xeR?) the operator

u(x)= U(Y, Y*, Z, Z*)
= ReP,(f){f,f}

(2.37) ERB{——g f f JE(Y Y*, Z, Z*%, £,y 1) f(w0, & ) di ‘3_’?&_5_
& Vl——iz n €
i=1Ipi=1y
di dnd@}
- BY, ¥+, %, 7%, , , y Ly
i:z£ff{ Zﬁ)f(@(:??)v —tty
nl=1 %

carries pairs of analytic functions in three variables to real valued solutions of the
differential equation (1.3).

3. — Inversion of the integral operator P;*.

‘We wish to show now that any C* solution of (1.3) defined in a neighborhood of
the origin can be expressed locally in the form

(3.1) U(x) = Re P2Yf, f},

where f and f are determined by the Goursat data for U(Y, Y*, Z, Z*%).

THEOREM 3.1. — Let U(x) be a real valued C* solution of equation (1.3) in some neigh-
borkood of the ovigin in R*. Then there exists a pair of analytic funclions of three complex
variables.
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{f(us &, )y Flsy &, 4}, which are regular for p in some neighborhood of the origin and
]<1+4e Ipl<1-+e >0, such that locally w(@,, #,, ©,, #;) = Re PO, f}. In par-
ticular, denote by U(X, Y*, Z, Z*) the exiension of w(w,, %;, 2, 3,) to the ¥, Y*, Z, Z*
space and let

(3.2) FY, 7, z*) = U(X, 0, Z, Z¥),
(3.3) Y, Z, Z*) = Uy (X, 0, Z, Z¥),
11
o2
B0 ot =g [ [{2F Gt i =5, pma =00 —5)—
o 0

—F(0, (1 —1t)s, pp(1—t)(1—s)) Jp* (1 —t) dtds

11
(3.5 gl c,n)s% f f (L —1) {26 aty (L —1) 8, (1 —1)(1 —5)) —
0 0

—2G(0, (1 —1t)sul, (L—1t)(1 —s)un) —
— G0, (L —1) spg, (1 —1)(1 — 8)pm) }dbds —

10
—5@{9(/‘; &y n)—glp, 0, ) —glp, &, 0) + g(p, 0, 0)},

then
—1 dat
(3.6) Hus &) = 5 fg(u(l—tz), L) s
>
4 —1 1, . dai
(3.7) S, 5377)5% g(#(l“‘t“%é} 77)729
>
where y' is a rectifiable arc joining the points t=-—1 and t= +1 but not passing

through the origin.

REMARK. — It can be shown that §(x, £, %) and g{g, {, ) can be expressed in
terms of f(u, , ) and f(u, L, n) by

(3.8) g, C)ﬁ) sz(:“[l’—tg]’ £, 77) Vi%y
4
. dt
3. 7 , 1) = —, L, n) ———.
(3.9) Glus &) !f(ﬂ[l 1, &) Vis

Proor. — For the purpose of exposition we present here only the barest outline
of the proof. We hasten to add that the proofs of this and the other theorems of this
paper are presented in great detail in [10] which is available on mierofilm.
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Since #(x) is a C* solution of equation (1.3) in some neighborhcod of the origin
and Q(x) is analytic, we can conclude that #(x) is an analytic funetion of its four
variables in a neighborhood of the origin. Also, since Q(x) is real valued, Re Pf){f, f}
is a real valued solution (for xeR?) of equation (1.3) for any funetions f, f which
are analytic in the product fomain D X B (see theorem 2.2).

U_iing the notation §(u, £, 7) = g(g, 57 )y ?(/’51 &) =1(a, Z-y 7), ete., and letting B
and E be the generating functions corresponding to the equation AiU—l—QU: 0,
we can write for z,, x,, @, #, real,

(3.10) Re PP{f,ft =

— at  dndf
:87;2 f f J‘E(Yy Y*,Z,Z*,C,n,t)f(w,c,n)ﬁ;n?
Rl=1 =1 ¥
= 7 at  dndl
8n2 f fEY Y,—Z*%—2,8,n, )f(w,é',n)ﬁ;_?_i_
Kl=1 Igl=1 y
dt dndf
* #
8n2f ff B(Y, Y*, Z, Z*, (¢ f(w,C,nmnC
Bl=1In|=1y
—1 = i @ ande
8 E(Y*, Y, —Z*,—Z, {,n, t){(&, {,n) 1——#;17?’
Ri=1ll=1y
where
Y Z* Z\
= ufl—1¢2 d S e S | o G
w=pf 1 an @ ( _1_175 7 n)[ 1

By theorem (2.1) we know that U(Y, Y*, Z, Z*) is uniquely determined by its Goursat
data along Y*= 0 so we attempt to determine the pair {f, f} in terms of F(¥, Y*, Z*)
and H(Y, Z, Z*). From the initial conditions (2.25) through (2.28), the relations (3.8)
and 3.9), and some rather involved arguments, we are able to reduce equation (3.10)
to the required condition,

CER Y = N I

8n n L
Wi=1 Inl=1
—1 . dn dg
o f fg(ﬂz,fyﬁ);?
=1 inl=1
—1 Y7 dn dl
—8—752 f f g(Mz,Cﬂ}):C
iLi=1 Inl=1
where
zZ Z*
(3.12) =T+ 7+
Y Z* Z
(3.13) Yo =" ——= .
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Equation (3.10) must remain true for the analytic extension of #;, ., ,, 2z, to
complex values, so we may deduce the following statement

(3.14) HY, Z, Z*)y= Uy Y, 0, Z, Z%) =
—1 dt dnd
St f f sz(Yy 0, Z, Z*, {, n, t)f(ful[l"'tz]’ & )\/1—t2 1 C
=1 igi=1y

:}if ffE(Y,O,Z,Z*,C,q?,t)fw(ﬂl[l_tz],C’n)\/;;_gtzdt@@

8n?
Q=1 Jnl=1 3 n L

o f f fE1(0 Y, —Z* —2Z,¢,, t)f(,uz[l 1,

=1 =19

C,n)\/l :

dy d
8 f ffEO Y, — 2% =2, t fm(/‘2[1_t2]’6a77)\/1—t2dt 1 CC

Ki=1lngi=1y
- 7 & dn dcj
{72 fE2(Y7 Oy Z; Z*’ C’ Ny t)f(ﬂl{]_—-«i }’ é" ) M
ICI-I Inl=1yp
B2 f f fE(Y 0,Z, Z% {ynyt fm(ﬂﬂl-—ia} g, ,’7) V1—t @@E
n =1} 17 7 C
=1 igi=1y
— E [ dt  dydl
Ror? EloyY,—Z*,wZ, s ,t 21—t2, , A/ i
%Zf ff ( L7y ) flpal ]C”Aﬂ~ﬁnc
=1 tyl=1y
:8:7612 f f fE(O Y — Z* -»Z C, 7yt fw(nz[l'—t] C, 77)\/1 tzdtdndf,
E1=1 tnI=17

which, by the same type of arguments used for (3.10), may be reduced to

©.19) WYZZ—M'ff%m$m%§
Kl=1 Iy

g;;;f f.%.(/uz,éan)n ¥
fl=1 gl=1

—1 d?}dé'
'é‘y?z f f(ﬂngﬂ?) C

IC|==1 Inl=1

83;2 f J‘Ygu. ey &y ) — CC

fi=1 inl=1

By writing the functions involved in egs. (3.11) and (3.15) in terms of their local
Taylor series and operating with these series, we are able to arrive at the sufficient
conditions (3.4) and (3.5).
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4. — Complete families of solutions.

The integral operator (3.1) can be used to generate complete families of solutions
of (1.3). The proof of the following theorem closely parallels that of a proof of
Corton [3] for the second order equation.

THEOREM 4.1. — Let G be a bounded simply connected domain in R* and define,

(4.1) Ygnmy = ReP 12){/‘”?”7717 0}
Vg +1,m1 = RGP?){O: "'}
Ugn p2,ma= 100 P &2){0’ © '}
Uy 5.my= I P (42){Mncm77" 0}

where n, m, and 1 are non-negative integers and m +I<n. Re (resp. «Im») denotes
«take the Real Part» (resp. « take the Imaginary Part»). Then the set {u,,} is a com-
plete family of solutions for equation (1.3) in the space of real valued C* solutions of (1.3)
defined in G.
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