
A Function Theoretic Method for A~u ~ Q ( x ) u - - 0  (*) (**). 
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Summary. - The approach used in this paper generalizes Colton's treatment [4] of certain second 
order elliptic equations in four independent variables to the fourth order case. This method 
is essentially a function theoretic one that is based on the earlier wor~ of T]ong [11]. An  
integral operator is found that permits one to construct a complete family of solutions with 
respect to uniform convergence in compact sets of 1~ 4. Consequently, one is provided with a 
useful numerical procedure for solving the associated boundary value problems. 

1. - Introduction. 

BE~G~A~ [1] and V]~K~TA [12] developed the  funct ion theoret ic  approach for solving 

elliptic equations in two variables with analytic  coefficients. Recently,  progress has 
been made in extending these techniques to higher dimension, no tably  the  work 
of TJOl~G [11], GZLB]~I~T and Lo [8], COLTOl~ and G]:LBE~T [5], and COLTO~ [2], [3], [4]. 
These works have dealt  with second order equations of the form 

(1.1) zJ~u-F ~ A ~ ( x ) ~ x  . -FQ(x )u -~O , k = 3 , 4  
l = l  

and (x ~ (xl, x~, x3) or (xl, x2, x3, x4), depending on whether  k : 3 ,  or 4, and special 
instances where the  coefficients A z ( x ) ~  O. Gz~]3v.~T and KVK~AL [7] then  showed 
t ha t  similar techniques permi t t ed  the  t r e a t me n t  of the  four th  order equat ion with 
three  variables,  

(1.2) A~u + Q(x) u = o. 

This was the  first t ime a funct ion theore t ic  method  was devised which generated all 
real solutions of a higher order, elliptic equat ion in three  variables with an a rb i t ra ry  
coefficient. Fur the rmore ,  a scheme was given b y  which one could obtain complete 
families of solutions in starlike regions. 

In  the  present  note we shall develop the analogous theory  for the  four dimen- 

sional equat ion 

(1.3) zJ~u -F 0 ( x ) u  -~ 0.  
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~)(x) is ~ssnmed to be ~ entire function ef the re~l v~ria.bles x~ x~, xz, ~nd x~, i.e. ~)(x) 
is an e ~ i r e  runic]ion ~or x ~ C  ~ a~d is rea,1 v~l~ed ~or x ~ R  ~. 

In  the ca.so when 0(x)--= 0, one obt~i~s ~n opera,or which generates solutions 
~o ~he bihn~'monic eqnutions, und be~rs ~ formul resemblence to the ol)er~tor G, [6], 
ne~lnely 

(1.~) u(~) = G~(/~(~, ~, ~) + y % ( # ,  ¢, ~)). 

where Y* ~- x~ + ix~, # ~- ½(x~ + ix~) + ½(xa + ix,)~ -~ + ½(--x~ + ixa)fl -~ + ½(x~-- ix2)y -~, 
and where the ]~, ]~ ~re holomorphic ~-anc~ions of ~heir ~rguments. 

2. - The integral operator. 

We first establish an elementury result which will be quite useful to "tls l~ter on 

Lm~nw~ 2.1. - Let Y :  (x~ + ix~)/2, Y * :  (x~--ix~)/2, Z :  (x.~ + ix~)/2, Z * :  
: (--x~+ix~)/2, and let u(x) be a real valued C ~ solution o/ equation (1.3) in a neigh- 
borhood o] the origin. Then U( Y, Y*, Z, Z*) ~_ u(x) is an analytic ]unction o] Y, Y* 
Z~ Z* in some neighborhood o] the origin i~ C ~ and is uniquel/y determined by the ]unctions 
P(Y, Z, Z*) ~ U(Y, 0, Z, Z*) and G(Y, Z, Z*) ~ Up(Y ,  O, Z, Z*). 

P]¢oo~. - Since 0~(x) is entire in C ~, the solution u(x) is ~n~lytic and 
U(Y, Y*, Z, Z*) is ~n~lytic. Hence locally we c~n write, 

(2.1) U(]~, Y*, Z, Z*) ~ ~ ac,,j.~.~XiY*~Z~Z *~, 
~d.kJ = 0 

(2.2) U(Y, o, Z, z*) = ~ ~.o.~.,Y,Z~Z *~ , 
Lkd=O 

(2.3) Yr.(Y, Y*, Z, Z * ) =  ~ j~,.j.~.~Y~:Y*J-~Z~Z *z, 
~d,kj = 0 

(2.4) Uy*(Y, 0, Z, Z*) = ~ ~ v ¢ ~ * ~  
i . k d = 0  

(2.5) U(O, Y*, Z, Z*) = ~ ~o.j,~.,Y*~Z~Z *~, 
jJcJ=O 

(2.6) U~(Y, Y*, Z, Z*) ~ ~ i~i,j,~.~Y~-IY*JZ~Z *~, 
LkJ=O 

(2.7) UI.(O, Y*, Z, Z*) ~ ~ al.j,~.~Y Z Z 
Lkfl = 0 
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Since u(x) is real valued, we have for x~, x2, xa, xa real, 

(2.s) U(:Y, Y*, Z, Z * ) :  U(Y, Y*, Z, Z*), 

where the bar denotes complex conjugation. This implies that  for x~, x2, xa, x~ real 

(2.9) ~.+.~.:;Y :Y Z Z ~*~(--Z*)~(--Z) ~ 
{ , idcd= 0 i3J¢,~= 0 " " 

]~ence, it follows that  

(2.10) 

Equations (2.2), (2.5), and (2.10) now show that  U(O, ~*, Z, Z*) is determined uniquely 
by U(Y, 0, Z, Z*). Also, equations (2.4), (2.7), and (2.10) show that  Uy(O , :Y*, Z, Z*) 
is uniquely determined by U~.(Y, O, Z, Z*). Ill the Y, Y*, Z, Z* variables equa- 
tion (1.3) becomes the equation 

(~.11) Urrr.r. = 2 Urr.zz. -- Uzzz.z. + Q( Y, :Y*, Z, Z*) U ~- 0, 

where 

(2.12) +(Y, Y*, Z, Z*) = O(x). 

l~rom ]~tormander's generalized Cauchy-Kowalewski theorem [9] we have that  
U(Y, Y*, Z, Z*) is uniquely determined by U(0, Y*, Z, Z*), Uy(0, Y*, Z, Z*) 
U(Y, O, Z, Z*) and Uy.(Y, O, Z, Z*) which we have shown to be determined by 
U(Y, 0, Z, Z*) and Uy.(Y, O, Z, Z*) alone. So the 1emma is proven. 

We use the following coordinates introduced by COLTO~ [3] for the second 
order  c~se, 

(2.12) ~ = ~:*/~,  ~2 = ~ * / ~  + z* /~ ,  

~ = z* /v  + ~: , ~ = z /~  + :F , 

# = ~ + ~ = ~ + z /~  + z , / ~  + ~ , / ~ ,  

: (l--t2)#. 

T t ~ o ~  2.2. - Let D be a neighborhood of the origin in the # plane, 
~ :  {(~, ~])[1 - - e <  [~]< 1 + e, 1 - - 8 <  I~]l< 1 + e), G a neighbordhood of the origin 
in the ~1, ~2, $~, 2, space and T :  ($: It/<1}. Let ](#, ~,V) be a function of three 
complex variables analytic in the prodnc~ domain D × B, and 

~*(~1, $2, ~ ,  ~,, ~, ~, t) = ~ ( ~ ,  P ,  z ,  z*,  ~, ~, t) 

3 - A n n a l i  d i  M a t e m a t i v a  
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be a regular solution of the partial differential equation 

(2.1~) 

' 2 ~ *  "E* --2E~usa~- -t'~1234--i6 ia~a--2E~aa~ 

1 

t~/z 

+ ( 1 - - t  2) E* E* E* E* ~ 
t~ 

3 /~1~ 3(l-t~)/~, ~l~(l-t~)~ + ÷ 
t~# ~- 4t~#~ 4t~# ~ 

÷ ~ Q * E *  = 0 , 

in G × B ×  T where Q*(}~, ~ ,  ~ ,  ~ ,  ~, ~) = Q( Y, Y*, z ,  z*) and the subscripts denote 
di]]erentiation with respeet to ~ ,  ~ ,  ~ ,  ~ ,  or t. Then 

(2.15) 4~ ~ ( ;Y, Y*, Z, Z*, ~, ~, t) 

/ ( ~ , ¢ , n ) V ~  , V~ 

where ? is a path in T ~oining t = - -1  and t = -}- 1, is a (complex valued) solution 
o] equation (2.11) which is regular in aneighborhood o] the origin in Y, Y*, Z, Z* space. 

Pl~ooF. - Since the  Jucobiull of the  tr~llsformution (2.13) is equal to - -1 / (~ )~  ~e 0 
we CUll conclude tha t  U(Y, X*, Z, Z*) is regulur in ~ neighborhood of the origin ill 
the  Y, Y*, Z, Z* spuce. 

Completely s traightforward differentiation together  with integrat ion by  par ts  
in the  t v~ri~ble shows tha t  if E :  E* is ~ solution of eqnstioll  (2.14) then  eqnu- 
t ion (2.15) defines U us ~ solutioll of (2.11), which proves the  ~heorem. 

We must  show tha t  solutiolls of (2.14) do indeed still exist. 

T~I:Eo~E~ 2.3. - I f  we formully define 

(2.16) 

(2.17) 

E* = 1 + ~t~'#'~p(~)(¢~, ~,  ~,  ¢~, ~, ~), 
~ = 1  

then a su]/ieient condition that ~,* and E* ]ormaIly satis]y equation (2.14) is that 

(2.is) p ( i ) _  0 : q(1 x) 1 1 - -  

11 
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and both the p(~) and q(~) satisfy the following equation/or n~>l, 

(2.19) p(~+2) = 
- - 4  

(2n + 3)(2n + 1) {(2n -~ l~t ~"+I~ - ~.+i) _<.+~) ~.~.+i~ 

- F - ~ 1 1 3 3  - '~  _P1144 ~ 2 2 3 3  "-C ~ 3 3 4 4  -~- /t~1134 _Jr_ 

/~1233 -~- -~/~1234 ~ ~_P1334 - -  ~_P1344 - -  ~ F 2 3 3 ~ S  • 

P~ooy.  - The proof is again accomplished by  completely straightforward dif- 
ferentiation. 

TH:EOI~E~ 2.4. -- Let  Dr = {(~x, ~ ,  $3, ~,): I~,1 < r, i = 1, 2, 3, 4}, where r is an ar- 
bitrary positive number, and let B2~= {(~, ~): ]~--~ol< 2e, I ~ o 1 <  2e, 0 <  e <  ½}, 
where ~o and ~]3 are arbitrary with ]~o] = t~ol = 1. Then for each n, n ~  1, 2, ..., there 
exists unique functions P(~)(~l, ~2~ ~3, ~ ,  ~, ~) and q(~)(~l, ~ ,  ~3, ~ ,  ~, ~) which are reg- 
ular in D, X.B2e and satisfy 

(2.20) p(x)= 0 = q(~) 
pi~) = - ~ ¢ ~ Q *  

q<~) _ _ ~ C  ~ Q *  
1 1 - -  

and /or  n >  l both p(.+2) and q<~+~) satisfy (2.19) such that for n--: 1, 2, ... 

(2.21) 

(2.22) p(~")(o, $~, ~8, ~,, C, ~ ) =  o = q~")(o, ~ ,  ~:~, ~,, C, ~). 

Fur thermore ,  the  functions 

(2.23) 

(2.24) 

o o  

n ~ 2  

E*(~I, ~e2, ~8, ~4, ~, ~1, t) = ~ 1  + ~ t3"la"q(")(~l, ~2, ~3, ~4, ~, rl) 

are solutions of the differential equation (2.14) which are regular in the product domain 
{7~ X B × T where R is an arbitrary positive number and 

GR= {(~1, ~ ,  ~3, ~4): I~,l< R, i =  1, 2, 3, 4} ,  

~' = (t: Itl ~<1}, 



36 1~. P. GIL~a'~T - D. K~YK~A~: A /unction theoretic method, etc. 

.A l so  

(2.25) 

(2.26) 

(2.27) 

(2.2s) 

~*(o, #~, #., ~,, ~', v, t ) =  i 

E*(o, ~,, ~., ~,, ~, v, t ) =  o 

E*(O, ~2, ~a, ~ ,  ~, ~, t) = 0 

~*(0, ~ ,  ~ ,  ~,, ~, V, t) = V~. 

P~oo~. - For  n = I, p(~) ~ 0 ~ q(~) satisfy the  requirements.  ~or n = 2, equa- 
tions (2.20) have the solutions which satisfy (2.21) and (2.22) 

(2.29) 
¢1 ~'1 

~(~)(~1, ~,, ~., ~ ,  ~, v) --~v"~ ~) jQ (~, #~, #., ~, ~)d~d~ 
0 0 

q(~)(~i, ~, ~, ~, ~, ~)= - ~ v  ~ J J~IQ (~, ~, ~, ~,, ~, ~)a~ ,~  
0 0 

and are uniquely determined and regular in D~XB~ (for arbi t rary  (~o, ~o). B y  in- 

duction p(~) and q¢~) are uniquely determined and regular in D~ X B~,. 
Now consider the formal series defined b y  equations (2.23) and (2.24). Theorem 2.3 

showed tha t  if p(") and q¢~) satisfy equations (2.19) through (2.22) t hen /~*  and ~* 
formally satisfy the  differential equat ion (2.14). 

I t  remains to be  shown tha t  E* and ~* are regular in G ~ X B ×  T, i.e. tha t  series 
(2.23) and (2.24) converge absolutely and uniformly in this region. In  these proofs 
the  only essential differences be tween  the series for J~* and E* is the  appearance of 
~ ~ Q *  ~ in one case and ~ ~ 3 ~ Q  ~> in another  c~se. Since we use only the  f~ct 

tha t  (~ ~ Q *  ~ is regular in D~× B2~, these proofs are essentially identical and we 
will present  only the  proof for /~*. 

Since /~ is a compact  subset  of the  (~, ~) space, there  are finitely many  points 
(~j, ~ )  with ]~Jl = I~] -~ 1, j -~  1, 2, ..., N such tha t  B is covered b y  the  union of 
the  sets 2V~= {($, V): ] ~ - - ~ ] <  - s ,  [~ - -W]<  -s} j = 1, 2, ..., N. So it is sufficient 

to show tha t  the  series converges absolutely and uniformly in (7~×N~×T.  To this 
end we majorize the  ~o(') in Dr X B2~ (where (~ (~o, %) ~ is t aken  to represent  any (8~, ~]¢)). 

Since Q(:Y, :g*, Z, Z*) is an entire function, it follows tha t  Q*(~, ~ ,  ~a, ~, ~) is 

regular in /)~ × B~ and hence we have 

(2.30) 
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where, as in usual practice, (~ << ~) means (~ is dominated by  ~ or (~ is majorized b y  ,). 
Using a s t raightforward bu t  lengthy procedure it can be shown by  induction, using 

propert ies  of dominants,  tha t  in D, XB~ we have for k ~ 2  

(~ M(24 + ~)~-~ (1 _ _~1)-(~'-1) (1_ _~)-('~-~)" (2.31) p ~  << ~ y ) r - ~ _  ~ - -  

, 

where M and ~ are positive constants independent  of k, and ~ is independent  of r. 
Using propert ies of dominants  it follows from equation (2.31) tha t  

H M(24+(~)  ~-~ ( 1 _ ~ )  -(k-~)" (2.32) i'(~) <'~ ~-,(-(~F-~ ~ :- 1) 

~nd hence in D,X N~ we have 

(2.33) lp(*)l~< rk_ , (2k_ l ) k (k_ l )  1--  

• (1--I~-~l) -('-1) (1-l~--[) -(~-~' (1 ':2S~I) -('-~, (1 I~ ~--/;') -(*-~) . 

~¢ow consider l t ~ ¢ ~ ' l  in D~,X.Y~XT where 

D ~ ' : {  (~1' ~' '  ~ '  ~') :]~'[ < r } ; a > l ,  i =  1 ,2 ,  3, 4 

in D~, X zY¢ X T we have 

(2.34) 1-1}d>--,  i=1,2,3,~, 
r 

2e 

I t l< l .  
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So from eqs. (2.23) and (2.34) we have in D~  × ~ × T 

(2.35) 

MrS( a -  1)~ I32~a(24 + 
16(24 + t~)~(2k--1)k(k--1)o~ ~ [ (a¢--1)' 

so tha t  if we choose g such ~hat 

(2.36) 32(24 + ~)~3(~--1)-a< i 

then  the series (2.23) converges absolutely and uniformly in D~  X N~× T. By  taking 

r ~ ~R we can conclude tha t  E*(~,  ~2, $3, ~4, $, ~, t) is regular in G~ × £V~ × T for 
j = 1, 2 , . . . ,  N ~nd hence in G~ × B × T, which completes the 9roof. 

I t  follows from what  has been shown in the previous theorems tha t  since ~)(x) 
is real v a h e d  (for x E R  ~) the operator 

= u ( y ,  y*,  z ,  z*) 

(2.37) ~- Re {- fff 
I¢lffi l  I~71=1 ~' 

1 dt d~ d ~  

I¢t=1 I~1=1 ~, 

carries pairs of analytic functions in three variables to real vahled solutions of the 
differential equation (1.3). 

3. - Inversion of  the integral operator p~2). 

We wish to show now tha t  any C ~ solution of (1.3) defined in a neighborhood of 
the origin ca~l be expressed locally in the form 

(3.1) = 

where ] and f are determined by the Goursat data  for U(Y, Y*, Z, Z*). 

T ~ o ] ~ ] ~  3.1. - Zet U(x) be a real valued C 4 solution o] equation (1.3) in some neigh- 
borhood o/the origin in R 4. Then there exists a pair o/analytic/unctions o/three complex 
variables. 
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(/(#, ~, ~),f(#, ~, ~}, which are regular /or # in some neighborhood o/ the origin and 
I~1 < 1 ÷ ~, lvt< t + ~, ~ > 0, such that locally ~(x~, x~, x~, x~) = ~eP(,m){],]}. I .  par- 
titular, denote by U(~, Y*, Z, Z*) the extension o] u(x~, x~, x3, x4) to the Y, Y*, Z, Z* 
space and let 

(3.2) 2~(:g, Z, Z*) --= U(Y, 0, Z, Z*),  

(3.3) G(:Y, Z, Z*) -~ Uy.(:Y, O~ Z, Z*) , 

1 1 

(3.~) g(~, ~, ~) ~ ~-~ {2F(~t, # ¢ ( ~ - t ) s ,  ~ ( 1 - t ) ( ! - s ) ) -  
0 0 

- F ( o ,  ~ ¢ ( 1 - t )  s, ~ ( ~ - - t ) ( 1 - -  s)) } ~  (1- - t )d tas  , 
1 1 

(3.5) 0(~, ¢, ~) ~ ~--~ ~ ( 1  - t ) { 2 ¢ ( ~ t ,  ~¢(1 -t) .~ ,  ~ ( ~ - t ) ( ~ - ~ ) ) -  

0 0 

- 20(o, (~ - t) ~ ¢ ,  ( 1 -  0(1 - s ) ~ )  - 

- ~toi(o, ( ~ -  t) s~¢, (~ - t)(1 - s )#~)}dtds- -  

~.~ ~# {g(t~, ~', ~)--g(t  ~, O, n)--g(t*, ~, O) + g(#, O, 0)}, 

then 

(3.6) 

(3.7) 

_if 
__If ](~, ¢, v) -~ ~ 

dt 
g(#(1- t~) ,  ¢, v) ~ ,  

dt 
~ ( # ( : t - t %  ~, ~) ~ ,  

where ~,' is a recti]iable arc joining the points t ==--1 and t-~ -4-1 but not passing 
through the origin. 

R:E~rA~:. - I t  can be shown that  9(#, $, ~]) and g(lt, ~, ~7) can be expressed in 
te rms of ](#, $, ~]) and ](#, ~, U) b y  

f dt (3.8) g(tt' ~ ' V ) =  ] (#[1- - t2 ] '  ~'V) V ' ~ '  

(3.9) 0(#, ¢, U) = f (~[1- - t~] ,  ¢, ~]) ~ 1 2 - t ~  " 
Y 

P~ooF.  - For  the  purpose of exposition we present  here only the  bares t  outline 
of the proof. We hasten to add tha t  the  proofs of this and the other theorems of this 
paper  are presented in great  detail in [10] which is available on microfilm. 
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Since u(x) is a C A solution of equation (1.3) in some neighborhood of the origin 
and ~)(x) is analytic,  we can conclude tha t  u(x) is an analytic function of its four 
variables in a neighborhood of the  origin. Also, since 0 (x) is  real valued, me p(m(],f} 
is a real valued solution (for x ~ R 4) of equation (1.3) for any functions f, f which 
are analytic in the  product  fomain D × B  (see theorem 2.2). 

Using the notat ion .5(re , $, ~/) ---- g(fi, ~, ~), l(#, ~, V) =--/(fi, ~, ~), etc., and let t ing E 

and E be the generating functions corresponding to the  equation A~ U + ~ ) U =  0, 
we can write for xl, x~,xa,x~ real, 

(3.1o) 

where 

me P(,'(I, ] }  = 

- - 1  f 
8 ~  2 

I~1=1 

8 ~  2 
[~1=1 

8 ~  2 
I~l  = 1 

f 8 ~  2 
t,~l =i 

f f dt d~ d~ .E(y, y*, z ,  z*,  ~, v, t)f(~, ~, v) ~Jl--t~ v ¢ 
Inl=l 

/~C Y*, y ,  - - z * ,  - - Z ,  ~, V, t)f(r~, ~, n) v / ~  '1 
]r/I= 1 y 

#(y ,  ~'*, z, z*, ~, ~, t)f(o~, ~, ~) ~ ,7 ':: 
I~?l = I  y 

Ini=:t }, 

o) = #[1 - -  t 2] and (5 --~ Y* -b ~ ~ [1 - -  t~]. 

B y  theorem (2.1) we know tha t  U(Y, Y*, Z, Z*) is uniquely determined by  its Goursat 
da ta  along Y* = 0 so we a t t empt  to determine the pair  {f, f} in terms of F(:Y, y*,  Z*) 
and G(Y, Z, Z*). From the initial conditions (2.25) through (2.28), the relations (3.8) 
and 3.9), and some ra ther  involved arguments,  we are able to reduce equation (3.10) 
to the  required condition, 

+.11/ f 
I¢[=1 In l -1  

- ff 
I¢[=1 [~;1= 1 

8 ~  g(#~' ~' n) n ~ ' 
I~1=1 I r f l= l  

where 

(3.12) /tl ~-- Y -t- Z Z* ~+~-, 
Y Z* Z 

(3.13) #2 ~ ~ ~/ 
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Equation (3.10) must remain true for the analytic extension of ~ ,  z~, xa, ~4 to 
complex values, so we may deduce the following statement 

(3.14) ~(~Y, Z, 

__If 
{C{ =i 

--i 

8~ ~ f 
ICI - 1 

{CI = I 

-1 f 
)(:l ~ I  

I~1-1 

8~ ~ 
l~I--1 

8 ~  2 
I~'{=l 

f 

Z*) : Ur.(Y, 0, Z, Z*) = 

f f  dtd, d¢ ~(~,  o, z ,  z*,  C, 7, t) f(~,~[1-t~], C, v) V I -  t~ 7 

7C v In l= l  ~, 

/~(0, Y , - -Z* ,  - -Z ,  ~, ~7, t)](#,[1 --t~], ~, 7) , V / i ~  ~ ~. 
]~1=I l '  

/ 
l r / l= l  

f 
f 

I~ l= l  r 

f/~(0, Y, - -  Z*, - -  Z,  ~, 7, t) Tg(tt~[1--tq, ~, 7) V'~--[~ dt d7 d~ 

Y 

fE,~CY, o, z*, 7, - M ,  C, v) 
dt &l d~ 

Z, t)f(/,1[1 

f ~ ( r ,  o, z, z*, C, ,7, t)f~,(~[1-tq, C, ~) at 
V ~  &7 d$ 

which, by the same type of arguments used for (3.10), may be reduced to 

(3.15) G(Y, Z, Z*) . . . . . .  

I¢I~I 1,7)=I 

-,,!f f ? , C 
I ¢ i = I  {rll = I 

lCl=l I,~1= 1 

C" 
ICI=I Inl=1 

By writing the functions involved in eqs. (3.11) and (3.15) in terms of their local 
Taylor series and operating with these series, we are able to arrive at the sufficient 
conditions (3.4) and (3.5). 
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4. - Complete families o f  solutions.  

The integral  opera tor  (3.1) c~n be used to generate  complete  f~milies o~ solutions 
of (1.3). The proof  of the  following theo rem closely purallels t ha t  of ~ proof of 
GOLTON [3] for the  second order equation.  

T~V~Ol~E~ 4.1. - Zet G be a bounded simply connected domain in R ~ and de]ine~ 

(4.1)  = o} 

= Pi ){0, 

u,.+2.~,, =: I m  Piz){O, # " ~ V  Z} 

where n, m, and l are non-negative integers and m -~  l ~ n .  Re  (resp. ((Im )>) denotes 

(( take the Real Part  ~ (resp. (~ take the Imaginary Part ~)). Then the set {%,m,~} is a com- 
plete/amiIy of solutions ]or equation (1.3) in the space of real valued C 4 solutions of (1.3) 
defined in (7. 
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