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Summary. - This paper studies relationships between operators on continuous ]unction spaces 
and properties o] associated vector measures given by Riesz t~epresentation Theorems. 

1 .  - I n t r o d u c t i o n  a n d  d e f i n i t i o n s .  

Suppose that  each of E and F is a B-space (---- Banaeh space), H is a compact 
Hausdorff space, and C(H, E) is the B-space (re sup norm) of all continuous E-valued 
functions on H. V~e will be interested in operators /~: C(H, E ) - * F  and repre- 
senting measures m: X-->B(E,F) ,  where B(E ,F)  is the B-space of all operators 
from E into F and X is the Borel a-algebra of subsets of H. A finitely additive set 
function m: X--)-B(E, F**) is called a representing measure if m has finite semiva- 
riation and Im~ ] is a regular Borel measure for each z ~ / ~  ( ~  closed unit ball in the 
dual of F). The Riesz Representation Theorem in this setting asserts that  to each 
operator L: C(H, E ) - * F  there may be associated a unique representing measure 
m: X-->B(E, F**) so that  L(]) -~ f ]dm a,nd [[L]I ---- ~(H),  where ~ denotes the semi- 

s 
variation; this association is denoted by L+-~ m. The reader may consult B~0oKs 
and LEwis [4] and DI~Ct%EA~u [8] for a detailed discussion of this setting. In 
particular, ~ will denote the characteristic function of a set A, S(X) wilt denote 
the scalar valued simple functions defined over X, and U(X) will be the uniform clo- 
sure of S(Z). The spaces Sz(Z) and U~(Z) are defined analogously for E-valued 
functions. The reader should note that  if m ¢-e,L, then re(A) x-~ -~ L**(~ x). The 
m~jority of our results will be concerned with relating properties of the operator L 
to properties of its representing measures. 

The classes of operators that  we will discuss are the compact, weakly compact, 
absolutely p-summing, nuclear, quasinuclear, unconditionally converging, completely 
continuous, strictly singular, and strongly bounded. An operator T: E--~F is said 
to be (weakly) compact if it maps bounded sets in E into conditionally (weakly) 
compact sets in F, and T is said to be absolutely p-summing (a.p.s.) if it maps weakly 
p-summable (w.p.s.) series in E into absolutely p-summable series in F. Equivalently, 
T is a.p.s, if there is a constant ~>0 so that  if x~, ..., x~ is a finite set from E, then 

(*) 

(*) Entrata in Eedazione il 2 aprile 1975. 
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If  T is a.p.s.,  then the infimum of all numbers ~ > 0  satisfying (,) is called the abso- 
lutely p-summing norm of T and is denoted by ~ ( T ) ;  and  

is denoted by %(x,)~= r The mapping T is said to be nuclear if there is ~ sequence 
(%) c/~* and a sequence (b~)c/~ so tha t  

c o  

[[ dJllb ]l<oo and T(x)= Lf each xEE. 
n = l  n = l  

Also, T is said to be uncondit ionally converging (u.c.) if T maps weakly unconditio- 
nally converging (w.u.c. -~ w.l.s.) series in /~ into uncondit ionally converging series 
in F,  T is said to be completely continuous if T maps weak Catlchy sequences in E 
into norm convergent sequences in F,  and T is said to be str ict ly singular if T does 
not  have a bounded inverse on any  infinite dimensional subspace of E. 

2. - Absolutely p-summing operators and the n~-variation. 

We begin this section with a lemma ~rom B~ooKs and LEwis  [5]; we include 
a proof for completeness. The notat ion E Qz/~ is used for the least crossnorm 
completion of E (D/~. 

2.1 I ~ E ~ A  - I f  ~ x~ is weakly p-summable in E and (y~) c/~1 ( =  closed uni t  
ball of /~), then  ~x~Qy~ is weakly p-summable  in /~ ~)a/~L 

PI~OOF. - Suppose tha t  ~x~ is w.p.s, in X and tha t  there is a sequence (y~) c Y1 

so tha t  ~x~@y~ is not w.p.s, in X @ ~ Y .  Thus there is an integer N and y ~  

~ ( X  @~. ]z3) with " i  ( ~  J~(x~ @ y~)j~)l/v> e~(x~). Thus there is an element w = (w~) 
27 

e (lq)l so tha t  ~ r(x~ ~) y~) w~ > e,(xi). Therefore~ 
1 

and 

y x~®w~y~ >s~(x~), 

37 

Z II ®  ,u,ll  > 
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But then t h e ~  is an t • X :  so that ll]gt(x,)~Y,ll > ~ ( ~ ) -  Consequently, 

~7 

1 

< ~.l/(x~)w~l < 1(~,11 ~ ~i l  ~) 
1 i = 1  1 

< (:2:t/(~,)1 ~) ~ < ~(~,) ,  

and we have a contradiction. [] 
As an application of the lemma, we obtain the following result. 

2.2 POPOSITIO~.- Suppose t h a t  / ~ : / ~ Q z F - + G  is an  operator where G is a 
B-space, and  tha t  L~: E--~B(~, G) is the natura l ly  induced operator. Then 

(i) L~ is uueondit ionally converging if L is uncondit ionally converging; 

(if) /5~ is absolutely p-summing if 15 is absolutely p-summing. 

P R O O F .  - -  (i) Suppose t ha t  ~ x~ is w.u.c, in E and tha t  (n,) is a permuta t ion  of N 
c o  

so tha t  ~ L,(x~,) does not  converge. Then choose a sequence (y,) c F~ so t h a t  
~ = 1  

~, ][L~(x~)--Z(x~,Qy~)[ 1 < 1. Since (y~) is bounded, by  Lemma 2.1, ~x~,Gy~ is 
w.u.c, in E(D~F; consequently, ~,L(x~,(~yi) is u.c. But  then  ~Ll(x~,)  must  be 
n.c.,  a contradiction. Thus if L is u.e. ,  if follows tha t  L, is u.e. 

(if) The proof of (if) is similar; the details will be omitted.  [] 

The preceding lemma and proposition generalize some recent results of SWARTZ [22]. 
In  particular,  SWARTZ showed tha t  if L:  C(H,E)-+E is absolutely summing, 
then  L~: C(H) -+ B(E, F) is absolutely summing. Since C(H, E) ~ C(H) (D~ E, the  
relationship of this  fact  to Proposition 2.2 is clear. We ment ion tha t  one m a y  also 
employ a method  similar to the  one used in [21] to show tha t  if L:  C(H, E)-+F 
is absolutely p-summing,  then  L~: C(H) -~ B(E, F) is absolutely p-summing.  A key  
ingredient needed in this approach is the  following lemma. 

2.3 LE~MA. -- Suppose tha t  ]1, ..., ]~e C(H). 

(i) I f  ~(/~)<1 then  ~([]~1)42. 

(if) I f  e , ( / , ) -~ l ,  then  ~ l/,[ ~ ~----1. 

P R O O F .  - Suppose t h a t / 1 ,  . . . ,  fk satisfy the hypothesis of the  lemma, U-~ C(H),, 
and set U+---- {/~• U0: #>0} ,  i.e., U0 is the  polar of U in C(H)*, and U °+ consists of 
all non-negative regular Borel measures in U °. Then U+ is the w*-closure of the  ex- 
t reme points of U~. But  an extreme point of U~ is either a point mass ~t, t • H, 
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or the  zero measure. Now suppose that ~ - ~ g i S ~ , ,  ~gi> 0, ~ i < 1 .  Then, 
i = l  

( =c¢,,)11,1 1,9 
" J = l  " , " 

g 

= i o , , ( 1 , ) i , ) , , ,  
J = 1  

< ~ ej.<.. 1.  
t = l  

As a consequence, ii F e U~, then  ( ~  ~(]t~l)~)~tl <~.  But  i,  ~ e u0, then  ? = ~+ -- ~0-, 
where each of ~+ and ~- belongs to U ° Thereiore + .  

(~1~(I/~1)1:,,) 1'' 

= (~ l (~+-~- ) r /~ lp )  1,'~, 

< (~  (~+1/~1 + ~-I/,I)~) "~ 

< 

and the  proof of (i) is finished. 
The proof oi (ii) is analogous to tha t  of (i) and  will be omit ted.  • 
A consequence of (i) is t ha t  if ~ ]i is w.p.s, in C(H), then  ~ I]il is w.p.s. 
I t  was also shown in [22] t ha t  an operator 

is absolntely summing if and only if m has finite x-variation. (See Definition 2.4 
below.) However, the  si tuation is more delicate for p > 1. 

2.4 DEFINITION. -- Le t  me-~15: C(H, E) - ~ F  be an  absolutely p-summing ope- 
rator. Then By  Theorem 4.1. in/ra, re(A): E - * I ~  is a.p.s, for each A 6 X. De- 
fine z~(m) to be sup {~  z~(m(Al))}, where z(H) denotes the collection of all finite 

disjoint Z-parti t ions of H. Similarly, define =~(m) to be sup {~7~(m(Atp)l/~}. 

2.5 TEE0~E~. - I f  me-+ 15: C(H, E) -* F is absolutely p-summing,  then  ~(m)  < oo. 
Conversely, if =~(m)< 0% then L is absolutely p-summing. 
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PlmoF. - Suppose t ha t  L is a.p.s. ,  let  ~ > 0, let  A~, . . . ,  A~ be a par t i t ion  of H, 
and  let  (x~)~, n -~ 1, . . . ,  k be a collection of finite subsets of E so t h a t  e~(x~) <1  
for each n and  

Then,  

• ,'\~" . [[L**(#,,ox.~)]I")'~'<=d L**) 

(Recall t ha t  Z** is absolutely p-summing) .  

Then  suppose t ha t  v e Uz(Z)* , ]lull <1 ,  and note  tha t  

Define (v, ~ ) :  E - > R  by  (v, ~A) x = v ( ~ x ) ;  consequently,  (v, ~A) e E*, and H(v, ~)[]E* < 

< [~i(A). Thus 

Therefore  ~ ( m )  < ~ ( L * * ) .  And PIETSCH [17] has shown t h a t  ~ (L**)  -~ ~ ( L )  ; hence 

~;(m) <~,(L). 
Conversely, suppose t ha t  ~,(m) < 0% and let  ~ ,  . . . ,  ~k e SE(X) so t h a t  e~(~)~=~ <1 .  

Wi thout  loss of generali ty,  suppose t h a t  

~)i ~ ~ ~An xni  
~ 1  

for  each i and  t h a t  no A~ is empty .  Then  

= t l :  

X ~\1/~ < °,  ) 

e k Also, since ~(~)~=1<1, it  follows t h a t  e~(x~)~<l for each n. Therefore,  
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We remark that  it is possible for L to be a.p.s, and ~(m) to be unbounded. For 
example, let 

be the identity injection; then ~+-,/~, where 

Let (A~) be a sequence of disjoint Borel subsets of (0, :~/6] so that  ~(A~)= 1/n 2, 
where Z is Lebesgue measure. Then certainly ~(/~(A~))> II#(A~)lI = (~.(A~))t= 1In 
and therefore ~ ( m ) =  oo. 

3. - S trongly  bounded  operators and e 0. 

The absolutely p-summing operators of the preceding section form a subclass 
of the strongly bounded operators. (See the opening remarks of § 4.) 

3.1 DE~I~I~IO~. - An operator m +-~ L: C(H, E) --. E is said to be strongly bounded 
(-----s-bounded) provided that  if (A~) is a disjoint sequence from Z, then ~(A~)-* 0. 
We speak of an operator and its representing" measure being s-bounded interchangeably. 

The following lemma~ whose proof can be found in [4], presents alternate charac- 
terizations of s-bounded representing measures. 

3.2 LE~MA. - If  m: Z - , B ( E ,  F) is a representing measure, then the following 
are equivalent. 

(i) m is s-bounded; 

(ii) if A~Na ¢, then ~(A~)'x O; 

(iii) (Iraqi: z eEl}  is conditionally weakly compact in rca(Z); 

(iv) m(A~)x, converges in E for each disjoint sequence (A~) and each sequence 
(x~) c ~. 

The class of strongly bounded operators is in a sense the natural extension of 
weakly compact operators T: C(H) --* E to the C(H, E)-setting. For a discussion of 
strongly bounded operators in the C(H, E)-setting, see BROOKS and LEWIS [~]. 

Another way in which the strongly bounded operators may be thought to as 
generalization of the weakly compact operators can be revealed in connection with 
the following theorem of Pelezynski. 

THEOREICI [15]. -- If  the operator L: C(H) ~ E is not weakly compact, then C(H) 
contains an isometric copy 1 z of co so that  the restriction of J0 to Y is an isomorphism. 
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While the  direct generalization of the above theorem is false for non weakly com- 
pac t  operators defined on vector-valued continuous funct ion spaces, using the  techni- 
ques of [15] and the following lemma f rom I~OSE~T~AL [19], we establish a result  
analogous to  the  above  theorem.  

3.3 L E l ~ A  [19]. - Le t  ff be the  power algebra of the na tura l  numbers ,  let 0 </~  e 
s bla(ff), and  suppose t h a t  II,ustl <1  for i -~ 1, 2, .... I f  (Ad is a disjoint sequence 
f rom ff and ~ > 0, t hen  there  is a subseqnence n~ so tha t  

( U  A % ) < ( ~ ,  i = 1 , 2 ,  . . . .  

The correspondence m , -~L referred to  in the  following theorem is given b y  
Theorem I I .9 .1  in DI~CVL]~A~V [8]. 

3.4 THE0~EM. -- Suppose t h a t  X is an  algebra of subsets of an abs t rac t  set W, 
Ss(X) is the  space of E-valued  simple functions over X, ~ ( X )  is the  uni form closure 
of Ss(Z), and m , - , L :  Us(X ) - - ~  is an operator  which is not  s trongly bounded.  Then 
Us(Z ) contains an isometric copy Y of co on which L is an isomorphism. 

P~OOF. -- Le t  S(X) be the scalar valued Z-simple functions and let  U(Z) be the  

uni form closure of S(Z). Then 

Fur thermore ,  by  the  Stone Representa t ion  Theorem [8], there  is a to ta l ly  disconnected 
compact  t tausdorff  space S~ so tha t  Z is isomorphic as a Boolean algebra to the  col- 
lection of elopen subsets of S~, and consequent ly  U ( Z ) ~  C(Sd. Thus 

Us(Z) ~ C(S1) ®~E ~ C(SI, E) ,  

and the  na tura l ly  induced operator  L :  C(S1, E) -~ E is not  s-bouuded. 
Therefore  if we continue to  denote  the  representing measure of L b y  m, then 

S =  {Im~I:zsF~} is not  condi t ional ly  weakly compact .  Combining results from 
PELCZY~SKI [15] and Lemma  3.3, we obtain 

(a) ~ > o, 

(b) a disjoint sequence 0~ of open sets, 

(v) a sequence (zi) c ~ ,  

and 

(d) a sequence (gd c C(H, E) so t h a t  IIg~lt - 1 for each i and suppor t  (g~) c O, 
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which sat isfy 

and 

(]) IL*(z~)(g~)I= g~dm,, > 8, i =  1, 2, . . . .  

F r o m  (d) i t  follows t h a t  if Y =  span(g~), then  :Y ~ Co. And f rom (e) and (]) it  
follows t ha t  L I y is an isomorphism. Pulling back th rough  the  isometries,  the  theorem 
follows. • 

Joe  DIESTEL and J e r ry  UHL have obta ined results similar to the  preceding theo- 
rem (private communicat ion) .  

We also note  t ha t  if L:  ¢ (H,  E) ->_F is not  s-bounded, then  there  m a y  be m a n y  
isometric copies of co in C(H, E) on which L is not  an isomorphism. To see this~ 
]et H, .E, and F be such tha t  there  is an  opera tor  m<-+L: C(H, E)-->F with m 
countab ly  addi t ive and not  s-bounded. F ro m  the proof of Theorem 3.4 it  follows 
t ha t  C(H) must  be infinite dimensional;  hence C(H) contains an  isometric copy Y 
of co. Thus C(H).x contains an isometric copy of :Y.x of Co for each vector  x e E 
so t h a t  Itxll > o. Bu t  L :  C(H)x-~F is weakly compact  since the represent ing mea- 
sure for the  restr ict ion of L to C(H) x is countably  addit ive.  (If X is a finite dimen- 
sion~1 B-space and  Y is any  B-space, then  a countab ly  addi t ive represent ing measure 
is s t rongly bounded.)  Therefore  Z]y~: :Yx->/~ cannot  be an isomorphism. 

RE~A~: .  - A recent  resul t  b y  DIESTEL and FAIRES [7] characterizing strongly 
addi t ive measures,  together  with Theorem 4.2 of [4], makes possible the  following 
character izat ion of nonstrongly addi t ive operators on U2(Z)-sp~ces, where X is a 
a-algebra. (An operator  m<--~L: U2(X)--~F is s t rongly addi t ive  if m(A~)->O when- 
ever  (A~) is ~ disjoint sequence f rom X.) I f  E and /~  are Banach  spaces~ then  an ope- 
ra tor  me-+L: Us(X ) - ~ E  is not  s trongly addi t ive if and only if there  is an isometric 
copy W of 1 ~ in U(Z) so tha t  Z~1 ~ is an isomorphism, where L~: U(Z)---~B(E, .F) 
is defined b y  Z~( ] )= f ]dm.  

Our nex t  resul t  deals with l inear best  approximat ion  projections onto co. Speci- 
fically~ if E is a separable subspace of m (~--l~-----bounded continuous functions 
on N) containing co, such tha t ,  for each x E E, P(x) is a best  approximat ion  to x 
f rom c0. This fact  seems to have gone unnot iced even though the essence of the  
proof is well known,  having been discovered by  KSmgE [12], elucidated by  GOLD- 
B Eta  [10], and rediscovered by  VEECK [23]. These authors  conclude tha t  there  is 
a project ion f rom /~ onto Co having norm 2, a fact  originally announced  by  Sos- 
CZYK [20]. We are not  able to  get the  stronger conclusion by  Sobczyk's method.  

The existence of such a project ion P is equivalent ,  via the  complementa ry  pro- 
jection, to the existence of a norm one project ion having so as its kernel.  This elemen- 
t a r y  fact  is given by  C ~ E Y  and PRICE [6], and  also ANDEI~SON [2], whose papers  
give some evidence of the  r a r i ty  of linear best  approximat ion  operators.  

Also equivalent  to  the  existence of P is the  existence of g subspace L of E,  corn- 
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p l emen ta ry  to  co, each e lement  of which is orthogon~l to  each e lement  of co. Each  
member  of L has the  p rope r ty  t h a t  sup Ix, l ----lim sup ]x,]. 

3.5 THEO]~E~I. - - I f  :E is u separable subspace of m containing cothen there  exists 
a l inear project ion /) :  E - + E  such t h a t  [IP][----1 and k e r P =  co. 

PgOOF. -- Le t  H be the  uni t  ball  in the  dual  of E,  equipped wi th  the  weak-star  
topology.  Then  H is compact  and  metrizable.  We select a metr ic  d for H.  Le t  ~ 
d e n o t e t h e  n- th  coordinate  project ion on E. Le t  K consist of those members  of H which 
vanish on co. Then K is compact ,  and there  exists ¢~ in K such t h a t  d(~,  ¢~)- -  
= d(~z~, K). The project ion is defined b y  /)x {¢~( )}~=1 for x in E.  

Suppose x--/)X~Co. Then d(~. ,  ¢~) ~ 0 ,  and since H is compact  there  is a sub- 
oo i sequence of {~},=1 wh ch converges to  ~ point  T e H'~K. This implies t h a t  T(x)  ¢ 0 

x ~ T ( x )  is for some x in Co. Bu t  ~(x)  is the limit of ~ subsequence of { ~ (  )}~=1; i .e. ,  
the  l imit  of a subsequence of x. Therefore  x - / ) x  e Co. 

Certainly,  then ,  k e r P c c o .  Bu t  also C o c k e r / )  because ¢ , e K .  Tha t  / ) ~ / )  
follows f rom 

P ~ x - / ) x  - - / ) ( P x  - x) e/)(Co) = { o } .  

Finally,  P is l inear of norm one because each ¢~ is l inear of norm one. • 

4. - Mapping properties of representing measures. 

In  (21) SWARTZ showed tha t  an uncondi t ional ly  converging opera tor  on C(H, E) 
is s t rongly bounded.  Thus it  follows t h a t  every  weakly compact ,  compact ,  nuclear ,  
quasinuclear, absolutely p-summing,  and complete ly  continuous operator  on C(H, E) 
is s-bounded. Fur the rmore ,  HOWAlCD [11] has shown th a t  every  s t r ic t ly  singular 
opera ter  is uncondi t ional ly  converging; therefore  a s t r ic t ly  singular opera tor  on 

C(H, E) is s-bounded. 
As a resul t  of the  s trong boundedness,  t he  reader  should note  t h a t  a represent ing 

measure for a map in any  of the  classes of operators under  consideration must  map  

into B(E, ~'), e.g. see BlCOOKS and  LEWIS [4]. 
We note  here  tha t  if L:  U(H, E)-->F is not  s trongly bounded,  t hen  L e m m a  1 

of PELCY_~SKI [16] implies t h a t  there  is a subspace 17 of C(H, E) isomorphic to  co 
on which L has a bounded inverse. However ,  this l emma does not  give the  isometry  
of Theorem 3.4 nor does it  seem to reveal  as much about  the  s t ruc ture  of these par t i -  

cular spaces. 
The following theorem shows t h a t  m a n y  mapping propert ies  of an operator  

mc=,L: C(H~ E)-+F are shared b y  its represent ing measure m. 

4.1 THEOrEm. -- Le t  m+-+L: C(H, .E) -.+ F. 

(i) I f  • is weakly compact ,  t hen  re(A) is weakly compact  for each A e 27. 
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(if) I f  L is compact, them re(A) is compact for each A e X. 

(iii) I L is absolutely p-summing then  re(A) is absolutely p-summming for 
each A e X. 

(iv) If  L is unconditionally converging, then  re(A) is uncondit ionally con- 
verging for each A ~ 27. 

(v) I f  L is completely continuous, then  re(A) is completely continuous for 
each A e X. 

(vi) I f  L is nuclear, then  re(A) is nuclear for e~ch A e X. 

(vii) I f  Z is quasinuclear, then  re(A) is quasinuclear for each A e 27. 

(viii) I f  L is str ict ly singular, then  re(A) is s tr ict ly singular for each A e 2:. 

PRooF. - (i) and (if) follow from § 4 of :BI~OOKS and LEWIS [5]. 

(iii) SwA~:z [22] has shown tha t  if L is absolutely summing, then  re(A) is 
absolutely summing for each A e X. Therefore suppose tha t  Z is a.p.s, and tha t  
1 < p < c~. PIECSC~ [17] has shown tha t  an operator T is a.p.s, if and  only if T** 
is a.p.s.;  hence L**: U lz( X) --+.E is ~.p.s. (U~(X) is isometrically contained in 
C(H, E)**). Then, if ~ x~ is w.p.s, in E and }~ is the characteristic function of A e Z, 
by Lemma 2.1 it follows tha t  ~}~x~ is w.p.s, in U~(27) --~- U(27) ~ h E .  Consequently, 
~Z**(}~x~)----~,m(A)x~ is a.p.s. ,  and  it follows t h a t  re(B) is a.p.s, for each B e  27. 

(iv) Suppose tha t  L is u.c. ,  A e X ,  ~x~ is w.u.c., and ~,m(A)x~ not  u.c. 
in/~.  Wi thout  loss of generality, assume tha t  s > 0, (ak, b~)7~ ~ is ~ sequence of pairs 
of integers so t ha t  a~ < bk< ae+ ~ for all k, and  

:Now using the fact t ha t  m being s-bounded imptes t ha t  ~ is reg~alar, we construtc 
a sequence (fk) of non-negative continuous functions of norm one so t ha t  

L ¢t > e ,  ]~---- I, 2, . . . .  
{ 

b1: 

t towever,  by  Lemma 2.1 ~ ~,fexi is w.l.s., a~nd therefore Z ~-L(Jkx4) is u.e. ,  a 
Iv i = a ~  ~', i 

contradiction. Thus re(A) is u.c. 

(v) Next,  suppose t ha t  L is completely continuous. Thus m is s-bounded, 
and  a:(Im~l:ze_t~*l) is conditionally weakly compact.  Fur thermore ,  there is 
0 < 2 ~ r c a ( X )  so t h a t  the elements of a are uniformly absolutely continuous with 
respect to 2 [9, Chapter IV]. 
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Due to  the  regular i ty  proper t ies  of m, i t  wilt suffice to  show t h a t  re(A) is com- 
ple te ly  continuous for each closed G&snbset  A of H.  Le t  A be a closed G6-set, let  
(U~) be a decreasing sequence of open sets so t h a t  c ] U . :  A, and let  (t,) be a 
sequence of real  valued continuous funct ions so t h a t  f.~(A)-~ 1, 0<] .<1 ,  ~nd sup- 
por t  (]~) c U.~, n : 1, 2, .... lgow suppose t h a t  x~ : ~ 0 ,  Ilx~I[ <1 ,  ~ > 0, and  

llm(A)x il > ,5, i = 1, 2 ,  . . . .  

Let t ing  (z~)c~?~ so tha t  m(~,~)(A)~ (~ for each i and set t ing # ~ =  m(~.~,), we claim 

t h a t  # , ( f ~ ) :  ft~d#, -% Iz~(A) uni formly  in i. To see this,  no te  t h a t  I#~(f~) --/~,(A)] < 
< I # , [ ( U ~ A ) ,  and I#,[(U~'~A) - ~ 0  uni formly  in i since A(U.~A) --%0. l~ext we 

claim thu t  #,(]~) ~ 0 for each n. I n  luet ,  

= 

And since x, 2->0, clearly ]~x~ - ~ 0 ;  thus 

Next  choose s so tha t  0 < s < ~/2, and let  /V be a na tura l  number  so tha t  ]#~(]~) -- 
- - / ~ ( A ) I < e  for each i and each n>~N. There  are infinitely m~ny values of i for  
which ]/~(/N)] <: s; and, for  these same values of i, [#~(A)] < 2 s <  ~, a contradic- 

t ion.  Thus re(A) is e.c. 

(vi) l~ow suppose t ha t  L is nuclear.  Le t  ~ a ,  Q b~ be an expansion of Z as 
in the definition, and let  y * s F *  act  on m ( A ) x - ~ L * * ( ~ . x ) .  Then 

and  

(L** ~ ~.x, y*) ~- (~,~.x, L'y*) , 

L ' y*  : ~, a, Q y*(b~) --= ~ y*(b~) a~, 

where this sum converges in the  norm topology of C(H, E)*. Therefore  

~ ~. x ( ~  y*(b,) a~) ~-- ~ y*(b,) ~ ~. x(a~) -~ ~ y*(b~) #(~,a,)(A ) , 

where /t(x,a,) is the  regular Bore1 measure on Z genera ted  b y  the  funct ional  (x, a~) 

on C(H). Thus 

re(A)(.) : ~/t((.),~,,,)(A) Q b~ 

is nuclear.  
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(vii) For  the  case when L:  C(H, E)--->F is quasinuclear,  we note  tha t  b y  
PIETSCH [18, 3.2.6], L:  C(H, E) ->re(S) is nuclear where S =  F~. Consequently,  the  
quasinucleari ty of each re(A) follows f rom (vi). 

(viii). Suppose tha t  L is s t r ict ly singular and tha t  A e Z. F u r th e r  suppose 
t ha t  re(A) is not  s t r ic t ly  singular. Then  there  is an  infinite dimensional snbspace M 
of E so t ha t  m(A)[~ has a bounded  inverse. Therefore  there  is a number  (~ > 0 so 

t h a t  l l m ( A )  xll > ll ll f o r  e a c h  x 

l~ow let  s > 0 so tha t  2s < ~ ; and, using the  regular i ty  on ~ (recall t h a t  m is 
s-bonnded),  let  K be a nonempty  compact  set and let  U be an open set so tha t  
K c A c U and ~ ( U ~ K ) <  s. Thus if q is a non-zero member  of C(H, E)so t ha t  q 
vanishes outside of U, llq][-= 1, and  q(g)= x, where [lxl]----1, t hen  

u K u ~ K  g 

> Hm(K)x]l--e > t]m(A)xt]- ]]m(A\K)xll--e 

>1 I[m(A) l[ - -  > 2 )I[xII • 

Then let  Ice(H) so tha t  1]]lI = 1, ] ( K ) =  1, and  /(H~U)-~ O. Set B =  {].x: 
x e M}. Clearly B is an infinite dimensional subspace of C(H, E) ; and,  f rom the  ine- 
qualities in the  preceing paragraph,  it  follows tha t  L B is invert ible,  a con- 
t radict ion.  • 

5. - The J,~-topology and a spectral resuR. 

Suppose t ha t  m+-+L is a represent ing me~sure and A E 2:. For  z e/~*, we define 
(~(m,~)(z) to be Iraqi(A). Then  {~(~,~)A e X} defines a locally convex topology on H* 
which we denote  by  ~ ;  in fact,  5~ is a semimetr ic  topology. We denote  the  eollec- 
t ion of all compact  G~ subsets of H b y  2~, and ~ will denote  the  topology on E* 
defined by  {~(~,A)'Ae~L}. In  this section, we briefly s tudy  certain relationships 
be tween ~" and  the opera tor  L. In  part icular ,  we obta in  a spectral  result  for 
L: Co(H, E) --> Co(H, E), where E is special t ype  of space which does not  contain an 
isomorph of co, H is locally compact ,  and Co(H, E) are those continuous functions 
vanishing a~t pp. The topology ($~ was s tudied in [14] and  [4]; this s tudy  wa.s ex- 
t ended  to L~-spaces in [1]. 

5.1 DEFL'~ITIO~. -- A B-space E is said to have the  Schnr p rope r ty  if every  weak 
Cauchy sequence in E is norm convergent .  

For  the  general considerations on spectral  theory  used is the  following" discus- 
sion, we refer  the  reader  to DU~FOm) and Sc~w~R~z [9, Cha~pter VII I  a n d  BACH~A~ 
and 17A~ICI [3, Chapter  21]. In  part icular ,  for the  Fredho lm Al ternat ive  we refer 
to [3]. In  this section, we assume the scalar field is C, the  complex numbers.  I f  T 
is an operator ,  t hen  R(T) will denote  the  image of Y. 
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5.2 THEOREM. -- Le t  E be a B-space with the  Schur proper ty  and suppose t ha t  
Z:  Go(H,E)-->Co(H,E) is weakly compact.  I f  AeC,  A ¢ 0 ,  and me-+2--L,  then  
the  following are equivalent:  

(i) ~ e @(L) ( =  resolvent set of Z); 

(if) (Co(H, E)~, 5~) is a Hausdorff  space; 

(iii) ' * ~ > w  on ¢o(//.E)~. 

P~ooF. - ( i i i )  ~ (if). Suppose t ha t  ~:,,~>w* on C,o(H ~ E)~ and let 0 ¢ z e  Co(H, E)~. 
Therefore fm~l(H) > O. B u t  tm,] is regular and  consequently there is a compact  G~, 
say K,  so t h a t  [m, I(K) > 0. 

(if) ~ (iii). Since ~ is a Hausdorff  topology, then  lind(H)----[l(2-L)*z]l > 0  
for 0 H z. Bu t  (2 - -L)*  being injective implies t ha t  ; ~ -  L has dense range. 

~Tow suppose t ha t  z~ ~;-->z in Co(H, E)~ and let y e Co(H, E). We claim tha t  
z~(y)-,z(y). Suppose not.  Then~ without  loss of generality~ we m a y  assume the  
existence of a positive number  s so tha t  Iz~(y) ~ z(y)l ~ s for each a. Choose ] ~ Co(H, E) 
so t h a t  ii~]dm -- YlI ̀ 4 ~{4, and pick go so t ha t  ~>  a~ implies t ha t  lml,_,(A) < el( H/It-4:- 1)4 

A 
where A is a compact G~. Then~ for ~>¢o we have 

A 

A 

A 

flam-y 
A 

But  

A 

< Yll  /4(11111 + 1), 

and an obvious contradiction is achieved. The implication follows. 

(i) ~ (if). Suppose 2 e 9(K). Then 2 -- L i s  invertible;  hence R(~ -- L) = Q(H, E). 
As a result of this,  it  follows t h a t  (~t -- L)* is injeetive, and thus  ~ is a T~ topology. 

(if) ~ (i). Suppose t ha t  ~'~ is a t Iausdorff  topology. Then, if z H0 ,  

Imol(H) = II( - > 0 .  

Therefore R(2 - -L)  is dense in Co(H, E) since (A--L)*  is injeetive. But ,  by  Theo- 
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rein 5.5 in Brooks and Lewis [4], L ~ is compact, and consequently R(2 -- Z) is closed, i.e. 

R ( 2 -  L) = ~0(H, E).  

By the results in 21A.2 of BACHMAN and NA~ICI [3], this implies tha t  A -- L is bijec- 
t i r e ;  by  the Open Mapping Theorem, ),e ~(L). 

For our final result, we need the  following definition. 

5.3 DEPI]~IITIO:N. - -  Suppose tha t  ne--~T, me-~L. We say tha t  n is strongly ab- 
solutely continuous with respect to m(n <<< m) provided tha t  for each A e 27 and x E E~ 

~(A)xe U {Zm(A~)x,: x, eE~}. 

We write T<<<L to indicate t ha t  n<<<m. 

5.4 THEO~E~r. - Suppose tha t  each of L and  Z is an operator from Co(H, E) 
to F, ne-~T, m+-~L. 

(i) I f  T is compact, L<<<T, and L has dense range, then  T has dense range, 
/ t ~ W  $ . L is compact, and  6, = ~ on F 1, 

(ii) Conversely, if (F : ,  (3'~) ~ (/P:, ~:), then  R(L)= R(T). 

(iii) Suppose tha t  E has the  Schur property,  F=Co(H,E),  A#O, T is 
weakly compact,  A-- L<<<2-- T, and Ae 9(L). Then • e o(T). 

Pnoo~'. (i) F rom Lemma of 2 Lewis [14], L(Co(H, E)~)c T(Co(H, E)~) and there- 
fore R(T) must  be dense and L must  be compact. So consequently, by  Theorem 4.5 
of Brooks ~nd Lewis [4], ~ =-w* = 6:~ on F* .  

* ~ t  (ii) Since (F~, ~ ) i s  homeomorphic to (F*, ~), then  nL*(z)[[ = 0 if and only 
if llT*(z)II = 0 .  But  zeker(L*)  if and only if z kills R(L),  i.e. zeR(L)J-=R(L) ±. 
Therefore R(L)-L=R(T)±; and their  respective orthogonal complements in F ,  
(R(L)-~)I und (R(T)')~, must  be equal. Hence R(T) ---- (R(T)')± ----- (R(L)')± = R(L). 

(iii) Since 2 - - L  is invertible~ I~(~--L)=C(H,E); and, by  Lemma 2 of 
Lewis []4], R(~--L) c R(~--T). But  by  the Fredholm Alternative construction in 
BACH~A~ and N.~ICI [3], ~()~-- T) = R(A-- T). Thus 2 - -  T is ~ surjeetive oper- 
ator, and by  [3] again, , tee(T) .  

REFERENCES 

[1] R. AL6 - A. Dn Ko:awx - L. E. KUN~S, Topological aspects o] q-regular meas~tres, Studia 
Math., 48 (1973), pp. 49-60. 

[2] B. D. ANDEPoSON, Projections and extension maps in C(T), Ill. J. Math., 17 (1973), 
pp. 513-517. 



RUSSELL BILY]~U - PAUL LEWIS: Some m a p p i n g  properties~ etc. 287 

[3] G. B2~CHMA~ - L. N~IOI ,  Functional Analysis,  Academic Press, New York (1968). 
[4] J. BROOKS - P. LEwis, ~inear operators and vector measures, Trans. Amer. Math. Soc., 

192 (1974), pp. 139-162. 
[5] J. BROOKS - P. LEWIS, Linear operators and vector measures, / / ,  Math. Z., 144 (1975), 

pp. 45-53. 
[6] E . W .  CHENEr - K. H. PRICE, Minimal projections, Approximation theory, Proc. Sympos., 

Lancaster (1969), pp. 261-289, Academic Press. 
[7] J. DIESTEL - B. FAIRES, On vector measures, Trans. Amer. Math. Soc., 198 (1974), 

pp. 253-271. 
[8] N. DINCULEA~U, Vector measures, Pergamon Press, Berlin (1967). 
[9] N. DUNFORD - J .  SCIt'WARTZ, ~inear operators, Par t  I, Interscience, New York (1958). 

[10] S. GOnDm~G, On Sobczyk's projection theorem, Am. Math. Month., 76 (1969), pp. 523-526. 
[11] J. HOW.~RD, The comparison o] an unconditionally converging operator, Studia Math., 

33 (1969), pp. 295-298. 
[12] G. KOTI~, Uber einen Satz yon Sobczyk, Anals da Faculdade de Ciencias da Porta  3 ° 

e 4 °, 49 (1966), pp. 1-6. 
[13] P. LEwis, Some regularity conditions on vector measures with ]inite semivariatio~, Rev. 

Roumaine Math., 15 (1970), pp. 375-384. 
[14] P. LEWIS, Permanenee properties o] absolute continuity conditions, International Con- 

ference on Vector and Operator Valued Measures and Applications, Snowbird, Utah, 
Academic Press (1973), pp. 197-206. 

[15] A. PELCZYNSKI, Banach spaees on which every unconditionally converging operator is 
weakly compact, Bull. Acad. Poton. Sci., serie sci., math.,  astr. et phys., 1{} (1962), 
pp. 641-648. 

[16] A. PELCZYNSKI, On strictly singular and strictly cosingular operators - I :  Strictly singular 
and strictly eosingular operators in C(S)-spaees, Bull. Acad. Polon. Sci., scrie sei., math.,  
astr. et phys.,  13 (1965), pp. 31-36. 

[17] A. PI~TSCtt, Absolut p.summierende Abbildungen in normierten Raumen, Studia Math., 
28 (1967), pp. 333-353. 

[18] A. PIETSCH, ~'.uelear locally convex spaces, Ergeb. Math. Grenz., col. 66, Springer-Verlag 
New York (1972). 

[19] H. ROS~NTILXL, On relatively disjoint ]amilies o] measures, with some applications to Baz~ach 
space theory, Studia Math., 27 (1970), pp. 13-36. 

[20] A. SOBCZYK, Projections of the space m on its subspace c o, Bull. Amcr. Math. Soc., 47 
(1941), pp. 938-947. 

[21] C. SWARTZ, Unconditionally converging operators on the space o] continuous /unctions, 
Rev. Roumaine Math., 17 (1972), pp. 1695-1702. 

[22] C. Sw~_l~TZ, Absolutely summing and dominated operators on spaces o] vector-valued con- 
tinuous ]unctions, Trans. Amer. Math. Sot., 179 (1973), pp. 123-132. 

[23] W. A. VEECH, Short proo] o] Sobczyk's theorem, Proc. Amer. Math. Soc., 28 (1971), 
pp. 627-628. 


