Seme Mapping Properties of Representing Measures ().

RusserLy BiLyeu - Pauvn Lewis (Denton, Texas, U.8.A.)

Summary. — This paper studies relationships between operalors on continuous function spaces
and properties of associated vector measures given by Riesz Representation Theorems.

1. — Intreduction and definitions.

Suppose that each of F and F is a B-space (= Banach space), H is a compact
Hausdorff space, and C(H, E) is the B-space (re sup norm) of all continuous E-valued
functions on H. We will be interested in operators L: O(H, E)—F and repre-
senting measures m: 2> B(H, F), where B(H, F) is the B-space of all operators
from E into F and X is the Borel g-algebra of subsets of H. A finitely additive set
function m: X - B(E, F**) is called a representing measure if m has finite semiva-
riation and |m,| is a regular Borel measure for each z € F} (= closed unit ball in the
dual of 7). The Riesz Representation Theorem in this setting asserts that to each
operator L: C(H, By — F there may be associated a unique representing measure
m: X — B(H, F**) so that L(f)= f fdm and |L| = % (H), where % denotes the semi-

H

variation; this assoeciation is denoted by L<- m. The reader may consult BROOKS
and LEwIs [4] and DINoULEANTU [8] for a detailed disecussion of this setting. In
particular, &£, will denote the characteristic function of a set 4, 8(X) will denote
the scalar valued simple functions defined over X, and U(X) will be the uniform clo-
sure of 8(Z). The spaces Sy(2X) and Ug(X) are defined analogously for E-valued
functions. The reader should note that if m <> L, then m(4) = == I¥¥{,2). The
majority of our results will be concerned with relating properties of the operator L
to properties of its representing measures.

The classes of operators that we will discuss are the compact, weakly compact,
absolutely p-summing, nuclear, quasinuclear, unconditionally converging, completely
continuons, strietly singular, and strongly bounded. An operator T: B —F is said
to be (weakly) compact if it maps bounded sets in F into conditionally (weakly)
compact sets in F, and T is said to be absolutely p-summing (a.p.s.) if it maps weakly
p-summable (W.p.s.) series in F into absolutely p-summable series in F. Equivalently,
T is a.p.s. if there is a constant g>0 so that if @, ..., @, is a finite set from K, then

*) (S 17l)" <omp{(S lo* (@)l : o e 11},

(*) Entrata in Redazione il 2 aprile 1975.
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If T is a.p.s., then the infimum of all numbers >0 satisfying (%) is called the abso-
lutely p-summing norm of 7 and is denoted by n,(T); and

e

[

sup { ( ) Im*(a?z)lz‘)mz z* EEf}

%

is denoted by Sv(“m’i)?=1‘ The mapping T is said to be nuclear if there is a sequence
{a,) C B* and a sequence (b,) c F' so that

f][an“ [ba] <00 and T(z)= Ean(a))bn for each z€E.
n=1 n=1

Also, T is said to be unconditionally converging (u.c.) if 7' maps weakly unconditio-
nally converging (w.u.c. = w.l.8.) series in ¥ into unconditionally converging series
in F, T is said to be completely continuous if T maps weak Cauchy sequences in ¥
into norm convergent sequences in F, and 7' is said to be strictly singular if T does
not have a bounded inverse on any infinite dimensional subspace of FE.

2. — Absolutely p-summing operators and the z -variation.

We begin this section with a lemma from Brooks and Lewis [5]; we include
a proof for completeness. The notation E @, F is used for the least crossnorm
completion of F ® F.

2.1 LEMMA ~ If ¥ #, is weakly p-summable in E and (y,) c F; (= closed unit
ball of F), then 3 2, ®y, is weakly p-summable in B ®; F.

Proor. - Suppose that Y @, is w.p.s. in X and that there is a sequence (y;) C ¥,
so that > #,®y, i not w.p.s. in X ®, Y. Thus there is an integer N and ye

I
€ (X ®: Yy) with (Z [p(@: ® y.) {”)1/p>ep(a7£}. Thus there is an element w= (w,)
¥ \1
€ (19); so that > y(z; ®¥.) w; > ey(x,). Therefore,
1

N
7(2 &y ® wzys) > 81,(:2’/',-) 3
1
and

N
2 | ®wi?/z‘”3 > &,(@s) .
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But then there is an fe X; so that | f(#.)w,y.] > &,(@;). Consequently,

ex(we) < 2 [ f(ws)wy.|

1/

<

=M= =M

fwaw< (Eiwal) " (Shods)
<(2lf(@)) " <epl®),

and we have a contradiction. m
As an application of the lemma, we obtain the following result.

2.2 POPOSITION, —~ Suppose that L: E X:F— G is an operator where G is a
B-gpace, and that L,: B B(F, §) is the naturally induced operator. Then

(i) L is unconditionally converging if L is unconditfionally converging;

(ii) L, is absolutely p-summing if L is absolutely p-summing.

PROOF. — (i) Suppose that > #; is w.u.c. in ¥ and that (n,) is a permutation of N

50 that EI’I(%J does not converge. Then choose a sequence (y,)C P, so that
i=1

iz
z]lLl(xni)—L(mnt@)yi)U < 1. Since (y,) is bounded, by Lemma 2.1, me@i‘/i is
w.u.c. in B @i F; consequently, ¥ L(#, ®y,) is w.c. But then » IL(x,) must be
1u.c., a contradiction, Thus if I is u.c., if follows that I; is u.c.

(ii) The proof of (ii) is similar; the details will be omitted. u

The preceding lemma and proposition generalize some recent results of SwARTZ [22].
In particular, SwarTz showed that if L: O(H, E)—F is absolutely summing,
then L;: C(H)— B(H, F) is absolutely summing. Since O(H, E)= C(H)®2H, the
relationship of this fact to Proposition 2.2 iz clear. We mention that one may also
employ a method similar to the one used in [21] to show that if L: O(H, E)—~F
is absolutely p-summing, then L,: C(H)—» B(E, F) is absolutely p-summing. A key
ingredient needed in this approach is the following lemma.

2.3 LEMMA. — Suppose that f,..., f,e C(H).
(i) If &,(f;) <1 then g(|f.}) <2.

3 e

g==1

oo *

(i) If ,(f;) =1, then

Proor. — Suppose that fy, ..., f, satisfy the hypothesis of the lemma, U = C(H),,
and set Ul = {ue U,: p>0}, i.e., U, is the polar of U in C(H)*, and U] consists of
all non-negative regular Borel measures in U°. Then U] is the w*-closure of the ex-
treme points of U}. But an extreme point of UJ is either a point mass 9, t€ H,
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or the zero measure. Now suppose that =3 &:d,, 2 &, >0, > «;<1. Then,

)l,fp
)up
fip)
2 (2 184(flr)

(zn“ atj)lf

Fe=1

(2
i %3 65:

(z =1

5 0
g(ilgaltj

Py

HMS

< 2“1@1 .
i=1

As a consequence, if ¢ € U}, then zqo If:h?)»r <1. But if p € Uy, then g = gt — ¢,
where each of ¢+ and ¢~ belonga to US. Therefore

(Zle(raD)le)

= (Xl@r—g)lfdle)"

< (3 (@It -+ grlfl)e)

< (S )" + (S (o1fd)) <2

and the proof of (i) is finished.
The proof of (ii) is analogous to that of (i) and will be omitted. m
A congequence of (i) is that it Y f, is w.p.s. in O(H), then Y |f,] is w.p.s.
It was also shown in [22] that an operator

m<«s>L: C(H, B)—>F

is absolutely summing if and only if m has finite m-variation. (See Definition 2.4
below.) However, the situation is more delicate for p > 1.

2.4 DEFINITION. — Let m«> L: O(H, E)->F be an absolutely p-summing ope-
rator. Then By Theorem 4.1, infra, m(A): B—F is a.p.s. for each Ae 2. De-
fine m,(m) to be sup {3 m,(m(4,))}, where m(H) denotes the collection of all finite

a(H)

disjoint X-partitions of H. Similarly, define a2(m) to be sup {3 m,(m(4,)?) s}

2.5 THEOREM. - If m« L: C(H, B) — F is absolutely p-summing, then z)(m) < oo.
Conversely, if m,(m) < oo, then L is absolutely p-summing.
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ProOF. — Suppose that L is a.p.s., let ¢ > 0, let 4,,..., 4, be a partition of H,
and let (2,.).;,, n=21,..., &k be a collection of finite subsets of Z so that &,(z,,) <1
for each n and

(n§=1 oM (An) )”P (; ; [m(4a) (w"i)‘\p)lfw te.
Then,
(S I’ = (3 315 Enil)* <1 et

(Recall that L** is absolutely p-summing).
Then suppose that ve Uy(2)*, |»| <1, and note that

(33 penanir)” <3 (3 pEazeap)”.

Define (», £4): E—R by (v, £4) @ = v(€,4@); consequently, (v, £,) € B*, and [[(v, £ g <
<»](4). Thus

3 (S Waendlr) " <3 0, &)< Shl(An <1

n

Therefore zh(m) <m,(L**). And PierscH [17] has shown that #,(L**) = 7,(L); hence
qp(m) <am,(L).

Conversely, suppose that m,(m) < co, and let ¢, ..., g, € 85(Z) so that ¢ (@,)F_, <1.
Without loss of generality, suppose that

Y
n=1
for each ¢ and that no 4, is empty. Then
(S 1zl = (S IZmednonl)”
< (33 Im(anale)”
< (I3 Imdnoale)”.
Also, sinee s,(g,)f_, <1, it follows that &,(#.;);<1 for each n. Therefore,

; (; ﬂ’m(An)mMHp)llio< ; n,,(m(An)) <m(m). n
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We remark that it is possible for L to be a.p.s. and m,(m) to be unbounded. For
example, let

be the identity injection; then J<->u, where

2 2
W) = EAEB(R, L [o, %D ~ I {o,f%] .
Let (4,) be a sequence of disjoint Borel subsets of (0,72/6] so that A(A,)=1/n?,
where 1 is Lebesgue measure. Then certainly m,(u(4.)) > [m4.)] = (MA4,) = 1/n
and therefore m,(m) = oo.

3. — Strongly bounded operators and ¢,.

The absolubtely p-summing operators of the preceding section form a subclass
of the strongly bounded operators. (See the opening remarks of §4.)

3.1 DEFINITION. — An operator m«> L: O(H, E) — F is said to be strongly bounded
(= s-bounded) provided that if (4,) is a disjoint sequence from Z, then M(4,) — 0.
We speak of an operator and its representing measure being s-bounded interchangeably.

The following lemma, whose proof can be found in [4], presents alternate charae-
terizations of s-bounded representing measures.

3.2 LemMA, ~ If m: Y~ B(E, F') is a representing meagure, then the following
are equivalent.

(i) m is s-bounded;
(i) if A, ¢, then M(A4,)\ 03
(iil) {|m,|: 2e F;} is conditionally weakly compact in rea(Z);

(iv) m(A4;)x; converges in F for each disjoint sequence (4,) and each sequence
(@) C By

The class of strongly bounded operators is in a sense the natural extension of
weakly compact operators TI': O(H)—F to the C(H, E)-setting. For a discussion of
strongly bounded operators in the C(H, E)-setting, see Brooks and Luwis [4].

Another way in which the strongly bounded operators may be thought to as a
generalization of the weakly compact operators can be revesled in connection with
the following theorem of Pelczynski.

TeporEM [15]. — If the operator L: C(H)— F is not weakly compact, then C(H)
contains an isometric copy Y of ¢, so that the restriction of L to Y is an isomorphism.
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‘While the direct generalization of the above theorem is false for non weakly com-
pact operators defined on vector-valued continuous function spaces, using the techni-
ques of [15] and the following lemma from ROSENTHAL [19], we establish a result
analogous to the above theorem.

3.3 LEMMA [19]. - Let § be the power algebra of the natural numbers, let 0 <p, e
ebfa(T), and suppose that |u;] <1 for i=1,2,.... If (4,) is a disjoint sequence
from 9 and 6 > 0, then there is a subsequence %, so that

mU ) <8, i=12...
i

The correspondence m <« L referred to in the following theorem is given by
Theorem 11.9.1 in DINCULEANU [8].

3.4 THEOREM. — Suppose that X is an algebra of subsets of an abstract set W,
85(X) is the space of E-valued simple functions over 2, Uy(ZX) is the uniform closure
of 8z(2), and m<«> L: Uy(2)— F is an operator which is not strongly bounded. Then
U,(ZX) contains an isometric copy Y of ¢, on which L is an isomorphism.

Proor. — Let S(2) be the scalar valued X-simple functions and let U(2) be the
uniform elogure of 8(X). Then

UE(Z) = U(Z) @ B .

Furthermore, by the Stone Representation Theorem [8], there is a totally disconnected
compact Hausdorff space S; so that X is isomorphic as a Boolean algebra to the col-
lection of clopen subsets of 8, and eonsequently U(X) = 0(8;). Thus

Uy(E) 2 O(8)) @2 B =~ O(8;, By,

and the naturally induced operator L: O(S;, E) —F is not s-bounded.

Therefore if we continue to denote the representing measure of L by m, then
8= {|m,|: 2€ F;} is not conditionally weakly compact. Combining results from
PELozYNSKI [15] and Lemma 3.3, we obtain

(a) 6>0,
(b) a disjoint sequence O, of open sets,
(¢) a sequence (z;)c Fy,

and

(d) a sequence (g;)c C(H, B) so that [lg;| =1 for each i and support (g;) c O;
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which satisfy
@ Im. (U0 <2
Fsti

and
i

() 1L*=(g:)] = Ugidm,, >0, i=1,2,....

From (d) it follows that if Y = span(g.), then ¥ ==¢,. And from (¢) and (f) it
follows that L|yis an isomorphism, Pulling back through the isometries, the theorem
follows. m

Joe DIBsTEL and Jerry UHL have obtained results similar to the preceding theo-
rem (private communication).

We also note that if L: C(H, E)— F is not s-bounded, then there may be many
isometric copies of ¢, in C(H, E) on which L is not an isomorphism. To see this,
let H, E, and F be such that there is an operator m«> L: C(H, E)—F with m
countably additive and not s-bounded. From the proof of Theorem 3.4 it follows
that O(H) must be infinite dimensional; hence C(H) contains an isometric copy Y
of ¢,. Thus C(H)-x containg an isometric copy of Y-z of ¢, for each vector x & F
so that [#|>0. But L: C(H)z - F is weakly compact since the representing mea-
sure for the restriction of L to C(H)xis countably additive. (If X is a finite dimen-
sional B-space and ¥ is any B-space, then a countably additive representing measure
is strongly bounded.) Therefore L|y,: Y& — I cannot be an isomorphism.

ReMARK., — A recent result by DiesTeEL and FAIREs [7]characterizing strongly
additive measures, together with Theorem 4.2 of [4], makes possible the following
characterization of nonstrongly additive operators on Ugi(Z)-spaces, where X is a
o-algebra. (An operator m«->L: Ug(X)—F is strongly additive if m(4,;) — 0 when-
ever (4,) is a disjoint sequence from X.) If E and F are Banach spaces, then an ope-
rator m<«> L: Uy(2)— F is not strongly additive if and only if there is an isometrie
copy W of I* in U(X) so that L,  is an isomorphism, where L;: U(X)— B(H, I)
is defined by Li(f)=[fdm.

Our next result deals with linear best approximation projections onto ¢, Speci-
fically, if F is a separable subspace of m (=1°=bounded continuous functions
on N) containing ¢, such that, for each v e B, P(z) is a best approximation to «
from ¢,. This fact seems to have gone unnoticed even though the essence of the
proof iz well known, having been discovered by KOtHE [12], elucidated by Gorp-
BERG [10], and rediscovered by VEECH [23]. These authors conclude that there is
a projection from F onto ¢, having norm 2, a fact originally announced by S0B-
0zYX [20]. We are not able to get the stronger conclusion by Sobezyk’s method.,

The existence of such a projection P is equivalent, via the complementary pro-
jection, to the existence of a norm one projection having ¢, as its kernel. This elemen-
tary fact is given by CHENEY and PRICE [6], and also ANDERSON [2], whose papers
give some evidence of the rarity of linear best approximation operators.

Also equivalent to the existence of P is the existence of a subspace L of H, com-
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plementary to ¢,, each element of which is orthogonal to each element of ¢,. Hach
member of L has the property that sup |#,| = lim sup jx,|.

3.5 TanoreM. — If H is a separable subspace of m containing ¢,then there exists
a linear projection P: B — F such that [P]|=1 and ker P = ¢,.

Proor. — Liet H be the unit ball in the dual of H, equipped with the weak-star
topology. Then H is compact and metrizable. 'We select a metric d for H. Let x,
denote the n-th coordinate projection on E. Let K consist of those members of H which
vanigh on ¢,. Then K is compact, and there exists ¢, in K such that d(z,, ¢,) ==
= d(m,, K). The projection is defined by Pw= {g.(x)};>, for # in E.

Suppose ¢ — Pr¢e,. Then d(m,, ¢,) + 0, and since H is compact there is a sub-
sequence of {nu o , which converges to a point ¥'e HN\ K. This implies that ¥(x) 40
for some x in ¢,. But ¥(x) is the limit of a subsequence of {nn(w) 0 g le, Plo) is
the limit of a subsequence of x. Therefore x — Pree,.

Certainly, then, ker Pc¢,. But also ¢,cker P because ¢, K. That P?=P
follows from

P2y — Px = P(Px — ) € P(¢,) = {0} .

Finally, P is linear of norm one because each ¢, is linear of norm one. M

4. — Mapping properties of representing measures.

In (21) SWARTZ showed that an unconditionally converging operator on C(H, E)
is strongly bounded. Thus it follows that every weakly compact, compact, nuclear,
quasinuclear, absolutely p-summing, and completely continuous operator on C(H, E)
is s-bounded. TFurthermore, HowARD [11] has shown that every strictly singular
operater is unconditionally converging; therefore a strictly singular operator on
C(H, B) is s-bounded.

As a result of the strong boundedness, the reader should note that a representing
measure for a map in any of the classes of operators under consideration must map
into B(E, F), e.g. see Brooxs and LEWIS [4].

We note here that if L: O(H, E) -~ F is not strongly bounded, then Lemma 1
of PELOYNSKI [16] implies that there is a subspace Y of C(H, E) isomorphie to ¢,
on which L has a bounded inverse. However, this lemma does not give the isometry
of Theorem 3.4 nor does it seem to reveal as much about the structure of these parti-
cular spaces.

The following theorem shows that many mapping properties of an operator
m<> L: O(H, B)— F are shared by its representing measure m.

4.1 THEOREM. — Let m«—> L: O(H, H) > F.

(i) I I is weakly compact, then m(A) is weakly compact for each A4 € 2.
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(i) If L is compact, then m(4) is compact for each A€ 2.

{iii) I L is absolutely p-summing then m(4) is absolutely p-summming for
each Ae .

(iv) If L is unconditionally converging, then m(4) is unconditionally con-
verging for each Ae 2.

(v} If L is completely continuous, then m(A4) is completely continuous for
each Ae 2.

(vi) If L is nuelear, then m(A) is nuclear for each 4 e 2.
(vii) If L is quasinuclear, then m(A4) is quasinuclear for each 4 e 2.

(viii) If L is strictly singular, then m(A4) is strietly singular for each A e 2.

ProoF. — (i) and (ii) follow from §4 of BROOKS and Lewis [5].

(iii) SwArTZ [22] has shown that if L is absolutely summing, then m(4) is
absolutely summing for each 4 2. Therefore suppose that L is a.p.s. and that
1< p<< oo. PIBTSCH [17] has shown that an operator 7 is a.p.s. if and only if 7%*
is a.p.s.; hence L**: Uy(X)—F is a.p.s. {(Ug(X) is isometrically contained in
C(H, By*¥). Then,if > x;is w.p.s.in E and £, is the characteristic function of A € Z,
by Lemma 2.1 it follows that > £,2; is w.p.s.in Ugx(2) = U(Z) ®2 E. Consequently,
> L& 2,) = Y m(A)wx, is a.p.s., and it follows that m(B) is a.p.s. for each Be Z.

(iv) Suppose that L is uw.c., 4€2, Zmz is w.u.¢., and zm(A)mi not uw.e.
in F'. Without loss of generality, assume that ¢ > 0, (a,, b,);~, is 2 sequence of pairs
of integers so that a,<b,<<a,,, for all k, and

b
Zm(A)mz-J

i=ax

~focs (32

Now using the fact that m being s-bounded imples that # is regular, we construte
a sequence (f,) of non-negative continuous functions of norm one so that

};L(}bicfsz)i >, k=1,2,....

i=ar

by
However, by Lemma 2.1 ¥ > f,#, is w.ls., and therefore > > L(f»,) is u.c., a
b i=ax kB 4
contradiction. Thus m(4) is w.c.

(v) Next, suppose that L is ecompletely continuouns. Thus m is s-bounded,
and a= {jm,|: 2 F;} is conditionally weakly compact. Furthermore, there is
0 <lerea(X) so that the elements of g are uniformly absolutely continuous with
respect to A [9, Chapter IV].
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Due to the regularity properties of m, it will suffice to show that m(4) is com-
pletely continuous for each closed Gé-subset A of H. Let A be a closed Gd-set, leb
{U,) be a decreasing sequence of open sets so that NU,= A4, and let (f,) be a
sequence of real valued continuous funections so that f,(4)=1, 0<f. <1, and sup-
port (f,)c U,y n=1,2,.... Now suppose that z, *>0, |2 <1, 6>0, and

[m(A) el >0, i=1,2,...

Letting (z;) c Fy so that my, ,,(4) >0 for each ¢ and setting ;= my, ,,, we claim
that p(f.) = f fadp: > p{A) uniformly in i. To see this, note that |u,(f,) — pld)| <
<|pl(TUNA), and |p,[(UNA) >0 uniformly in ¢ since AU, \A4) 0. Next we
claim that p,(f,) =0 for each n. In fact,

pilfn) = 2 [famedm) = 2( L(fam) -
And sinee x; 2> 0, clearly f.z; —>0; thus
|2 L(fnza)| < | L(fus) | — O .
Next choose & so that 0<<e< §/2, and let N be a natural number so that |u,(f.) —
— pui{A)| << e for each i and each »>N. There are infinitely many values of ¢ for

which |u.(fy)| < e; and, for these same values of 4, [u,(A)| < 2¢<J, a contradic-
tion, Thus m(4) is c.e.

(vi) Now suppose that L is nuelear. Let > a, ®b, be an expansion of L as
in the definition, and let y*e F* act on m{d)w= L**(,-x). Then

(L**E e, y*) = (E4rw, LF YY) ,
and
Lry*= 3 a, @ y*(ba) = 2 y*(bs) @ ,
where this sum converges in the norm topology of C(H, E)*. Therefore
Ep o y*(ba) @n) = 2 Y5 (ba) Ea-@(an) = D 4 (ba) iy 0p(4)

where i, , is the regular Borel measure on 2 generated by the functional (»,a,)
on C(H). Thus

()= ZH(('),%)(A) ® ba,

is nuclear,.
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(vii) For the case when L: C(H, E)—F is quasinuclear, we note that by
PierscH [18, 3.2.6], L: C(H, E)—m(8) is nuclear where §= F;. Consequently, the
quasinuclearity of each m(4) follows from (vi).

(viii), Suppose that L is strictly singular and that A e X. Turther suppose
that m(A4) is not strictly singular. Then there is an infinite dimensional subspace M
of E so that m(4)[,, has a bounded inverse. Therefore there is a number d >0 so
that |m(4) 2| >d]»| for each we M.

Now let £ > 0 so that 2¢ < J; and, using the regularity on # (recall that m is
s-bounded), let K be a nonempty compact set and let U be an open set so that
KcAcU and m(UNK)<<e. Thas if q is a non-zero member of C(H, ) so that ¢
vanishes outside of U, |¢| =1, and ¢(K)=x, where [#| =1, then

Iz =| fatm| 2 | [aam] ] | aam|> | [aam]|—or
/4 X UK &

> |m(E)w| —e> |m(Ad)a]] — |mA\K)z] —e
> [m(A)z| —MANK) —e > (6 —2¢) ] .

Then let fe O(H) so that |fj =1, f(K)=1, and f(H\U)=0. Set B= {f-u:
x€ M}. Clearly B is an infinite dimensional subspace of C(H, E); and, from the ine-
qualities in the preceing paragraph, it follows that L, is invertible, a con-
tradiction. m

5. — The §,-topology and a spectral result.

Suppose that m«» L is a representing measure and 4 € 2. For z€ F*, we define
Om,4y(?) t0 be |m,j(4). Then {3, ,, A€ X} defines a locally convex topology on F*
which we denote by 4,.; in fact, d,, is a semimetric topology. We denote the collec-
tion of all compact G5 subsets of H by s, and §,, will denote the topology on F*
defined by {J, : A€}, In this section, we briefly study certain relationships
between 9/, and the operator I. In particular, we obtain a spectral result for
L: C(H, B)— C,(H, B), where E is special type of space which does not contain an
isomorph of ¢,, H is locally compact, and Cy(H, E) are those continuous functions
vanigshing at oo. The topology 4, was studied in [14] and [4]; this study was ex-
tended to Lr-gpaces in [1].

5.1 DerFINITION. — A B-gpace F is said to have the Schur property if every weak
Cauchy sequence in X is norm convergent.

For the general considerations on spectral theory used is the following discus-
sion, we refer the reader to DUNFORD and SCHWARTZ [9, Chapter VII] and BACHMAN
and Nawrrtor [3, Chapter 21]. In particular, for the Fredholm Alternative we refer
to [3]. In this section, we assume the scalar field is €, the complex numbers. If T
is an operator, then R(7T) will denote the image of 7.
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5.2 THEOREM. — Let E be a B-space with the Schur property and suppose that
L: C,(H, E) — Oy(H, E) is weakly compact. If AeC, A£0, and m«>A— L, then
the following are equivalent:

(i) Aeo(L) (=resolvent set of 1);
(ii) (Co(H, BN}, 6,) is a Hausdorff space;
(iii) o, >w* on Cy(H. B)}.

PROOF. — (iii) = (ii). Suppose that d,,>w* on Oy(H, E)¥ and let 0 2 z¢ Cy(H, E)*.
Therefore |m,|(H) > 0. But |m,| is regular and consequently there is a compact Gy,
say K, so that |m,|(K)> 0.

(ii) = (iii). Since 4, is a Hausdorff topology, then |m,|(H)= [(A— L)*z|| >0
for 022z But (A— L)* being injeective implies that 1 — L has dense range.

Now suppose that z, 8.2 in C,(H, B)} and let ye Oy(H, ). We claim that

2 {y) —>={y). Suppose not. Then, without loss of generaliby, we may assume the

existence of a positive number ¢ so that |2,(y) — 2(y)| > e for each «. Choose f e C,(H, H)

so that Hffdm — 4]l < &/4, and pick o 80 that o> «, implies that m|, _(4) <e/(|[f] 4+ 1)4
4

where A is a compact G5 Then, for o> «, we have

([ram,—)]

A4

= |([ram—yv,2.—#) + w,2.—)|
> |(y, z“—Z)I—](ffdm-y, Z¢~Z)|

> |, 2% —2)| = 2| [1am —y|| > o2
4

But
([fam, 2, 2) | <l )

‘ <[] e (] + 1),

and an obvious contradiction is achieved. The implication follows.

() =~ (ii). Suppose 1€ ¢(K). Then 1 — Lis invertible; hence R(A — L) = C,(H, E).
As a result of this, it follows that (1 — L)* is injective, and thus 8, is a T, topology.

(ii) = (i). Suppose that 6, is a Hausdorff topology. Then, if #3540,
|m,[(H) = |(A— Ly*z| >0.
Therefore R(4 — L) is dense in Cy(H, E) since (4 — L)* is injective. But, by Theo-

18 ~ dnnaii di Matematica
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rem 5.5 in Brooks and Lewis [4], L? is compact, and consequently (A — L)is closed, i.e.
R(A—L)= C,(H, B) .

By the results in 21A.2 of BACHMAN and NARICI [3], this implies that 4 — L is bijec-
tive; by the Open Mapping Theorem, A€ o(L).
For our final result, we need the following definition.

5.3 DEFINITION. — Suppose that n«>T, m«> L. We say that » is strongly ab-
solutely continuous with respect to m(n < m) provided that for each A € Y and 2 € K,

n(dyve | {Smd)z;: a,€By}.

We write T« L to indicate that n<m.

5.4 THEOREM. — Suppose that each of L and T is an operator from C,(H, F)
to P, ne>T, m«> L.

() If T is compact, L& T, and L has dense range, then T has dense range,
L is compact, and 0, = §, = w* on F;.
(ii) Conversely, if (F;,d,) ~ (F;, d,,), then R(L)= R(T).
(iii) Suppose that E has the Schur property, F= C,(H, E), 10, T is
weakly compact, A — L&KAi— T, and Aeg(L). Then Aeco(T).

Proo¥. (i) From Lemma of 2 Lewis [14], L{C,(H, B),)c T(C,(H, F),) and there-
fore R(T') must be dense and L must be eompact. So consequently, by Theorem 4.5
of Brooks and Lewis [4], &), = w* =4, on Ff.

(ii) Since (FY, d,) is homeomorphic to (¥F7f, 8,), then |L*(2)| = 0 if and only
if |T#(2)| =0. But zcker(L*) if and only if 2z kills R(L), i.e. 2e R(L)* = R(L)*
Therefore f(f)i« = R(T)*; and their respective orthogonal complements in FZ,
(R(L)*), and (R(T)*),, must be equal. Hence R(T) = (R(T)*), = (R(L)*), = R(L).

(iii) Since A—L is invertible, R(A—L)= C(H, H); and, by Lemma 2 of
Lewis [14], R{(A— L)c R(A—1T). But by the Fredholm Alternative construction in
BaoamMAN and Naricr (3], B(A—7T)==R(A—T). Thus 1—7T is a surjective oper-
ator, and by [3] again, Aep(T).
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