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Summary. — If M[$, U(C, C)] is the collection of U(C, C)-valued (non-linear) set fumctions
defined on the Borel subsets B of the compact Hausdorff space 8, one may define operators
on M[B, U(C, C)1 which are « of the Hammerstein type». We initiate a study of & concepi
analogous to the second dual of a space of continuous functions by inguiring as to what
representation theorems one may obtain for these operators. A « Lebesque type » decomposition
theorem for elements of M[B, U(C, C)] is obtained. A «density » theorem is also obtaimed
for the space M[B, U(C, C)].

1. — Introduction.

Bounded linear transformations on spaces of continuous functions and their
universal properties have been of special interest since A. Grothendieck’s celebrated
paper [6]. The early papers dealt with the case where the function spaces were spaces
of real valued functions and where the functions themselves, were defined on a com-
pact or locally compact Hausdorff space. Much was written on the representation
(via integrals) of transformations (see [5]) on such spaces.

Later studies considered the underlying function spaces with functions having
their values in some Banach space . For example the representation of linear ope-
rators on the space K(8, E) (with the usual supremum norm) of E-valued functions
with compact support and defined on the locally compact Hausdorff space §, may
be found in the compendium [4].

More recently has been the investigation of linear operators defined on the dunal
of such function spaces whose elements are E-valued (for example, see [1], [7], [9]
and [10]). For example in [1], linear operators belonging to the second dual of K(8, K)
are represented on certain sets of meagures in the dual of K (S, E). It is shown that
such an operator is in a certain sense approzimable by an integral when computed
over this subset of the dual.

Another direction of researeh has been to relax the condition of linearity. In [2],
[11] and [12], the authors study operators @ which are «additive ». Essentially this
replaces the condition of linearity with the condition that

Q(f1+ f2) = ¢(f1) + ®(fz)

where f, and f, are funections in our function space which have disjoint supports.

(*) Entrata in Redazione il 6 marzo 1974.
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Let Lf= L%, X, p) be the Banach space of (equivalence classes of) Bochner
u-integrable E-valued functions defined on the measure space (8, 2, u). In [12] E was,
in addition, assumed to be separable. There a characterization is given of additive
functions @ from L% into an arbitrary Banach space ¥ which admit an integral repre-
sentation of the form

Plg) = [6(p(), & dp(8)
Q

where 0 is required to satisfy certain conditions related to those occurring in the
theory of non-linear integral equations (see [8]). In the sequel these functions 6
will be referred to as members of the uniform Caratheodory olass U — Car(H, F)
relative to B on (2 — F),

Let C(8, H) be the space of continuous E-valued functions (with usual uniform
supremum norm) defined on the compact Hausdorff space 8. In [2] the « additivity »
of the operator @ from O(8, ) into the Banach gpace F is replaced by the stronger
Hammerstein property (*). This is the algebraic property that

T(H+fh+ L) =T+ )+ T+ f) — T(f)

where f, f;, fa€ C(8, H) and where f, and f, have disjoint supports. These non-linear
transformations are represented as integrals with respeet to additive «non-linear »
get functions (which take their values in a linear space of operators from one Banach
space into another which are uniformly continuous on bounded sets).

In this work we initiate a study of a concept analogous to the second dual of a
space of continuous functions. More specifically if M[B, U(C, C)] is the collection
of U(C, C)-valued set functions defined on the Borel subseis B of S and representing
Hammerstein operators on O(S, E), one may define operators on M[P, U(C, C)] which
would be «of the Hammerstein type». We inquire as to what representation theo-
rems one may obtain for these operators.

The elements of M[B, U(C, C)] are technically not measures. However, the sub-
space M[3B, U(C, C)), is a space of measures. Also, we may obtain a « Lebesgue
type » decomposition theorem for elements of M{%, U(C, C)] (see Proposition 2): As will
be discussed later the usual vector-valued decomposition theorem as in [4] is not
applicable here. Our result yields a «density » type theorem (see Theorem 3) for
elements of M[B, U(C, C)]. In essence, it shows that such an element can be approx-
imated by an element of M[$, U(C, C)] which is «absolutely continuous». with
respeet to some finite sum of elements from a maximal set A, of mutually singular
bounded non-negative Borel meagures on 3.

Let F(R*) be the set of finite real-valued functions defined on the positive reals R*.
If redt and if M[B, U(C, C)] is that subset of M[B, U(C, C)] whose elements are

(*) The class of Hammerstein operators satisfy this condition. It has sometimes been
referred to as sirong additivity in [3].
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« dominated » (as defined below) by r, then certain additive operators @ from M,[H,
U(C, C)] into F(R*) are studied. For ue M[B, U(C, C)], we designate by u, the
restriction of u(B) for every B € $ to the ball B(0, &) of radius & >> 0 and center at 0.
We consider certain «additive » @ whose values at uc M,[B, U(C, C)] are deter-
mined by the restrictions u,, > 0, that is,

D) (o) = Do (p,)

is an operator defined on this collection of restrictions.

The @ under consideration will satisfy cerfain continuity eonditions. Our main
restult (Theorem T) yields the interpretation that @, may be considered as an ope-
rator on Ly = Ly )8, B, 7). In fact,

?,(¢) = [0.59dr

for (pELan where 6,,€ U— Car'[U,, R]. A corollary to this yields a representation
of the above operators @ (see Theorem 8) in terms of slurs. In particular for
peM, (B, UC,C,

D)) = [¥, 5y
where 7, is any element in A6 and ¥, is the slur {p,,., T4
Using our «density » Theorem 3, we extend this representation theorem to yield

representations of operators on M,[B, U(C, C)] which is a space larger than M,[3,
U(C, €)] (see Theorem 10). In [2], M,[B, U(C, C)] played an important role.

2. — Preliminary results.

A functional @ from the space G(8, F) into the scalar field C is said to have the
Hammerstein property if

q’r’(f+f1+f2):@(f+f1)+®(f+fz)_®(f)

for all f, f,, and f, in C(8, B) such that the supports of f; and f, are disjoint.
For the Banach spaces E and F let us denote by U(E, F) the linear space of all
maps p from B into F with the following properties:

(i) (0)=0.

(ii) If B(0, «) denotes the ball of radius « and center at 0, if y, denoles the
restriction of w to B(0, «) and if

Dy, = sup{|y(e) — w(e')|: e, ¢’ € B0, o), |e— ¢']| < &}
then Dy, converges to zero as  converges to zero.

(ili) |, = sup{|p(e)|: e€ B(0, a)j < o0, a>0.
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Thus U(E, F)is the set of maps from H into F that are bounded and are uniformly
continuous on bounded subsets of F with the additional assumption that ¢(0)=0.

Let U, (B, F)={y,: ye U(E, F)}. The spaces U,(E, F) are linear spaces and are
considered to be normed by the norm || | which takes each y, e UJE, F) to |v,]
as defined above.

In the way of notation, we agree to always designate the restriction of an operator
or function to the ball of radius « and center 0 («-ball) by affixing the index « to the
operator or function. When we are considering a space of set functions, brackets [, ]
will be used to enclose the domain and the superspace containing the range, whereas
when point funetions are under consideration, parentheses (, ) will be used for these.
Lower case Greek letters such as g and » will be used for vector-valued set funetions
and lower case Roman letters such as # and w will be used for scalar-valued set func-
tions.

We denote by HP(C(S, E), C) the set of functionals in U(C(S, E), C) with the
Hammerstein property.

Let u be an additive set function from the o-algebra 3 of Borel subsets of § into
U(E, G). For every real number o > 0, we denote by p, the set function from $
to U,(E, C) defined by restricting u(B) for every Be $ to the ball B(0, «).

The semi-variation of u on 8 (see [2]) is defined to be

so[p,, S81=sup{| Zu(B;)(e;)|: ¢; € B(0, a); B, B' — a partition of B},
and the variation of y on § is defined as
[ty 81=sup{Z|u,(B;)|: B, B’ a partition of B} .

Also for 6 > 0, we define analogously the d-semi-variation and d-variation, respec-
tively as,
$05ltor S1= sup{| Z(n(B,) &; — u(B) ¢;) | : 0,5 e; € B0, 0); o — 6] <5

B,e®’ a partition of B}

and
Vs thyy 81= sup{ZD;su,(B,): B;€ B’ a partition of B}.
Let us remark that these quantities may be defined on any subset 8' ¢ 8 with the

usual topological eonsiderations. Later on we will make use of this.
We have

s[p,s S1<p,, Sl<4svip,, 8]

and

svslp, s S1<vsip,, Sl< dsv,[u,, S].
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From [2] (see Theorem 1) the following theorem coneerning the above will be
needed.

THEOREM 1. — There is an algebraic isomorphism between the space HP(C(S, E), C)
and the space of all additive non-linear set functions u from B into U(H, C) with the
following properties:

(1) sv[p,, S]< co and svs[p,, 8] converges to zero as & converges to zero.

(2) Eeach u, from B into U B, C) (and hence v(u,)) is regular (and therefore
countably additive) for o> 0.

This correspondence is given by

¢(f)=ffdﬂ¢

for 1€ 0(8, E), @ HP(C (8, E), C) and py iis correspondent.

For any algebra 4 of subsets of §, we define an A-partition of § to be a finite
system of pairwise disjoint sets from s whose union is §. Thus if 4 is an additive
set function from #£ into U(E, F') then we may define an A-simple function ¢ on 8
with values in & to be a function of the form

p=2{e,5,: A€ & —an A partition of §; ¢, € B}

where y, represents the characteristic function of A.

Now the integral mentioned in the theorem is defined (in [2]) in the obvious way
on simple functions. Then by a limit process, it is extended to O(S, E) (in fact it is
extended to the space A(B, E) of all totally B-measurable (1) E-valued functions
on S). The integral is linear in p. With respect to f it has the following property.
For all §, f, f.e M(B, B) such that the supports of f, and f, are disjoint one has

[0+ i+ tda= [0+ tydu+ [+ fadu— [fau.

All integrals are over the whole space S.

We denote by M[B, U(C, C)] all those additive set funciions from B into U(C, C)
satisfying (1) and (2) in the above Theorem 1. Thus M[B, U(C, C)] represents
HPIOS, O, C].

We now present a Lebesgue decomposition theorem for U(C, C) valued set func-
tions. Since these are not technically measures, the usual vector valued Lebesgue
decomposition is not valid.

(1) These are the uniform limits of B-simple functions 8§ with values in E, where (B, E)
is normed with the usual uniform norm.
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PROPOSITION 2. — Let e M{B, U(C, C)] and let v be a non-negative scalar mea-
sure on B. Then p may be decomposed uniquely as & sum

== gt s

where p,, and p,, are elements in M[B, U(C, C)], where p,, is absolutely continuous
relative to r and where for every fized ¢ € C, the scalar-valued functon p.( )(c) on B is
r-singular. Moreover for 8’ any subspace of S and for all @ >0

1) Vl(trgder 8'1<0[ttys 8'],
v[([“rs)a? S,]<v[ﬂa7 S’] ;

(2)  osl(pe)s B'1< Vsl 8'1,4
vé[(l”’fs)? S/]l</v6[:uoz7 Sl] .

Proo¥. — If ¢ € C, then u( )(o) is a C-valued finitely additive measure on 3. The
usual Lebesgue decomposition theorem yields a unique decomposition of g )(e) as

B)(6) = tgg( 1E) - s )(0)

where u,,()(e) is absolutely continuous with respect to r and g, ()(c) is r-singular.
Since 0 = u( )(0), uniqueness implies that p,,()(0)= 0= [ )(0).
For >0, let ¢ceC and Be 3. Then

o B)(€)| <[y, B]< oo

Consequently, if for j=1, .., n, ¢;€ 0, |¢;,/J<a and if B, are pairwise disjoint sub-
sets of B (or of any collection B N §' of sets of B restricted to any subspace 8’ c S)
we have

Zflu'm(Bi)(cé)l< 2@[{%‘5 Bj]Q’U[‘u“, S] < co.
Similarly
2 (B es)| <oy, S]< oo

Suppose ¢ and ¢ are in C, |e|<a, |¢'|<a and je —¢'|<d for 6 > 0. Then

B;)(0) — p(B1)(€") = ol B5)(€) — phral Bi) (") + pars(B;)(0) — prs(B;) (")

implies that
[ B1)(€) — phealB3)(¢")| < vslptys Byl -
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Consequently for ¢; and c;. in C with [e|<a, {c;Koc, e, — c;.}<(3 and for the pairwise
disjoint subsets B;

Zlptra(B3)(6,) — tra B)(0;)| < Tty B1< [ty 8]

and therefore taking supremum over these collections we have

sup Ztﬂm(Bi)(cj) - Mm(Bj)(c;)’<'vd[,uu7 S] .

Thus the left side of the last inequality converges to zero as 0 converges to zero.
A similar inequality will hold for u,, replaced by ;.

Thus permitting ¢ to vary in €, we have defined two finitely additive set funec-
tions p,, and g, on B with values in U(C, C). Since v[y,, 8] is regular, it follows that
both (p.4), and (u,), are both regular. Consequently the above discussion shows
that (1) and (2) of Theorem 1 are satisfled, that is u,, and y,, are elements of M[B,
U(C, Q).

The conditions (1) and (2) of the present proposition are given by the above com-
putations. The uniqueness of y,, and g, follows from the uniqueness of w.qf ){¢)
and u,.()(¢) for every e¢c C. The absolute continuity of u,, follows from that of
Ura{ )(c) with respect to » and the r-singularity of u,,()(c) follows from the r-singula-
rity of p,()(e) for each ¢e C. This completes the proof of the proposition.

In the next theorem we will let A denote a maximal set of non-negative (finite)
Borel measures on § which are mutually singular (Zorn’s Lemma). Under the fini-
teness assumption this is equivalent to the measures being concentrated on disjoint
sets (see [4]). We will also assume that A can be well-ordered so that each proper
initial segment of A is countable.

The following « density » theorem is similar to Theorem 1 of [1]. Our proof for
the following also follows closely to that of [11.

THEOREM 3. — Let yc M[$, U(C, C)], let ¢, C and let £ > 0. There is a finite
subset I of M and a u, € M[B, U(C, C)] such that

(1) p,()(c) is absolutely continuous with respect to Z{r:re I} for every ce C.
(2) v[(p— p)()e), 8] <e.
Proor. — For ue M[B, U(C, C)], let I={r,,...,7,} be a finite subset of M and

let r= X{r;:r,€I}. Proposition 2 implies that u may be written as

U= ﬂra+ Hrs

for p,, and p., in M[B, U(C, C)], u, absolutely continuous with respeet to r and
tr( Y(¢) singular with respect to » for every ce C.
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For ¢c(, let
p(B)=uB)(e);  tn(B)=p,(B)€); p(B)= pi(B)(0)

for all Be ®B. Then u°, g, and p’, are countably additive sealar valued measures
on $. For any bounded real measure m on B, let m = m*— m~ be the Hahn de-
composition of m. Then

Bo= gt Uae 5 M= Pt W s Prs= Hive T Hars -
As shown in [1] one may show easily that

(.”/:)J”: (ﬂfm)++ (su'gfs)+

(3= (pia)™+ (pise)™
for ¢=1,2,
Let

Mo (ty €) ={ () ¥ 7 = Zfry 7€ I}; T finite subset of A}
Then again as in [1], it is shown that if Be 3 and if

()" (B) = sup{(,o)* (B): (ui) ™ € Mof (1, O}
then (ug)t== (a;)*

For the next statements we will designate by (ufy,)*™ the function which would
normally be designated as (u,)" where r= Z{r,:»,e N} and N is a finite subset
of I.

Thus there is a finite subset N, of I such that

1
() *(8) — — < (pina) "(8) < (2)*(8) -
Thus
o[ — (o 8)] < 1.

Similarly there is a finite subset K of I such that
o[ () — () S)] < 1
and there is a finite subset of M, of I such that

oL — Miara) (8)1<1/m .
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A gimilar eomputation holds for 5. Thus we obtain a finite subset I of G such that

o[ (p’ — pz) (), S1<1/m,
that is

o[ — pza)el )5 81< 1/% .

By construction p,()(c) is mutually singular with r= X{r;: r,€I} for every ce C.
This completes the proof of our theorem,

Suppose I is a finite subset of A6 and we let r,= X{r, €I}. By M,[B, U(C, C))
we denote that subset of M[B, U(C, C)] consisting of those y € M[B, U(C, C)] such
that

v[#ﬁ’ B]<La(I)TI(B)

where L (I) is a constant depending on « and the finite subset I of Ab. By M, [,
U(C, C)] we designate that subset of M[B, U(C, C)] consisting of elements p for which
there is a finite subset I, of M5 such that for all I c Iy, I finite,

[(fye)ns BI< K, 7(B)

where r=r-, Be $, and (u,.), is the continuous part of u, is its Lebesgne decompo-

sition relative to r;. Thus M[B, U(C, C)] may be considered as a set of elements

in M[%, U(C, C)] whose absolutely continuous parts are eventually not too large.
As a corollary to the theorem we now have

COROLLARY 4. — For y € M [$, U(C, C)], c€ C and & > 0 there is a finite subset N,
of M and a py € M B, U(C, C)] such that

o[(1 — py,)()e), S]1<e.

PRoOF. — From Theorem 3 there is a finite subset I of A6 and u, € M[B, U(C, C)]
such that

ol{u— p)( )(e), B]1<e.

By the definition of M,[%B, U(C, C)] there is a finite subset I, of A such that for
all o> 0,

O[(fheg)es BI< K, r(A)

where ¢ =r,= X{r,: r,€ I} whenever I is a finite subset of A, I, c I. Thus we may
choose a finite subset N, of A which satisfies both conditions simultaneously. Con-
sequently u, € M,[$B, U(C, C)]. This completes the proof.
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3. — Non-linear operators on set function spaces.

Suppose r is a fixed element of the maximal set A of finite meagures. By M [ B,
U(C, C)] we designate those elements u of M[B, U(C, C)] with the property that for
every o> 0,

[ty BI< L(r)(B)

where Be B and L (f) denotes a constant depending on ¢ and ». Thus M,[B, U(C, C)]
consists of those elements u of M[B, U(C, C)] which are « dominated » by r.

We wish to obtain a representation theorem for operators on M[$, U(C, C)).
For the ensuing discussion the re i is fixed. First we need to make use of the fol-
lowing lemma (see [2], Lemma 10) for its proof.

Levya 5. — Let (2, B, w) be o measure space with a bounded non-negative measure w.
Then there exists an algebraic isomorphism between the functions v from £ into U(C, C)
such that u( ), € Ly (2, B, wy where U,= U,(C, C) and the additive set functions p
from & into U(C, C) satisfying

(1) u, is countadbly additive, v[u,, 21< oo, and vslu,, 2] converges to zero as ¢
converges to zero for every o> 0.

(2) o[y BI<L,w(B) for Be®B and where L, is o constant depending on o.
The correspondence is given by

w(B), = fu(t)adw(t) Be®, a>0, te Q.
B

Also for corresponding u and w we have
ol Bl = [fu(t)] dult) BeB, «>0
B

vﬁ[‘u“,B]:fDau(i)mdw(t) Be®, a>0, >0
B

and

f gdu= f ut) gty dw(t) teQ
Q2

]

for all g which are totally measurable.

Actually & more general version of this lemma is given in [2]. However the pre-
sent form of it suffices for our purposes.
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Suppose now that we M,[B, U(C, C)]. Then for every o> 0, u(), satisfies (1)
and (2) of Lemma 5 where 2= 8 and w=r. Thus to each u() there corresponds
a function u, mapping 8 into U(C, C) such that the mapping u,(), from § into

U,= U,C,C) is an element of Ly (8, $B,7) and for which

w(B)= [u,(0,dr().

B

This correspondence is in fact an isometry for each o> 0 where one considers
Ly (8, B,7) as a subspace of L’;,“(S, $, ) (which is true since # is finite). For we have
by Lemma 5

Ol = 210 81= [ I f0), ] dr(t

8

This is the Lj-norm of u,( ),y Where R is the reals.

Let F(R*) be the set of finite real valued functions defined on the positive reals RT.
We wish to consider operators @ from M,(8) into F(R+) which satisfy a natural addi-
tivity condition. To do thig we need to consider an orthogonality relation on M,[%,
U(C, O)).

For p, and p, in M,[B, U(C, C)] we shall say that u, is orthogonal to u, if for every
>0, (g,), is mutually singular with (u,),. We may interpret this in terms of the
functions u, discussed above in the following manner. Let §; be the support of (u,),
for i=1,2. If u, is the function from the previous disussion corresponding to u;,
4=1,2 then

[l ar=0= [ fuy() ] ar

Ba S, 4n8,

for Be $. Thus g, is orthogonal to y, if and only if the intersection of the supports
of u,( ), and uy(), is r-null for every a«> 0. '
Thus we define an operator @ from M, [B, U(C, C)] into F(R)* to be additive if

D(ps+ pa) = P(uy) -+ D)

whenever g, is orthogonal to y,, for g, and g, in M,[B, U(C, C)].

In the proof of Theorm 7, we shall use the characterization of orthogonality
of u, and y, in terms of the correspondents , and u,. Specifically we shall assume
that the operator @ is of the form

D(p) (o) = Dyt

whe re®, is a function on the set M.[B, U(C, C)], of restrictions p, of measures in
M,[B, U(C, C)] for each o > 0. But by Lemma 5, each u corresponds to a %, (which
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also depends on # but complieation of notation refrains us from ingerting it) such
that for each o> 0, u, and u,( ), correspond. Thus we will consider the @, as defined
either on u, or on u,(),. Consequently @, may be considered as a mapping from a
subset of Ly, (8, $,r) into the reals.

With this understood, it is clear that

Dlps+ pa) = Dlp,) + Plps)
is equivalent to

D, Ju, Ot %, )] = P10, (Jo] + Dol ()]

for each o > 0 assuming throughout that g, is orthogonal to u,.

The operator @ defined on the subset M, [B, U(C, C)] of U(C, C) also gives rise
to a real valued set function defined on $. For any ye U(C, C), Be B and o > 0,
using the characteristic function g, of B, we may define the function (¥, ¢),= 73V
from § into U,= UC, C) by

(%A%)(S)=ZA(8) Y, sel.

Furthermore, y,y,€ Ly (8, 3, r) c L} (8, B, 7). Thus by Lemma 5 for &> 0 and Be B

Mw.B(B')a=fxB( yy,dr B'e®
&

defines an element u, ; of M,[H, U(C, C)]. Let us notice that the step functions in
L}J“(S, 3B, r) are finite sums of functions of the type y,v,.

Let us now define the real valued set function 7, for which conciseness of nota-
tion refraing us from writting the faet that it also depends on y e U(C, C) and « > 0.
It is defined for Be $ by

ro(B) = Plp, 5] () -

It will be of interest when this set function 7, has locally almost compact average
range. We define this for the more general situation that (@2, 2, w) is a measure
space and that v is an additive set funetion from 2’ into the Banach space E. We
define the average range of v on the measurable set Be B, 0 < w(B) < co, to be

v (B’)
w{(B')

Afv, B) ={ ‘B'e X, B'cB, O<M(B’)} .

Then v is said to have locally almost eompact average range if whenever Be Z,
0 <w(B)< oo, and e>>0 there exists B'e€ X, B'c B such that w{(B\B'})<e and
A(v, B') is a precompact subset of B (see [131).
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Some results from [11] and [12] will also be necessary. Suppose the measure
space (2, X, ) is assumed to be also finite and complete and that F is also separable.
Let B(2, E) be the vector space of E-valuned Bochner measurable functions on £.
A function I" from B(Q, E) into another Banach space F is said to be additive if

g +n)y= ')+ I'(n)

whenever ¢ and # are funetions in B(£2, E) with (almost everywhere) disjoint sup-
ports. More specifically, concern is required for such additive F-valued funections I”
defined on the associated spice L% = L%(Q2, 2, u) for 1<p< oo of (equivalence clas-
ses of) Bochner y integrable E-valued functions. If I is such an additive function
then for every ¢ € ¥ we may define the set funetion I', (%) from X into F by

I(B)=T(ey; BeZ.

If d>0 and 6 >0 then we may define
V48, ') = sup { 200, — I 1(H): 6 fieEi} ,
i

V4(d, I') = sup { 277 Fef" Ff;}(E@): en €8 lell<d, |Ifil<d;

le,— 1,1 <d; 1<i<n; {H} pairwise disjoint subsets of 35}
The family {I},.; of set functions is locally uniformly continuous in variation pro-
vided the

E{’f)ﬁ Vald, I')=10

for every d > 0.

Let us designate the variation of I’ on a set Be X by V(I")(B).

A function 6 from ExQ into ¥ is said to be in the uniform Caratheodory class
relative to E on (X - F), in brief,

6 e U-Car(B, F)

if 6(e, ) is a F-valued Bochner measurable function for each vector ¢ € £ and 6(-, &)
is uniformly continuous on bounded subsets of E for all & € 2 outside a g-null set.

Given a p, 1< p = oo, O U-Car(H, F) is said to be in U-Car-(E, F) if the com-
position operator z->ox, where § z(&)= 0(z(&), &), maps L} into Lj.

(%) In [117 and [12] the space (Q, Z, ») is assumed to be o-finite and complete. Then I'
would be defined on sets in X' of finite measure,

2 — dnnali di Matematica
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The following theorem will be used in our representation theorem (see Theo-
rem 5 of [12] for its proof).

THEOREM 6. — Let (2, X, u) be as above, let E be a separable Banach space and let F
be an arbitrary Banach space. Let I' be an additive function mapping Ly(1<p<oo)
into B satisfying the following conditions:

{1) For cach vector e E the set function I', from X into F has locally almost
compact average range.

(2) For each ec B, if Be X, u(B)< oo then V(I',)(B)< co.

(3) On each set Be X, the family of set functions {I},.p is locally unijormly
continuous in variation.

(4) The function I' is continuous relative to the L3, norm, if p < oo, and is con-
tinwous with respect to bounded a.e. convergence of p = co.

Then there exists a function ¢ U-Car®(E, F) such that

I'(g)= f9°¢d/w p€ L.
Q
Moreover 0 can be taken to salisfy
60, y==0 a.e.
and is then unique up to sels of the form E XN with N a null set in 0 (2).
At last our representation theorem may now be formulated.

THEOREM 7. ~ Let @ be an operator from M.[D, U(C, C)] into F(R*) of the form

D(p)(@) = Dylp,)

where @, is a transformation defined on the space of vestrictions p, of elements u € M,[B,
U(C, C)]. Assume

(1) @ is additive (in the sense defined above).

(2) D is uniformly continuous on bounded subsets of M, (B, U(C, C}, for every «,
that is for every &> 0 there is & 8 > 0 such that

'v[ll’oc ™ Uy S] = ”Ma - ’Daz” <9
implies that
|D(p) () — D)) = | D) — Dolv,)| <&
Hys UV, € MB, U(C, O], .

(®) A converse is given in [12] but is not needed here.
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(3) The set function ry defined for Be B by ry(B) = Plu, zl{x) has locally al-
most compact average range for all o> 0 and all ye U(C, C).

(4) The sup{ > |Plp, pl(e)|: B partition of 35} is finite for all >0 and
Befh'
ywe U(C, C).

(8) The lim sup] Zo[®{u,: 5] (@) — Pl (@1]: l9ile)] <d, j=1,2;
iy — ¥i(x)| <8, {B;} a partition of 33}: 0.

Then @, may be considered as o transformation on L};,‘x(S, B, r) into the reals (where
U,= U,C, C)) and there exists a §,,€ U-Car'[U,, R] such that

(6) @)= [(O09)dr Jor pe L, (8, B,7)
8
and

(7) 0,000, ) =10 (r ae.).
In particular

B)(2) = Bup) = Pol,) = [ Burop,) @
8

where @,,= (¢,), €Ly (8, B,7) for j, the correspondent of y in Lemma 5.

ProOF. — Firstly the function 6,,0¢ is the function from 8 into R defined by

(0,,00)(8) =0, (p(s),s) se8.

Let us abbreviate by setting Iy = Ly, (8, B, 7) and Ly = Ly (8, B, 7). We show
that ® may be extended to the step functions in L}]w and is additive on that class.
If @ =72 ypv,; Where B, ..., B, are pairwise disjoint elements of X then define

i

B,(w) = 3 B, (y5,u) -

Let g e L, and let {p,} be a sequence of step functions in Ly, for which {p,— i}
converges to zero in the L}, norm. The sequence {@,(¢,)} of real numbers is a Cauchy
sequence. Consequently by assumption (2)if & > 0 thereis a 6 >> 0 such that |D,(¢,) —
— @,(ps)| < & whenever [lg,— @,| < 8. Since {p,} is a L}, Cauchy sequence there is
an integer N such that in the L}]oz norm ¢, and g, are less than 6 whenever m, n>>N.
Thus |D,(p,) — DPle,)| <& whenever m,n>N. As usnal we may then define
D (p) = lii:gn D (9,) and this limit is independent of the particular Cauchy sequence

chosgen,
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This extension of @, is additive on Ly . In particular if ¢, and ¢, are any two
step functions in Ly with disjoint supports then we may write

D (9" + ¢") = D (¢") + D(¢") .

Congequently for any two elements ¢® and ¢” of L%,lx with disjoint supports we may
select corresponding sequences {gj; and {p’} of step functions in I}, converging to
them and such that for each n, ¢ and ¢ have disjoint supports. A pass to the limit
yields the resulit.

The @, is uniformly continuous on bounded subsets of LIU“. Again by assump-
tion (2), @, is uniformly continuous on bounded subsets of Ly . For £> 0, there is a
¢ > 0 such that

1D (1) — Do) | < 8/3

where ¢, and @, are in Ly with ther difference less than ¢ in the Ly, norm. Let ¢
and 5 be in Ly satistying the condition that their difference is less than 6/3 in the
L}, norm. Choose ¢, and 7, to be functions in Ly such that in the L} norm the
difference of ¢ and ¢, and the difference of % and #, are both less than J/3 and

i¢o¢((p) - Q)ac(gvl)& < 8/3; l@a(n) - ¢a(n1)l < 8/3‘
Thus the difference of ¢, and #, is less than 4 in the L}, norm and hence

1P (p)— D) <e.

Now define the following real valued set functions on $. For every y € U (C, C),
let @, be defined for Be 3 by

QD,{)(B) = Qjoc(XB %U) = ®o:[(u§0.B] (OC) M

Assumption (3) says that @, has locally almost compact average range for each
ye U(C, C). Also for $' a finite family of pairwise disjoint subsets from the family $
we have

Z{|Plpy 51 (2)]: Be B'} = Z{|P,(B)|: Be B}
and
20[Plphyr 51 () — Plptye 3,1 (0)] = Z0[ Py — B, 1(B,).

Thus assumption (5) translates ag the family {@go}y}GU‘x(C,C) being locally uniformly
continuous in variation. Assumption (4) means just that each @, has finite varia-
tion.
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All of the hypotheses of Theorem 6 are satisfied with p=1, E= U,C, ),
F=R, I'=®, and {I' },.;z= {P,}yevcc)- Consequently that theorem yields the ex-
istence of a function 6, € U-Car* U (C, C) such that

()= [0 0p)dr
8

for all pe L}, . The function 0,, also satisfies
0,0, y=0 (r ae.).

This completes the proof of our theorem.

4. — Representation via approximate integration.

This representation just presented may be viewed in a different manner. To do
this we utilize the concept of a shur (as found in [14]) and the technique of approximate
integration as developed by A0 and pE KORVIN in [1].

Let 7, be a typical element of the maximal subset A where § and y will represent
typical elements in a well-ordered set used to index the elements of AC. In accor-
dance with our assumption on 4G, we assume that each proper initial segment of
this index set is countable.

Let

((pﬂ)u == (pﬂ.a € LD;“(S, ‘LB, rﬂ)

for every a> 0. Let {rpﬁ_a}n be a sequence of simple functions converging 7, a.e.
t0 @, These may be so chosen so that in the L, norms ¢, is finite and is not less
than the ¢}, (see Theorem 2, page 99 of [4]). The dominated convergence theorem
says that the sequence {¢} .}, converges in the Ly norm to ¢,. If 8,,= Qa’,ﬁ 18
the function from Theorem 7, let us define

6a.ﬁ( ’ ) = wa.ﬂ( ’ )I .
Then
gd.ﬁoqu.a: lea.ﬁOQ%aI .

Since the sequence above does converge in the L}, norm, a modification of the proof
of Theorem 2 in [11] will imply that {f,,0¢%.}, converges to fop;, also in the Lj,
norm. Thus the set functions

0,(B) = f 0,500l dr, Be®B, n=1,2,..
B
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form a uniformly absolutely continuous family with respect to r,. Furthermore
{0,590} » converges to 0,z00,, (r; a.e.). Thus the sequence

{ fiea.ﬁWﬁ.u - 9&-50‘773-@‘0175}"91\1
8

converges to zero (see Theorem 6, page 122 of [5]).

Now our argument follows closely that used in [1] and [10]. For » < g, let Bﬁ
be a set in B such that ry(Bg) =0 and rﬁ(GBff) = { (Crefers to set theoretical com-
plementation). Let B= N {BS:y < f}. Since this is the intersection of a coun-
table number of sets it follows that Bf e $.

If Be B then there is at most one cardinal § such that B c B® and rg(B) >0
(the proof of this is exactly as in [1]).

For ¢>0, x>0 and Be 3 define

Ouaopia?  if ri(B)>0
0,(B) = | 0,5094%P it BCB, and 74(B)>0

0 otherwise,

Here 1 indicates the first element in the indexing set for M. The integer n(e, f) is
8o chosen so that for m>n(e, f),

J16.p0 50— buportalir <.
§

Thus for every Be B, 0,,(B) e Lx(S, B, rs) where f depends on B.

We may now give the representation of the operator @ in Theorem 7 in terms
of slurs.

Let w be a real valued set function on $. A slur is a sequence Y= {y,,F,} where
v, is a set funetion from B into LXS, B, w) and where T, is a partition of § by sets
in B for each n=1,2,3,....

If there is & number L such that for very £ > 0 there is a positive integer N such
that for #>N, and §, a refinement of &,

fz{f%(B)dw:Be ﬂ‘;}—f,] <e,

then L is denoted by

j{zpﬂ, 3.} dw:f’{fdw .
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Now let §; be a finite partition refining {B’, CB?}. Then
2{f6m(3)d¢5: Be 3},} — z{féw(B) dry: BTy, 1,(B)> 0, BcBﬂ}
B B
= ={ [6.p00257 ry: Be 85, 7,(B) > 0, B BY)
B
= [0, g00157 an,
BB

= 6. 500157 dr,
B
Now let @ be as in Theorem 7 and let ye M,[H, U(C, C)]. Then

D)) = Polpt) = (059975 -
8

If 6> 0 then

@100 — 2{ [0,.48)dr: Be g,}| =| [Oupogna—bugorts® ar| <o
B 5

For each pair («, §) with a > 0, let us define the slur ¥, ;= {f,,,, T}, Wwhere ,
is a fixed partition refining {Bf, CBf}. Then

. tq5(u)(oc) —z { [vustB)ary: B ﬂ’ﬁ}l <1i/n.

D)) = [P, g1,
for ‘ueM,ﬂ[BS, U(C, C)]. We have thus proved

THEOREM 8. — If @ is as in Theorem 1, then

P()(@) = [, 5,

in the integral notation established above for the slur ¥, z= {8, ., T5} where for each
n, Ty is the fized partition given above, u € M,.ﬂ[ﬂi, U(C, C)].

With this representation we can now give a representation for operators on
M5, U(C, C)] which is a larger class than each Mfﬁ{35, U(C, O)).

COROLLARY 9. — Let @ be an additive function from M, (%, U(C, C)] to F(R"). If
pe M[B, UC, C)] then there is a finite set {r},; in M such that for Be B

olp,, BI< L) Zr(B).
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Assume D restricted to each M, [B, U(C, C)] satisfies the conditions of Theorem 7. Then

D) (o) = 2{ [ qan; z‘eI}
where each ¥, is o slur as in Theorem 8.

Proo¥. — By Lemma 5 there is a ¢ from § into U(C, €) such that

wB= [p0. (s ie 1)) = ={ o), ar: ieT]
B B

for every a>0. Let g, from 3 into U(C, C) be defined by

w(B)= [p(0),an,
B

for every «>0. Note that g(), e L (8, B, ) since pf )“eL;;;(S, P, gr,é). Then
i€l

pi€ M, [B, U(C, C)]. Thus we have u=2{u,:icI}. But recall that the u’s are

mutually singular. Thus for each a > 0, the y,( ),, i € I, are concentrated on mutually

disjoint sets. Thus

B(u) = O(Z{p;:icI})=Z{I(n,):i€I}.
By Theorem 8, for each % and « > 0 there is a slur ¥, ; sueh that

D(u;) (o) = fl-poc.é dr; .
Thus,
B(p)(a) = z{fsva,,.dn: ieI} .

Using Corollaries 4 and 9 we may now approximate certain additive operators
on M[®, U(C, C)].

Suppose pe Mp[B, UC, C)], ceC and §>>0. By Corollary 4, there is a finite
set ICA and a p € M, [B, U(C, C)] such that o[(u— p),(c), 8]< 4.

Let us now define a particular subset M,[®, U(C, C)] of M[H, U(C, C)] over
which we will define our integral. A set function ye M[$, U(C, C)] is said to be
simple if there are finite collections p,, ..., u, of set functions in M, [B, U(C, C)],
functions 9, ..., y» in U(C, C) and points e,, ..., ¢, in C such that for Be B,

#(B) = Zp(B)(e:) p* .

The measure u is «-simple, « > 0, if it is simple and if the funections ¢, ..., p" are
the functions 3, ..., y* from U (C, C). Let M [B, U(C, C)] be the collection of all
set funetions ue M{B, U(C, C)] such that for every «>0 and > 0 there is an
a-simple set function o such that the variation o[y, — v, 81<C 6.
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THEOREM 10. — Let @ be an operator from M{B, U(C, C)] into F(RY) of the form
P(p)o) = D,(u,), pe M[B, UG, C)] and o.>0. Assume also that D, is continuous
in the variation norm on M (B, U(C, C)], and that D restricted to each Mrﬂ[fﬁ, U(C, Oy,
rp € M satisfies the conditions of Theorem 7. If e>0,a>0and ue M, [P, UC,C)],
then there ewists a set of slurs ¥, ,, i=1,...,p of the type described in Theorem 8
such that

@) — = [@, 01, <.

PROOF - If pe M ,[B, U(C, C)] then for 4> 0 there is an a-simple set function
V= E,u )- ! such that
ofp—v%, 8]1<d.
Choose vy, :.., v, € M,[B, U(C, C)] such that

]
WMMM*%H“%&<kK

where K = max{|yi|:i=1,...,%}. Thus

k ) I )
(3 mOe)vi— So el <o
=1 d=1

For sufficiently small 8, the continuity of @, on M (B, U(C, C)], implies that

k

|D(p) (o) — (2 (ci)t,v:é)l<e.

Since z wi Ve pie M B, U(C, C)], Corollory 9 yields slurs ¥, 5, i=1, ..., p such
that =%

@a(é e ) ) E flpaﬁi drg, -

This yields

[@(m ——g f v, %; <s.

5. — Conclusion,

For operators @ from (S, E) into a Banach gpace F it is elear that the condition
that @ be additive is definitely weaker than the condition that @ satisty the Ham-
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merstein property. For example, for each fe O(8, E) where §=F=1[0,1], let
B(f) = int{|f(s)]: s € 8 .

Such an additive functional may not be represented as an integral with respeet to
an additive non-linear set function as Theorem 1 would indicate.

We proceeded to show that certain additive operators on the subset M,[B, U(C, C)]
of M[B, U(C, C)] may be represented in terms of certain uniform Carathecdory
functions (see Theorem T7) as discussed in {12]. However this representation may
also be given (see Theorem 8) in terms of slurs and the technique of approximate
integration as developed in [1]. The latter leads to the representation of additive
operators on the larger subset M [B, U(C, C)] of M[B, U(C, C)] (see Corollary 9).
From here we are led to (Theorem 10) the representation of operators on M[B, U(C, C)]
itself. The representation of such operators is given through approximation over
the subset M ,[B, U(C, C)] of M[B, U(C, C)]. Let us recall that the Hammerstein
condition was used in the representation of M[B, U(C, C)]as the space HP[O(S, C), C.
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