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S u m m a r y .  - /.] M[CB, U(C, C)] is the collection of U(C, C).val~ed (non-linear) set functions 
defined on the Borel subsets :B of the compact Hausdo~f] space S, one may define operators 
on M[:B, U(C, C)] which are <~ of the Hammerstein type ~>. We initiate a sturdy of a concept 
analogous to the second dual o/ a space of continuous fq~nctions by inheriting as to what 
representation theorems one may obtain for ~,hese operators. A (~ Lebesgne type )~ decomposition 
theorem /or elements o/ M[~B, U(C, C)] is obtained. A (~ density ~ theorem is a~so obtained 
/or the space M[~B, U(C, C)]. 

1 .  - I n t r o d u c t i o n .  

Bounded linear transformations on spaces of continuous functions and their 
universM properties have been of special interest since A. Grothendieck's celebra, ted 
paper [6]. The early papers deMt with the ease where the function spaces were spaces 
of real valued functions and where the functions themselves, were defined on a com- 
pact or locally compact Hausdorff space. Much was written on the representation 
(via integrals) of transformations (see [5]) on such spaces. 

Later studies considered the underlying function spaces with functions having 
their values in some Banach space E. For example the representation of linear ope- 
tutors on the spare K(S ,  E) (with the usual supremum norm) of E-valued ]unctions 

with compact support and defined on the locally compact Hausdorff space S, may 
be found in the compendium [4]. 

More recently has been the investigation of linear operators defined on the dual 
of such function spaces whose elements are E-vMued (for example, see []], [7], [9] 
and [10]). For example in [1], linear operators belonging to the second alum of K ( S ,  E)  

are represented on certain sets of measures in the dual of K(S, E). I t  is shown that  
such an operator is in a certain sense approximable by an integral when computed 
over this subset of the dual. 

Another direction of research has been to relax the condition of linearity. In  [2], 
[11] and [12], the authors study operators ~b which are ~ additive ~>. Essentially this 
replaces the condition of linearity with the condition that  

~(11+ L) = ¢(11) + ~(L) 

where ]1 and ]2 are functions in our function space whi9h have disjoint supports. 

(*) E n t r a t a  in  R e d ~ z i o n o  i l  6 m a r z o  1974.  
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Let  L ~ :  L~(Q, Z, #) be the  Banaeh spaee of (equivalence classes of) Bochner 
~-integrabte E-valued ]unctions defined on the measure space (Q, Z, [~). I n  [12] E was, 
in addit ion,  assumed to  be separable. There  a character izat ion is given of addit ive 
funct ions ~b f rom Z~ into an a rb i t r a ry  Banach  space /7  which admit  an integral  repre- 
sentat ion of the  form 

~(~) = fo(~(~), ~( d~(~) 

where 0 is required to satisfy cer ta in  conditions re la ted to those occurring in the  
theory  of non-linear integral  equat ions (see [8]). In  the  sequel these functions 0 
will be re fe r red  to  as members  of the  uniform Caratheodory class U -  Car(m, E)  
relative to E on (Q-~ P). 

Let C(S, E) be the  space of continuous m-valued functions (with usual uniform 
supremum norm) defined on the  compact  Hausdorff  space S: In  [2] the  (( addi t iv i ty  ~) 
of the  opera tor  ¢ f rom C(S, E) into the  Banach  space /7  is replaced by  the  s tronger 
Hammerstein property (1). This is the  algebraic p rope r ty  tha t  

r( f  + A + ]s) = 1'(f + A) + T(I + A) - z(f)  

where f, El, f~ ~ C(S, E) and where ]1 and fs have disjoint supports.  These non-linear 
t ransformat ions  are represented  as integrals with respect  to  addi t ive  ((non-linear ~> 
set funct ions (which take  the i r  values in a l inear space of operators f rom one Banach  
space into another  which are uni formly  continuous on bounded sets). 

In  this  work we ini t ia te  a s tudy  of a concept  analogous to  the  second dual  of a 
space of cont inuous functions.  More specifically if M[¢~, U(C, C)] is the  collection 
o/ U(C, C)-valued set functions defined on the Borel subsets ~5 of S and representing 
Hammerstein operators on C(S, E), one m a y  define operators  on M[~ ,  U(C, C)] which 
would be (~ of the  Hammers t e in  type  ~>. We inquire as to what  representa t ion  theo- 
rems one m a y  obta in  for these operators.  

The elements  of M[$, U(C~ C)] are technical ly  not  measures.  However ,  the  sub- 
space M[:~, U(C, C)]~ is a space of measures.  Also, we m a y  obtain a (~ Lebesgue 
type  ~) decomposit ion theorem for elements of M[:5, U(C, C)] (see Proposi t ion 2) : As will 
be discussed la ter  the  usual  vector-valued decomposit ion theorem as in [4] is not  
applicable here.  Our resul t  yields a (~ dens i ty  ~> type  theorem (see Theorem 3) for  
e lements  of M[~ ,  U(C, C)]. In  essence, it  shows t h a t  such an e lement  can be approx- 
imated  by  an e lement  of M[~, U(C, C)] which is (( absolutely continuous )~. with 
respect  to  some finite sum of elements f rom a maximal  set 2£ of mutua l ly  singular 
bounded  non-negat ive Borel  measures on ~ .  

Le t  /7(R +) be the  set of/inite rear-valued functions defined on the positive rears R +. 
I f  r e ~  and  if M r [ t ,  U(C, C)] is t ha t  subset of M[3~, U(C, C)] whose elements are 

(4) The class of Hammerstein operators satisfy this condition. I t  has sometimes been 
referred ~o as strong additlvity in [3]. 
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~ dominated ~> (as defined below) by r, then  certain addit ive operators q5 from M,[$ ,  
U(C, C)] into /~(R +) are studied. For  # e M[:B, U(C, C)], we designate by #~ the  
restr ict ion of #(B) for every B e ~B to the ball B(O, o 0 of radius a > 0 and  center at  0. 
We consider certain <~ addit ive ~ ~b whose values at  /~ E M,[~ ,  U(C, C)] are deter- 
mined by  the restr ict ions/ t~,  a > 0, tha t  is, 

¢(~)(~) = ~ ( ~ )  

is an operator defined on this collection of restrictions. 
The q~ under  consideration will satisfy certain cont inui ty  condition~. Our main 

res tul t  (Theorem 7) yields the  interpretat ion tha t  q5 may  be considered as ~n ope- 
rator  on / ; ~  : / ~ ( c . c ) ( S ,  ~5, r). I n  fact, 

dr 

for ~v e L~ .  where 0~.~ ~ U -- C~r~[ U~, R]. A corollary to this  yields a representat ion 
of the  above operators O (see Theorem 8) in terms of slurs. In  part icular  for 
# e M,~[,~, V(C, C)], 

where r~ is ~ny element  in 24~ and  T~.~ is the  slur {~/~.~, ff~}. 
Using our ~ densi ty  ~> Theorem 3, we extend this representat ion theorem to yield 

representat ions of operators on M~[:5, U(C, C)] which is a space larger t h a n  M,[:B, 
U(C, C)] (see Theorem 10). In  [2], M,[~,  U(C, C)] played an impor tan t  role. 

2. - Preliminary results. 

A funct ional  q~ from the space C(S, E) into the scalar field C is said to have the 
Hammerstein property if 

¢(]  + tl + 12) = ¢ ( / +  fi) + q~(] + ]2) - q~(t) 

for all ], ]1, and  ]2 in C(S, E) such tha t  the  supports of ]i and  12 are disjoint. 
For  the  Banach spaces E and  ~ let us denote by U(E, F) the  linear space o] all 

maps ~ ]rom E into F with the ]ollowing properties" 

(i) ~ ( 0 ) =  0. 

(ii) I f  B(0, a) denotes the  ba, ll of radius a and  center at  O, if y~ denotes the 
restriction ot ~ to B(O, ~) and ii 

Dt V~-~ sup{ ti~(e) -- v(e') I t : e, e' e B(0, , ) ,  [I e -- e' II < 5} 

then  D~ ~ converges to zero as 8 converges to zero. 

(iii) liV~ll = suP{tl~(e)lI: eeB(O, ~)} < c% ~ >  0. 
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Thus U(E, F) is the  set of maps f rom E into F tha t  are bounded  and are un i formly  
continuous on bounded subsets of E with the  addi t ional  assumption t h a t  y~(0) = 0. 

Le t  U~(E)F)-= { ~ :  ~ U(E, £~)}. The spaces U~(E, F)  are l inear  spaces and  are  
considered to  be no rmed  by  the  norm tl I} which takes  each ~v~ E U~(E, T)  to  ll~lI 
as defined above. 

In  the  way of notat ion,  we agree to always designate the  res t r ic t ion of an operator  
or funct ion to  the  ball  of radius ~ and  center  0 (a-ball) by  affixing the  index a to the  
operator  or function.  When  we are considering a space of set functions,  brackets  [ ,  ] 
will be used to enclose the  domain and the  superspaee containing the  range, whereas 
when point  functions are under  consideration, parentheses  ( , )  will be used for these. 
Lower case Greek le t ters  such as # and v will be used for vector-valued set funct ions 
and lower case Roman  le t ters  such as r and w will be used for scalar-valued set func- 
t ions.  

We denote  by  HP( C(S, E), C) the set o] ]unetionals in U(C(S, 1~), C) with the 
Hammerstein property. 

Let  # be an addi t ive  set funct ion f rom the  a-algebra 35 of Borel  subsets of S into 
U(E, C). For  every  real  number  a > 0, we denote  by/z~ the  set funct ion f rom 35 
to  U~(E, C) defined b y  restr ict ing/~(B) for every  B e 35 to  the  ball B(O, ~). 

The semi-variation of # on S (see [2]) is defined to be 

sv[/z~, S] = snp(llZ#(BA(ej)tt : e~ eB(O, a); B~e 35' -- a par t i t ion  of 35}, 

and the  variation of # on S is defined as 

v[#~, Sly-sup(2/H/~(Bj)lI: B, e 33' a par t i t i on  of 35}. 

Also for ~ > 0, we define analogously the  (~-semi-variation and ~-variation, respec- 
t ive ly  as, 

? ! 

sv~[/~, S] = snp{llZ(#(B¢) e~ - #(B~) 5)It:  e~, e~ ~B(0 ,  ~); IleJ --  e~]l < ~ ;  

B1 e 35' a par t i t ion  of ~} 

and 

v~[1%, S] = sup{ZDo#~(Bj): B~ ~ 35' a par t i t ion  of 35} . 

Le t  us r emark  tha t  these quanti t ies  m ay  be defined on any  subset S ' c  S with the 
usual  topological considerations.  La te r  on we witl make  use of this. 

We have 

and 
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F r o m  [2] (see Theorem 1) the  following theorem concerning the  above will be 
needed.  

T~EOl~E~ 1. - There is an algebraic isomorphism between the space HP( C(S, E), C) 
and the space of all additive non-linear set functions # from 3~ into U(E, C) with the 
following properties: 

(1) sv[#~ S]< c~ and svo~,  S] converges to zero as (~ converges to zero. 

(2) Eeach #~ from 3~ into U~(E, C) (and hence v(#~)) is regular (and therefore 
countably additive) for ~ ~ O. 

This correspondence is given by 

¢(]) = ffa o 

for f e C(S, E), q~EHP(C (S, E), C) and 1~¢~ its correspondent. 
For  any  algebra A of subsets of S, we define an A-partition of S to be a finite 

sys tem of pairwise disjoint sets f rom A whose union is S. Thus if # is an addi t ive 
set funct ion  f rom A into U(E, ~') t hen  we ma y  define an A-simple funct ion ~ on S 
with values in ~E to be a funct ion of the form 

~ Z(e~ 2A : A e A' --  an A pur t i t ion  of S; ex e E} 

where Z~ represents  the characteristic function of A. 
Now the  integral  ment ioned  in the  theorem is defined (in [2]) in the  obvious way 

on simple functions.  Then  by  a l imit  process, i t  is ex tended  to C(S, E) (in fac t  i t  is 
ex tended  to  the  space ~ ( ~ ,  E) of all to ta l ly  ~-measurable  (1) E-valued funct ions 
on S). The integral  is l inear  in #. Wi th  respect  to  ] i t  has the  following proper ty .  

For  all f, ]1, f2e~4t(~,E) such t h a t  the  supports  of ]1 and  f~ are disjoint  one has 

All integrals are over  the  whole space S. 
We denote  by  M[~, U(C, C)] all those additive set functions from ~ into U(C, C) 

satisfying (1) and (2) in the  above Theorem 1. Thus M[~, U(C, C)] represents  

Ht'[C(~, C), C]. 
We now present  a Lebesgue decomposit ion theorem for U(C, C) valued set func- 

tions. Since these are not  technical ly measltres~ the  usual vector  valued Lebesgue 

decomposi t ion is not  valid. 

(1) These are the uniform limits of ~5-simpl6 func~ons S with values in E, where ~ ( :5 ,  E) 
is normed with the usual uniform norm. 
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P ~ o ~ ' o s ~ o ~  2. - Let # ~ M[¢~, U(C, C)] and let r be a non-negative scalar mea- 

sure on ~B. Then l~ may be decomposed uniquely as a sum 

where #r~ and #r, are elements in M[b~, U(C, C)], where #~a is absolutely continuous 
relative to r and where/or every ]ixed c E C, the scalax-valued ]uncton ~8( )(c) on 3~ is 

r-singular. Moreover ]or S'  any subspace el S and /or  all o: > 0 

(1) v[(~o)~, ~ ' ]<v[~,  ~'], 

(2) v~[(~,~), ~ ' ] < v ~ ,  ~'], 

v~[(~.), s ']<v~[~, ~']. 

P~oo~. - I f  c e C, then/~()(c)  is a C-valued finitely addi t ive  measure  on ~.  The 
usual Lebesgae decomposit ion theorem yields ~ unique decomposit ion of/~()(c)  as 

~()(c) = ~ o (  ) ( c ) ÷ # . ( ) ( c )  

where #~()(c) is absolutely cont inuous with respect  to r and /~( ) (c )  is r-singular. 
Since 0----#()(0), uniqueness implies tha t  #~( )(0) ----- 0 ----- #~( )(0). 

For  ~ > 0 ,  let  c ~ C  und B65~.  Then  

I#~o(B)(c)l <v[~, ,  B] < co. 

Consequently,  if for j -~  1, ..., n, c ~  C, Ic~]<-..o: and if B; are pairwise disjoint sub- 
sets of :& (or of any  collection $ (~ S' of sets of 3~ res t r ic ted  to any  s~bspace S' ¢ S) 

we have  

Similarly 

ZI#.(B,)(c~)[ <v[~,  S] < oo. 

Suppose e and  c' are in C, Icl<a, [e ' l<a  and lc--c ' [<(~ for ~ > 0. Then  

#(B~)(c) -- #(Bx) (c') = #ra(B~)(c) -- ,ura(B~)(c') -]- ,urs(B~)(c) -- #rs(B~)(c') 

implies t ha t  

[/~,o(B1)(e) -- #,o(B~)(c')] < v~[#~, B~] . 
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r ! t 

Consequently for c~ and  cj in C with t%1<~, I%]<~, [% -- %}<~ and for the pairwise 
disjoint subsets B~ 

Zt#,~(Bj)(ej) --  #,~(B~)(e~)I < Xv~[#~, Ba]<v~[#~, S] 

and therefore taking supremum over these collections we have 

sup ZI~,o(B,)(%) -- ~,o(B,)(c)l < v~[~, ~ ] .  

Thus the left  side of the last  inequal i ty converges to zero as ~ converges to zero. 
A similar inequal i ty  will hold for #~ replaced by /~,~. 

Thus permi t t ing  e to va ry  in C, we have defined two finitely addit ive set func- 
t ions ~r~ and/, ,~ on ~5 with values in U(C, C). Since v[#~, S] is regular, it  follows tha t  
both  (/~)~ and (/~)~ are both regular. Consequently the above discussion shows 
tha t  (1) and (2) of Theorem i are satisfied, tha t  is #~  and #~ are elements of M[3~, 
~ ( c ,  c)] .  

The conditions (1) and (2) of the  present  proposition are given by  the  above com- 
putat ions.  The uniqueness of #~ and / ~  follows from the  uniqueness of #~()(e) 
and  #r~()(c) for every c ~ C. The absolute cont inui ty  of #~ follows from tha t  of 
#~()(e) with respect to r and the r-singularity of/~,~()(c) follows from the r-singula- 
r i ty  o f / ~ ( ) ( c )  for each e ~ C. This completes the proof of the  proposition. 

In  the next  theorem we will let ~ denote a maximal  set of non-negative (finite) 
Borel measures on S which are mutuMly singular (Zorn's Lemma).  Vnder the fini- 
teness assumption this is equivalent  to the measures being concentrated on disjoint 
sets (see [4]). We will also assume tha t  ~ can be well-ordered so t ha t  each proper 
init ial  segment of J~ is countable. 

The following (( densi ty ,) theorem is similar to Theorem I of [1]. Our proof for 
the following also follows closely to t ha t  of [1]. 

TEEORE~ 3. - .Let # ~ M[~5, U(C, C)], let co ~ C and let s > O. There is a ]inite 

subset I o] ~ and a 1~ e M[~ ,  U(C, C)] such that 

(1) ~u~()(e) is absolutely continuous with respect to Z{r: r ~ I} ]or every c ~ C. 

(2) v [ ( ~ -  ~D()(c0), s]  < s. 

Pnoo~. - For  / ~ e M [ ~ ,  U(C, C)], let I---- (r~, ..., r~) be a finite subset of ~ and  
let r = Z(r~: r~ e I}. Proposit ion 2 implies tha t  # may  be wri t ten as 

for #~  and ~ in M[~ ,  U(C, C)], #~ absolutely continuous with respect to r and 
#~()(e) singular with respect to r for every e e C. 
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For  c e C, let  

~ ( B )  = ~(B)(~) ; tqo(B) = ~,o(B)(~) ; t,;~(B) = tt,.(B)(c) 

for  all B e ~ .  Then #o, #~ and #;~ are countab ly  addi t ive scalar valued measures 
on 5~. For  any  bounded  real measure  m on 5~, let  m = m + -  m - b e  the  H a h n  de- 
composit ion of m. Then  

C: - -  0 .7[_ " ~ C 6 " C # 0 =  t % ÷  i t% ; ,u, , , - -  ,u l .  , z, u2,~, ; , u .~=  #.~-}- ~,u2. ~ . 

As shown in [1 ]  one m a y  show easily t ] ~ t  

for i = 1, 2. 
Le t  

r ,  ~ ) + .  
~ ( / ~ ,  c )  = t ~ # . ~  . 

c + _ _  c + 
(#~) - (#~,~) + (/4D + 
( ~ D - =  ° - ° - (#~,a) + (#~.) 

r = X{r,: r, ~ I}  ; I finite subset of dig}. 

Then again as in [1], it  is shown th a t  if B ~ ~ and  if 

. C  ",+ (fi~)+(B)-~ sup{(#~,a)+(B): #~.M eJt(~+(#, c)} 

then  (#~)+ = (fi~)+. 
For  the  nex t  s ta tements  we will designate by  (#~Na) + the  funct ion which would 

normal ly  be designated as (/t[~)+ where r =  X{r~: r~e£V} and 5T is a finite subset  
o~ I .  

Thus there  is a finite subset  _~T of I such that 

Thus 

o 1 ~ + c +  (~)+(S)-~< (#~vo~) (S)<(~) (s). 

< 

Similarly there  is a finite subset K~ of I such tha t  

v [ ( (#~ . ) - - - ( / z~Koa) - ) (S ) ]  < 1 / n  

and there  is a finite subset of M 0 of I such t h a t  

~[ (#~-  #;~oo)(s)] < 1/n.  
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A similar computa t ion  holds for #~. Thus we obta in  a finite subset I of ~ such tha t  

t ha t  is 

v[(~ ' -  ~a)(), S] < X/n, 

v [ ( # -  #~,)o(), S] < U n .  

B y  cons t ruc t ion  #x~()(c) is mutua l ly  singular with r--~ X{r,: r, e I }  for every  c eC.  
This completes the  proof of our theorem.  

Suppose I is a finite subset  of dt~ and  we let  r I = X{r~ e I}. By  Ml[~ , U(C, C)] 
we denote  t ha t  subset of M[~ ,  U(C, C)] consisting of those # ~ M[~, U(C, C)] such 

tha t  

v[/t~, B]<L~(I)rz(B) 

where L~(I) is a constant  depending on ~ and the  finite subset I of ~ .  B y  Mp[~ ,  
U(C, C)] we designate that subset of M[5~, U(C, C)] consisting of elements # ]or which 
there is a ]inite subset Io of ~ such that ]or all I c Io, I finite, 

v[(tt,a)~ , B]<~K~.r(B) 

where r --~ r-,  B E ff~, and (#,~): is the  continuous par t  of #~ is its Lebesgue decompo- 
sit ion re la t ive  to  r I. Thus M[5~, U(C, C)] m a y  be considered as a set of elements  
in M[5~, U(C, C)] whose absolutely continuous par ts  are eventual ly  not  too large. 

As ~ corol lary to  the  theorem we now have  

COt~OLLAI~¥ 4. - For # ~ M~[¢~, U(C~ C)], e E C and s > 0 there is a finite subset N~ 
o] J~ and a tt~oE MI[~  , U(C~ C)] such that 

v[(~-  #~o)()(c), ~] < ~. 

PROOF. - F r o m  Theorem 3 there  is a finite subset  I of di(~ a n d / ~  e M[55, U(C, C)] 
such t ha t  

v [ ( ~ -  ~)()(e),  ~] < ~. 

B y the  definition of M~[~,  U(C, C)] there  is a finite subset -To of dlb such tha t  for 
all ~ > 0~ 

v[(#~a)~, B]~K~r(A) 

where r =  r x =  Z{r~: r~eI}  whenever  I is a finite subset of 2£, l o c i .  Thus we m ay  
choose a finite subset N~ of ~(~ which satisfies bo th  conditions simultaneously.  Con- 
sequent ly  /tz~ ° ~ Mx[3~ ~ U(C, C)]. This completes the  proof.  
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3.  - N o n - l i n e a r  operators  on  set f u n c t i o n  spaces .  

Suppose r is a fixed e lement  of the  maximal  set J~ of finite measures.  By  M~[~, 
U(C, C)] we designate those elements # o] M[X5, U(C, C)] with the property that ]or 
every :¢ > O, 

v[/t~, B]<L~(r)r(B) 

where B ~ ~5 and L~(fl) denotes a constant  depending on ~ and r. Thus M~[~, U(C, C)] 
consists of those elements  # of M[~ ,  U(C, C)] which are (( dominated  ~) b y  r. 

W~e wish to  obtain a representa t ion  theorem for operators  on M[55, U(C, C)]. 
For  the  ensuing discussion the  r e ~ is fixed. ~ i rs t  we need to make  use of the  fol- 
lowing l emma (see [2], L e m m a  10) for  its proof. 

LEI~I~A 5. - Zet (~,  St, w) be a measure space with a bounded non-negative measure w. 
Then there exists an algebraic isomorphism between the functions u ]rom t~ into U(C, C) 
such that u( ) ~ e L ~ ( ~ ,  ~ ,  w) where U ~ :  U~(C, C) and the additive set ]unctions # 
Item ~ into U(C, C) satis/ying 

(1) /t~ is countably additive, v[#~, $2] < co, and v~[/t~, Y)] converges to zero as (~ 
converges to zero ]or every ~ > O. 

(2) v[ t t~ ,B]<~w(B  ) ]or B~3~ and where L~ is a constant depending on ~. 
The correspondence is given by 

t~(B)~ = fu(t)~dw(t) 
B 

Also ]or corresponding t~ and u we have 

and 

v[t,,,, B]= fllu(t) ,It dw(t) Be, , o 
B 

v~[#~, B] = f D~u(t).dw(t) 
B 

B ~ ,  ~ > 0 ,  6 > 0  

fg d# = fu(t) g(t) dw(t) te~9 

]or all g which are totally measurable. 

Actual ly  a more  general  version of this  l emma is given in [2]. I towever  the  pre- 
sent form of it  suffices for  our  purposes.  
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Suppose now tha t  # E M,[~, U(C, C)]. Then  for every  ~ > 0, #( )~ satisfies (1) 
and (2) of IJemma 5 where ~2 ~ S and  w = r. Thus to each #( ) there  corresponds 
a funct ion  u,  mapping  S into U(C, C) such tha t  the  mapping %( )~ f rom S into 
U~= U~(C I C) is an e lement  of Z~,(S, ~1 r) and for which 

#(B)~ = f u,(t)~dr(t) . 
B 

This correspondence is in fact  an i somet ry  for each ~ > 0 where one considers 
Z~,(SI ~I r) as a subspace of L~(S,  ~1 r) (which is t rue  since r is finite). For  we have 

by  L e m m a  5 

II~( )~it = v[~( )~, s ]  = fIl~.(t)~lt dr(t). 
S 

This is the  L~-norm of u~( )~, where R is the  reals. 
Le t  .F(R +) be the set o] ]inite real valued ]unctions de]ined on the positive reals R +. 

We wish to consider operators ~b f rom M~(S) in to /~(R +) which sat isfy a na tu ra l  addi- 
t i v i ty  condition.  To do this we need  to  consider an or thogonal i ty  re la t ion on M~[~5, 
U(C, C)]. 

For  #i  a n d / ~  in M~[:~, U(C, C)] we shall say t h a t  #~ is orthogonat to #~ if for every  
> 01 (#~)~ is mutua,lly singular with (/~2)~. We m a y  in te rpre t  this in te rms of the 

funct ions u, discussed above in the  following manner .  Le t  S~ be the suppor t  of (#~)~ 
for i ~ 1, 2. I f  u i is the  funct ion f rom the  previous disussion corresponding to #~, 

i---- 1, 2 then  

dr 
B n S ~  AnS~  

for B e ~ .  Thus #1 is or thogonal  to/~2 if and  only if the intersect ion of the supports  
of ue( )~ and  ul( )~ is r-null for  every  g > 0. 

Thus we define an opera tor  q~ f rom M~[~5, U(C, C)] into F(R) + to be additive if 

whenever  #1 is or thogonal  to #~, for #1 and #2 in M~[~5, U(C, C)]. 
I n  the  proof  of Theorm 71 we shall use the  character izat ion of or thogonal i ty  

of #1 and  ~u~ in t e rms  of the  correspondents  ul and u2. Specifically we shall assume 
t ha t  the  opera tor  q) is of the  form 

¢ ( ~ ) ( ~ )  = ¢~(#~) 

whe re~b~ is a funct ion  on the  set M~[(5, U(C, C)]~ of restrictions #~ o/ measures in 
M~[3~, U(C, C)] for each ~ > 0. Bu t  by  L e m m a  5, each # corresponds to a % (which 
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also depends on r bu t  complication of nota t ion  refrains us f rom insert ing it) such 
t ha t  for each a > 0~ #~ and %( )~ correspond. Thus we will consider the  ¢~ as defined 
ei ther  on #~ or on %( )~. Consequently q)~ m a y  be considered as a mapping f rom a 
subset  of L~(S ,  56, r) into the  reals. 

Wi th  this unders tood,  i t  is clear t ha t  

is equivalent  to 

qS(g~+ m) = qS(gi) + qS(m) 

for  each a > 0 assuming throughout  t h a t  #~ is or thogonal  to #2. 
The opera tor  ~b defined on the  subset M~[56, U(C, C)] of U(C, C) also gives rise 

to  a real  valued set funct ion  defined on 56. For  any  ~ e U(C, C), B E 56 and ~ > O, 
using the  character is t ic  funct ion ZB of B, we m a y  define the  funct ion (ZBy)~= ZB~  
f rom S into U~= U~(C, C) by  

( Z ~ ) ( s ) =  z~(s)~ se S. 

Fur thermore ,  g~ ~ e Z ~ ( S ,  56, r) c L~(S,  56, r). Thus by  ]bemma 5 for ~ > 0 and  B e 56 

t%.B(B')~ = f ZB( ) yJ~dr B' E 56 
I t '  

defines an element/%.B of M~[56, U(C, C)]. ]bet us notice tha t  the  step functions in 
Z ~ ( S ,  55, r) are finite sums of funct ions of the  type  Z ~ -  

]bet us now define the  real  valued set funct ion ro for which conciseness of nota- 
t ion  refrains us f rom wri t t ing  the  fac t  t h a t  i t  also depends on y ~ U(C, C) and ~ > 0. 
I t  is defined for B ~ 33 by  

r~(B)-~qS[t%B](~). 

I t  will be of in teres t  when this  set funct ion % has locally almost compact  average 
range. We define this for the  more general  s i tuat ion tha t  (Q, Z, w) is a measure 
space and  tha t  v is an addi t ive  set funct ion f rom ~ into the  Banach  space E. We 
define the  average range of v on the  measurable  set B e 56, 0 < w(B) < c~, to be 

f v ( B ' )  r 0 </~(B')} B' B, 

Then v is said to have locally almost compact average range if whenever  B e  Z, 
0 < w(B) < c~, and s > 0 there  exists B'  e Z, B '  c B such tha t  w(B\B' )  < s and 
A(v, B') is a p recompact  subset  of E (see [13]). 
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Some results f rom [11] and [12] will also be necessary. Suppose the  measure  
space (Q, Z, Ix) is assumed to be  also finite and complete  and  tha t  E is also separable. 
Le t  B(tP, E) be the  vec tor  space of E-valued  Bochner  measurable  funct ions on Q. 
A funct ion  F f rom B(tP, E) into ano ther  Banach  space F is said to be additive if 

Y(~ + ~) = F(¢) + / ' (~ )  

whenever  9 and  ~ are funct ions in B(Q, E)  with (almost everywhere)  disjoint sup- 
ports .  More specifically, concern is required for such addi t ive F-va lued  funct ions F 
defined on the  associated space L~. = L~(Y2, 27, #) for ] < p  < c~ of (equivalence clas- 
ses of) B o c h n e r / t  integrable E-valued  functions.  I f  F is such an  addi t ive  funct ion 
then  for every  e e E we m a y  define the  set funct ion I'~ (2) f rom 27 into F b y  

F~(B) = F(e .z~)  B e Z.  

I f  d >  0 and ~ > 0 then  we m a y  define 

v~(~,/') = sup { Z vE~e,- G](E,): ~,, f,~ E,; ll~,II <d, ll/,II < d; 

]] e~ --  ]~ II < 5; 1 ~< i < n;  {El} pairwise disjoint subsets of ~ } .  

The fami ly  {Fe}ee E of set funct ions is locally uniformly continuous in variation pro- 

v ided  the  

l im V~(~, F) =- 0 
¢~-->0 + 

for  every  d > 0. 
Le t  us designate the  variation o I F on a set B e X by  V(F)(B). 
A funct ion  0 f rom E x ~ into F is said to be in the  uni]orm Caratheodory class 

relative to E on (X-+F) ,  in brief, 

0 E U-Car(E, F )  

if O(e, ) is a F-va lued  Bochner  measurable funct ion for each vector  e e E and 0(-, $) 
is un i fo rmly  continuous on bounded  subsets of E for all $ ~ ~ outside a / t -nu l l  set. 

Given a p, 1 < p < co, 0 ~ U-Car(E, F) is said to  be  in U-Cat-(E, F)  if the  com- 

posi t ion opera tor  x-+Oox, where 0 x ( ~ ) =  0(x($), $), maps  L~ in to  L~. 

(~) In [ l l ]  and [12] the space (.Q, X, y) is assumed to be a-finite and complete. Then F 
would be defined on sets in ~ of finite measure. 

2 - A n n a l t  d t  M a t e m a t i c a  
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The following theorem will be used in our representut ion theorem (see Theo- 
rem 5 of [12] £or its proof).  

THEotcE~ 6. - Let (~,  Z,/~) be as above, let B be a separable Banach space and let F 
be an arbitrary Banach space. Let 11 be an additive ]unction mapping L~(l<~p < oo) 

into _~ satisfying the following conditions: 

(1) For each vector e E E the set ]unction F~ from X into ~' has locally almost 
compact average range. 

(2) ~or each eEE,  if  B 6 ~ ,  [~(B)< oo then V(Fe) (B)< c<). 

(3) On each set B ~ X ,  the family of set ]unctions {F~}ee ~ is locally uniformly 
continuous in variation. 

(4) The ]unction 1 ~ is continuous relative to the Z~ norm, if p < c~, and is con- 
tinuous with respect to bounded ~.e. convergence of p = co. 

there exists a function 0 ~ U-Car~(B, ~)  such that Then 

12 

Moreover 0 can be taken to satisfy 

0(0, ) = o  

and is then unique up to sets of the form E × 2~ T with £V a null set in ~Q (s). 

At last  our representa t ion  theorem m ay  now be formulated.  

T~EO~E~ 7. - Let q5 be an operator from M~[:~, U(C, C)] into F(R +) of the form 

qs(~)(.) = ~ ( ~ )  

where q~ is a transformation defined on the space of restrictions 1~ of elements/~ ~ M~[~, 
U(C, C)]. Assume 

(1) q5 is additive (in the sense defined above). 

(2) ¢ is uniformly continuous on bounded subsets o /M~[~,  U(C, C)]~ for every ~, 
that is for every e ~ 0 there is a ~ ~ 0 such that 

implies that 

/~, v~/vL[~, U(C, C)]~. 

(a) A eonverso is given in [12] but is not needod hore. 
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(3) The set ]unetion r~ de]ined for B • ¢B by rv(B)= ~b[#~.~](~) has locally al- 
most compact average range for all ~ > 0 and all ~ •  U(C, C). 

(4) The super ~ts~'lqi[#~'~](~)l:tB' partition o] 331; is finite ]or all ~ > 0  and 
B 

• U(C, C). 

(5) The l im sup{Sv [q~[#~.~,] (~) -- ~[/*v',.~] (~)]].: It ~o~(~)II < d, ~ = 1, 2; 
I1~'~( a ) -  W~(a)ll < 8 ,  {B~} a par t i t ion  of 33~--= 0. 

Then qb may be considered as a trans/ormation on .L~(S, ¢~, r) into the reals (where 
U~= L~(C, C)) and there exists a 0~.~ U-Car~[U~, R] such that 

(6) (P~(q~) ~- f (O~.~oq~) dr /or cf • .L~(S, ~,  r) 
S 

(7) O~.JO, ) =  o (r a .e . ) .  

and 

In particular 

q~(~)(~) = ~ ( ~ )  = qL(%.D = f(o~.,o%.~) ar 
S 

where ~.~-= (%)~ • L ~ ( S ,  33, r) for fi~ the correspondent of # in L e m m a  5. 

PROOF. - F i r s t ly  the funct ion 0~.,.o~ is the funct ion from S into R defined by  

(C.~o~)(8) = O~.~(~(s), s) s e ~'. 

Let  us abbreviate by  set t ing L 1 - -  L I ( S ,  ~ ,  r )  and L ~ -- ~ -  ~ -  L~(S ,  ¢B, r). We show 
tha t  ~b m a y  be extended to the  step functions i n / 1  and is addit ive on tha t  class. Ua 

I f  q}-----~ZBW~.~ where B1, ..., B~ are pMrwise disjoint elements of 27 then  define 

q~.(u) = y. ¢.(zB, u). 
i 

Let  ~ • L ~  and  let {~.} be a sequence of step functions in L~ .  for which {W. --/2} 
converges to zero in the  J5~, norm. The sequence {q~,(W,,)} of real numbers is a Cauchy 
sequence. Consequently by  assumption {2) if e > 0 there is a 8 > 0 such tha t  I@,(~01) -- 
-- ¢,(W~)] < s whenever lIw1- %1[ < 8. Since {~,} is a L ~  Cauchy sequence there  is 
an integer 2Y such tha t  in the L 1 ~, norm ~ and ~, are less t han  8 whenever m, n > N .  
Thus l ~ ( ~ ) - - ~ . ( ~ ) [ < s  whenever m , n > N .  As usual  we m a y  then  define 
q~(~s) = lira q~(q~) and  this l imit  is independent  of the  part icular  Cauchy sequence 

chosen. 
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This extension of ~ is additive on Z ~ .  In  particular if ~a and ~ are any two 
step functions in / ~  with disjoint supports then we may write 

+ = + • 

Consequently for any two elements ?~ and ~ of Z ~ with disjoint supports we may Ua 
select corresponding sequences {~} and {~} of step functions in L ~ converging to Ua 
them and such that  for each n, ~ and ~0~ have disjoint supports. A pass to the limit 
yields the result. 

The q)~ is uniformly continuous on bounded subsets of L ~ Again by assump- 
tion (2), ~ is uniformly continuous on bounded subsets of Zv~. For s > 0, there is a 
($ > 0 such that  

where ~ and % are in L ~  with ther difference less than ($ in the L ~  norm. :Let ~0 
and N be in L 1  satisfying the condition that  their difference is less than (~/3 in the 
L~jnorm.  Choose ~ and N~ to be functions in Z~v~ such that  in the Z ~  norm the 
difference of T and ~ and the difference of ~ and ~ ~re both less than ~/3 and 

< 

Thus the difference of ~ and v]~ is less than ~ in the Z ~  norm and hence 

Now define the following real valued set functions on ~. For every V e U~(C, C), 
let q~ be defined for B e 3~ by 

qb~.(B) = ¢~(ZBV)= q5 [/z~.~](,). 

Assumption (3) s~ys that  q~ has locally almost compact average range for each 
~f e U(C, C). Also for 55' a finite family of pMrwise disjoint subsets from the family 
w e  h a v e  

and 

Thus assumption (5) translates as the family {q~}~v,(c.c) being locally uniformly 
continuous in variation. Assumption (4) means just that  each ~5 has finite varia- 
tion. 
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All of the  hypotheses  of Theorem 6 are satisfied wi th  p ~ 1, E-~ U~(C, C), 
F = R, F---- ~b, and {F~}~e E = {~5~}~ez~(c.c ). Consequent ly  t h a t  theorem yields the  ex- 
is tence of a funct ion  0~.~ e U-Car ~ U~(C, C) such t h a t  

S 

for all V e L 1 The funct ion  0~, also satisfies [ f ~  * 

0~.,(0, ) = o (r a.e . ) .  

This completes  the  proof of our theorem.  

4. - Representation via approximate integration. 

This representa t ion  jus t  p resented  m ay  be viewed in a different  manner .  To do 
this  we util ize the  concept  of a slur (a.s found in [14]) and  the  technique  of approximate  

in tegra t ion  as developed by  ALb and  DE Ko~vIr¢ in [1]. 
ZLet r ,  be a typical  e lement  of the maximal  subset ~ where fl and ~ will represent  

typica l  elements  in a well-ordered set used to  index the elements  of ~ .  In  accor- 
dance wi th  our assumption on ¢t(~, we assume tha t  each proper  init ial  segment of 

this  index set  is countable.  
L e t  

(~)~ = ~v~.~ E L ~ ( S ,  ~ ,  r~) 

for  eve ry  ~ >  0. Le t  {~v~.~}, be a sequence of simple funct ions converging r e a.e. 
to  ~v~a. These may  be so chosen so t h a t  in the  L 1 u~ norms ~.~ is finite and  is no t  less 

t h a n  the  ~.~ (see Theorem 2, p~gc 99 of [4]). The  domina ted  convergence theorem 

says t ha t  the  sequence {~;~}. converges in the  Z ~ ~- norm to q~.~. I f  0 ~ =  0~.r ~ is 

the  funct ion f rom Theorem 7, let  us define 

Then  

0~.,(, ) = 10=.,(, )1. 

Since the  sequence above does converge in the L ~  norm, a modification of the  proof 
of Theorem 2 in [11] will imply  tha t  {~.~o~v~.~}. converges to ~%v~.~ also in the  Z 1 U~ 

norm. Thus the  set  funct ions 

Bern, n = 1 , 2 , . . .  
B 
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form a uni formly  absolutely continuous fami ly  with respect  to  ~ .  Fu r the rmore  

{0~.~o@.~},~ converges to 0~3o~.~ (r~ a.e.). Thus the  sequence 

g 

converges to  zero (see Theorem 6, page 122 of [5]). 

Now our  a rgument  follows closely tha t  used in [1] and [10]. For  y < fi, let  B~ 

be a set in 33 such t ha t  rv(B~)= 0 and  r~(CB~)= 0 ( C r e f e r s t o  set theoret icM com- 

plementat ion) .  Le t  B ~ = n  {B~:9,<fl}. Since this is the  intersect ion of a coun- 

table number  of sets it  follows tha t  B a e  33. 

I f  B e 33 then  the re  is a t  most  one cardinal  fl such t h a t  B c B p and r~(B)> 0 
( the proof  of this is exac t ly  as in [1]). 

I~or e >  0, a > 0 and  B e 3 3  define 

O~.~(B) = 

0a,lO~)~!: '1) if  r~(B) > 0 

0 o ~(~'#) if B c B #  and r~(B)> 0 

0 otherwise. 

Here  1 indicates the  first e lement  in the  indexing set for & .  The integer n(o% fl) is 

so chosen so t ha t  for m>~n(~,fl), 

8 

Thus for every  B e 33, 6~.~(B)E L~(8, 33, ra) where fi depends on B. 

We m a y  now give the  representa t ion  of the  operator  q5 in Theorem 7 in terms 

of slurs. 

Le t  w be a reM valued set funct ion on 33. A slur is a sequence T =  {~0~,ff~} where 

% is a set funct ion  f rom 33 into Zt(S, 33, w) and where ff~ is a par t i t ion  of S b y  sets 

in 33 for  each n =  1, 2, 3, .... 

I f  the re  is a number  35 such tha t  for ve ry  e > 0 there  is a posit ive integer  N such 

tha t  for n>~N, and ff~' a ref inement  of ff~, 

t hen  L is denoted  by  
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Now let  ffZ be a finite par t i t ion  refining {B ~, ~B~}. Then 

23 B 

B 

= f0. o :y'dr, 

= 

B 

:Now let  q) be ~s in Theorem 7 and  let  # e M,[~ ,  U(C, C)]. Then  

S 

If e > 0 then  

B S 

< e .  

:For each pair  (a,/~) wi th  ~ > 0, le t  us define the  slur W~.¢ = {~1/,.~, q¢}, where fig 

is a fixed par t i t ion  refining {B ~, CB¢}. Then 

Thus 

~(#)(~) = fT~.~ dr~ 

for # e M,~[tB, U(C, C)]. We have thus  proved 

THEO~E]~ 8. -- I] ~ is as in Theorem 7, then 

in the integral notation established above ]or the slur kP..~= {01/n.~, fie} where ]or each 
n, '$~ is the ]ixed partition given above, # e M~[~B, U(C, C)]. 

Wi th  this  representa t ion we can now give a representa t ion  for operators on 
MI[~B , U(C, C)] which is a larger class t h a n  each M,~[:B, U(C, C)]. 

Co]~o~L~Y 9. - ~et ¢ be an additive ]unction ]rom Mz[~B, U(C, C)] to 2~(R+). I] 
# e M~[~B, U(C, C)] then there is a ]inite set {r~}~e z in do such that ]or B ~ :B 

v[~ ,  B] < L~(I) • Zr~(B). 
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Assume q) restricted to each Mr,[~ , U(C, C)] satisfies the conditions o] Theorem 7. 

o ( # ) ( a )  = 2 { f i e I} 

where each T~.~ is a slur as in Theorem 8. 

P~oo~. - B y  L e m m a  5 there  is a F f rom S into U(C, C) such t h a t  

B ~B 

Then 

for every  a > 0. Le t  /t~ f rom :5 into U(C, C) be defined b y  

tt~(B)~ = (cf(t)~ dr~ 
B 

every  a > 0 .  ~/ote tha t  ~ ( ) ~ L ~ ( S , ~ , r ~ )  since ~( ) ~ e L ~ ( S , ~ ,  ~r~). for  Then  

#~eM,,[2~, U(C, C)]. Thus we have #=X{#~: ie I} .  B u t  recall  t h a t  the  /ti's are 
mutua l ly  singular. Thus for each a > 0, the/t~( )~, i e I, are concent ra ted  on mutua l ly  

disjoint sets. Thus 

¢(~)  = ~ ( Z { ~ :  i e I}) = Z{ I (~ ) :  i e I } .  

B y  Theorem 8, for  each i and a > 0 there  is a slur T~., such t h a t  

Thus, 

~ ( ~ ) ( a )  = f~dr~. 
a~(#)(a) = r ( f T~.~ar~: i ~ I} . 

TJsing Corollaries 4 and 9 we m a y  now approximate  cer ta in  addi t ive  operators  

o n  M[S4 U(C, C ) ] .  

Suppose #eM~[3~, U(C, C)], c e C  and  ~ > 0. By  Corollary 4, there  is a finite 

set  I cd i5  and  a ttiEMI[~5, U(C, C)] such tha t  v[(tt--#)1(c) , S ] <  5. 
Le t  us now define a par t icular  subset M~[~,  U(C, C)] of M[2~, U(C, C)] over 

which we will define our integral.  A set funct ion # e M[~ ,  U(C, C)] is said to be 
simple if the re  are finite collections #~, .. . ,/t~ of set functions in MD[:5 , U(C, C)], 
funct ions ~ ,  ..., ~0 ~ in U(C, C) and points el, ...,v,, in C such tha t  for B~2~,  

= 

The measure  # is a-simple, a > 0, if it  is simple and  if the  functions y)l ..., ~ ,  are  
the  funct ions F~, ..., F~ f rom U~(C, C). Let  M~[55, U(C, C)] be the  collection of all 
set  funct ions  # E M[2~, U(C, C)] such t h a t  for every  a > 0 and  ($ > 0 the re  is an 
a-simple set funct ion  v ~ such tha t  the  var ia t ion  v[#~ --  v ~, S] < (~. 
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TB~EO]~E~I 10. -- Zet q~ be an operator /rein M[~,  U(C, C)] into F(R +) o / the /orm 
~b(#)(a)_--~b (#~), # e M [ : ~ ,  U(C, C)] and c~>O. Assume also that ~)~ is continuous 
in the variation norm on MA[~ ~ U(C, C)]~ and that q5 restricted to each Mr~[~ , U(C, C)], 
r e e do satis]ies the conditions o] Theorem 7. I] s > O, o: > 0 and # e MA[~ , U(C, C,)], 
then there exists a set o] slurs ~[J~.~,, i = 1, ..., p o] the type described in Theorem 8 
such that 

[~(#) -- I f ~.~, dr~l < e . 

PROOP. - I f  # e MA[:5 , U(C, C)] then  for ~ > 0 there is an a-simple set funct ion 
k 

v~= ~ju~( )(e~)-~v~ such that 
4=1 

vLu - v ~, 8 ]  < ~ .  

Choose v,," , v k e M , [ ~  , U(C, C)] such tha t  

rE,u,( )(c,)--v,()(c,),  ,s']< k . K  

where K = max{lIV~LI : i = 1, ..., k}. Thus 

k 

)(c,) ~' <8 .  
" i = t  i=l 

For sufficiently small 8, the cont inui ty  of ~b on M~[33, U(C, C)]~ implies tha t  

k 
C i 

k 

Since ~ # , (  ) ( e~ )F~M,[~ ,  U(C, C)], Corollory 9 yields slurs ~// , i =  1, . . . , p  such 
tha t  4=, 

k 

This yields 

i = l  

5 .  - C o n c l u s i o n .  

For  operators ~ fronl C(S, E) into a Banach space F i t  is clear t h a t  the condit ion 
tha t  ~b be addit ive is definitely weaker t han  the condition tha t  ~5 satisfy the H a m -  
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mers te in  proper ty .  For  example,  for, each ]~ C(S,E) where S =  E =  [0~ 1], let  

g}(]) = in f { I ] (s ) l :  s e S } .  

Such an addi t ive  functiona.1 m a y  not  be represented  as an integral  with respect  to 
an  addi t ive  non-l inear  set funct ion as Theorem 1 would indicate.  

We proceeded to show tha t  cer ta in  addi t ive operators on the  subset M~[~  U(C~ C)] 
of M[~, U(C, C)] may  be represented  in te rms of cer ta in  uni iorm Caratheodory 
functions (see Theorem 7) as discussed in [12]. However  this representa t ion  m a y  
also be given (see Theorem 8) in t e rms  of slurs and  the  technique of approximate  
integrat ion as developed in [1]. The  la t te r  leads to  the representa t ion  of addi t ive  
operators  on the  larger subset  Mx[5~ , U(C, C)] of M[~,  U(C, C)] (see Corollary 9). 
F r o m  here  we are led to (Theorem 10) the  representa t ion  of operators on M[:5~ U(C, C)] 
itself. The representa t ion  of such operators is given th rough  approxi.mation over 
the  subset M a [ ~  U(C~ C)] of M[:B, U(C, C)]. Le t  us recall  t ha t  the  t t am m ers t e in  
condit ion was used in the representa t ion  of M[~, U(C, C)] as the  space HP[C(S, C), C]. 
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