
On the global existence of solutions 
and Liapunov functions. 

;/uN.II KATe (1) and AARO~ S'rRAUSS (~) (U.S,_~.) 

~ u n t o .  - Per  l'equazione differenziale ordinar ia  

(E) x' = f ( t ,  x) 

le funz io~i  di L iapunov  sono state costcuite usando ipotesi diverse; ad esempio, (1) la solu. 
zione uu l la  ~ stabile su [0~ ~), (2) la soluzione nul la  d uni formemente stabile su [0, ~),  
e (3) tutte le soluzioni sono t imi tate  nel fu ture  (err. ad es. [A~H, Y]). I n  questo lavoro 
costruiamo le funz ion i  di L iapunov  partendo da ipotesi in  certo sense minime,  suppo. 
nendo cio~ sottanto l 'esistenza gIobale delle soluzioni. Le funz ioni  di L iapunov  costruite 
per l'esistenza sono poi usate per  stabilirc so le sotuzioni hanno le proprietd~ addiz ional i  

0), (2) e (3). 
Specificamente~ nel teorema 1, dimostriamo che l'esistenza come soluzione della (E) 

della funzione nu l la  si pub carat terizzare in termini  di funz ioni  di L iapunov;  cio~, se 
la funzione nu l la  ~ u n a  soluzione, al lora esistono due funz ioni  di L iapunov ,  una  delle 
qual i  si pub poi usave per decidere circa la s tabi t i t4  di quetla soluzione, e l 'al tra per 
la stabil i t~ uni forme.  Queste stabilitdt, si considerano su ( - - c %  ~ )  anzichd su [0, c~). 
Nel teorema 2 troviamo u~a  condizione necessaria e su~ciente  sulle funz ioni  di L iapunov  
perchd tutte le soluzioni esistano su ( - - c% c¢). Se tutte esistono su ( - - ~  c~), allora la 
corrispondente fuuzio~e di L iapunov  si pub poi usare per decidere circa l'esistenza e 
s tabi l i t6  della soluzione nulla.  Nel teorema 3 si presentano alcuni  r isul tat i  a~aloghi  
a quelli del teorema 2 m a  ~ nel future.  

1. - Introduction. 

For the ordinary differential equation 

(, d) 
(E) x ' =  f( t ,  x) -= d-t 

Liapunov functions have been constructed under various assumptions, inclu- 
ding (1) the zero solution is stable on [0, oo), (2) the zero solution is uni- 
formly stable on [0, o~), and (3) all solutions are bounded in the future (for 
details, see AI~TOSIEWI0Z [A], HAHN [H], and YOSHIZAWA [ Y ] ) .  In this paper 
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we construct Liapunov functions which correspond to a possibly more funda. 
mental  s i tuat ion:  the <~ giobal)> existence of solutions. The Liapunov functions 
constructed for ¢¢global>> existence are then used to determine whether or 
not the solutions have the additional properties (1), (2), and (3}. Specifically, 
in Theorem 1 we show that the existence as a solution of IE) of the zero 
function can be characterized in terms of Liapunov functions. We prove that 
if the zero function is a solution, then there must exist two Liapunov fun- 
ctions, one of which can then be used as a test for the stability of the zero 
solution, and the other as a test for the uniform stability. These stabilities, 
are considered on (--c<), c~) ra ther  than on [0, ~ ) .  In  Theorem 2 we find 
necessary and sufficient conditions in terms of Liapunov functions for all 
solutions to exist on ( - -c% c~). I f  they do exist on ( - - ~ ,  c~), then the Lia- 
punov function that necessarily exists can then be used as a test for the 
boundedness of all solutions on (-- c% cx~) and for the existence and stability 
of the zero solution. Results similar to those in Theorem 2 but ~(in the future >> 
are presented in Theorem 3. 

2. - D e f i n i t i o n s  and  r e s u l t s .  

Let R ~ denote Euclidean n-space.  For  simplicity, let R denote R I. Let  
Ix~ denote any norm of x in R ~. Let  A c R  ~ and let g : A - - > R P  for s o m e p  
and r. Then g is Co at y E A  if there exist a neighborhood N of y and a 
constant k ~ 0 such that 

I g(Yl) - -  g(Y2) I ~ k [ y ,  - -  Y2 

for all Yl and Y2 in NFSA. We say that g is Co (on A) if it is Co at every 
point of A. 

Let  ~2 be an open subset of R +~ containing the origin. We consider the 
differential  equation (E) where 

is continuous and 

f :  R × ~ . . + R "  

(2.1) f ( t ,  "~ is Co on ~ for each real t. 

Hence for each (to, Xo) in R X ~2, there is precisely one solution F(t) of (E) 
such that F(to)  --~ xo. This solution, which we often denote by F ( t ;  to, xo), 
exists on some maximal  interval  is, to), - -  c~ ~ ~z ~ to ~ to ~ -{- c% where 
and ~o depend on (to, xo). Fur thermore  (2.1) implies that 

(2.2) F is Co on the set S,  

where S~-- U { (~, ~) X t (to, xo)}: to E R ,  x o E ~2 }. 
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P n o t ' o s I ~ I o ~  1. - -  There exists a Co funct ion ~: 12--> [0, oc) such 
e (x) --> o~ when either I x t --> oc or 

d(x, ~ D ) = i n f I l x - - z l :  z E ~12 } .-> O, 

that  

where ~f l  is the boundary o f  12. Furthermore,  

~(x) -~ 0 i f f  x = O. 

DEFINITIONS 1. - -  Le t  0:R----> t0  } C / ~ .  I f  the zero func t ion  0(t) is a so- 
lu t ion of (E), we  say that  0(t) is stable if for all ~ ~ 0 and all real  to, there  
exis ts  ~ -~ ~(e, to) ~ 0 such that  ]Xo I < ~ and t >1 to imply  that  

(2.3) it F(t; to, Xo) f < 

W e  say that  0(t) is un i fo rmly  stable if ~ = ~(~) is i ndependen t  of to, see [H]. 

D]~FI~ITIO~S 2. - -  We  say that  K(t; to, Xo) exists forever if it exists :  for 
all  real  t, and that F(t ;  to, Xo) exists in  the fu ture  if it exis ts  for  all  t~> to. 
All so lu t ions  (of (E)) are  equi-bounded if for all M ~ 0 and  all rea l  to, there  
exis ts  ~ = ~(to, M) ~ 0 such  that  ~ (xo) ~< M impl ies  that  

(2.4) IF(t; to, Xo)] < 

for  all  real  t. The  so lu t ions  are  un i fo rmly  bounded in  the fu ture  if ~ = ~I(M} 
is i ndependen t  of to and {2.4} holds  mere ly  for all  t ~  to, see [Y]. 

DEFInITIOnS 3. - -  Le t  V: R X 12--> [0, c~). W e  say that  V is positive defi- 
nite if for  a l l [ e ~ 0 ,  there  exis ts  ~t-----~(~j~0 such that  I x I > l a  and t real  
imply  

V(t, .) >i 

V is decrescent if V(t, x)-->O as Ix I-->0 un i fo rmly  in t for  t in R. V is ra. 
dial ly  unbounded if 

(2.5) V(t, x) --> oo as p(x) --> c~ 

un i fo rmly  in t for  t in R. V is mildly  unbounded if (2.5) holds  un i fo rmly  in 
t for t in any  compac t  subse t  of R. 

I f  12 ~---R '~, the f irs t  three  def in i t ions  in Def in i t ions  3 m a y  be found  in 
[H], the las t  in [S]. Def in i t ions  2 and 3 are  exp re s sed  in t e rms  of the func t ion  

cons t ruc t ed  in P ropos i t i on  t. 

DEFINITION 4. - -  For  V: R X 12 --+ [0, cx~), def ine  the generalized derivative 
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of V b y  

(r(t, x) -~ lim sup h- '  [V(t  + h, x + hf(t ,  x)) - -  V(t, x)]. 
h--~O+ 

PROPOSITION 2. I f  V is Co on R X ~,  then 

?(t, x)-~-t imsuph- '[V(l--[-h,  F(t + h; t, x))-- V(t, x)], 
h*->o+ 

W e  now sta te  our  ma in  resul ts  Below, iff means  if and only if. 

T~EORE~ 1. - -  The zero function O(t) is a solution iff there exist two 
non-negative Co functions V~ and V2 such that on R X g~ for i = 1 and 2, 

(a) Vi(t, x)-~ 0 iff x-----0 and 

{b) ?, (t, x) < 0. 

Furthermore, V~ is positive definite iff 6(t) is stable, while Y~ is positive defi- 
nite and decrescent iff 0(/) is uniformly stable. 

T~EO~E~ 2. - -  All solutions exist forever iff there exists a non-negative 
Co function U such that on R X ~2 

(a') U is mildly unbounded, and 

(b') U(t, x) ~ O. 

Furthermore, U is radially unbounded iff all solutions are equi-bounded. 
Finally, U satisfies (a) iff O(t) is a solution, while U is positive definite iff O(t) 
is stable. 

T~EOI~E~ 3. - -  All solutions exist in the future iff there exists a non- 
negative Co function V such that on R X ~2 

(a') V is mildly unbounded, and 

(b) V(t, x) < 0. 

Furthermore, V is radially unbounded and bou~ded on, R W. K for every com- 
pact K in ~ iff  all solutions are uniformly bounded in the future. Finally, 
V satisfies (a) iff O(t) is a solution, while V is positive definite and decrescent 
iff O(t) is uniformly stable. 

RE~ARK ON TI~EORE~ 3. --- Note tha t  the  func t ion  V +  ~ is Co, n o n -  
negat ive,  and  satisfies ( a ' ) a n d  (b); whi le  it is posit ive def ini te  iff e(t) is a 
stable solution. Thi  s genera l izes  T h e m e m  5.1 of [S], the proof of which  was 
incor rec t  anyway,  because  the s i a t emen t  made  there  that  V,, ~ V~ on D,, (5 D,~ 
is not  a lways true.  
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3. - Proofs .  

PROOF OF TI:{EOREM 1. - -  The existence of a non-negat ive  Co funct ion  
sat isfying (a) and (b) shows tha~ 0(t) is a solution. Namely,  by (a), V(t, O)= O. 
Thus  for to real  and t~> to, 

o = V(to, ~(to; to, o))>1 v( t ,  F(t; to, o)}/> o, 

using (b). Hence  V(t, F(t; to, 0))----0, and (a) now implies  that  F(t; to, O) -= O(t) 
for all t ~> to. 

Conversely, let 0(t) be a solution of (E) on R. We shall  first const ruct  
I~ and show that V~ is as desired. Then  we will const ruct  V2 and show that  
V~ satisfies its desired conditions.  

Define a non- increas ing ,  Co funct ion ~" : [0, c<~} --> (0, ~ )  so that  [ xo t < 7(0 
implies  /7'(~:; 0, xo) exists on [0, t] for t >1 0. 

Next, define a Co funct ion O : [ 0 ,  ~ ) X  [0, co)-->[0, c~) as follows: 
(Pit, r} > 0 for r ~> 0, O(. ,  r) is a non- inc reas ing  funct ion on [0, ~ )  for each 
fixed r > 0, O,0, .) is non-decreas ing ,  and 

Off, r)---- 
t 0 if r=O, 

f T(t) if r>1 y(t)/2. 

Finally,  define 171: R X f~---> [0, cx~) by 

¢(t, IF(0; t, x) t), if t>~0 and IF(0; t, x) l <  y(t), 

~'(t}, if t > / 0  and ei ther IF(0 ;  t, x) l>/ y(t) or 

F(z; t, x) does not exist for 0 ~ z ~ t, 

sup ~9(o, I F(~; t, x)]), if t <  o. 
t_<'c~o 

Here,  as elsewhere,  we unders tand  that  the s u p r e m n m  is evaluated over that  
part  of [t, 0] on which F(z; l, x) is def ined;  i.e., [t, 0] A (:¢, co). 
Clearly, V1 satisfies (a). If  t < 0, then Vl(t, F(t}) is non- increas ing .  If t 1> 0 
and h ~> 0, then y(t -[- h) ~< y(t) and 

¢(t + h, ~ F(0; t + h, F(t + h ) ~ l ) =  ¢(t + h, l _~(0; t, F(t)) T ) ~< 

~< ~,(t, '~F(0; t, ~V(t))T), 

hence 171(t, F(t)) is again  non- increas ing ,  proving (b). 
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We now prove  V~ is Co. Le t  t ~ 0. I f  (t, x) is such  tha t  IF (0 ;  t, x) l < ?(t), 
then  for  (li, x~) nea r  (t, x}, we have  I F ( 0 ;  t~, x ~ ) l <  ~:(t~), and  the resu l t  fol- 
lows by the smoo thnes s  of % ~9, and  by (2.2). I f  (t, x) is such  tha t  IF(0 ;  t, x)l 
2> 7(t)/2, t hen  for (t~, x~) nea r  (t, x), we have  I F ( 0 ;  t~, x~)[ ~ 7(t~)/2, and  the 
r e su l t  aga in  fol lows easi ly.  Le t  (l, x) be such  tha t  F(z ;  t, x) does  not  exis t  
on  0 ~< = ~< t. ~ W e  c la im tha t  the re  exis ts  a n e i g h b o r h o o d  N of (t, x) in wh ich  
V~(t~, x~) = 7(t~). If  so, V~ is Co at (t, x). Therefore ,  suppose  the c la im is false. 
Choose a s equence  (t,~, x~)-->(/, xt such  tha t  ~(t+~, x+,) < ~'(tn). T h u s  IF(0 ;  tn, xn) i 
< y(t~)/2. A s s u m e  w i t h o u t  loss tha t  

y~ --= F{0 ; 4~, x~) --> Yo as n --> e<~. 

T h e n  lYe ] ~ ?(t)/2 ~ y(t), hence  F(z ;  0, yo) exis ts  for 0 ~< = ~< t. But  

I x - F i t ;  o, yo)t <01 • -  F(t~; o, y ~ ) l +  

+ !F(t~; o, y . ) -  F(t; o, yet i->o 

as n - - > ~  by c o n t i n u o u s  d e p e n d e n c e ,  s ince  x ~ F ( t ~ ;  0, y,d. T h u s  F(t; O, Yo)= 
-----x; tha t  is, the so lu t ion  t h r o u g h  (t, x) exis ts  on [0, l], a con t rad ic t ion .  T h u s  
the resu l t  is p roved  for t ~'~0. 

Le t  t ~ 0  and  x e f t .  I f  IF (z ;  t, x) l~y(O}/2  for  some z in It, 0], t hen  for  
(t~, x~) suf f ic ien t ly  nea r  (t, x) we have  also tha t  IF(z ;  t~, x~)l ~ y(01/2 , h ence  
VI(t, x}-----?(0) in  some  n e i g h b o r h o o d  of (t, x). T h u s  suppose  tha t  IF(z;  l, x ) i ~  
<~ y(O)/2 for all  : in [t, 0]. T h u s  for (t~, x,) suf f i c ien t ly  nea r  (t, x), we have  
IF(z ;  tl, x ~ ) i ~  y(0) for  all  "~ in  [t, 0], and  hence  for (t~, x~] and  (12, x2) nea r  
(t, x), 

L ( h ,  xd = sup  ¢(0, I F(~;  h ,  x,)i} 

----~(0, m a x  iF (z ;  h ,  x~)I) 
ti<-:~o 

= +(o, IF(~,; h, x~)[ ), 

where  :i depends  on (h, xd, i =  1, 2. Because  • is Co, we need  only  es t ima te  

A s s u m e  t ~ t ~  ~<0, 
h e n c e  

1 f F(z~; tl, ~)l --  l i~(~; t~, ~)t !. 

the a r g u m e n t  for  t ~ < t l ~ < 0  is s imi lar .  T h e n  t1~<%~<0, 
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If t2 ~< z~ ~< O, then~ 

~< 

while if t~ <~ zz ~ 12, then 

F(,:,; t~, x l ) l - /F(-~;  t~, x~) 

I F(,:I; t~, ~, ) I - I F(~,; t~, ~ )  I < F ( ~ ;  t, ,. ~ ) l - F(t~; t~, ~ ) 

<IF(,:~; t~, ~ 1 ) - ~ t  + l x ~ - ~  

Thus V1 is Co at (t, x). 
If t = 0, parts of the above analysis give the desired result.  Thus V1 is 

Co on R X  ~2. 
If, in addition, VI is positive definite, then 0(t) is stable by Liapunov's  

original stability theorem [I-I]. Conversely, if 0(t) is stable, then we may choose 
~,(t) ~ ~'10} to be constant for t >~ 0, and O(t, r)----0((), r) to be independent  of 
t for t >1. 0. Let s > 0. Choose ~ = $(s, 0t > 0 so that l xo I < $ implies I F(t ;  0, 
Xo) l < s  for t>~0 by stability. Let Ix l />s -  Then if V~(l, x)<(I)(0,  8) for some 
t>~0, we have (I)(0, IF(0;  t, x) t ) < _O(0, ~) which implies IF(0;  t, x) l <  ~ so 
that 

j/r(,c; o, F(o;  t, x ) ) l <  

by stability for x ~> 0, 
for all t >I0, proving 
( -  ~ ,  0] × ct, 

a contradiction at z ~  t. Therefore, V~(t, x)>~ o(O, ~) 
that VI is positive definite on [0, c~ )X  E~. But on 

vl(t, x)~> ¢(0, Ix[ ) ,  

so that V1 is always positive definite on ( - - ~ ,  0] X 12, regardless of the sta- 
bility of O(t). Thus V1 is positive definite on R X 12, and the proof for V1 is 
complete. 

With y(t) and (I)(t, r) defined as before, we put 

V~(t, x,)= I 
inf ¢(0,  I F(~; t, x)j) ,  if t~> 0, 

sup O(0, IF(z; t, x) i), if t < 0 .  
t ~ o  

Repetitions of the arguments  made for V1 yield that V2 is Co, non-nega- 
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t i re ,  and satisf ies (a) and (b). I f  V2 is posit ive def ini te  an4  decreseent ,  (}(t) is 
un i fo rmly  stable [H]. Final ly ,  let 0(t) be un i fo rmly  stable. Fo r  t ~ 0, V(t, x)~< 
~< 69(0, tx i), hence  F2 is dec resceu t  on [0, ~ )  X 12. Le t  e ~ 0. Choose ~ ---~ ~(e) 7> 0 
by un i fo rm stability.  Le t  x l~> e. I f  V2(t, x ) ~  ~9(0, ~) for some t/> 0, then 

for some 0 ~ z ~< t, hence  

F(s; ~, F(~; t, x l ) t<  

for all s 1> z by un i fo rm stability,  a con t rad ic t ion  at s = t. Thus  V2(t, x) >I ¢b(O, 5) 
for t>~ 0 proving V~ is posit ive def in i te  on [0, ~ ) X  ~2. For  t ~ 0, V2 is pc. 
sit ive def ini te  as was V,  If  ~ ~ 0, choose ~ ~ ~(e) ~ y(0)/2 by un i fo rm stabi. 
l i ty so that  if I x i ~  ~, we have V.,(t, x)<~ ~(0, ~), proving V2 is dec reseen t  
on ( - - ~ ,  0] X ~, and comple t ing  the proof. 

PROO]~ OF THEOREM 2. - -  Suppose  there  exists a n o n - n e g a t i v e  Co func.  
tion U(t, x) sat is fying (a') and (b'}, A.ssume that  for some (to, xo) in R X ~2, 
F(t;  to, Xo) fails to exist  forever.  T h e n  e i ther  ¢o < ~ - c ~  and  

(3.l) p[F(t ; to, xo)] --> oo as t --> to-, 

or a ~ - - ~  and  

(3.2) e[F(t; to, Zo)] ---> ~ as t ---> ~+, 

Suppose  (3.1) holds. T h e n  U(s, F(t; to, x0))----> c,o as t--> t o - u n i f o r m l y  for s in 
[to, to], hence  by (b') 

U(to, x o ) ~  U(t, F(t;  to, Xo))--->~ as t - > t o - ,  

a contradic t ion.  A s imi lar  cont rad ic t ion  resul ts  if (3.2) holds. 

Conversely,  suppose all solut ions exist  forever.  Def ine  

u(t, x ) =  r[F(o; t, x)] 

for (t, x) in R X 11. Clearly,  U is non -nega t ive  and  Co. If  h is real,  /7'(0; 
t-~-h, F(t + h ) ) ~  F(0;  t, F(t)), hence  U sat isf ies  (b'). If  U does not sat isfy 
(a'), then  there  exist  T ~ 0 ,  M ~ 0 ,  and a sequence  i(t~, x,) in R X i 2  such 
that  - -  T ~< t,, -~ T, ,a(x,,) --> c~, and  U(t,,  x ,  ) <~ M. Assume wi thout  loss of ge- 
nera l i ty  that  t,, --> to and F(0 ;  t , ,  x,~) --> Yo. Then  yo e ~2. Therefore ,  F(t ; O, Yo) 
exists  for all real  t and by con t inuous  dependence  

F(t; o, F(o; t., x,))-+ g(t; o, yo) 
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as n--->c~ u n i f o r m l y  in t for - -  T ~< t ~< T. 

T h u s  

I x , , - - F ( t o ;  O, yo) l ~< IF(t.~; O, F(O; t,,, x ,~) ) - - I f ( t . ;  O, Yo))l + 

+ ] If(t~; O, Y o ) -  If(to; O, Yo) l---) 0 

as n --> c~, con t rad ic t ing  ~(x~) ---> c~. Thus  U sat isf ies  (a'). 

To prove  the b o u n d e d n e s s  s ta tement ,  suppose  first  that  U is rad ia l ly  
u n b o u n d e d .  I f  the solut ions  are  not  e q u i - b o u n d e d ,  then there  exis t  M > 0, to 
real ,  and s e q u e n c e s  Its! and Ix . i ,  w h e r e  t. is real  and  9(x~)~<M, for wh ich  

~[if(t~; to, x~)] --> ~ as n ----> oo. 

Thus  U(t, F(t,; to, x,))-->oo as n--> oc, un i fo rmly  in t for t in R. H e n c e  

U(to, x~)=--U(t,; F(t~; to, x~))--> ~ as n.-->o% 

a con t rad ic t ion  because  U is bounded  on the set lto/ X Ix:  ~(x) ~<MI. 

Conversely ,  suppose  that  all so lu t ions  are equ i -bounded .  I f  U is not ra. 
d ia l ly  unbounded ,  th6re exis t  P > 0 and sequences  i t, } and I x~ !, whe re  t, is 
real  and ~ (x . ) - ->~ ,  for  wh ich  

Then  

u(t~, x.) <~ P. 

~[if(t; o, If(o; t.,  x.))] ~< ~(o, P) 

for all  t in R by (2.4), a con t rad ic t ion  at t ~  t~ for large  enough  n, proving  
the b o u n d e d n e s s  result .  

The  proof  of the ex i s tence  of 0(l) is t r ivial  and the proof  of the s tabi l i ty  
of 0(t) is nea r ly  iden t ica l  to its analog in the proof  of Theo rem 1. Theo rem 
2 is now proved.  

PROOF OF T ~ O R E M  3. - -  Suppose  there  exis ts  a n o n - n e g a t i v e  Co func- 
tion V sa t i s fy ing  (a') and (b). If, for some (to, xo), F(t; to, xo) does not  exis t  
for all t>~to, then ~ o < + c ~  and ~[F(/ ;  to, xo)]-->c~ as t -->~o-,  hence  as 
before,  

V(to, Xo)>~ v(t, Fit; to, xo))--->~ 

as t---> to-, a cont radic t ion .  
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Conversely, suppose all solutions exist in the future. Define 

v(t, x )=  
inf ?[F(z; t, x)] if t > 0, 

o~x~t 

sup ~[F(-c; t, x~] if t ~<0. 
f~x_~o 

Clearly, V is non-negat ive and satisfies lb). Suppose (a') does not hold. Then 
there exist T ~ 0 ,  M > 0 ,  and sequences It,} and Ix,}, where - - T ~ t , ~ T  
and ~(x,)-->~, for which VIle, x n ) ~ M .  Since t < 0  implies V(t, x)>~ ~(x), 
we must have t,~ > 0 for all sufficiently large n. Thus there is another  se- 
quence I%! with 0 ~ % < t~ such that 

e[F(~.; ¢,  x.)] << 2M. 

Assume without loss that t~--> to >I 0, z~--> %, and /7'(%; t~, x,}-->yo. Then 
0 ~<~o ~< to and y0e~2. By hypothesis, F(t; %, Yo) exists on [%, oo). Also, there 
exists ~ ~ 0 such that F(t; %, Yo) exists on [ % - - ~ ,  co). Therefore,  

F(s; ~., 

uniformly in s for s in ['co-- 

f x, - -  F(to; :o, Yo) t ~< 

+ 

F(% ; t,, xn))--> F(s ;  "Co, Yo) 

~, 2T]. For large n, % - - ~  < t~, hence 

IF(C; ~., E(~.; ¢,  x.))--F(to; ~o, yo)!+ 

IF(t,;  ~o, yo)--F(to; %, yo) l-->0 

as n ---) oc, contradict ing ~(x~) --> ~ ,  proving (a'). 
To establish that V is Co, we first note that V is Co on (--o% 0) X Y~ by 

the same argument  as in the proof of Theorem i. If  t~O,  x ~ 2 ,  and F(z; t, x} 
exists on 0 ~ z  <~ t, then a simple modification of the argument  used in the 
proof of Theorem 1 gives the result. Thus let t > 0 and assume that F(~; t, x) 
does not exist on 0 <~ • ~ t. Then ~ > / 0  and 

,o[F(z ; t, x)] --> c~ as t --> a ÷. 

Choose ~ so that ~ < ~ < t and 

~[F(~; t, x)] .> ~(x) 

for all ~ < z ~< ~. We claim that there is a neighborhood N of (l, x) such that 

V(t', x ' ) =  min ~[F(z; t', x')] 

for every (t', x') in AT. (This is not immediate because F(z; t', x'} might exist 
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on [0, t'].) Suppose not. Then there exists a sequence (t,, x,)--> (t, x) such that 

v(t . ,  x.) = ~[F('c.; t., x.)] < e(x.), 

where % < ~ .  Assume without loss that Fi%; t,, x.)-->yo and %-->:o~<~. 
Then yo ~2  because ,o(yo)<~ ~(x). By hypothesis, F(~; %, Yo)exists on [%, ~ ) ,  
hence 

F( t ;  ~., F('c.; t., x .})-~ F( t ;  'co, yo), 

where t was chosen previously. In  addition 

F(t; %, r('c°, t., x . ) ) =  F(t, t., x.)--> F(t, t, x ) =  x 

by continuous dependence.  Thus F(t; %, yo):x,  implying /~(~; %, yo )~F( t ;  t, x) 
for "co ~< 'c <~ t. But 

~[F(zo; "co, Yo)] ---- ~(Yo) .N< O(x), 

while also ~[F(zo; t, x)] > ~(x) because % ~< z, a contradiction. Thus our claim 
is proved. [n  view of the claim, the Co property of V can again be proved 
using the arguments  of the proof of Theorem 1. 

The arguments  relat ing to the existence and stability of 0(t) are the same 
as those used to prove the analogous results in Theorem 1. It  remains only 
to prove the s tatement  on boundedness.  

Let  V be radial ly unbounded and bounded on R X K for each compact 
subset K of ~. If the solutions are not uniformly bounded in the future,  
there exist M > 0  and sequences it ,  t, t%!, and tx~l such that t~ is real, 
t, <.%~ ~{x,)<.M, and 9[F('c,; t~, x,)]--)oo. Thus F(t, F(%; t., x.}).-->c~ uni- 
formly in t for t in R, hence 

v(t., x.)>1 v(z., Fit.; t., x . ) ) ~ ,  

a contradict ion to the boundedness of V on the set R X Ix: ~(x)~< M!. 
Conversely, let the solutions be uniformly bounded in the future.  First  

let t <~ 0. Then V(t, x) >/~(x) so that V is radial ly unbounded on ( -  c~, 0] X F~. 
If  M >  0, choose ~ ( M ) >  0 by (2.4), hence for ~(x)~< M, we have 

v(t, x ) =  sup e[F('c; t, x)] < ~(M), 

hence I~' is bounded on (--c<~, 0] X ix:  ~(x)<~ MI. 
Now let t > 0. Since V(t, x)<~ ~(x), the boundedness property holds. If  V 

is not radial ly unbounded on [0~ c~) X t2, then there exist P > 0 and sequen- 
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ces i t, !, f % t, and l x. 1 where  0 <~ z, ~< t~ and ~(x:) --> e,z such that  

~[F(~ t, ,  x~l] < P. 

Choose ~ ( P ) >  0 by (2.4), then 

e[;r(s; ~, F(~.; t., x.))]<~fP~ 

for all s l > ~ : ~ 0 .  I f  we choose z ~ z .  and s ~ t , ,  then the above becomes 
O(x,) << ~(P), a contradict ion.  This  completes the proof of Theorem 3. 

PRoo]~ ~ OF PI~oPosI~Iol~ 1 . -  If  gt ~---R '~ so that  8 ~  is empty, choose 
~(x)-----txt. Clearly, ~ has all the desired propert ies.  

I f  ~1 ~ R ' ,  choose 

~(x) ~ Ix t[1 -{- d(x, 1 3~)]" 

Then ~(x)/> 0 for all x E ~, and ~(x)-->cx~ when  ei ther ] x I-->e~ or d(x, ~¢~2)--> O. 
Clearly~ 9(x)~---0 iff x ~ 0 .  To prove that  ~ is Co on ~2, we first note that  if 
x and y belong to I2~ then for every z in 8~2~ 

hence 

d(~, Va)< t~--~I  < I~--Yt + tY--~I,  

d(x, ~2) --  d(y, 8~2) <<.Ix-- Y l. 

Revers ing  the roles of x and y~ we have 

] d(x,  $gt) - -  d(y ,  ~gt)] < I x - - y l .  

Now let x e g t  and choose a compact  neighborhood 2t of x so that  2 tC~l .  
Thus  there exist  P ~  0 and Q ~  0 such that  y e n  imply I Y I ~ P  and 
Q < d(y, ~l)  <~ P. Thus  

~<(1 + 2PQ-~)l x - -  Y I, 

proving Proposi t ion 1. 
Proposi t ion  2 is proved in [Y, p. 31. 
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4.  - Examples.  

Consider the scalar equation 

(4.1) x' = 
i 0 if x> /1  or x ~ 0 ,  

x ( x - - 1 )  if 0 < x < l .  

Then the zero solntion 0(0 is uniformly stable for 14.1). By the proof of 
Theorem 1, we may choose q)(t, r ) ~  q)(r) to be independent  of t. For  each x, 
0 < x < l ,  IF(0;  t, x) t-->l as t - - > ~ .  Thus 

u (t, ¢ ( I F ( o ;  t, 

as t--> c<), hence V1 is not decrescent.  This show that 
a test for the uniform stability of 0(t). 

Consider the scalar equation 

1/1 cannot be used as 

(4.2~ x' if(t) : = 

where 9 is C 1, g(2n + 1) -~- (2n + 1) -1 and g(2n) = 1 for n :  0, 1, 2, ..., g(t) = 1 
for t <~0, and g is monotone between any two consecutive integers. The so- 
lution of (4.2) is 

F(t;  to, Xo) = g(t)Xo [g(to)] -1, 

and tile zero solution 0(0 is stable for (4.2) because (4.2) is l inear and g is 
bounded. (However, 0(t) is not uniformly stable because g(2n)[g(2n--1)I- l=2n-1) .  
A_gain~ we may choose (I) independent  of t. Then 

V2(2n,~x) = inf (I)(t x l g(~) [g(2n)] -1) 
o~,v-<~2n 

/ txt  t 
= • \2n - -  1] --> 0 

as n---> ~ ,  hence V~ is not positive definite. This show that V2 cannot be 
used as a test for the stability of 0(t). 

Indeed,  we do not know whether  there exists one Liapunov function 
satisfying (a) and (b) in Theorem 1 which will serve as a test for both the 
stability and uniform stability of 0(t). 

We remarked  in Section 2 that if all solutions exist in the future,  then 
V characterizes the uniform stability of 0(t), while V + V1 characterizes the 
stability of 0(t). However, we do not know whether  it is possible to characte- 
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rize the uniform stabil i ty of 0(t) with a function coustructed from the existence 
forever of all solutions. Certainly, U is not such a function because all solu- 
tions of (4.l) exist forever and ~(x) = I x l, yet for 0 ~ x < 1 

U(¢, x) = IF{O; t, x) l ---> 1 

as t-->cx~, so that U fails to be decrescent.  This, then, remains an open 
problem. 

REFERENCES 

[A] tI. A. A~TOSIEWlCZ, A survey of Liap~tnov's second method~ Ann. Math. Studies, No. 41 
(1958), pp. 181-166. 

[I-I] YV-. ~I-I=x~ Theory and application of Liap~nov's direct methoct~ t~rentice-:K~ll (1963). 

IS] A. STRAUSS, Liap~tnov f¢nction~ and Ln solutions of differential equations, Traits. Am. 
Math. Soe., 119 (1965), pp. 37-50. 

[Y] T. gosI~iz£w& Stability theory by Liapunov's second method, Math. Soc of J-aloan ~ 
Tokyo {1966b 


