Criterion of Periodieity of Solutions of a Certain
Differential Equation with a Periodic Coefficient.

F. NeuMaN (Brno, Cecoslovacchia}

Sammary., - In this paper the differential equation (1} y' = q(f)y is considered where g(f) is

a real continuous function with period n. There is proved a necessary and sufficient
condition for the stability of the trivial solution of HEquation (1) when the zeros of the
characteristic equation A*— A+ 1=0, céincide. Moreover, there is shown the construction
of all Equations (1) admitling only periodic or half-periodic solutions with period =.

1. - Let us consider the differential equation
(1) y' = aly,

where g(f) is a real continuous periodic function with period =, defined on
the entire interval (— oo, oc}). Denote by C"(é} the set of all continuous functions
defined on the interval ¢ and having, on the latter, continuous derivatives
up to and including the order n. For brevity, set C"((— oo, o)) = C". By a
solution of Hquation (1) on the interval ¢ we wunderstand every function
y(t) € C°(é) complying, for all ¢ €4, with Equation (1). When speaking only
about solutions of Equation (1) we mean solutions on the interval (— oo, co).
The trivial identically zero solution is generally excluded from our conside-
rations. A function f{f) satisfying the relation flf 4 d)=—f{#), d >0, is called
half-periodie, with period d.

Let u(f) and v(f) be two linearly independent solutions of Equation (1),
such that u(0)=0, w'(0)=1, v(0)=1, v'(0)=0. Their Wronskian w=uv'— u'v
is equal to —1. By FLoQuET's theory (see, e.g., [2] or [3]), We shall associate
with Equation (1) the so called characteristic (fundamental) equation

(2) A — Ax 41 =0,
where 4 =1wu'(t)+o(n). If A, and A, are the zeros of the characteristic equation
(2) AP2=13=0) and p, as well as p, comply with A, = e™», A,7;, then there

exist two linearly independent solutions g, and y, of Equation (1), for which
there holds either

(8) Bl + ) = Aagn(l),  9alf + 7) = Aagalf),

(3) ¥:(t) = etmp,(#), Yall) = e'epofl),
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or
(4) Hilt + 1 =Aamll), %l + ) =) + hpald),
(4) Y(t) = eepy(f), Ya{t) = e[ palt) + cipa(t)]

for all the ¢, where p, € (°, p, € (* are periodic, generally complex functions
with period wm. The forms (4) and (4} may (but need not) occur only for
Ay = Xy, hence for (4| =2.

If we restriet our considerations to the real domain, then:

for A > 2, there exist two independenst solutions of Equation (1} in the above
forms even when p, and p, are required fo be real numbers and p;, and p,
real functions ;

for 4 <— 2 there exist, in the above forms, two independent solutions of
Equation (1), where py==1n|X\|, ps=1In|A;| and p;€C% p,€C* are real
half-periodic functions with period =.

It is known, if |4|>> 2, no trivial solution of Equation (1) is bounded
(on the interval (— oo, oo)).

If |A] < 2, then every solution of Equation (1} is bounded, see, e.g., [1]
p. 124. Moreover, noting by ex*™ 0 < <C 1, the zeros of Equation (2), the
general solution of Equation (1} is of the form

5 b ey, ) = Ty sin [P(¢) + (2n 4 a)t + k)
i Wb B =5 N TPl + an 0

where P(f) € C° is a real function, n integer, P'(f) + 2n -+ a =&=0. Furthermore,
all Equations (1) having, for the zeros of their characteristic equation, the
numbers e+97((0 << @ < 1) or, in other words, all Equations (1) admitting only
of bounded solutions which are neither periodic nor half-periodic with period
n are expressed by

. Py V1 Py v .
yﬁ{ Q(m)+4(13’(t)+2n+a) (P'(8) + 20+ a)°| v,

where P(f) and n, or P({), n and o satisfy the above requirements. For proof,
see [4].

If |A]= 2, then there occur two cases: «) every solution of Hquation (1}
is bounded and then periodic or half-periodic with period =. This oeccur in
case of the forms (3), (3) and when 4 =2 or 4= —2.

B) only the solution #,(f) and the solutions linearly dependent on it are
bounded and therefore periodic or half-periodic with period =, whereas the
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other non-trivial solutions are unbounded. This occurs in case of the forms
(4), (4) and when 4 =2 or 4 = — 2.

In the present paper we have proved a necessary and sufficient condition
indicating which of the mentioned cases, ) or B), occurs i.e. whether, in
case that the zeros of the characteristic equation (2) coincide, every solution
of Equation (1) is bounded or not. We have, moreover, shown the construction
of all Equations (1) admitting only of periodic or half-periodic solutions with
period w. This together with the results of paper [4], yields a survey of all
Equations (1) which admit only of bounded solutions.

In what follows we shall only consider real numbers and real functiouns.

2. - Assume 4 =2, (4 = — 2), that is to say, the characteristic equation
(2) of Equation (1) to have equal zeros: A, = A, =1, (—1). Both in the case
@), and in the case B) Equation (1) has at least one periodic (half-periodic)
solution y.(f) with period =. Equation (1) has two independent solutions of
the form (3) or (3') (i.e. case «)) exactly when two arbitrary independent
solutions of Equation (1) are periodic (half-periodic) functions with period .
But when at least one solution independent of () is not periodic (half-
periodic) with period =, then every solution independent of #(f) is no longer
periodic (half-periodic) and is unbounded both on the interval (— oo, b) and
(b, o). Let us now find out when there occurs «) and when f).

The zeros of the solution y,(f) may only be isolated points. Let (¢)==0.
Then there is on the interval [f,, {, 4 =] at most a finite number of zeros of
the solution g,(f). Let us denote them by a; <a, < ..< a,, #=0 integer.
Set, moreover, ay =1ty, @n, =t + n. The zeros of y,(f) are simple. On every
interval § on which one has w,(f) &= 0, the function

t

) f 1/y3(e)ds, t* €5,

t.

is a solution of Hquation (1) on the interval j; this solution is independent
of #(f). Therefore both this function and its 1°¢ and 2"¢ derivatives have
limits on the left (right) at the right (left) endpoint of the interval j. Let us
choose by = a,, b, = @41, bi € (@i, aipy) for i=1, 2, ..., n—1. Set furthermore

i

) = 0t [ Urie)ds + o, tor t€ @, s

b,
P

t=0,1, .., n, where the numbers ¢; are chosen in a way to enable us to
define the value of the function g,(f) for ¢=a; in such a manner that Fal?)
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be continuous, even with its second derivative, on the interval [f, & + x].
(That the numbers ¢; may be chosen in such a way will be seen from the
following considerations.] Thus #.(f) coincides, on the interval [f,, {, + ] with
some solution (let us say 5(f)) of Equation (1). The solutions () and w5 (f)
are linearly independent and therefore we are to find out whether yJ(#) is
periodie (half-periodic) with period = or not. Since g(f) is periodic with period
n and #(f) is a solution of Equation (1), even the fanction yf{(f + =) is a
solution of Equation {1). To ascertain whether ) (f) is periodic (half-periodic)
with period = it is mnecessary and sufficient to find out whether #,(f, + =)=
= Falbo), Folt + ) = Falbo) Welto 4+ 7} = — allo), Felbo + 7) = — Fallo)).

Suppose » = 1. The function #,(f) will be continuous, even with its second
derivative, on the interval |f,, f, - =] exactly if, for every ¢, 1<<é¢<_n, there
holds :

(6) lim g,(f) == lim §y(t),
t--;w —*w_;..

(7 lim #,(8) = lim §(f),
t-m%,_ t"’)at'—|.

(8) lim ¢5(t) = lim 7(}).
t-—-aaf_ oo,y

If (6) is true, then even (8) applies, since for ¢ a; one has #(f) = q(t)y:(t)
and the function ¢(f) is continuous. Since #.(f) is always, on the intervals
{tti, @ip), a solution of Equation (1), all the above limits exist. Let us consider
the relation (6):

i 3

Jim gt f yr2{6>dc+c,-_1}- lim 9,(0| | seid 4 o] =
=t b, i 8,

= lim #,(# f@r‘“ sjdo — hm ylt)f

i—-mi_

i 3

[ seias [ wrtla
. . . 1 1
= lm %= —lim % ; =0,
t>a,_ 1/a(f) tsay 1/9a(0) ¥ (o) + o'y (o)

gince y(a;) = 0 and therefore g'y(a;) == 0.
Let us now determine the numbers ¢; and b; in order that the relation
(7) be true. Suppose V., (&) is sach a deleted (i.e. not containing the number a;)
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neighbourhood of the point a; that in V., (@) there holds g(f) 3= 0. Set fi{f)=

= y,(#)/sin(t — ay), for L€V (a5) = [{; 0 < |{ — ai| < &]. Calculate lim fi*{f) =
t-sa,

= lim y/,(f)/cos (f — a;} = y'i(a;) = 0. Furthermore, one has ’

twy a,

Ya(#)sin (¢ — ;) — g(t) cos(f—ay)

P
o £ = lim. sin’(f — a;)

— ligg 909(0) + ys(t)] sin (f — as)
o tl-lag,t 28in (¢ — ai) cos(t — ;) 0.

And for the 279 derivative we obtain:

Lim £#°(f) = y's(ai) [glas) + 1]/3.

taa,
i

Hence, sefting f*(m:) = y.'(@:), one has f7(t)€ C*((a; — &, a; + &), f*'(a) =0,

i) = 1/3 ys(ai) [q(a) + 1]. Because g,(f) <=0 for 1€V, (a) and yifai) == 0,
there also holds f*({) 4= O in the entire interval (a; — ¢;, a;+¢;). The relation
(7) may then be modified:

0= lim g,(f) — lim g/,(f) = lim [y’x(t){ f | y:'(o)do + o,-_l} +
T wh ot b,
el 1(")] — lim [y’x(t){f@/fl(c)da + ci] + yrz(t)] =

t-—>a1.+ ;
1’

i

oy 1 1 ,
= t_l)l(ll]:__ [?J 1(t)zf‘ (?!f(c) yli(a/i) sin® (o — ai)) do + Cia¥Y 1(t) -+-
HL B ¥1(t) cotg (£ — a,) 1 o

+ G i)+ ot —
11
. 1 1 ,
o l‘” ) J (yf(c) T Jiasint (o — a,)) do + ay(l) +

B

+ ( 1 y1(t) cotg (£ — a,))

S cotg (b; — a;).

Y1) Y'ila) Y1 ()
However
. 1 Yy cotg{t — a,)
1 e —
oo, (yx(t) Y )
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& . 7 7, R — i
— lim 1/ — o/ {8/ {a;) cos (E al}___

tra, sin (t - ai)

e = /A A sin(t—a) ¢ (0 /y e — cos (E— a;) ¢(4) 1:(8)/y N a)

== lim =0.
.y cos ({ — ay)

Therefore the relation (7) may further be modified:

(%) 0 =y\le)[cios — ¢] + 1/yi(a)[cotg (b, — a;) — cotg (b, — o)} +

[
b

o) f (yfic)  Yila) Sinlz(c — %-)> e

b

i—1

Thus, if b,, ..., b,_, are within the corresponding intervals and ¢, is an
arbitrary but fixed number, then ¢, .., ¢, are uniquely, defined by the
relations (9)).

Let us now find out when #.(f 4 =) =(1_L)g2(ée} and §olfe + ) =(j}g'/'2(to).

{In what follows, there always holds either -}- or —.)
fobrr
Yo

Modifying the first postulate, we obtain 0=yl + n)[ [ Ho)do +
b

to ¢
+ 6] 7= thlto) [b/ yi*(o)do + ¢ :(f)?/l(%) [¢n — Co], since y,(f -+ =) m(i">?/1(’5)- Modi-~
fying the secm;d postulate yields

t

o=ttt [ varae el giwe] | t?ﬁ’fz“”d"”‘”"'“l o
h

t0+7f

= ¢ s{ts + T) 0n (.,_L)?/i(fo) Go = <f) Yilfo) [en — o]

In order that both postulates be satisfied it is necessary and sufficient that
Cn = Co. Since y,(a;) =0 for 1, ..., n, let us divide the relations (9;) by ¥'i(a)
and sum for i =1, ..., n. We obtain

by

0=0¢, — ¢, + 5 %f

=1
b

1
yi(o)  ¢ia)sin’*(c —a)

]dc+

3 §

1
-+ m [cotg (b;—y — a;) — cotg (b; — a,-)]g .
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Hence ¢, == ¢, occurs exactly when

b,
n (1 1
(10 °=ijbw_ﬁmmmww»“+
by
-+ 1 [cotg (bi—, — a;) — cotg (b; — w)]g
ya) 2T g0 = @ly -

Let us arrange the last relation .into a clearer form. There holds:

b

g » 1 n 1

— X — do= 2 — cotg (b; — a;) — cotg (b;_, — a;)].
bf l;:;;yi’(aﬂsm (@—ap”’ 3;_=1_yf ){ gl i) — cotg (b, — a;)]

11 i i

Let us therefore set

n 1
(11) = 2 ol sint = ay

(in the case when y,(f) oscillates, and #(f) = 0 when w({) is a non-oscillatory
solation; we do so in order to simplify, formally, some of our following
statements). Then

do -+

1
m [cotg b,y — a;) — cotg (b, — a;)] ; -

b,
)

| | iaom
: i=1 Y1(a)) sin* (s — a))

be’—-i 1=

Il tg=

do —

.

n on i
— 2 2 —— cotg (b, — a;) — cotg (b, — a)] =
=1 ;zl ?fx{a’ﬁ}
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where

o ; o) § i i) T : p— . po—
f=1 y/f(a’j) j==1 [COtg (b' a7) COtg (bz—; CL,)] =

n

S R
=1 Yila;)

R =

[cotg (b, — a;) — cotg (b, — a})] =

o1
2 7@ [cotg (B, — a; + ©) — cotg (b, — a;)] =0
We see that the relation (10) is equivalent to the relation

to"f‘?f

(12) f (Wici — »r(c)) do = 0.

Both %% and r{f) are, except the points @; 4 km, periodic functions with
period = and therefore, for an arbitrary b, there holds
totm b4

== [sgg—rela- [ |52 = o] .

i 0

When the solution #,(f) has no zeros on the interval [f, t, -+ =] (i.e. =0,
which, of course, cannot occur for the half-periodic solution ), then #,(f)=

t
= y(l) [ yr¥(c)ds is a solution of Equation (1), independent of y.(f) and thus
iy

defined on the entire interval {— oo, co). Then it is necessary, for Equation
{1) to have two independent solutions of the form (3) or (') that 0= galty + =) —

[Pantil
— Falte) = ullo+ ™) [ ' y:*(o)do. Of course, this cannot occur, sinee yi(f) = 0.
to
Hence we come to the conclusion:

There exist two independent solutions of Equation (1) that may be iwritten
in the form

Y1 =p(t), Y. = p()

or in the form y, = p(f), Y= pa(t) + ctps(t), ¢ == 0 real, p;, p. real periodic or
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half-periodic functions with period =, p, € C°, p, € (7, exacily when Equalion
{1) has a non-trivial solution y.(l) periodic or half-periodic with period =.
The solution y,\t) is in the first of the mentioned forms exactly when wy,(l) is
oscillatory and there holds

(13) Jn(i/i%t) - 'r(t)) at =0,

n 1
where r(f) 51 == ?;'f—(mém

the solution y,() on the interval [0, =) (r{t) =0 for y.(t) non-oscillatory).

; Gy, Qg ey Oy, B =1 are all the zeros of

Every solution of Equation (1) for 4 =2 or 4 =-—2 is bounded on the
interval (— oo, oc) and therefore periodic or half-periodic with period =
exactly when (13) applies. When (13} does not apply, then there exists a
non-trivial solution of Equation (1), bounded on the interval (— oo, oo} and
every solution independent of this solution is already unbounded both on
{(—oc, b) and (b, oc).

If it is required that the Wronskian of the pair y, and y, be 1, then the
constant ¢ in the expression of the solution g, is already uniquely determined :
Yot + m) = polt + 7) + clpu(t + ) + enpi(t + 7)) = &, palt) <i) ctpa(?) (i) crpy(t) =
= (i) yz(t) (:l:) Gnyl(t)' Thus ¢ = [(i} yz(t + TL“) “yZ(t]]/(nyl(t» = [('l_')'l Z{to + E)_yﬂ(to)}/
/(b)) When y, is oscillatory, then ¥ wulfy + 7) — Yolbo) = F, 9lte + m)

= ty
[ {Q+ yrio)do+cn]— yalbo) | b/ Y1 *(o)do+-co] =wy(to) [¢,— o). Therefore c= [en—=Col/m=

=

R
{[y;”(t)—r{t)]dt. When g, is not oscillatory, then () == 0 and y,(f) =

t to‘i-Ti
= y,(f) tf yi*(s)do + k. Then wguff, -+ w) — Yollo) = gulle + ©) [ yrio)ds or
o i
Jo
c=_ [y di.
Consequently, we may state :
Equation (1) with A =2 or A= —2 has two independent solutions whose
Wronskian is equal to 1 and which are of the form y, = pi(t), 3, = poAt) +
1=
+ -/ [y*(0) — (o)l do. t.pi(f), where py, p. are periodic or half-periodic functions
with period =, p, € C*, p, € C* and r(t) is given by (11). Bven in the form of
1=
Ys = polt) + - 0[ [y*(a) — r(o)]da. L.pu(t) (ps€ C* is periodic or half-periodic with

period w) one may write any solution yst) of Equation (1) independent of y,
and such that the Wronskion of y, and y, is 1.
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We can therefore deduce that, for fﬁ{ T(t) — r(t)]dt = 0, the character

of the behaviour of the solutions y, and y,, independent of y,, and having
the same Wronskian with the latter, is, in a certain sense, the same. More
precisely :

ks

. of : t
lim ylt + mr) _ lim ﬂ"%@ = (wyl(t)_f [y*(0) — 7o} ] do

P W 500
o

where w is the Wronskian of the pair y., y; or y., y..

3. - In the simplest case the half-periodic solution g.(f) has exactly one
zero g, in the interval [§,, f, - w}. Then the function f(f} is defined on the
entire interval (—oo, co), f¥ € C% f(1)==0, fr (I-+r)=f*{t), f{a.)=vy (0}, [ (a.})=0.
Set flt)=In[f*()/ys(a)). Then fit)€ C% flt+ ) = fit), fias) = flas) =0. We
may then write yi(f) = y'.(a.)ef®-sin(f — a;) for { € (— oo, o). At the same time

r{t)= ! . Therefore:

y'ia) sin®({ — o)

Let Equation (1} have o half-periodic solution y.{l} with period = and
exactly one zero a, on the interval [0, m). Then y,(t) = yi(a:)e™ « sin (f — as),
where € C* (it + =) = f(1), flan) == f'(a.) = 0. In that case every solution of this
equation is half-periodic with period w exactly when

0= f s:m)ml t{=yija ‘)fbfl@_y’i(wﬂ s — %)

From the theorem on the separation of zeros it also follows that if (14)
is true, every solution has, on every interval [b, b + =), exactly one zero.

4. - The above considerations enable us directly to form all the diffe-
rential equations of the mentioned type. Since, for all these types, the
construction is similar, we shall carry ouf, in -detail, only the construction
of all the differential equations whose solutions are half-periodic functions
with period = (i.e. such that — 1 is a 2% order zero of their characteristic
equation, each solution being bounded).

Let y(t) € C* and suppose y(t + n) = — y(f) applies. Let a, < a, <.. < a,
be all the zeros of the function y(f) on the interval [0, =). If y(t) is to be a
solution of Equation (1), then, according to what has been said above, we may

¢
define the functions f;*(¢). Let us, furthermore, define p(t)= %y{ ) ,
y'(@,) O sin({f — a;)

jmerl
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for { &= a; + kmn, and elsewhere so that p{f) be continuous. Since one has, in
a suitable neighborhood of the point a;, y(f)/sin(f — a;) = f*({) and because
f;*(&;) =y'(0&;), there holds:

-1

pla,) =1/ sin(a, — a;) > 0;

i=1

moreover: p(@,_.) = yy(,?;';ﬂ/ I’ sin (@p—1— ;) >0, since signy(th, ,) = —
n i==1

— signy/(a,); the sign ’ in the symbol I denofes that the zero factor has
been omitted. Analogously, p{a;) > 0. Since both the numerator and the deno-
minator in the expression for p({} are, except the points a;, non-zero, one
has p(f) >0 for t€[0, n). The function p(f) is periodic with period = and
therefore p(f) > 0 for all the f. Because f¥*(})€ C¥(V,(a: 4 km)) and y(t) € C?,
one also has p(f) € C°. Let us, therefore, set f(f) = In p().

Obviously

(15) Yty =g'(a,) - sin(f — a,) » ... « sin(d — a,) » ",

The condition for all the solutions of Equation (1) to be bounded is

” ”n, l#i
e~ [y a,) — 2 1/y*(m) fI sin®(f — a;)
{16) O =f nx=l j"-“‘—l dt
g I sin®(f — a;)

=1

1, jofsi
where 11 = 1.
j=1

The function ¢(f) in Equation (1) is then given by
(1) ) =1"()+ 0 + 21 () 2 cotg (t — a) +

% n
+ 2 X cotg(t — ay) cotg (t — a;) —n,
i=1 f==1

g

where f(f)€ C°, fit + =) ==f(f) and, moreover, f(f) satisfies the relation (16),
where y'(a;) are determined by the relation (15); the function ¢(f) given by
the formula (17) may be supplemented so that g(¢) € C°. Conversely, Equation
(1) with the function ¢if)€ C° given by the formula (17}, where f{#) has the
above properties, has all the solutions half-periodic with period = as well.

Particularly, for n=1, one obtaias p(f) = f¥(t)/4/(e), or fit)=1n[f¥{#)/y' (@)
Thus flay) = Inpla,) =0 and ffa;) = 0. Then y(#) = y'(a.)e’™ +sin(t — ay).
Consequently :
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All the differential equations iwhose solutions are half-periodic with period
= and such thal every solution has, on every imlerval [b, b+ w), exactly one
zero, arve given by the formula

(18) Y =) + (%) + 2f'(f) - cobg (t —a.) — 1] . g,
where f€ C?, f(t + n) = f(t), fla) =f'lan) =0,

i e—2f(t) —_— 1
| S ay =0

o
Sefting, for example,
f(t) = 0, one obtains the differential equation ¢"' = — y;

f) = —1/21In[1 — k .+ sin 2({ — ¢) - sin®(¢ — ¢)], where |k | <1, ¢ arbitrary, we
get the differential equation

sin 4(¢ — ¢) + k& - sin*(f — ¢)

(19) Y =13 [T s 2 — o si—aF — | ¥
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