
Second Order Boundedness Criteria (*). 

T. A. B~BTO~ (Carbondale, Illinois, U.S.A.) 

S u m m a r y .  - See Introduction. 

1 .  - I n t r o d u c t i o n .  

In this  note we present certain condit ions for boundedness oi solutions and their  
first derivatives for a second order differential equation of the  form 

(I) x" ÷ f(x, x ' )x '  ÷ g(x) = 0 

in which x'~--dx[dt. 
I t  is assumed t h a t  ]: (-- ~ ,  ~ )  × (-- ~ ,  ~ )  -~ (-- ~ ,  ~ ) ,  g: (-- ~ ,  ~ )  -~ (-- ~ ,  ~ ) ,  

f and g are continuous,  and  

(2) xg(x)>O and f(x, y) > 0  i~ Ixl>x~ 

for some x l >  0. 
Much has been wri t ten  and continues to be wri t ten  about  this equation. Condi- 

t ion (2) allows (1) to include the  classical problems of relaxation oscillations of which 
the  van der Pol and Lidnard equations are examples~ while selecting x1-~ 0 brings 
us to the s tandard  oscillation problems with non-negative damping.  

Excellent  surveys of these problems have been wri t ten  in recent years and the  
interested reader is referred to the books by  SA~so~E and  CoaTI [9] and BEISSIG, 
SA~SO~E and CoaTI [8] for detailed discussions. In  addit ion,  extensive bibliographies 
have been offered in [3], [4], and  [7]. l~epe~ting those bibliographies here seems 
unwarranted .  

In  the l i terature the problem specified by  (2) is generally divided into three parts : 

(2)' xg(x) > 0  if x ¢ 0  and f(x,y)>O. 

(2)" f ( x , y ) > 0  if x~4:y~>M>O and x g ( x ) > 0  if l x l> ; [ l .  

(2)" f(x,y)>O if l x ] > M > 0  and  xg(x)>O if Ixf>M. 

(*) Entr~ta in Redazione il 26 febbr~io 1975. 
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Prob lem (2)' was surveyed b y  BUStlAW [5]. I t  governs the  ve ry  concrete  physical  
problems in which a body  in equil ibr ium is set in mot ion  and subjected to  a restor ing 
force which acts always to re tu rn  it  to  the  equil ibrium position, together  with a 
fr ict ion force which always acts in a manner  to slow the  motion.  In  any  case, one 
writes (1) us the  equivalent  sys tem 

(3) 

B y  considering the  funct ion  

(a) 

X'------ y , 

y ' =  -- ](x, y) y -- g(x) .  

V(x, y) = ~(x) + y~/2 
x 

with G ( x ) =  fg(,)as so t ha t  along solutions of (3) the  der ivat ive  of V satisfies 
0 

(5) V'(x,  y) = - -g(x ,  y)y~ 

the  au thor  [1] pointed  out  t ha t  when (2)' holds then  a n y  solution of (3) has ty(t)] 
bounded  for M1 fu tu re  t ime.  F r o m  this i t  was easy to  see t h a t  all solntions of (3) 
under  (2)' were bounded  if and  only if e~ch solution s tar t ing  in Quadrants  I or I I I  
subsequent ly  crossed the  x-axis [1]. A synthesis of [1] and [2] yields the  following 

result .  

THEORE:~I 1. - Suppose t ha t  (2)' holds and tha t  ei ther  

(i) ](x, y ) :  h(x)r(y) with h and r posit ive functions,  or 

(ii) ] (x ,y ) -~  h(x)lyl ~ with h posit ive and 0 < ~ <  1. Then all solutions of (3) 
are bounded  if and only  if 

(iii) l - [h (x)+  Ig(x)l]dx= ~= ~ .  
0 

Problem (2)" governs physical  problems of more complexi ty  t h a n  (2)% ye t  the  
basic ingredients are the  same. There  can arise re laxat ion oscillations, bu t  not  of 
the  van  der Pol  or Li6nard type,  as ] mus t  be non-negative for large lY]. WI~LE~T 
and WO~G [10] observed t ha t  when (2)" holds, then  Equa t ion  (5) still holds and 
for x 2 +  y~>M,  V'<O so t ha t  independent  of the  fact  t ha t  V is no longer posi t ive 
definite (and hence is no t  a IAapunov function) it  is still an immedia te  consequence 
t ha t  for any  solution (x(t), y(t)) of (3), ly(t)l is bounded.  They  then ,  of eoui'se, con- 
cluded t h a t  all solutions of (3) under  {2)" are bounded  if and only if any  solution of (3) 
enter ing Qlladrant  I or I I I  with Ix ( t ) l>M subsequent ly  crosses the  x-axis. This 
work was done under  the  assumption t h a t  solutions of (3) are unique,  b u t  careful 
analysis of thei r  work shows t h a t  assumption unnecessary.  Wil le t t  and Wong also 
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obta ined  a s t rong condit ion for unboundedness  of solutions and  an  interes t ing result  
on boundedness  in case (2)" holds b u t  ](x, y)--> 0 as y - + 0  in a cer ta in  mono tone  
fashion.  

P rob l em  (2)" has  been considered to be  far  more  difficult t h a n  the  others  and  the  
resul ts  are  cons iderably  less sweeping. The  m a i n  except ion  to this  is the  work  b y  
GR.A]~P [7] when  ](x, y) = h(x)y and  a forcing func t ion  is included.  H e  allows M >  0 
and  shows t h a t  Condit ion (iii) of Theorem 1 is ve ry  near ly  necessary  and  sufficient 

for boundedness  even  wi th  a periodic forcing funct ion.  However ,  when f does not  
have  this  s imple form,  t hen  the  usual  condit ions used for boundedness  t ake  on a 
harsh  f o r m  of point  b y  point  inequalit ies,  r a the r  t h a n  <, averaging  ~> condit ions of 
the  t y p e  of (iii). F u r t h e r m o r e ,  a t h e o r e m  s ta t ing  t h a t  (2)" implies ly(t)l bounded  
is missing f rom the  l i t e ra tu re  and  such a t h e o r e m  is, in fact ,  false. Th~ls, inves t iga tors  
have  been  unable  to reduce  boundedness  to showing t h a t  solutions in Quadran t s  I 
and  I I I  cross the  x-axis.  I t  is genera l ly  required  t h a t  the  inves t iga tor  cons t ruc t  
in t r ica te  J o r d a n  curves bounding  solutions. 

I~E~ARK 0. -- The present  invest ignt ion began under  the  a s sumpt ion  t h a t  (2)" 
holds and  our in ten t  was to i m prove  the  resul ts  of ~rILLE~rT and  Wo~G [10] showing 
boundedness  in the  difficult cases resul t ing f rom f(x, y) becoming  wery  small  along 

& c o  

lines given b y  y ---- cons tant .  Under  (2)" boundedness  is t r iv ia l  if fg(s)ds-= -~ c~ 
o 

and  so we as sumed  t h a t  e i ther  G ( c o ) <  c~ or G ( - -  ~ ) <  ~ .  ( In  fact ,  Wi l le t t  and  
Wong had  assumed bo th  o2 these  integrals  to be  finite.) Under  t h a t  a ssumpt ion ,  
we discovered t h a t  i t  was t h e n  possible to  ma, ke  a mi ld  cont inuat ion  hypothes is  
allowing us to  t r e a t  the  more  general  case (2). This is a surprise in t h a t  under  (2)", 
G( ± c o ) ~  q - ~  implies boundedness ,  bu t  under  (2) the  condit ion of G(-boo) ~ + c~ 

can ac tua l ly  cause unboundedness .  The  following example  and  L e m m a  2 p rove  this 
s t a t emen t .  

E X A M P L E  1 .  - -  Let  g(x) = x and  define S = {(x, y): y > 0 a n d  Ix[ <2}, U = {(x, y): 
y > 1 and  Ixl < 1 ,  and  let  H be the  c o m p l e m e n t  ol S. Suppose t h a t  f(x, y) is a con- 
t inuous funct ion sat is fying ](x, y ) =  0 on H, ](x, y ) < 0  on S, and ](x, y ) < - - 1  on U. 

Under  these  condit ions,  if (x(t), y(t)) is the  solution of (3) s t a r t ing  a t  x ( 0 ) =  2 and  
y(0) == 2, t hen  x2( t )~  y~(t)= 8 as the  solution t r averses  the  circle in the  clockwise 
d i rec t ion unt i l  x = - -  2 and  y = 2. At  t h a t  t ime,  x~(t) ~ y~(t) increases unt i l  x(t) = 2 
and  y(t) > 2, say a t  t---- tl > 0. Then  x~(t) -~ y~(t) ~- 4 ~ y2(tl) unt i l  x(t)---- - -  2 a n d  
y(t) > O. The p a t t e r n  is r epea ted  infinitely of ten.  I n  fact ,  t he  funct ion  V(x, y) 
= (x~q - y~)/2 satisfies V ' > 0  a long solutions of (3) wi th  V' posi t ive  on S. I t  is easi ly  
seen t h a t  the  solution spirals off to infinity. 

We nex t  no te  t h a t  under  (2), solutions of (3) can have  finite escape t ime.  This 
would happen ,  for example ,  if ](x, y ) ~  ( x ~ - - l ) y  3 as e l e m e n t a r y  inves t iga t ion  will 
show. The  solution s t a r t ing  a t  xo ~ 0 and  Yo > 0 bu t  large will have  the  p r o p e r t y  
t h a t  y(t) - ,  c~ before  x(t) reaches ½, i ndependen t  of g(x). 

2 5  - Annal i  di ~iatematica 
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2 .  - C o n t i n u a t i o n  a n d  b o u n d e d n e s s .  

Our first resul t  embodies  a cont inuat ion  hypothes is  which is general ly  not  d i rec t ly  
verifiable f rom the  ] and  g. As the  proof  is long and  cumbersome,  we omi t  i t  and  
offer ins tead  a comple te  proof  of a weaker  resul t  which is readi ly  verifiable and  which 
m a y  indicate  to the  in teres ted  reader  jus t  how to cons t ruc t  a proof  of the  first result .  

L v ~ A  1 . -  IJet (2) hold wi th  G ( c ~ ) <  c~ or G ( - - c ~ ) <  ~ .  Suppose t h a t  for 
each Yo> 0 the  m a x i m a ]  solution y(x, Xo, Yo) of 

(3)' y(dy/dx) = -- ](x, y) y -- g(x) 

with y(xo, xo, Yo) == Yo and  - - x ~ < x o <  xx can be  cont inued as a solution for X>Xo 
unt i l  y(x, xo, Yo) = 0 or nnt i l  x = x~; t hen  the re  exists  K(xo, Yo) > 0 such t h a t  each 
solut ion (x(t),y(t)) of (3) defined a t  t = t o  with x(to)=xo and  y(to)--Yo satisfies 
y(t) <K(xQ, Yo) on its  m a x i m a l  r ight  in te rva l  of exis tence pas t  to. Suppose t h a t  for  

each y o < 0  the  min imal  solution y(x, xo, Yo) of (3)' wi th  y(xo, xo, yo) ~- Yo and  - - x ~ <  
< Xo<X~ can  be cont inued as a solution for  x<xo unt i l  y(x, xo, Yo)= 0 or unt i l  
x = - - x ~ ;  t hen  the re  exis ts  K(xo ,yo)> 0 such t h a t  each solution (x(t),y(t)) of (3) 
defined a t  t---to satisfies y ( t )>- -K(xo ,  Yo) on its m a x i m a l  r igh t - in te rva l  of defi- 
ni t ion.  

IJE~MA 2. -- I~et (2) hold and  suppose the re  is a cont inuous funct ion q: ( - -  ~ ,  ~ )  -> 

-+(0,  c~) such t h a t  for - - x ~ < x < x ~  we have  

(Q) 

q ( y ) > - - ] ( x , y ) y - - g ( x )  for y > O ,  

q(y)>](x, y)y-[- g(x) for y <  O, 

f [y/q(y)]dy= + ~ ,  and  0 ( c ~ ) <  
0 

or G ( - - ~ ) < ~ .  

Then  for each (Xo, Yo) there  exists  K(xo, Yo) such t h a t  any  solution (x(t), y(t)) defined 
a t  a n y  to wi th  x(to)= xo and  y(to)= Yo can be cont inued as a solution of (3) for 

all t>to and  for all such t we have  Iy(t)l <K(xo ,  Yo). 

P~ooF.  - ~ o t i c e  first t h a t  if we can show t h a t  ly(t) t is bounded  so long as (x(t), y(t)) 
is defined, then  we can conclude t h a t  all solutions can be cont inued for all  fu tu re  

t ime.  To see this ,  no te  t h a t  ly(t)i < K  implies f r o m  (3) t h a t  Ix'(t)t < K  and  so Ix(t)] < 
lx(to)l-~- K(t - - to) .  I t  is known [6; p. 61] t h a t  a solution (x(t), y(t)) on [to, T) can fail  
to  be  defined pas t  T only if x~(t) + y2(t) ~ c~ as t-+ T-.  Our inequali t ies p roh ib i t  

this  behavior .  
Our proof  consists of finding a L i apunov  funct ion with  several  curves of disconti- 

nuities and  match ing  toge ther  the  (, level )) curves to fo rm ei ther  one or two curves 

bounding y(t). 
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Let (x, ,  yo) be given. We will find E(x , ,  yo). 

Case I .  Suppose 8(w) < w. 

We define 
r 

and define 

Case I (a )  . Suppose 8(- w) < w. 

Then consider the set of points 8 ,  in Quadrant IV satisfying R ( x ,  y)  = dl where 
dl= G ( w )  + G(- w) + 92012 and x1 G X  < w. We have R1(x ,  y)  G O  for x>x,  and so 
no solution of (3 )  crosses S1 from above. Now X I  int'ersects the line x= x, at a 

II 

point ( x l ,  91). Clearly, y, < yo. Define W ( x ,  y)  = x  + / [ s lp(s )]  ds for y  < 0  and - X ,  < 
0 

<x  <a,. We have W1= y  - [ f ( x l  y)  y  + g(x)]  y/q(y) G 0  along solutions of (3 )  on its 
domain of definition by (Q). Let S ,  denote the set of points with y  < 0  satisfying 
W ( x ,  y)  = W ( x l ,  y,) for - a, ~x  <x,. No solution of (3 )  crosses 8 ,  from above. Also, 
8 ,  intersects the line x  = - x,  at a point (- x,, y,) with y, < y, < - lyoj. Now de- 
fine a set S ,  in Quadrant I11 for - w < x  <- x,  by R ( x ,  y )  = R(-  x,, y,). We have 
R 1 ( x ,  y)  < 0  for x  <- x, . By choice of dl ,  (x,, yo) lies above Sl V S ,  U S z  and ( x ( t ) ,  
y ( t ) )  cannot cross that set for increasing t .  

I n  a similar manner, let X4 be the set in Quadrant I1 for - w < x  <- x,  with 
Y 

R ( x ,  y )  = dl. Define y, > 0  by R(- X I ,  y,) = dl. Define Z ( x ,  y )  = - x  + S [ ~ / ~ ( s ) ] d s  
0 

for y >  0  and -m,<x<x,. Let 8, be the set of points with y  >0, - x l ~ x ~ x l ,  
and Z ( x ,  y)  = Z(-  x,, y,). Then on its domain of definition we have Z'= - y  - 
- Ef(x, Y ) Y  + g(x)lylq(y)  G O  by (Q). Determine ~4 > 0  by Z ( x i ,  ~ 4 )  = Z(-  $1, ~ 3 ) .  

Finally, let S6 be the set of points with y  > 0 ,  x>x,, and R ( x ,  y )  = R(x,,  y,). We 
have R1<O for x>xl .  Thus, the set S4 U s6 V X 6  is an upper bound for ( x ( t ) ,  y ( t ) ) .  
We pick K ( x o ,  yo) = max [- y,, y4]. This completes the proof of Case I (a ) .  

Case I (b) .  Let G(- w) = w. 

Then let d,= G ( w )  + G(- x ,  - Ixoj) + $12 and consider the set M ,  for x  >x,  
and y  < 0  defined by R ( x ,  y)  = d,. No solution of (3) crosses M, from above. De- 
termine y, < 0  by R(x, ,  y,) = d,. Continue from (x,, y,) with a set M, defined by 
W ( x ,  y)  = W(x , ,  yl) to a point (- x,, y,). Continue from (- x,, y,) to (- x,, - y,) 
with a set M, given by R ( x ,  y )  = R(- x,, y,). Now determine the set M4 by 
Z ( x ,  y )  = Z(-  x,, - y,) with y > 0 for - xl< x< x,. Finish the curve with a set M5 
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defined by  R(x, y) ~ R(xl,  y~) for y~ > 0 and Y4 the  solution of Z(x l ,  Yd) ---- Z( - -  x l ,  
-- y~). The set M~ is defined for x ~ < x < c ~ .  Now M~ U ... k) M5 is a horseshoe shaped 
set, open to  the  r ight ,  bounding (x(t), y(t)) f rom above,  f rom below, and on the  left .  
P ick  K(xo,  Yo) ~ max[--y~,  y~]. This completes the  proof of Case I .  

Case I I .  Suppose G ( ~ )  ---- ~ .  
Then it  mus t  be (by (Q)) t ha t  G(-- c~) < c~. One repeats  the  proof of Case I(b) 

s tar t ing in the  left  half-plane and constructs  a horseshoe shaped curve opening to  the  
lef t  which bounds (x(t), y(t)). The reader  should experience no difficulty in filling 
in the  details. A sketch is advisable. 

L E ~  3. - Le t  (2) and (Q) hold. Then  eve ry  solution of (3) is bounded  if and  
only  if each solution of (3) enter ing Quadrants  I or I I I  with ]x(to)I >x~ subsequent ly  

crosses the  x-axis. 

PRoof .  - Given the  result  of L e m m a  2, this is essentially contained in bo th  [1] 
and  [10]. I f  (x(t), y(t)) is any  solution of (3), t hen  there  is a constant  K w i t h  Iy(t)I < K  
for all fu tu re  t ime. We first suppose t h a t  any  solution crosses the  x-axis as required.  
Now the  maximal  solution of y(dy/dx) ~-- - - / (x ,  y) y -- g(x) th rough (m~x[ IX(to) l, x~], K)  
for x increasing crosses the  x-axis at  some (x~, 0), forming a curve  which, toge ther  
wi th  the  line f rom (x~, 0) to  (x2, - -  K) bounds x(t) on the  r ight ,  as x ' =  y < 0 in 
Quadrant  IV. A similar construct ion in the  left  half-plane is accomplished b y  taking 
a solution of the  same equat ion through (-- max[Ix(to)l, xd ,  - K )  intersect ing the  
x-axis a t  some ( - -xs ,  0), and  cont inuing with a line f rom ( - -xs ,  0) to  ( - -x3,  K) ,  
which bounds the  solution on the  left .  Thus~ the  x-axis intersect ion requi rement  

implies boundedness.  
Suppose there  is a solution (x(t)~ y(t)) entering Quadran t  1 with x( to)> xl which 

does not  cross the  x-axis. As x'~--y > 0 and  y ' < 0 ,  if x(t) is not  unbounded ,  t hen  
x(t) -~ X and y(t) --> _L as t -~ ~ .  Clearly~ L = 0 as x ' =  y and we say x(t) --> X < c~. 
Thus,  y'--> -- g(X) and  so for large t we have  y'  < - -  g(X)/2. An integrat ion of this  
last  inequal i ty  implies t ha t  y(t) becomes negative,  a contradict ion.  This completes 

the  proof.  
We nex t  offer a sufficient condit ion for unboundedness  of solutions of (3) which 

is, in fact ,  a fair ly t r ivial  generalization of Theorem 3.~ of [10]. I t  is therefore  pre- 
sented wi thout  proof.  The only  real  change being t h a t  we have  replaced zero wi th  

a posi t ive number  c. 

I~EMMA 4. - Let  (2) hold. I f  there  exist  numbers  c>~0 and e > 0 such tha t  
c ~  

- - o o  

c ~ v ~  s 

t hen  (3) has unbounded  solutions. 
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I n  the  following resul ts  on boundedness ,  we m a k e  use of the  fac t  t h a t  if there  
are  solutions in the  Q u a d r a n t  I (or I I I )  wi th  Ix(t)i > x~ which do not  cross t he  x-axis,  
t hen  y(t) converges to a constant .  Thus,  condit ions for boundedness  need only be  
given on ~rbi t rar i ly  na r row str ips,  say  on c < y < c - ~ e  and X l < X < ~ .  

For  the  nex t  t heo rem  we need the  following condit ions,  a r r ived  a t  in p a r t  b y  
revers ing the  hypotheses  of L e m m a  4. Fo r  convenience in notation~ we now define 

F ( ~ ,  x, c) = [ 2 ( v ( ~ ) -  ¢(x) + c~/2)]~ for x > x ~ ,  

and 

F ( - -  c~, x, e) - -  [2(G(--  c~) - -  G(x) -~ c2/2)] ½ for x < - -  x~. 

Condition (C): G ( ~ ) <  ~ and  for each e > 0  the re  exis ts  e > 0 such t h a t  e i ther  

(i) . f (  m i n  ] ( x , y ) ) d x - - .  c~, or 

(ii) for each fixed x > x l ,  J(x,y)  is nondecreas ing in y for c.<.y<c-l--e and  

f1(x, r ( ~ ,  x, c)) d~ = + ~ .  

Condition (D): G(-- ~ )  < ~ and  for each c >  0 there  exists  e > 0 such t h a t  e i ther  

- - ¢ o  

(ii) for each fixed x < - -  x~, ](x, y) is noninereasing in y for - -  c > y > - -  e -- e 

a n d  ~1(x ,  - -  f ( - -  ~ ,  x ,  e)) d x  = - -  ~ .  

TttEORE?~ 2. -- Le t  (2) and (Q) hold. Suppose t h a t  e i ther  G ( ~ )  = c~ or (C) holds 
and  suppose t h a t  ei ther  G(-- ~ ) =  ~ or (D) holds. Then all solutions of (3) are 
bounded.  

PROOF. -- We show t h a t  any  solution enter ing Quad ran t  I wi th  x(tl) > xl crosses 
the  x-axis.  

The de r iva t ive  of the  funct ion  R(x~ y) -~ G(x) ~- y2/2 along solutions of (3) yields 
R '  < 0  for x ( t )>x l .  I f  G ( ~ ) ~  ~ ,  t hen  clear ly x(t) is bounded  so t h a t  the  a r g u m e n t  
used in the  proof  of L e m m a  3 brings the  solution to  the  x-axis.  We  then  suppose 

t h a t  G ( c ~ ) <  ~ so t h a t  (C) holds a.nd R(x( t ) ,y( t ) )  -+d as t -~  co. I n  fact ,  d > G ( ~ )  
otherwise we would again have  x(t) bounded .  Thus,  as y'<O, y(t)--->c>O and  so 

b y  (C) the re  exists  e > 0 such tha, t e i ther  (i) or (ii) holds. Also, there  exists  t~>tl 
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with c 4 y ( t ) ~ e ~  ~ for t>t~. I f  (i) holds, then  y'<--](x, y)x' and so 

t 

y(t) <y(t~)--f](x(s), y(s))x'(s) ds< 
t~ 

t~ \ c ~ v ~ c + s  

~(t) 

As x(t) is not  bounded,  the  last integral and  (C) (i) shows tha t  y(t) becomes negative.  

We now suppose tha t  (C) (i) fails and (C) (ii) holds. Again~ we have c<y(t)< 
< c +  e for t>t~. As R ' < 0 ,  y(t)-e-e, and  R(x(t), y(t)) -+G(~)-~ c~/2 for x(t) nnbo- 

unded,  we have y(t) > F ( ~  x, c) for t>t~. As ] is monotone  in y for fixed x and for 

t>t~, we obtain  

, z _ t ( x , F ( ~ ,  x ,  e ) )  x '  

~(t) 
An integrat ion ~rom t2 to t yields y(t).~y(t~)--(f)](s~o.~ F(c~, s~ c))ds which shows tha t  

y(t) becomes negat ive if x(t) -~ c~ in view of (C)(ii). Thus,  in any  c~se the  solution 

crosses the x-axis. A similar a rgument  in Quadrant  I I I  using G(-- ~)== ~ or (D) 

completes the  proof.  

REMARK 1. - Theoerm 2 is tailored for the  case in which f becomes small along 
lines y ~ e. I f  ] - ~  0 as y - ~  0 of order greater t han  y, then  (if) e~n be improved 

at  e==0. 

CONDIT[O~ (E). - Let  (C) hold for all c > 0 and suppose tha t  for each fixed x>x~, 
](x, y)/y is nondecreasing for 0 < y ~ for some e > 0 and  

co 8 
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Condition (F): Let  (D) hold for each c > 0 and suppose tha t  for each x ~ - -  xl, 
](x, y)/y is a nonincreasing funct ion of y for - - s  ~ y  < 0 for some e > 0 and 

- - o o  8 

- - ~  - - 9 1  

THEORE~ 3. -- Let  (2) and (Q) hold. Suppose tha t  G(~)--~ ~ or (E) holds and 

suppose G(-- c~)-~ c~ or (F) holds. Then all solutions of (3) are bonnded.  

P~oot~. - Let  (x(t), y(t)) be a solution of (3) with x(t l)~xl  and y(t) ~ O. We show 

tha t  the  solution crosses the  x-axis. I f  G ( c ~ ) =  ~ ,  then x(t) is bounded  on the  
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r ight  and one easily argues once more t h a t  the  solution crosses the  x-axis. Hence,  
we suppose (E) holds and x( t ) -> ~ .  By  the  proof of Theorem 2, if y ( t ) ~  0 for 
~11 t>~t:~ t hen  there  exists t2 with y ( t )<~  for all t>~t~. F r o m  (3) we obta in  

2y dy ldx  = --  2[](x, y) ly]y  2 - -  2g(x) 

which is l inear in y2 and  so 

x(O ~0) s 

x(t~) ~(t:) x(t2) 

• (t) s 

x(t~) x(t~) 

by  the  assumed monotouiei ty .  As x( t ) -> ~ ,  a contradict ion is obta ined f rom the 
assumed divergence of the integral in (E). A similar argument in Quadrant III com- 
pletes the  proof. 

I~]~A~X 2. - Theorem 3 improves results b y  Wn~LETT and W0~G [10; Ths. 3.2 
and 3.3] in three  ways. Firs t ,  (Q) reduces their  (2)" considerably. Second, t hey  
require  t ha t  (C) (i) and (D) (i) hold on arb i t ra r i ly  wide strips inst.ead of oar  arb i t rar i ly  
narrow strips. Third,  our integral  conditions in (E) and (F) are averaging type  con- 
ditions which replace thei r  pointwise requi rement :  

(E)' There  exists s ~ 0 such t h a t  for each c>1~ there  exists x~ such t h a t  

:(x, for x > x 0  

We nex t  offer a result, which interpolates  in a cer ta in  fashion between the condi- 
t ions of Theorems 2 and  3. Subsequent ly ,  we give example  showing tha t  all of these 
theorems are independent .  

Condit ion (G): Le t  G ( ~ )  < ~ and suppose t h a t  for each c ~ 0  there  exists e > 0 
such that either 

o o  

(ii) there  is a funct ion r: (e, c 4- e] -~  (0, ~ )  such tha t  r(y) is continuous and 
e - ~ e  

posit ive if y > e; f[ds/r(s)]d-~ B(c + s) - -  B(y)  exists for e 4 y  <c  + e with B(c) finite; 
Y 

for fixed x >  x: then  ](x, y)/r(y) is nondecreasing for c <  y <c-~-e;  and 

cx~ 
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Condition (H): Le t  G ( - - c o ) ~ c ~  and  suppose t h a t  for each e > 0  there  exists 

e ~ 0 such t h a t  e i ther  

(i) ; (  m~x  ] ( x , y ) ) d s = - - c ~ ,  or 

(ii) there  is a func t ion  r :  [-- c - -  s, c) --~ (0, co) such t h a t  r(y) is cont inuous and  
Y 

posi t ive  if y < - -  c; f[ds/r(s)]~ B(y) -- B(-- c--  e) exis ts  for - -  c ) y > - -  c -- e with  
- - C - - $  

B(--e) finite;  for fixed x < x ~  then  J(x~y)/r(y) is nonincreasing in y;  and  

ell/r(- x,  tt] d x  = - -  

- -  x 1 

T E ~ O R ~  4. - Le t  (2) and  (Q) hold. Suppose G(c~) = co or (G) holds and  sup- 
pose G(-- o o ) =  ~ or (H) holds. Then all solutions of (3) are bounded.  

P~oo~.  - We  show~ once more,  t h a t  a Solution (x(t), y(t)) of (3) wi th  y(t~)~ 0 
and  x(t~) ~ x~ subsequent ly  crosses the  x-axis.  This resul t  is clear if G(c~)_~ ~ and  
so we assume t h a t  (G) holds and  t h a t  x(t)-+ co. Thus,  we assume t h a t  the  solu- 
t ion  does not  cross the  x-axis so t h a t  R(x(t), y(t))-~d and  y(t)-~c>~O. I f  (G)(i)  
holds for this  c, t hen  a cont radic t ion  is ob ta ined  as in the  previous  proof.  Thus,  

we assume  t h a t  (G) (if) holds and  we t ake  t~ so large t h a t  c +  e>y( t )~  c for t>~t~. 
F r o m  (3) we have  

y' /r(y):--[](x,y)/r(y)Jy--g(x)/r(y)  

so along the  solution we obta in  

< -  x, x, c))] x ' .  

An in tegra t ion  will yield a contradic t ion.  A similar  a rgumen t  in Quadran t  I I I  will 

comple te  the  proof.  

EXA~eLES . -  Le t  g(x)~  1Ix 2 for  x > l  so t h a t  G ( ~ ) - - G ( x ) ~  1/x for x > t .  Le t  

](x, y ) =  [ 1 / ( 1 +  Exl)]h(y) for l~(y)>0. 

(a) I f  h(y)~  1-~ [sin~(1/y)]y 2, then  (C)(i) holds, bu t  (E) and  (G)(if) fail. 

(b) I f  h(y)-~ V ~ ,  t hen  (C) fails, (E) fails, and  (G) holds wi th  r(y)= V ~ .  

(c) If h(y)= ]YI, t hen  (C) fails, (E) holds, and  (G) fails. 

I~E~_~EK 3. - I f  solutions are  unique,  then  our boundedness  condit ions t r ans la te  
into existence of periodic solutions. I f  (2)' holds, t hen  the  boundedness  resul ts  become 

resul ts  on global a s y m p t o t i c  s tabi l i ty .  
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