Second Order Boundedness Criteria (*).

T. A. Burtox (Carbondale, Illinois, U.S.A.)

Summary. — See Introduction.

1. — Introduction.

In this note we present certain conditions for boundedness of solutions and their
first derivatives for a second order differential equation of the form

) &'+ f(@, ') @'+ gla) = 0

in which @'= dx/d?.
It is assumed that f: {(— oo, oo} X {— oo, c0) = (— o0, oo}, ¢ {— o0, 0o} > (— oo, oo},
f and ¢ are continuous, and

@) 2g@)>0 and fl@,)>0 it [zl>z

for some x,> 0.

Much has been written and continues to be written about this equation. Condi-
tion (2) allows (1) to include the classical problems of relaxation osecillations of which
the van der Pol and Liénard equations are examples, while selecting x,= 0 brings
us to the standard oscillation problems with non-negative damping.

Excellent surveys of these problems have been written in recent years and the
interested reader is referred to the books by SaNsoNE and ConTI [9] and REISSIG,
SansonNe and CoNtt [8] for detailed discussions. In addition, extensive bibliographies
have been offered in [3], [4], and [7]. Repeating those bibliographies here seems
unwarranted.

In the literature the problem specified by (2) is generally divided into three parts:

(2)/ rg(x) >0 if 240 and  flw,y)>0.
(2)" fle,9)>0 if 2?4+ y>M>0 and  ag@)>0 if p|>M.
(2)" flo,9)>0 if z|>M>0 and  agz)>0 if [#|>M.

(*) Entrata in Redazione il 26 febbraio 1975.
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Problem (2)" was surveyed by BusHAaw [5]. It governs the very concrete physical
problems in which a body in equilibrium is set in motion and subjected to a restoring
force which acts always to return it to the equilibrium position, together with a
friction force which always acts in a manner to slow the motion. In any case, one
writes (1) as the equivalent system

-
=1,

(3)

!

y=—Ho,9)y—g@).
By considering the function

(4) Viz, y) = Q)+ y¥2

with G(w) = f g(s)ds so that along solutions of (3) the derivative of V satisfies
0

(8) Vi@, y) = — g(z, y) y*

the author [1] pointed out that when (2) holds then any solution of (3) has |y(?)]
bounded for all future time. From this it was easy to see that all solutions of (3)
under (2) were bounded if and omy if each solution starting in Quadrants I or III
subsequently crossed the g-axis [1]. A synthesis of [1] and [2] yields the following
result.

THEOREM 1. — Suppose that (2)" holds and that either
() flz,y)= h(x)r(y) with h and r positive functions, or

(i) K=, y) = h{@)|yl* with h positive and 0 <a< 1. Then all solutions of (3)
are bounded if and only if

oo
(i) [Th(e) + |g(a) 1do = & oo.
¢

Problem (2)” governs physical problems of more complexity than (2), yet the
basic ingredients are the same. There can arise relaxation oscillations, but not of
the van der Pol or Liénard type, as f must be non-negative for large |y|. WILLETT
and WoNa [10] observed that when (2)” holds, then Equation (5) still holds and
for x*-4-y2> M, V'<0 so that independent of the fact that V is no longer positive
definite (and hence is not a Liapunov funection) it is still an immediate consequence
that for any solution (x(f), y(#)) of (3), |y(#)| is bounded. They then, of course, con-
cluded that all solutions of (3) under (2)” are bounded if and only if any solution of (3)
entering Quadrant I or III with |#(1)|>> M subsequently crosses the z-axis. This
work wag done under the assumption that solations of (3) are unique, but careful
analysis of their work shows that assumption unnecessary. Willett and Wong also
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obtained a strong condition for unboundedness of solutions and an interesting result
on boundedness in case (2)” holds but f(x,%) >0 as y—>0 in a certain monotone
faghion.

Problem (2)” has been considered to be far more difficult than the others and the
results are considerably less sweeping. The main exception to this is the work by
GRrA®F [7] when f(z, y) = h(r)y and a foreing function is included. He allows ¥ >0
and shows that Condition (iii) of Theorem 1 is very nearly necessary and sufficient
for boundedness even with a periodic forcing function. However, when f does not
have this simple form, then the usual conditions used for boundedness take on a
harsh form of point by point inequalities, rather than «averaging » conditions of
the type of (iii). Furthermore, a theorem stating that (2)” implies |y(f)| bounded
is missing from the literature and such a theorem is, in fact, false. Thus, investigators
have been unable to reduce boundedness to showing that solutions in Quadrants I
and IIL cross the x-axis. It is generally required that the investigator construct
intricate Jordan curves hounding solutions.

ReEmArK 0. — The present investigation began under the assumption that (2)"
holds and our intent was to improve the results of WILLETT and Wona [10] showing

boundedness in the difficult cases resulting from f(x, y) becoming wery small along
+co
lines given by y = constant. Under (2)" boundedness is trivial if [ g(s)ds == -} oo

0
and so we assumed that either G(co)< oo or G(— o)< co. (In fact, Willett and
Wong had assumed both of these integrals to be finite.) Under that assumption,
we discovered that it was then possible to make a mild continuation hypothesis
allowing us to treat the more general case (2). This is a surprise in that under (2)",
G( 4 00) = 4+ oo implies boundedness, but under (2) the condition of G(- o) = -+ oo
can actually cause unboundedness. The following example and Lemma 2 prove this

statement.

ExAMPLE 1. — Let g(z) = x and define 8= {{z, ¥): ¥y >0 and |z| <2}, U= {=, ¥):
y>1 and [z]<1, and let H be the complement of 8. Suppose that f(z, y) is a con-
tinuous function satisfying f(e, y) =0 on H, f(x,y) <0 on 8, and flz,y)<—1 on U.
Under these conditions, if («(f), y(t)) is the solution of (3) starting at #(0)=2 and
y(0) =2, then z3(t) 4 y(!) = 8 as the solution traverses the circle in the clockwise
direction until x = — 2 and y = 2. At that time, x2(¢) + %) increases until »(f) = 2
and y{I) > 2, say at t==1{,>0. Then z2(f) -+ y%(f) =4 + 92(%;) until x(f)= —2 and
y({t) > 0. The pattern is repeated infinitely often. In fact, the funection V(z,y)=
= (@®-} ¥*)[2 satisfies V' >0 along solutions of (3) with ¥’ positive on 8. It is easily
seen that the solution spirals off to infinity.

We next note that under (2), solutions of (3) can have finite escape time. This
would happen, for example, if f(x,y) = (2* — 1)y® as elementary investigation will
show. The solution starting at x,= 0 and ¥, > 0 but large will have the property
that y{t) — oo before a(f) reaches 1, independent of g(z).

25 - dnnals di Matematicn



386 T. A. Buorron: Second order boundedness criteria

2. — Continuation and boundedness.

Our first result embodies a continuation hypothesis which is generally not directly
verifiable from the f and g. As the proof is long and cumbersome, we omit it and
offer instead a complete proof of a weaker result which is readily verifiable and which
may indicate to the interested reader just how to construct a proof of the first result.

LEMMA 1. — Let (2) hold with G(oo)<oo or G(—oo)< co. Suppose that for
each y, >0 the maximal solution y(z, ®,, ¥,) of

(3) y(dy/dw) = — (@, y)y — g(@)

with y(%g, 24, ¥y) = ¥ and — 2y <@y < %, can be continued as a solution for x>z,
until y(x, 4, ¥e) =0 or until z = »,; then there exists K(z,, 9,) > 0 such that each
solution (@(2),y(t)) of (3) defined at t=1, with #(l,) =@, and y(f,) =y, satisfies
y(t) <K(w,, 9,) on its maximal right interval of existence past #,. Suppose that for
each y,< 0 the minimal solution y{z, %, ¥,) of (3)" with y{(zy, @y, %)= % and — x, <
< @, <#; can be continued as a solution for »<w, until y(x, 2y, 9) = 0 or until
#= —a,; then there exists K(w,,¥y,) > 0 such that each solution (x(f),y(t)) of (3)
defined at {=1, satisfies y{f)>— K(xz,, ¥, on its maximal right-interval of defi-
nition.

LeMumA 2. — Let (2) hold and suppose there is a continuous function ¢: (— oo, co) —
— (0, oo) such that for — 2y <o <2, we have

)=~ fw, 4)y —glx) for y>0,
9y =Kz, y)y -+ g(x) for y< 0,

Foo
f[?//q(y)]dy= + oo, and G(eo)< oo or G(— co)<< co.
0

Then for each (2, ¥,) there exists K(x,, 9,) such that any solution (x(t), y(¢)) defined
at any f, with a(t,) = z, and y(f,) = 9, can be continued as a solution of (3) for
all ¢4, and for all such ¢ we have |y(t)] <H(x,, ¥s).

ProoOF. — Notice first that if we can show that |y(?)| is bounded so long as (z(t), ¥(?))
iz defined, then we can conclude that all solutions ean be eontinned for all future
time. To see this, note that |y(1)] <K implies from (3) that |'(?)| <K and so |#(f)] <
lo(te)| -+ E(t—1,). It is known [6; p. 61] that a solution (z(t), y(f)) on [t,, T') can fail
to be defined past T only if x2(¢) -+ y%(f) = oo as t =T, Our inequalities prohibib
this behavior.

Our proof consists of finding a Liapunov function with several curves of disconti-
nuities and matching together the « level » curves to form either one or two curves
bounding y(t).
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Let (2, ¥,) be given. We will find K(x,, y,).

Case I. Suppose G(oo) < oo.

We define
fg(s)ds it 1>,
G(r)=
fg(s)ds if z<o
i
and define

R(z,y) = G(x)+ y3/2 .

Case I(a). Suppose G(— o) < co.

Then consider the set of points §; in Quadrant IV satisfying R(x, y) = d, where
dy= G(o0) + G(— o) + ¥2/2 and #, < <oco. We have R'(x,y)<0 for #>, and so
no solution of (3) crosses 8; from above. Now §; intersects the line 2=, at a

v
point (x4, 4,). Clearly, ¥, << 4,. Define W(x, y)=x -+ f[s/q(s)]ds for y< 0 and —a <
0

<w<z;. We have W=y —[flx, ¥)y + g(x)]y/q9(y) <0 along solutions of (3) on its
domain of definition by (Q). Let S, denote the set of points with y < 0 satisfying
Wz, y) = W(wy, y1) for — oy <@ <@;. No solution of (3) crosses §, from above. Also,
8, intersects the line » = —x; at a point (— @, ¥,) With y, < ¥, << — |9|- Now de-
fine a get S, in Quadrant ITI for — co<< ® <—; by R(2, y) = R(— 1, ¥,). We have
R'(z,y) <0 for # <— x,. By choice of d;, (x,,y,) lies above 8, U 8, U 8, and (x(¢),
y(t)) cannot cross that set for increasing ¢.

In a similar manner, let 8; be the set in Quadrant IT for — oo << & <— », with

R(z,y)=d,. Define y,>0 by R(—w;,¥ys)=d,. Define Z(z,y)= —2x -+ f[s/q(s)]ds
0

for y >0 and —x<w<a,. Let §; be the set of points with ¥y >0, — & <w<a,,
and Z(z,y) = Z(— 21, ¥s). Then on its domain of definition we have Z'= —y —
— e, 9y + 9(@)]y/ely) <0 by (Q). Determine y,>0 by Z(2, Ys) = Z(— @1, ¥s).
Finally, let §; be the set of points with y > 0, x>, and Rz, y) = R(x., %,). We
have R'<0 for >x,. Thus, the set 8, U §; U §; is an upper bound for (z(t), y(t)).
We pick KH(z,,y,) = max|[—¥,, y,]. This completes the proof of Case I(a).

Case 1(b). Let G(— co)= oo.

Then let dy= G{oo) + H— @, — |1,]) + ¥3/2 and consider the set M, for x >um,
and y < 0 defined by E(r,y)=d,. No solution of (3) crosses M, from above. De-
termine ¥, << 0 by R(x:, ¥:)=d,. Continue from (x,, %) with a set M, defined by
Wz, y) = W(a, y1) to a point (— i, y,). Continue from (— 1, y5) to (— @y, —¥,)
with a set M, given by E(z,y)= R(—x.,%,). Now determine the set M, by
Zlx,y) = Z(— @1, — ¥Y) With y >0 for —z;<x<2,. Finish the curve with a set M,
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defined by R(z,y)= R(x,y,) for y,> 0 and ¥, the solution of Z(z;, yy) = Z(— 21,
— 9,). The set M; is defined for o; <@ << oo. Now M, U ... U M; is a horseshoe shaped
set, open to the right, bounding (2(?), y(f)) from above, from below, and on the left.
Pick K(x,, %) = max[— ¥,, ¥:). This completes the proof of Case 1.

Case II. Suppose G(oo) = co.

Then it must be (by (Q)) that G(— oo) < oo. One repeats the proof of Case I(b)
starting in the left half-plane and constructs a horseshoe shaped curve opening to the
left which bounds (2(t), y()). The reader should experience no difficulty in filling
in the details. A sketeh is advisable.

LemMA 3. — Let (2) and (Q) hold. Then every solution of (3) is bounded if and
only if each solution of (3) entering Quadrants I or III with |(f,)| >, subsequently
crosses the x-axis.

Proor. — Given the result of Lemma 2, this is essentially contained in both [1]
and [10]. If (#(f), y(?)) is any solution of (3), then there is a constant K with |y(¢)| <K
for all future time. We first suppose that any solution crosses the x-axis as required.
Now the maximal solution of y(dy/ds) = —f(z, y)y — g(») through (max[|w(t)], z,], K)
for x increasing crosses the z-axis at some (z,, 0), forming a eurve which, together
with the line from (x,, 0) to (x,, — K) bounds x(f) on the right, as ’'=y < 0 in
Quadrant IV. A similar construction in the left half-plane is accomplished by taking
a solution of the same equation through (— max[|z(,)|, #,], — K) intersecting the
z-axis at some (— z,, 0), and continuing with a line from (— x;,0) to (— s, K),
which bounds the solution on the left. Thus, the x-axis intersection requirement
implies boundedness.

Sappose there is a solution (x(t), y(1)) entering Quadrant I with #(f) > o, which
does not cross the z-axis. As 2'=y >0 and % <0, if z(!) is not unbounded, then
x(t)— X and y(t) — L as t - oc.. Clearly, L=10 as #'=y and we say #(f) > X < oo.
Thus, ¥’ — — g(X) and so for large ¢ we have y'<-—g(X)/2. An integration of this
last inequality implies that y(#) becomes negative, a contradiction. This completes
the proof.

We next offer a sufficient condition for unboundedness of solutions of (3) which
is, in fact, a fairly trivial generalization of Theorem 3.4 of [10]. It is therefore pre-
sented without proof. The only real change being that we have replaced zero with
a positive number ¢.

LEMMA 4. — Let (2) hold. If there exist numbers ¢>0 and &> 0 such that

oo

{a) f( max f{z, y))dfo< oo, or

eyssete

— o0

® [(_ min_ e y))dw>— oo,

then (3) has unbounded solutions.
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In the following results on boundedness, we make use of the fact that if there
are solubions in the Quadrant I (or III) with |#(f)| > », which do not cross the z-axis,
then y(t) converges to a constant. Thus, conditions for boundedness need only be
given on arbitrarily narrow strips, say on ¢<y<¢-+¢ and o <o <<co.

For the next theorem we need the following conditions, arrived at in part by
reversing the hypotheses of Lemma 4. For convenience in notation, we now define

F(oo, 3, 0) = [2(G(o0) — G(x) + ¢2/2) ]} for o>,
and

F(— o0, @, ¢) = [2(G(— o) — G(2) 4 ¢2/2) ]} for w <— ;.

Condition (C): G(oo) << oo and for each ¢>0 there exists &> 0 such that either

(@) j(c;yxggaﬂx, y)dz =+ o, or

{ii) for each fixed z>x;, f(»,¥) is nondecreasing in y for ¢<y<e+ ¢ and

ff(xi F(OO? x7 c))d{}/’: + o0,
@y

Condition (D): G(— oo) << oo and for each ¢:»0 there exists & > 0 such that either

-0

) [( max f(o,p)de=—oco, or

—CBYZ— (&
(ii) for each fixed # <— @y, f(v,y) is nonincreasing in y for —e¢>yY>—c¢—¢

and_f?(m, — F(— oo, @, ¢)) dt = — oo.

—ay

THEOREM 2. — Let (2) and (Q) hold. Suppose that either ({oo) = oo or (C) holds
and suppose that either G{(— oo)= co or (D) holds. Then all solutions of (3) are
bounded.

Proo®. — We show that any solution entering Quadrant T with x(¢,) > , crosses
the x-axis.

The derivative of the function R(x,y)= G(zr)+ y2/2 along solutions of (3) yields
R’ <0 for a(t)>x,. If G(oco)= oo, then clearly z(t) is bounded so that the argument,
used in the proof of Lemma 3 brings the solution to the z-axis. We then suppose
that G(o0) << oo 50 that (C) holds and R(x(t), y(t)) —d as ¢ — co. In fact, d>G(co)
otherwise we would again have x(¢) bounded. Thus, as ¥'<0, y(f)—c¢>0 and so
by (C) there exists ¢ > 0 such that either (i) or (ii) holds. Also, there exists #,>1,
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with e<y(f)<c+ e for t>t,. If (i) holds, then y'<—f(o,y)a’ and so

3
y() <y(t)—[1(a(s), y(®)a'(s)ds <
ty
£ 28}

<y(t2)—f( min f(w(_s),y))m’(s)ds:y(t2)~ ( min f(s, y))ds,

e{y<ete cy<ete
24 @(tz}

As x(?) is not bounded, the last infegral and (C) (1) shows that y(f) becomes negative.

We now suppose that (C) (i) fails and (0) (ii) holds. Again, we have ¢<y(t) <
<c+ e for t>t,. As R' <0, y(t) -0, and R(z(1), y(1)) —> G(co) + ¢2[2 for x(t) unbo-
unded, we have y(?) > F(oo, %, ¢) for {>%,. As fis monotone in y for fixed z and for
t>t,, we obtain

y' < — f(2,F(co, , 0)) @' .

(8

An integration from 1, to ¢ yields y{(f) <y{l,)— f f(s, F(oo, 8, ¢))ds which shows that
a(ts)

y(t) becomes negative if (f) - oo in view of (C)(ii). Thus, in any case the solution

crosses the x-axis. A similar argument in Quadrant ITI using @G(— co) == co or (D)
completes the proof.

REMARK 1. — Theoerm 2 is tailored for the case in which f becomes small along
lines y==¢. If ->0 as y—0 of order greater than y, then (ii) can be improved
at ¢=0.

ConprrioN (E). — Let (C) hold for all ¢ > 0 and suppose that for each fixed x>y,
f(z, ¥)ly is nondecreasing for 0 <y <e for some £¢>0 and

fg(s} exp [ [f(u, F(oo, u, 0)[F(o0, u, 0)] duds ==+ oo

&Ly &y

Condition (F): Let (D) hold for each ¢ > 0 and suppose that for each x <— a4,
fle, y)[y is a nonincreasing function of y for —e<y < 0 for some ¢>0 and

—fg(s) expf[}‘{u, F{— oo, 4, 0)) [F({— oo, u, O)] duds = — oo.

— &y —

THEOREM 3. — Let (2) and (Q) hold. Suppose that G(oo)= co or (E) holds and
suppose G(— oo) = oo or (F) holds. Then all solutions of (3) are bounded.

ProoF, — Let (#(f), y(1)) be a solution of (3) with @(t,) >, and y(t) > 0. We show
that the solution crosses the z-axis. If G{oo)= oo, then z(!) is bounded on the
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right and one easily argues once more that the solution crosses the x-axis. Hence,
we suppose (E) holds and () — oo. By the proof of Theorem 2, if y(¢) > 0 for
all ¢>1,, then there exists {, with y{f) <¢ for all 1>%,. From (3) we obtain

2y dy|dw = — 2[f(@, ¥)[y1y® — 29(x)

which is linear in %? and so

(6} (i) s
y*(@) exp [[21(s, 9() Jy(s)] ds = y2(@(t)) —[29(s) exp [[21(a, yiw) Jy(w)] duds <
{t) al(ts) a(ty)
a(t) ]
< ya(t) — [29(s) exp [ [27(s, F(oo, u, 0)) [F(co, u, 0)] duds
m(ta) © wlty)

by the assumed monotonicity. As #(f) - oo, a contradiction is obtained from the
assumed divergence of the integral in (H). A similar argument in Quadrant III com-
pletes the proof.

REMARK 2. — Theorem 3 improves results by WirtLETT and Woxg [10; Ths. 3.2
and. 3.3] in three ways. First, (Q) reduces their (2)" considerably. Second, they
require that (C) (i) and (D) (i) hold on arbitrarily wide strips instead of our arbitrarily
narrow strips. Third, our integral conditions in (E) and (F) are averaging type con-
ditions which replace their pointwise requirement:

(B}’ There exists £ > 0 such that for each ¢>>1, there exists #, such that
f(m, [20(@( o0) — G‘(m))]é) [20(@( co} ~— @(w))]%> [(I+e)e—11g(x) for z>ux,.

We next offer a result which interpolates in a certain faghion between the condi-
tions of Theorems 2 and 3. Subsequently, we give example showing that all of these
theorems are independent.

Condition (G): Let G{oo) < oo and suppose that for each ¢>0 there exists & > 0
such that either

(i) j?(c min f(z, y))dw:: co, or

SyLote

(ii) there is a function 7r: (¢, ¢+ &] — (0, oo) such that »(y) is continuous and
c+e
positive if ¥y > ¢; f{ds/r(s) L Ble+-¢) — B(y) exists for ¢ Ly <c-+e with B(c) finite;
¥

for fixed » >, then f(x,y)/r(y) is nondecreasing for ¢< y <c-+¢; and

©o

f[f(m, F(oo, @, 6)) fr{F(oco, w, c))] dw =+ co.

Ty
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Condition (H): Let G(— o) <oo and suppose that for each ¢>0 there exists
£ >0 such that either

(i) f( max f(z, y))ds:—oo, or

—n — Y= —C—E
(ii) there is a function 7:[— ¢ —e&, ¢) — (0, oo} such that »{y) is continuous and

v

positive if y < —e¢; f{ds/r(s)]g B(y) — B(—¢—¢) exists for — ¢>y>—c¢— ¢ with
ot

B(— ¢) finite; for fixed @ < 2, then f(,y)/r(y) is nonincreasing in y; and

— oo

f[f(w, F(— oo, z, ¢)) [r{— F(— oo, @, c))] dx = — oo,

—y

THEOREM 4. — Let (2) and (Q) hold. Suppose G{oo) = oo or (&) holds and sup-
pose G(— oo) = oo or (H) holds. Then all solutions of (3) are bounded.

PRrOOF. ~ We show, once more, that a solution (2(t), y(?)) of (3) with y(t;) >0
and #(t;) > @, subsequently crosses the z-axis. This result is clear if G(oco) = oo and
50 we assume that (G) holds and that z(f) — co. Thus, we assume that the solu-
tion does not cross the x-axis so that R(x(),y()) —d and y(f) —»¢>0. If (G) ()
holds for this ¢, then a contradiction is obtained as in the previous proof. Thus,
we assume that (&) (il) holds and we take , so large that ¢--e>y{f) > ¢ for t>1,.
From (3) we have

¥ fr(y) = — [z, P rn)]y — gl=)r(y)

s0 along the solution we obtain
Y lr(y) <— [f(mr F(oo, w, 0)) /7‘(F( o0y Ty 0))] @' .

An integration will yield a contradiction. A similar argument in Quadrant IIT will
complete the proof.

BxaMPLES. — Let g(x) = 1/2? for >1 so that G{oo) — G(z)= 1w for x>1. Let
flw, y)= [1/(1 + (o)) [h(y) for h(y)>0.
(@) If h(y) = 1+ [sin®*1/y)]y?, then (C) (i) holds, but (E) and (G) (ii) fail.
(b) Tf h(y)=Viy|, then (O) fails, (B) fails, and (G) holds with r(y)="[g].
(¢) If h(y)= |y|, then (C) fails, (E) holds, and (G) fails.
REMARK 3. — If solutions are mnigue, then our boundedness conditions translate

into existence of periodic solutions. If (2)’ holds, then the boundedness results become
results on global asymptotic stability.
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