The Classes and Characters of Certain Maximal
and other subgroups of 0,,,,(2) (*.

R. H. DYE (Newcastle upon Tyne, England)

Summary. — Q,,.,(2) is the group of a non-singular quadric in PG(2n+1,2). The related
finite geometry is used to give a simple and systematic determination of the classes and
characters of the mawximal subgroup fiwing a point on the quadric, of the inlersection of this
stabiliser with the simple subgroup of O}, ,2(2) of index 2, and of other subgroups. Bxplicit
results are tabulated for groups of orders 64, 128, 576, 960, 1152, 1920, 46080, 92160,
1290240, 2580480.

1. — Intreduction.

An orthogonal group 0;,,.4(2) of degree 2n--2 over the field of two elements
is the group of a non-singular quadric £ in a [2n -+ 1], a projective space of di-
mension 2n -+ 1 over that field. For brevity we write O,,,, for Oy, ,(2) hereafter.
The maximal subgroup of the title is the stabiliser Aly, . in Oy, of a point m,
on 2. That other large subgroup of Q,,,,, the stabiliser &,,,, of a point p, off 2, is
the direct product of a group of order 2 with the symplectic group Sp..(2), and so
may be considered as well-known. Here we shall examine AMy,,,, and in partic-
ular determine its classes and characters.

The tangent prime M, to 2 at m, is the join of m, to a [2n —1] meeting 2 in a
non-singular quadriec @. The group in M, of the cone joing m, to @ is a copy of My, -
Since the geometry of this cone may be inferred from that of ¢ we expect that in-
formation for M., can be obtained geometrically from properties of the group 0,,
of . This is indeed the case; My, ., is the semidirect product of an elementary
abelian group A,, of order 2°» with O,,. The action of the centralisers of elements
of O,, on the corresponding spaces of fixed points in the [2# —1] gives the classes
of AMyp,, from those of O,,. Further, similar geometric considerations allow one to
write down the characters of AG,, ., from those of O,, My, and §,,. The method
ig systematic and simple, both geometrically and arithmetically, in practice.

There are two kinds of non-singular quadric in [2n--1]; ruled quadrics con-
taining [#], and non-ruled quadries containing only [#—1]. There correspond two
kinds of Oy, ,. When we wish to indicate to which type of quadric a group belongs
we attach a superfix (1) or (2) according as the quadric is ruled or not.

(*) Entrata in Redazione il 7 giugno 1974.
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To determine the periods and types of powers of members of M,,.,, expeditously
it is helpful to have at hand similar information for 9,,,,. The largest O,,, , which
has been explicitly deseribed in the literature is O (13), and this contains O, 0@,
O, OP. We shall obtain the classes and characters of MY, AP, M, ME, ML
of respective orders 8, 24, 1152, 1920, 2580480. The results for A", the dihedral
group, and A, the symmetric group X, on 4 symbols, are familiar, but we need a
brief geometric encounter with them on our way to the characters of MY and M.
The group O(Sl) occurs a8 a primitive collineation group in complex 7-space, and has
been studied as such by Hamarrn (18). All our subgroups thus occur as ecomplex
collineation groups. J(Jg) is the group generated by projections centred on the 56 ver-
tices of a certain complex figure B, (18, p. 69). MY and MY are primitive complex
collineation groups which contain homologies: MITCHELL (21, pp. 1, 2) lists all such
groups. LiTrLEwooD (19, p.190; or for a book reference 20, p. 277) obbains the
characters and classes of M by restricting characters of O, which is a copy of X.
But as Littlewood himself says (19, p. 150), his procedures are tentative in nature:
when applied to MY they become involved and laborious, chiefly because the
64 classes of M occur in only 48 classes of OFY. It was this that provoked the search
for the sirmple and systematic method presented here.

It is necessary to have geometric descriptions of the classes of O, 99, 0P, 0@,
We deduce such descriptions from information available for 9. These descriptions
have some interest in themselves. O of order 72 occurs as a transitive subgroup
of X, in (19, p. 187; or 20, p. 275), while OP is a copy of X,. CoxwrLL (3) discusses
the geometry of O when establishing its isomorphism with X, but the classes are
not mentioned. O is the famous cubic surface group of order 51840, and
Epcre (12, pp. 642, 643) has deseribed some of its classes from our viewpoint.
Frame (14, p. 94), Hamirn (18, p. 78) and Evce (11, p. 146) have obtained the com-
plete classification in various other settings. Besides the familiar characters of
0, 9@ and 00 we need only those of T, % and §. Bach ¥, is the direct
product of X, by X;, while ¢ is the direct product of X, by Xy, so their characters
are well-known.

One advantage of our approach, not so far apparent, is that it yields results not
only for Al,.., but also for any subgroup of Al,, ., containing A,,. A Sylow 2-sub-
group Sy, of Oy, is one such subgroup, and we obtain, in particular, an inductive
description of its classes. We give the classes and characters of S and S, each
of order 27, and isomorphic. Another such subgroup is the stabiliser Bypi» in Oguys
of a tangent line to Q through m,. Although the classes of G,,,, can be obtained
readily from those of ,,, the determination of the characters requires a knowledge
of the stabiliser of a point on a non-gingular quadric in [2n]. Such a theory has
been worked out, but its presentation must be left to another day. Although there
are similarities with the results in [2n 1 1] there are also significant differences due
to the existence of a kernel for a guadric in [2n] (12, p. 630). Since we need to give
a geometric interpretation of the classes of " in order to find the characters of M,
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we make a second use of this information and quickly determine the classes of GY
of order 92160.

Ognp2 has a subgroup O, , of index 2 which is usually simple (6, p. 65). Each
of Monye, Senrzs Tanie, Banye has a subgroup of index 2 in 0, .,: we denote these
by Mg os S5 oy Tonisy By o respectively. Since A, is in O, , these fall within our
ambit. For each of the groups mentioned above whose classes and characters are
explicitly found we determine, at the same time, the classes and characters of the
¢ half-group ». MDT of order 576 is another primitive complex collineation group
containing homologies. Miss Hamill’s paper (17) is devoted to the classification of
its operations in that representation. ML+ and BYP* have been studied in connec-
tion with triality (7, pp. 537, 538, 539).

It is convenient to recall here some notation previously used for quadrics over
GF(2) (7;12;13). As suggested by our choice of symbols above, the points of the
[2n - 1] will be called m or p according as they are on or off £2. Lines are of types
g, ¢ t, s according as they meet £21in 3, 2,1 orno m. At is a tangent line and a ¢
is a chord.

2. — The groups Ay, .0, Mshis (R>1).

2.1, — We may take coordinates (&, ¥; %, 21, ..., fany) = (%, ¥; '} of the [2n - 1]
8o that Q is given by

1) wy + Q(2) = BY + Zo2n + #18np1t oo b Bpafana + AR I+ ) =0,

where 1is 0 or 1 according as £ is ruled or not (4, p. 197). Since the only non-zero
scalar is 1 a point has a unique vector. Likewise an element of 0, , has a unique
matrix which must fix the above form, so the group of the quadric is the orthogonal
group of the quadratic form. Since the only possible eigen-value of a merober 4
of 0,,,, 18 1 the fixed points of 4 correspond to the fixed vectors and form a sub-
space. For brevity we call this the fiwed space of A.

Oua 0 18 transitive on the m (8, p. 33), so we may take m, to have coordinates
(1,0;0'). Then its tangent prime M, is given by y == 0, and so joins m, to the
[2n—1]:2 =y ==0. This space €, is the polar space with respect to 2 of the ¢
joining m, to m, with coordinates (6,1; 0'). Any point of C; has a vector of the form
(0, 0; z'): we shall call the point z and take z’ for its coordinate vector in C,.
The section @ of £ by C, is given by Q(z) = 0, 80, from (1), @ is non-singular and
is ruled or non-ruled with Q.

2.2. - Let #,, be the subgroup of those members of A,,,, which fix each line
in M, through m,. A point of M, is either fixed by an element 4 of #,, or is taken
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to the third point on its join to m,. Hence 4 must have the form

1 vy @
A=}10 1 ¢
0 o I,

We readily see from (1) that 4 fixes £ if and only if
{2} yv==0{a) and B = (Clu, Haprs rrs Canry Ooy Ligorey Oy} -

If =0 then =0. Otherwise @ is the prime coordinate vector of the polar
[2n-—2]in O, of « with respect to . We write this 4 as (a, L,). Matrix multiplica-
tion gives

3) " [Z'ﬂ)(a27 Izn) = (&, -+ o, Izn) .
80, there being 2% choices for a, we have

LeEMMA 1. - 4, is an elementary abelian group of order 2°=.

Any point not in M, has for its vector {u, 1;«’) for some g and o. The point
is on 2 if and only if p=Q(a), in which case (a, L,) takes it to m,. Every line
through m, but not in M, is a ¢ containing, besides m,, just 1 m and 1 p. Since each
point of €, is polar to m, the lines through m, in M, are g or ¢ according as they
meet C, in m or p. We deduce

LEMMA 2. — A,, acts transitively on the ¢ through mq, the m off M,, and the p off M,.

2.3. — We consider the stabliser in ly,., of m,, or, equivalently, of the
chord mym,. Using the fact that each member of this stabiliser fixes C,, we quickly

100

see from (1) that it consists of all {0 1 0} with a in the group O,, of §. We
100 00a

denote [0 1 0') by (0, a): this is consistent with our earlier motation if a = I,.

00a
The stabiliser, the set of all these (0, @), may, without confusion, also be called O,,.
We may prove

LEMMA 3. — Mynys 18 the semidivect product Ay, Osp.

ProoF. — If 4 is in M, then there is, by Lemma 2, an (a, L,) such that
(o, I,) A fixes m, and so is in O,,. Hence Mg, is A5, Opyn. Moreover, #,, is normal
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in M., and, as a glance at the matrices (a, L,) and (0, @) shows, intersects O,
trivially. Hence the product is semidirect, and the Lemma is proven.
We shall write (a, a) for (a, I,,)(0, a): this conforms with the previous notation.

2.4. — Let L be the fixed space in C, of a@ in O,,. We denote the polar space
of L with respect to @ by L. If Lis an [r] then L'is a 2rn—r—2}. In§3 it will
be necessary to distinguish the (&, @) with « not in I’ from the other (o, ). We
now give some preparatory lemmas for the former set. Corresponding results for
the latter set will arise as corollaries of the discussion of conjugacy in §3. TFirst
we need

LEMMA 4. — The non-zero wvectors of Im(a-+ L,) are the coordinates of the
points of L.

Proow. — If L is an {r] then e~ I,, has rank 2% —¢-—1, so the points of C,
with coordinate vectors in Im (e I,,) form a [2n—r—2], say N. Since L' is a
[2pn — 7 2] we need only show that N is contained in L', which is the intersection
of all primes of C, that are fixed by a. If Iis the prime coordinate of a fixed prime
then U'a=1. Hence, for any z,

Va+Lys=lazs+Vz=Uzs4+1Uz=0.

So each point of N lies in every fixed prime and thus in I/, and the result is proved.

LemMa 5. — If o 48 a point of C, off L’ then the space of fized poinis of (o, @) is
the join of my to the iniersection of L with the polar prime of a.

1y Ba
Proor. ~ The matrix of (e, @) is, from §2.2, 2.3, 10 1 0 ]| where B and »
Qa a
are as in (2). Hence the point {z,¥; z) is fixed if and only if

v+ pBas=0; oytaz=z.

By Lemma 4 and the second equation y = 0, so the fixed points are in M,. Then
the equations become

whieh are equivalent to
Bz=0; az==x.
Since B is the coordinate vector of the polar prime of & we have the result.

‘We may notice that if a= 0 or « is in L’ then the same argument shows that
the fixed points of (&, 4) in M, are those in the join of m, to L.

2 — Annali di Malematica
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2.5. — One immediate consequence of Lemma 5 is that if as=0 then the fized
space of (a, L,,) is the polar [2n—1] of the line mya with respect to 2. In the ter-
minology of (10) this line is the awis of the involution (e, I,,). Further,
by (10, pp. 62, 65) we see that each (a, L), and hence #,,, is contained in 9, ..

The Dickson invariant of (0, a) in O,,,, is the same as that of ¢ in 0,,. This
follows immediately from equation (21) of (6, p. 65); see also (4, p. 206). Thus (6, p. 65)
O, ., intersects Oy, in OF . Hence M, intersects O,, in OF and so, by Dedekind’s

rule, we have

LEMMA 6. — Mof, ., is the semidirect product #,, 0.
We may now justify the title by proving

. . » + .) . - +
THEOREM 1. — Ay, 48 mazimal in Oye, and Mg, ., 18 mazvimal in Og, .

PROOF. ~ A point m on @ is moved to the third point of the line mm, by
those (a, I,,) with « not conjugate to m. EThus, gince O,, is transitive on the points
of @, My, i8 transitive on the m of M, other than m,. This set can, by § 2.2, only
be empty if ¢ has no points. From (1) this is 80 only if » =1 and @ is non-ruled.
Hence, by Lemma 2, A has two orbits on £ and all other Ab,,,, have three orbits:
m,; the other m in M,; the m off M,.

Suppose that the subgroup X of O,,., strietly containg Ay, ,,. There must be
elements of J¢ moving m,. Hence for the case of M2 the group ¥ is transitive on
the m of . For the other A, ., there are at most two orbits under J€. Suppose
there are two. Then either the m in M, other than m, or all the m of M, form an
orbit under J. But the m in M, other than m, span M,: to see this observe from (1)
that if @ is ruled then the vertices of the simplex of reference in C, lie on @; while
if @ is non-ruled and n>1 all but two of these vertices are on @, and the third
points of the join of the other two to the point 2z with 2, =2,=1 and 2,=0
otherwise are m. Hence, in either case, every element of J fixes M, and thus m,.
This is impossible. Hence ¥ has one orbit of m. The indices of Ay, in K and Oy,
are thus equal, each being the number of m on L. Hence I is Oy, , and My, ., 18
maximal in O, ;.

We may repeat the proof for A, ,, using the transitivity of 0,, on the m of C;
see (9, p. 419).

2.6. — Bach subgroup of M, , containing A, is the semidirect product of A,
and the intergection of the subgroup with O,,.

The By, fixing a ¢ through m, contains A,, and meets O,, in the stabiliser .
of the point p, of intersection of the ¢ with C,. Associated with p, is a unique trans-
vection {p,} whose fixed space is the polar [2n—2] of p, with respect to @. T, is
(9, p. 421) the direct product <{{p.}> X ¥, where T, is a copy of Sps,_»(2). Thus
Banys 08 the semidirect product #,,%,, and G ,, is 4,5, .

A Sylow 2-subgroup of ACs,,, must contain the normal #4,,, and so is the product
of A,, with an 8,,. But Al,,., has index (27" F 1427 4+ 1) in On,., the upper



R. H. DYu: The classes and characters of certain maximal, ote. 19

sign being taken if and only if 2 is ruled, since this is the number of m (22, p. 302).
Hence #,,8,, is an 8.,,. Likewise #,,S) is an 8 . ,. Although we shall not use
the information it is worth remarking that the usual description of Borel subgroups
a8 stabilisers of flags follows immediately by induction.

3. — The conjugacy classes.

3.1. — We obtain the clasgses of the group #£,,§ where § is a subgroup of O,,.
Any subgroup § of O,, gives a semidirect product #,,§ containing #4,,. We prove

THEOREM 2. Let C be a conjugacy class of G. Suppose that the space of fixed
points in C, of an element of Cis an [r] and that the centraliser in § of that element
has orbits of sizes ., 0y, ..., 0; on the [r—1] of the fixed space. Then -1 classes
G, Ciy .oty G, of #4,,G arise from C. C, containing € has gize 2% 1C|, and
for i>1 G, has size 2°1¢,C|.

Proor. — The members of #£,,8 are those (a,a) with (0,a) in G. All (0, a)
mentioned in this proof are in G, and all geometry is in €, with respect to @.
Matrix multiplication gives

(4) (o, @) (0, @) = (0 + @10, @1 48;)
so the inverse of (¢, a) is (e¢'a, a ). Consequently
(8) (o, @) (o, a1)(at, @) = (a7 + o, + a,a), a7 a,a) .

Let (0, @,) be in € and have conjugates (0, @;) in G for 1<j<|C|. Take (0,b;)
in G so that b;'a,b; =a;. The (0,b;) form a set of coset representatives of the
centralizer X of (0,a,) in §. Now by (5)

(0) bi}_l(bJ'OE; al}(oa bi) = {a, bflaxb:‘) = {a, a;) .

Hence, by enumeration, each («, a,) has [C| conjugates by the (0,b;) and
these 2% sets contain each (&, a;) just once. These are all the elements of 4,,8
arising from C.

Two of these sets are conjugate in #£,,6 if and only if the corresponding (o, a,)
are. If (o, a,) is conjugate to ¢ of its fellows then (a;, a;) has ¢|C| conjugates
in #,,9. If the conjugate of (&, @) by (o, @) i8 (a, @;) then from (5) the element
{0, @) is in K. From now on (0, e) will be an element of this centraliser. Since
(o, @) = (a, 1,,)(0, @) we may consider the conjugates of (e, a;) by the (e, L,) and
then the conjugates of these by J. We write L for the fixed space of (0, a,) in C,.

The conjugate of (0, a,) by (a, a) is, by (5), (a7 (a+ a,a), a,) or ((a,+ L,)a "a, a,).
Hence, by Lemma 4, the other (a, a,) conjugate to (0, a,) are those with o« in L'
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We obtain a class G, of #4,,9 containing 2%*~1|C| members, since the [2n—r—2]
L' hag 21 —1 points. C, contains (0, @,) and thus C.

Suppose, now, that o, in C, is off L. From (5) the conjugate of (a,, &) by
(a, L,) is (e, + (@, + L.)a, a;). The 2271 vectors o, + (a,+ L,)o are the coor-
dinates of those points of the join of «, to L’ which are not in L’. The polar
[2n—r—2] of all these points meet L in the same [r—1]. These points are
those in the polar space of this [»—1] but not in L'. Thus the 2%~ 22*—1 such
(61, @) With o; off L' fall into 2+ —1 sefs by conjugation by #,,..

Since the conjugate of (e, @;) by (0, @) is (e 'ey, a,) the combination of these
sets to give full classes of #,,G is determined by the action of X. Two sets combine
if and only if there is an element of J€ taking one of the corresponding [»—1] of L
to the other. The proot of the Theorem is thus complete.

Since each class of #4,, S arises from one of § this Theorem 2 gives all the
classes of #A,,G.

3.2. — From the detail of the above proof and Lemma 5 we have

COROLLARY 1. — a) The fiwed space of (o, a,) in C, i8 the join of L to a polar ¢
through m,.

b) The fived space of (o, @) in C; with i>1 is the join of m, fo the corre-
sponding {r—11 of the orbit in L.

3.3. — With §=8,, Theorem 2 gives an inductive determination of the classes
0f 8up2 in terms of those of Sy, (§2.6). The S, each have order 2 so the induction
starts. Similarly, since the 8 are trivial, Theorem 2 gives the classes of 8, , in-
ductively. This is, however, more a theoretical than a practical result: associated
with a flag there is a large number of orbits of primes in C,, and the discussion
becomes intrieate.

3.4. — Theorem 2 gives, by Lemmas 3, 6, the classes of Mogn,, and My, , from
those of O,, and O respectively. As we shall see the result is of practical use for
these groups; for many centralisers the orbits are those [r—1] of L which have
the same kind of section with @.

3.5. — We may obtain some information about powers and periods of members
of Mg,,.. Suppose that (0, a) has fixed space L in (,. If ais in L' then (a, a) is
conjugate to (0, @) and so has the same period. On the cther hand we have

LeMMA 7. — If o is not in L’ then (o, @) has even period which is at most twice
the period of (0, a).

Proor. — By (4) we find that

(a, @) = (@' + a**+ ...+ a+ L,)a, a*},
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$0 the period » of (a, @) is lu where u is the period of (8, @). Since

(a4 L+ Lya=(a*+ L)@+ a2+ .+ L)a=0,

we have I<2. Were v to be odd then we should have
a= (a4 ...+ ala=(at L)@+ et} ...+ a)u,

in contradiction to Lemma 4.

‘We shall see below that both posibilities can occur if u is even.

{a, a@)* arises from the class of (0, ¢*) in O,,. For later use we show that («, a)’
cannot be conjugate to (0, a?) if L' contains L. For, from the details of the proof of
Theorem 2, their being conjugate would demand the existence of an & such that

(a+ Ly)a=(a*+ L,)&.

But then a- (a4 I,,)& would give a point in L and thus L'. By Lemma 4 we
should deduce that « was in L', a contradiction.

4. ~ The characters.

4.1. — We first need to give a geometric description of the characters of #A,,.
We write y, for the unit character which takes the value 1 at all (a, I,,). For each »
in 0, we define %, on A,, as follows. %.{(0, I,,)} is 1, while on the non-identity ele-
ments of s,, the value of %, {(a, I,,)} is 1 if « is conjugate to 2z and —1 otherwise.
Since & line has 1 or 3 points in the polar [2n —2] of ¢ we see from (3) that g,
is a character of #,,. Since distinet z have distinet polars we obtain all 22» —1
non-trivial irreducible characters of #,, this way.

4.2. -~ We may make § act on the set of characters of #,, by defining, for
each (0,a) in G,

(6) 0, @)y, == %,, Where w—=az.

Since (0, a) preserves polarity in €, the value of (0,a)y, at (a, L,) is the value
of x, at (a'a, I,,). This element is by (5) the conjugate of (&, L,) by (0, a).
Thus we have the same action as that described by Serre (23, II, p. 18).

Let z;, j=1,..., ¢, be points one from each orbit under the action of § in C,,
and let G, be their respective stabilisers. For simplicity we now write y; for the
character associated with 2;. Then, in the permutation representation of § on the
characters of As., %o, X1y.--) % f0rm a set of orbit representatives. Further, for
j>1, the stabiliser of ¥, in G is, by (6), §;. The stabiliser of ¥, is G, = 6.
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4.3. — Following Serre (23, IT, p. 18), we extend each ¥, (j>>0) to a character ¥,
of #4,,6; by putting

(0 7:{(a, @)} = ys{(a, L)}, for all (0,a) in G;.

G, is the quotient of #,,8; by #,,, so we may, in the usual manner, extend an
irreducible character ¢ of G, to one §of £,,S; where

(8) é{(a, @)} = 0{(0, @)}, for all (0,a)in S;.

Now take the Kronecker product § x %; of § and %,, and induce from this a character
of #4,,8. By (23, Theorem 17) this character is irreducible, and if we take all pos-
sible pairs j, o we obtain each irreducible character of 4,,§ just once. That part
of the proof that Serre leaves asg an exereise is readily verified using Mackey’s eri-
terion and its extension (23, II, p. 11).

4.4. ~ We examine how the geometry determines the values of these induced
characters from those of the corresponding g. Suppose that class C of § gives rise
to classes Gy, Cy,..., C, of #,,9 as in Theorem 2: we rebain the notation of §3.1.

If j=0 then §,= 9 and %, is the unit character of #,,8. So, from (8), the
value of the induced character agsociated with ¢ in each class C, is the value of g in C.

If j>1 then the value of the character induced from %;X§ on C, is

® {3 2:{(o, @)} 6{(or, @)}} | #0nS: 42, S51/1C

the summation being over all (a, a) in C; N A,,G;. These are the (a, @) in C, with
0,a) in CNG,. If ¢ =0 there are for each such (0,a) 2*»-' such a by §3.1;
namely 0 and those « giving points of L', the polar [2n —r—2] of the fixed space L
of (0,a) in C,. Since L contains z; we have y,(a, I,,) =1 for these a. Hence
from (7), (8), (9) and Theorem 2 the value of the induced character on C, s

(10) {Z0{(0,@)}}|S:8,]/IC]; the sum being over (0,a) in CN ;.

If 4>1 there are 22"7—ig, such « for each (0, a). The polar [2n—2] of these a
meet L in the [r—1] of the orbit associated with C,. Hence y{(a, L)} =1 if
and only if the corresponding [r— 1] contains z;. Let n,;(a) of these o; [r —1] con-
tain ;. Then the value of the induced character om C; is

11y {3(2nu(a)—o:)0{(0, a)}}(8:G,//|Clo;;  the sum being over (0, ) in CNS;.

We may briefly summarise our finding as

THEOREM 3. — The extensions 1o £y, S of the irreducible characters of the quotient
group S together with the characters determined by (10), (11) from all possible pairs Jy 0
with j=1,2, ..., q, form the character table of #A:,S.
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The members of CNG; may fall into several classes in §;. For all members of
one such class n,(a) has the same value, and in practice we may sum over these
classes.

4.5. — If § is O,, other than O then ¢ = 2 by the transitivity of O, on the m
and p of C, (8, p. 37). G, and G, are My, and T,, respectively, and we have the char-
asters of My, e tn terms of those of Oy, Moy,, T5y and the geometry of . Similar
statements hold for A .,. For 0P ¢ =1, there being no m (§2.5), and the mo-
difications for MY are obvious.

If §is &,, fixing p, in O,, then #4,.8 is Cyupn by §2.6. The polar [2n—2]
in C, of p, meets @ in a non-singular section, and ¥, is the group of this sec-
tion (9, p.421). We need the stabiliser in the orthogonal group in the [2n—2]
of one of its m, and as stated in § 1 we must postpone a discussion of this. Once
this matter is presented we may use Theorem 3 to give the characters of G, ,.

5. — The groups 9", 09,0, 0 and F".

5.1. — In the remainder of this paper we apply our general results to the ex-
plicit determination of the classes and characters of those groups mentioned in § 1.
The brief exposition necessary illustrates the usefulness of the method. The Theorems
of this and later sections are the tables.

5.2. — Suppose, henceforth, that Q2 is specialised to be a ruled quadric in [7].
We recall some notation from (7) and (13) for subspaces. Planes are labelled according
to their section with Q as follows:

d: lying on 2, s
¢: a repeated line, K
f: a line pair,

2

single point,
conic with 3m which lie in pairs on ¢.

©

Solids are similarly categorised by:

w: lying on 2, y: a point cone,
y: a repeated plane, %: a non-singular ruled quadric,
@: a plane pair, A: a non-singular non-ruled quadric.

: a single line,

=2

The solids have polar spaces of the same type as themselves. The polar spaces with
respect to £2 of the points, lines and planes will be labelled by the corresponding
capital letters. P, J, C and 8 have non-singular gections with Q, those of the last
two being respectively ruled and non-ruled. The C, and M, of earlier sections are
of type € and M respectively. A full incidence table for the subspaces has been
given (13, p. 16): the nature of the subspaces in a given space is often obvious.
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5.3. - The 67 classes of O, labelled I-LXVII by Hamill, arelisted in (17, pp.76,77);
and their fixed spaces with respect to £ are given in (13, pp. 26, 69) except for classes
LVI, LV, 11X, LX, LXIV, LXV, LXVI, LXVII whose members fix no points.
Similar results for 9P are given in (7, p. 552). From these tables we may quickly
determine the distribution among the classes of O of the elements of a subgroup
fixing & subspace U pointwise: in a class of size N there are Najy members, where
the fixed space of each member of the class has » subspaces of the same kind as U,
and there are y such subspaces in [7]. If U is a ¢ then the subgroup is O acting
on the polar O, as in §2. It is given in Table 1. Since 2, which is isomorphic
to O (§ 1), has 22 classes and O has entries in 22 classes of O, we may label the
classes of O by the corresponding labels in 0. A consideration of sizes, periods
and power types readily identifies the eycle types in 2;. To find the fixed spaces
in ¢ take the polar of a fixed space in [7]—this polar is in C—and then reciprocate
in €. In presenting tables we adopt the following

CONVENTION. — For a group JC we give first those of ifs classes in JC+ and then,
separated by o horizontal line those of the coset. An asterisk indicates that a class of
splits info two equal-sized classes in I+

TABLE 1. — The conjugacy classes of O = Z, and of OF7.

Power types Fixed

Class Size Period Cyele space

type 2nd 3rd 5th in ¢
I 1 1 18 c
111 210 2 1422 i Y
v 112 3 153 A
IX 1680 6 1223 v i1 ¢
X 1120 3 1232 ¢
X1 2520 4 1224 111 £
XI1 L1344 5 155 s
X111 . 105 2 24 @
XXX * 2688 15 35 XI1 v -~
XXXIV* 5760 7 17 -
XXXVI 1260 4 42 XIII g
XXXIX 3360 6 26 b X111 ¢
11 28 2 182 J
v 420 2 1223 E e
VI Poo1120 6 1223 v P i
ViI L 420 4 144 | III 3
XVII 1120 6 232 X 11 ?
XIX 3360 12 134 9:4 VII m
XX 4032 10 125 X11 11 P
XXII 3360 6 126 X v P
XXIIT 1260 4 224 111 f
LV 5040 8 8 XXXVI m
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TaBLE 2. — The conjugacy classes of the eubic surface group O and of OP™,

Power types Pixed
. . ,
Class Size Period ond ! 3rd sth slfla?
1 1 1! 8
I1i1 270 2 ‘\ Y
Iv 240 3 P
IX 2160 6 v 5 111 [
X 480 | 3 s
X1 3240 4 11X i
X111 5184 5 [
X111 45 2 7
XIV * 1440 6 v X111 g
XV 540 4 X111 g
XXXVIII* 80 3 -
XXXI1X 1440 6 X i XII1 8
XL * 720 | 6 XXXVIII XITI -
XLI * 5760 |9 XXXVIII -
XILII* 4320 12 XL ). 9% e
11 36 2 ! J
v 540 2 e
Vi 1440 6 Iv 11 i
VII 1620 4 III ‘ f
XVII 1440 6 X 11 P
XX 5184 10 XI11 11 P
XXII 4320 6 X LV P
XXIII 540 4 111 ? h
XXI1V 4320 12 IX XXI1X "
XXV 6480 8 XV )

This allows character tables to be presented economiecally. The classes of X
in J¢* will be called even, and those in the coset odd.

If U is an s then the pointwise stabiliser in O is O acting in the polar S,
and is given in Table 2. O®F being generated by the squares of elements
of 92 (6, pp. 66, 67), is the unique subgroup of index 2 in 0P, and so is in OP*.
Since 9P has 25 classes (14, p. 95) we may label these here by the corresponding
labels in O. Frame also gives the relation of these classes to those of OP™ (see
also (18,p.73)). Barlier, Dicksox (5, p.138), FramE (15,p.483) and TopDD (24)
had independently classified O in other representations.

We may repeat the procedure for O which is the subgroup of Og) fixing a ¢
pointwise. The results form Table 3. OY of order 72 acts in a x, and acts transitively
on the 6g therein (8, p. 37). It must thus be that group given by LirrLE-
Woobp (20, p. 275). OPF is (6,p. 68) Ty x X, acting on the two reguli in », so any
class of O with a 1 in its cycle pattern in Littlewood’s labelling is in O"*. The
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TasLE 3. — The conjugacy classes of the groups O and OP.

The group OF of order 72. The group OF =3 .
Fixed Fixed
Class Size Sg;l: space Class Size gg;ie space
in % in 4
1 1 18 % I 1 15 A
111 9 1222 [4 111 15 122 i
v 4 32 s v 20 123 e
X * 4 133 - XII* 24 5 -
XIIY* 6 142 g
XXXIX * 12 123 - II 10 132 i
VI 20 23 P
II 6 23 i VII 30 14 m
VI 12 6 P
XXII1 18 24 m

Periods and power types may be read off from Tables 1, 2.

identification of cycle types is now easy, and we may label classes by the corres-
ponding class in 0. OP acts in a A and is Z; on its 5m. O, 0P may be con-
sidered as those subgroups of O fixing pointwise a » and a A respectively, these
being the polar spaces with respect to £ of the [3]in which the 0 act. Alternatively,
0%V and OP are the pointwise stabilisers of an s in O and Of respectively. The
same labelling of the classes of O, O® occurs however we regard them, and by
using it we keep the inter-relationship of all the groups.

0D is of order 2 acting on a ¢. Its non-identity element is in class II. OF is X
acting on the 3p of an s. It has 2 elements in IV and 3 in II.

5.4. — In order to calculate the characters of M we need the classification
of JU relative to the geometry of the € on which O acts. §§ is the stabiliser of
a point p,. The polar[4] of p, is a J, eall it J;. We saw in § 2.6, 4.5 above
that 9 is ({po}> x FP* where F* acts as the orthogonal group in J,. Moreover,
F0+ i5 isomorphic to 8p,(2) and hence to X (4, p. 99; DIckson gives reference to
JORDAN). So T has 11 even and 11 odd classes.

We find the distribution of §{" among the classes of O by the methods of the
previous section; it may be read off from the second and third columns of Table 4.
Entries occur in 9 even and 8 odd classes of O, Those in III correspond to the
60y through p,. Since 15 of these y are in J, (12, p. 634) IIT must split in F’. So
must XTI since no class of X, has size 180, though two have size 90. Thus III and XI
must split as in Table 4 to give the 11 classes of §"*. One of the 16J through p,
is J,, so IT splits in 9. The 160 elements of F§” in VI correspond in pairs to the 80
through p,. Since 20 of these j lie in J, (12, p. 634), and so have kernel p,, VI splits
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TABLE 4. — The conjugacy class of T = ({pe}> X Zy.

Fixed Fixed
Class type Size Class in OF space space Primes of L through p,
Lin C in J,
18 1 1 ¢ I, 16J, 15 F
142 15 I1I ¥ ] 3e, 4j
1222 45 I1I P e le, 1k, 1, 4]
123 40 1V 2 j 3h, 4j
123 120 IX ¢ ¢ Po
3 40 X ¢ Do Pe
124 90 X1 t [ Py (focus)
24 90 X1 t i I p, (non-focus)
15 144 XI1I s Do Lope
23 15 X111 P e i le, 6f
6 120 XXXIX ¢ Po Py
18 {po} 1 i1 J Jy 15y
142 {po} 15 I J ¥ du, 42, Ty
2% {po} 15 v e e 3¢ (all through focus)
1228 {po} 45 |V e e 3% (1 through focus)
133 {pe} 40 VI i j 3t
123 {py} 120 VI j t le, 1¢, 1s
124 {py} 90 VII h i 1, 25
32 {p,} 40 XVII Po Do —
15 {po} 144 XX Do Po —
6 {po} 120 XXII Po Po _
24 {po} 90 XXIIT f t 1t, 2¢

in §. An involution 4 of O in V has for its fixed space an e with 4p. For
just one of these p, the focus of A, A{p} has for fixed space the polar ¢ of the g
in ¢ (10, pp. 63, 64), and so is in XIII. Sinece O is transitive on the p of ¢ 15 of
the 60 members of (" in V have p, for focus. Thus II, V, VI must split as shown
in Table 4 to give 11 odd eclasses for §¢". This table may now be completed apart
from the first column and the verbal entries against XI.

Through an m of J, pass 2 of its 6 4, and these 2 1 meet in an h (12, p. 634).
If an element of ' fixes each of the 6 1 it must fix the single m common to each
pair. Hence it fixes each m in J, and so, by the information already available in
Table 4, is the identity. We conelude that 8% is X, acting on the 6 1 of J,. A member
of §* with cycle type 6 does not fix nor interchange 2 of the 1, and so can fix
no m in J,. Being in a class of size 120 it must be in XXXIX. Using informa-
tion from Table 1 for periods and power types together with the known sizes of the
classes of X we may now identify the cycle types of the classes of §)". That the
geometry is used to give a definite labelling is not fortuitous: there is an alternative
labelling related to ours by the outer automorphism of 2.

If A is in ¢ then, by Table 4, the fixed spaces of 4 and A{p,} have different
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dimensions. However, since {p,} fixes J, pointwise, these fixed spaces have the same
section with J,. Hence one of 4, A{p,} has a fixed space L not in J, while the other
has for fixed space the intersection of L with J,. The labelling of the odd classes
of S’g" follows immediately, apart from that of VII and XXIII. One of these is
124{p,} and the other 24{p,}. Suppose, now, that A4 is in 12°4. Then A fixes 2 1
in J, and hence their polar s, s;, 8, say, through p,. Since the fixed space of 4 is
a t the 2 p off J, on each s, are interchanged by A4; so they are by {p,}. Hence 4{p,}
fixes s;, 8, pointwise, and so its fixed space is their join which must be an h.
Thus 124{p,} is VII, and so 24{p,} is XXIIL

If B in O is in XI then B is conjugate in O to members of both 1?4 and 24.
Hence for one p of the fixed ¢ of B the fixed space of B{p} is an h, and for the
other p on ¢ the fixed space of B{p} is an f. In analogy with V we call the first p
the focus of B. Table 4 is now complete.

5.5. — Bach 9, is {p.}> xF/, where §] is Z;. A similar, but much simpler,
discussion to that in § 5.4 gives the following information. The polar plane of p,
is denoted by j,.

The classes of T, The classes of T,

a1 Class | Fixed Primes ! Class | Fixed Primes
" A58 | Size | in space of L S 858 | Size | in space of L

ype 0P | L in x| through p, ype 0% | Lin J | through p,
13 Pl 1 % 45, 3f 12 1 I Aol 44,38
12 i 3 111 t Do 12 | 8  III t { Py
3 2 v 8 Pg 3 2 v ¢ j Po
Bip}| 1 | I | g 3t gy 11 31
12{p,}| 3 | II j 1t,1¢, 15 12{p}| 8 | IIL « j 14,1, 18
3 {po}; 2 Vi Po — 3 {po}| 2 VI | e —

6. — The calculation of the classes and characters of AL, A0S, M, MO, ACPT, AT,

6.1. — We use Theorem 2 to obtain the classes of M. From each class of O
we pick an element and determine the orbits under its centraliser of the [r—1]
of the fixed [7]. The [r—1] of an orbit must all be of the same letter type. Hre-
quent use is made of Table 1; we recall that any incidence relation of subspaces
that is not obvious may be found in Table 1 of (13).

O is the centraliser of the identity element in I and acts transitively on the J
and F of € (8,p.37). Thus for I the orbils are 28 J, 35 F. The centraliser of a
transvection {p,} in II is the corresponding . Since I+ acts as the full orthogonal
group in the fixed space J, of {p,} (§ 4.5) the orbits for IT are 15 v, 102, 6 1 (8, p. 40).
Notice that the centraliser of an element 4 of O contains each transvection whose
centre is in the fixed space of A.
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TABLE 5. — The conjugacy classes of M of order 1152 and of MG of erder 576.

Power types Fixed N
Class Size 1?e- Class in O space Primes of L
riod 1 through m,
2nd 3rd Lin ¢
I 1 1 I c 12J, 19F
Ij 6 2 111 7] 3e, 1h, 3f
1f 9 2 X111 @ 2d, le, 4§
111 36 2 111 P le, 21, 4j
IIIm 36 4 If XXXV1 g me (focus)
il p 72 4 1j XI { Mg
v 16 3 v A 1%, 64
ivy 48 8 v v Ij IX oot Mg
X * 64 3 % X ¢ Mg
XIIT* 24 2 { XIIX @ 1d, 6f
XI1Im* 72 4 1f XXXVI g my (non-foecus)
XXXIX * 192 6 X XIII XXXIX ¢ My
11 12 | 2 I J Ty, 6x, 2
IT¢ 36 2 v e lg, 21
1Ie¢ 36 4 Ij XXI11 f 2¢, 11t
Ils 12 4 1j VII h 3t
Vi 96 6 v 11 VI j 1, 2¢
VI{—1] 96 12 IVyp I1s XIiX m —
XXI1I 144 4 111 XXIII f lg, 2¢
XXI{I{—1] 144 8 1IIm LV m —

The centraliser of a member of III has order 192 and induces a group in the
fixed space . The subgroup of O fixing v pointwise has order 4 since it con-
tains 1, 1, 2 elements in I, ITI, IV respectively. Hence the centraliser induces in v
a group of order at least 48. The m in 9 lie on 3 concurrent non-coplanar lines. The
group in [3] fixing such a trio of lines is easily seen to have order 48; one recalls
that over GF(2) a simplex determines a unique «unit-point » and then uses the
fundamental theorem of projective geometry. Hence the centraliser acts in y as
the full group of its figzure. Thus, by the fundamental theorem, the orbits for II1
are 3¢, 37, 1h, 1j. A similar argument shows that the orbits for XIIT are2d, 1¢, 121,

The transvections centred on a A generate the full group of its quadric (6, p 65),
80 the orbits for IV are 5h, 10 7.

A transvection {p,} interchanges the 2 m of a ¢ through p,, and interchanges
the other 2p on an s through p,. When we consider the transvections centred
on the fixed spaces we find the following orbits under centralisers: for X 2m, 1 p;
for XII 3p; for XXXIX 2m, 1p; for VI 31, 3¢, 18; for VIL 3¢, 45 The cen-
traliser of an element of XXIII has order 32 and acts on the fixed space f. By
Table 4 only 16 elements of the centraliser fix both p in f. Henece there are elements
of the centraliser interchanging the 2 p in f. This fact together with the actions
of the transvections centred on f shows that the orbits for XXIII are 2¢, 1%, 40.
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TABLE 6. — The conjugacy classes of MG of order 1920 and of NPT of order 960.

Power types Fixed
Class Size Period Classin O | space
2nd 3rd Lin 8
I 1 1 1 8
1j | 10 2 111 "
13 | 5 2 X111 %
111 i 80 2 I11 p
Il m 60 4 1h XV g
IIp 120 4 Ij X1 ¢
v 80 3 v L
IVp 80 6 v Ij IX Lt
IV m * 160 6 v 1h X1V b og
XI11* 384 5 XI1I ¢
11 20 2 11 J
11 60 2 v e
1l¢ 60 4 1j | VIiI f
I1s 20 4 1j XXIII h
Vi 160 6 v It VI g
VI[—1] | 160 12 IVp I1s XXIV m
Vil f 240 4 111 VII h
VII[—1] 240 8 HIm XXV m

The centraliser of a member 4 of IX contains elements of XIX since the squares
of XIX are in IX, and these elements must interchange the 2 p of the fixed ¢ of 4
since their only fixed point isthe m of t. Hence the orbits for I1X are 1m, 2 p.
The centraliser of a member B of XXXVI has order 32 and so cannot act transi-
tively on the 3 m of the fixed space g. Since elements of LV fix only one m each
and have their sguares in XXXVI the orbits for XXXVI are 1m, 2 m. We shall
call the m fixed by the centraliser the focus of B.

The centraliser of a member of V fixes the focus and acts transitively on the
other 3 p in the fixed space ¢ (10, p. 64), since this ¢ is the axis of (10). The 3¢
through the focus are thus permuted transitively since each contains one non-focal p.
The third point on these ¢ is an m. Hence the 3 m of ¢ are permuted transitively.
Thus the orbits for V are 1 g, 31 through the focus, 3 1 not through the focus The orbils
for XI must be 1m, 19 (focus), 1 p (non-focus).

For classes with fixed space a point there is one orbit of length 1: this orbit is
the single [—1] or empty subspace. A class of O with empty fixed spaces gives
rise to one class of ALY by Theorem 2; there are no [—2]!

Theorem 2 and its Corollary give the classes of MY with their sizes and types
of fixed spaces in [7]. This information forms part of Table 7, where classes are
labelled as follows. If a class of O has numerical label K the class of M’ containing
it is labelled K; by § 5.6 it is in class K of O. The other classes of Y’ arising
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TasrLk 7. — The conjugacy classes of MY of order 2580480 and of MPT of order 1290240.

. . Power types Class Fixed
Class Size Period in o};’ space
J 2nd 3rd 5th
1 1 1 1 7
1J 28 2 111 T
1F 35 2 X111 G
111 840 2 111 T
Ille 2520 2 VIII o
111 R 840 4 | IF XV %
111§ 2520 4 | IF XXXVI @
111 6720 4 | 1J XI "
v 448 3 v 8
IVh 2240 6 | IV 17 L XIV %
1V 4480 6 | IV 1J 1 | IX Ly
X 26880 6 | 1V 111 \ IX Loy
1Xm 26880 12 | IVh 111 | XXXII g
IXp 53760 | 12 | IVj 1115 XXVIiI ¢
X 17920 3 | X %
Xm* 35840 6 X PLE , XXX1 g
Xp 17920 6 | X LIg * XXVI ¢
X1 40320 4 | III : X1 ¥
XIm 40320 4 | Ille XXVIII g
X1Iyp, 40320 8 | IlIR XXXV ¢
XIp, 40320 8 | IIIf XXXVIT | ¢
X11 21504 5 ‘ XI1 L2
XIip 64512 | 10 | XII 1J XXIX i
X111 420 2 XIII G
XI1I1d* 840 2 LX1 ®
XIIIe 420 2 VIII y
XIIIf 5040 4 | IF XXXVI @
XXX * 172032 | 15 XI1 v XXX ¢
XXXIV* 368640 7 XXXIV e
XXXVI 20160 4 | XI1I XXXVI @
XXXVIm, 20160 4 | XIile ! . XXVIII g
XXXVImn,* 40320 4 | X114 | LXII Log
XXXIX 53760 6 , X XIi1 . . XXXIX | %
XXXIXm* 107520 6 X XIIId CLXIIE | ¢
XXXIX p 53760 6 X X1ile XXXIIL | ¢
1I 56 2 II p
Iy 840 2 v E
112 560 4 | 1J XXIII F
114 336 4 | 1J VII H
v 3360 2 v E
Vg 3360 4 | 1J LIII d
Vi, 10080 4 ' 1IF XXI ¢
Vi, 10080 4 1IJ XVIII e
Vi 8960 6 | IV 11 VI J
VIs 8060 | 12 | IVj 1Ix XXIV 3
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TaBLE 7 {continued).

s
Power types .
Class Size Period . Clas(sl,) 1 Fixed
2nd 3rd | sth | O | space
Vii 26880 6 | IV Iy XVI e
Vie 26880 | 12 | IV 117 XIX C
ViI 3360 4 | III Vil H
VILt 10080 4 | III XVIII e
VIIs 13440 8 | 1I1h XXV h
XVII 35840 6 | X 11 XVII i
XVII[—1] 35840 | 12 | Xp 115 XLVI m
XIX 107520 | 12 | IX VII XIX f
XIX[—1] 107520 | 24 | IXm VIIs XLVII m
XX 129024 | 10 | XII 11 XX i
XX [—1] 120024 | 20 | XIIp 1142 | XLIV m
XX1I 107520 6 | X v XXII j
XXII{—11 ¢ 107520 | 12 Xp Vg : i LIV w
XXI11 © 10080 4 | III XXIII F
XXII11¢ 10080 ;, 4 | III XVIIT e
XXIllg 20160 4 | 11 LIII d
XXIIl¢ 40320 8 | IILf LV f
LY 161280 8 | XXXVI LV f
LV [—1] 161280 8 | XXXVIm, XLVIIL | m

from K in O are labelled Ka where a is the letter type of the subspaces of the as-
sociated orbit: for the three cases where there are two orbits of the same kind of
subspace a suffix 1 is added to indicate that the subspaces of the orbit contain the
focus, and a suffix 2 for the other orbit. The other information in Table 7 for class K
of M comes directly from the corresponding information in Table 1.

The other entries in Table 7 are compiled in order as follows. For a class Ka
of MY one finds, using Tables 2, 4 of (13), the possible classes of OfY in which it can
lie, and then uses Table 3 of {18) to find their corresponding periods and power types
in O, Then one uses Table 1 and the information in § 3.5 to give possible periods
for Ka and its possible power types in M{; these possible power type classes occur
earlier in Table 7 and so, we may assume, have their entries complete. Making these
two strands of information compatible uniquely gives the entries for all Ka except
XIp,, XIp,, XXXVIim,, XXXVIm,, XXXIXm, Vi Vi, and the entry
XXXVIm, for the squares of LV[—1]. Suppose that, apart from the asterisks,
Table 7 is otherwise complete. We tabulate for the 7 exceptional classes the am-
buguities with which ocur procedure leaves us.

Class in G Possible classes (and their corresponding squares) in O

XXXVIm,, XXXVIm, XXVII (VIIT), LXIT (LXT)
XXXIX m XXXI (X), LXIIT (X)

|
|
XIp,, XIp, { XXXV (XV), XXXVII(XXXVI)
!
|
Vi, Vi, | XVIII(III),  XXI(XIIT)
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M has 35840 members in XXXT in 0 (13, p. 68), and these, by the infor-
mation already at hand in Table 7, are all in X m. Hence XXXIX m is in LXTIL
There are 60480, 40320 members of M in XXVIIT, LXII of 9" respectively.
40320 of those in XXVIII are in X1 m so, by a consideration of sizes, XXXVI m,,
XXXVIm, are in XXVIII, LXII respectively.

An (e, @) of Vi, has its « polar to the focus p of @. In view of the discussion in
§3.5 (o,@)? is in I F or IJ. But {p} fixes « and commutes with a so, by (4),

(@, @)* = ((a+ L)a, a*) = ((a{p} + L)a, (a{p})?) = (=, a{p})*.

Since a{p} is in class XIIT of O by §5.4, (a,@)® must be in IF which is in
XIITin O. Hence V¢,is in XXI. The 10080 members of A in that class (13, p. 68)
are thus accounted for, so V1, is in XVIII. An (a, a) of XIp, has its o polar to
the focus p of @ and, again, (a, @)= ((a{p} + L)a, (a{p})‘i). The fixed space of
a{p} is (§ 5.4) an k which, by Lemma 4, is polar to (a{p} + I,)a. Hence, by § 2.4,
the fixed space of (e, @) contains the y joining h to the point m, stabilised by AL.
Thus XI p, must, by § 3.5, have its squares in IIT 5 which is in XV in 9{". Con-
sequently XI p,isin XXXV. Similarly X1 p, hasits squares in IIT f and is in XXXVII.
We may now complete the information in Table 7 for 4.

6.2. — A similar discussion, using products of transvections in O{’*, yields the
classes of ML T, We present a more speedy alternative procedure. An even class
of MY either forms a single elass of AP oris the union of two classes of NPT of
the same size. The former possibility occurs if and only if the centralisers in Mg
of elements of this class of MY’ contain odd elements. If an element A4 in an even
class Ka of MY has p in its fixed space then, by Lemma 5, these p are polar to
the m, stabilised by M. Consequently the centraliser in M of A contains the as-
sociated transvections which are odd elements, and so Ka is a single class of AP,

If an even class K of O splits in O* then, by Theorem 2, the corresponding
classes of AU split in M7 : the centralisers in O and O T of a member of K coin-
cide and have the same orbits in the fixed space. Further, by Theorem 2, if an even
class K of O does not split in O then the class K of ML does not split in DT,
nor does any Ka corresponding to an orbit of length one. Using these criteria we
deduce from Tables 1, 7 that classes XXX, XXXIV of M split in ML T, and that
the only other classes that can split are X m, XIIId, XXXVIm,, XXXIX m.
These classes lie in XXXT1, LXT, LXTI, LXTIIT respectively in Og) and, by Table 7,
are the only classes of A so to do. Further (7, p. 522) XXXI, LXI, LXII, LXIII
all split in O, and the resulting classes all contain members of MP* (7, p. 523).
Thus X m, XIITd, XXXVIm,, XXXIX m split in MPT. Alternatively we may
use the result that the number of splitting classes is the excess of the number of
even classes over the number of odd classes (1, p. 338; Burnside gives an elementary
ofpro of in Note E on p. 472), and this is 35 —29 = 6.

We may infer the orbits under centralisers in O{*. For X there are two orbits

3 — Adwnali di Matematica
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of 1 m, similarly for XXXTIX. For XXXVI there are three orbits of 1 m, and for XTII
two orbits of 1 d in the fixed ¢. This last fact accords with the fixing by OP* of the
2 families of d on a Klein quadrie, and the corresponding splitting of X1II d accords
with the fixing by OP* of the 2 families of o on a Study quadric. All other orbits
are as for OU.

6.3. — The same techniques yield the classes of M from those of O described
in Table 3. We omit the details and give MY, M in Tables 5, 6; the class labelling
indicates the corresponding orbits of the centralisers of O%. To obtain periods and
power types in MY and splitting in MDT we make repeated use of similar informa-
tion in Tables 1, 2 for Of. The last column of Table 5 is readily compiled. One
recalls that the point m, stabilised by A is a vertex of the quadric in a fixed space
of a class of type Ka. O is transitive on the m of € 50 36 of the 108 members of M
in XXXVI in O have m, for focus; these must be in IIT d.

If we regard O, 0P as the pointwise stabilisers in O of ¢, s respectively (§ 5.3),
then A, AP are the pointwise stabilisers in OF of an f and an k respectively. We
may interpret the 6th columns of Tables 5, 6 as giving their distribution in O

Classes of MY and M with the same label lie in the same class of O, and are
related to the containment of OF by 0. A few classes of M, MP with the same
label are not in the same class of O: the 6th columns of Tables 5, 6 ensure no
confusion can arise.

6.4. - 0P and OP are described in §5.3. For {’ we obtain the classification
below.

Class ” . . X i Fixed Primes of L
number Class of Ay Bize Period | Class in O, space Lin »  through m,
1 I 1 1 I % 24, 51

1 Ip 1 2 111 ] Mg
3% Im* 2 2 X1t g Ty
4 11 2 2 11 j 14 2¢
5 I [—1] 2 4 XXIII my —

The first column is added in anticipation of future use. Having more than one in-
volution AP is a copy of the dihedral group Dy. MPT is a Klein 4-group. The
splitting of T m* accords with the 2 fixed g belonging one to each regulus in x.

0L is X, on the 5 m of its A, so MP is a Z;. We obtain the following tabulation:
cycle types are inferred immediately from those of 0% in Table 3.
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. . . i i it L
le t cl £ M g Period | C1 ) Fixed Primes o
Cycle type ass of G, ize erio ass in O space Lin 1| through m,
|
14 I | 1 1 i 64, 1h
22 Ip 3 2 I11 1 My
13 v * 6 3 v ¢ My
122 II 6 2 11 j 1t, 2¢
4 IT{-—1] ; 6 4 Vil my —
TaBLE 8
(@) The irreducible characters of M.

Class l W, W, W W,
I 1 1 4 4 4 2 6 6 12 9 9 18
Ij 1 i 4 4 4 2 2 2 4 —3 —3 —&6
1f 1 1 4 4 4 2 —2 —2 —4 1 1 2
III 1 1 - . —2 2 —2 . 1 —2
I1Im 1 1 —2 —2 2 . 1 1 —2
Iilp ) S NPT Co—2 . - -1 —1 2
v 1 1 1 -2 —2 2 3 3 —3 . . .
IVp 1 1 1 —2 —2 2 —1 —1 1
X * 1 1 —2 1 1 2 . . . . .
XIIT* 1 —1 - 2 —2 - - . . 3 _3
XIIT m* 1 —1 2 —2 - - - . -1 1
XXXIX* 1 -1 —1 1 . . .

II 1 —1 2 4 —2 2 3 3
II¢ 1 —1 2 . - . . 2 2 —1 —1
ITe¢ 1 —1 2 . . - —2 - =2 1 1
ITs 1 -1 2 2 —4 —2 —3 —3
VI 1 —1 —1 1 01 -1 - )
VI[—1] 1 —1 —1 - - . =1 —1 1 .
XXII11 1 1 . . . . . . . 1 —1
XXIT1[—1] 101 - .o

One of each associated pair is given.

(b) The splitting in MPT of the self-associated characters of M.

Class W, (1) Wi W,({) W,(ii) W,d) Ws(i) W,d) W,

X (i) 1 1 -1 2 2 —1

X (ii) 1 2 -1 -1 2 . .
X111 (i) —1 1 . 2 -2 . 3  —3
XIIT (if) 1 —1 2 . . —2 -3 3
X111 m (i) —1 1 . 2 —2 . —1 1
XIIIm (i) 1 —1 2 . - —2  R— |
XXXIX (1) | 1 -1 =1 . . 1 . .
XXXIX (ii) | —1 1 . —1 1 .

See * 6.6 for reading off full table for AT,



36 R. H. DYg: The classes and characters of certain maxvimal, ete,

TaBrLe 9

{a) The irreducible characters of M.

Class Y, ¥,
I 1 4 5 6 5 15 10 10 20 10
1j 1 4 5 6 1 3 2 —2 —4 —2
Ih 1 4 5 6 —3 —9% —86 2 4 2
111 1 1 —2 I —1 2 2 - —2
I1Im 1 1 —2 i —1 2 —2 . 2
Il p 1 1 —2 —1 1 —2 . . .
v 1 1 —1 . 2 - =2 1 —1 1
IVp 1 ] —2 - 2 1 —1 1
IVm* 1 1 ~1 . - =1 I -1
XI11* 1 —1 . 1
11 1 2 -1 3 3 4 2 —2
IT¢ 1 2 1 -1 =1 . 2 2
Iie 1 2 1 1 1 - =2 =2
IIs 1 2 1 —3 —3 . 2 —2 —4
Vi 1 -1 1 1 —1 1
VI[—1] 1 —1 1 . —1 1 —1
VII 1 - =1 1 —1 . . .
VII{—1] 1 —1 —1

One of each associated pair is given.

(b) The splitting in MNP of the self-associated characters of MG .

Class 1 7, (i) ¥, (i) Y, (i) Y, (ii)
1V m (i) i . . i3 —i/3
IV m (i1) . . —i4/3 iv3
XII (i) 31+ V3) 31— V5) : :
XTI (ii) 31— v5) 31+ VB)

See » 6.6 for reading off full table for JLY™.

6.5. — The usual characters of M, MP, given explicitly in (20, pp. 265, 273),
may be confirmed by the methods of Chapter 4.

The characters of the 4G, may then be written down using Theorem 3. The
values of the #,(a) required in formulae (10), (11) are given in the last columns of
the tables for the &, and A, (§§ 5.5, 6.4). Further, since cycle types are given in
Table 3 the required characters of the O, may be read off from (20, pp. 265, 27 5).
Then, we may proceed to the characters of MY’. The n,(e) are now given by the
last columns of Tables 4, 5, and, since cycle types are given in Tables 1, 4, the
characters of 9 and O may be read off those of Xy and Xy, which are conveniently
tabulated in (20, pp. 266, 267). The irreducible characters of A, G, MY are
presented in Tables 8, 9, 10.
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JK)ES” has 29 pairs of associated characters and we give one from each pair; the
other is obtained by changing the signs of the entries in the odd classes. S’ has
also 6 self-associated characters which vanish on the odd classes, and we label these.
We present other character tables similarly.

6.6. — It is a straightforward matter to repeat the process and obtain the
characters of AN, MPT, M. Those characters of alternating groups that are
required may be found from (20, p. 272). In accordance with general theory (1, Note 1)
29 of the irreducible characters of MP" are the restrictions of the 29 pairs of asso-
ciated pairs of characters of M. Further, each self-associated character X of M
is, on restriction to M, the sum of two irreducible characters X(i), X(ii), and the
other 12 characters of MQ* so arise. The values of X (i), X(ii) in a class of MP*
which is a full class of M are each half the value of X in that class. Hence it is
only necessary to present, and in practice calculate, the values of X (i), X (ii) on the
other classes of AL : if a class K (Ka) of MY becomes two of AT we label these
K(i), K(ii) (Ka(i), Ka(ii)). The same principles are adopted when giving other
character tables.

7. — The classes and characters of the §; and Si.

7.1 — M = AL O must be an 8. 9 is the group of a ¢ and the action of A"
is described in § 2.2, 2.5. On composing these actions in » we find 5 orbits of points
under the action of MY = §{. These are the point m, stabilised by 8, the
other 4 m in the polar plane f, of m,, the 2 p in f,, the 4 m off f,, the 4 p off f,.
M is tabulated in § 6.4. The geometry is so simple that the calculation, by our
techniques, of the classes and characters of S and 8{* is almost trivial. Usually
the algebraie construetion of the (complex) characters of 2-groups is difficult.
Except for the attachment of suffices we label the classes of S by the same prin-
ciples used for ML (see § 6.1). Suffices, usually 0, are attached to those classes cor-
responding to an orbit of subspaces through m, under a centraliser in S, and not
to classes associated with an orbit of subspaces not through m,. Where two suffices
occur 1f, corresponds to f, and 1f, to the other f through m,.

7.2. — 09 is X, acting on an s, so 8@ is the stabiliser in OP of a p on’s.
Thus 8% = AP 8P is the subgroup B of MP fixing a ¢, call it ¢, through the m,
stabilised by A2, The orbits in A of 82 are m,, the 2 p in #,, the other 4 p in the
polar plane k, of m,, the 4 m off h,, the 4 p off h,. SP, being a Sylow 2-subgroup

of MP = X, is a Dg, and so is isomorphic to 8. 8 is <((1) 3)>, and this group
is also an 8. The map v given by

T (e @)Y > (o, @),
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Tasre 10. — (a) The irreducible characters of M ; values on the even classes.

Class X, X, X,
I 1 7 20 21 28 64 35 14 70 56 90 42 35 35 140 140
IJ 1 7 20 21 28 64 35 14 70 56 90 42 —5 —b5 —20 —20
1r 1 7 20 21 28 64 35 14 70 56 90 42 3 3 12 12
111 1 3 4 1 4 — 5 2 2 . —6 2 7 7 4 4
ITle 1 3 4 1 4 —5 2 2 —6 2 -1 -1 4 4
IITh 1 3 4 1 4 -5 2 2 —6 2 —5 -5 4 4
II1f 1 3 4 1 4 — 5 2 2 —6 2 3 3 4 4
1115 103 4 1 4 5 2 2 6 2 —1 —1 4 -4
v 1 4 5 6 1 4 5 —1 —5 —4 . —6 5 5 5 —10
IVh 1 4 5 6 1 4 5 —1 —5 —4 - —86 =i —3 —3 6
vy 1 4 5 6 1 4 5 —1 -5 —4 - —86 1 1 1 ~2
IX 1 . 1 —2 1 . 1 —1 —1 . 2 1 1 1 g
IXm 1 1 —2 1 1 -1 —1 2 1 1 1 ]
IXp 1 . 1 =2 1 . i -1 —1 . 2 —1 -1 —1 2
X 1 1 —1 . 1 —2 2 2 1 —1 . . 2 2 —4 2
Xom* 1 1 —1 1 —2 2 2 1 —1 . . . . . .
X p 1 1 —1 : 1 —2 2 2 1 —1 . .2 2 4 -2
X1 1 1 —1 . —1 - . 2 —2 1 1
XIm 1 1 —1 —1 2 —2 1 1
XI p, 1 1 —1 —1 2 —2 -1 —1
XI p, 1 1 1 —1 . 2 —2 -1 —1
XTI 1 2 1 —2 —1 . —1 1 . 2 . .
XIIp 1 2 : 1 —2 —1 S : 1 2 . . : ~
XIIT 1 —1 4 —3 —4 3 6 —2 8 —6 —6 1T -5 12 28
X111 d* 1 -1 4 —3 —4 3 6 —2 8 —6 —8 3 3 12 12
Xl1ile 1 —1 4 —3 —4 3 6 — § —6 —6 —35 11 12 &
XIIT§f 1 —1 4 —3 —4 3 6 —2 8 —6 —6 —1 —1 —4 4
XXX * 1 —1 - 1 1 —1 . -1 1 —1 - - - g
XXXV * 1 .1 . . . . . .
XXXVi I —1 - 1 . . —1 2 —2 2 2 3 — 1 4
XXXVI m, 1 —1 : 1 : R 2 —2 2 9 1 3 —
XXX VI my * 1 —1 . 1 , .1 2 2 . 2 2 —1 -1 :
XXXIX 1 —1 1 . —1 . . 1 —1 . . 2 —2 . ]
XXXIXm* 1 —1 1 - —1 1 —1 . . .
XXXIX p l 1 —1 1 . —1 1 —1 - . —2 2 . 2

One of each associated pair is given.
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X X X
140 70 210 210 420 315 315 630 28 140 252 280 140 448 140 280 252 140 28
—20 —10 —30 -—30 —60 —45 —45 —90 4 20 36 40 20 64 20 40 36 20 4
12 6 18 18 36 27 27 54 —4 —20 —36 —40 —20 —64 —20 —40 —36 —20 —4
4 —10 14 —10 4 3 3 —18 8 12 12 —8 8 . 4 —16 - 4
4 6 —2 6 4 —5 —5 —2 - 4 4 8 . il - —8 —8 —4
4 14 —10 14 4 —9 —9 6 4 . - —16 4 8 —8 12 12 8
4 —2 6 —2 4 —1 —-1 —10 —4 —8 —8 - —4 8 4 4 .
—10 10 15 15 —15 - . . 10 20 10 —10 —20 —10 10 20 10
6 —6 —9 —9 9 2 4 2 -2 —4 -2 2 4 2
—2 2 3 3 -3 —2 —4 -2 2 4 2 -2 —4 —2
—2 2 —1 -1 1 2 —2 2 - -2 2 —2
—2 2 -1 -1 1 —2 2 —2 2 -2 2
92 ___2 1 1 _,1 . . . . . » . - -
2 4 . . . 1 —1 1 2 2 2 1 —1 1
- . —1 1 — —2 2 -2 —1 1 —1
—2 —4 : . . 1 —1 2 —2 2 1 —1 1
. —2 —1 -1 2 2 . —2 . . 2 -2 .
—2 —1 —1 2 —2 . . 2 - —2 2 .
2 1 1 —2 - 2 —2 . 2 . —2
2 1 1 —2 . —2 2 . — 2 . 2
. - . B . . . . —1 . 1 - . _,1 . N 1 _.1
—4 6 —6 —6 —12 27 —21 6 4 —4 12 —8 —12 . 12 8 —12 4 —4
12 6 —6 —6 —12 3 3 6 —4 4 —12 8 12 —12 -8 12 —4 4
28 6 —6 —6 —12 —21 27 6 4 —4 12 —8 —12 12 8§ —12 4 —4
—4 —2 2 2 4 —1 —1 — 32 . . . . . « . . . .
—4 —2 —2 2 —1 3 —2
4 —2 =2 2 3 —1 —2
. 2 2 — —1 —1 2 . . . . . .
2 - . . . - - 1 —1 1 —1 1 —1
. —1 1 —1 1 —1 1
—2 1 —1 1 —1 1 —1
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TABLE 10 (continued). — (b The splitting in M of the self-associated characters of MG,

Class

X, () X, (i) X, () L) X() K X () X)) X X)) X6 X
Xm (i) . . - . 3 —3 -3 3
X m (ii) l . . . . 3 3 3 —3 . . . :
XIII d (i) —3 — —3 —3 —2 14 —2 14 — 5 11 27 —21
XII1 d (ii) \ —3 -3 —3 —3 14 —2 i4 —2 11 —5 —21 27
XXX (1) - 3H—1414v/18)  i{—1—i4/1B) . . - . - -
XXX (ii) ; H—1—4+/T8) §(—1+ 44/15)

§ 6.6 describes how the full table for MT can be read off.
(6) The irreducible characters of ./K;f;”; values on the odd classes.
{The characters are in the same order as in the table for the even classes).

Class X, X,
11 1 i1 10 9 10 16 5 4 10 4 15 —15 B30
ITy 1 5 10 9 10 16 5 4 10 4 —1 1 —2
11 1 5 10 9 10 16 5 4 10 4 . 3 —3 6
i1 1 5 10 9 10 16 5 4 10 4 . . —5 5 —10
v i 1 2 —3 2 —3 - -2 4 - 3 —3 6
Vg 1 1 2 —3 2 -—3 -2 4 3 —3 6
Vi, 1 1 2 3 2 —3 —2 4 . —1 1 -2
Vi, 1 1 2 —3 2 —3 . -8 4 . . —1 1 —2
Vi 1 2 1 . 1 —2 -1 1 1 —2 . 3 -3 —3
Vis 1 2 1 1 -—2 ] 1 1 —32 —3 3 3
Vit 1 2 1 1 —2 -1 1 1 —2 —1 1 1
Vie 1 2 1 1 —2 w1 1 1 —2 1 —1 —1
Vil 1 3 2 3 —32 . 1 —2 —4 . 1 —1 2
VIiit 1 3 2 3 —2 1 —2 —& 1 —1 2
VIIs 1 3 2 3 —2 . 1 —2 4y . —1 1 —2
XVII 1 1 1 . 1 —2 2 —2 1 1 . . .
XVII[—1] 1 1 1 —2 2 —2 1 1 . .
XIX i . —1 1 : 1 1 —1 . —1 —1
XIX [—1] i —1 . 1 . 1 1 —1 . — 1 1
XX 1 - —1 . 1 —1 . —1 -
XX [—1] 1 . -1 . 1 —1 -
XXI11 1 1 —1 —1 . . 1 1
XXIT [—1] 1 1 —1 —1 . . 1 1 . :
XXITY 1 —1 2 —1 —2 1 2 . . 5 3 2
XXI111¢ 1 —1 2 -1 —2 1 2 —3 —5 2
XXIIlg 1 =1 2 —1 —2 1 2 1 —1 2
XXI11e¢ 1 — 1 2 —1 —2 - 1 2 —1 1 -2
inY 1 —1 . 1 . . —1 - 1 1 .
LVi—1] 1 —1 1 —1 —1 —1
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is, by (4), an explicit isomorphism from S to 8@ superfices are attached to distin-
guish these two groups. If we number a class of 8 by the same number as its image
under 7%, then, in 8 classes 1, 2, 8, 4, b have for fixed spaces 2, ¢, the other 2¢
in he, j, m, Tespectively. Other information may be inferred from Table 3.

A replica of the discussion for S gives the classes and characters of 8. Apart
from the labelling of classes we obtain the same tables as for 8{. This is evidence
for an isomorphism. In fact we may give a simple proof that a Sylow 2-subgroup
of the cubic surface group is isomorphic to o Sylow 2-subgroup of 2,. For suppose
that a is now in 8, that a'= (&, %1, 0%,%;), and that m,= (1,0,0,0) is the vector
of both m, above. Then simple matrix ecalculations show that

0: (o, @) = (o + (o + &) M, T("’))

is an isomorphism from 8§ to S@.

This result may be induced from known group-theoretic results. O is a copy
of 80,(3) and so (2, pp. 145, 146) its Sylow 2-subgroups are each isomorphic to the
Wreath product Dy} Z,, where Z, is cyclic of order 2, and so is a Sylow 2-subgroup
of 2, (16, pp. 81, 82). However this proof gives no information concerning the
relation of the classes of 8! to those of 8; our 6 gives an explicit correspondence.

TABLE 11. - The classes of the isomorphic groups 8§, 82 of order 2° and of the isomorphic 8§, 87+

Group as S5 Group as 8%
Size Period

Class in MY Class Class | Class in M
1 1 1 1 1 I
1f 17, 1 2 1k, 1h
1 15, 4 2 | 14 1j
1f 1f 4 2 1n 1%
1] 1o 2 2 1ja Y
Ij 1j 4 2 1j 15
11 2 4 2 2 111
IIIm 2 g 4 4 2 my IITm
Il p 2p 8 4 2p ‘ IIIp
XIIT 3 * 8 2 3% I § 81
XIITm 3, * 8 4 3my* I11m
XIiim 3m* 16 ; 4 3p* Iilp
11 4 4 2 4 I
I1¢ 41, 4 2 41, T Y
I1¢ 41 8 2 41 IT¢
ITe 4 ¢, 8 4 4 ¢4 IIe
Ile¢ 4¢ 4 4 4s IIs
I1s 4s 4 4 4¢ | IIe
XXIIT 5 16 4 5 ! VI
XXI1I{—1] 5 [— 13 16 3 5[—11 | VII[—1]
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Moreover, T takes S{'F to 87, so 6 induces an isomorphism from 8" to SP*: the
Sylow 2-subgroups of the simple cubic surface group and the alternating group of degree 8
are isomorphic.

TABLE 12

(@) The irreducible characters of 8 and 8.

igiaé?) Z, Z, Zy Z, iglas,zsz)
1 1 1 2 1 1 2 4 4 4 4 2 2 1

14, 1 1 2 1 1 2 4 4 —4 —4 2 2| 1
14,* 1 1 2 1 1 2 - S 2 2 | 14,
1f 1 1 2 —1 —1 —2 . . 2 —2 - . 1h
15 11 2 1 1 2 —4 —4 - - 2 2| 1j
14 1 1 2 —1 —1 —2 - —2 2 . 1j

2 1 1 —2 1 1 —2 . . 2 —2 2

2 my 1 1 —2 1 1 -2 —2 2 2 1y
2p 1 1 —2 —1 —1 2 : : 2p
3 1 -1 - 1 =1 - 2 2 3%
Smy* | 1 —1 1 —1 —2 2 3mg,*
3m* 1 —1 ~1 1 L 3p*
4 i 1 1 1 2 2 2 4

41, 1 11 —2 —2 2 - 41,
41 1 1 —1 —1 . . - =2 41
46 11 11 T
4¢ 1 1 —1 —1 2 —2 . 2 4s

4s 1 1 —1 —1 —2 2 2 4¢

5 1 —1 1 —1 . . - 5
5[—1] 1 —1 —1 1 5[—1]
One of each associabed pair is given.

(b) The splitting in S7 of the self-associated characters of 8.

s | A0 AW 40 L6 46 L6 46 Ze T
1f ) 1 1 1 1 2 —2 2 —2 14, ()
14, (i) 1 1 1 1 —2 2 -2 2 17, (i)
3 (i) 1 1 1 1 2 S 2 ' 3 (i)

3 (ii) -1 1 —1 1 : 2 A 3 (ii)
3 m (i) 1 —1 1 -1  —2 . 2 . 3, (1)
3my, (i1) —1 1 -—1 1 . —2 . 2 3my, (i)
3m(i) | 1 —1 —1 1 . - 3p (i)
3m(ii) | —1 1 1 —1 $p (i)

See " 6.6 for reading off full table for 8.
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Table 11 gives the classes of the isomorphic 8. Classes of 82 are labelled in
an analogous fashion to those of Sgl): where 2 suffices are required 0 corresponds to
an orbit of subspaces through t,. The pairing of the classes of S{, 8% is that in-
duced by 6.

We should perhaps point out that 8@ and 82 are not isomorphic. Although
we shall not pursue it here, a discussion of these groups by our present methods
shows that S, S? have respectively 2304, 3072 elements with period 8.

8. — The classes of G{° and G +.

8.1. — We must, since B = AP FY, discuss orbits under centralisers in J.
From a class of §{” we choose an element and find the orbits under its centralizer
of the [r—1]of the fixed [#]in . We use Table 4 and revert to the notation of § 5.4.

The centraliser for class 1° is $ and this acts transitively on the 15 m and
15 non-kernel p in J,. Further, it acts transitively on the 6 4 and 10 » in J,, and so
acts transitively on their polar s and ¢ through p,. Since {p,} interchanges the
2 points off J, on one of these s or ¢, I acts traunsitively on the m off J, and
the p off J,. Reciprocating we find that the orbils for 1% are Jy, 16J, 15 F, all
through po; 12 J, 20 F, not through p,.

The kernel p of the fixed space J of a member of 1%2{p,} is not p,. There are in J
and through p,, 7y of which one is the intersection of J, and J, 4%, 4 1 (12, p. 634),
and in J and not through p,, 8w, 62, 2 1. Consequently the centraliser must have
at least 7 orbits: we shall deduce later that there are exactly 7.

All other orbits may be found by the methods used for OY. It is helpful to
consider classes in their related pairs in {({p,}> XxZ;, and, of course, we may only
use transvections with eentres in J,. Except for classes whose fixed spaces are p,
we list these orbits: those before the semi-colon are subspaces containing p,, and
those after it are subspaces not containing p,.

18{p,}: 18y; 10%, 64

142: 3¢, 4j; 3f, 1h, 4]

1222 1f, 1e, 1k, 45; 21, 26, 45
1222{py}: 1t (through focus), 2¢; 1g, 2¢ (through focus), 1%
133: 14 (in J), 3k, 34; 25, 6}
133{p,}: 31; 3¢, 1s

123, 1%4, 24: 1p;1p, 1Im

123{p,}: 1t, 1e, 183 24, 2¢
124{p,}: 1t, 28; 28, 2

24{p,}: 1t, 2¢; 2¢, 2¢

3%, 6: 1p; 2m*

15: 1p; 2p*

23 le, 6f; 2d%, 6f

23{po}: 3t; 1g, 3¢
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TaBLE 13. — The conjugacy classes of IV of order 92160 and of IP* of order 46080,

Elven classes

0dd classes

(lass Size | Class in ALY
16 1 I
16, 1 1J
187, 15 IJ
18J 12 IJ
18 F, 15 1F
‘1 F 20 Ir
142 60 I11
142 ¢, 180 IIe
142 j, 240 | III;
125 | 240 1175
1427 180 II1f
142 h 60 iz
1222 180 111
1222, 180 | IIIf
1292 360 111 §
1222¢, 180 IIIe
122%¢ 360 IiTe
1222 b, 180 IIT R
12924, 720 10T j
12224 720 1114
123 160 v
1335, | 160 1V
1385, | 480 vy
13875 960 vy
133 %, 480 IVh
133 h 320 IVh
123 1920 IX
123 p, 1920 IX p
123 p 1920 IXp
123 m 1920 IXm
32 640 X
32 p, 640 Xp
32m * 1280 Xm
174 1440 X1
124p, | 1440 | XIp,
1247p 1440 XIp,
124m 1440 Xim
24 1440 XI
24 p, 1440 X1 p,
24p 1440 | XIp,
24 m 1440 XIm
15 2304 X1I
15p, | 2304 XIIp
15p * 4608 XIIp
28 60 XIII
2% ¢, 60 XIIIe
28§, 360 | XIIIf
28 360 X111 {
23g* 120 XI11d
6 1920 XXXIX
8 o 1920 XXXIX p
6m* 3840 XXXIXm

Class Size | Class in Y
18 {po} 2 II
1% {p} ¥o 30 1 Iy
18 {py) % 20 | IIx
18 {py} 4 12 | 114
142 {p,} 30 | II
142 {po} ¥o 30 1 IIy
142 {p} 9, 180 | Ily
142 {p,} ¥y 240 ITy
142 {p,} % 120 | I
142 {py} = 180 IT %
112 {p,} 4, 120 | 114
192 {p,} 4 60 | II4
2 {py} 120 | V
25 {py}, 360 | Vi,
28 {p,}t 360 | Vi,
2* {po}g 120 1 Vg
1222 {p} 360 |V
1222 {p 3t} 360 | Vi,
1222 {p 11, 720 | Vi,
1222 {p,} #/ 720 Vi,
1222 {p,} t 360 | Vi,
1222{p.} g 360 | Vg
123 {p,} 320 | VI
133 {p,} o 960 | VI
133 {py} ¢ 960 Vie
123 {p,} s 320 | VIs
123 {p,} 960 | VI
123 {p,} t, 960 | VIt
123 {p,}t 1920 | VIt
123 {p,} ¢, 960 Vie
123 {p,} ¢ 1920 Vie
123 {p,} 8¢ 960 VIs
124 {p,} 720 ViI
124 {p,}t, 720 | VIIt
124 {p,} t 1440 | VII¢
124 {p.}s, 1440 VIIs
124 {p,}s 1440 | VIIs
3 {po} 1280 | XVII
30 {py}[—1] 1280 ° XVII[—1]
15 {py} 4608 XX
15 {p,} [—1] 4608 | XX [—1]
6 {p} 3840 | XXII
6 {py}[—1] 3840 | XXII[—1]
24 {po} 720 | XXIII
24 {p,}te 720 XX1IIt
24 {p,}e, 1440 XXIIIe
24 {po}e 1440 . XXIII¢
24 {plg 1440 | XXIIIg

Periods, fixed spaces and other information may be read off from Table 7.
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A star indicates an orbit which becomes two under the corresponding centraliser
in ", Those for 32, 6, 2* are inferred from the action of centralisers in O{*
which is deseribed in the last paragraph of § 6.2. The centraliser in % of an 4
in class 15 has order 5 and so is (4)>. Consequently we have the star.

B has 52 even and ab least 48 odd classes. Since at least 4 classes split in TP*
the excess of the number of even over odd classes is at least 4 (1, Note E).
Hence °6’§1) has 48 odd classes, and the orbits for 122{p,} are as stated. Further
the only orbits that split under " are those starred above, and they correspond
to the classes of B which form two classes in BP*.

We give the clagses in Table 13. Except for suffices we label the classes by the
principles used for ML (see §6.1). In analogy with 8 suffices are only attached to
classes associated with an orbit of subspaces through p,; where two suffices are used 0
corresponds to the intersection of the fixed space with J,. Dashes are attached to
1223{p,}t, and 1222{pi}¢’ to indicate that the subspaces of the associated orbit con-
tain the focus of the fixed gpace.

8.2, — In conclusion we may remark that our techniques have been applied to
give the classes and characters of other groups, including A and MPT. These,
in turn, have been used in a geometrical study and classification of 0% and 0P,
which it is hoped to present soon. We may mention, too, that at a recent conference
in Ganigville, and in a related preprint, J. S. FrAME and A. Bupvaris have an-
nounced some progress in the problem of determining the characters of the ortho-
gonal and symplectic groups over GF(2).
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