Tauberian translation algebras.
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Summary. - The approach herein investigates a fopological algebra sefting with franslation
s0 that Tauberian results are possible, although wnot necessarily accompanied by ithe
general analytic function theorems usually associated with the Lt group algebra. Aceord-
ingly, the exposition is preliminary for topological algebra generalizations of the known
resulls in spectral synthesis by Malliavin, Kahane, Katenelson, Varopoulous, and Warn-
er. The Tauberian remarks are anticipatory for an uppropriate Malliavin lemma
guaranteeing the existence of ac L, be L, related by specific properties of certain support

sets, and such thot [a?):{:O; correspondingly, an investigation of S sets will follow.

Introduction.

In this expository and preliminary paper we extend the translation of
convolution property of L' (that is, (f+g) = tf+g = f+1g) to more general
topological algebras, define the uwsual L' problems in terms of a translational
setting, and determine elementary conditions under which the closure of the
set of translates of an element is the whole algebra. Applications of this
procedure to algebras of distributions and for approximating elements of
an algebra by differential polynomials (of a given element) serve as moti-
viation for such a generalization; along with the observation of the impor-
tance in proving TAUBERIAN results of WIENER’s theorem on the inversion
of absolutely convergent FOURIER series.

In §1 we define translation algebras and note some of their simpler
properties. § 2 is devoted to proving some usual BANACH algebra results in
a topological ring setting; and in §3 we discuss the notion of TAUBERIAN
condition and the use of what we define as a WIENER condition in proving
our first TAUBERIAN theorem. In this latter section we also see the conve-
nience of a translational setting for TAUBERIAN results, and develop such a
setting for the statement of general TAUBERIAN problems in §4. In the
next section we give some examples and applications to differential equations.
Pinally, in §6, we prove a general TAUBERIAN theorem and list some na-
tural problems and generalizations.

(*) This work was supported in part by contract Nonr 595 (17) with the Office of
Naval Research and was done at the Institute for Fluid Dynamics and Applied Mathe-
maties, University of Maryland.
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§ 1. - Translation Algebras.

Let X be a commutative topological algebra over the complex field C.
By a topological algebra we mean a topological vector space (over () with
ring multiplication separately confinuous. We do not require continuity
because in the situations we investigate our prime need for continunity de-
pends on the existence of a directed system } U,} & X so that for each T€¢X

U« T—1T.

Also let X’ be the space of continuous linear functionals on X. Consider
the following properties:

Tr. 1. = There is a system |U,:2€ 4, a directed sef! so that for all
TeX, Uy« T—T,;

Tr. 2. = There is a set of maps {tn: €M, an index set} so that for
each h€ H
Th . X—X
and for all T, S€X,
i (T%8) = TrtpS = T8}

Ta. 3. = Each t is continuous;

Tgr. 4. - X’ is a complex-valued function space each of whose elements
is defined on H and such that for all §, T€ X, ¢€ X,

(v T, )€ X' and
(ST, »)=1{S§, (- T, cp>)

It X satisfies Tr. 1-TR. 4 then X is a translation algebra. A translation alge-
bra thus depends on H and {U,!, and if in a given X, there are a number
of { U,} we choose one of the family where 4 has lowest cardinality.

Now, if X satisties TR. 1 and Tr. 2, ring multiplication is hypoconti-
nuons, and for each % the set {7,U,: «€4} is contained in a bounded B
of X, then Tr. 3 is satisfied. In fact, given }S,! where S,—0. We have

‘ChSa:.’ lim ’Chsa*U.g:Z lim Sa*ThUB.
ged pe4d

Thus by our boundedness condition and the hypocontinuity,

lim ‘ChSa = 0.
o
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Actually another criterion, quite analogous to this boundedness condition, is
the usual uniform space result. Thus, if X, satisfying Tr. 1 and Tr. 2 is T,
(and hence completely regnlar) we consider the corresponding uniform space.
Letting S,~0 we assume

th Sz Ug=0 uniformly in § or
Tp Sy UB—B»'ChSm uniformly in o;

and by MoorE-SMITH, 1,S,->~0. We have not had to assume completeness
since, in fact, one of the double limits is known to exist-that is

lim Jim ThSa* UB = 0
2 3

Consider any set I of a commutative topological algebra X. We define
the following orthogonal seis:

It ={9€X :(T, 9)=0 for all T€I};
IN={TeX:(T, ¢) =0 for all p €I},

We farther define the set of translates of a given T€X to be all finite
linear combinations of the form

2 extn, T, e €Q,
and we call this set Gr.
ProrosiTioNn 1. - Let X be a translation algebra.

i. IS X an ideal implies I is an ideal, and M € X maximal implies
that M is closed or M = X;

ii. T€X and I a closed ideal containing T implies that Tr & I;

iii. Let I be a closed set. I is an ideal if and only if I is an inva-
riant subspace (that is, 7,7 < I for all R € H);

iv. TEX implies that Gr is a closed ideal in X.
Proor. - ¢ is obvious in any commutative topological algebra.

#4. For this part we need only assume X is a commutative topological
algebra satisfying Tr. 1 and Tr. 2.

Let S =T; we show S€1I and this proves it since I is a subspace
(thus, Gr € I and I closed inplies G < I).

Annali di Motematica 3
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Thlpx T = U,xtpT = U, S and T €I implies txU,xT €T so that

lim U,*S = S€I

since I is closed.

#ii. We first show that if I is a closed ideal then I is invariant. In
order to do this we only need Tr. 1 and Tr. 2. Now, for T€I we have
.U, xT€T; but

‘thUa*T: Bd*ThTﬁ» w’T

so that since [ is closed we have 7,7'€1.

Conversely, since I is a closed subspace we need only show S<T €1 for
S¢€X, Tel; again, we do not use Tr. 3.

Let €I implying {S+T, 9 )= (S, {z-T, 9)); but I invariant means
that tnT€1 for all REH.

Thus (T, ¢} is the O element of X’ so that (S+T, ¢} =0.

Hence S+T€ 11 C T where this last inclusion is obvious by the defini-
of orthogonal sets.

iv. COlearly Gr is a subspace since Gr is.

We show that if SeGr the 128:Gs C Gr and this proves it by .

There is | S, \ C Gr such that S, — S.

Thus 38, -% 128 by continuity of tx.

Hence t7SeGp since 12,8,eCr and Gr is closed. ged

Again, with X a commutative topological algebra, we say that 1< X is
idempotent, it I+I S I and m-convex if it is convex and idempotent. Also X
is a commutative locally convex fopological algebra if the given topology on
X is locally convex. Finally, X is locally m-convexr if there is a basis of
m~convex sets for the neighborhood system at the origin.

The stipulation of idempotency achieves its greatest force in any study
of topological algebras which desires to give a reasonable generalization of
BANAcH algebra theory. This follows since every complete, locally m~convex
topological algebra is a projective limit of BanacH algebras (MicHAEL, p. 17).
The best conditions to ensure that a topological algebra be locally m-convex
are the following (MicHAEL, p. 10 and p. 15):

1. - A topological algebra is locally m~convex if and only if it is iso-
morphic (algebraically and topologically) to a subalgebra of a_cartesian product
of normed algebras;
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2. - If X is a locally convex topological algebra such that
i. each m-convex barrel is a neighborhood of 0, and

ii. there is a basis {V,} of X such that for each « and each T¢X
there is a counstant A, r, for which

TV, S AoV,

then X is locally m-convex.

This latter result shows that the space usually has to be of second cate-
gory or barrelled. Condition ¢ is, of course, the second category or barrel
condition and in a very real sense is much more restrictive than condition 7.
With regard to this latter condition we consider the following usual situa-
tion: let X be a commutative topological algebra satisfying properties Tr. 2
and Tr. 4 and let Y be a topological vector space such that ¥ = X. If the
topology on X is the usual strong topology from Y then the sets

NB, = {T€X:|(T, B)| <e}

form a neighborhood system at O € X where ¢ > 0 and B is bounded in Y.
‘We form the balanced hull of each such B, then the convex hull of this,
and finally the closure 4 of this convex hull. The result of course is that
4 is closed, balanced, bounded, and convex. Clearly, the sets N(4, &) form
a basis for the above neighborhood system since N(4, &) & N(B, ¢). With this
gitnation, then, we have.

ProposIiTiON 2. - Given 4 & Y and ¢ > 0 as above and assume that for
each 9€ 4 the set |7, T:TEN(4, &), h€ H}| is bounded on v; further assume that
each closed C © Y is sequentially closed and sequentially complete (e.g. a
complete metric space). Then for all S€X and for all N(4, ¢ there is A
(depending on 4, ¢, and such that

S«N(4, ¢) C AN(4, ¢).

Proor. - Since 4 is closed it is sequentially closed and complete, and
because of the pointwise boundedness on 4, we can apply the uniform
boundedness theorem (e. g. KELLY, p. 105).

Thus for S€ X there is M > 0 so that for all 9€ 4

(S, (5T, @))| < M.
Letfing A = M/c we have

SxN(4, ¢ & N4, Xe) = AN{(4, ¢). qed
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ExaMPLE. - Clearly, the integrable distributions 9'p (ScEWARTZ, 15,
p. 56) on R* form a commutative fopological algebra.The duality properties

of D} are as follows: let 9 € @B if o€ 0® and for each k=0, 1, ...

lim  ¢®(x) = 0;

[@}->0

and topologize & with the semi-norms p; where
pilp) = sup i |o®¥x)|: x € R"}.

Clearly, then, & is a complete metrizable space and &' = Dp. Also, the
strong dual of ©'p, is B where ¢€&B if o€ C* and for each & there is M; >0
such that

sup {| 9™ @)|: w€ R} < My,

and where the topology on & is that generated by the pr. A compact con-
vergence type of pseudo-topology can be put on & so that B =Dn. 5

satisfies the conditions of the above proposition since & is a complete metric
space and

(thT) CP) =< Tz, Pl + h)>

where the right hand side is clearly a bounded set in éBh when A varies
over H and T goes through N(4, e) for some closed, convex bounded, and

balanced (and sequentially closed and complete, naturally) 4 & 3.

Actually the boundednees hypothesis of the above proposition can be
weakened slightly if we impose the continuity hypothesis on the tz, reduce
the convergence criterion on .Y to sequential convergence, and take advan-
tage of the commutativity of X. We finally note that essentially the only
non-second category spaces which are barrelled are those infinite dimen-
sional ones which have their strongest possible locally convex topologies
(KeLry, p. 105).

The point of all the reamarks following our first proposition is to illu-
strate the restriction of our translation algebras if we were to require that
they also be locally m-convex.

§2. - Gelfand-Type Results.

In algebra we have FrRoBENIUS well kno theorem that any finite di-
mensional linear division algebra over the real field is isomorphic to the
real, complex, or quaternion number systems. The usnal generalization which
replaces finite dimensionality by topological hypotheses is: every normed
field over C is isometrically isomorphic to €. The first proof of this was
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given by GBLFAND although A. E. TavrLor had done essentially the same
thing in 1938 using a standard LiouviLLE theorem technique. We give the
result for a parficular class of locally convex topological algebras.

‘We let our commutative topological algebra X (over C) be locally con-
vex such that the semi-norms defining the topology are filtrant (that is, for
any finite set p,,, ¢ =1, ..n, there is a ¢ such that ¢ =2 p, ). Also, recall
that for any ideal I & X, X/I is T, if and only if I is closed. A family
of filtrant semi-norms ensures that the topology on X/I defined by the
semi-norms

PTy=inf{p&):8€T=T+1I)

is the same as the topology induced by the canonical map. Thus, for a clo-
sed ideal I in X, X/I is a T, locally convex commutative topological algebra,
and clearly the canonical map takes maximal ideals into maximal ideals.

Let 9C(X) be the space of continuous non-zero homomorphisms on X
(With a similar definition for 9T(X/1)), any commutative topological algebra.
This space will correspond to the «mnatural transform theory» on a given X
a topic which we shall discuss more fully in §3.

Because of calculations we shall make, we state the following usual
definitions: for T, S€X, let

ToS= T+ S+ Ts+S;

the elements T for which there is S such that T'oS=0 are quasi-regular
and the elements S are quasi-inverses of the 7”s. Further an ideal 7€ X is
requiar if there is S such that for all T

TeS — TEI;

thus if X has a unit then every ideal is regular.

Lemma i. - If M is a regular ideal in a commntative ring X, then M
is maximal if and only if X/M is a field;

ii. - If X is a commutative ring with unit then 7€ X has an inverse
if and only if T is contained in no maximal ideal.

¢ and ¢ are both standard {(Loowmrs, pp. 60 and 64).

We note that if X is a commutative topological algebra with continuous
multiplication and such that each element T has an inverse T—', then each
T is quasi-regular; further if the operation of inversion is confinuous then
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quasi-inversion is continuous. In fact it 7 € X then
S=(—Tx@ -+ T)*

is its quasi-inverse; and if 7,— 0 then (8 + T,)— 8 implying 3 4 T,)~*—3
so that S,~0 since multiplication is continuous.

The first part of the following proposition was proved by ARENS (ARENS,
p. 625) in the non commutative case and with continuous inversion.

PROPOSITION 3 - i. Let X be commutative locally convex topological
algebra and algebraic field over C, and with continuous . quasi-inversion;
then X = {¢3:ceCy;

ii. Let X be a commutative locally convex (with filtrant seminorms)
topological algebra over € with continuous guasi-inversion (on quasi-—,regular
elements) and let M be a closed regular maximal ideal of X; then X/M is
algebraically and topologically isomorphic to C.

Proor. - ¢. Each T€X is quasi-regular.

Assume there is non-zero T€X which is not a scalar multiple of 3. By
the local convexity there is a continuous linear functional f on X such that

f(I) 0.

Consider (T — ¢ — 8) and its quasi-inverse

U=3 45— T)x(T — ),
and define

Rey=71(% + 03 — T}x[T — e3]™).

h certainly exists for all c€C by assumption, and as ¢-—0 then h(c)— R(0);
this is obvious for if ¢~—0 then (7' — ¢3 — 8)—(T'— &) so that (3 + ¢ — T)%
¥ (I — o8y '— (8 —T)x T~ by the continuity of quasi-inversion.

Now, with kb continuous we consider

B) - h(c) = f[(T — & +(T — A8y~ (h —¢)] =

=& —f[(T — ey +(T — A5)~"],

so that A'(c) exists and equals

(T — ¢y?].
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Thus % is entire and as c— oo we have h(c)— — f(3) implying by LIOUVILLE’s
theorem that h{c) = —f(2).
Therefore, for ¢ =0, f{(( ~— T+ T~ = f(— &) so that

(I + (=2 =f(—29)
implying f(T-") = 0, a contraddiction.

ii. By part i we have each T,€X/M is of the form T,=c,5 where
¢, €C and & is the unit of X/M.

Clearly, we need only show that the map T,~>¢, is bicontinuous. If
¢,—0 in C then T, = cag—a-O by the eontinuity of scalar mulfiplication.

Conversely, assume that if T,—0 then {c,} does not necessarily con-
verge to 0. Thus there is v > 0 so that for any a, there is & =, for which
y<|e].

Now, if p is one of the semi-norms defining the topology on X/M and
pB)=c¢> 0 then we let

V= ii’:}}(f’}écﬂ.

Thus, since T,~—-0 there is § so that for all =8

Pl Soy;
that is, |c,|<7.
Hence if we take o, = we get a coniradiction. qed.

The hypotheses for our result are automatically satisfied if X/M is the
quotient algebra of a complex BaNAcH algebra. Further, since multiplication
is continuous in (commutative) BANACH algebras we have that the continuity
of inversion automatically implies the continuity of quasi-inversion. Again,
in such algebras all regular maximal ideals are closed; a fact which is frue
in any commutative ring in which the gquasi-regular elements form an open
set-such rings are @, rings (d la JAacoBsoN). As is well known, and clear,
if quasi-inversion is continuous then the quasi-regular elements form a topo-
logical group; and, of course, quasi-inversion is continuous in normed al-
gebras and locally compact rings without divisors of zero. Liocal compactness
is generally not sufficient to ensure the continuity of quasi-inversion (again
via JAcoBsON), and with regard to local compactness we call to mind (for
the sake of perspective) the fundamental result that every T, locally compact
topological vector space is finite dimensional HKuclidean space. Also com-
plete metric spaces do not usually have the continuity of quasi-inversion
property. Finally it is easy to see that locally m-convex algebras do have
such continuity (e. g. MicHAEL, p. 10).
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‘We also assume all ensuing sefs of semi-norms to be filtrant.

THEEOREM l. (GELFAND) - Let X be a commutative locally convex topo-
logical algebra over & and with continuous quasi-inversion. Then every
closed regular maximal ideal M is the kernel of some continuous homo-
morphism X onto €, and vice-versa.

ProOOF. - Given M we have by the previous proposition that X/M =C
so that the kernel of this isomorphism is M and the isomorphism is a
continuous homomorphism of X onto C.

The converse situation is straightforward and is true for any commu-
tative topological algebra.

Let ¢ be the given homomorphism; obviously, ker ¢ is an ideal.

To show maximal-let I be an ideal containing ker ¢ but not equal to it.
We show that I =X.

Let T€1I1 - ker g so that o(T) == 0.

Consider any S€X and write it as

P (s

S =
o(T

§T+U

where 9(U) = 0.

Thus Ue ker ¢ © 1, T€I so that S€ I; thus X & I, that is X = 1.

To show regular we note that since f is onto there is U€ X such that
o(U) = 1.

Hence, given any T'€X we clearly have UxT — Te ker g.

Finally, to show the kernel is closed we let T be a limit point of ker
¢ 8o that there is a directed system {7,} & ker ¢ converging to 7.

The continuity of ¢ and the fact that ¢(7,)=0 for all « imply that
@(T) =0 so that Te ker o. ged.

We've presented a general form of some of GELFAND s results for the
sake of perspective because so many of the TAUBERIAN properties we shall
discuss don’t have a BANACH algebra type setting.

3

§ 3. - Tauberian Properties.

In this section we shall prove our first TAUBERIAN result for transla-
tion algebras and give some possible ramifications of this. First, however,
we review the background for TAUBERIAN theorems from an algebraic point
of view; that is, we don’t discuss TAUBER's original simple result and the
subsequent hard analysis of Harpy, LirrLEWoOD, and WIENER in fhe first
three decades of this century.
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We begin by stating KruLL’s theorem (which is trivial - to prove by a
standard ZorN's lemma argument): if X is a ring with unit then every
proper left ideal is contained in a maximal ideal. In rings without unit this
result can be modified so that with the addition of certain topological and
GELFAND type conditions we have the following: every proper closed ideal
is confained in a regular maximal ideal. This result is only ftrue in special
BaANAcH algebras and we shall recall the necessary restrictions below. As is
well textbooktized, the previous theorem applies to the LY(G) group algebra,
G a locally compact abelian group, and in this setting attains the usual
forms originally given by WIENER in the early thirthies (for the case of
the real line):

i. U f€1X@) has non-vanishing FOURIER fransform then Gf= L%;

ii. If @ is not compact, «€I®°(@Q), [ satisfies the hypotheses of ¢ and
fra—0, then for all g€ LYG),

gra—0.

To make the previous poragraph more precise we state the usual defi.
nitions of GELFAND theory for the specific BANACH algebra setting of the
above TAUBERIAN theorems. Liet X be a Bawacu algebra with second dual
X" and let O s(X) be those elements of MNL(X) which map X onto €. If we
restrict the natural map X — X" to 91Us then we designate the image of X

in X” by X. Thus the mapping T~> T€X, where (T, ¢)=(T, ¢} for all
¢ € Mg, defines an algebraic homomorphism of X onto X. In the weak topo-
logy from X onto OWs we know that s is locally compact, a resulf
that is true for X any normed algebra. Now, if X-—+X is 1 —1 then X is
a function algebra and X is its Gelfand representation in the seunse that X

is represented by the algebra X of continuous complex valued functions
defined on the locally compact T, space 9Us. In terms of the results of §2
consider 9 s as a maximal ideal space — that is, its elements are the re-
gular, closed (automatically, since X is a BawacH algebra), maximal ideals
of X. We topologize 91s in the usual SToNE-JACOBSON. fashion: thus for

a,hy F C 9s, define its closure I as
F={M&Ms: M DNM', M'€F}.
As is well known the weak topology on 9IUs is the same as the SrTONE-

JA00BSON topology if and only if 9 s in the weak topology is completely
regular. As might seem reasonable, the complete regularity guarantees the

existence of some form of local identity in X. In fact, the existence of the
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uniform structure which induces the StoNE-JAcoBsoN (hull-kernel} topology
on Mg, along with the geuneral analytic function theorem (for Bawacm al
gebras) mentioned at the end of §2, is enough fto prove the existence of
local identities. The need for local identities for TAUBERIAN theorems will
become clear in our own TAUBERIAN result. In any case, the result that
any proper closed ideal is contained in a regular maximal ideal is true in
any semi-simple (commutative) BANACH algebra with the properties:

i. 9Ms is completely regnlar in the weak topology;

ii. The elements T¢X (defined on the locally compact 9Ns) with com.
pact support form a dense subset of X.

There is an approach by WirLcox which takes a slightly different turn.
He determines which BANACH algebras have the purely algebraic property
that every two sided ideal contained in a regular maximal ideal. He does,
in fact, find a large class of such algebras — ones in which 9Ts with the
SToNE-JACOBSON topology has certain point-set theoretic properties. Instead
of copying his results we only note the usual examples which have these
properties:

i. The BanacH algebras considered in the previous remarks, and, in
particular, L'(G), G a locally compact abelian group;

ii. Any Bawvacm algebra in which left and right multiplication are
completely continuous; e. g. L'(G) with G compact;

iii. The group algebra of the direct product of a locally compac tabe-
lian group and a compact group.

Now, the standard BaxacH algebra TAUBERIAN result (discussed above)
is a generalization of WIENER's original theorem in the wusual sense; that
is, instead of L'(IR), essentially any BanacH algebra with the uniform siruc-
ture and denseness properties defined above has the required summability
property — expressed, of course, in terms of maximal ideals. WILLCOX, on
the other hand, alters the final TAUBERIAN result so as to consider a con-
venient subclass of BaNacH algebras for which the result holds. The stan-
dard BawvacH algebra TAUBERIAN theorem extends from L' to more general
structures with similar topological properties. In our approach we extend
the translation property of L' to many topological algebras which are neither
complete nor normed, and investigate TAUBERIAN properties of these algebras.

In any commutative topological algebra X, we resirict the natural map
X— X" to OX) and designate the image of X under this restriction by X.
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Each element T€X defines a map M(X)-—C where T(p) = ¢(T). The na-
tural algebraic operations in X are:

(T*S)(p) = ¢ (T+S),
(T+S)(9) = ¢(T) + + 2(8),
@T)(p) = ap(D),

where a €€ and ¢ € OYX). Clearly, then,
i. TxS= T«S,

ii. T=S implies T'= S8, for X semi-simple, and for each ¢ €9INYUX),

iii. (T+S)(9) = T(p) S(g).

We say that INUX) determines the fransform map of X and that the

M -transform of T¢X is T. Clearly, we use U fo determine an (integral)
transform on X in order to preserve the classical operational property iii.

ExamprrLe. - If X = LYG) then the 9U-transform is the usual FOURIER
transform. As another example consider the continuous homomorphisms on
the space &' of distributions with compact support. & is, of course, a com.
mutative locally convex algebra taken with the strong topology from &, the
space of C® functions with topology defined by the usual uniform conver-
gence (for finite numbers of derivatives) on compact sets (of TR™ or exten-
sions to locally compact spaces). Now, we know that any commutative
algebra is a function algebra if and only if it is semi-simple. Of the many
trivial characterizations of semi-simplicity it is probably best for our pur-
poses to think of it at follows: for any non-zero element 7 of the algebra
there is € T such that O(T) == 0. This, of course, is analogous to the
usual 7, characterization of locally convex spaces in terms of non-zero
semi~norms for given points. Getting back to our distibutional example,
consider the map ¥'— D’ (the space of distributions) where

T-> Tx8S

for fixed S€&'. Note that this map, say fs, commutes with tsanslation. In
fact, & is algebraically isomorphic- to the space of linear transformations,
®'— ', which commute with translation. The case of determining O for
&', or any topological algebra, is more difficult than the same problem for
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BawacH algebras, where every homomorphism is continuous, If ¢ €dUH)
then for the 7'¢€ &’
35+ T (9) = T(9)j (%),

where 3; is the j — th partial derivative of 8€&'; thus, for all T¢ &',

dp do
T8 = T} o= ) ",
1 3, T(z) AP © = (X, ., T ER
Hence,
dp(x) _ [ d9p(x) )
so that

o) = exp {C.1%: + ... + Catn},
where ¢, ..., ¢,€C. Conversely, for 7, S€ &’

{T+S, exp {city 4 ... + 2,1 )=

= (T, exp {1y + ... F Ca%a') (S, exp {c: 4 ... + cunt),

and therefore each element ¢ of (&) has this exponential form for every
n-tuple (¢, ..., ¢s) = c€C% Thus, given T¢ &', the DMU-transform

Fr{e) =Ty, exp {cuts 4 ... 4 cattn})

is the w~dimensional bilateral LAPLACE transform whith the usual conver-
gence in a tube, analyticity, and multiplication properties of LAPLACE tran-
sforms, Also, the representation result for the LAPLACE transform of &' is
that this map is an algebraic isomorphism of & onto the algebra (under
ordinary multiplication) of entire functions of exponential type tempered on
vertical lines (see e.g., Lions, BENepETTO 2, 3 for this result and some
topological remarks). It is possible at this point, by standard juggling in
the duality game, to define the FOURIER transform not only on & but also
on the usual space of tempered distributions and hence to develop SCHWARTZ's
Fourigr transform theory.

The role of the TAUBERIAN condition, so clear in the first TAUBERIAN
results, has evolved almost to the point of obscurity. On the other hand,
present day TAUBERIAN theorems achieve a compact form in terms of ne-
cessary and sufficient conditions; e.g., if f€ L' then Ty= L if and only if
the FOURIER transform of f never vanishes. This particular example where
the FOURIER transform doesn’t vanish and the related theorem concerning
the inversion of absolutely convergent FOURIER series are the motivation for
the local condition we use to prove our TAUBERIAN result — a condition
which we appropriately call the WIENER condition.
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Let X be a translation algebra where the index set H is given a T}
locally compact topology. Denote by V, <& H the smallest closed set such
that for all ¢ € X’ satisfying

Cq,ﬂVa::A

(0, the support of o), we have (U,, ¢}=0. Let 7€ X have the property
that 7 is never zero.

WIENER CONDITION. - Given V,. There is 8§ €X such that for all
e € IMUX) with C, NV, E=A,
1
- == S(p).
T(9) (%)

Clearly if X has unit 3 then 3(¢)=1 only; and the WIENER condifion
is automatically satisfied with S=2.

The importance of just how vital a well defined system of approximate
identities is begins to become evident in this condifion and will be clear in
our TAUBERIAN result. The fact that our translation alegbras have approx-
imate identities permits us to have a purely local WIENER condition.

Classically, TAUBERIAN conditions have taken the form of growth re-
strictions on coefficients in series. In the original version of WIENER'S
theorem (stated at the beginning of this section) the hypothesis that &€ L*®
is the TAUBERIAN condition. On the other hand, the notion of an inversion
criterion (as our WIENER condition) has always played just as vital a role
in TAUBERIAN theorems; a fact most clearly observed in BEURLING's uni-
queness theorem (Acta Mathematica, 1945) of which WIENER's result is a
simple corollary. It is standard now, of course, to prove WIENER's inversion
of FOURIER series theorem as a corollary of a general analytic function theo-
rem and then to prove WIENER's TAUBERIAN result in terms of this corol-
lary. Our particular approach allows us to consider algebras in which general
analytic fanction theorems may not hold but which do have a local WIENER
condition so that TAUBERIAN results can still be proved. Thus, our translation
algebras may not even have an inversion of FOURIER series theorem but will
have TAUBERIAN properties. In fact —

TrEOREM 3. - Let X be a semi-simple translation algebra with locally
compact index set H, and let T€X with the property that 7' is never 0. If
T satisfies the WIENER condition then %T:X.

PROOF. - It is only necessary to show that each U,€%r; in fact, if
We X and each U,€ Gr then W«U,€Gr so that

lim WxU, = WeBr.
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By the WIENER condition there exists S€X so that for all ¢ with
O, NV, == A we have
L= T(¢)S(g).
Thus, for all ¢ € T,
Udl9) = T(9) Sp)Ux9).
Hence,

Un(9) = T(9)[SUL9)] = T(g) S+ Ux(®)

8o that for all ¢ €9
Unp) = (T+SxU,) ().

Therefore, U, = T(SsU,), and since Gy is an ideal we have U,€Tp.

REMARK [. - In this result, the local compactness of H is more a con-
venience than anything else. For most examples it is a reasonable assumption
— in particular, for all algebras of distribution. Also, a weaker WIENER
condition would be: given V,; there is a compact neighborhood C of V, and
an S€X so that for all 9€INUX) with C, & C,, we have

1= T(p)S(%).

The theorem would be true for most ftranslation algebras of distributions
satisfying this condition since the proof would only be altered by finding a
O0*f: H~~Q such that §(V,) =1 and B(H — C) = 0; then for all ¢€I we
would define Uylp) = U,Byp) so that

U(9) = T'(9) Sty) Us/)

since U,(Bv) is clearly well defined.

REMARK 2. - The classical converse for THEOREM 2 takes the form: if

Tr =X then T is never zero. This result, thongh trivial, depends heavily on
the FoUuRIER fransform properties of the space usually considered, viz. L.
Without a WIENER condition such a converse is not to be expected in a
general franslation algebra; again, with a WIENER condition as in the pre-
vious remark we trivially show that 7(p)==0 for all ¢ with support con-

tained in C, but it is impossible to prove that T is not zero for any 9. On
the other hand, if this latter WIENER condition is changed to read ‘for all
compact neighborhoods C of V,’ (instead of, ‘there is a compact neighborhood C
of V,’), then it follows immediately from this condition that T is never zero.
Finally, with the WIiENER condition of THEROREM 2, if for at least one o, Va = H
then it is again obvious that 7 is never zero.
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REMARK 3. - THEOREM 2 depends heavily on the existence of local
identities either in the space itself or in quotient spaces. In the following
section we shall write a general TAUBERIAN problem without reference fo
such indentities. For the moment, though, we examine the possibility of
extending BANAcH algebra techniques for our purposés. Recall that in BAN-
ACH algebras both general analytic function theorems and complete regula-
rity were used to show the existence of some form of indentities. The com-
plete regularity alone guarantees the existence of

T: X'— 10, 1]

which separates closed sefs and points, but such a map need not be linear,
or if proved to be linear, it need not be a member of X. Also, even if X' is
locally convex, the HAuN-BaNAcH theorem only assures the existence of a
continuous linear functional (extended from a subspace M S X') equal to 1
at a finite number of points of D¢; and a quick look at theproof shows that
not much betfer than this can be accomplished.

Besides topological considerations (as complete regularity) the other
major problem in showing the existence of local identities via BaNacH algebra
techniques is a reasonable extensions of the multiplicative BaxacH algebra
inequality to more general algebras. As mentioned above, complete spaces are
necessary for general analytic function theorems; but even with completeness,
it is not necessarily true that

I(T”‘Sz CP)IS;T(CP)% IS((9)1> 7, S¢X, CPEX'}

an inequality which is needed in order fo prove such theorems.

REMARK 4. - We close this section with a couple of brief comments
on algebras X with unit. Consider & with unit 3; then the 9N (bilateral
LAPLACE) transform of 3 is the analytic function =1 and so is never zero.
On the other hand, it is easy (Scuwarrz, 15, p. 17) to see that Ty =&
Because of the inherent algebraic structure of &' there is no need for a
WiENER condition to prove this; although it is also a trivial corollary of
our first proposition in §1. If we consider a non-unit element 7 in our
algebra X so that Gr= X then the unit €% so that there is a directed
system U,€Gr with the property U,—¢&. When V, is compact and

U,= S T

then the support of each 7 is compact. When H has a group structure, for
example in the case of distributions, then the fact that C.; is compact implies
that Cr is compaot.
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§4. - Tanberian Problems.

We are now in a position, after the motivation of the three previous
paragraphs, to formulate explicitely the TAUBERIAN problem for topological
algebras. Throughout this seetion, X will be a (complex, for convenience)
commutative topological algebra, 91(X), the set of non-zero homomorphisms

X—C, and X, the restriction to YX) of X". Further, we assume there is
a set G of maps v : X~ X, h in an index set I, such that for any §, 7¢X
and any h€H,

t(SeT)= 18+ T = Sx1pT.

The pair (X, B) is a lranslation algebra. We shall discuss some examples
in §5. If for some T€ X, T€X is never zero and Gr =X, then (X, T) is a
Touberian translation algebra. We note in passing that for algebras of di-
stributions the operation of differentiation satisfies the translation condition.
Also, if, given an arbitrary translation algebra the addition of a bounded-
ness or local inversion condition yields the result that %y = X then these
conditions are referred to as Tauberian or Wiener, respectively.
In order to examine a more general situation, define the spectrum

Zr = {9 €M : T(y) =014

of T¢X. (X, G)is a general Tauberian (ranslation algebra if there is some
7 € X such that for all S¢X satisfying

Zr & Zs

we can prove S€%r. We shall discuss such a situation in §6. This general
area has, of course, been well trodden in a BaNAcH algebra setting.
It is trivial to see that in translation algebras which are fields and for

which some Gy is a closed ideal that Gr = X (in fact, the equation Sx7'=23

has a solution S= 7" so that 3€GBy).

Now, there are two classes of translation algebras which are important -
not only because of their relation with the TAUBERIAN problem bu also
because of their connection with other phases of harmonic analysis. First,

X is a speclral algebra if for each 7'€ X, Gy is the intersection of all maxi-
mal ideals containing it; as is well known, L' is not a spectral algebra, but
is very close to it. Related problems include finding those translation alge-
bras which have elements with this intersection property or, even more, den-
se subsefs of such elements. These spectral algebras are in fact the motiva.
tion for studying general TAUBERIAN translation algebras (as we shall see in
§6). Second, we consider those translation algebras in wich each closed ideal
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is of the form Tr. The determination of such algebras is not an easy task,
and, in fact, it is not known if even L' has this property.

Particular cases of such algebras have been studied although from a
Baxaocu algebra setting as opposed to the translational approach. For example,
RupiN has characterized all closed ideals of the Bawacm algebra of conti-
nuous complex valued functions on the closed unit disk of ¢ and analytic
in the interior. Further, and with regard to spectral algebras this characte-
rization gives necessary and sufficient conditions (RupiN, THEOREM 3, p. 433)
for any such closed ideal to be intersection of all maximal ideals in the
given algebra.

§5. - Examples.

In this section we first give examples of various BaNacH algebras and
algebras of distributions with corresponding natural translation maps and/or
approximate identities; and then we look at the TAUBERIAN problem when
the set of translation maps is a set (or even algebra) of differential polyno-
mials with constant coefficients. Finally, we consider, in some detail the
TAUBERIAN properties of .

A. - Let X be a complex commutative B* algebra. As is well known
(e.g. RickART) X is a semi-simple and every closed ideal is an infersection
of maximal ideals. More important for our purposes is the fact that X has
a system of approximate identities (RICKART, p. 245) so that the setting is
appropriate for TAUBERIAN considerations if there is a family of translation
or differentiation maps defined on an algebra and with values in X.

We now let X be a commutative BAxacH algebra of functions defined
on an index set H and with values in an algebra with no divisors of zero.
If the set of translation maps is defined on an index set H’ and if there is

ho € H and non-zero T€X for which 7' /i) = O then for all S€ o She) = 0;
clearly, by the pointwise mutiplication for X, we have for each h& H' that
(nT) (ho) Sthe) = T'(ho) (S () 80 that at the very least S(h,) =0 or even pos-
sibly (zaT) ko) =0 for all h€H'. It is, of course, possible to «translationa-
lize» in a natural way many of the standard BAxAcmH algebras (see e.g.
Rioragrr) although there is little point to pushing things too far for the
the cases of operator algebras because of the general lack of commutativity.
On the other hand a TAUBERIAN investigation of group algebras seems a
more reasonable pursuit, and besides the usual results for LYG) it is inte-
resting to find TAUBERIAN properties of various subalgebras (e g. © SCHWARTZ' s
test functions), convolution algebras of measures, and BEURLING's weight

Annali di Matematica 35



274 J. J. BEnepETTO: Tauberian translation algebras

function spaces Lv (e.g. Loouis, pp. 180-181), This last case leads to the
bilateral LiaApLAcCE transform in much the same way as & does.

It is, of course possible to find TAUBERIAN results on range spaces (by
integral transforms, for example) in terms of domains which do in fact have
a TAUBERIAN theorem. Thus, if § is the FoURIER transform on L' then we
define the convolution T+S in F(LY) as F-HT=FHS).

In the case of algebras of distributions we already know that T;= 8.
Closely related to & we have the algebra i’ of analyitic functionals. We let
H# be the space of entire functions on C* with the usmal topology of com-
pact convergence; then J(C#) is a closed subspace of 8(IR* and its dual is
J’. Convolution is then defined in Jf’ in terms of &, and the LAPLACE tran-
sform ( Ty, e—**) (of T'€H’) is an algebraic isomorphism of H' onto the space
of entire function of exponential type. There is, of course, the expected set
of translation maps and differentiations on K

Of the many other algebras with unit and standard translation and dif-
terentiation maps we mention:

i. All distributions on a circle I'; these form a convenient space to
develop the theory or FOURIER series.

ii. All distributions on WR*t' with support in the come ¢{=0, #—
— g . — 2 =0,

iit. All distributions on R with snpport in the right half line [0, oo).

This last example is particularly useful for an operational calculus, and
has prompted the definition of many similar algebras (e.g. ScHWARTZ, b,
28-33). Related to 4 we have the algebra of (MarcoeL) Riesz’s distributions
(SoHEWARTZ, 14, pp. 49-60) with the sef of franslation maps given by various
«powers » of the d’ ALEMBERT differential operator. This particular algebra,
with ramifications and generalizations, thereof, has been discussed in detail
by MaruiE with an excellent account in TREVES' notes (TrEVES, pp. 76-96)
on LORENTZ invariant differential polynomials,

As an example of a translation algebra X without unit in which it is
easy to find approximate identities, we consider all those distributions on R
of the form

2 Oy Tad™,
mn

where the sum is finite, tu,€ R, and Z a,,, = 0. Clearly, ¢ X. Also, for

T=3 tpptd™, S5 a7
%7

e N
we have
TeS= 2 Z ai,jam,”1”+15(”‘+1)

w47
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which can be re-subscripted to be of the form Xb,,t,3®, and where it is
easily seen that £b,, =0 by the right re-grouping. The varicus orders of
differentiation form a set of translation maps, as do the usual translation
maps T, k an integer, and the union of these two sets. Again, for T€ X,
Tr & X.

Now, consider a sequence of the form

”
3 =& — g, 3m

wher n——oo. It is easily seen that this sequence does noft converge in the
topology of & but does converge to & in the somewhat coarser topology on 9.
As is well known the mapping (S, T)~> SxT, S€&, T'€D', is a separately

continuous map & X 9 — 9D, so that for 7¢ X C &, T*g-»T. A simple cal-

" n
culation also shows that 7«8 € X and hence {3} is a sequence of approximate
_ identities in X. Also 7 : X~ X ip continuous.

B. - Let X be any algebra of distribntions and let the family of fran-
slation maps be all differential polynomials D, with constant coefficients:
such that

D,: X—X;

for example, let X = &'. The TAUBERIAN problem in this setting is fo find
Gr for a given T € X; that is, for a given T to find which elements of X
can be approximated by differential polynomials 2¢,D,T. In this setting,
the order of the differential operator is arbitrary, and it is also interesting
to find those elements of X which can be approximated by differential poly-
nomials % ¢,D,T where the order is always less than some fixed integer.

Thus, given 7 the TAUBERIAN theorem actually determines those ele-
ments S such that P(D)T'= §, where P(D) is some differential polynomial.

In a slightly more general TAUBERIAN setting consider thesame problem
for two different algebras X and Y; that is

D,: X—X.

We also note here as another direction of some interest that the problem
of the previous paragraph is closely related to the fundamental representation
theorems of Distribution theory; for example, it is well known that T'€D'n(IR)
if and only if

T=ZXZfm, fi€lL.

Thus, for our particular case we would be examining those elements of 9’z
where the f; is a single fixed element of 12,
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Looking at this situation is a slightly different light we see that we are,
in fact, dealing with a generalization of one of the standard problems of
differential equations. For example, in the one-dimensional case, the operator

ki3
= Z apD*, ar€8, ap(r) never zero,
k—o

maps 9 onto D and has m-dimensional null space each of whose elements
9€8 and satisfies L(p) = 0. More generally, then, given a closed ideal I in
an algebra X the problem is to find the largest set of differential polyno-
mials (with constant sufficients) such that the range of a given T for all the-
se polynomials is maximal in I. This problem and its obvious perturbations
are therefore not only usual queries in differential equations but are also
naturally posed in a TAUBERIAN setfing.

When considering such families of differential operators X— Y we can
topologize them, as expected, as subalgebras of the usnal space of confi-
nuous linear maps (X, Y) — provided, of course, that we only consider
continuous differential operators. Finally, in algebras of distributions it is no
problem at all to consider sets of translation maps which include both diffe-
rential maps and true translation operators.

C. - We finally consider the TAUBERIAN properties of D'r(R). First
note that &€%'z although this is not clear by the representation theorem for
9D’y mentioned above. On the other hand, the sequence

n 0, z€(—o0, —1/m]U[l/n, o)
&(x) =

—n*| 2| 4 n, €[— 1/n, 1/n]

forms a system of approximate identities in 9D'z;. To see this, we first note

E
that 3—& in &'; in fact, for €8,

2 v(E) — @0) @(0) 1
7

E s LV — ol ) o8& — ¢0)
B3, g)=2|a0 <28
for some £€ (— 1/n, 1/n) — this follows by the mean value theorem for inte-

gration and since 1 > &n, E(E)S n for all £€(— 1/n, 1/n). Thﬁs, for a given
bounded set in & we need only show thai
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is uniformly bounded (for all ¢ in this set, noting, of course, the  depends
on n); but

— (0 — (0

and

— (0
————giu — 40 |#'0)

for some A €(0, £) (or (£, 0) if £ < 0), so that by the definition of bounded
sets in & we have required uniform boundedness.

Now, it is a straightforward calculation that 7% S€9D'z, for T€ D'y and
S€&'; in fact, we need only use the representation theorems to express
elements of 97 and & in terms of sums of derivatives of ' and continuous
functions (with supports in a fixed compact set), respectively.

Further, we note that the map (7, S)—> T%8, T € D', S€& is sepa-
rately continuous in the sense that if S,~~>0 in & then TxS,~>0in ¥ p;
similarly, if the S,€9'r we also have separate coﬁtinuity. Both these facts

resalt from trivial manipulations with bounded sets in & and &. In any
”
case, the & form a sequence of approximate identities for D'z:. Also, D'p is

a translation algebra in the sense of §1 since the usual distributional tran-
slation obviously takes @' 1 into 9z, and suech translation is continuous

because it takes bounded sets of & into bounded sets of &. Hence, for each

TE€D 11, Br is a closed ideal.
Another means of defining ideals is as follows: let

Tel;,
if
T=ZXfk),
a finite sum, where for each ¢, fi,.., fiP€ L' and
min {k; : for all i} =7,

I, is an ideal and for all p, I, = 9's; since D < I,,.
For f€ I* and with non-vanishing FoURIER transform we have that
ffz &'z from which it can be shown that if 2€ B and

froa(z)—A4 [ f, as z—+occ,
then for all T€%'n
Tra(x)— A(T, 1) ag x~oco,
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This classical form of the TAUBERIAN theorem for 9z can also be proved
making judicious use of classical proofs for 7' (e.g. WIENER'S or BEURLING'S
juxtaposed with appropriate lemmas to deal with the derivatives of L* funec-
tions in @'r: (e.g. BENEDETTO, 1). Also our remarks are valid in R,, although
we operate in R as a matter of convenience for the remainder of this
gection.

Let © be that subset of 9’z whose elements 7 have the property that
(T, 1)=0. Thus, if T'=f", n =1, and f€L, then T€O. As a trivial ap-
plication of our TAUBERIAN result we have for all 7€ and « € & that Txa€ .
To see this we note that Txa(x)—0 as |&|—cc and

(TP (z) = (TxafD)(2)—0

for all j since aP€&. Clearly not all elements of & are of the form Txa,
T€O, at B; for example,

B@) = e " &=

has the properties that §€ L* N B and §FB)(x) = I'(1 — éz), so that FB) is never
0. On the other hand, &7)(0) =0 for all T€QO so that FT+a)(0) = 0.

We can, in fact, show that the complement in & of the set of elements
represented by Twa, T€O, o € B, is dense in &; and that those elements (in
&) of the form Tk are not dense. The proofs of these observations involve
short, semi-interesting calculations. Finally, if we weaken the topology on &
to the compact convergence criterion (for each derivative) it is true that ele-
ments of the form Twa, T€O, a €SB, are a dense subset of &H.

§6. - A General Tauberian Theorem and Some Remarks.

In this section we prove the general TAUBERIAN theorem mentioned in
§4 where Zy & Zs. In order to demonstrate this ve make the natural changes
for the appropriate WIENER condition in this situation. It might be well at
this point to underscore the theme of this note; thus, in L' we show that
Gf = L' when the FoURIER transform of f never vanishes-to do this we use
the facts that L' has approximate identities and that the inverse of a non-
vanishing FoURIER transform is the FOURIER transform of some L&) function
on compact sets. Hence, we have considered general algebras X with translation
properties (similar to those of L') so that Ty = X when the 9R~transform of
T never vanishes; these algebras are equipped with approximate identities
and a local WIENER condition corresponding to the above inversion of non-
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vanishing FoURIER transforms.

For the proposition and theorem of this seciion we let X be a semi-simple
translation algebra (as in § 1).

ProposIitioN 4. - Let Z; € int Zg (with the induced strong T, topology
on ONU(X)). Detine W:OMUX)— C as

!S !
o~ &'77((3‘_))) CPQZT
Wig) = 1%

O, CPEZT.

Then Z; is closed, W is continuous, and for all non-zero ¢ € €. Wicy)= W(v).

Proor. - We first note that ©(Zy) is open; in fact for ¢ € C(Zyp),
T(y) == ¢ == 0, so that we need only take any neighborhood N of ¢ which

-

does not include O and note that 7—*(N) is a neighborhood of o.

It is also clear that Wcy) = VV(cp) for all non-zero c€({; for ﬁf(mp) =
= Sle)/ T(ce) = S(¢)/ T(p) if Ticp)=£0, that is if T\ ¢)=3=0; and Wicp) =0 it
T(ce) = O, that is if T(p) = 0.

Now, let ¢, — ¢ so that S(p,)— S(¢) and T(y,)— T(y).

It T(p) == 0 then, since Zr is closed, there is a neighborhood IV of ¢ so
that for all W€ N, T\W) == 0. Hence for all « > some &, ¢,€N and thus
Wie,) — Wi(g).

On the other hand, if T{p) =0 then 9 €Z; C int Z,.

Therefore there is a neighborhood N of ¢ so that for all WeN, SW)=0;
thus for all «= some «,, 9,€N implying S(¢,)=0 and hence T/AV(cpa)—w ﬁ/’(cp).
qed.

GuNERALIZED WIENER CoXDITiON: Given V, and 7€ X. There is K€ X
so that for all ¢ € 9IUX) with the properties

Co NV, == A,
and
9 € CZy)
we have
1 = T(9)B(9).

TaEOREM 3. - Let X be a semi-simple translation algebra with 7} locally
compact index set H and let 7, S€ X have the property that Z, S Zs. It 7'

satisfies the generalized WIENER Condition then S€%Gy.
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PROOF. — As before, we need only show that SxU, € Gy for each a.

By the WIENER condition
L= R(e)T(p)
for all ¢ € @(Zy) such that C, N V, &= A.
Thus, S(¢) = BT\ ¢)Sp) for all ¢ so that C, N V, == A; and therefore

U,(9)S(9) = U(o)B9)T(9)S(%)
for all ¢ € DNYX).

Hence, as in Theorem 2.

U,x8 = T+«(U,+ExS)
and U,xS€Tr. qed.

For the remainder of this final section we discuss two problem areas
related to our translation considerations. First, we note those natural queries
whose positive resolution would streamline our TAUBERIAN approach. In the
second area we first counsider a means of constructing reasonable translation
algebras and then we sum up the problem of spectral algebras more precisely
than remarked in §4.

A 1. - It is advantageous to determine DMT(X) so that we can actually
compute (7, ) (7€ X, ¢ € NUX)). Granted, if X is a commutative Jocally
m-convex algebra, then ONUX) can be characterized (MicHAEL, p. 11) in terms
of maximal ideals of X in much the same manner as the BaxacuH algebra
setting. This approach does not give much aid in actually calculating the
ON-transform of 7'€ X; for this purpose it is useful to find DMU(X) «internally»
as we did in §3 for £.

A 2. - Since our TAUBERIAN approach relies so heavily on a WIENER
condition and the existence of approximate identities it is then reasonable to
find conditions in which a given algebra has one or both of these properties.

A 3. - We are also interested in effectively eliminating Tr. 3 and/or
Tr. 4 as hypotheses for large classes of algebras. There are two major reasons
for this desired generalization. First, it is natural fo determine those algebras
X and elements 7€ X where %7 is a closed ideal; and, more important for
applications, it is desirable to explicitly approximate elements of a given
algebra by differential polynomials of a fixed element-as considered in §5.
Presently, Tr. 4 tells us that we have enough elements in H so that with

the conditions of our TAUBERIAN theorems we can have G, = X; one of the
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ways it does this is to contribute quite significantly in proving that Gr is
ideal.

A 4. - Finally, it is natural to extend the definition of translation so
that our translation maps tn: X -— Y (Y not necessarily equal to X) have the

property that for some T€X, Gris a closed ideal in Y. Here Y is an algebra
and X & Y.

B 1. - We have noted above that our translation approach is somehow
most effective in spaces like L' or Dz:. As a means of generating similar
spaces and at the same fime producing a partial integration theory for distri-
butions we consider the following situation. Let ¢ be a RADON measure. Then
the integrable functions (on MR*) Z(p) with respect to p are identified with
finite measures absolutely continuous with respeet to p. Thus, we have essen-
tially a subspace of distributions. The p-integrable distributions would then
be all finite linear combinations of derivatives of these measures-much the
same as D is constructed. A natural followup would be to manufactore a
RADON-NIKODYM theorem so that the subset S, of absolutely continuous mea-
sures (with respect to p) which generates locally integrable functions (with
respect to p) can be determined. Thus, the erux of the matfer is fo construct
distribution theory for locally integrable functions with respect to an arbitrary
RADON measure instead of just LEBESGUE measure; and, then, to show that
the space corresponding to D does, in fact, have meaning.

B 2. - As mentioned in §4, L' is not a spectral algebra; but we do
know that Gy is the intersection of all closed maximal ideals containing it
if and only if Z; € Z; implies g € Gy. Hence, it is natural to attempt to find
those translation algebras where a local WIENER condition can be replaced
by (or replaces) such an interseetion property.
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