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Summary. - The approach herein investigates a topological algebra setting with translation 
so that Tauberian results are possible~ although not necessarily accompanied by the 
general analytic f~nction theorems usually associated with the L i group algebra. Accord. 
ingly, the exposition is preliminary for topological algebra generalizations of the kno~vn 
results in spectral synthesis by Malliavin~ Kahane~ Katznelson~ Varoponlous. and Warbl- 
er. The Tauberian remarks are anticipatory for an appropriate Malliavin lemma 
guaranteeing the existence of ae L~ be L~, related by specific properties of certain support 

sets, and such t h a t / a b : ~  0; eorrespondingly~ an investigation of S sets will follow. 

Introduction. 

In this expository and prel iminary paper we extend the t ranslat ion of 
convolution property of L 1 (that is, ~ ( f , g ) - - z f ,  g = f ,  zg) to more general 
topological algebras, define the usual  L 1 problems in terms of a t ranslat ional  
setting, and determine elementary conditions under  which the closure of the 
set of translates of an element is the whole algebra. Applications of this 
procedure to algebras of distr ibutions and for approximating elements of 
an algebra by differential  polynomials (of a given element) serve as moti- 
viation for such a generalization; along with the observation o[ the impor- 
tance in proving TAUBERIA_~ results of WIENER~S theorem on the inversion 
of absolutely convergent FOURIEI~ series. 

In  § 1 we define translat ion algebras and note some of their simpler 
properties. § 2 is devoted to proving some usual  BA~cACr[ algebra results in 
a topological r ing setting; and in § 3 we discuss the notion of TAUBERIA~ 
condition and the use of what we define as a WIENER condition in proving 
our first TAUBERIAN theorem. In this lat ter  section we also see the conve- 
nience of a t ranslat ional  setting for TAUBERIAN results, and develop such a 
setting for the statement of general TAUBERIA~ problems in §4. In the 
next section we give some examples and applications to differential  equations. 
Finally,  in § 6, we prove a general TAUBERIA~ theorem and list some na- 

tural  problems and generalizations. 

(*) ~his work was supported in part by contract ~N~onr 595 (17} with the Office of 
Naval Research and was done at the Institute for Fluid Dynamics and Applied ~¢[athe- 
maties, University of Maryland. 
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§ 1. - T r a n s l a t i o n  A l g e b r a s .  

Let X be a commutative topological algebra over the complex field (~. 
By a topological algebra we mean a topological vector space (over (~) with 
r ing multiplication separately continuous. We do not require continuity 
because in the situations we investigate our prime need for continuity de- 
pends on the existence of a directed system / U ~ I ~ X  so that for each T E X  

U~, T - - T .  

Also let X' be the space 
the following properties:  

TR. 1 . -  There is a 
T E X .  U~, T ~  T; 

T~. 2. - There is a set of maps l ' c h : h E H ,  an index set I 

each h E H 

"~ : X ~ X  

and for all T, S E X ,  

• h(T*S) -- T,~hS "- ~hT*S; 

of continuous l inear functionals on X. Consider 

system { U~:~EA,  a directed set l  so that for all 

so that for 

T ~ .  3.  - E a c h  ~h is cont inuous;  

TR. 4. - X' is a complex-valued function space each of whose elements 
is defined on H and such that for all S, T E X ,  ~EX ' ,  

(z .T,  ~ ) E X '  and 

(S,T, 

If  X satisfies TR. 1-TR. 4 then X is a translation algebra. A translation alge. 
bra thus depends on H and t b~!,  and if in a given X, there are a number 
of I U~! we choose one of the family where A has lowest cardinality.  

Now, if X satisfies T]~. 1 and TR. 2, ring multiplication is hypoeonti- 
nuous, and for each h the set i ZhU~:aEA!  is contained in a bounded Bh 
of X, then T•. 3 is satisfied. In fact, given IS~! ~here  S~,--0. We have 

zhS~ : lira xhS~.* U~ --:- lim S~*~hU~. 
~A ~A 

Thus by our boundedness condition and the hypocontinuity,  

lim xhS~ -~ O. 
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Actually another criterion, quite analogous to this boundedness  condition, is 
the usual  uniform space result.  Thus, if X, satisfying Ta. i and Tn. 2 is To 
(and hence completely regular) we consider the corresponding uniform space. 
Let t ing S~-*0 we assume 

z h S ~ , U ~ O  uniformly in ~ or 

%S~*U~--.-zhS~ uniformly in ~; 

and by ~OORE-SMITtI, ~hS~ a"~O. We have not had to assume completeness 
since, in fact, one of  the double limits is known to exis t - that  is 

lira lim "~hS~* U~ = O. 

Consider any set I of a commutat ive topological algebra X. We 
the following orthogonal sets:  

I I - ' i ~ E X ' : t T ,  ~ ) - - 0  for all T E I i ;  

define 

I11 : t T E X : ( T ,  ~) - - 0  for all ,~ E D t .  

W e  fur ther  define the set of translates of a given T E X  to be all finite 
l inear combinations of the form 

Z c~:h~T, ckE¢ ,  

and we call this set c~ T. 

PROI~OSI~TON 1. - Let  X be a translation algebra. 

i. I ~  X an ideal implies I is an ideal, and l~l ~ X maximal implies 

that M is closed or M ~ X;  

it. T E X  and I a closed ideal containing T implies that ~ T ~  I ;  

iii. Let  I be a closed set. I is an ideal if and only if I is an inva- 
r iant  subspace (that is, z h I ~  I for all h E H ) ;  

iv. T E X  implies that ~T is a closed ideal in X. 

PROOF. - i is obvious in any commutat ive topological algebra. 

ii. For  this part  we need only assume X is a commutat ive topological 
algebra satisfying TR. 1 and Tn. 2. 

Let  S : ' : h T ;  we show S E I  and this proves it since I is a subspace 

( thus ,  c~ T ~ / and I closed inplies ~T-----I), 
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"~hU~,T-- U~,~hT-- U~,S and T E I  implies z~U~ ,TEI  so that 

lira U s * S - - S E I  
6 ~  

since I is closed. 
o 

iii. We first show that if 1 is a closed ideal then I is invariant. In 
order to do this we only need T~. 1 and TR. 2. Now, for T E I  we have 
":hU~* T E I;  but 

xhU~* T = U~,x~T ~-~ zhT 

so that since I is closed we have zhTE1. 

Conversely, since I is a closed subspace we need on~ly show S,  T E I  for 
S E X ,  T EI;  again, we do not use TR. 3. 

Let ~EI l  implying ( S , T ,  ¢?) - - (S ,  (x.T,  ~)); but I invariant  means 
that ~hTE I for all h E H.  

Thus (z-T, ~?} is the 0 element of X' so that ( S , T ,  ¢?}-- 0. 

Hence  S ,  T E I~t ~ I where this last inclusion is obvious by the def ini-  
of orthogonal sets. 

iv. Clearly ~T is a subspace since ~T is. 

We show that if Ss~I- the "chSz~s ~ ~T and this proves it by iii. 

There is I S~}_c ~T such that S~--.-S. 

Thus x~S~ ~-% zhS by continuity of Zh. 

Hence "~hSS~T since ~hS~S~T and ~T is closed, qed 

Again, with X a commutat ive topological algebra, we say that I----_. X is 
idempolent~ if I , I  c_ I ~ and m-conve~c if it is convex and idempotent. Also X 
is a commulalive locally convex topological algebra if the given topology on 
X is locally convex. Finally, X is locally m-convex if there is a basis of 
m-convex  sets for the neighborhood system at the origin. 

The stipulation of idempotency achieves its greatest force in any study 
of topological algebras which desires to give a reasonable generalization of 
BAZ~AO~[ algebra theory. This follows since every complete, locally m-convex 
topological algebra is a projective limit of BAz~ACH algebras (3~IICHAEL, p. 17). 
The best conditions to ensure that a topological algebra be locally m-convex  
are the following (~IIo~gA~,L, p. 10 and p. 15): 

1. - A topological algebra is locally m-convex  if and only if it is iso- 
morphic (algebraically and topologically) to a subalgebra of a eartesian product 
of normed algebras;  
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2. - I f  X is a locally convex topological algebra such that 

i. each m-convex barrel is a neighborhood of 0, and 

ii. there is a basis ivy} of X such that for each ~ and each 
there is a constant )~a~T, for which 

T ~ X  

T* V~ C_ X~,vV~, 

then X is locally m-convex. 

This lat ter  result  dhows that the space usually has to be of second cate- 
gory or barrelled. Condition i is, of course, the second category or barrel 
condition and in a very real sense is much more restrictive than condition ii. 
With  regard to this lat ter  condition we consider the following usual  situa- 
t ion: let X be a commutative topological algebra satisfying properties TR. 2 
and TR. 4 and let Y be a topological vector space such that  Y' = X. If  the 
topology on X is the usual strong topology from Y then the sets 

N(B, I T X: [(T, B)[ <e l  

form a neighborhood system at 0 E X  where ~ ~ 0 and B is bounded in Y. 
We form the balanced hull  of each such B, then the convex hull of this, 
and finally the closure A of this convex hull. The result of course is that 
A is closed, balanced, bounded, and convex. Clearly, the sets N(A, ~) form 
a basis for the above neighborhood system since N(A, ~)~ N(B, ~). With this 
situation, then, we have. 

P R O P O S I T I O N  2. - Given A ~ :Y and z ~ 0 as above and assume that for 
each ~EA the set I':hT:TEN(A, C, hEHi  is bounded on ?; fur ther  assume that  
each closed C ~ Y is sequential ly closed and sequential ly complete (e.g. a 
complete metric space). Then for all S E X  and for all N(A, ~) there is ). 
(depending on A, ~, and such that 

S,N(A,  ~) C_ ~N(A, ~). 

PROOF. - Since A is closed it is sequential ly closed and complete, and 
because of the pointwise boundedness on A, we can apply the uniform 
boundedness theorem (e. g. KELLY, p. 105). 

Thus for S CX there is M ~  0 so that for all q~EA 

Let t ing ~ -  ~i/~ we have 

S,N(A,  C ~ N(A, ),Q ~ ~ ( A ,  ~)o fled 
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EXAMPLE. - Clearly, the integrable distributions ~'L, (Sct~wAR~Z, 15, 
p. 56) on " ~  form a commutat ive topological algebra.The duali ty properties 

of D~, are as follows: let 7 E ~ if ¢~ C ~" and for each k = 0, 1, ... 

lim ~(k)(x) ---- 0; 

and topologize ~ with the semi-norms p~ where 

pk(~) = sup  it ~(k)(x)l : x E ~ t.  

Clearly, then, ~3 is a complete metrizable space and ~ ' =  @~,. Also, the 
strong dual of ~)'L~ is ~ where ~ E ~  if .~E C ~ and for each k there is Mk > 0 
such that 

sup t 1 ~<k)(x) t : x ~ ~'~ f < Mk, 

and where the topology on ~ is that generated by the p~. A compact con- 
vergence type of pseudo-topology can be put on ~ so that ~ ' - - - -~;~ .  ~'Ll 

satisfies the conditions of the above proposition since ~ is a complete metric 
space and 

(:hT, ~)--( Tx, T(~c+h)) 

where the right hand side is clearly a bounded set in a n  when h varies 
over H and T goes through N(A, e) for some closed, convex bounded, and 

balanced (and sequentially closed and complete, naturally) A ~ ~ .  
Actual ly the boundednees hypothesis of the above proposition can be 

weakened slightly if we impose the continuity hypothesis on the :h, reduce 
the convergence cri terion on ~Y to sequential  convergence, and take advan- 
tage of the commutat ivi ty  of X. We finally note that essentially the only 
non-second category spaces which are barrelled are those infinite dimen- 
sional ones which have their  strongest possible locally convex topologies 
(KELLY, p. 105). 

The point of all the reamarks  following our first proposition is to illu- 
strate the restr ict ion of our translation algebras if we were to require  that 
they also be locally m-convex.  

§ 2 . -  G e l f a n d - T y p e  R e s u l t s .  

In  algebra we h a v e  FROBE2~IUS' well kuo theorem that any finite di- 
mensional  l inear division algebra over the real field is isomorphic to the 
real, complex, or ciuaternion number  systems. The usual  general izat ion which 
replaces finite dimensionali ty by topological hypotheses is: every normed 
field over C is isometrically isomorphic to {~. The first proof of this was 
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given by GELFA57D although A. E. TAYLOR had done essentially the same 
thing in 1938 using a standard LIOUVlLLE theorem technique.  W e  give the 
result  for a par t icular  class of locally convex topological algebras. 

W e  let our commutat ive  topological algebra X (over C) be locally con- 
vex such that the semi-norms defining the topology are filtrant (that is, for 
any finite set p ~ ,  i :  1, . . .n, there is a q such that q ~ E  p ~ ) .  Also, recall  

that for any ideal l ~  X,  X/ I  is To if and only if I is closed. A family 
of f i l trant semi-norms ensures that the topology on X/I  defined by the 
s e m i - n o r m  S 

_P(I') : inf ip(S) : SE ~' ~--- T + I} 

is the same as tile topology induced by the canonical map. Thus, for a clo- 
sed ideal I in X, X/ I  is a T2 locally convex commutat ive topological algebra, 
and clearly the canonical map takes maximal  ideals into maximal ideals. 

Let ~Y['C(X) be the space of cont inuous non-zero homomorphisms on X 
(With a similar definition for !~Y~(X/1)), any commutat ive topological algebra. 
This space will correspond to the (<natural t ransform theory>) on a given X 
a topic which we shall discuss more fully in § 3. 

Because  of calculat ions we shall make, we state the following usual  
definit ions : for 7'.. SE.X, let 

T o S =  T +  8 +  T,S; 

the elements T for which there is S such that T o S =  0 are quasi-regular 
and the elements S are quasi-inverses of the T's. Fur the r  an ideal I ~ X is 
regular if there is S such that for all T 

T*S --  TE I; 

thus if X has a unit  then every ideal is regular.  

LEM)iA i. - If  M is a regular  ideal in a commutat ive  ring X, then M 
is maximal if and only if X/M is a field; 

ii. - If  X is a commutat ive ring with unit  then T C X  has an inverse 
if and only if T is contained in no maximal  ideal. 

i and ii are both s tandard (Loo~Is,  pp. 60 and 64). 

W e  note that if X is a commutat ive topological algebra with cont inuous 
mult ipl icat ion and such that each element T has an inverse T -1, then each 
T is quas i - regu la r ;  further  if the operat ion of inversion is continuous then 
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quasi - invers ion is continuous. In fact  if T E X then 

S - -  ( - -  T ) , ( 8  + T )  -~ 

is its quas i - inverse ;  and if T : ~ 0  then ( ~ - t - T : ) - ~  implying (~ + T : ) - ~  
so that S : -~-0  since mult ipl ication is continuous. 

The first part  of the following proposition was proved by A~E~S (AREAS, 
p. 625) in the non commutat ive case and with continuous inversion. 

PRoPosImIo~ 3 - i. Let  X be commutat ive locally convex topological 
a lgebra and algebraic field over C, and with cont inuous ,  quasi - invers ion;  
then X --  t c~ : ce(~ } ; 

ii. Let  X be a commutat ive locally convex (with fil trant seminorms) 
topological algebra over (~ with continuous quasi- invers ion (on quas i - regular  
elements) and let M be a closed regular  maximal ideal of X;  then X / M  is 
algebraical ly and topologically isomorphic to (~. 

PI¢ooF. - i. Each T E X  is quasi- regular .  

Assume there is non-zero T E X  which is not a scalar multiple of 8. By 
the local convexity there is a continuous linear functional  f on X such that 

f ( T  -~) ~ O. 

Consider ( T - - c ~ -  ~) and its quas i - inverse  

and define 

U - -  (~ + c8 - -  T ) , ( T - -  c8)-~; 

h(c) = f ( [8  + ~ - T ] , [ T  - c~]-1). 

h certainly exists for all cEC  by assumption, and as c ~ O  then h(c)~h(O); 
this is obvious for if c ~ O  then ( T - - c ~ - - 8 ) ~ ( T - - 8 )  so that (8 ~ c & - - T ) ,  
• ( T - - c 8 ) - 1 ~ ( 5  - T) ,  T -1 by the continui ty of quasi- inversion.  

Now, with h continuous we consider 

h(),) - -  h(c) - -  f [ (T - -  c8)-1,(T - -  ).8)-1(). - -  0)] = 

--  ( X  - -  c)f[(T - -  c)-l+(T - -  ).8)-1], 

so that h'(c) exists and equals 

f[(T-- c)- ' ] .  
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Thus h is entire and as c ~ o o  we have h ( c ) ~  --f(~) implying by LIOUVILLE'S 
theorem that h ( c ) ~ - - f ( ~ ) .  

Therefore,  for c - -  O, f(($ ~ T ) , T  -~) = f ( - -  ~) so that 

f ( T  -~) + f ( - -  ~) --  f ( _  ~) 

implying f (T  -~) = 0, a contraddiction. 

it. By part  i we have each T ~ E X / M  is of the form ~'~--o¢,$ where 

c~E ¢ and g is the unit  of X / M .  

Clearly, we need only show that the map T ~ c ~  is bicontinuous. If 

c~,--.-0 in C then T~ ~ - - c j ~ 0  by the cont inui ty  of scalar multiplication. 

Conversely, assume that if T~---~0 then l c~} does not necessari ly con- 
verge to 0. Thus there is y ) 0  so that for any ao there is a ~ S o  for which 

Now, if jp is one of the semi-norms defining the topology on X / M  and 

p(~) - -  e ~> 0 then we let 

V - -  t T: p ( T ) ~ c T (  . 

Thus, since T~--~0 there is ~ so that for all ~ 

(eft) <-- c¥; 

that is, [e~ ] ~_ "~. 
Hence  if we take s o - - ~  we get a contradiction, qed. 

The hypotheses for our result  are automatical ly satisfied if X / M  is the 
quotient  algebra of a complex Ba~AC~ algebra. Fur ther ,  since multiplication 
is continuous in (commutative) BANACH algebras we have that the continui ty 
of inversion automatical ly implies the continuity of quasi- inversion.  Again, 
in such algebras all regular  maximal  ideals are closed; a fact which is true 
in any commutat ive r ing in which the quas i - regular  elements form an open 
se t -such rings are Q, rings (~ la JAco:Bsos). As is well known~ and clear, 
if quasi- inversion is continuous then the quas i - regular  elements form a topo- 
logical group; and, of course, quasi- inversion is continuous in normed al- 
gebras and locally compact rings without divisors of zero. Local compactness 
is general ly  not sufficient to ensure the continuity of quasi- inversion (again 
via JACOBSO:~)~ and with regard to local compactness we call to mind (for 
the sake of perspective) the fundamenta l  result  that every T~ locally compact 
topological vector space is finite dimensional  Eucl idean space. Also com- 
plete metr ic  spaces do not usually have the continuity of quasi- inversion 
property. F ina l ly  it is easy to see that locally m-convex  algebras do have 
such continui ty (e. g. MICHAEL, p. 10). 
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We also assume all ensuing sets of semi-norms to be f i l t rant .  

TttEORE~I 1. (GELFAI~D) - Let  X be a commutat ive locally convex topo- 
logical algebra over C and with continuous quasi- inversion.  Then every 
closed regular  maximal  ideal M is the kernel  of some continuous homo- 
morphism X onto C, and vice-versa.  

PnooF.  - Given M we have by the previous proposition that X/M = C 
so that the kernel of this isomorphism is M and the isomorphism is a 
continuous homomorphism of X onto C.  

The converse si tuation is s traightforward and is true for any commu- 
tative topological algebra. 

Let  q~ be the given homomorphism; obviously, ker  ~ is an ideal. 
To show maximal ' let  I be an ideal containing ker  ¢? but  not equal  to it. 

W e  show that I== X .  
Let  T E l - - k e r  ~ so that ~ ( T ) ~ 0 .  
Consider any S E X  and write it as 

8 =  ~(S)T+ U 
¢~( T) 

where ~(U) = 0. 
Thus U~ ker  ~___i, T E I  so that S E I ;  thus X C _ L  that is X - - L  
To show regular  we note that since f is onto there is U E X  such that 

~(U) = 1. 
Hence, given any T E X  we clearly have U , T - -  T~ ker  % 
Finally,  to show the kernel  is closed we let T be a limit point of ker  

so that there is a directed system I T~t_C ker  ~ converging to T. 
The continuity of ~ and the fact that ~(T~)-----0 for all ~ imply that 

q~(T) = 0 so that Te ker  % qed. 

W e ' v e  presented a general form of some of GELFAND'S results  for the 
sake of perspective because so many of the TAU]~ERIA:U propert ies  we shall 
discuss don't have a BAIqAc~ algebra type setting. 

§ 3. - T a u b e r i a n  P r o p e r t i e s .  

In this section we shall prove our first TAUBERIAN result  for transla- 
tion algebras and give some possible ramificat ions of this. First,  however, 
we review the background for TAUBERIAI~ theorems from an algebraic point 
of view; that is, we don't discuss TAUBER'S original simple result  and the 
subsequent  hard analysis of HARDY, LITTLEWOOD, and WIENER in the first 
three decades of this century.  
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We begin by stating KRULL'S theorem (which is t r iv i a l  to prove by a 
standard ZoR~'s  lemma argument) :  if X is a ring with unit then every 
proper left ideal is contained in a maximal ideal. In  rings without unit  this 
result  can be modified so that with the addition of certain topological and 
G'ELFAND type conditions we have the following: every proper closed ideal 
is contained in a regular  maximal  ideal. This result  is only true in special 
BA~ACH algebras and we shall recall  the necessary restrictions below. As is 
well textbooktized, the previous theorem applies to the L~(G) group algebra, 
G a locally compact abelian group, and in this setting attains the usual 
forms originally given by WIENER in the early thirthies (for the case of 
the real line): 

i. If fE [)(G) has non-vanishing FOUmER transform then ~ f - -  L~; 

ii. If G is not compact, gEI~(G), f satisfies the hypotheses of i and 
f . ~ O ,  then for all 0E I#(G), 

g . a ~ 0 .  

To make the previous poragraph more precise we state the usual deft- 
nitions of GELFAND theory for the specific BANACH algebra setting of the 
above TAUBERIAN theorems. Let  X be a BA~'ACK algebra with second dual  
X" and let ~ s ( X )  be those elements of ~VS(X) which map X onto C. If we 
restrict  the natural  map X ~ X "  to ~ z  then we designate the image of X 

in X" by 2~. Thus the mapping T ~ T E X ,  where (T, ~) - - (T ,  ~) for all 

T~ ~ff~s, defines an algebraic homomorphism of X onto X. ]n the weak topo- 

logy from X onto ~)~s we know that K s  is locally compact, a resul t  

that is t rue for X any normed algebra. ~Now, if X ~ X  is 1 - - 1  then X is 

a function algebra and X is its Gelfand representation in the sense that X 

is represented by the algebra .X of continuous complex valued functions 
defined on t h e  locally compact T2 space ~ '~s.  In terms of the results of § 2 
consider K s  as a maximal  ideal space - -  that is, its elements are the re- 
gular, closed (automatically, since X is a BANACH algebra), maximal  ideals 
of X. We topologize K s  in the usual S~O~E-JACOBSO~ fashion: thus for 

any F C ~)~s, define its closure ~ as 

F = I M ~ M S : M ~ A M ' ,  M 'EF! .  

As is ~ell  known the weak topology on ~'(:s is the same as the STO:SE- 
JACOBSON topology if and only if 9 ~ s  in the weak topology is completely 
regular.  As might seem reasonable, the complete regulari ty guarantees the 

existence of some form of local identity in X. In  fact, the existence of the 
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uniform structure  which induces the STO~E-JAcoBSON (hull-kernel)  topology 
on ~ s ,  along with the general  analytic function theorem (for BA~AC~ aI- 
gebras) mentioned at the end of §2, is enough to prove the existence of 
local identities. The need for local identities for TAUBERI).~ theorems will 
become clear in our own TAUBERIAN result. In any case, the result  that 
any proper closed ideal is contained in a regular  maximal  ideal is true in 
any semi-simple (commutative) B A ~ c ~  algebra with the properties:  

i. ~ s  is completely regular  in the weak topology; 

it. The elements T E X  (defined on the locally compact ~ s )  with com- 
pact support form a dense subset of X.  

There  is an approach by WILLcox which takes a slightly different  turn. 
He determines which BANACrr algebras have the purely algebraic property 
that every two sided ideal contained in a regular  maximal ideal. He does, 
in fact, find a large class of such algebras - -  ones in which ~YI~s ~+ith the 
S~O~¢E-JAcoBso:~ topology has certain point-set  theoretic properties. Instead 
of copying his results we only note the usual examples which have these 
properties:  

i. The BANACH algebras considered in the previous remarks,  and, in 
particular,  D(G), G a locally compact abelian group; 

it. Any BANA0g algebra in which left and right multiplication are 
completely continuous; e. g. D(G) with G compact;  

iii. The group algebra of the direct product of a locally compac tabe- 
l ian group and a compact group. 

Now, the standard BANACK algebra TAUBERIAN result  (discussed above) 
is a generalization of WIENEiR~S original theorem in the usual  sense; that 
is, instead of LI(~), essentially any BA~AC~ algebra with the uniform struc- 
ture and denseness properties defined above has the required summabil i ty 
property - -  expressed, of course, in terms of maximal  ideals. WILLCOX, on 
the other hand, alters the final TAUBERIAN result  so as to consider a con- 
venient  subclass of BA~ACK algebras for which the result holds. The stan- 
dard BANACK algebra TAUBERIAN theorem extends from L 1 to more general  
s tructures with similar topological properties. In our approach we extend 
the translation property of L 1 to many topological algebras which are nei ther  
complete nor normed, and investigate TAUBERIAN properties of these algebras. 

In  any commutat ive topological algebra X, we restr ict  |he natural  map 

X ~ X "  to ~)R:(X) and designate the image of X under  this restriction by X .  
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Each element TEX defines a map ~ ( X ) ~ G  where 

rural algebraic operations in ~+ are: 

(T+S)(~) = ~ (T ,S) ,  

( ~ +  ~-)(~)= ¢p(T)+ + ~ ( s ) ,  

(~T)(~) --  a~(T), 

T(~) - -  ~(T). The na- 

where :+ E C and ~ E 9]~(X). Clearly, then, 

i. T+S---- T , S ,  

ii. T - -  5 implies T - -  S, for X semi-simple,  and for each ~ E~)rs(x), 

iii. ( T , 5 ' ) ( ~ ) -  T(,~)S~). 

We say that ~ ( X )  determines the transform map of X and that the 

9]7..-transform of TE X is ~ Clearly, we use ~ to determine an (integral) 
transform on X in order to preserve the classical operational property iii. 

EXAMPLE. - If X--LI (G)  ihen the ~ffL-transform is the usual FOURIER 
transform. As another  example  consider the continuous homomorphisms on 
the space ~' of distributions with compact support. ~' is, of course, a com. 
mutative locally convex algebra taken with the strong topology from ~, the 
space of C a functions with topology defined by the usual uniform conver- 
gence (for finite numbers  of derivatives) on compact sets (of 1R n or exten- 
sions to locally compact spaces). Mow, we know that any commutat ive 
algebra is a function algebra if and only if it is semi-simple.  Of the many 
trivial characterizat ions of semi-simplici ty  it is probably best for our pur- 
poses to think of it at follows: for any non-zero element T of the algebra 
there is ~E ~ such that ( I ) (T)~O.  This, of course, is analogous to the 
usual  T2 ~ character izat ion of locally convex spaces in terms of non-zero 
semi-norms for given points. Getting back to our distibutional example, 
consider the map ~ ' ~ '  (the space of distributions) where  

T- - -~  T,  S 

for fixed SE~' .  Mote t h a t t h i s  map, say fs, commutes  with tsanslation. In  
fact, ~' is algebraically i somorph ic  to the space of l inear  transformations,  
~)'--.-~', which commute with translation. The case of determining ~ L  for 
8', or any topological algebra, is more difficult  than the same problem for 
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BANACt{ algebras, where every homomorphism is 
then for the 7 'E6'  

(~i * T) @) = T(~p)~-@), 

continuous. I f  ~p E~)IL(8')  

where ~j is t h e j - - l h  partial  derivative of SE~ ' ;  thus, for all TE ~' ,  

Hence,  

so that 

YJ 
= x = (x~, ... x~) E 1~". T(~) ~ ~=o, 

~x~ - [ ~xj ~(x), 

~(x) --  exp I c~x~ j -  ... T c,,x,, I, 

where c~ . . . .  , c . E C .  Conversely, for T, SE 8' 

( T ~ S ,  e x p  { c ,x~ + ... + c , z ~  !) = 

-= ( T, e x p  { c~x~ + ... "4- c~c~ I) ( S, e x p  { c,vc~ + ... -4- c~x,, 1), 

and therefore each element ~ of ~7..(~') has this exponential  form for every 
n- tup le  (c~, ..., c,) - -  cE C n. Thus, given TE ~ ' ,  the ~ '5- t ransform 

FT(c) = < 7'~, exp I c~xl + ... + c , ~ ,  } ) 

is ihe n-dimensional  bilateral LAPLACE transform whith the usual conver- 
gence in a tube, analytici~y, and multiplication properties or LAPLACE tran- 
sforms. Also, the representat ion result  for the LAPLACE transform of 6' is 
that this map is an algebraic isomorphism of $ onto the algebra (under 
ordinary multiplication) of entire functions of exponential  type tempered on 
vertical lines (see e.g., L ions ,  BENEDET]~O 2, 3 for this result  and some 
topological remarks) .  It is possible at this point, by standard juggling in 
the duality game, to define the FOURIER transform not only on 6' bat  also 
on the usual  space of tempered distributions and hence to develop SC}IWARTZ'S 
FOURIER transform theory.  

The role of the TAUBERIAN condition, so clear in the first TAUBERIAN 
results, has evolved ahnost to the point of obscurity. On the other hand, 
present  day TAUBERIA~ theorems achieve a compact form in terms of ne- 
cessary and sufficient conditions; e.g., if f E D  then ~ f " - L  if and only if 
the Foum~:R transform of f never vanishes. This par t icular  example whore 
the :FOURIER transform doesn't vanish and the related theorem concerning 
the inversion of absolutely convergent  FOVmna series are  the motivation for 
the local condition we use to prove our TAUBERIAN resul~ - -  a condition 
which we appropriately call the WIENER condition. 
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Let  X be a translation algebra where the index set H is given 
locally compact  topology. Denote by V~ ~ H the smallest closed set 
that for all ~ E X' satisfying 

C~ (~ V~ = A 

a 7' 2 

such 

(G~ the support  of ~), we have (U~, ~)'-O. Let ~/'E X have the property 

that T is never zero. 

WIENER CONDItIOn. - Given V~, There is S E X  such that for all 
~E ~)IS(X) with C~(5 V~ ~ A, 

1 

Clearly if X has unit  ~ then ~(~)-- 1 only;  and the WIENER condition 
is automatical ly  satisfied with S----5. 

The importance of jus t  how vital a well defined system of approximate  
identities is begins to become evident in this condition and will be clear in 
our TAUBERIAN result.  The fact that our translation alegbras have approx- 
imate identit ies permits  us to have a purely  local WIENER condition. 

Classically, TAUBERIAN conditions have taken the form of growth re- 
strictions on coefficients in series. In  the original version of WIENER'S 
theorem (stated at the beginning of this section) the hypothesis that ~¢EL ~ 
is the TAUBERIAI,7 condition. On the other hand, the notion of an inversion 
cri terion (as our WIENER condi t ion)  has always played jus t  as vital a role 
in T±UBERIAN theorems;  a fact most clearly observed in BEURLING'S uni- 
queness  theorem (Acta Mathematica, 1945)of  which WIENER'S result  is a 
simple corollary. It  is s tandard now, of course, to prove WIENER'S inversion 
of FOURIER series theorem as a corollary of a general analytic function theo- 
rem and then to prove WIENER'S TAUBERIAN result  in terms of this corol- 
lary. Our par t icular  approach allows us to consider algebras in which general 
analytic funct ion theorems may not hold but  which do have a local WIESt'ER 
condition so that T.&UBER[A~ r results  can still be proved. Thus, our translation 
algebras may not even have an inversion of FOURIER series theorem but  will 
have TAUBERIAN properties.  In fact - -  

TItEORE~I 3. - Let  X be ~ semi-s imple  translat ion algebra with locally 

compact  index set H, and let T E X  with the property that 7' is never 0. If  

T satisfies the WIE~En condition then ~;T---X. 

P R O O f . -  It is only necessary to show that each UaE~T; in fact, if 

WE X and each U~E ~T then W*U~E~;T so that 

lim W ,  U~ --  W E ~;T. 
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By the WrE~ER 
C~ ('1 V~ ~ A we have 

Thus, for all q~ E ~ ,  

Hence, 

condition there eoxists S E X  so that for all ¢~ with 

1 : T(~) S(,~). 

so that for all ~ E ~ 5  

Therefore,  U s =  T.(S.U~),  and since ~T is an ideal we have UaE~T. 

REMAnd: 1. - In this result, the local compactness of H is more a con- 
venience than anything else. For  most examples  it is a reasonable assumption 

in particular,  for all algebras of distribution. Also, a weaker WIENER 
condition would be: given V~; there is a compact  neighborhood C of V~ and 
an S E X  so that for all ,~E~5(X) wit.h C ~ _  C,,we have 

1 --  T(~) S(q~). 

The theorem would be true for most translat ion algebras of distr ibutions 
satisfying this condition since the proof would only be al tered by finding a 
C ~ : H ~ C  such that ~(1)~)--1 and ~(H-- C) -- O; then for all ¢~E~r6 we 
would define U:(q~)-- U:(~q~) so that 

since U~(~) is clearly w,-ll defined. 

RE~IARK 2. - The classical converse for TI~EORE~ 2 takes the form: if 

~T ~ X then T is never zero. This result, though trivial, depends heavily on 
the FOURIER transform propert ies of the space usual ly  considered, viz. L 1. 
Without  a WIENER condition such a converse is not to be expected in a 
general translEtion algebra;  again, with a W I E N E R  condition as in the pre. 
vious remark we trivially show that T(q~)=~=0 for all ¢~ with support  con- 

tained in C, but  it is impossible to prove that T is not zero for any q~. On 
the other hand, if this latter WIENER condition is changed to read 'for all 
compact  neighborhoods C of V~' (instead of, ' there.is a compact  neighborhood C 

of VJ), then it follows immediately from this condition that T is never zero. 
Finally, with the WIENER condition of THEORE~I 2, if for at least one so, V~ --  H 

then it is again obvious that T is never  zero. 
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R]{NAm~ 3 . -  TH]{OR:E~ 2 depends heavily on the existence of local 
identi t ies either in the space itself or in quotient  spaces. In the following 
section we shall write a general  TAUBEI:{IAN- problem without reference to 
such indentities. For  the moment, though, we examine the possibili ty of 
extending BANACr~ algebra techniques for our purposes.  Recall  that in BAsr- 
ACK algebras both general analytic function theorems and complete regula- 
rily were used to show the existence of some form of indentities. The com- 
plete, regulari ty alone guarantees  the existence of 

T :  X ' ~ [ 0 ,  1] 

which separates  closed sets and points, but  such a map need not be linear, 
or if proved to be linear, it need  not be a member  of X. Also, even if X' is 
locally convex, the HAIIN-BANACIt theorem only assures the existence of a 
cont inuous linear functional (extended frmn a subspace ~7;c-----_32') equal to 1 
at a finite numbeJ! of points of !~Y]~c; and a quick look at theproof shows that 
not much bet ter  than this can be accomplished. 

Besides topological considerations (as complete regularity) the other 
major problem in showing the existence of local identities via BAzgAcI~ algebra 
techniques is a reasonable extensions of the mult ipl icative BANAC]~ algebra 
inequali ty to more general algebras. As mentioned above, complete spaces are 
necessary for general analytic function theorems; but  even with completeness,  
it is not necessari ly true that 

an inequali ty which is needed in order to prove such theorems. 
RE•ARK 4 . -  We close this section with a couple of brief  comments 

on algebras X with unit. Consider ~' with unit 8; then the ~ (bilateral 

LAPLACE) transform of 8 is the analytic function ~ '= 1 and so is never zero. 

On the other hand, it is easy (Sct{WARTZ, 15, p. 17) to see that ~s  : ~'. 
Because  of the inherent algebraic s t ructure  of g' there is no need for a 
WIENER condition to prove this; although it is also a trivial corollary of 
our first proposit ion in § 1. If  we consider a non-uni t  element T in our 

algebra X so that ~ r :  X then the unit  ~E~;r so that there is a directed 
system U~E~r with the property U ~ 5 .  When  V~ is compact and 

U~ : ~ cz T 

then the support  of each ~T is compact.  When H has a group structure,  for 
example in the case of distributions, then the fact that C~r is compact implies 
that Cr is compact. 
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§ 4. - T a u b e r i a n  P r o b l e m s .  

We are now in a position, after the motivation of the three previous 
paragraphs, to formulate explicitely the TAUBERIAN problem for topological 
algebras. Throughout this section, X will be a (complex, for convenience) 
commutative topological algebra, ~)K(X), the set of non-zero homomorphisms 

X ~ : ,  and X, the restriction to ~NS(X) of X". Further ,  we assume there is 
a set ~ of maps zh :X- - ' -X ,  h in an index set H, such that for any S, TEX 
and any hEH, 

• h(S+ T ) =  "~hS*T= S*~hT. 

The pair (X, ~)  is a translation algebra. We shal l  discuss somu examples 

in §5. If  for some TEX,  7'EX is never zero and ~ r ' - X ,  then (X, ~ )  is a 
Tauberian translation aIwbra. We note in passing that for algebras of di- 
stributions the operation of differentiat ion satisfies the translation condition. 
Also, if, given an arbi t rary translat ion algebra the addition of a bounded- 

ness or local inversion condition yields the result  that ~ r  = X then these 
conditions are referred to as Tauberian or Wiener, respectively. 

In order to examine a more general situation, define the spectrum 

Zr = I~ E ~ :  T(V) = 0t 

of TEX. (X, ~) is a general Tauberian translation algebra if there is some 
7'E X such that for all SEX satisfying 

z~c_zs 

we can prove S E ~ r .  We shall discuss such a situation in §6. This general 
area has, of course, been wetl trodden in a BA~ACg algebra setting. 

It is trivial to see that in translat ion algebras which are fields and for 

which some ~ r  is a closed ideal that ~v = X (in fact, the equation S , T = 8  

has a solution S =  T -1 so that 8E~r) .  
Now, there are two classes oF translation algebras which are important  ~ 

not only because of their relation with the TAUBE[CIAN problem bu also 
because of their connection with other phases of harmonic analysis. First, 

X is a spectral algebra if for each ~/'EX, ~ r  is the intersection of all maxi- 
mal ideals containing it; as is well known, L 1 is not a spectral algebra, but 
is very close to it. Related problems include finding those translation alge- 
bras which have elements with this intersection property or, even more, den- 
se subsets of such elements. These spectral algebras are in fact the motiva. 
tion for studying general TAUBERIAN translat ion algebras (as we shall see in 
§6). Second, we consider those translation algebras in wich each closed ideal 
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is of the form ~ r .  The determinat ion of such algebras is not an easy task, 
and, in fac L it is not known if even L ~ has this property.  

Par t icu lar  cases of such algebras have been studied although from a 
BA~AC~ algebra setting as opposed to the translat ional  approach. For  example,  
RUDIN has characterized all closed ideals of the BA~Ac~ algebra of conti- 
nuous complex valued functions on the closed unit disk of C and analytic 
in the interior. Further ,  and with regard to spectral  algebras this characte- 
rization gives necessary and sufficient conditions (RUDIN, TI~IEOlCE)[ 3, p. 433) 
for any such closed ideal to be intersection of all maximal ideals in the 
given algebra. 

§ 5. - E x a m p l e s .  

In this section we fi}'st give examples of various BAhIACI~ algebras and 
algebras of distr ibutions with corresponding natural  translation maps and /o r  
approximate  identi t ies;  and then we look at the TAUBERIA~ problem when 
the set of translation maps is a set (or even algebra) of differential  polyno- 
mials with constant  coefficients.  Finally,  we consider, in some detail  the 
TAUBERIA:N propert ies  of ~'v .  

A. - Let  X be a complex commutat ive B* algebra. As is well known 
(e.g. RICKAR~) X is a semi-s imple  and every closed ideal is an intersect ion 
of maximal  ideals. 5fore important  for our purposes  is the fact that X has 
a system of approximate identities (RIcKAt~T, p. 245) SO that the setting is 
appropriate  for TAUtmt~IA~ ~ considerations if there is a family of translat ion 
or differentiat ion maps defined on an algebra and with values in X. 

We  now let X be a commutat ive BA~Aa]~ algebra of functions defined 
on an index set H and with values in an algebra with no divisors of zero. 
If  the set of translation maps is defined on an index set H '  and if there is 

ho E H and non-zero T E X  for which T~ho)--0  then for all S E ~ S(ho)--0; 
clearly, by the pointwise mutipl icat ion for X, we have for each h EH '  that 
(zhT)(ho) S(ho)-~ T(ho)('chS(ho) so that at the very least S(ho)--0 or even pos- 
sibly (zhT)~ho)= 0 for all hEH'. It  is, of course, possible to <<translationa- 
l i ze ,  in a natural  way many of the s tandard BA:~ACI-I algebras (see e.g. 
RrCX:AR~) although there is little point to pushing things too far for the 
the cases of operator  algebras because  of the general lack of commutativity.  
On the other hand a TAUBERIA~ investigation of group algebras seems a 
more reasonable pursuit ,  and besides the usual  results  for L~(G) it is inte. 
resting to find TA17BEnlA~ propert ies  of various subalgebras (e g. ~ SCI~IWARTZ' s 
test  functions), convolution algebras of measures,  and BEURLING'S weight 

Annal i  di  M a t e m a t i v a  3S 
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function spaces L" (e.g. LOOMIS, pp. 180-181). This last ease leads to the 
bilateral  LAPLACE transform in much the same way as 6' does. 

It is, of course possible to find TAUBEI~IAN results on range spaces (by 
integral transforms, for example) in terms of domains which do in fact have 
a TAUBERIAN theorem." Thus, if ~ is the FOURIER transform on L ~ then we 
define the convolution T¢S in ~(D) as $-I(T) .~-x(S) .  

In the case of algebras of distr ibutions we already knew that ~ - - 6 ' .  
Closely related to 6' we have the algebra ~ '  of analyitic functionals.  We  let 
~{ be the space of entire functions on ~:" with the usual  topology of com. 
pact convergence;  then g{(C") is a closed subspace of $(~2n and its dual  is 
~ ' .  Convolution is then defined in g~' in terms of 6', and the LAPLACE tran- 
sform (T, ,  e - ~ )  (of T 6 g ' )  is an algebraic isomorphism of g '  onto the space 
of entire function of exponential  type. There is, of course, the expected set 
of translation maps and differentiat ions on g ' .  

Of the many other algebras with unit and standard translation and dif. 
ferentiat ion maps we mention:  

i. All distr ibutions on a circle F; these form a convenient  space to 
develop the theory or FOURIER series .  

it. All distr ibutions on ~"+~ with support  in the cone t ~ _ 0 ,  t 2 -  
x 2 > O .  

X l  " "  n - -  

iii. All distr ibutions on ~ with snpport  in the right half line [0, co). 

This last example is par t icular ly  useful  for an operational calculus, and 
has prompted the definition of many similar algebras (e.g. SCHWARTZ, b, 
28-33). Related to ii we have the algebra of (~/[ARCEL) RIESZ'S distributions 
(So~wA~R~Z, 14, pp. 49-50) with the set of translation maps given by various 
<<powers >> of the d'ALEMBERT differential  operator. This part icular  algebra, 
with ramifications and generalizations, thereof, has been discussed in detail 
by M u ~ E  with an excellent  account  in TR]~VE.S' notes (TROVES, pp. 75-96) 
on LOnE~TZ invariant  differential  polynomials.  

As an example of a translation algebra X without unit  in which it is 
easy to find approximate identities, we consider all those distr ibutions on 
of the form 

Y' am,n Zn~ (m), 

where the sum is finite, a . , , . 6 ~ ,  and E a,n,.---0. Clearly, ~ ~ X. Also, for 

T --" ~, am,.  ~n ~(m), S ~ eti,j ~i ~(i) 
m , n  i~] 

we have 
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which can be re-subscr ipted to be of the form E bp,q:q~(p), and where it is 
easily seen that Ebp,q = 0  by the right re-grouping.  The vario~us orders of 
differentiat ion form a set of translat ion maps, as do the usual translation 
maps :~, k an integer, and the union of these two sets. Again, for T E X ,  
~ ; r ~  X .  

Now, consider a sequence of the form 

n 

whet  n ~ x ~ .  It is easily seen that this scquence docs not converge in the 
topology of g' but does convcrge to ~ in the somewhat coarser topology on ~' .  
As is well known the mapping (S, T ) ~ > S . T ,  SEg' ,  TE'~',  is a separately 

91 

continuous map ~ ' X  ~ ) ' ~ ! ~ ' ,  so that for T C X ~  ~', I , ~ T .  A simple cai- 
n n 

culation also shows that T.~ E X and hence {~} is a sequence of approximate 
identities in X. Also " : ~ : X - + X  ip continuous. 

B. - Let  X be any algebra of distributions and let the family of tran- 
slation maps be all differential  polynomials D~ with constant coeff ic ients  
such that 

D~ : X - + X ;  

for example, let X - - 8 ' .  The TAUBERIA~ problem in this setting is to find 

~ r  for a given T E X ;  that is, for a given T to find which elements of X 
can be approximated by differential  polynomials Zc~D~T. In  this setting, 
the order  of the differential  opcrator is arbitrary,  and it is also interest ing 
to find those elements of X which can be approximated by different ial  poly- 
nomials Z o~D~T where the order is always less than some fixed integer. 

Thus, given T the TAUBERIAN theorem actual ly determines thosc elc- 
ments S such that P ( D ) T :  S, where P(D) is somc differential  ~oolynomial. 

In  a slightly more general  TAUBERIAN setting consider thesame problem 
for two different  algebras X and Y; that is 

D~: X - - ~ X .  

We also note here as another  direction of some intcrest  that the problem 
of the previous paragraph is closely related to the fundamenta l  representat ion 
theorems of Distribution theory;  for example,  it is well known that TE~'L~('~) 
if and only if 

T - -  Z f~'~>, /~ e L 1 . 

Thus, for our par t icular  case we would be examining those elements of ~)'~ 
where the f~ is a single fixed clement of L ~. 
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Looking at this situation is a slightly different light we see that we are, 
in fact, dealing with a generalization of one of the standard problems of 
differential equations. For example , in the one-dimensional  case, the operator 

L--  ~ akD ~, azES, ak(x) never zero, 
k - - 0  

maps ~ '  onto ~)' and has m-dimensional  null space each of whose elements 
? E 8  and satisfies L(?)~  0. )fore generally, then, given a closed ideal I in 
an algebra X the problem is to find the largest set of differential polyno- 
mials (with constant sufficients) such that the range of a given T for all the- 
se polynomials is maximal in L This problem and its obvious perturbations 
are therefore not only usual queries in differential equations but are also 
naturally posed in a TAUBEI~:[A~ setting. 

When considering such families of differential operators X--~ Y we can 
topologize them, as expected, as subalgebras of the usual space of conti- 
nuous linear maps G(X, Y ) ~  provided, of course~ that we only consider 
continuous differential operators. Finally, in algebras of distributions it is no 
problem at all to consider sets of translation maps which include both diffe. 
rential maps and true translation operators. 

C .  - We finally consider the TAUBERIAN properties of ~'L(~). First  
note that ~E~)'L~ although this is not clear by the representation theorem for 
~)'L~ mentioned above. On the other hand, the sequence 

n 

(x) = 
I 0, xE(- -c% --  I/n] U [l/n, c~) 

- -  n rxl + ,n, x E [ - -  

forms a system of approximate identities in ~)'L,. To see this, we first note 

that ~ - - ~  in 8';  in fact, for q~E 8, 

~(~)--~(0~ t I ? (~- -~(0)  t 

for some ~E ( - - I /n ,  l/n) -- this follows by the mean value theorem for inte- 
n 

gration and since 1 > ~n, ~(~)<~n for all ~ E ( - - l / n ,  1/n). Thus, for a given 
bounded set in 8 we need only show that 
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is uniformly bounded (for all ~ in this set, noting, of course, the ~ depends 
on n); but 

~(~)-- ~(0) l< ] ?(~) -- ~(0) ~'iO'~I + l ~'iO) I - ~ 

and 

] ~(~)-- ~(o) ~'(o ] ~"(~) 

for some 1E(O, ~) (or (~, O) if ~ < 0 ) ,  so that by the definition of bounded 
sets in ~ we have requi red  uniform boundedness. 

:Now, it is a straightforward calculation that T,  SE ~)'L, for TE ~'L~ and 
SE~ ' ;  in fact, we need only use the representat ion theorems to express 
elements of ~'LI and 8' in terms of sums of derivatives of /1 and continuous 
functions (with supports in a fixed compact set), respectively. 

Fur ther ,  we note that the map (T, S ) ~  7'~-S, T E ~'L~, SES'  is sepa- 
ra tely continuous in the sense that if S ~ 0  in 8' then T ~ S ~ O  in ~'L~; 
similarly, if the S: E~'L~ we also have separate continuity. Both these facts 

resul t  from trivial manipulat ions with bounded sets in ~ and 8 .  In  any 
n 

case, the ~ form a sequence of approximate identities for ~ r : .  Also, ~r., is 
a t ranslat ion algebra in the sense of §1 since the usual  distributional tran- 
slation obviously takes ~ ' r~  into ~)'L~, and such translation is continuous 

because it takes bounded sets of ~ into bounded sets of ~ .  Hence, for each 

TE~'L~, ~,r is a closed ideal. 
Another  means of defining ideals is as follows: let 

if 

T E I j v  

T-- ~ f~k{), 

a finite sum, where for each i ,  fi,..., f~P)EL ~ and 

min {k i : fo r  all i / ~ ] ;  

Ijp is an ideal and for all p, iop -- ~'L~ since ~ ~ Iop. 
For  f E L 1 and with non-vanishing FouRIEn transform 

- -  f ~ f - -  @)L1; from which it can be shown that if aEg3 and 

we have that 

then for all  TE ~)'L~ 

[*  ~(x) - - -  A / f, as  x - - ~  ~ ,  

T,:c(x)-- .-A(T,  1) as x ~ c ~ .  
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This classical form of the TAUBERIAN theorem for D'L~ can also be proved 
making judic ious  use of classical proofs for L ~ (e.g. W~]~NER'S or ]~EURLING'S 
jux taposed  with appropriate  lemmas to deal with the derivatives of D func- 
tions in ~)'L' (e.g. BE:~EDET~O, 1). Also our remarks  are valid in ~n,  although 
we operate in "~ as a matter  of convenience for the remainder  of this 
section. 

Let  © be that subset  of 6)'5l whose elements T have the proper ty  that 
(T, 1 ) - - 0 .  Thus, if T - - f ( ' ) ,  n ~ l ,  and f E L  ~, then TE©. As a trivial ap- 

plication of our TAUBEI~IAN result  we have for all TE© and aE ~ that T,  a E ~ .  
To see this we note that T,~(x)---~O as tx]----~cx~ and 

( T ,  ~)<~> (x) = ( T ,  ~(J)) (x) :-.- 0 

for all ) since ~(i)E ~ .  Clearly not all elements of 
TE©, ~E ~ ;  for example, 

~(x) = e - ° - ~  e - ~  

a re  of the form 7',~, 

has the propert ies  that ~ E L ~ A ~ and ~(~)(x) : F(1 - -  ix), so that ~(~) is never 
0. On the other hand, i f ( T ) ( 0 ) - - 0  for all T E ©  so that ff( T ,  ~) (0) --  0. 

We can, in fact, show that the complement  in ~ of the set of elements 

represented by T,a .  7'EO, ~ E ~ ,  is dense in ~ ;  and that those elements (in 

~)  of the form T,~ are not dense.  The proofs of these observations involve 

short, semi- interest ing calculations. Finally, if we weaken the topology on 
to the compact  convergence cri terion (for each derivative) it is true that ele- 

ments of the form T,g, T E©, ~E~, are a dense subset  of ~ .  

§ 6. - A G e n e r a l  T a u b e r i a n  T h e o r e m  a n d  S o m e  R e m a r k s .  

In this section we prove the general  TAUBERIAN theorem mentioned in 
§ 4 where Z~ < Z~. In order to demonstrate  this ve make the natural  changes 
for the appropria te  WIENER condition in this situation. It might be well at 
this point to underscore the theme of this note;  thus, in L I we show that 

~ [  ~ L 1 when the FOURIER transform of f never vanishes- to  do this we use 
the facts that L ~ has approximate identities and that the inverse of a non-  
vanishing FOURIER transform is the FOURIER transform of some LI(G) function 
on compact  sets. Hence,  we have considered general algebras X with translation 

propert ies  (similar to those of L 1) so that ~T "- -X when the !Z~'5-transform of 
T never vanishes:  these algebras are equipped with approximate identities 
and a local WIE]N'ER condition corresponding to the above inversion of non-  
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vanishing FOURIER transforms. 
For  the proposition and theorem of this section we let X be a semi-s imple 

translat ion algebra (as in § 1). 

PRoavos~Iozv 4. - Let  Zr ----- int Zs (with the induced strong T~ topology 

on ~F6(X)). Define VW : ! g r c ( x ) ~  is as 

! S(~,) 

I0,  ~ E Z r .  

Then Z~ is closed, ~/V is continuous, and for all non-zero c E ¢. ~7(c~) = ~'(~). 

PROOF. - We first note that ~(Zr) is open; in fact for ~ E ~(Zr), 

T(~)---c ~ 0, so that we need only take any neighborhood ~r of c which 

does not include 0 and note that T-I(N) is a neighborhood of % 

It is also clear that VV(cq~)- ~V(~)for all non-zero c E G; for ff*(cqo)--- 

: S(c~)/T(c¢~) : S(¢p)/T(~) if T(cq~) ~ 0, that is if T,q~) ~ 0; and W(v:p) - -  0 if 
T(cqo) = 0, that is if T(~) - -  0. 

~ow, let q~ ~ q ~  so that S ( ~ ) ~  S(q0) and T(~)--.-T(q~). 

If T(q0)~ 0 then, since ZT is closed, there is a neighborhood 2V of q0 so 
that for all /FE_/V, 7'(~F)~0. Hence for all a ~  some ~o, ~o~EN and thus 

On the other hand, if T(q~)- 0 then q~ E Zv C__ int Z~. 

Therefore  there is a neighborhood N of T so that for all WEN, S(tF)---0; 

thus for all ~ some c~0, q%EN implying S (¢~) -  0 and hence lYV(q%)--.-vtr(q~). 
qed. 

GENERALIZED WIEINER CONDITIOJ.X: Given V~, and TE X. There  is R E X 
so that for all q~ E !~('6(X) with the propert ies 

and 

we have 

C~(q V~ =D A, 

E ~(Zr) 

1 = T(~)R(~). 

TKEOREM 3. - Let X be a semi-simple translation algebra with T2 locally 
compact index set H and let T, S E X  have the property that Z~___ Zs. If T 

satisfies the generalized WIE~]~R Condition then S E ~ r .  
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PROOF. - As before, we need only show that S*U: E ~ r  for each a. 

By the WIENER condition 

I = R(~) I'(~) 

for all ~E~(Zr)  such that C : N  V:=4=A. 

Thus, S(¢p)-- R~)T~+)S~) for all + so that C: f~ V: ~ A; and therefore 

for all ¢~ E 9~(X). 

Hence, as in Theorem 2. 

U~*S ----- T*(U:*R*S)  

an~ U:*SE~r. qed. 

For the remainder  of this final section we discuss two problem areas 
related to our translation considerations. First, we note those natural  queries 
whose positive resolution would streamline our TAUBERIAN approach. In the 
second area we first consider a means of constructing reasonable translat ion 
algebras and then we sum up the problem of spectral algebras more precisely 
than remarked in §4. 

A 1. - It is advantageous to determine ~ ( X )  so that we can actually 
compute (T, ~) (TEX,  ~ E!~IX)) .  Granted, if X is a commutative locally 
m-convex algebra, then ~ ( X )  can be characterized (MICHAEL, p. l l )  in terms 
of maximal ideals of X in much the same manner  a s  the BA~AC~[ algebra 
setting. This approach does not give much aid in actually calculat ing the 
~)~-transform of TEX; for this purpose it is useful to find ~)~(X) <~internally~ 
as we did in § 3 for ~'. 

A 2. - Since our TAUBER][AN approach relies so heavily on a WIENER 
condition and the existence of approximate identities it is then reasonable to 
find conditions in which a given algebra has one or both of these'properties. 

A 3. - We are also interested in effectively el iminating Tr. 3 and/or  
Tr. 4 as hypotheses for large classes of algebras. There are two major reasons 
for this desired generalization. First, it is natural  to determine those algebras 

X and elements TE X where ~ r  is a closed ideal; and, more important  for 
applications, it is desirable to explicitly approximate elements of a given 
algebra by differential polynomials of a fixed element-as  considered in §5. 
Presently, Tr. 4 tells us that we have enough elements in H so that with 

the conditions of our TAUBERIAN theorems we can have ~r----X;  one of the 
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ways it does this is to contribute quite significantly in proving that ¢gr is 
ideal. 

A 4. - Finally,  it is natura l  to extend the definition of translation so 
that our translat ion maps z h ' X - - - , - Y  (?[ not necessarily equal to X) have the 

property that  for some T E X ,  ¢g~ is a closed ideal in Y. Here Y is an algebra 
and X ~ ]7. 

B 1. - We have noted above that our t ranslat ion approach is somehow 
most effective in spaces like L ~ or ~)k~. As a means of generating similar 
spaces and at the same time producing a partial  integration theory for distri- 
butions we consider the following situation. Let ~ be a RADO~ measu re  Then 
the integrable functions (on ~")  ~(~) with respect to l~ are identified with 
finite measures absolutely continuous with respect to ~. Thus,  we have essen- 
tially a snbspace of distributions. The ~-integrable distributions would then 
be all f inite l inear combinations of derivatives of these measures-much the 
same as ~)~ is constructed. A natural  follownp would be to manufac ture  a 
RADON-NIKoDY~ theorem so that the subset S~ of absolutely continuous mea- 
sures (with respect to ~t) which generates locally integrable functions (with 
respect to 1~) can be determined. Thus, the crux of the matter  is to construct 
distribution theory for locally integrable functions with respect to an arbi t rary 
RADON measure instead of jus t  LEBES(~UE measure;  and, then, to show that 
the space corresponding to ~)~ does, in fact, have meaning. 

B 2. - As mentioned in §4, L ~ is not a spectral algebra; but we do 

know that ¢gf is the intersection of all closed maximal  ideals containing it 

if and only if Zf ~ Zg implies g E cgf. Hence, it is natural  to attempt to find 
those translat ion algebras where a local WIENER condition can be replaced 
by (or replaces) such an intersection property. 
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