A quasi-linear singular Cauchy problem (*)

DaLe W. Lick {University of Tennesse, Knoxville}

Summary. - See the introduction.

1. Introduetion,

We consider the singular CAvcHY problem for the second order quasi-
linear hyperbolic equation

(1.1) Wor Uz — Uyy + (X, Y, @, Uz, uy) =0,

with the initial conditions

(1.2) uxe, 0) =0, w,(x, 0) = olx), x €l

where m is any positive real number and I = [«, §] is a finite, closed interval.
Using ScHAUDER’s Fixed Point Theorem to solve a system of integral equa-
tions, we are able to show that under the appropriate conditions on f and
@, this problem has a unique solution in a neighborhood (y > 0) of I

A great deal of the work of this paper was motivated by the investigations
of Ocawa [3]{D]. OcAwa solved the comparable problems for the equations

720, YU U — Uyy 4 [, Y, U, U, Uy) =0
and

Uy Wy — Uy - flae, y) = 0.

Liet us denote by Lip (., .., x,; K(y)) the class of functions £ which
satisfy the LripsoHIrz condition

By, vy ®,) — E@ry ooy Z,) | S K| — T+ oo + |2, — E, |)

(*) This paper is a portion of the author’s doctoral thesis. The author would like to
express is sincere appreciation to his thesis advisor, Professor H. Ogawa.
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on a given region. The norm |[[.| when applied to scalar functions shall
mean the maximum modulus on a given region. The notation |- ||, shall mean

lg(s, =, y)— s, x, y)|ly = mas. lg's, x, y)— k(s, @, |

The symbols p and ¢ are defined by
D= Uz, q=Uy.

To assure the hyperbolicity of (1.1) for y >0, we suppose that there is
a positive constant « such that ¢'(@)=o on I. The CaucHY problem is then
singular in the sense that it is hyperbolic for y >0, and along I, where we
prescribe the initial conditions, the equation is parabolic. We also assume
that ¢ has three derivatives on I and satisties [0, |¢'], |9¢"!, [¢” ]| <<ll¢]| and
¢" € Lip (x; ||¢||) for some constant ||p|. We chouse constants 4, 4, and q,
such that 4> ||¢| and 4,>¢ =a>a,>0. Let D denote the open region
bounded by the curves

1
Mm-|—1

1
0=+ - ATy m= Avy"™t, w=0),

m—}-i

and the interval I. For each positive number 3, let Ds be that portion of D
for which g <(3. Letting #, be the maximum ordinate of the points D, we
suppose that f is twice differentiable with respect to ®, u, p and ¢ on the region
consisting of the points (x, y, u, p, g) which satisfy (x, )€ D, |u|=<Ay,,
|p|=< Ay, and a,<<q = 4,. Assume moreover that f and its first and second
partial derivatives with respect to @, , p and ¢ are bounded by |/ /|, and f
is in Lip(y; [|f]|) and the foregoing second derivatives are in Lip (x, u, p, ¢;
Itfl]) for some constant ||f| With these assumptions we shall prove the
following existence theorem.

TEEoREM 1. — Under the conditions

(1.3) fol, ¥, u, p, @ = o(y™*) as y—0
and
(1.4) Ay _mA1

(4 m

there exists a >0, such that on D; the singular CavucHY problem for (1.1),
1.2) has a solution wu{w, y) which is twice differentiable, with LipscHITZ
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continuous second derivatives on Dy, and satisfies

(1.5) Uay(lj, 8) — Uay(, 1) € Lip (; O(y™+)),

In (1.5), h; = Rhy{t, ®, y) are solutions of the ordinary differential equations

hjs = (— 1)igmefm-ta)gymiomtiyp, - §), 0<t=<uy,
(1.6)
hj(ya x, y) =, (J= 1, 2),

where the functions w(x, y) are continuous and have continuous first partial
derivatives with respect to & on D; and satisfy

w1 m—-1
Oy " Yy=w="A4, ¥y,
(1.7) oY v Y
|12 | << My,

w, € Lip (x; Ny),

M and N being constants.

Let us call K; the set of all such functions F;.

In section 8 we shall use Theorem 1 to prove our main theorem which
removes condition (1.4) and establishes the uniqueness of our solution.

2. Properties of K.

‘We now establish some estimates for the functions in K5 which will be
used repeatedly in the proof of Theorem 1. From a theorem in ordinary
differental equations ({1}, pp. 25-28), it follows that any pair of functions A
(j =1, 2) in K; have continuous first partial derivatives respect to x and y -
given by

b
i+ mgl(m+1)a1vm/<m+1>
('— )7 8 a—h(hj(sa i, @I), S)dS ’

{4

(2.1) hix(t, x, y) = exp

t

(22) h}'y(t; Z, Z/) = (- 1}j+1ym2/(m+1)7”m“’”+1>(%‘Zl)hjw(iy x, ?J): (.7 = 13 2}

LeMMa 1. - If h; € Ks and (x, y) € Ds, then
(@) (hf(t7 x, Y, t)EDﬁy
(@) byt @, y) = + Oym+* — i+,
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(#54) hialt, 2, y) = 1 + Oy " — i+,
(#0) hylt, ® y) € Lip (x; Qy™+7),
with the constants depending on 3, ao, 4,, M and N.

Proor. - The first two statements are easily verified using the integrated

form of (1.6),
Y

2.3) ity , 9)= @ (— 1+ [ gmmomont s, , y), s)ds,
i
and the properties (1.7) of w. The last two statements follow from (1.7), (2.1),
(?) and (é¢), and the theorem of the mean.
Lemma 2. - If h;, %,EKS, then for & sufficiently small
@) | hilt, @, y) — Ryt @, 9)| < Oy™) || —w],
@) | Tialt, @, 9) — hjalt, @, )| < O™ || — 10 || + | 0o — s ),
where the norms on the right are the maximum moduli of the functions on Ds.
Proor. - Using the integrated form (2.3), conditions (1.7) and the theorem
of the mean, we have

~

Bty @, ) — hitt, . )| < O™+ || By — Ty |ly + —— | w—mwl.

(m+1)

The inequality still holds if the left side is replaced by the expression
maXx. |h; —h;| which is on the right, so the first assertion is proved by choosing
¢ so small that Oy W““l)«’:1 The second estimate is the result of applying

the bound of A; — hj, the properties of (1.7), and the theorem of the mean
to the expression for hj, — hj, obtained through the formula (2.1).

3. The integral equation.

Ley us introduce the functions #,, #:, u. and 2z by

(31) us(e, y) = u<w’ Y), Ui, 0) - O’

[s 359 1 'm 1
(3.2) @, g) =@, Y+ e ) w0 = @)
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L ma
(3.3) Wi, Y) = wy@, Y — L un @ y), waw, 0)=9@)
(3.4) #x, y) = @"—;‘:’”} Y, YY) — us, ), s, 0)=0.

The equation (1.1) can then be written as the first order system

1
Yoy — g(?’t’l -+ W),

(3.5) Uy — Yl gmint g, = Flx, y),

Uy + ymzl(m+1)zm/(‘m—]—1)u2w — F(x’ y)’

where
TN 1
F(m; ?/) = f(w7 y: Mo((l/', 2/)’ yml(”1+l)z1/(m+l’(w; .7/)) @(ul(w’ y) + u2(xi ?/)))

Using the initial conditions (1.2) and the characteristics g;f, x, y) of
equation (1.1), given by the solutions of (1.6) with w =2, we now express
this system as the infegral equations

Y
1
i, )= [l )+ wir, £

4
(36) wie, 9) =900, @, ¥) + | Flgnts, @, v), 9)ds,

Y
%2(3}; 9’) = ?(92(03 €z, ?J)) +]F(g2(sy &£, y)a S}ds'

4. A Banach space

Let S; be the set of vector functions # = (%o, #., #,) which are continuous
and have continuous first partial derivatives with respect to @ on D;. We asso-
ciate with each w in S; the function z defined by (3.4) and the functions
vi(h;) given by

1
(4’1) 'Ui(hj; ts X, @/) xé?f‘m[uim(k_{(t» x, ?/), t)—“iw(ma t)]a
'Ug(hj; O, X, O):O, (Z:O, 1, 2; _7: 1, 2),

where h; is in K.
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Let ||u;| = max |uix, y)|, (@, y)€Ds, and define [[ui||, ||2], and | 2. | analo-
gously, and sef

“ /Ui(hj) H = max, ] w(hi; t} &, y) I’ (o, y) € DS; 0 =/ =Y.
The set S; is a BANACH space under the norm
w| =max. (o, [[wwl, |20 el [vdR)])

the maximum being taken over =0, 1, 2; j=1, 2, and all B €K;.
Next we denote by X, the set of elements of S; which satisfy on D;

‘uo}gA,h o € Lip (y; 4), 1M0w|£‘4y;

4.2)

#on € Lip (x; By),  #.€Lip(y; 4);

u; | << 4, u; € Li ; B), Wip | =< 4,
43 | i | ply; B) | Wiz | =<

%'szLlP(wa ?J; B): (3:‘1) 2);
4 agcVy<e<< A7y, e€Lipy; B), |a|< My,

2. €Lip (x; Ny), #,€Lip(y; O);
(4.5a) ‘ ’Uo(hi) l < oy’ ’Uo(hj) € Lip (x, Roy?), = 1, 2);
(4.5b) | vi(h) | << @iy, vilhy) € Lip (@; Riy), G=1, 2; j=1, 2);
(4.5¢) volh;)€Lip(y, t; Coy),  wihy€Lip(y, & C), (E=12;5=1, 2),

the capital letters being constants.
Since the function

, (, -1 911 , o m-{—l@ w41
@_i‘—:(‘{’% P *n%z?y—l—"’ P —%)

satisfies conditions (4.2)-(4.5) for some set of constants, it follows that there
are non-empty spaces X;. We also note that due to condition (4.4), the cha-
racteristics g;(f, %, y), § =1, 2, corresponding to an element u of X;, defined
as the solution of (1.6) with w = 2, are in Kj. -
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5. An equivalent solntion.

We shall first show that Theorem 1 is proved if the system (3.6) has a
solution in some space Xj.

TaroreEM 2. - The singular CAavcHY problem for equation (1.1), (1.2)
has a solution # on Dj, o sufficiently small, twice differentiable with Lip-
SCHITZ continuous second derivatives and satisfying conditions (1.5) on Dy if
and only if the integral equations (3.6) have a solution u in some space Xj.

Proor. - We have already seen that if # is a soluntion of the singular
CavucHY problem, then the vector u = (u,, #,, #,) defined by (3.1)-(3.3) is a
solution to the system (3.6). Moreover, straightforward calculations show
that u is an element of some X; under conditions imposed on u.

Conversely, using the equations analogous fo (2.1) and (2.2) relating the
derivatives with respect to x and y of the characteristics corresponding to
u, we find that an element u = (u,, ., u;) of X5 which is a solution of (3.6)
is also a solution of the first order system (3.5). This in turn implies that

ux, y) = uox, ¥)

is a solution of the singular CAvucmYy problem. The conditions (1.5) follow
from the relations

Yo, == gl {(mt1)g—m(m 1)y
T m 1 Y w7
5.1)

g

Upy — b} (#0100 <+ W)

and the properties of u. The LiPsoHITZ continuity of the second derivatives
of u are simple consequences of the same conditions for wu. This completes
the proof of Theorem 2.

6. The continuous into mapping.

It u is in X5, we define

(6.1) Tq:_U‘z(Uo, Ul, Uz)

by the right-hand sides of the integral equations (3.6), g, and g, in the equa-
tions being the characteristics corresponding to u. Moreover, let us denote
by Z and V;, respectively, the functions defined by the equations (3.4) and
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(4 1) with # replaced by U. We note that T is well-defined, since by Lemma

1, (gdt, x, y), HED; @ =1, 2). To establish the existence of a solution of the
integral equations, we shall prove that the mapping T has a fixed point.
The proof is based on the fact that a continuous mapping of a convex,
compact subset of a BANACH space into itself a fixed point.

TurorREM 3. - Under conditions (1.3) and (1.4), there exists a >0 and
a space X; such that T is a continuous mapping of Xs into itself.

Proor. - We first prove that 7 maps some space X; into itself. If
MEX@, then the funections U Tu and U are obviously confinuous on Ds.
S0 U € Sa

It is easily verified that U, satisfies conditions (4.2) for & sufficiently
small by use of conditions (4.3) for u, and u,, and the restrictions on a,, 4
and B. Likewise, conditions (4.3) for U,, U,, Uy, and U,, follow readily, for
& small, by a suitable choice of constants depending only on {{¢| and [f],
and the constants of Lemma 1. Let F.(x, ) denote the partial derivative of
F(x, y) with respect to x. Since F,¢€ Lip (x; (1)), giy = 0™), and g, € Lip(y;
O(y™), with the constants being independent of B, we see that U;, € Lip(x, y; B),
(¢ =1, 2), for small 3, by selecting B adeguately large.

PROOF OF ESTIMATES FOR Z. - Writing
wm
4w, y) = —5— 9y {9(0:(0, %, ¥) — 9(g:0; @, y))

-+ f (Figu(s, x, ), ) — Flgu(s, x, y), s)lds]

and using (2.3) fo observe

(6.2) ary Tt < gi(t, x, y) — gdt, =, y)é—f Ay,

2
m 10 n + 1
we easily obtain

arty < 7 << A7y,

The y-LIiPscHITZ continuity is readily demonstrated by using the above
form of Z, Lemma 1, g;, = O(y™), and B sufficiently large.
Using (2.3), we note

(6.3) lgu‘(t, T, Y) — G2all, X, Yy) = O(ym+1),
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Now differentiating the above form of Z and applying the obvious bounds,
we have

i ”?’HCPH 2
in1<ao(m+-—)y+0< ¥ + 0®),

where O(y) is independent of M. If we now choose M sufficiently large and
y sufficiently small, and use condition (1.4), we get

| Zy | < My

To prove the LipscHITZ continuity for Z,, we write

1 ) ,
Zia, ) =""T Ly 1900, @, 9900, 2, ) — ¥ @0, %, Pged0, @, 9)

Y
+f[FJ:(gl(8> €, y); s)glw(sy €Z, y) - Fw(92<8: &€, y): 8)92”(8, €L, y)] }

]

We shall use the symbol O(1) in this paragraph only if it is independent of
N. Straightforward calenlations show

9'(:00, x, ¥) — ¢'(g0, x, ) € Lip (; O(L)y™+"),

| @920, , ¥) — 99200, Z, ¥)| 910, 2, y) — 920, @, )| < Oy +2) | @ — Z |,

Gislt, 2, 1 )ELlp(

mN N BN L
ot U0 ), =1 e

Combining the above results and using the decomposition

C'P’(gl<07 i, y))gm«), ) Z/) - CP'(g2(O7 &£, y))gzm(07 x, :’/)
= [9'(g:(0, 2, ¥) — ¢'(9:0, x, Yg:©0, x, )

“{’" cP,(g2(07 &, y))[QW(O’ x, y) "'92‘)3(05 X, y)],

we see this guantity is in

: 2mNH ] JERTS PPSE)
Lip (a3 [22ELE L 001+ 0ot | o)

Annali di Matematica 16
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In a similar manner we consider the integrand

Folgu(s, ®, U), 8018, ®, y) — Fulgels, x, ¥), $)92a08, %, %)
(6.4 = [Fuln(s, @, y), 8) — Fulgls, @, ¥), 8)|guls, x, )
+ Fm(Qz(& €, 3!); S}{glw(sa Z, ?/)—sz(sx Zz, y)l

For bl‘eViﬁy, let o = Xy U, P OT , §i = GilS, &, Y), Gix= giw(sr x, Y, gi:gi(sy z, 1),

giv:gim(sg "27 ?/) and— fa(gi’ ):fo‘< is 87 Mo(gif S)) 8m/(ﬂ1+12le(nz+1)(gi7 8)7 %(%1(91', S) +
+ u:Agi, )

Differentiation with respect to x reveals that f.,(g,, 8) — fi(g., 8) is in
Lip (x; O(y™*). Since

Win(G1, 8)— Uia(Q2, 8) = 2y™ui(gs; S, @, Y) —vilge; 8, %, )] ¢=0,1, 2;

this difference is in Lip (x; O@y™t"), with O(y™*t") depending on E;. Thus the
terms in f, and f; in Filg,, 8) — Fu(g., s) are in Lip (x; Oy™*") 4 Oy™+*).
As for the terms in f,, by the condition (1.3) and the bounds and LrpscHITZ
conditions on ., and z,, we find they are in Lip(x; o(y™), where o(y™)
depends on N. Combining the above resulfs, we have

Fylg:, 8)— Fyulg., s)€ Lip (x: oy™)).

Using (6.2)-(6.4), we see that the remaining terms of the integrand are all in
Lip (®; O@™+"). Thus Z, € Lip (x; Oy) + o(y)), where o(y) depends on N and
O(y) is independent of N. Hence

Zy € Lip (¢; Ny)

for a suitable choice of N and 8.
For this section of the proof of (4.4), let gi = gi(s, ®, ), Gin = Gials, %, V),
and y > §. Then

; 1 ,
<z ‘2!" =" {1 9'(g20, 2, #)9:1x(0, ¢, y) — ¢ (20, &, ¥)g=x0, 2, y)

— (#1910, %, 9)g:1a(0, @, 7) — ¢(g=(0, @, 7))go(0, @, 7))

Y
+j |\ Fulgr, 801 — FlG2; 8920 — (Ful g1, 8)010 — FulGe, 8)920)| ds
4]
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Y
(1 Fulgs, e — Fulga, 9ges] ds]
Y
+ g — 5 [ €0, 2, )gil0, 2, §) — ¢'(920, %, §))g=s(0, , 7) |
y
+[1Fige, 80— Fulge, 902 s

0

Applying an analogous argument as was used for the ¢'-terms for the a-Li-
PSCHITZ condition for Z,, |gi,| =0™), gi.€Lip(y; Oy™), (6.2), and (6.3), we get

¢(9:0, %, 1)gil0,. x, y) — 9(9:00, x, Y)g=20, 2, y)) € Lip (y; Oy™)),
fdgr, o) — [o(g2, - .) € Lip (y; O(y™), and hence

Fy9:, $)910— Ful(gz, )92z € Lip ¥; O(?/m))

Since

| Fo(91, 8)G10 — Fulgz, 8)G20 | < O(y™+),

the last part of the expression |Z (x, y)— Z, (2, %)| is bounded by O(l)|y — 7/,
with 0(1) independent of C. Combining the above results, we have

Z, € Lip (y; O),
for C sufticiently large.

Proor. or. 4.5). - The bounds of (4.5) follow immediately from the
Lipscnirz continunity of U,, and Lemma 1. Since solutions of (1.6) through
a given point are unique (for fixed j), we have

h’i(sy x, y) = 7?,’-(8; hj’(t; &, y); t)? 0 <s<i= Y,

and therefore we can express V(&) in the following form.
t
1 "2
(6.5) Volhj) = 54— j Z [ymvilhys s, @, y)— tvihy; s, hylt, @, y), t)ds.
0

This integral is in Lip (x; O%*) by the LipscHITZ conditions for v;, é=1, 2.
Thus

Vo(hy) € Lip (x; Roy®),
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for R, sufficiently large. The {-LipscHirz condition for V.(h,) follows in an
analogous manner. The y-LipscHiTz condition for Vyk; is a simple conse-
quence of the conditions on U, and the fact &;, = O(y™).

The proof of the x-LIpscHITZ continuity of Vihy), ¢ =1, 2, is similar fo
the proof of Z, € Lip (x; Ny) and depends on the decomposition

(66) Fz(gi[sv hi“? Z, y)} t]: 8) - Fz(gi(sy L, t), S)

= [Fx(gi{'g; hi(t7 L, Zl), t}y 8)"" Fx(hj(t7 z, Z/); S)]

- {Fx(kf[sa k?’(t9 &, ?/); t]; 8) - Fx(kf<i: &z, y); 8)}

+ [F (s, x, y), 8) — F (x, $)] —[Flg(s, =, 1), s) — F x, 8)]
Now

1
V@(kn t: &, ?/) = éywm“P’(g‘i(O’ h_i(t) Ly ?/)7 5))9205(03 k?‘(g: x, ?f): t)
- CP’(Qi(O; @, t))gi.v(O’ €, t)

t

+ f [F(gils, hit, =, y), t], 8)g.(s, hit, x, y), 1)

0
- Fw(gi(s) x, 1) S)gm(s’ €, t)]d8§
The portion of this expression involving ¢ is in Lip (x; O(y™*") by an argu-
ment analogous fo the one for the corrésponding quantity in Z,. Each of

the terms in brackets in the decomposition (6.6) is in Lip (x; O@™*) - o(s™))
by an argument similar to the one used on the integrand quantity for Z, . Thus

where O(y) is independent of N and R;. If we choose y small enough and
R; sufficiently large, then

Vi(h;) € Lip (%; Ruy), i=1, 2.

Using ¢, € Lip (x; Oy™), methods analogous to those used to prove the Li-
PSCHITZ continuity of Z,, and Vi(h;) € Lip (x; Biy), we see

V;(hj) € Llp (y, t; Oi), 1= 1, 2,

for C; sufficiently large and y sufficiently small.
This completes the proof that T maps X; into itself.
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PROOF. OF CONTINUITY. ~ We now need to demonstrate that 7 is conti-
nuous. Let T@g::. U= (U, U, Us) and T?E:: lj: (T,, U., Uy). Recall

(U=max. (| Uill, 1T, [, 121, 12,1, | Vi) i=0,1,2; j=1, 2.
It is easily seen that
| Udw, ) — T, ) | <y||u—ul

and that the same inequality holds for Uy — ﬁw
Let gi=gis, @, ), gi= gds. «, y) and

B, 4) = e, 9, W@, ), P30z, 4), (e, 4)+ i@, 9)
Using Lemma 2, we get
| Flgi, 8)— Flgs, )| <O |w—u|.
From this immediately follows
Ui— Ui < [0y™) + 0wl iw — u i=1,2

In an analogous fashion, we see that the same inequality holds for |U,,— U, |. |
Using Lemma 2 and the relation

| Flg,, 8)— F(g., 8)—[Flg:, $)— F(ga, 8)]| < O™ [ u —u |,

it readily follows that
| Z—Z|<0) lu—ull.

To prove the continuity for Z,, we observe

. 1
i Zx - Zaa ‘ = ?&_2’;- y’m § ‘ [@I(QZ(Oi €, y)) - CP’(QZ(O; L, y))}glx(o) iy y)

+ 9'(g20, @, ¥)g:lo, %, Y) — (0, X, Y)]
— [¢lg:l0, ®, ¥) — ¢'(g:l0, %, Y)lglo, %, )
— @(gdo, %, Y)gilo, 2, Y) — gudo, @, Y)]|

y
'f‘} [Eg1s 8)— F (92, Oghe + F (g2, 8)[012 — G2z

— [Fx<§1) 8§) — ﬁx@z: S)Jéw - ~x@2; S)[g}m — 52%} |ds}.
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Applying Lemma 2 fo the expressions outside the integral, shows that this
quantity is less than or equal to Ol)l]u——»uu To get the bounds for the
integrand, we shall first prove

[Figs, 8)— F (g, 8)ghe— [Fl00, — F (g2, 8)gns|
< [0™) + o™} w —u .
Writing
[ [FoGry o) = Fol@s o] = [Fol@ns o) — Folgzs )]

as a difference of integrals, we find it is of order O@™)||u — ull, o =, u,
p, or q. Using this result, the conditions on v, and the dee&mposwmn

Ful@rs o Yhou(gr, 8) — [ (G2, - JUox(gs, 8)
= [fu(gly "') - fu(gza "')]uox(gh S)
+ 29"f (G2, - )0o(G1) — Vo(g2)],

we have that the difference between this expression in f, and the correspon-
ding one in u is of order Oy ") |l w— u |- In a similar manner the difference
of terms with f, and fq are of the same order. Finally, the difference of
terms with £, and f, are bounded by [O(y™) + o(s™")] K2 —u{f by virtue of
condition {1.3). Using the fact that the other terms of the infegrand are
bounded by O(y™)||uw—wul, (6.7), and the result for the terms outside the
integral, we get T

| 7o — 2| <01 — a0 ||
From (6.5), the properties of the wi(h;) and Lemma 2, it follows that

| Valhs) — Vilhy) | < O) || w —
Now
| Vithy) — Vilhy) | < 01) || w —u |, i=1,2;j=12,
follow by means of the decomposition (6.6) and application of the techniques

used to prove the continuity for Z,.
This completes the proof that 7' is continuous mapping of Xy into ifsell.

7. Application of Schaundar’s Theorem.

By conditions (4.2)-(4.5) imposed on the functions in X; and the definition
of the norm on Xs, we observe that X; is convex and that the fanctions in
X; are uniformly bounded and LipscHITZ continuous with respect to x, y,
and f{. Since the functions in X; are uniformly LIPScHITZ continuous, Xj is
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a uniformly equicontinuous family of functions. Therefore, by ARzALA’S
Theorem, X; is a convex, compact subset of the BaNacH space S;.

The existencs of a a solution of the integral equations (3.6) is established
by means of the following form of ScmauDER's Fixed Point Theorem [6]:

A confinuous mapping of a convex, compact subset of a BanNacu space
into itself has a fixed point.

Therefore, under conditions (1.3) and (1.4), our integral equations (3.6)
have a fixed point and so, by Theorem 2, our original CaucHY problem for
(1.1), (1.2) has a solution.

This completes the proof of Theorem 1.

8. The theorem.

The theorem we desire to obtain is Theorem 1 without condition (1.4)
in the hypotheses and with uniqueness of solution. It is as follows.

TeroreM 4. - Under the condition

fole, y, u, p, @) =o(y™*) as y—0,

there exists a & >0, such that on D; the singular CavcHY problem for (1.1),
(1.2) has a unique solution u(x, ) which is twice differentiable with LipsoHIrz
continuous second derivatives on Ds, and satisfies the conditions of (1.5).

Proor. - The uniqueness of the solution of Theorem 1 follows from a
paper by the author [2]. The restriction

é,/m—{—l

Ao m

can be removed by breaking I = [«, ] into a finite number of overlapping
closed subintervals I; =[o;, ;] =1, 2,..., n; ¢, =a and §,=8), on each
of which' this condition is satisfied. Applying Theorem 1 and the above
mentioned uniqueness of solution to each subinterval, there exists a unique
solution u; of the problem with domain Ds;, where Ds is the open region
bounded by I;, y = &; and the curves

m 1 w -
w:ai“‘;—FAgym—i—l, xz@i"¢;z+1‘4°y+1'
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The funection u(z, ¥) given by

w@, y) = wlx, y), (@ ) €DsN Ds,,
where

3 = min 5@'
i

is then the desired solution on Dj.
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