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Stlmmaryo - See the introduction.  

1. Introduct ion.  

We consider the singular CAuc~¥ problem for the second 
l inear hyperbolic equation 

order  quasi-  

(1.1) 2 m  
u~ u ~ -  u~y ~ - f ( x ,  y, u, u~, u y ) - - O ,  

with the" initial conditions 

(1.2) u(x, 0 ) - - 0 ,  uy(x, 0)--.~(x), x EL  

where m is any positive real number  and I ~ [:¢, ~] is a finite, closed interval. 
Using SGItAUDER:S Fixed Point Theorem to solve a system of integral equa- 
tions, we are able to show that under  the appropriate conditions on f and 
% this problem has a unique solution in a neighborhood (y > 0) of /. 

A great deal of the work of this paper was motivated by the investigations 
of O~AWA [3]-[5]. 0GAwA solved the comparable problems for the equations 

and 

r~(x,, y ) u ~ " u ~  - -  uy~ ~- f(x, y, u, u~, uy) : 0 

u 2 ~ u ~  - -  uyy + f(x, y) = O. 

Let us denote by L i p ( x l , . . . ,  x~; K(y)) the class of functions ~ which 
satisfy the LII'SGRI~Z condition 

t ~(x~, ..., x~) - -  ~(21, . . . ,  2~)] ~ K(y) (]xx  - -  ~1 1 -~ ... -~ ]x~ - -  2~ I) 

(*) This paper is a portion of the author 's  doctoral thesis. The author would like to 
express is sincere appreciation to his thesis advisor~ :Professor ~ .  O~AWA. 
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114 D. W. LINK: A quasi-linear singular Cauchy problem 

on a given region. The norm []. ]I when applied to scalar functions shall 
mean the maximum modulus on a given region. The notation I[" !ty shall mean 

t[ g(s, x, y ) -  h(s, x, y ) ] l y -  max. {gls, x, y ) -  h(s, x, y)I. 
o ~ s ~ y  

The symbols p and q are defined by 

19 --" U x  ~ ~ - ' -  ~ t y .  

To assure the hyperbolicity of (1.1) for y > 0, we suppose that there is 
a positive constant g such that ~ ' ( x ) ~  ~ on L The CAUC~Y problem is then 
singular in the sense that it is hyperbolic for y ) 0 ,  and along I, where we 
prescribe the initial conditions, the equation is parabolic. We also assume 
that ~ has three derivatives o n /  and satisfies l~l, l~'t, l~"!, t~ ' " l~ l l~ l l  and 
¢~"'ELip(x; HcpH) for some constant II:?I[. We choose constants A, Ao and ao 
such that A>[[~]]  and A o ) ~ ' ~ a ) a o ) 0 .  Let D denote the open region 
bounded by the curves 

1 - ~  ,~+1 1 Aoy.~+~, _~ 
x - - a ~ -  ~ i A o y  , x - - ~  m + l  (y>O), 

and the interval L For each positive number  ~, let D~ be that portion of D 
for which y ~ .  Lett ing Yo be the maximum ordinate of the points 1), we 
suppose that f is twice differentiable with respect ~o x, u, p and q on the region 
consisting of the points (0 6 y, u, 19, q) which satisfy (x, y)E D, l ut ~ A y o ,  
tpl~__ Ayo and ao__~ q ~  Ao. Assume moreover that f and its first and second 
partial  derivatives with respect to w, u, p and q are bounded by It f[], and f 
is in Lip(y;  [Iftl) and the foregoing second derivatives are in Lip(x,  u, 19, q; 
lifll) for some constant Itf'J. With  these assumptions we shall prove the 
following existence theorem. 

TKEORE~ 1. - Under  the conditions 

(1.3) fp(x, y, u, p, q ) -  o(y "-1) as y- -~  0 

and 

(1.4) Ao < m -{- 1, 
ao ~ 

there exists a ~ ~ 0 ,  such that on D~ the singular CAUCH¥ problem for (1.1), 
1.2) has a solution u(x, y) which is twice differentiabte, with LIPsc~I~z 
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continuous second derivatives on / ) ~  and satisfies 

(1.5) 

u ~(x ,  y) E Lip (x; O(y)), 

u~j(hj, l) - -  u~v(x, l)E Lip (w; O(y~+~)), 

u~y(hi, t) - -  u~u(x, t) E Lip (t; O(y"~)), j = l ,  2. 

In  (1.5), hj = hi(t, x ,  y) are solutions of the ordinary differential  equations 

(1.6) 
h# = (--  1)it'~"/(~+~)w"/~'~+~)(hj, t), 

hi(y , x~, y) = x,  

O~t<__y, 

(j --- 1, 2), 

where the functions w(~c, y) are continuous and have continuous first partial  
derivatives with respect  to w on ]gs and satisfy 

(1.7) a°+*Y ~ w ~ Ao+~y, 

w~ E Lip (x; Ny), 

M and N being constants. 
Let  us call Ks the set of all such functions h i . 
In  section 8 we shall use Theorem 1 to prove our main theorem which 

removes condition (1.4) and establishes the uniqueness of our solution. 

2. Properties of  Ks.  

We now establish some estimates for the functions in K~ which will be 
used repeatedly in the proof of Theorem 1. From a theorem in ordinary 
differental  equations ([1], pp. 25-28), it follows that any pair  of functions h i 
(j = 1, 2) in Ks have continuous first partial  derivatives respect  to x and y 
given by 

Y 

(2.1) h~(t, x, y) = exp (--  1)J+ ,,'-'/(~+1) ~hj (h/s,  x, y), s)ds , 
t 

(2.2) hiy(t , x,  y) - -  ( - -  1)J+ly"*~/<"*+~)wm/('~+~)(x,y)hj~(t, m, y), (j "- 1, 2). 

L]~MMA 1. - If hiE Ks  and (x, y)E I)s, then 

(i) (hi(t, x, y), t)E l )s ,  

(ii) hi(t, x, y) - -  x + O(y m+l - -  t'~+l), 
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(iii) hi~(t , x, y) -~ 1 Jr O(Y "~+~ -- t'~+~), 

(iv) hj~(t, 2 y)E Lip (w; O(y'~+~)), 

with the constants depending on ~, no, Ao, M and N. 

Puoo~. - The first two statements are easily verified using the integrated 
form of (1.6), 

Y 

(2.3) h~(t, x, y) -~ x -p (--  1)i+~ f s'~/('~+~)w'~/(m+~)(hj(s, x, y), s)ds, 
t 

and the properties (1.7) of w. The last two statements follow from (1.7), (2.1), 
(i) and (ii), and the theorem of the mean. 

LEMMi 2. - If  hi,  [z] E K ~  then for ~ sufficiently small 

(i) t hi(t, x, y) - -  hi(t, 2, Y) i ~ O(y") If w - -  w IT, 

(ii) !hi~(t , x, y ) -  fti~(t, 2, y) l ~ 0(Ym)( II w - II + II - II ), 

where the norms on the right are the max imum moduli of the functions on D~. 

P R o o )  ~. - Using the integrated form (2.3), conditions (1.7) and the theorem 
of the mean, we have 

i hi(t, x, y) - -  hi(t, x, Y) i ~-- 0(Y "~+~) i: hi - -  hJ l:y Jr (m + 1)ao II w - w II. 

The inequali ty still holds if the left side is replaced by the expression 
m~x. I h i - - h j l  which is on the right, so the first assertion is proved by choosing 

1 
so small that 0(y'~+l)~:2. The second estimate is the result  of applying 

the bound of h i - - h i ,  the proper t ies  of (1.7)~ and the theorem of the mean 
to the expression for h#~--hj~ obtained through the formula (2.1). 

3. The in tegra l  equation. 

Leu us introduce the functions Uo, ul ,  us and z by 

(3.1) Uo(X, y) - -  u(2, y), Uo(2, O) - -  O, 

(3.2) uI(x, y ) =  u.~j(2, y ) + - - ~ - ~  u~+~(x, y), u~(2, O)= ~(w), 
m t i 
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(3.3) u~(~c, y) -- u,(x, y) m -k 1 '~x ~w' y)' 

(3.4) 
m ÷ 1 

z(x, y ) -  2 y-"(u~(x, y ) ~  u~(x, y)), 

u~(x, 0 ) - -~ (x)  

z(x, O) = O. 

The equation (1.1) can then be writ ten as the first order system 

1 
Uoy = ~ (u~ + u~), 

(3.5) 

where 

u~y -k Ym"/('~+~)z"/~m+~lu~ = F(x, y), 

1 
F(x, y) -- f(x, y, Uo(X, y), y'~/("+~)z~I('~+~(~c, y), ~. (u~(x, y) -k u~(x, y))). 

Using the initial conditions (1.2) and the characterist ics gi(t, x, y) of 
equation (1.1), given by the solutions of (1.6) with w - - z ,  we now express 
this system as the integral  equations 

(3.6) 

Y 

1 f[ul(x,  t) -F us(x, t)]dt, uo(x, y) -- 
0 

Y 

ul(x, y ) =  ~(gl(O, x, y))--F j'F(g~(s, x, y), s)ds, 
0 

Y 

j 'F(g2(s, x, u2(x, y ) =  ~(g~(O, x~, y)) + y), s)ds. 
o 

4. I Banach space 

Let S~ be the set of vector functions u--(uo,  ul, u2) which are continuous 
and have continuous first partial  derivatives with respect to x on /)~. We asso- 
ciate with each u in S~ the function z defined by (3.4) and the functions 
v~(hi) given by 

(4.1) 
1 

v~(hi; t, x, y ) =  2 y-'~[u~(hj(t, x, y), t ) -  u~x(x, t)], 

v~(hj; 0, x, 0) --  0, (i - -  0, 1, 2; j --  1, 2), 

where hj is in Ks. 
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Le~ Ilu~l] = m a x l u i ( x  , y)], (x, y)ED~, and define llui~iI, ]]zl] , and llz~ll analo- 
gously, and set 

tlv~(hj)tt--max.]v~(hi; t, x, Y) I, (x, y)ED~, O ~ t ~ y .  

The set S~ is a BANACI-I space under  the norm 

Ilull--max.(lluiI!, Ilu,.~II, IIzli, IIz=:l, I/ v,(hi) 'l ), 

the m a x i m u m  being taken over i = 0, 1, 2; j - - 1 ,  2, and all h~ E Ks. 
Next we denote by Xs the set of e lements  of Ss which satisfy on D~ 

l Uo ] < Ay, uo E Lip (y; A), !Uo~ I ~ Ay, 
(4.2) 

uo~ELip (x ;  By), uo, E L i p ( y ;  A); 

Iu, L<_A, 
(4.3) 

u~  E Lip (x, y;  B) ; 

m+l Am+l ao y ~ z ~ o y, 
(4.4) 

z~ E Lip (x; 2¢y), 

us E Lip (y; B), ] u~, I ~ A, 

(i = t ,  2) ;  

z E Lip (y; B), 

z~ E Lip (y; C); 

(4.5a) 

(4.5b) 

(4.5c) 

vo(hj) 1 ~ QoY 2, vo(hi) E Lip (x, Roy2), (j = 1, 2); 

v~(hi) l ~ Q~y , v~(hj) E Lip (x ; R~y), ( i - - 1 ,  2; j =  1, 2); 

vo(hj)ELip(y, t; Coy),  v~(hj)ELip(y, t; Cd, (i = 1, 2; j = 1, 2), 

the capital  letters being constants.  

Since the funct ion  

u =  :py, ~ ' +  m + l  ' m + l  ] 

satisfies condit ions (4.2)-(4.5) for some set of constants,  it follows that  there 
are non -empty  spaces Xs. We also note that  due to condit ion (4.4), the cha- 
racter is t ics  gj(t, ~, y), j - -  1, 2, corresponding to an e lement  u of X~, defined 
as the solution of (1.6) with w - - z ,  are in Ks. 



D. W. LICK: A quasi-linear singular Cauchy problem 119 

5. An equivalent solution. 

We shall first show that Theorem 1 is proved if the system (3.6) has a 
solution in some space X~. 

TItEORE~[ 2. - The singular  CAuc~¥ problem for equation (1.1), (1.2) 
has a solution u on D~, ~ sufficiently small, twice differentiable with LIP- 
sc~I~z continuous second derivatives and satisfying conditions (1.5) on I)~ if 
and only if the integral equations (3.6) have a solution u in some space X~. 

PROOF. - We have already seen that if u is a solution of the s ingular  
CAUCHY problem, then the vector u = (Uo, u~, u2) defined by (3.1).(3.3) is a 
solution to the system (3.6) Moreover, s traightforward calculations show 
that u is an element of some X~ under  conditions imposed on u. 

Conversely, using the equations analogous to (2.1) and (2.2) relat ing the 
derivatives with respect  to x and y of the characterist ics corresponding to 
u, we find that an element u - - ( u 0 ,  ul ,  u2) of X~ which is a solution of (3.6) 
is also a solution of the f i rs t  order  system (3.5). This in turn  implies that 

u(x, y )=Uo(X ,  y) 

is a solution of the singular  CAVc~Y problem. The conditions (1.5)follow 
from the relations 

(5.1) 

1 
m -~ 1 Ym/(m+l)Z--m/(m+l)Zx 

1 
u ~  = 2 (u~ ÷ u,,~), 

and the properties of u. The LIPscm~z continui ty of the second derivatives 
of u are simple consequences of the same conditions for u. This completes 
the proof of Theorem 2. 

6. The continuous into mapping. 

I f  u is in X~, we define 

(6.1) Tu  -- V : (Uo, U1, U2) 

by the r igh t -hand  sides of the integral equations (3.6), gl and g2 in the equa- 
tions being the characterist ics corresponding to u. Moreover, let us denote 
by Z and V~, respectively, the functions defined by the equations (3.4) and 
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(4.1) with u replaced by U. We note that T is well-defined, since by Lemma 
1, (g~(t, x, y), t)E I)~ ( / =  1; 2). To establish the existence of a solution of the 
integral equations, we shall prove that the mapping T has a f ixed point. 
The proof is based on the fact that a continuous mapping of a convex, 
compact subset of a BANA0~ space into itself a fixed point. 

T H E O R E M  3 .  - Under  conditions (1.3) and (1.4), there exists a ~ > 0 and 
a space Xs such that T is a continuous mapping of Xs into itself. 

PROOF. - We first prove that T maps some space Xs into itself. If  
uEXs ,  then the functions U - - T u  and U~ are obviously continuous on /)+, 
so UE&.. 

It  is easily verified that Uo satisfies conditions (4.2) for $ sufficiently 
small by use of conditions (4.3) for u~ and uz, and the restrictions on ao, A 
and B. Likewise, conditions (4.3) for U~, Uz, U~ and U~ follow readily, for 

small, by a suitable choice of constants depending only on tt ¢P It and II f tl, 
and the constants of Lemma 1. Let  F~(x, y) denote the partial  derivative of 
F(x, y) with respect to x. Since F ~ E L i p ( x ;  0(1)), g i~--  0(Y'~), and g ~ E L i p ( y ;  
0(y'~)), with the constants being independent  of B, we see that U~ELip(x,  y; B), 
( i - -  1, 2), for small ~, by selecting B adeguately large. 

P R O O F  OF E S T I M A T E S  F O R  Z .  - Writing 

Z(x, y) m ÷ 1 -- 2 y-'~l ~(g~(O, x, y ) ) -  ~(g,(O, x, y)) 

Y 

.f  [F(g~(s, x, --F(ggs,  x, + y), s) y), s)lds} 
0 

and using (2.3) to observe 

2 2 
(6.2) "~ "~ m ~ I a° y + ~ gl(t, x, y ) -  g2(t, x, y ) ~  m---+ 1 AoYm+I' 

we easily obtain 

,~+~ A~o,+ly. a o y ~ Z ~  

The y-LIPsCHITZ continuity is readily demonstrated by using the above 
form of Z, Lemma 1~ g~y = O(y'% and B sufficiently large. 

Using (2.3), we note 

(6.3) [gl~(t, x, y ) -  g~(t, x, y) = 0(y'~+~). 
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Now dif ferent ia t ing the above form of Z and applying the obvious bounds,  
we have 

m II ~' II M 
I Z~ : ~_ ao(m + 1) y + O(y) -]- O(y2), 

where  0(y) is independent  of _M. If  we now choose M suff icient ly large and 
y suff icient ly small, and use condit ion (1.4), we get 

t Z ~ I ~ M y  

To prove the LI~2SOHITZ Continuity for Z~, we write 

Z~(x, y) m + 1 Y-'~ I ~'(g~(O, x, y))g~(O, x, y ) -  ~'(g2(0, x, y))g2~(O, x, y) 
- -  2 

y 

+J[F~:(gl(s, x, y), s)g~(s, x, y ) -  F~(g~(s, x, y), s)g~(s, z, y)] t. 
o 

We shall  use the symbol 0(1) in this paragraph only if it is independent  of 
2~. S t ra ight forward  calculat ions show 

~'(g~(O, x, y ) ) -  ¢~'(g2(0, x, y ) )CLip(x ;  0(1)y'~+~), 

I ~'(g~(O, x, y)) - -  ~'(g~(O, ~, Y))I[ g , , (0 ,  x, y) - -  g2~(0, x,  y) l ~ 0 (y~+~)  ] x - • ], 

g~(t, x, y) E Lip x; [ ao (~ l )2+O(1) - t -O(y~+~)y '~+~  , i - - 1 ,  2. 

Combining the above resul ts  and us ing  the decomposi t ion  

' 0 - -  ' 0 (g~( , x, y))g~(O, x, y) ~(g~( , x, y))g2~(O, x, y) 

r ! O --[¢~ (g~(O, x, y ) ) - - ~  (g~( , x, y))]g,~(O, x,  y) 

' 0 4-~ (g~(, x, y))[g~(O, x, y) g2~(O, x, y)], 

we see this quant i ty  is in 

[ao(m 4- 1) + 0(1) + 

A n n a l i  d i  M a t e m a t i c a  16 
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In a similar manner  we consider the integrand 

(6.4) 

F~(g~(s, x, y), s)g~(s, x, y ) -  F~(g~(s, x, y), s)g~(s, x, y) 

= [F~(g~(s, x, y), s ) -  F~(g~(s, x, y), s)]g,~(s, x, y) 

"-~ Fx(g~(8, X, y), 8)[g~(8, X, y ) -  g2~(8, X, y)]. 

For  brevity, let ~ --  x, u, p or q, g~ - -  g~(s, x, y), g~  - -  g~(s, x, y), gi ----- g~(s, 2, y), 
- 1 
gi~--  g~(s, ~, y) and f~(gi, . . . )= f~(g~ s, uo(g~, s), s'~/('~+~!z~/(m+~)(g~, s), ~(u~(g~, s) 
+ uz(g~, s))). 

Differentiation with respect to x reveals that f:(g~, s ) - - f : (g2 ,  s) is in 
Lip (~; 0(ym+~)). Since 

u~(ga, s ) -  u~(g2, s)~-2y'~[v~(g~; s, x, y ) -  v~(g~; s, x, y)] i = O, 1, 2; 

this difference is in Lip (x; O(y*'+~)), with 0(y'*+ *) depending on Ri. Thus the 
terms in f~ and fq in F~(g~, s ) - -F~(g~,  s) are in Lip(x;  0(y~+~)+0(y'*+~)). 
As for the terms in fp, by the condition (1.3) and the bounds and LIPsc~I~z 
conditions on uo, and z.,, we find they are in L i p i x ;  o(y")), where o(y "~) 
depends on N. Combining the above results, we have 

F~(gl, s) - -  F~(g~, s) E Lip (x; o(y'~)). 

Using (6.2)-(6.4), we see that the remaining terms of the integrand are all in 
L ip(x ;  0(y~+~)). Thus Z~E Lip(x ;  O(y)+ o(y)), where o(y) depends on N and 
0(y) is independent  of N. Hence  

Z~ E Lip (x; Ny) 

for a suitable choice of N and 8. 

For this section of the proof of (4.4), let gi --~ gi(s, x~ 9), gi~ -" gi~(s, x~ ~j)~ 
and y )  9. Then 

m q- i 
~- 2 

I Z~(x, y ) - -  z~(x, 9) 1 

- -  y-'~ ( [ I ~'(g~(O, x, y))g~(O, x, y) - -  ¢p'(g~(O, x, y))g~(O, x, y) 

--(~'(gl(0, x, ~)gl~(0, x, 9 ) -  ~'(g2(O, ~ ,  9))g~(0, x, 9))t 

Y 

o 
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Y 
f 

' 0 

o 

Applying an analogous argument as was used for the ¢~'-terms for the x-LI- 
PSCHITZ condition for Z~, ] giy ] ~ 0(y"), g~ E Lip(y; O(ym)), (6.2), and (6.3), we get 

' 0 ' 0 ¢~(g~( , x,  y))gz~(O, x,  y ) - - ~  (g~( , x,  y))g2~(O, x, y))~ Lip (y; 0(y'~)), 

f~(g~, ...) - -  f~(g2, • .) E Lip (y; 0(y")), and hence 

Since 

F~(g~, s )g~ - -  F~(g~, s )g~ E Lip (y; 0(y'~)). 

] F~Cg~, s)g~ - -  F~(g2, s)g2~ [ ~ 0(y"+~), 

the last part of the expression ]Z~(x, y ) - - Z ~ ( x ,  y)] is bounded by 0(1)[y--y l, 
with 0(1) independent of C. Combining the above results, we have 

Zx E Lip (y; C), 

for C sufficiently large. 

PROOF. OF. (4.5). - The bounds of (4.5) follow immediately from the 
LIPSC~I~z continuity of ~.~ and Lemma 1. Since solutions of (1.6) through 
a given point are unique (for fixed j), we have 

h~(s, x ,  y) - -  hi(s , hi(t, x ,  y), t), 0 ~ s ~ t ~ y, 

and therefore we can express Vo(hi) in the following form. 

(6.5) 
t 

1 ] ' ~  
Vo(hi) ~- ~ y - "  ~, [y"v~(hi; s, x,  y ) - -  t'~vi(hj; s, hi(t, ~c, y), t)]ds. 

o 

This integral is in Lip (x; 0(y~)) by the LIPSCHI'I'z conditions for v~, i - - 1 ,  2. 
Thus 

Vo(hj) E Lip (x; Roy2), 
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for Ro sufficiently large. The t-LIt'SCHITZ condition for Vo(hi) follows in an 
analogous manner. The y-L~PsCrfI~Z condition for Vo(hi) is a simple eonse. 
quence of the conditions on U0~ and the fact hj~ = 0(y'~). 

The proof of the x-LIPscm~z continuity of V~(hj), i - - 1 ,  2, is similar to 
the proof of Z~ C Lip (x; Ny) and depends on the decomposition 

(6.6) 

~ow 

FSg~[s, hi(t , x, y), t], s ) -  F~(gi(s, x, l), s) 

--[F~(g~[s, hi(t, x, y), t], s ) -  F~(h](t, x, y), s)] 

- -[F, (h i[s  , h~(t, x, y), t], s ) -  F~(hj(t, x, y), s)] 

+ [F~(hj(s, x, y), s ) -  F~(x, s ) ] -  [FJg~(s, x, t), s ) -  F rx, s)] 

1 
~(hi;  t, x, y ) - - ~  y-".{~'(g~(O, hi(t , x, y), t))g~(O, h~(t, x, y), t) 

' 0 - - ~ ( g ~ (  , x,  t))g,.~(0, x, t) 

t 

f hi(t , t], hi(t, y), t) + [F~(g~[s, x, y), s)g,.~(s, x, 
o 

--F~(g~(s, x, t), s)gi~(s , x, t)]ds t. 

The portion of this expression involving ~' is in Lip (x; 0(ym+~)) by an argu- 
ment analogous to the one for the eorre~sponding quantity in Z~. Each of 
the terms in brackets in the decomposition (6.6) is in Lip (x; 0(y-*+~)._[_ o(s")) 
by an argument similar to the one used on the integrand quantity for Z. .  Thus 

I V~(hi; t, x, y) - -  V~(hi; t, 2., Y) I ~  [0(y) -~ o(y)] ] x --  • i, 

where O(y) is  independent  of N and R~. If we choose y small enough and 
R~ sufficiently large, then 

V~(h]) ~ Lip (x; R~y), i - - l ,  2. 

Using giv E Lip(x;  O(y'~)), methods analogous to those used to prove the LI- 
PSCHITZ continuity of Z~, and V~(hi)ELip(x;  R~y), we see 

V~(hi) E Lip (y, t; C~), i ~ 1 ,  2, 

for Ci sufficiently large and y sufficiently small. 
This completes the proof that T maps X~ into itself. 
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P R O O F .  O:F CO~INUIf~.  - W e  now need to demons t ra t e  that  T is 

nuous.  Let  T u =  U--(l_]o,  Ut, Us) and  T u - -  /~---- (Uo, U~, /-I~). Recal l  

oonti- 

ii u l~= .,a~.(]l v,H, II v,.]l, I]Zii, ~lz.tl, II V,(hJ)ll) i = 0 ,  1, 2; j = l ,  2. 

I t  is easi ly  seen that  

I Uo(x, y) - -  Uo(m, Y) I ~-- Y I] u - -  u ]l, 

and  that  the  same inequa l i ty  holds  for  U o ~ - / f o x .  

Let  gi - -  gi(s, x,  y), g'~ ---- g~(s, x, y) and 

1 ~ ~ 

F(x~, y) - -  f(x,  y, uo(m, y), y"'/('~+~)z~/("+~)(x, y), ~ (u~(x, y) + u2(x, y))) 

Using  L e m m a  2, we get 

I F(g~, s) - -  P ( ~ ,  s) l ~ oll)tl u - -  ~ II. 

F r o m  this immed ia t e ly  follows 

5~ - -  U~I --~ [0(Y '~) -k 0(y)l li u - -  u It, i = 1, 2. 

In  an analogous  fashion,  we see that  the same inequa l i ty  holds for [ U ; , - -  U~.,!. 
Us ing  L e m m a  2 and  the re la t ion  

t F(g~, s) - -  F(g~,  s ) -  [P(g~, s) - -  F(g~, s)][  < O(y "~) t l u - -  u II, 

it r ead i ly  follows that  

t z - 2 I _ < o ( 1 ) I I u - u I ] .  

To prove the con t inu i ty  for Z~, we observe 

m + 1 Y - "  ' o ' o t Z~ - -  2~ 1 ~ ~ 2 - -  t l [9 (g2( , x,  y)) - -  ~ (g2( , x,  y))]gl~(o, x, y) 

' 0 + ~ (g~(, x, y))[gl®(o, x, y )wg2®(o ,  x, y)] 

- - [ 9  (gl( , x, y ) ) ~  (g2(o, x, y))]gl~(o, x, y) 

! ~ 0 - - 9  (g~(, ~, y))[~,,(o, x, y ) -  g~(o, x, y)]l 
y 

+ j ] [ F J g l ,  s) - -  F i g s ,  s)]g~ 
0 
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Applying Lcmma 2 to the expressions outside the integral, 
quanti ty  is less than or equal to 0(i)l l u - ~ t l l .  To get the bounds 
integrand, we shall first prove 

<_ [ O ( y ' )  + (t u - -  Ii. 

Writ ing 

shows that this 
for the 

[ [f~(g~, ...) - -  f:(g2, ...)] - -  [f~(g~, ...) - -  f~(g2, ...)] I 

as a difference of integrals, we find it is of order O(y " ~ ) l t u -  u il, ~ = x, u,  
p, or q. Using this result, the conditions on Vo and the decomposition 

f , (g , ,  ...)Uo~(gt, s) - -  f~,(g2, ...)Uo~(g~, s) 

= [f~(g~, . . . ) - -  f~(g2, ...)]Uo~(g~, s) 

+ 2y'~f~(g~, ...)[vo(gd - -  vo(g~)], 

we have that the difference between this expression in f~ and the correspon- 
ding one in u is of order O(y m) II u - - ~  I1- In a similar manner  the difference 
of terms with fq and fq are o f - the  same order. Finally, the difference of 
terms with fp and ]~ are bounded by [O(y'~i ~ o(s~-~)] 1] u -  u 11 by virtue of 
condition (1.3). Using the fact that the other terms of the integrand are 
bounded by O ( y ~ ) t ] u - - u l l  , _  (6.7), and the result  for the terms outside the 
integral, we get 

t - _< o(1)It u . -  ~ it. 

From (6.5), the properties of the v~(hj) and Lemma 2, it follows that 

k Vo(hj) - -  ~Vo(hi) l <-- O(y)LI u - -  u II. 

Now 

t V~(h~) - -  V~(hJ) i ~ 0(1)II u - -  ~ If, i = i ,  2;  j = 1, 2, 

follow by means of the decomposition (6.6) and application of the techniques 
used to prove the continuity for Z~. 

This completes the proof that T is continuous mapping of X~ into itself. 

7. A p p l i c a t i o n  o f  S c h a u d a r ' s  T h e o r e m .  

By conditions (4.2)-(4.5) imposed on the functions in X~ and the definition 
of the norm on X~., we observe that Xs is convex and that the functions in 
X~ are uniformly bounded and LIPsc~ITz continuous with respect to x, y, 
and t. Since the functions in X~ are uniformly LIPscI~I~z continuous, X~ is 



D. W. L~cK: A quasi-linear singular Cauchy problem 127 

a uniformly equicont inuous family of functions. Therefore,  by ARZALA~S 
Theorem, X~ is a convex, compact  subset  of the BA~ACK space S~. 

The existencs of a a solution of the integral equations (3.6)is established 
by means of the following form of SCttAUDER'S Fixed Point  Theorem [6]: 

A continuous mapping of a convex, compact subset of a BAN~C~ space 
into itself has a f ixed point. 

Therefore,  under  conditions (1.3) and (1.4), our integral equations (3.6) 
have a f ixed point  and so, by Theorem 2, our original CAUC~¥ problem for 
(1.1), (1.2) has a solution. 

This completes the proof of Theorem 1. 

8. The theorem. 

The theorem we desire to obtain is Theorem 1 without condition (1.4) 
in the hypotheses  a n d  with uniqueness  of solution. It  is as follows. 

T H E O R E K  4. - U n d e r  t h e  c o n d i t i o n  

fp(x, y, u, p, g)-" o(y m-~) as y ~ O, 

there exists a ~ > 0 ,  such that on D~ the singular CAUCH¥ problem for (1.1), 
(1.2) has a unique solution u(x, y) which is twice differentiable with LIPSCHITZ 
continuous second derivatives on D~, and satisfies the conditions of (1.5). 

PROOF. - The uniqueness  of the solution of Theorem 1 follows from a 
paper  by the author [2]. The restrict ion 

Ao m +  1 < 
ao m 

can be removed by breaking I =  [:¢, ~] into a finite number  of overlapping 
closed subintervals  Ii = [~,  ~] (i --  1, 2, ..., n;  ~I --  ~ and ~ = ~), on each 
of wh ich  this condition is satisfied. Applying Theorem 1 and the above 
mentioned uniqueness  of solution to each subinterval,  there exists a unique 
solution ui of the problem with domain D~., where DL: is the open region 
bounded by I~, y - - ~  and the curves 
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The function u(x, y) given by 

u(x, y) = u~(x, y), 

where 

- -  min 5~ 
i 

is then the desired solution on D~. 
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