A quasi-linear singular Cauchy problem (*)

Dale W. Lick (University of Tennesse, Knoxville)

Summary. - See the introduction.

1. Introduction,

We consider the singular Cavciry problem for the second order quasilinear hyperbolic equation

$$
\begin{equation*}
u_{x}^{2 m} u_{x x}-u_{y y}+f\left(x, y, u, u_{x}, u_{y}\right)=0 \tag{1.1}
\end{equation*}
$$

with the initial conditions

$$
\begin{equation*}
u(x, 0)=0, \quad u_{y}(x, 0)=\varphi(x), \quad x \in I \tag{1.2}
\end{equation*}
$$

where m is any positive real number and $I=[\alpha, \beta]$ is a finite, closed interval. Using Sohadoer's Fixed Point Theorem to solve a system of integral equations, we are able to show that under the appropriate conditions on f and φ, this problem has a unique solution in a neighborhood $(y>0)$ of I.

A great deal of the work of this paper was motivated by the investigations of Ogawa [3][5]. Ogawa solved the comparable problems for the equations

$$
r^{2}(x, y) u^{2 m} u_{x x}-u_{y y}+f^{\prime}\left(x, y, u, u_{x}, u_{y}\right)=0
$$

and

$$
u_{x}^{2 m} u_{x x}-u_{y y}+f(x, y)=0
$$

Let us denote by $\operatorname{Lip}\left(x_{1}, \ldots, x_{n} ; K(y)\right)$ the class of functions ξ which satisfy the Lipsohitz condition

$$
\left|\xi\left(x_{1}, \ldots, x_{n}\right)-\xi\left(\bar{x}_{1}, \ldots ; \bar{x}_{n}\right)\right| \leqq K(y)\left(\left|x_{1}-\bar{x}_{1}\right|+\ldots+\left|x_{n}-\bar{x}_{n}\right|\right)
$$

$\left({ }^{*}\right)$ This paper is a portion of the author's doctoral thesis. The author would like to express is sincere appreciation to his thesis advisor, Professor H. Ogawa.
on a given region. The norm $\|\cdot\|$ when applied to scalar functions shall mean the maximum modulus on a given region. The notation $\|\cdot\|_{y}$ shall mean

$$
\left.\|g(s, x, y)-h(s, x, y)\|_{y}=\max _{0 \leq s \leq y} \mid g s, x, y\right)-h(s, x, y) \mid .
$$

The symbols p and q are defined by

$$
p=u_{x}, \quad q=u_{y} .
$$

To assure the hyperbolicity of (1.1) for $y>0$, we suppose that there is a positive constant α such that $\varphi^{\prime}(x) \geq \alpha$ on I. The Cauchy problem is then singular in the sense that it is hyperbolic for $y>0$, and along I, where we prescribe the initial conditions, the equation is parabolic. We also assume that φ has three derivatives on I and satisfies $|\varphi|,\left|\varphi^{\prime}\right|,\left|\varphi^{\prime \prime}\right|,\left|\varphi^{\prime \prime \prime}\right| \leq\|\varphi\|$ and $\varphi^{\prime \prime \prime} \in \operatorname{Lip}(x ;\|\varphi\|)$ for some constant $\|\varphi\|$. We chouse constants A, A_{0} and a_{0} such that $A>\|\varphi\|$ and $A_{0}>\varphi^{\prime} \geq a>a_{0}>0$. Let D denote the open region bounded by the curves

$$
x=\alpha+\frac{1}{m+1} A_{0}^{m} y^{m+1}, \quad x=\beta-\frac{1}{m+1} A_{0}^{m} y^{m+1}, \quad(y \geqq 0)
$$

and the interval I. For each positive number δ, let D_{δ} be that portion of D for which $y<\delta$. Letting y_{0} be the maximum ordinate of the points \bar{D}, we suppose that f is twice differentiable with respect to x, u, p and q on the region consisting of the points (x, y, u, p, q) which satisfy $(x, y) \in \bar{D},|u| \leq A y_{0}$, $|p| \leq A y_{0}$ and $a_{0} \leq q \leq A_{0}$. Assume moreover that f and its first and second partial derivatives with respect to x, u, p and q are bounded by $\|f\|$, and f is in $\operatorname{Lip}(y ;\|f\|)$ and the foregoing second derivatives are in $\operatorname{Lip}(x, u, p, q ;$ $\|f\|$) for some constant $\|f\|$. With these assumptions we shall prove the following existence theorem.

Theorem 1. - Under the conditions

$$
\begin{equation*}
f_{p}(x, y, u, p, q)=o\left(y^{n-1}\right) \text { as } y \longrightarrow 0 \tag{1.3}
\end{equation*}
$$

and

$$
\begin{equation*}
\frac{A_{0}}{a_{0}}<\frac{m+1}{m} \tag{1.4}
\end{equation*}
$$

there exists a $\delta>0$, such that on D_{δ} the singular Cauchy problem for (1.1), 1.2) has a solution $u(x, y)$ which is twice differentiable, with Lipschitz
continuous second derivatives on \bar{D}_{δ}, and satisfies

$$
\begin{align*}
& u_{x x}(x, y) \in \operatorname{Lip}(x ; 0(y)), \\
& u_{x y}\left(h_{j}, t\right)-u_{x y}(x, t) \in \operatorname{Lip}\left(x ; 0\left(y^{m+1}\right)\right), \tag{1.5}\\
& u_{x y}\left(h_{j}, t\right)-u_{x y}(x, t) \in \operatorname{Lip}\left(t ; 0\left(y^{m}\right)\right),
\end{align*}
$$

In (1.5), $h_{j}=h_{j}(t, x, y)$ are solutions of the ordinary differential equations

$$
\begin{array}{cc}
h_{j t}=(-1)^{i} i^{m^{2} /(m+1)} w^{m /(m+1)}\left(h_{j}, t\right), & 0 \leq t \leq y, \\
h_{j}(y, x, y)=x, & (j=1,2),
\end{array}
$$

where the functions $w(x, y)$ are continuous and have continuous first partial derivatives with respect to x on \bar{D}_{δ} and satisfy

$$
\begin{gather*}
a_{0}^{m+1} y \leq w \leq A_{0}^{m+1} y, \\
\left|w_{x}\right| \leq M y, \tag{1.7}\\
w_{x} \in \operatorname{Lip}(x ; N y),
\end{gather*}
$$

M and N being constants.
Let us call K_{δ} the set of all such functions h_{i}.
In section 8 we shall use Theorem 1 to prove our main theorem which removes condition (1.4) and establishes the uniqueness of our solution.

2. Properties of K_{δ}.

We now establish some estimates for the functions in K_{δ} which will be used repeatedly in the proof of Theorem 1. From a theorem in ordinary differental equations ([1], pp. 25-28), it follows that any pair of functions h_{j} ($j=1,2$) in K_{δ} have continuous first partial derivatives respect to x and y given by

$$
\begin{align*}
& h_{j x}(t, x, y)=\exp \left[(-1)^{j+1} \int_{t}^{y} s^{m^{3} /(m+1)} \frac{\partial v^{m /(m+1)}}{\partial h_{j}}\left(h_{j}(s, x, y), s\right) d s\right], \tag{2.1}\\
& \left.h_{j y}(t, x, y)=(-1)^{j+1} y^{m^{2}((m+i)}\right) w^{m /(m+1)}(x, y) h_{j x}(t, x, y), \quad(j=1,2) . \tag{2.2}
\end{align*}
$$

Lemma 1. - If $h_{i} \in K_{\delta}$ and $(x, y) \in \bar{D}_{\delta}$, then
(i) $\left(h_{j}(t, x, y), t\right) \in \bar{D}_{\delta}$,
(ii) $h_{1}(t, x, y)=x+0\left(y^{m+1}-t^{m+1}\right)$,
(iii) $h_{j x}(t, x, y)=1+0\left(y^{m+1}-t^{m+1}\right)$,
(iv) $h_{j x}(t, x y) \in \operatorname{Lip}\left(x ; 0\left(y^{m+1}\right)\right.$,
with the constants depending on δ, a_{0}, A_{0}, M and N.
Proof. - The first two statements are easily verified using the integrated form of (1.6),

$$
\begin{equation*}
h_{j}(t, x, y)=x+(-1)^{j+1} \int_{t}^{y} s^{m^{2} /(m+1)} w^{m / /(m+1)}\left(h_{j}(s, x, y), s\right) d s \tag{2.3}
\end{equation*}
$$

and the properties (1.7) of w. The last two statements follow from (1.7), (2.1), (i) and (ii), and the theorem of the mean.

Lemma 2. - If $h_{j}, \tilde{h}_{j} \in K_{\delta}$, then for δ sufficiently small
${ }_{(i)}\left|h_{j}(t, x, y)-\tilde{h}_{j}(t, x, y)\right| \leq 0\left(y^{m}\right)\|w-\tilde{w}\|$,
(ii) $h_{j x}(t, x, y)-\tilde{h}_{j x}(t, x, y) \mid \leq 0\left(y^{m}\right)\left(\|w-\tilde{w}\|+\left\|w_{x}-\tilde{w}_{x}\right\|\right)$,
where the norms on the right are the maximum moduli of the functions on \bar{D}_{δ}.
Proof. - Using the integrated form (2.3), conditions (1.7) and the theorem of the mean, we have

$$
\left|h_{j}(t, x, y)-\tilde{h}_{j}(t, x, y)\right| \leq 0\left(y^{m+1}\right)\left\|h_{j}-\tilde{h}_{j}\right\|_{y}+\frac{y^{m}}{(m+1) a_{0}}\|w-\tilde{w}\| .
$$

The inequality still holds if the left side is replaced by the expression max. $\left|h_{j}-\tilde{h}_{j}\right|$ which is on the right, so the first assertion is proved by choosing δ so small that $0\left(y^{m+1}\right) \leq \frac{1}{2}$. The second estimate is the result of applying the bound of $h_{j}-\tilde{h}_{j}$, the properties of (1.7), and the theorem of the mean to the expression for $h_{j x}-\tilde{h}_{j x}$ obtained through the formula (2.1).

3. The integral equation.

Let us introduce the functions u_{0}, u_{1}, u_{2} and z by

$$
\begin{gather*}
u_{0}(x, y)=u(x, y), \quad u_{0}(x, 0)=0 \tag{3.1}\\
u_{1}(x, y)=u_{y}(x, y)+\frac{1}{m+1} u_{x}^{m+1}(x, y), \quad u_{1}(x, 0)=\varphi(x), \tag{3.2}
\end{gather*}
$$

$$
\begin{array}{ll}
u_{2}(x, y)=u_{y}(x, y)-\frac{1}{m+1} u_{x}^{m+1}(x, y), & u_{2}(x, 0)=\varphi(x) \\
z(x, y)=\frac{m+1}{2} y^{-m}\left(u_{1}(x, y)-u_{2}(x, y)\right), & z(x, 0)=0 . \tag{3.4}
\end{array}
$$

The equation (1.1) can then be written as the first order system

$$
\begin{align*}
& u_{0 y}=\frac{1}{2}\left(u_{1}+u_{2}\right), \\
& u_{1 y}-y^{m^{2} /(m+1)} z^{m /(m+1)} u_{1 x}=F(x, y), \tag{3.5}\\
& u_{2 y}+y^{m^{2} /(m+1)} z^{m /(m+1)} u_{2 x}=F(x, y),
\end{align*}
$$

where

$$
F(x, y)=f\left(x, y, u_{0}(x, y), y^{m /(m+1)} z^{1 /(m+1\rangle}(x, y), \quad \frac{1}{2}\left(u_{1}(x, y)+u_{2}(x, y)\right)\right) .
$$

Using the initial conditions (1.2) and the characteristics $g_{j}(t, x, y)$ of equation (1.1), given by the solutions of (1.6) with $w=z$, we now express this system as the integral equations

$$
\begin{gather*}
u_{0}(x, y)=\frac{1}{2} \int_{0}^{y}\left[u_{1}(x, t)+u_{2}(x, t)\right] d t, \\
u_{1}(x, y)=\varphi\left(g_{1}(0, x, y)\right)+\int_{0}^{y} F\left(g_{2}(s, x, y), s\right) d s, \tag{3.6}\\
u_{2}(x, y)=\varphi\left(g_{2}(0, x, y)\right)+\int_{0}^{y} F\left(g_{2}(s, x, y), s\right) d s .
\end{gather*}
$$

4. A Banach space

Let S_{δ} be the set of vector functions $u=\left(u_{0}, u_{1}, u_{2}\right)$ which are continuous and have continuous first partial derivatives with respect to x on \bar{D}_{δ}. We associate with each u in S_{δ} the function z defined by (3.4) and the functions $v_{i}\left(h_{j}\right)$ given by

$$
\begin{gather*}
v_{i}\left(h_{j} ; t, x, y\right)=\frac{1}{2} y^{-m}\left[u_{i x}\left(h_{j}(t, x, y), t\right)-u_{i x}(x, t)\right], \tag{4.1}\\
v_{i}\left(h_{j} ; 0, x, 0\right)=0, \quad(i=0,1,2 ; j=1,2),
\end{gather*}
$$

where h_{j} is in K_{δ}.

Let $\left\|u_{i}\right\|=\max \left|u_{i}(x, y)\right|,(x, y) \in \bar{D}_{\delta}$, and define $\left\|u_{i x}\right\|,\|z\|$, and $\| z_{x_{x} \mid} \mid$ analo. gously, and set

$$
\left\|v_{i}\left(h_{j}\right)\right\|=\max \cdot\left|v_{i}\left(h_{j} ; t, x, y\right)\right|, \quad(x, y) \in \bar{D}_{\delta}, \quad 0 \leq t \leq y
$$

The set S_{δ} is a Banach space under the norm

$$
\|\underline{u}\|=\max \cdot\left(\left\|\boldsymbol{u}_{i}\right\|,\left\|\boldsymbol{u}_{i x}\right\|,\left\|\boldsymbol{z}_{\|},\right\| z_{x_{x}}\|,\| v_{i}\left(h_{j}\right) \|\right)
$$

the maximum being taken over $i=0,1,2 ; j=1,2$, and all $h_{j} \in K_{\delta}$.
Next we denote by X_{δ} the set of elements of S_{δ} which satisfy on \bar{D}_{δ}

$$
\begin{align*}
& \left|u_{0}\right| \leq A y, \quad u_{0} \in \operatorname{Lip}(y ; A), \quad\left|u_{0 x}\right| \leq A y \tag{4.2}\\
& u_{0 x} \in \operatorname{Lip}(x ; B y), \quad u_{0 x} \in \operatorname{Lip}(y ; A) ; \\
& \left|u_{i}\right| \leq A, \quad u_{i} \in \operatorname{Lip}(y ; B), \quad\left|u_{i x}\right| \leq A, \tag{4.3}\\
& u_{i x} \in \operatorname{Lip}(x, y ; B) ; \quad(i=1,2) ; \\
& a_{0}^{m+1} y \leq z \leq A_{0}^{m+1} y, \quad z \in \operatorname{Lip}(y ; B), \quad\left|z_{x}\right| \leq M y \tag{4.4}\\
& z_{x} \in \operatorname{Lip}(x ; N y), \quad z_{x} \in \operatorname{Lip}(y ; C) ; \\
& \left|v_{0}\left(h_{j}\right)\right| \leq Q_{0} y^{2}, \quad v_{0}\left(h_{j}\right) \in \operatorname{Lip}\left(x, R_{0} y^{2}\right), \quad(j=1,2) ; \tag{4.5a}\\
& \left|v_{i}\left(h_{j}\right)\right| \leq Q_{i} y, \quad v_{i}\left(h_{j}\right) \in \operatorname{Lip}\left(x ; R_{i} y\right), \quad(i=1,2 ; j=1,2) ; \tag{4.5b}\\
& v_{0}\left(h_{j}\right) \in \operatorname{Lip}\left(y, t ; C_{0} y\right), \quad v_{i}\left(h_{j}\right) \in \operatorname{Lip}\left(y, t ; C_{i}\right), \quad(i=1,2 ; j=1,2), \tag{4.5e}
\end{align*}
$$

the capital letters being constants.
Since the function

$$
\underline{u}=\left(\varphi y, \quad \varphi^{\prime}+\frac{\left(\varphi^{\prime}\right)^{m+1} y^{m+1}}{m+1}, \quad \varphi^{\prime}-\frac{\left(\varphi^{\prime}\right)^{m+1} y^{m+1}}{m+1}\right)
$$

satisfies conditions (4.2)-(4.5) for some set of constants, it follows that there are non-empty spaces X_{δ}. We also note that due to condition (4.4), the characteristics $g_{j}(t, x, y), j=1,2$, corresponding to an element u of X_{δ}, defined as the solution of (1.6) with $w=z$, are in $K_{\dot{\delta}}$.

5. An equivalent solution.

We shall first show that Theorem 1 is proved if the system (3.6) has a solution in some space $X_{\dot{\delta}}$.

Theorem 2. - The singular Cauchy problem for equation (1.1), (1.2) has a solution u on D_{δ}, δ sufficiently small, twice differentiable with Lip. schirz continuous second derivatives and satisfying conditions (1.5) on \bar{D}_{δ} if and only if the integral equations (3.6) have a solution \underline{u} in some space X_{δ}.

Proof. - We have already seen that if u is a solation of the singular Cadohy problem, then the vector $u=\left(u_{0}, u_{1}, u_{2}\right)$ defined by (3.1)•(3.3) is a solution to the system (3.6). Moreover, straightforward calculations show that u is an element of some X_{δ} under conditions imposed on u.

Conversely, using the equations analogous to (2.1) and (2.2) relating the derivatives with respect to x and y of the characteristics corresponding to u, we find that an element $\underline{u}=\left(u_{0}, u_{1}, u_{2}\right)$ of X_{δ} which is a solution of (3.6) $\overline{\text { is als a solution of the first order system (3.5). This in turn implies that }}$

$$
u(x, y)=u_{0}(x, y)
$$

is a solution of the singular Cavory problem. The conditions (1.5) follow from the relations

$$
\begin{align*}
& u_{x x}=\frac{1}{m+1} y^{m(m+1)}-m /(m+1) z_{x} \\
& u_{x y}=\frac{1}{2}\left(u_{1 x}+u_{2 x}\right), \tag{5.1}
\end{align*}
$$

and the properties of u. The Lipsohitz continuity of the second derivatives of u are simple consequences of the same conditions for u. This completes the proof of Theorem 2.

6. The continuous into mapping.

If u is in X_{δ}, we define

$$
\begin{equation*}
T u=\underline{U}=\left(U_{0}, U_{1}, U_{2}\right) \tag{6.1}
\end{equation*}
$$

by the right-hand sides of the integral equations (3.6), g_{1} and g_{2} in the equations being the characteristics corresponding to u. Moreover, let us denote by Z and V_{i}, respectively, the functions defined by the equations (3.4) and
(4.1) with u replaced by U. We note that T is well-defined, since by Lemma $1,\left(g_{i}(t, x, \bar{y}), t\right) \in \bar{D}_{\delta}(i=1,2)$. To establish the existence of a solution of the integral equations, we shall prove that the mapping T has a fixed point. The proof is based on the fact that a continuous mapping of a convex, compact subset of a Banach space into itself a fixed point.

Theorem 3. - Under conditions (1.3) and (1.4), there exists a $\delta>0$ and a space X_{δ} such that T is a continuous mapping of X_{δ} into itself.

Proof. - We first prove that T maps some space X_{i} into itself. If $u \in X_{\delta}$, then the functions $U=T u$ and U_{x} are obviously continuous on \bar{D}_{δ}, so $U \in S_{\delta}$.

It is easily verified that U_{0} satisfies conditions (4.2) for δ sufficiently small by use of conditions (4.3) for u_{1} and u_{2}, and the restrictions on a_{0}, A and B. Likewise, conditions (4.3) for $U_{1}, U_{2}, U_{1 x}$ and $U_{2 x}$ follow readily, for δ small, by a suitable choice of constants depending only on $\|\varphi\|$ and $\|f\|$, and the constants of Lemma 1. Let $F_{\alpha}(x, y)$ denote the partial derivative of $F(x, y)$ with respect to x. Since $F_{x} \in \operatorname{Lip}(x ; 0(1)), g_{i y}=0\left(y^{m}\right)$, and $g_{i x} \in \operatorname{Lip}(y ;$ $O\left(y^{m}\right)$, with the constants being independent of B, we see that $U_{i x} \in \operatorname{Lip}(x, y ; B)$, ($i=1,2$), for small δ, by selecting B adeguately large.

Proof of estimates for Z. - Writing

$$
\begin{gathered}
Z(x, y)=\frac{m+1}{2} y^{-m}\left\{\varphi\left(g_{1}(0, x, y)\right)-\varphi\left(g_{2}(0, x, y)\right)\right. \\
\left.\quad+\int_{0}^{y}\left[F\left(g_{1}(s, x, y), s\right)-F\left(g_{2}(s, x, y), s\right)\right] d s\right\}
\end{gathered}
$$

and using (2.3) to observe

$$
\begin{equation*}
\frac{2}{m+1} a_{0}^{m} y^{m+1} \leq g_{1}(t, x, y)-g_{2}(t, x, y) \leq \frac{2}{m+1} A_{0}^{m} y^{m+1} \tag{6.2}
\end{equation*}
$$

we easily obtain

$$
a_{0}^{m+1} y \leq Z \leq A_{0}^{m+1} y
$$

The y-Lipschitz continuity is readily demonstrated by using the above form of Z, Lemma 1 , $g_{i y}=0\left(y^{m}\right)$, and B sufficiently large.

Using (2.3), we note

$$
\begin{equation*}
\mid g_{1 x}(t, x, y)-g_{2 x}(t, x, y)=0\left(y^{m+1}\right) \tag{6.3}
\end{equation*}
$$

Now differentiating the above form of Z and applying the obvious bounds, we have

$$
\left\lvert\, Z_{x} \vdots \leq \frac{m\left\|\varphi^{\prime}\right\| M}{a_{0}(m+1)} y+0(y)+0\left(y^{2}\right)\right.
$$

where $0(y)$ is independent of M. If we now choose M sufficiently large and y sufficiently small, and use condition (1.4), we get

$$
\left|Z_{x}\right| \leq M y
$$

To prove the Lipsohirz continuity for Z_{x}, we write

$$
\begin{aligned}
& Z_{x}(x, y)=\frac{m+1}{2} y^{-m}\left\{\varphi^{\prime}\left(g_{1}(0, x, y)\right) g_{2 x}(0, x, y)-\varphi^{\prime}\left(g_{2}(0, x, y)\right) g_{2 x}(0, x, y)\right. \\
& \left.\quad+\int_{0}^{y}\left[F_{x}\left(g_{1}(s, x, y), s\right) g_{1 x}(s, x, y)-F_{x x}\left(g_{2}(s, x, y), s\right) g_{2 x}(s, x, y)\right]\right\}
\end{aligned}
$$

We shall use the symbol $0(1)$ in this paragraph only if it is independent of N. Straightforward calenlations show

$$
\begin{gathered}
\varphi^{\prime}\left(g_{1}(0, x, y)\right)-\varphi^{\prime}\left(g_{2}(0, x, y)\right) \in \operatorname{Lip}\left(x ; 0(1) y^{m+1}\right), \\
\left|\varphi^{\prime}\left(g_{2}(0, x, y)\right)-\varphi^{\prime}\left(g_{2}(0, \bar{x}, y)\right)\right|\left|g_{2 x}(0, x, y)-g_{2_{k}}(0, x, y)\right| \leq 0\left(y^{2 m+2}\right)|x-\bar{x}| \\
g_{i x}(t, x, y) \in \operatorname{Lip}\left(x ;\left[\frac{m N}{a_{0}(m+1)^{2}}+0(1)+0\left(y^{m+1}\right)\right] y^{m+1}\right), \quad i=1,2 .
\end{gathered}
$$

Combining the above results and using the decomposition

$$
\begin{gathered}
\varphi^{\prime}\left(g_{1}(0, x, y)\right) g_{1 x}(0, x, y)-\varphi^{\prime}\left(g_{2}(0, x, y)\right) g_{2 x}(0, x, y) \\
\quad=\left[\varphi^{\prime}\left(g_{1}(0, x, y)\right)-\varphi^{\prime}\left(g_{2}(0, x, y)\right] g_{1 x}(0, x, y)\right. \\
\quad+\varphi^{\prime}\left(g_{2}(0, x, y)\right)\left[g_{1 x}(0, x, y)-g_{2 x}(0, x, y)\right],
\end{gathered}
$$

we see this quantity is in

$$
\operatorname{Lip}\left(x ;\left[\frac{2 m N\left\|\varphi^{\prime}\right\|}{a_{0}(m+1)}+0(1)+0\left(y^{m+1}\right)\right] y^{m+1}\right)
$$

In a similar manner we consider the integrand

$$
\begin{align*}
& F_{x x}\left(g_{1}(s, x, y), s\right) g_{1 x}(s, x, y)-F_{x}\left(g_{2}(s, x, y), s\right) g_{2 x}(s, x, y) \\
& \quad=\left[F_{x}\left(g_{1}(s, x, y), s\right)-F_{x}\left(g_{2}(s, x, y), s\right)\right] g_{1 x}(s, x, y) \tag{6.4}\\
& \quad+F_{x}\left(g_{2}(s, x, y), s\right)\left[g_{1 x}(s, x, y)-g_{2 x}(s, x, y)\right] .
\end{align*}
$$

For brevity, let $\sigma=x, u, p$ or $q, g_{i}=g_{i}(s, x, y), g_{i x}=g_{i x}(s, x, y), \bar{g}_{i}=g_{i}(s, \bar{x}, y)$, $\bar{g}_{i x}=g_{i x}(s, \bar{x}, y)$ and $f_{\sigma}\left(g_{i}, \ldots\right)=f_{\sigma}\left(g_{i}, s, u_{0}\left(g_{i}, s\right), s^{m /(n+1) \mid z^{1 /(m+1)}\left(g_{i}, s\right),} \frac{1}{2}\left(u_{1}\left(g_{i}, s\right)+\right.\right.$ $\left.+u_{2}\left(g_{i}, s\right)\right)$.

Differentiation with respect to x reveals that $f_{\sigma}\left(g_{1}, s\right)-f_{\sigma}\left(g_{2}, s\right)$ is in $\operatorname{Lip}\left(x ; 0\left(y^{m+1}\right)\right)$. Since

$$
u_{i x}\left(g_{1}, s\right)-u_{i x}\left(g_{2}, s\right)=2 y^{m}\left[v_{i}\left(g_{1} ; s, x, y\right)-v_{i}\left(g_{2} ; s, x, y\right)\right] \quad i=0,1,2 ;
$$

this difference is in $\operatorname{Lip}\left(x ; 0\left(y^{m+1}\right)\right)$, with $0\left(y^{m+1}\right)$ depending on R_{i}. Thus the terms in f_{u} and f_{q} in $F_{x}\left(g_{1}, s\right)-F_{x}\left(g_{2}, s\right)$ are in $\operatorname{Lip}\left(x ; 0\left(y^{m+1}\right)+0\left(y^{m+2}\right)\right)$. As for the terms in f_{p}, by the condition (1.3) and the bounds and Lipsomitz conditions on $u_{0 x}$ and z_{x}, we find they are in $\operatorname{Lip}\left(x ; o\left(y^{m}\right)\right)$, where $o\left(y^{m}\right)$ depends on N. Combining the above results, we have

$$
F_{x}\left(g_{1}, s\right)-F_{x}\left(g_{2}, s\right) \in \operatorname{Lip}\left(x ; o\left(y^{m}\right)\right) .
$$

Using (6.2)-(6.4), we see that the remaining terms of the integrand are all in $\operatorname{Lip}\left(x ; 0\left(y^{m+1}\right)\right.$). Thus $Z_{x} \in \operatorname{Lip}(x ; 0(y)+o(y))$, where $o(y)$ depends on N and $O(y)$ is independent of N. Hence

$$
Z_{x} \in \operatorname{Lip}(x ; N y)
$$

for a suitable choice of N and δ.
For this section of the proof of (4.4), let $\bar{g}_{i}=g_{i}(s, x, \bar{y}), \bar{g}_{i x}=g_{i x}(s, x, \bar{y})$, and $y>\bar{y}$. Then

$$
\begin{aligned}
&\left|Z_{x}(x, y)-Z_{x}(x, \bar{y})\right| \\
& \leq \frac{m+1}{2} y^{-m}\left\{\left[\mid \varphi^{\prime}\left(g_{1}(0, x, y)\right) g_{1 x}(0, x, y)-\varphi^{\prime}\left(g_{2}(0, x, y)\right) g_{2 x}(0, x, y)\right.\right. \\
&-\left(\varphi^{\prime}\left(g_{1}(0, x, \bar{y}) g_{1 x}(0, x, \bar{y})-\varphi^{\prime}\left(g_{2}(0, x, \bar{y})\right) g_{2}(0, x, \bar{y})\right) \mid\right. \\
&+\int_{0}^{y}\left|F_{x}\left(g_{1}, s\right) g_{1 x}-F_{x x}\left(g_{2}, s\right) g_{2 x}-\left(F_{x}\left(\bar{g}_{1}, s\right) \bar{g}_{1 x}-F_{x}\left(\bar{g}_{2}, s\right) \bar{g}_{2 x}\right)\right| d s
\end{aligned}
$$

$$
\begin{aligned}
& \left.+\int_{\bar{y}}^{y}\left|F_{x}\left(g_{1}, s\right) g_{1 x}-F_{x}\left(g_{2}, s\right) g_{2 x}\right| d s\right] \\
& +\left|y^{-m}-\bar{y}^{-m}\right|\left[\left|\varphi^{\prime}\left(g_{1}(0, x, \bar{y})\right) g_{1 x}(0, x, \bar{y})-\varphi^{\prime}\left(g_{2}(0, x, \bar{y})\right) g_{2 x}(0, x, \bar{y})\right|\right. \\
& \left.+\int_{0}^{\bar{y}}\left|F_{x x}\left(\bar{g}_{1}, s\right) \bar{g}_{1 x}-F_{x}\left(\bar{g}_{2}, s\right) \bar{g}_{2 x}\right| d s\right] \mid
\end{aligned}
$$

Applying an analogous argument as was used for the φ^{\prime}-terms for the x - Lr PSCHITZ condition for $Z_{x},\left|g_{i y}\right|=0\left(y^{m}\right), g_{i x} \in \operatorname{Lip}\left(y ; 0\left(y^{m}\right)\right),(6.2)$, and (6.3), we get

$$
\left.\varphi^{\prime}\left(g_{1}(0, x, y)\right) g_{1 x}(0, x, y)-\varphi^{\prime}\left(g_{2}(0, x, y)\right) g_{2 x}(0, x, y)\right) \in \operatorname{Lip}\left(y ; 0\left(y^{m}\right)\right)
$$

$f_{\sigma}\left(g_{1}, \ldots\right)-f_{\sigma}\left(g_{2}, \ldots\right) \in \operatorname{Lip}\left(y ; 0\left(y^{m}\right)\right)$, and hence

$$
F_{x}\left(g_{1}, s\right) g_{1 x}-F_{x}\left(g_{2}, s\right) g_{2 x} \in \operatorname{Lip}\left(y ; 0\left(y^{m}\right)\right) .
$$

Since

$$
\left|F_{x}\left(g_{1}, s\right) g_{1 x}-F_{x}\left(g_{2}, s\right) g_{2 x}\right| \leq 0\left(y^{m+1}\right)
$$

the last part of the expression $\left|Z_{x}(x, y)-Z_{x}(x, \bar{y})\right|$ is bounded by $0(1)|y-\bar{y}|$, with $0(1)$ independent of C. Combining the above results, we have

$$
Z_{x} \in \operatorname{Lip}(y ; C)
$$

for O sufficiently large.
Proof. of. (4.5). - The bounds of (4.5) follow immediately from the Lipsomitz continuity of $U_{i x}$ and Lemma 1. Since solutions of (1.6) through a given point are unique (for fixed j), we have

$$
h_{i}(s, x, y)=h_{j}\left(s, h_{j}(t, x, y), t\right), \quad 0 \leq s \leq t \leq y
$$

and therefore we can express $V_{0}\left(h_{j}\right)$ in the following form.

$$
\begin{equation*}
V_{0}\left(h_{j}\right)=\frac{1}{2} y^{-m} \int_{0}^{t} \sum_{i=1}^{2}\left[y^{m} v_{i}\left(h_{j} ; s, x, y\right)-t^{m} v_{i}\left(h_{j} ; s, h_{j}(t, x, y), t\right)\right] d s \tag{6.5}
\end{equation*}
$$

This integral is in $\operatorname{Lip}\left(x ; O\left(y^{2}\right)\right)$ by the Lipschitz conditions for $v_{i}, i=1,2$. Thus

$$
V_{0}\left(h_{j}\right) \in \operatorname{Lip}\left(x ; R_{0} y^{2}\right),
$$

for R_{0} sufficiently large. The t-Lipschitz condition for $V_{0}\left(h_{j}\right)$ follows in an analogous manner. The y-LiPssceritz condition for $V_{0}\left(h_{j}\right)$ is a simple consequence of the conditions on $U_{0 x}$ and the fact $h_{j y}=0\left(y^{m}\right)$.

The proof of the x-Lipschitz continuity of $V_{i}\left(h_{j}\right), i=1,2$, is similar to the proof of $Z_{x} \in \operatorname{Lip}(x ; N y)$ and depends on the decomposition

$$
\begin{align*}
& F_{x}\left(g_{i}\left[s, h_{j}(t, x, y), t\right], s\right)-F_{x}\left(g_{i}(s, x, t), s\right) \tag{6.6}\\
& =\left[F_{x}\left(g_{i}\left[s, h_{j}(t, x, y), t\right], s\right)-F_{x}\left(h_{j}(t, x, y), s\right)\right] \\
& -\left[F_{x}\left(h_{j}\left[s, h_{j}(t, x, y), t\right], s\right)-F_{x}\left(h_{j}(t, x, y), s\right)\right] \\
& +\left[F_{x}\left(h_{j}(s, x, y), s\right)-F_{x}(x, s)\right]-\left[F_{x}\left(g_{i}(s, x, t), s\right)-F_{x}(x, s)\right]
\end{align*}
$$

Now

$$
\begin{aligned}
V_{i}\left(h_{j} ; t, x, y\right) & =\frac{1}{2} y^{-m}\left\{\varphi^{\prime}\left(g_{i}\left(0, h_{j}(t, x, y), t\right)\right) g_{i x}\left(0, h_{j}(t, x, y), t\right)\right. \\
& -\varphi^{\prime \prime}\left(g_{i}(0, x, t)\right) g_{i x}(0, x, t) \\
& +\int_{0}^{t}\left[F_{x}\left(g_{i}\left[s, h_{j}(t, x, y), t\right], s\right) g_{i x}\left(s, h_{j}(t, x, y), t\right)\right. \\
& \left.\left.-F_{x}\left(g_{i}(s, x, t), s\right) g_{i x}(s, x, t)\right] d s\right\} .
\end{aligned}
$$

The portion of this expression involving φ^{\prime} is in $\operatorname{Lip}\left(x ; 0\left(y^{m+1}\right)\right)$ by an argument analogous to the one for the corresponding quantity in Z_{x}. Each of the terms in brackets in the decomposition (6.6) is in Lip $\left(x ; 0\left(y^{m+1}\right)+o\left(s^{m}\right)\right)$ by an argument similar to the one used on the integrand quantity for Z_{x}. Thus

$$
\left|V_{i}\left(h_{j} ; t, x, y\right)-V_{i}\left(h_{i} ; t, \bar{x}, y\right)\right| \leq[O(y)+o(y)] \mid x-\bar{x}
$$

where $O(y)$ is independent of N and R_{i}. If we choose y small enough and R_{i} sufficiently large, then

$$
V_{i}\left(h_{i j}\right) \in \operatorname{Lip}\left(x ; R_{i} y\right), \quad i=1,2
$$

Using $g_{i y} \in \operatorname{Lip}\left(x ; O\left(y^{m}\right)\right)$, methods analogous to those ased to prove the LrPSOHITZ continuity of Z_{x}, and $V_{i}\left(h_{j}\right) \in \operatorname{Lip}\left(x ; R_{i} y\right)$, we see

$$
V_{i}\left(h_{j}\right) \in \operatorname{Lip}\left(y, t ; C_{i}\right), \quad i=1,2
$$

for C_{i} sufficiently large and y sufficiently small.
This completes the proof that T maps X_{δ} into itself.

Proof. of contindity. - We now need to demonstrate that T is continuous. Let $T \underline{u}=\underline{U}=\left(U_{0}, U_{1}, U_{2}\right)$ and $T \underline{\tilde{u}}=\underline{\tilde{U}}=\left(\tilde{U}_{0}, \tilde{U}_{1}, \tilde{U}_{2}\right)$. Recall

$$
\|\underline{U}\|=\max \cdot\left(\left\|U_{i}\right\|,\left\|U_{i x}\right\|,\|Z\|,\left\|Z_{x}\right\|,\left\|V_{i}\left(h_{j}\right)\right\|\right) \quad i=0,1,2 ; j=1,2 .
$$

It is easily seen that

$$
\left|U_{0}(x, y)-\tilde{U}_{0}(x, y)\right| \leq y\|\underline{u}-\tilde{\boldsymbol{u}}\|,
$$

and that the same inequality holds for $U_{0 x}-\tilde{U}_{0 x}$.
Let $g_{i}=g_{i}(s, x, y), \tilde{g}_{i}=\tilde{g}_{i}(s, x, y)$ and

$$
\tilde{F}(x, y)=f\left(x, y, \tilde{u}_{0}(x, y), y^{m /(m+1)} \tilde{z}^{1 /(m+1)}(x, y), \frac{1}{\tilde{2}}\left(\tilde{u}_{1}(x, y)+\tilde{u}_{2}(x, y)\right)\right)
$$

Using Lemma 2, we get

$$
\left|F\left(g_{i}, s\right)-\tilde{F}\left(\tilde{g}_{i}, s\right)\right| \leq 0(1)\|\underline{u}-\tilde{u}\| .
$$

From this immediately follows

$$
U_{i}-\tilde{U}_{i} \mid \leq\left[O\left(y^{m}\right)+O(y)\|\mid \underline{u}-\tilde{u}\|, \quad i=1,2 .\right.
$$

In an analogous fashion, we see that the same inequality holds for $\left|U_{i x}-\tilde{U}_{i x}\right|$.
Using Lemma 2 and the relation

$$
\left|F\left(g_{1}, s\right)-F\left(g_{2}, s\right)-\left[\tilde{F}\left(\tilde{g}_{1}, s\right)-\tilde{F}\left(\tilde{g}_{2}, s\right)\right]\right| \leq O\left(y^{m}\right)\|\underline{u}-\underline{\tilde{u}}\|,
$$

it readily follows that

$$
|Z-\tilde{Z}| \leq 0(1)\|u-\tilde{u}\| .
$$

To prove the continuity for Z_{\propto}, we observe

$$
\begin{aligned}
\left|Z_{x}-\tilde{Z}_{x}\right| \leq & \frac{m+1}{2} y^{-m}\left\{\mid\left[\varphi^{\prime}\left(g_{2}(0, x, y)\right)-\varphi^{\prime}\left(g_{2}(o, x, y)\right)\right] g_{1 x}(0, x, y)\right. \\
& +\varphi^{\prime}\left(g_{2}(o, x, y)\right)\left[g_{1 x}(0, x, y)-g_{2 x}(0, x, y)\right] \\
& -\left[\varphi^{\prime}\left(g_{1}(0, x, y)\right)-\varphi^{\prime}\left(\tilde{g}_{2}(0, x, y)\right] \tilde{g}_{1 x}(o, x, y)\right. \\
& -\varphi^{\prime}\left(\tilde{g}_{2}(0, x, y)\right)\left[\tilde{g}_{1 x}(0, x, y)-\tilde{g}_{2 x}(0, x, y)\right] \mid \\
& +\int_{0}^{y} \mid\left[F_{x}\left(g_{1}, s\right)-F_{x}\left(g_{2}, s\right)\right] g_{1 x}+F_{x}\left(g_{2} ; s\right)\left[g_{1 x}-g_{2 x}\right] \\
& \left.-\left[\tilde{F}_{x}\left(\tilde{g}_{1}, s\right)-\tilde{F}_{x}\left(\tilde{g}_{2}, s\right)\right] \tilde{g}_{1 x}-\tilde{F}_{x}\left(\tilde{g}_{2}, s\right)\left[\tilde{g}_{1 x}-\tilde{g}_{2 x}\right] \mid d s\right\} .
\end{aligned}
$$

Applying Lemma 2 to the expressions outside the integral, shows that this quantity is less than or equal to $0(1)\|\underline{u}-\tilde{\underline{u}}\|$. To get the bounds for the integrand, we shall first prove

$$
\begin{gathered}
\left.\left.\mid\left[F_{x}\left(g_{1}, s\right)-F_{x}\left(g_{2}, s\right)\right] g_{1 x}-\left[\tilde{F}_{x} \tilde{g}_{1}, s\right)-\tilde{F}_{x} \tilde{g}_{2}, s\right)\right] \tilde{g}_{1 x} \mid \\
\leq\left[O\left(y^{m}\right)+o\left(s^{m-1}\right)\right]\|\underline{u}-\underline{\tilde{u}}\| .
\end{gathered}
$$

Writing

$$
\left.\left[f_{\sigma}\left(g_{1}, \ldots\right)-f_{\sigma}\left(g_{2}, \ldots\right)\right]-\left[\tilde{f}_{\sigma} \tilde{g}_{1}, \ldots\right)-\tilde{f}_{\sigma}\left(\tilde{g}_{2}, \ldots\right)\right] \mid
$$

as a difference of integrals, we find it is of order $O\left(y^{m}\right)\|u-\tilde{u}\|, \sigma=x, u$, p, or q. Using this result, the conditions on v_{0} and the decomposition

$$
\begin{aligned}
& f_{u}\left(g_{1}, \ldots\right) u_{0 x}\left(g_{1}, s\right)-f_{u}\left(g_{2}, \ldots\right) u_{0 x}\left(g_{2}, s\right) \\
& =\left[f_{u}\left(g_{1}, \ldots\right)-f_{u}\left(g_{2}, \ldots\right)\right] u_{0 x}\left(g_{1}, s\right) \\
& +2 y^{m} f_{u}\left(g_{2}, \ldots\right)\left[v_{0}\left(g_{1}\right)-v_{0}\left(g_{2}\right)\right]
\end{aligned}
$$

we have that the difference between this expression in f_{v} and the corresponding one in \tilde{u} is of order $O\left(y^{m i}\right)\|u-\tilde{u}\|$. In a similar manner the difference of terms with f_{q} and $\tilde{f_{q}}$ are of the same order. Finally, the difference of terms with f_{p} and \tilde{f}_{p} are bounded by $\left[O\left(y^{m}\right)+o\left(s^{m-1}\right)\right]\|u-\tilde{u}\|$ by virtue of condition (1.3). Using the fact that the other terms of the integrand are bounded by $O\left(y^{m}\right)\|u-\tilde{u}\|,(6.7)$, and the result for the terms outside the integral, we get

$$
\left|Z_{x}-\tilde{Z}_{x}\right| \leq 0(1)\|\underline{u}-\underline{\tilde{u}}\| .
$$

From (6.5), the properties of the $v_{i}\left(h_{j}\right)$ and Lemma 2, it follows that

$$
\left|V_{0}\left(h_{i}\right)-\tilde{V}_{0}\left(\tilde{h}_{j}\right)\right| \leq O(y)\|\underline{u}-\underline{\tilde{u}}\|
$$

Now

$$
\left|V_{i}\left(h_{j}\right)-\tilde{V}_{i}\left(\tilde{h}_{j}\right)\right| \leq 0(1)\|u-\tilde{u}\|, \quad i=1,2 ; j=1,2,
$$

follow by means of the decomposition (6.6) and application of the techniques used to prove the continuity for Z_{x}.

This completes the proof that T is continuous mapping of X_{δ} into itself.

7. Application of Schaudar's Theorem.

By conditions (4.2)-(4.5) imposed on the functions in X_{δ} and the definition of the norm on X_{δ}, we observe that X_{δ} is convex and that the functions in X_{δ} are uniformly bounded and Lipschirz continuous with respect to x, y, and t. Since the functions in X_{δ} are uniformly Lipschinz continuous, X_{δ} is
a uniformly equicontinuous family of functions. Therefore, by Arzala's Theorem, X_{δ} is a convex, compact subset of the Banach space S_{δ}.

The existencs of a a solution of the integral equations (3.6) is established by means of the following form of Schauder's Fixed Point Theorem [6]:

A continuous mapping of a convex, compact subset of a BANaCH space into itself has a fixed point.

Therefore, under conditions (1.3) and (1.4), our integral equations (3.6) have a fixed point and so, by Theorem 2, our original Caychy problem for (1.1), (1.2) has a solution.

This completes the proof of Theorem 1.

8. The theorem.

The theorem we desire to obtain is Theorem 1 without condition (1.4) in the hypotheses and with uniqueness of solution. It is as follows.

Theorem 4. - Under the condition

$$
f_{p}(x, y, u, p, q)=o\left(y^{m-1}\right) \quad \text { as } y \rightarrow 0
$$

there exists a $\delta>0$, such that on D_{δ} the singular CaUCHY problem for (1.1), (1.2) has a unique solution $u(x, y)$ which is twice differentiable with Lipschitz continuons second derivatives on \bar{D}_{δ}, and satisfies the conditions of (1.5).

Proof. - The uniqueness of the solution of Theorem 1 follows from a paper by the author [2]. The restriction

$$
\frac{A_{0}}{a_{0}}<\frac{m+1}{m}
$$

can be removed by breaking $I=[\alpha, \beta]$ into a finite number of overlapping closed subintervals $I_{i}=\left[\alpha_{i}, \beta_{i}\right]\left(i=1,2, \ldots, n ; \alpha_{1}=\alpha\right.$ and $\beta_{n}=\beta$) on each of which this condition is satisfied. Applying Theorem 1 and the above mentioned uniqueness of solution to each subinterval, there exists a unique solution u_{i} of the problem with domain $D_{\delta_{i}}$, where $D_{\delta_{i}}$ is the open region bounded by $I_{i}, y=\delta_{i}$ and the curves

$$
x=\alpha_{i}+\frac{1}{m+1} A_{0}^{m} y^{m+1}, \quad x=\beta_{i}-\frac{1}{m+1} A_{0}^{m} y^{m+1} .
$$

The function $u(x, y)$ given by

$$
u(x, y)=u_{i}(x, y), \quad(x, y) \in \bar{D}_{\delta} \cap \bar{D}_{\delta_{i}}
$$

where

$$
\delta=\min _{i} \delta_{i}
$$

is then the desired solution on D_{δ}.

REFERENCES

[1] E. A Coddington and L. Levison, Theory of ordinary differential equations, MoGrawHill, New York, 1955.
[2] D. W. Lick, A uniquess theorem for a singular Cauchy problem, to appear, sAnn. di Mat.».
[3] H. Ogawa, The singular Cauchy problem for a quasi-linear hyperbolic equation of second order, «J. Math. Mich. », 12 (1963) 847.856.
[4] - -, On the unique solution of the singular Cauchy problem for a quasi-linear equation, «Annali di Mat.», (65) (1964) $391-403$.
[5] — -, A non-linear singular Cauchy problem, to appear, aJ. Math. Anal.».
[6] J. Sohavoer, Der Fixpunktsatz in Funhtionalvaumen, eStudia Math.*, 2 (1930) 171-180.

