
On the instability theory of differential polynomials (~). 

by STEVEN BANK (Illinois, U.S.A.) 

Summary. - I u  this paper  a class of  n H~ order non- l inear  dif ferential  equations is treated 
and  solutions are sought which are asymptot ical ly  equivalent to logarithmic monomials .  

PAR~ I - Pre l iminar ies .  

1. LNTRODUCTIOR ~ - In  [5, 6], W. STRODT investigated the problem of 
finding those solutions of an nlh order non- l inear  ordinary differential  equation, 
which are of minimal rate of growth at a singular point at 0% and further- 
more are asymptotically equivalent (~-o) to logari thmic monomials (i.e. functions 
of the form M(x) = Kx~0(log x)~I(log log x) ~ ... (log~ x)~,  for real ~ and non-  
zero complex K), as x ~ cx~. 

In  this paper, we investigate the problem of finding all solutions of the 
equation which are asymptotically equivalent to logarithmic monomials. The 
class of equations treated in [5, 6] and in here, consists of equations ~2(y)=0, 
where ~2 is a polynomial in an unknown function y and its derivatives, 
whose coefficients are functions defined and analytic in an unbounded region 
of the complex plane, and where, as x ~  ~ ,  each coefficient has an asymp- 
totic expansion in terms of logarithmic monomials and /o r  functions (called 
trivial) which are asymptotically smaller  (~ )  than all powers of x. (For the 
rigorous concepts of <~ ~ >> and <<co>>, see [5, §§i2.13]). 

In  [5, § 66], it was shown that ~2 determines a finite set (denoted pm(~2)) 
of logarithmic monomiats, M (called principal  monomials) which are <(approxi- 
mate solut ions ,  ~i.e. ~2(M)~2(0)) and among all approximate solutions are 
of minimal  rate of growth at c~. These properties are shared by those exact  
solutions (called principal solutions) of ~2(y)--~ 0 which are oo to pr incipal  
monomials. An algorithm which produces pm(~2) in a number  of steps which 

(i) This paper is a shortened version of my doctoral dissertation submitted to Columbia 
Univers i ty  in )[ay, 1964. I am especially grateful to Professor WALTER STRODT who 
supervised the research, and whose advice was very  helpful in the preparation of this paper. 
During a portion of the time this research was done, I was a National Science ~loundation 
Cooperative Graduate ~ellow. 
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can be bounded in advance was introduced in [5, 966], and existence and 
uniqueness theorems for principal  solutions were established in [5, § 127] and 
[6, 9 122]. 

If £ t ( y ) ~  0 possesses a solution c,c to a logarithmic monomial  M (not 
necessari ly a principal  monomial), then at M, t2 must satisfy (see 95(c))a  
condition called instability,  which was introduced in [9, 10], and which means 
that for some funct ion fc,zM~ ft(f~ is not c,~ gt(M). Fur thermore ,  an equivalent 
definition of instability (9 3@) hints at the existence of solutions c,z to those 
monomials at which ft is unstable. For these reasons, the concept of insta- 
bility is chosen as our starting point, and we investigate all the logarithmic 
monomials {called critical) at which t2 is unstable. (The problem of solutions 
is taken up in Parts  VII-IX). The expected result  that pro(t2) constitutes the 
set of minimal  cri t ical  monomials concludes Par t  II.  

~]:ethods for f inding the crit ical monomials of ft are developed. Two 
methods are required.  One is for f inding those critical monomials M, (called 
parametric} such that every constant multiple of M is also critical. The second 
method is for f inding the non-paramet r ic  crit ical monomials {among which 
are included as a special case all the principal  monomials). Both methods 
are of an algorithmic nature, and use the same basic principle as the algo- 
r i thm for pm(~2), namely repeated application of the change of variables 
x : e u, y ~ ve ~u, where c~ is a real number  determined at each stage. When 
followed by multiplication by a suitable power of e ~, this change of variables 
t ransforms t2(y)into a differential  polynomial in v {denoted [ s ; ~ ] ) ,  which 
again belongs to the class we are considering. Par t  I I I  is devoted to the 
study of this, and the successive transforms [~; [s; gt]] etc. Their  crucial  
property  (9 11) is that M(x)~K.~o(logx)~l(log2~)~... is crit ical of ft if and 
only if N ( u ) =  Ku~(log u) ~ ... is crit ical of [So; £t]. Hence  if so is known to 
satisfy a cer tain condition C, when M is critical of t2, then ~ satisfies C 
relative to [so; f~], and so on for ~2, ~ ,  .... Both methods use this algorithmic 
property, and [5, § 61] (which is here s t rengthened and incorporated into 9 13), 
is used to show that the process can be stopped at a predetermined point, 
and the conditions C are sufficient  also. 

Par t  IV is devoted to the method for parametr ic  monomials. It  is first 
shown (9 15) tha t  a necessary (but certainly not sufficient} condition for M 

to be parametr ic  of gt, is that it be parametr ic  of at least one homogeneous 
part  of t2. For  the moment, we focus our at tention on finding the parametr ic  
monomials when ~2 is homogeneous (§ 19). In  this case, condition C takes a 
simple form, namely that so be a root of an algebraic equation, which resem- 
bles the indicial equation at c~ (see [4, § 161]) in the case of l inear equations. 
When  ~2 is non-homogeneous ~9 21), our condition C is phrased in such a way 
that we are examining each homogeneous part  of Y~ for parametr ic  monomials 
(using the method already developed in 9 t9). while s imultaneously examining 
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the behavior  of the rest of g~ to determine if the parametr ic  monomial  pro- 
duced by a homogeneous part  will actuaily be parametr ic  of the whole poly- 
nomial, £t. The method in § 21 produces each parametr ic  monomial in a 
number  of steps which can be bounded in advance, but except in the case 
of l inear or first order ~2, the number  of steps required  to produce the set 
of parametr ic  monomials may be infinite (see § 17, Remark  (2)). 

Par t  ¥ is devoted to the method for non-paramet r ic  crit ical monomials. 
Here  condition C takes a form similar to that for the algori thm for pm(~2), 
namely  that ao should be the slope of a side of a NEWTON polygon. The 
result ing method (§ 26) produces the set of non-paramet r ic  cri t ical  monomials 
in a number  of steps which can can be bounded in advance. (A simple 
example i l lustrat ing both methods is given in Par t  X). 

Since we are ul t imately interested in solutions of t2(y}-~ 0 which are 
to crit ical monomials M, and since the existence of such a solution is 

clearly equivalent  to the existence of a solution ~ t  of the equation A(z)------O, 
which is obtained from ~l (y)~  0 by the change of variables y----M + Mz, it 
is of importance to investigate such crit ical monomials of h as are -~ 1. 
This is done in Par t  ¥ I  (§§ 31, 33), and use is made of these results in Par t  ¥ I I .  

Par ts  VII  through IX are devoted to existence theorems for solutions 
c,oM of F t ( y ) ~ 0 .  Here  the coefficients of 12 are assumed to be defined and 
analytic in a sectorial region {more specifically, in an element of an F(a, b), 
as defined in [5, § 94]), and the solutions obtained are of the same type. 

In  Par t  VII  (§§ 36, 38, 39), the result  obtained by S~RODT in [7] (see § 35), 
is used to obtain solutions in certain first order cases, when the coefficients 
of t2 are of the type considered in [7]. 

In  Par t  VIII ,  non-paramet r ic  crit ical monomials M, of an nth order 
are considered. It  is shown (§40} that when M and t2 satisfy the general  
conditions analogous to those for principal  monomials in [5, § 85] (when n ~ l )  
or [6, § 116] (when n ~ i ) ,  then under  the change of variable y -~  M + Mz, 
t2(y) is t ransformed into a differential  polynomial to which [5, § 126] (when 
n ~--1) or [6, § 115] {when n ~1),  can be applied, thus obtaining solutions coM. 
These results are given i n  §§ 44-45. 

Par t  IX concerns cri t ical  monomials of g t ( y ) ~  (I)(y)--g, where • is an 
nth order l inear  different ial  polynomial whose coefficients, along with g, 
have asymptotic expansions in therms of real (but not necessari ly integral) 
powers of x, and /o r  trivial functions. In  [8], it was shown that for such an 
~1 (in the case where it possesses a principal  monomial), the equation ~2{y)~--0 
has at least one principal  solution. We utilize this, and other results in [8], 
to prove I§45) that corresponding to any crit ical  monomial  M, of t2, the 
equation t2(y)-~-0 has at least one solution cx~ M. The connection between 
this and the FUCHS regular i ty  theorem ([2, p. 143], and [3, p. 358], or 4, p. 365]), 
will be explored in a future  paper. 
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, 

(a) 

(b) 

[TNIFOR~[ HYPOT]~ESES 

M is a logarithmic monomial. 

nE(0, l, 2, ...} 
W E  (0, 1, 2, ... } 

rE( - -1 ,  0, 1, 2, ...} 

le) S+ is a complex neighborhood system of c~ as defined in [5, §3]" 
(That is, Se  is a filter base which converges to c~ in the sense of [1, §6] ,  
and which consists of unbounded  regions, each disjoint from the non-posi t ive 
real axis. The concept of asymptotic equivalence as x~c~:) ,  which we employ 
([5, § 13]), is defined relative to such a filter base, and explicit  mention of 
S + will be omitted when no confusion is possible). 

(f) t2 is an nlh order differential  polynomial in an unknown function 
y (that is, a polynomial in y, dy/dx, ..., d 'y/dx~),  whose coefficients are 
funct ions of x which belong to a logarithmic domain of rank r over S e 
(briefly, an LD,(S+)), as defined in [5, § 49]. This condition ensures that 
each coefficient of ~ is ei ther ~.~ to a logarithmic monomial in S# or is 
trivial in S e,  and" fur ther  ensures  that under  either change of variable, 
y =  M ~-z oi' y =  Mz, ~t(y) is t ransformed into a differential  polynomial 
whose coefficients again belong to a logarithmic domain (and therefore can 
be treated by our methods).  

(g) At least one term in ~2 is to have a non-tr ivial  coefficient (briefly, 
we then say gt is non-trivial). If we require  that at least one term of positive 
degree in the indeterminates  have a non-tr ivial  coefficient, we will indicate 
this by the abbreviat ion NTPD (non-trivial ly of positive degree). 

(h) W is the maximum of the weights of all terms in gt, which have 
non-tr ivial  coefficients. 

PAn+ II  - Crit ical  ]tIonomials. 

3. LEMMA- Assume § 2 and let ~2 be NTPD. Then the following two 
conditions are equivalent  : 

(a) ~2 is unstable at M. 

(b) Either ~(M) is trivial, or some PEpm(t2(M--[-z)) is <:M: 

PROOF - Let A(z)~-~-~2(M+z). If (b) does not hold, there exists 
PEpm(t2(M-Fz)) with M % P ,  (that is, 5 I ~ P  or Mc.okP for some non-zero 
constant  k). Hence  g ~ M implies g <~ P, and therefore, by the propert ies of 
a principal monomiat ([5, §66]~, Aig)c~zA(0). Thus (a) does not hold. 
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Conversely, suppose (b) holds but (a)does not. Then  g2(M) mus t  be trivial, 
for in the contrary  case, h would have a pr incipal  monomial ,  P ~  M, and 
(a) would hold since ~(M-Jr P)<(12(M). Hence  A(V) is trivial for any V~M. 
If we chose a real  n u m b e r  q so small  that  a pr incipal  monomia l  N, of 
• (z)----A(z)- xq is -~ M, then ( I ) (N)~ 69(0). This  contradicts  the def ini t ion of 
pr incipal  monomial ,  so (a) must  hold. 

4. DEFIbTITIO~N - Assuming § 2 with tl  NTPD we say M is a critical 
monomial of ~, if M and 12 satisfy ei ther (and hence bo th )cond i t i ons  of 
L e m m a  3. The  set of all cri t ical  monomials  of ~ is denoted crit  (12). 

5. L E p t A  - Assume § 2 with NTPD. TheD under  any of the following 
conditions,  ME crit (~). 

(a) There .ex is t  a constant  c, and a funct ion gc,oM such that  ~2(g)~2(cM). 

(b) There  exists a funct ion  h ~ M which is an approximate solut ion of 
(i.e. gt(h)<: ~(0) if 12(0)4= 0, and t - l (h ) :  0 if t2 (0)=  0). 

(c) There  exists an exact solut ion of 12(y)~ 0, which is c,z M. 

(d) 

PROOF - (a) Assume M~crit(~2).  Then  there exists NEpm(12(M+ z}} 
with M ~ N .  Since g - - M ~ M ,  g - - M a N .  Thus  ~2(g)c,.~D~(M). Therefore,  by 
hypothesis ,  ~2{M)~ ~2(cM). But  the contradictory relat ion ~2(cM)% ~2(M) follows 
from the fact that  ( c - - 1 ) M ~ N ,  and NEpm(~2(M-t-z)), (see [5, §67]) ,  thus  
proving the resul t  for (a). 

(b) If  I2(0)~ 0, then (b) follows from (a), by taking c ~ 0. If  12(0)-~ 0, 
but  M(~crit(12), then ~(M) is non- t r iv ia l  and therefore  12(h)<(~(M). But  
then ME crit (~2), by ~taking c ~ 1 in (a). This  contradict ion establishes the 
resul t  for (b). 

(c) and (d) follow from (b). 

6,  L E M M A  - Assume § 2 with ~2 NTPD, and let ~2(0) be non- t r iv ia l .  Then,  

(a) If  NE pm{~2), while ME(cri t  (~) - -  pro(a)), then N<(  M. 

(b) pm(~2) const i tutes  t h e  set of min imal  e lements  {relative to (~ ~ ))) of 
crit  (~). 

PROOF - I t  obviously suffices to prove (a). I f  N were not ~ M ,  then 
M ~ N .  Since M~pm(~2), ~2(M) : ~2(0~. Thus  12(M~ is non-tr ivial ,  and therefore  
~2(M + z) has a pr inc ipa l  monomial ,  G, with G ~ M. Hence  12(M + G) ~ ~2(M). 
But  M+Gc,~M, and therefore M ~  G is not ~ to any e lement  of pm112 ). 
Thus  12(M + G} z ~2(0), so 12(0) <(~2(M). This contradicts  the relat ion ~(M) • ~(0), 
previously established, thus  proving (a). 
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PAR~ I I I  - The t r ans fo rm [:,; 12]. 

7. NO~ATIO~ - Assume § 2. 

(at If i# = ( io ,  i~, .... i , )  is an (n-+- 1)-tuple of natural  numbers,  then 
the coefficient of y~o[y')~,.. {y~"))~- in f2 is denoted ~[i~], and as in [5, § 62], 
the degree io + i~ + ... '+ in and the weight i~ + 2i~ + ... + nin of i#, will be 
denoted by d(i ~) and w(i~) respectively. 

(b) If a is a real number, then by ~2(i~, :¢], we will mean the quanti ty 
ad[i~ ) + ~o(~[i# ]) - -  w(i~), where as in [5, § 23-24], ~o(~[i# ]) is ~ o<~ if ~[i~ ] 
is trivial, while in the non-tr ivial  case, it is the exponent  of x in the loga- 
r i thmic monomial to which ~)[i¢] is asymptotically equivalent.  (In general, 
8j( ) is the exponent  of log~x). ~2[*, ~] will denote the maximum, over all i#, 
of the numbers  ~)[i #, a]. 

(e) If (I)(v) is the polynomial in v, dv/du,  ..., d ' v / d u ' ,  obtained from 
~(y) by the change of variables x-----e ~, y = ve ~ ,  then the differential  poly- 
nomial  e x p ( ~  ~[*, :¢]u)@(v) is denoted [:*; ~](v). 

(d) If p is a natural  number,  we denote by £)w), the sum of all terms 
in ~ which are of degree p in the indetermin~tes y, y', ..., y('~ (that is, ~(P) 
is the homogeneous part  of total degree p of ~). As usual, ~ will be called 
homogeneous of degree p if ~2----~w), and simply, homogeneous, if it is homo- 
geneous of some degree. 

8. LEMMA - Assume § 2 and let ~ be a real number.  Then, 

(a) [ a ; ~ ]  has coefficients in an LDt (where t ~ m a x t r - - l , - - 1 } )  , over 
the complex neighborhood system log S#, defined in [5, § 8]. 

(b) [~, f2] is non-tr ivial  in log S~. 

(c) If ~ is homogeneous of degree p, then so is [~; ~]. 

(d) Max { w(i~ ): [~; f2] [i ~ ] is non-tr ivial  } _< W. 

(e) If p ~ 0 and ~P'i*, :~] ~ g2[*, :¢], then all the coefficients of [a; f2]w~ 
are trivial in log S# .  

(f) I f  p ~ 0  and ~w~[*, :¢] = ~[*, :¢], then ~2 ~ is non-tr ivia l  in S~ and 

PROOF - Under  the change of variables w = e u, y ~ ve ~u, it is clear that 
yCq, becomes Fq(V)d ~-q)~, where Fq(v) is a homogeneous l inear polynomial in 
v, v', ..., v (q) with constant coefficients. Thus each coefficient of [a; f2] is a 
l inear  combination of functions of the form g(i#, u)~-f2[i#](e ~') exp [(gd(i~) - 
- -  wti #) - -  ~[*, :¢]}u]. If E* is an LD,.(S ~) which contains all the coefficients 
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of ~, then  the coefficients of [~; O] lie in the set log E* (defined in [5, § 51]), 
which is an LDt over log S~. This  follows because log E* is the complex  
vector space genera ted  by all funct ions  which are ei ther  trivial in log S# 
or are of the form h(e '~) exp (--8o(h)u), where h is a non- t r iv ia l  e lement  of 
E*. If  g~[i#, ~] ~ ~).[*, ~], then g(i#, u) has this la t ter  form, while g(i#, u) is 
t r ivial  if ~[i#, ~] ~ ~[*, a]. This  proves (a). 

To prove (b), let k~ be the smallest  i# (relative to the lexicographic  
order) for which D[k#, ~¢] ~ ~[*, :¢]. Then  [a; ~] [k# ] ___ g(k#, u) + flu), where 
f is trivial, so [~z; D.][k#] is non- t r iv ia l ,  proving (b). 

Par t  (c) i s  clear, since each Fq is homogeneous  and linear.  
As seen in the proof of (a), each [:¢; ~ ] [ j# ]  is a l iner  combinat ion  of 

the funct ions  g(i~, u), and it is a rout ine  computa t ion  to verify that  
w(i #) ~ w(j# ) and d(i# ) -.~ d)j# ) for each g(i~, u) appear ing  non- t r iv ia l ly  in 
this combinat ion.  Hence  if w(j#)> W, then [~; ~ ] [ j# ]  is trivial, proving (d). 
If ~(~'[*, :¢] < ~[*, :¢], then g(i#, u) is tr ivial  if d( i# )~p ,  so all coefficients 
of te rms of degree p in [~; g2] are also trivial, proving (e). 

Finally,  to prove (f), if ~2~)[ *, ~¢] ~ Q[*, a], then ~(~)[*, a] is not - - c ~  and 
so g2 ~p) is non- t r iv ia l .  The  relat ion [a; ~](~)-----[~; ~(P)] follows easily, since 
[a; ~](~) and [~¢; ~(P)] differ only by the mul t ip l ica t ive  fac to r  exp [(.q(.~)[*, a ] - -  

- 

9. No~A~£o~ - Assume § 2  and let no, a~, ... be a sequence of real  
numbers .  By induct ion  on L e m m a  8, {a) and (b), the polynomial  [~;  [:¢~_~, ... 
..., ~0; ~]] is defined for all i ~ 1 ,  and we denote it by [:¢i, ~i-~, ..., :¢o; ~] .  
(For consistency, we let [~_~, ..., :¢o; ~] s tand for ~ when i----0). 

If  M is given, then [M, i, ~] will s tand for [8~_~(M), ..., ~o(M); ~].  

10. LEMI~IA - Assume §2. Let  i and p be na tura l  numbers ,  and let so, ~1, ..., a~ 
be real numbers .  For  each j, O ~ j ~ i - [ - 1 ,  let ~j  ~ [aj_I, ..., So; ~].  T h e n  
the following condit ions are equivalent .  

(a) (-Q~+I) (p) is non- t r iv ia l  in log~+~S~. 

(b) (g2j},~¿[*, %] ___ ~j[*, %] for each j, 0 ~ j  _~ i. 

(c) g2 (p' is non- t r iv ia l  and (~j) '~)~ [~j_~, ..., :¢o; ~cp)] for each j, 0~_. 
~ _ j % i + l ,  

(d) (~j)(Pl is non- t r iv ia l  in logjS# 

PROOF - (a) implies  (b) by L e m m a  

(b) implies  (e) by L e m m a  

(c) implies  (d) by L e m m a  

(d) clearly implies  (a). 

for each j, 0~_ j  ~ . i  + 1. 

8, (e). 

s (f). 

s (b). 

Anna~i di Matemat tca  12 
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11. LEM~IA - Assume § 2 with ~ NTPD. Then, 

(a) If ME eri t (~)  with ~o(Mi : ~, then [~; ~Q] is NTPD and M~(u}-~ 
e-~*M(e *~) is critical of [~; ~t]. 

(b) If for some real number  v, [v;~2] is NTPD and NE crit Iv; t2], then 
G(x)----x~N(log x) is critical of t2. 

PRooF - Both parts are proved using [5, § 19(d), (e)] which states that an 
asymptotic equivalence holds in S# if and only if under  the change of 
variable x - ~ e  ~, it holds in log S~. To prove (a), we first show [a; g2] is 
unstable at M~. Assume the contrary  and let h c ,zM in S~. Hence h~(u)--~ 
: e-~Uh(e ~) c,z M~(u) in log S~. Therefore,  [~; ~).] (h~(u))~ [~; g2] (M~(u)) in log S~. 
This relation then holds in S~ (relative to ~) when u = logx.  But using the 
definition of [~z; g2], this implies ~Ti(h}c,o ~Q(M) in S#, contradict ing ME erit Q. 
Thus [a; ~] is unstable at 311. If [a; ~] were not NTPD, then by Lemma 8(b), 
only the term of degree zero in [~; (~2] would be non-trivial ,  and this would 
imply the stability of [~; ~] at every logarithmic monomial and hence at M~. 
This contradiotion establishes that [~; ,Q] is NTPD and M~ E erit [~¢; ~], 
proving (a). 

tb) is proved similarly by assuming G is not critical of ~, and showing 
this would imply N is not critical of [~; f~]. 

12. LE~I~A - Assume §2  with f~ NTPD. Let so, ~1 . . . . .  ~.~-1 be real 
numbers,  where s ~ r  + 1 and let ~ ~ [~s-l~ ..., :~o; ~2]. Then 

(a) f~: = Qs + / ~  where Qs is a non-zero differential  polynomial with 
constant coefficients, while R: has only trivial coefficients in logsS #. If (~), 
is homogeneous of degree p, so are Qs and R: .  

(b) If k is a non-zero constant, then Qs(k)~0 if and only if N(x)== 
~--kx:+(log x} +~ ... (log:_lx)%.-~ is critical of ~. 

P~tOOF - By Lemma 9(a) and [5, §§ 53-54], the coefficients of ~ lie in 
an LD_~ over log:S+, and hence each is of the form c + T where c is a 
constant and T is trivial in log:S +. Par t  (a) now follows immediately.  

To prove (b), suppose Q,(k)..~O. Then ~]s(k) is trivial in logsS #, and 
therefore kE crit(~:). By Lemma 11(b), NEer i t (~ ) .  Conversely, suppose Q:(k} 
is non-zero. Then Q,(k) : 1. Now, Qs(k + z) ~ P(z) + Q,(k), where each term 
of P(z) has positive degree and a constant coefficient. If G ~  1 in logsS~ , 
then clearly P(G) ~ 1 in log, S~. Thus Q:ik + G) c-,o Q:(k) for all G <(1. There- 
fore, ~ is stable at k, and so N(~crit(f~) by Lemma 11(a). 

13. LEMMA - (Weight reduction).  Let Q(y) be a non-zero nth order dif- 
ferential  polynomial with constant coefficients. Let  p and w be natural  
numbers  such that each term of Q has degree p and weight w. Let  *¢ be a 
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real number.  Then, 

(a) [:¢; Q] has constant  coefficients. 

(b) Suppose w ~ 0. Then [a; Q] non-tr ivial ly  involves a term of weight 
less than w unless ~ = 0 and QIy)=  c(y'}~vy ~-~ for some constant  c. 

PROOF - By direct calculat ion of [~; Q], it is clear that it has constant 
coefficients, and we can write [a; Q ] =  Q-~ Q1 where the non-zero terms of 
Q1 (if any) have weight less than w. Let w ~ 0. If  ~ :4= 0 then (b) follows 
from [5, § 61]. Now assume a----0 and Q is not of the form c(y'}'~y~-% Then 
for some constant b, we may write Q(y)- -b 'y ' )~ 'yV-~+ G(y), where G is a 
non-zero polynomial in y, y', ..., y(') with constant coefficients, each term 
of which has degree p, weight w and order ~ 2 .  Then clearly, [0; Q](v)---- 
=b(v ' ) '~v~-~+[O;  G](v). Now assume (contrary to (b)) that [0; Q] has no 
non-tr ivia l  therms of weight less than w. Therefore,  [0; Q] (v )=  Q(v) since 
Q~ = 0. Hence,  

(c) [0; G] (v) = G(v). 

If the derivatives of y in G(y) are with respect  to x, and if P(u, v) is the 
polynomial in v, dv /du ,  ..., d ' v / d u ' ,  obtained from Giy) by, the change of 
variables y = v, x = e ~, then by definition, 

(d) [0, G] (v) - -  e"'~P(u, v). 
The proof now proceeds in a way similar to that of [5, § 6 1 ] .  Obviously, 

if y = f ( x )  is a solution of G(y)=O,  then in view of (c) and (d), y----f( logx) 
is also a solution. Hence  if B denotes the set of solutions of G(y)=O,  then 
f(x)~ B implies f(log x) C B. Since G(y) has constant  coefficients, f(x) ~ B implies 
f ( a -~  x) E B  for each constant a. Final ly  x E B  since every term of G has 
order ~ 2. 

Let  ao, al ,  ... be complex numbers,  and define functions Hh(x, ao, ..., ak) 
recursively,  as follows: Ho(x, ao) = ao + x, Hh+~(x, ao, . . . ,  ah+~) =- aA+~ 
-[-log Hh(x, ao, ..., ah). It now follows from the preceeding that 

(e) y(z) = H~(,x, ao, ..., aA e B 

for any s ~_~0 and any complex numbers  ao, ..., a , .  (The proof is by induction 
on  8). 

We now prove that if s ~ O  and z = H , ,  then the Jacobian  of z, 
3z/3x, ..., 3sz/~cs with respect  to ao, ..., a~, is not identically zero as a funct ion 
of (x, a o, ..., a~). When shown, the proof will be completed since for fixed x, 
this implies the functional  independence of z, 3z/3x, ..., 3Sz/3~c~, as functions 
of ao, ..., a~, which of course contradicts  (e), for s = n. 

Assume the Jacobian  is identically zero. Then there exist functions 
Ko, ..., Ks of (ao, ..., a,) such that 

(f) Ko3z/3a, o -k ... ~ K,~z/3as ~ 0 
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in (x, ao, ..., as with ] Ko I "4- ... 3- ] K~[ > O. If ao ,  . . . ,  a ,  are fixed as positi~e 
numbers,  and x ranges over large positive numbers,  then clearly Ho, ..., H~ 
all --* c~ as x ~ oo. Therefore,  if s >__j > k, 

(g) (~zl~a~) (S~l~a~) -~ = (HaH~+x ... H~_~) -~---~ 0 

as x - - ~ o ~ .  But {g) clearly contradicts (f}, and so the Jacobian is not iden- 
tically zero. 

P ~ R w  I V  - The paramet r ic  case. 

14. DEFINITION - Assume § 2 with ~ NTPD.  

(a) M is called a parametric monomial of ~, if kME crit (~), for every 
non-zero constant k. The set of all parametr ic  monomials of ~ is denoted 
par (~2). 

(b) If fc,zk~c~o(logx)~ ... (log,x)% in S#, then the unit monomial 
x~o(log x) ~ ... (log~x)% is called the gauge of f and is denoted l f [ .  (This concept 
and notation were introduced [9, § 17 D. 

(c) If B is a finite non-empty  set of unit monomials, then the m ax im um  
of B (denoted max B) is that element V of B, such that NE B implies either 
N < ( F  or N = V .  

15. L E ~ I ~  - Assume §2 with f~ NTPD.  Let M Epar(g]). Then there 
exists p > 0 such that f~c~ is non-tr ivial  and M E par (~(P~). 

PROOF - Let I be the set of all p > 0 for which ~w) is non-trivial ,  and 
assume the conclusion does not hold. Then if p E / ,  there is a non-zero 
constant k for which kM~. crit(f~v)). But for any h-~ M and any non-zero 
constant c, f2~)(cM + h) = c~k-V~V)(kM 3- g) , where g -~ c-lkh. Therefore it 
follows that cM~er i t ( f~  (~)) for each constant c and each p E L  In par t icular  
9~z"(M) is non-tr ivial  for p E L Let N :  max {] ~P'iM) [ : p E I U (0 }}, and let 
J be the set of all p E I U t 0  } for which ] ~ P ~ ( M ) [ = N .  Then for pEJ ,  
g2W(M) c~ b~N~ where bp is a non-zero constant. Let  f(a) = Y. I bp ap :PE J }, 
and let leo be a non-zero constant for which f (ko)~ O. Then we assert that 
for any h ~ M, ~(koM3- h).-',zf(ko)N. If proved, this impl!es koM~ crit (~) which 
contradicts  hypothesis, and thereby establishes the lemma. To prove the 
assertion, we note that if p E L then f~)(koM3- h ) ~  ~w~{koM), since koM~ crit f~cp). 
Also, f~(P)(koM is c,zb$ko~N, if p E J  and is ~ N  if p E I - - J .  If p : 0 ,  
f~c~)(koM 3- h) equals ~'r'(M), while for p ~ I U / 0 } ,  ~(W(koM3- h) is trivial and 
therefore ~ N .  The assertion now follows immediately,  since ~(koM+ h) is 
the sum (over p) of all ~(~(koM-4-h}. 

R E l g A R K  - The converse of this result  is not true, for if g](y)----y'3- 1, 
then I ~ par  (~) al though 1 E par  (g2a~). 
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16. LEM~[A - Assume § 2 with ~ NTPD. Let 9. be homogeneous. 

Construct a polynomial  F(s) as follows: 

Let  N be the maximum of the gauges of x -'~(#)t2[i~] over all i~ for which 

~2[i#] is non-tr!vial ,  and let 1 be the set of all i+ for which ]x-'~'(#)O[iv] [----N. 

For  i # E I, let x -~(i~)~[i+ ] ~.~ c(i~)N, where c(i~ ) is a non-zero constant, and 

let f(i+, s) = s~(s(s - -  1)) ~ ... (s(s - -  l) ... {s - -  n + 1))~, where i ~ : (io, ..., i , ) .  
Define F(s) = t )f(i  ; : i+ } . 

Then, if M~ crit (~2),~F(~0(M)) = O. 

PROOF - Let  p be the degree of ~, and let M-----w~G where ~o( G) ---- 0. 
Then, if h c,.~M, it follows by induction on q that h<q)-- - x~-qG(s(s~  1)... 
... ( s - -  q +1)  + Eq) where E q ~ l .  Hence  ~](h) ~ x~G'N(F(s)  + E), where E ~ I .  
If  F(s) ~ 0, then ~](h) ~ ~](M) for all h ~ M, so M ~ crit (~), proving the lemma. 

17. DEFINITION - Under  the hypothesis  and notation of Lemma 16, the 
equat ion F ( s ) =  0 is called the critical equation of g2. 

REMARKS - ( 1 )  The converse of Lemma t6 is not true, for ~{y}-~ 
-~ x(log2~c)y'--y has no critical monomials, but  zero is a root of its critical 
equation.  

(2} It  is possible for the critical equat ion to be satisfied by every 
complex number  (e.g. ~ ( y ) ~  [y ' )~ - -yy" - -x -~yy ' ) .  However,  if this is not the 
case (as for example,  in l inear  or first order ~), then the critical equation 
clearly has at most W roots. 

1 8 .  L E M M A  - Assume §2  with ~] NTPD. Let ~ be homogeneous of 
degree p, and let s ~ r + W + 2 .  For  each i, 0 _ ~ i ~ s ,  let gi be a real  root 
of tile crit ical equation of [si_~, ..., So; ~]. Then 

(a) There exist ~E { 1, 2, ..., p} and a non-zero complex number  c such 
that 

I s , _ , ,  . . . ,  So; (v) = + R (v) 

where the coefficients of R, are all trivial in log,S~. 

(b) Zero is a root and is the only root of the critical equation of 
[s~_l, ..., So; ~] .  

(c) N(x) = kx~o(log x) ~ ... (log~_lx)%-i E par (~]) for any non-zero k. 

PROOF - Let  ~ = [si_l, ..., So; g~] and ~----,Qi[*, 0] for 0 ___.i ~ s .  Then by 
Lemma 12(a), if i ~ r  + 1, ~ ) ~  Q~ + R~ where Qi has constant  coefficients 
and is homogeneous of degree p, while R~ is trivial in log~S +. Since ~0 of a 
non-zero constant  is 0, ~ i  is the minimum weight of all non-zero terms 
in Q~. It is a rout ine computat ion to verify that  the coefficient of the term 
of weight 0 in ~ ,  is /7'(s~_1} + t where F ( s ) ~ 0  is the crit ical equat ion of 
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~ _ ~ ,  and t is trivial in log~S#. Since F{%_~)---- 0, clearly - -  ~ > 0. Hence 
every constant is a solution of Q~(v}= 0~ and therefore (c) follows from 
Lemma t21b}. Let Q~ be the sum of all terms of weight - - ~  in (,)~. Then, 
since [~; Q*] has co~stant coefficients (by Lemma 13(a)), and since it is 
easily seen that Q~--Q* and R~ are both transformed into the trivial part  
of ~ _ ~ ,  we have 

(1) [~, ;Q~]=Q~+~ for r - 4 - 1 ~ i < _ ~ - - l .  

Thus by lemma S(d), the sequence of weights (-- ~,+~, - -~ ,+2 ,  . . . , - - ~ )  is a 
monotone decreasing sequence of elements of the set {1, 2, ..., W}. If this 
sequence were strictly decreasing, it would have at least W +  2 distinct 
coordinates {since s>__r+ ~ + 2 ) ,  which is clearly impossible. Hence ~ j ~ - - ~ j + ~  
for s o m e j E { 1  + 1 ,  r ~ 2 ,  ..., s - - l } .  Therefore by Lemma 13, % ~ 0  and Q*j 
is of the form Q~(z)-~czP+~J(z')-~J. Let ~ = - - ~ .  Then ~ E t l ,  2 , . . . ,p}  and 
since % = 0, Qj+~(v)-~ cvV-~(v'} ~ by {1). Then %+~ = 0 since its a root of the 
critical equation of ~ + ~ .  It  is now clear that for l ~ t < _ s - - j ,  Q2+t(v)---~cv~-~(v')~, 
the proof being by induction on t, using (1). For t = s - - j ,  we obtain desired 
representat ion in (a). Par t  (b} follows from Par t  (a), and the fact that ~ > 0 .  

19. LE)~M± - (t=[omogeneous case): Assume § 2 with ~ NTPD. Let ~ be 
homogeneous and let s ~ r -+- W-t- 2. Then 

(a) M E crit (~D if and only. if M(x) ~ kx~o(log x} ~ ... (logs_~x)%-~, where 
k is a non-zero constant and where ~ is a real root of the critical equation 
of [a~_~, ...~ ~o; ~2], for each i, O < ~ i ~ s - - 1 .  

(b) crit (~2) = par (~2). 

PROOF - Par t  (a): The condition is sufficient by Lemma 18(c), To prove 
the necessity, let M E c r i t (g l .  Then by induction on Lemmas 16 and ll(b), 
~(M) is a root of the cri t ical  equation of [M, i, f~] for each i>~0 .  But then 
~ ( M ) = 0  for i ~ s  by Lemma 1S(b), proving the necessity. 

Par t  (b): This follows from Par t  (a). 

REMARk: - For an arbi t rary ~2, Lemma 18(a) provides a method for 
finding par l9. Cp)) for each p. The key step in adapting this method to the 
non-homogeneous case now follows. 

20. LE~I~I± - Assume § 2 with ~t NTPD. Let s > ~ r - ~ W +  3. Suppose 
there exists p >  0 for which M Epar(~2 (p)) and such that [M, s, ~2i (~ is 
non-tr ivial  on log.,.S#. Then:  

(a) M E par (~2) 
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(b) There  exists an integer  ~ ~ 0 and a polynomial  C(y)in y alone, 
with constant  coefficients, such that for any t~s ,  [M, t,~2](y)--~(y')~CIy)-~R~Iy), 
where all the coefficients of R~ are trivial  in logtS#. 

P~oo~ - For  i >_ O, let fh  ~ [M, i, ft] and rlet Atq ~ [M, i, f~(q)] when ~2 (q~ 
is non- t r iv ia l  in S#. Le t t ing  A be the set of all q > 0  for which (f~s) (q) is 
non- t r iv ia l ,  it follows from L e m m a  10(a).(e) that  for qEA, 

(1) (~ j ) ' q '=A/q  for O~_j~_8 

and let t ing ~ = ~(M),  

(2) %q + (gt~)(q'[ *, 0] -~- £tj[*, c¢¢] for 0 <_j <~ s - -  1. 

By assumption,  there exists p E A  such that  p > O  and M E p a r  ~2 (p'. Hence  
by Lemmas  18(a) and 19(a), ~ j = 0  for j ~ s - - 1  and ~ = - - h , _ ~ , ~ [ * , 0 ]  is 
> 0 ,  Let  qE A. Then  since s%_~ ~ 0, ~ ~ - -As_ l , q [*  , 0] by (1) and (2). There- 
fore, by L e m m a  t2(a), all non- t r iv ia l  terms in As_l,q have weight ~ ~ and 
hence positive weight. Thus  1Epar  (A,_~,Q), and therefore M E p a r  (~2 Cq~) by 
L e m m a  ll(b), t~[ence As_~,q(y)-~cqyq-~(~f)~+Rq(y), where Cq is a constant,  
and Rq is trivial. But  then Asq also has this form since %_x = 0 .  I t  now 
follows from (1) and the def ini t ion of A, that  ~2,(y)= (y')~C[y)+ T(y), where 
C(y) -~ ~, { Cqy q-~ : q E A }, and T is trivial. This  is the desired representa t ion  
in (b), for t ~ s .  For  t~___s, the representa t ion  in (b) follows easily by induction,  
s ince  :¢t-x ~ 0. Finally,  since ~ ~ 0, 1 Ep a r  (~,), and hence ME par(12) by 
L e m m a  11(b), proving (a), and concluding the proof. 

2[. TItEORE)I I (General ease) - Assume § 2 with ~2 NTPD. Let  s _ ~ r d -  
-+ -W+ 3. Then  ME par (f~) if and only if M(x} --= ka~0(log x)~l... (log~_lx)%-~, 
where 

(a) k is a non-zero constant,  

(b) there exists p ~ 0 for which ~2 w) is non-t r ivia l ,  and such that  for 
each i, 0 ~  i ~ _ s - -  1, 

ol(p) (1) a~ is a root of the critical equat ion of [ai_l, .... ~o; ~.j , and 

(2} [s¢~, ..., ao; ~2] w) is non- t r iv ia l  on logi+~S ~. 

PRooF - Suppose (a} and (b) are satisfied for some p ~ 0. Then  (2} implies  

(c) [~j_~, . . . ,  ~ o ;  rt]'~' -=-- [ ~ _ , ,  . . . ,  ~o; a'~'], 

for 0.<_j <_s, by L e m m a  10(a), (c). Therefore  (1) implies MEpar ig t  w)) by 
L e m m a  19(a). Hence  ME par  (~) by L e m m a  20{a}. 
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Conversely, suppose M E par (12). Let  Mo : M and M~+~(x) -~ 
=exp(--~(M)x)M(e x) for i__~0. Then by L e m m a  l l (a) ,  M~EparI12~)for all 
i ~ 0 ,  where  1 2 ~ [ M ,  i, Ft]. Let t ing  A~ be the set of all q > 0 for which 
(g~) (q~ is non- t r iv ia l  and M~E p a r ( g t #  q~, it follows from L e m m a  15 that  each 
A~ is non -e m p ty  (and each is clearly finite).  Since Ao is non-empty ,  it 
follows from Lemma (19(a) that  8~(M)-----0 for i ~ s ,  and we may write 
M(x)_--kx~(log x) ~ ... (log~_~x)%-~. We now show A~+I C As for all i. If  pEA~+~, 
then by L e m m a  10, (12gr) is non- t r iv ia l  and (c) holds for 0 _ < j < _ i + l .  Since 
M~+~Epar (~+~)~), we have M~ E par  (~2~) '~ by (c) and L e m m a  l l[b}. Hence  A~ 
contains  A~+~. Therefore,  the intersect ion of all the sets A~ contains an 
e lement  p, which obviously satisfies (2). Since ME par(12<r)), it follows from 
(c} and Lemma 19(a) that  (1 t is also satisfied. 

REMARK - For  an arbi t rary ~2, Theorem I provides a method for f inding 
par(~2), by consider ing separately,  each p ~ 0 for which 12~P' is non-t r ivia l ,  
and f inding all s - tuples  (So, ..., a:,_~) of real numbers  which satisfy (1)and (2) 
relat ive to p (taking s-----r + W +  3). Then  corresponding to any such 
(no, ..., a:~-~), M(x) : kx~otlog x)~ ... tlog~_~)%-~ is in par  (~2). Conversely, for 
any M E par  ([2), the s - tup le  (~o(M), ..., ~s_~(M)) must  appear  relative to some p. 

P A R +  V - The n o n - p a r a m e t r i c  case. 

22. LEMMA- Assume §2  with ~t NTPD. Let ME{cr i t (~ ) - -pa r (~2 ) ) ,  and 
let ~o(M)= a. Then  there exist  at least two dist inct  na tura l  numbers  p and 
q f o r  which Yt<"~[ *, a:] = ~2[*, :¢] = ~2'q'[ *, a:]. 

Pnoo~  - Assume the conclusion is false. Then  the set of all p for 
which 12(~[,, :¢] =gt [* ,  a:] reduces  to Im} for some m. Hence  if q ~ m, then 
gt(q>[ *, a:] ~ ~t[*, a:] and therefore,  [a:; ~2] <q~ is trivial. I t  follows that c r i t i c ;  t2] = 
----crit [a:; gt] (m), and therefore,  par [a ;  12] = par[a:; gt] ('). But  then crit [a:; 12]~ 
= p a r [ a ;  12], in view of L e m m a  19(b)(as appl ied to [a:; ~](") .  Since MEcrit(g~), 
it then follows from L e m m a  ll(a) that  e-~M(e~)Epar[a; ~2], and therefore 
ME par(~2) by L e m m a  ll(b). This contradicts  hypothesis ,  and establishes 
the lemma.  

23. DEFInitION - Assume § 2 with ~2 NTPD. Then a real number  a is 
called an admissible value of Y~, if the relat ion ~(r)[*, a] ~ 12[*, a:] = 12(q)[ *, a:] 
holds for at least two dist inct  p and q. 

24. LEMMA- Assume §2 with ~ NTPD. Let s ~ r + 2 W + 2 .  For  each 
i, O<~i~s ,  let ~ be an admissible value of ~ i = [ a : ~ - l , . . . , ~ o ;  12], and let 
12, = tab-l, ..., a:o; ~ ] .  Then, 
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(a) There  exist a natural  number  ~, and a non-homogeneous polynomial  
C(y), in y alone, with constant coefficients, such that ~2,(y)---~(y')~C(y)-[-Rs(y), 
where R, is trivial in log~S~. 

tb) Zero is an admissible value, and is the only admissible value, of Y~. 

PROOF - Let  [~(q)~ (~2~)!q~[ *, 0] and v~ ~ ~2~[*, nil, for each i and q. Let  A 
be the set of all q for which (~,)(q) is non-tr ivial ,  and let qEA. Then by 
Lemma 10(a) and (b), (~2i) (q) is non-tr ivial  and ~iq-[-~i(q) ~---v~ for 0 ~ i  ~ s. 
57ow for i ~ r ~ 1, ~2~ ---- Q~ -t- Ri where Q~- has constant coefficients, and R~" 
has trivial coefficients. Hence  - -~ lq )  is the minimum weight of non-tr ivia l  
terms in (Qi) (q). Lett ing Ptq be the sum of all terms in (Qi) (q) which have 
weight - -~ (q ) ,  we have (as in (I) of Lemma 18), [~;  P~q] = (Qi+~) ~q~. I~ence, 
by Lemma 8 ( d ) , -  ~4-~(q)~'--~(q}, for q~A. Now A clearly has at least 
two elements. In  what follows, assume t and q are any distinct elements of 
A, and let m~ ~ - - ( ~ ( t ) +  ~(q)). Then the sequence, (m,.+l, m,.+~, ..., m~) is a 
monotone decreasing sequence of elements of the set {0, 1, ...~ 2W}.  This 
sequence cannot be strictly decreasing, for otherwise, it would have at least 
2 W-{- 2 distinct coordinates (since s ~ r -[- 2 W-~- 2), which is impossible. 
Hence for some j, m~ ~---m~+~. Then clearly, ~+~(q)~  ~j(q) and ~+~(t)-----~(t}. 
It now follows from Lemma 13(b), that a~--~ 0, and that P~q(z)~--c(z')~zq-~ 
(where ~- - - -v~) ,  with a similar representat ion for P~(z). t t ence  both (Qt+~)(q~ 
and {Q~+~)(t~ are also of this form, and by induction, so are (Q~+~)~q~ and (Qt+ a, 
for l ~ k < _ s - - j .  Since t and q were arbi t rary elements of A, it follows, 
taking k - ~ s - - j ,  that Q,(z)-~(z')~C(z), where C(z) is a non-homogeneous  
polynomial in z alone with constant coefficients, proving (a). 

(b) follows immediately from (a). 

2 5 .  D E F I N I T I O N  - Under  the hypothesis and notation of Lemma 24, the 
sequence (~0, ~ ,  ..., :¢~-1) is called an admissible sequence of ~2, and (y')~C(y) 
is called the s-equation of (:¢o, :¢~, ..., ~-~) .  

RE~AI~K - ~ may be strictly positive in the s-equation,  as evidenced 
from the example of (0, 0, ..., 0) in ~(y) :yy ' - -y ' - { -x~  -2. (Note here that 
1 E par  t~2 )). 

26. TtIEORE~I I I  - Assume § 2 with ~] NTPD. Let s >__ r + 2 W + 2. 
Then ME (crit (~2) - -  par  (~2)) if and only if M(x) = kx~0(log x) ~I ... (log,_1~)%-,, 
where (:¢o, ..., :%-1) is an admissible sequence of ~2, whose s-equat ion (y')~C(y} 
satisfies the conditions, ~ ~ 0 and C(k)~ O. 

Pt~ooF - The conditions are sufficient by Lemma 12(b). 
Conversely, suppose ME(crit  ( ~ ) -  par (~2)). Then by Lemmas 11 and 22, 

~(M) is an admissible value of [M, i, ~2] for all i ~ 0 .  Hence  by Lemma 24(b), 

AnnaZi dZ M a t e m a t i v a  13 
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~,~(M)----0 for i ~ s .  Clearly ~ = 0  in the s-equat ion of {~o(M), ..., ~_~(M)), 
for otherwise MEpar(~2) by Lemma 12(b). Finally C(k)=O by Lemma 12(b), 
since MEcr i t  Wt). 

REM~.RK - I t  is clear that Theorem II  provides a method for finding 
the set, (crit ( ~ ) -  par (~2)), in a number  of steps which can be bounded in 
advance. 

P A n ~  V I  - T h e  a s s o c i a t e d  f u n c t i o n .  

27. L~MMA - Assume § 2 with ~2 NTPD. Let ME erit (~2), with k=M(]M[) -~. 
Then there exist a natural  number  ~, and a polynomial C(y) in y alone, with 
constant coefficients, such that 

(a) ~ + m > 0 ,  where m is zero i[ C(k)~O and otherwise is the multi- 
plicity of the root k in C(y). 

(b) For  s ~ r + 2 W + 3 ,  we have ~ , ( M ) = 0  and [M, s, ~2](y)=(y')~C(y)+ 
+ R~(y), where R~ is trivial in log~S ~. 

PROOF- This follows from Theorem I and Lemma 20(b), in the ease 
when M is parametric,  and from Theorem II, in the non-paramet r ic  case. 

28. DEFINI~IO]S - Under  the hypothesis and notation of Lemma 27, 

(a) (y')~C(y) is called the associated function of M in Ft, and is denoted 
AFOI, n, y). 

(b) ~ is called the exponent of 31. 

(c) m is called the multiplicity of M. 

(d) M is called an ordinary monomial if m ~ 0, and is called simple 
i f  m = 1. 

REMARKS - (1) If, ME pm(~),  then the associated function defined in 
[5, §68(e)], coincides with that defined in Definition 28(a), for in this case, 
[31, i + 1, ~2] is the first  image (see [5, § 63]] of [M, i, ~]. 

(2) Obviously, ~ ; > 0  if and only if MEpar(12) .  

29. LEMMA - Assume § 2 with !2 NTPD. 

(a) Let s ~ r  + 2 W +  3. Then M is an ordinary monomial of gt if 
and only if M(x)-= kx~o(logx) ~1 ... (log~_lx)%-l, where (:¢o, ..., ~-1)  is an 
admissible sequence of ~2, whose s-equat ion (y')~Cty) satisfies the condition 
C(k) = O. 
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(b) Let  D(F~} {respectively, d(12)), denote the max imum {respectively, 
the minimum) of the set of all p for which ~2 (~ is non-trivial .  Then there 
are precisely D ( t 2 ) -  d(gt) ordinary monomials of t2, provided each is counted 
as many times as its multiplici ty indicates. 

PROOF - (a) is obvious. 

To prove (b), we first prove the following assertion (A). If B~-lao, al, ..., at} 
is the set of admissible values of 12, where ao < al < ... ~ at, then ( D ( t 2 ) -  
- - d ( ~ t ) ) =  y,{(D([ai; t2] ) - -dI[a~; t2)) :  0 ~ i ~ _ t } .  First  we show D([ai; ~])~--- 
d([a~+~; g~]) for 0 ~ . i ~  l - - 1 .  If this relation fails to hold for i, then letting 
p--~D([a~; g~]) and q--~dt[a~+~; gt]), we have p ~ q. But then using Lemma 
10(a), (b), it is easily verified that the maximum of all the numbers,  
{q - -  ~n)-l(~(">[ *, 0 ] - -  12~q)[*, 0]) for p ~ ' n  < q, is an admissible value of gZ, 
which is strictly between a~ and a~+~, contradict ing our representat ion for B. 
Similarly, we prove D([at; ~ 2 ] ) :  D(12) and dt[ao ; 12])~--=d(gt), so assertion (A} 
follows immediately.  

Now let B~ be the set of admissible sequences (so, ~ ,  .... s~_~) of 12. 
If s : r + 2 W q - 3 ,  then by (a), it is clear that the number  N o r  ordinary 
monomials of gt is precisely the sum, over all (so, ..., %_~)E B~, of the num- 
bers D([~z,,_~, ..., So~ ~])  ~ d([s,_~, ..., so; ~2]). This sum can be written as an 
interated sum, the inner  one of which is over all %_~ which are admissible 
in [ss_~ , .... go; gt], and the outer sum is over all (so, ..., ~_2)EBs_~. But 
then applying assert ion (A) to the inner  sums, shows that N is the sum over 
all (so, ..., ss_~)EB~_~ of the numbers  D([s,_~, ..., so; t2]) - -  d([s,_2, ..., so ft]). 
Repeated applications of this a rgument  clearly leads to N :  D(F t} -  d(~ D. 

30. LEMMA - Assume § 2 with 12 NTPD. Let MEcrit(~2),  and let N be 
a logarithmic monomial, w i th  a ~ N~]N[) -1. Then, 

(a) If A-----N12, we have M E crit(A) and AF(M, A, y ) :  a(AF(M, 12, y)). 

tb) If • is the N-mult ipl icat ion transform of 12 (i.e. O { z ) :  ft(Nz)), 
then MN 1E crit (O), and AF(MN -1, O, y) : AF(M, 12, ay). 

PROOF - Par t  (a) is obvious. 

Par t  (b) follows from the following assertion. If s-----~o(N) and G(u)--~e-°:'~N(eU), 
then for any real  number  v, Iv; O] is the G-multipl ication t ransform of 
[s q- v; ~2]. (Part (b) then follows by induction, taking v ~ ~o(MN-1)). To prove 
the assertion, we note that [v; O] and the G-multiplication t ransform of 
[s --k v ; gt] differ only by the multiplicative factor exp [(~[*, s -by ] - -  @[*, v])u]. 
Since both differential  polynomials are non-trivial ,  this factor must be 1, 

proving the assertion. 
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31. LEPTA - Assume § 2 with fZ NTPD. Let ME crit (f~) with exponent 
and multiplicity m. Let h(z)-~-~2(M+Mz),  and let09 be the sum of all 

terms in A of degree _< ~ + +n. Then, 

(a) The set of critical monomials -< 1 of A is precisely the set of 
cri t ical  monomia l s -<1  of (I), {and the associated function in each is the 
same). 

(b) Any ordinary monomial  of A which is ~ 1  is an ordinary monomial 
of 09. Any ordinary monomial  of 09 is <(1 and is an ordinary monomial  of A. 

{c) If ~(M) is non-trivial ,  then A has exact ly ~ + m ordinary monomials 
< 1  (counting multiplicity).  

PtlOOF - By Lemma 30(b), 1 is a critical monomial  of the M-multipli-  
cation t ransform of ~2, and its associated function is of t h e  form ty')~C(y), 
where 1 is an ~n-fold root of C{y). For i ~ 0 ,  let Ai~---[1, i, A]. Then for 
sufficiently large i, A~{y)= ~y')~C(1 + y ) +  Ti(y), where T~ is trivial (the proof 
of this being similar to that of Lemma 30(b)). Since 1 is an m-fold root of 
C(y), obviously for all i ~  0, 

(1) (A~)(~ + ' '  is NTPD. 

Let  the coefficients of A lie in an LDt(S~), and let s--~ t + 2 W +  3. 
We first prove the following assertion. If G is a logarithmic monomial  of 

rank _< s - -  1, and G < 1, then for every q > ~ + m, [G, s, h] (q~ is trivial. Assume 
the contrary for some q > [~ + m. Then letting j be the smallest i for which 
~i(G) is non-zero, it follows from Lemma 10(a), (b) that (A~)(q'[ *, 0] > (Aj)~+"[ *, 0], 
and hence that (Aj+x)~ +'> is trivial. This contradicts (1), and proves the 
assertion. ~herefore,  in view of Lemma 8(b), for such a G<(1 there is a 
p <_~ + m such that [G, s, A] '~) is non-tr ivial  (and this holds for G= 1 by (1), 
taking p = ~ + m). It now follows by induction that the relation, 

[G, i, 09] = X I[G, i, h]<"': 0_<k_< ~ + +n }, 

is valid for any G ~ I  of rank  <--s-- l ,  and any i, O<.i  <_s. 
Hence, if G < I ,  then since [G,s,A] <q' is trivial for q > ~ + m ,  we have 

[G, s, A] = [G, s, 09] + T 

where T is trivial. Par t  (a) of the lemma follows immediately from {3). 
Fur thermore ,  (3) also implies that the ordinary monomials -< 1 of A are 
precisely the ordinary monomials <~ 1 of 09. Thus to conclude the proof of 
Par t  (b), we must  show that every ordinary monomial of @ is ~ 1. 
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F rom (2), it follows that  if Gzl  then  [G, s, (I)] is of the form b(y')~y'~+R(y), 
(where R is trivial), and hence there can be no ordinary monomial  z 1. Now 
assume cp has an ordinary monomia l  N, with 1 ~ N .  Then  [N, s, (I)] mus t  
involve at least two terms of different  degree, non-tr ivial ly.  Since • has no 
terms of degree > ~ -}- m, there exists q ~ ~t -}- m for which [37, s, (I)] Cq~ is 
non- t r iv ia l .  But  then le t t ing j be the smallest  i for which ~(N) is non-zero,  
it follows from L e m m a  10(a), (b) that  [1, j, ¢]~q)[*, 0] > [1, j, (1)](~+'~[ *, 0], and 
hence  that  [1, s, ~]c~+,~, is trivial  in log,S+. But  then  by (2), (A,)(~ +'~' is 
trivial, cont radic t ing  (1). This  contradic t ion establishes Par t  (b). 

Par t  (c} follows f rom Par t  (b) and Lemma  29(b). 

32. L n ~ A  - Assume § 2 with ~2 NTPD.  Let  1E crit (~2) with AF(1, ~2, y)---- 
-~(y')~C(y). Let  q ~ r - { - 2 W - { - 3 ,  a~ad let 0-----0q be the operator  Oqy-~ 
- -  1 r * --(xlogx... ogq_lx)y as defined in [5, § 15] Then  there is a uni t  monomial  
/V such that  when N~l is wri t ten as a polynomial  in y, Oy, ..., 0"y, it has 
the form E t(k#, xty~o(Oy)~ ... (O"y)%, where 

(a) like, x)% 1 for all k+ 

(b) t(k ~, x ) <  1 if k~ ~ (ko, ~, 0, .... 0) 

(c} C{y) = v_, { t(k+, -}- ~)y~o: k# : (ko, ~, O, ..., 0i}. 

PROOF - The change of variables y ~ v, ~c ----- e ~, t ransforms 0~+jy into 
OJv, for all p and j.  Hence  if we write gl(y) as a polynomial  in y, 0y, ..., 0"y, 
th6n we obtain a representa t ion  for [1, q, ~] direct ly from the def ini t ion of 
[1. q, tl] as a t ransform. Compar ing  this representa t ion  with that  given by 
the associated function,  and us ing [5, § 19(e)], we easily obtain the desired 
represen ta t ion  for Ngl ,  when N(x) is taken to be x-~o(logx)-~... (logq_~x)~q-,, 
where v~ ~--- [1, i, ~2] [*, 0]. 

33. L E M ~ A -  Assume §2  with n----1 (i.e. let 12 be of order  1). Let  ~2 
be NTPD.  Let  M~par(~2) ,  with exponent  ~ and mul t ip l ic i ty  zero. Let  G ~ I  
be a paramet r ic  monomia l  of t2(M-}-Mz), with exponent  ~1 and mul t ip l ic i ty  
ml .  Then  ~1 -{- m~ < ~. 

Ia  part icular ,  the exponent  of any cri t ical  monomial  ~ 1 of ~ ( M - } - M z )  
is less than ~. 

PROOF - If  F is the M-mul t ip l i ca t ion  t ransform of 12, then by L e m m a  
30(b), 1Epar ( r ) ,  with AF(1, F, y) of the form (y')~C(y), where C(1) :#0.  F rom 
L e m m a  34, it follows that  for suff icient ly large q, there is a uni t  monomial  
H(x~), such that  the coefficients of A ( z ) : H P ( 1 - } - z )  satisfy the following 
asymptot ic  relat ions : 

(a) h[(ko, k~)] ~ (x log x ... logq_~x) ~'-~ if kl :#= ~. 
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(b) A[ko, 1. 

(c) A[(0, - 1. 

Suppose G< 1 is a parametr ic  monomial  of Ft(M-4-Mz) with exponent  
~ and mul t ip l ic i ty  m~. Then  by L e m m a  30(a), GEpar(A) with AF(G, A, y) 
of the form (y')~,C~(y), where C~ty) has a non-zero m~-fold root. Le t t ing  b be 
the degree of C,(y), we have ~ q - b ~  by L e m m a  31(a). Assume that  the 
conclusion ~-}- m~ < ~ does not hold. Then since m~ ~_ b: we have ~ -]- b ~ ~. 
Then  [G, i, A]'~ ~ is NTPD for all i ~ 0 ,  and is of the form c(y')~,ybq-R~ (where 
R~ is trivial) for sufficiently large i. But  by L e m m a  10(a), (c), [G, i, A~)~[G, i, A]'~' 
and since ~ > 0  it follows from Lemma  12(b) that  G Epar(A'~)). Hence  ~,(G) 
is a root of the crit ical equat ion  of [G, i, A ~] for all i, by L e m m a  19[a). 
Since G - < l ,  there exists j such that  ~(G)---~-0 if i ~ ]  while ~ ( G ) < 0 .  But  
a s t ra ightforward computa t ion  (using [5, § 19(d)]) shows that  the relat ions 
(a).(c) imply that  for i ~ j ,  the crit ical equat ion of [G, i, Ac~ ~] is of the form 
a~¢~=0  {where a is a non-zero constant) .  Thus  $ i ( G ) = 0  contradict ing 
$~(G) < 0. This contradict ion establishes the relat ion ~ -4- m, < ~. 

The second conclusion follows from the first. 

R E M A R K S -  ( 1 ) T h e  requ i rement  that F~ be of order 1 is essential  in 
L e m m a  33, for if ~ 2 { y ) = x y " + 2 y ' + x  -~, then l~par(~2)  with ~ -~1  and 
mul t ip l ic i ty  ~ero, while x-~q par  (F~I1-+-z)), with exponent  equal  to one. 

(2) The  conclusion that  ~ - t - m ~ <  ~ in Lemma  33 holds o n l y  for 
parametric G, for if ~2ty) --~ (y')~ - -  2x-2y ' -[- x-~y -[- x -~, then 1 ~ par  (FZ) with 

~ 2 and mult ipl ic i ty  zero, while ~2(1-4-z) has a pr incipal  monomiaI  of 
mult ipl ic i ty  two. 

P A R T  V I I  - Solut ions in cer ta in  first order  cases. 

34. DEFINITION - Assume § 2 with Y~ NTPD. Let  ME crit  (Y~). We say F~ 
is asymptotically non-singular at M, if $~2/~y ('~, evaluated at y - ~ M ,  is 
non-t r ivia l ,  and ~12/~2y ~'~ is stable at M. (This is the obvious extension of 
the def ini t ion given in [5, § 77] for pr incipal  monomials) .  

35. REMARK - The next  l emma depends  only on the result  proved in [7] 
(see below), and not on any resul ts  we have obtained thus far. It  i l lustrates 
one method  of pro~ing the existence of solutions c,.~M of ~2(y)~ 0, namely 
by f inding pr incipal  solutions of &2 (_M -4- z) ~ 0, and this is the .main device 
of this section. 

A Sehwar tz ian-symmetr ic  logar i thmic different ial  field of rank  p (briefly 
an SLDFv) over Tc~-=F(--a, a), is a different ial  field E*, conta ining all 
logar i thmic monomials  of r ank  ~ ' p ,  and having the proper ty  that  if [ is a 
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non-zero element of E*, then f is c-~ to a logari thmic monomial  of rank <:_p, 
and E* also contains the function whose value at the conjugate of x is the 
conjugate of f(x). (For example,  the set of all rational combinations, with 
complex coefficients, of logari thmic monomials of rank ~ p ,  is an SLDF~). 

It  is proved in [7], that if a first order gt with coefficients in an SLDF~, 
possesses a principal monomial  N, at which it is asymptotically non-singular ,  
then g~ty)~---0 possesses a principal  solution ~ ,  is some F(c, d). 

36. LEM~A - Let  gt be a first order differential  polynomial with coeffi- 
cients in an SLDF~ over F(--a,  a). Let Ft be NTPD and let ME cri t ( t2) .  
Then if g~ is asymptotically non-s ingular  at M, the equation ~2(y)-----0 has at 
least one solution c,,~M in some F(c, d). 

PRooF - Assuming g t ( M ) ~  0, it is clear that ~2(M+zJ is asymptotically 
non-s ingular  at each of its principal  monomials. Then if Zo is any principal  
solution of t)(M-~ z)~--O, the function Y o :  M ~  zo is a solution c ,zM of 
a (y) = 0. 

37. LEMM_~ - Assume §2  with n ~ l ,  and let ~3 be NTPD. Let MEpar(gt)  
with AF(M, ~2, Yl of the form (y')~C(y) and multiplicity m. Then 

(a) For sufficiently large s, 

[M, s, 8~2/Sy'] {y) ----- (y')~-~C(y) -}- R,(y), 

where Rs is trivial in logtS +. 

(b) If ~ -{-- m > 1, then M E crit  (3g~/~y') and AF(M, 3gt/3y', y) ~ (y')~-l~C(y). 

(c) ~2 is asymptotically non-s ingular  at M if and only if ~ - 1  and m-----0. 

PROOF - Here, for any differential  polynomial F, we will use the nota- 
tion F~----[1, i, P]. 

If 49 is the M-mult ip l ica t ion transform of gt, then by Lemma 30(b), 
1Epar@)  and AF(1, 49, y)-~y}~k~C(koy) where ko----M(]M[) -I .  As in the 
proof of Lemma 32, we compute 49~ ifor sufficiently large s}, and find that 
there is a unit monomial  g(x), such that if A : g49, then 

(2) A~[j+ ] (u) = A[/~ ] (e~(u)) (L~(e~(u)))~-J~ 

for each j#, and each i, 0 <_ i _< s. (Here, L~{~) is the• function x log x ... log~_~x, 
while e~(u) is defined recursively by eo(u)-~ u, ei+~(u)-----exp e~(u)). 

Dy comparing the representat ion for the coefficients of A~ given by (2) 
(for i ~ s), with that given by the associated function, we abtain asymptotic 
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estimates on the functions h[ je ]  (e,(u)), in log~Se. Using [5, § 19(e)], we obtain 
the following relations for 0 <_ i<--s, in log~Se : 

(3) A[j+] (ei(u)) < [(L:_~(u))(L~(egu)))]s~-~ if j :  4: ~, 

(4) A[/e ] (ei(u)) ~ 1 if j~ = 

(5) k~C(koV} = ~ {A[j+ ](e~(-+- cx~)IvJo : j~ = ~ }. 

This last relation implies that for some p ~___ 0, 

(6) A[(p, ~)] ~ 1. 

Using (2)-(6}, it follows by induction that for O<_,i<_s, ~Ai/~y'=(~A/~y')~. 
In  view of (1), we then see that (~A/~y')~ is of the form ~'l~-~k~C'k (y, ~ o i oy) W T~(y), 
where T~(y) is trivial. But since (gM}-~A/~y ' is simply the M-mult ipl icat ion 
t ransform of ~f~/~y', Part  (a) now follows as in the proof of Lemma 30(b). 

Parts  (b) and (c) follow easily from Par t  (a) and Lemma ll(b). 

REMARK- Lemma 37(c) completely solves the problem of determining 
in advance those parametr ic  monomials at which a first order ~2 is asymp- 
totically non-singular .  For non-paramet r ic  critical monomials, there seems 
to be no way of determining this without actually computing the stability 
properties of ~2/~y' at these monomials (using Theorems I and II, for example). 

38. L ] ~ A  - Let gt be a first order differential  polynomial with coefficients 
in an SLDF~ over F ( - - a ,  a). Let  ~2 be MTPD. Then if MEpar (~2)wi th  
exponent  1 and multipl ici ty 0, the equation ~2(y)=0 has at least one solution 
c,z M in some F(c, d}. 

PROOF - This follows from Lemmas 36 and 37(6). 

39. LEMlgA - Let gt satisfy the hypothesis of Lemma 38. Let MEpar(t2} 
with exponent 2 and multiplicity 0. Then under  either of the following two 
conditions, the equation ft(y)-----0 has at least one solution c-zM in some F(o, d). 

(a) M is a solution of ~[2/~y'----0 

(b) gt(M + z) has at least one simple ordinary monomial  < M. 

PRooF - Let A(z )=  t2(M + Mz), and • = 3h/~z'. In  each case, we prove 
the existence of a critical monomial, N<(  1 of A such that _N $ crit (q)). Then 
by Lemma 36, there is a solution c o n  of AIz)-~-0 , and hence ~2(y)----=0 has a 
solution c.zM. We first note that by Lemmas 37(b) and 33, any critical mono- 
mial <:1 of (I)has exponent 0, and hence, being ordinary, must be an ordinary 
monomial of q) '~+O c°) by Lemma 31(b). (In what follows, we assume ~2(M)4=0). 
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If  (a) holds, then (I)(o~--~ 0. Hence ¢(~-{-~p<o) has no ordinary monomials 
by Lemma 29{b). Thus any principal  monomial  of h cannot be critical of ~,  
so t h e  result  follows in this case. 

If (b) holds, then h has two distinct ordinary monomials ~ 1 by Lemma  
31(c). At least one of them is not in c r i t@),  since ap(~)~ (I)(o)has at most 
one ordinary monomial, so the result  follows if (b) holds. 

RE~ARK - (a) is satisfied for M ~ 1, when ~(y)----(y')~-[-Y,a~y~(y')~, where  
a~-----0 and ~ 0 ( a ~ ) ~ j - - 2  for all i and j. 

(b) is satisfied when F~(M-{-Mz) has no l inear terms. 

P A R T  V I I I  - On solutions in the  general  non-pa ramet r i c  case. 

40. L E ~ t A  - Assume § 2 with ~ NTPD. Let M be a simple non-paramet r ic  
critical monomial  of t2. Let (~£t/$y (~>) (IT/) be non-trivial= Let A(z) ~ ~ (M -4- Mz), 
and let F(x)~-(~A/~z)(0). Then there is a logarithmic monomial G c-zF 
such that 

(a) G-1A(0)<~ 1, and G-~A(1)(z) is unimajoral,  having one or more prin- 
cipal factorization sequences, (]/-1, ..., V,). (6, §§ 13, 28]). 

(b) If ~2 is of first order, and is asymptotically non-s ingular  at M, 
then G-~h(z} is normal (in the sense of [5, § 83]), having divergence mono- 
mial  - -  V~. 

PROOF - If cP is the M-mult ip l ica t ion t ransform of ~ ,  then 1 is a 
simple non-paramet r ic  critical monomial of (I), and AF(1, Up, z) is of the form 
C(z), where 1 is a simple root of C(z). By Lemma 32, for s sufficiently large, 
there is a unit  monomial N, such that when .N~9 is writ ten as a polynomial 
in z, 0~z, ..., 0s'~z, then each coefficient is ~= 1, and C(z) --~ ~. th(~ ~ ) z  ~, where 
ta(x) is the coefficient of z a in this r e p r e s e n t a t i o n  for N~.  Since 1 is a 
simple root of C(z), Ek/a(-4-c~)=) .  is non-zero. A simple computat ion shows 
that Fc.~ G, if G is taken to be ),~-~. 

Since C(1) ~ 0, G-~A(O) < 1. Let G-~A(~(z) ~--- v tijOJz. Since each coeffi- 
cient of _N¢9 is ~ 1 ,  each H j ~  1. Since Fc-z G, Hoe.z1. It then follows from 
[6, § 20], that G-~A~)(z) is unimajoral.  The coefficient of z (') in G-~A(~>(z) is 
easily seen to be G-IM(~2/~y¢n)}(M}, which is non- t r iv ia l  by hypothesis.  
The existence of at least one principal  factorization sequence for G-~A(~(z), 
therefore follows from [6, § 27], proving Par t  (a). 

To prove Par t  ~b), write G-~A(z)~-Y,a~zt(z') j. If  (V~) is a princ!pal ~acto- 
rization sequence, then by definition, V~ is in the divergence class, ao~e'.~--V~ -~ 
and a~oc'zl. By Par t  (a}, nee< 1, and since each coefficient of N~ is ~ 1 ,  
we have a~o~ l  for each i. To conclude the proof that G-~A(z)is normal,  

A_nnati d4 M a t e m a t i c g  14 
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we must show there is a q for which a o ~ao~(Lq)~ -~ when j ~ l  and i + j ~ 2 .  
The proof of this follows from considering the transform l~(z) of ~2 /3y '  under  
the change of variable, y-= M + 3Iz. i f  ~ is asymptotically non-s ingular  at 
M, then any principal  monomial of P is not ~ 1, by Lemma 3. Wi th  this 
knowledge, the application of the algorithm of the principal monomial to F, 
readily produces tlhe desired asymptotic relations for a~,  thereby concluding 
the proof. 

41. DEFINITION - Under  the hypothesis and notation of Lemma 40, 

(1) (171, ..., V,) is called a type for ~2 at M. 

(2) G-~A is called the residual operator for ~ at M. 

(3) If (V1, ..., V , ) i s  a weak factorization sequence (see [6, §88]) ,  for .  
G-~A, then (V~, ..., V, d is called an asymptotically steady type for ~l at M. 

{These definitions extend those given in [6, § 116], for principal  monomials). 

42. THEOREM I I I -  Let S+ = F(a, b), where - -  ~z ~ a < b ~ r:. Let ~2 be 
a first order differential  polynomial which has coefficients in an LD,.(S~), 
and which is NTPD. Let M be a simple non-paramet r ic  critical monomial 
of ;~, at which ~2 is asymptotically non-singular .  Let  (c, k, t) be the index 
(see{5, §44]) of the type for ~2 at M. Let  f (0}=  cos(~o~t0 + a rg ( - -c ) ) ,  for 
a < 0 < b, (where ~i~ is the Kronecker  delta), and let f ( 0 ) ~  0. Then, 

(a) For every point u in the open interval (a, b), there exists a positive 
number  ,+, and a function Yo, such that ~2(yo)=0 and yoc..~M in F(u--v, u-]-v). 

(b) For each interval (a~, bl) in which f is positive there is a one-para .  
meter  family of solutions ~ M  in F(a~, b~), of the equation ~2(y)~-~ 0. For 
each interval (a~, b2) in which f is negative, there is a unique solution ~.~M 
in F(a2, b~), of the equation ~ ( y } - - 0 .  

PaOOF - By Lemma 40(b), the residual  operator for ~ at M is normal, 
and its divergence monomial  has index (--c, k, t). Hence the theorem follows 
immediately from [5, §126], concerning solutions of normal differential  
polynomials. 

43. THEOREM IV - Let a, ao and b be real  numbers  such that - - r : ~ a <  
~ a o  ~ b  ~ 7:. Let S ~ -  Fia, b). Let ~2 be an nth order differential  polynomial 
with coefficients in an LD(S+), and be NTPD. Let M be a simple non-para.  
metric critical monomial  of ~,  and let (V1, ..., V,) be an asymptotically steady 
type for ~ at .M. Let (V1, ..., IT,) be nnblocked (see [6, §98]] in (a, no, b). 
Then ~2(y) -  0 has at least one solution ~ M in S+. 
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P R O O F -  Under  the given conditions it follows from [6, § 115], that if 
q)(z) is the residual  operator  for gt at 1-ll, then (I)(z)- 0 has a solution <( 1 
in Sv. The theorem now follows immediately.  

P~R~ IX - Solution in the  l inear  case. 

The main result  of this part  is, 

45. TItEOREY/ V - Let  S ¢--Fta~,a~) where - -7 :  ~ a ~ < a ~ n .  Le~ 
(Ao, A ~ , . . ,  A , ,  g) be a sequence of (n-~ 2) functions lying in an LDo(S ~) 
such that A,  is non-tr ivial .  Let ~[y)=~.(A~y~):  O ~ j ' < n } ,  and let M be 
any cri t ical  monomial  of ~2(y) -  g. Then the equat ion ~2 (y ) -  g has at least 
one solution ~ M  in some F(aa, a~}~ where a~ ~ aa < a~_~ az. 

We  need the following lemma. 

44. LEMMA - Let  (Bo, B~, ..., B , ,  ~) be a sequence of in + 2) funct ions 
lying in an LDoIS ~) {where S # is arbitrary).  Let  the maximum of the 
numbers  ~o(B~) be 0. Let  A ( y ) :  E {B~O~y: O~_i~_n},  where 0 is the operator 
0y--~vy',  and let M be a parametr ic  monomial  of A(y} - -% Then, 

(a) M(w) = cx~(log x) °, for 
Some constant  c. 

(b) h -- ~ - - A ( M )  is < M  
there exists a polynomial  P(x), 
that y* --  x~P(log x) is < M and 

some real 8, some bE{0, 1 , . . . , n - - I }  and 

and if h is non-trivial ,  say ~o(h)-~ a, then 
in x alone, with constant  coefficients, such 
~o(i(y*) - -  h) < ~. 

PROOF-  For  each i, B~-~ bi + w~ where bi is constant and ~(w~)~  0. 
Let  (PtY) --  Eb~O~Y, Fly) --  V.w,O~y and gt(y) - - A ( y } -  % A straightforward com- 
putat ion shows h[*, 0 ] - - 0 .  Let  8 "--8o(M). Then A[*, 8]----8. By Theorem I 
(§ 21), [~; g~] C1) is NTPD on log S~. Hence  ~2[*, 8] _--~ and therefore, ~0(~} <z~. 
Let t ing E(v) be the transform of (I)(y) under y - - r e  ~ ,  x :  e '~, we have 
[8; Ft] (v) --  e-~U~Iv) + Tiv) ~ G(u), where Tlv ) is trivial and G(u) -- e-~"~(e~'}. 
Fur thermore ,  we can write e - ~ ( v ) = Z  {vjVl): O-<j~_n}, for constants vj. 
Let t ing t be the smallest  j for which v~ ~ 0, then the crit ical equation of 
[8; ~t] a~ is vtstt(o:) . :  O, (where for j ~ / ,  sji(~} is the e lementary  symmetr ic  
function of degree i in ~, ~ ~ 1, ..., ~ - - j  ~- I}. By Theorem I, b - -  ~(M) is a 
root of s t t I ~ ) ' - a ( o : ~ l ) . . . ( ~ - - t + l ) - ~ O ,  so bEl0 ,  1 , . . . , t - - i } .  Then clearly 
ku b is a solution of Z ( v ) :  0 for each constant  k, so 

(1) O(k~(Iog x) ~) --  0. 

We now prove, 

(2) ~o(~] ~ ~ and G(u) is trivial in log S~. 
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By Theorem I, [b,~; ~2] (~' i s  NTPD and so [8; ~2][*,b]=b--t. Hence 
So(G) < 0, since b < t, and (2) follows easily. 

A simple calcutation now shows that in [b, 8; ~](v),  the coefficient of v 
is trivial, while that of v' is of the form a + g, where a = vtst, t-db) and g 
is trivial. ~ow b is clearly a simple root of s t t (a)- -0 ,  and since st, t -~(a)= 
--dsu(o~)/da, we have a 4= 0. Hence the critical equation of [b, ~; ~2] (~ is 
a a = 0 ,  and therefore ~dM)--0, by Theorem I. It follows that [~2(M), b, ~ ; ~2] (v)-- 
= av'.+ R(v), where R is trivial. Repeated applications of Theorem I, now 
imply ~,(M)- 0 for i ~ 2, proving Par t  (a). 

By (1), (I)(M) = 0, and therefore A(M}=~{w~OtM: 0<_i<~n} .  5Tow 0~M is 
a l inear  combination (with constant coefficients) of functions of the form 
sz(b)x+(logx) b-~ for O<_j<~i. Since ~o(w~) < 0, ~o(A(M)) < 8. Hence  by (2), 
8o(h) < 8, where h : ¢ ~ -  A(M}, so h < M. Suppose now h is non-trivial ,  with 
~o(h) = ~. Since s~(b) : 0 j > b, it fol lows that h(x) is representable as a sum 
of functions of the form f~(x)(logx)~ for O<_j<_.n--1, where each non-tr ivial  
f~ is of the form c~maj-[-K~, where ~o(Kt)< d~. Since some f~ is non-tr ivial ,  
let d be the max imum of of the dt, and ]et Q(x} :EIc j x~ :d~:d} .  Then 
h(x) : maQ(logx) ~ K(m}, where 8o(Kj < d. Hence  ~ ---: d. It  is proved in [8], 
that the different ial  equation (I)(y)-- x~Q(logx), possesses a solution of the 
form y * :  ~P~logx), where P(x) is a polynomial. Then y * < ( M  since ~¢ < 8. 
Finally.  A[y*)--h:F(y*)--K, from which it easily follows that 8o(A(y*}--h)<~, 
thereby concluding the proof of Par t  (b). 

PROOF OF THEOREM V - If MEpm(~21y)--g), then the result  is proved 
in [8]. 

If M is not a principal  monomial, then ME par (~2(y)--g), for by Lemma 
29(b), ~2(y)--g has no ordinary monomials if g is trivial, and has precisely 
one, namely its principal  monomial, if g is non-trivial .  

Let 0 be the operator 0 y = x y ' ,  and let ~2(y)--EIB~OJy: O<_j<_n}. 
Then B, is non-trivial .  Let t be the j for which ~o(B~) is maximum, and 
let v : ~dBt). Then letting A(y) - -  x-~£t(y) and ¢p(x} = x-'~gtx), it is clear that 
M E par  ( h ( y l -  ~) by Lemma 30(a), and that h{y) - -~  satisfies the hypothesis 
of Lemma 44. 

If h - - ~ - - h ( M )  is trivial, then it is proved in [8], that A ( y t - - h  has a 
trivial solution Yo, in some F(a3, a~), and so y -  M - ~  Yo is a solution c~ M 
of ~2ty) = g. 

If h is non-tr ivia l  with ~o(h)= a, then by Lemma 44, h<~ M and there 
is a polynomial P(x), for which y* __---x~P(log x) is < M and 8o(h(y*)- h ) <  a. 
Under  the substitution y = y*+ z, the equation, 

(1) A(y) - - h  
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becomes 

= f 

where f =  h -  A(y*). Thus ~o(f)~ a. Now it is proved in [8] that there exists 
a finite set G of real numbers  such that for any real a not in G, there is a 
non-zero constant k~ for which the l inear differential  polynomial Fa(w)= 
= ~-~h(k~c~w) is unimajoral  and has a non-except ional  principal  factorization 
sequence. Choose a real g not in G such that ~0(f)~ ¢ ~ a .  Under  the 
substitution z :--k~x~w, (2) is t ransformed into x~F~(w)= f, or equivalently 

(3} r (w) = x- f. 

Lett ing ivy, ..., V,,) be a non-except ional  principal  faetorization sequence 
for 1P~, clearly there exist a~, a4 such that a ~ _ a s  ~ ct~<_ct2 and (V~, ..., V,) 
is unbl0cked in (as, a, a4) for all a)Ea~,a~). But by choice of ~, x - ~ f ~ l  
and so (V1, . . . ,V,)  is a strong factorization sequence (see [6,§88(b)]~, for 
F~(w)- -x -a f .  Thus by [6, § 99] there is a function w o ~  1 in F(as, a , ) such  
that F~.(wo) = x-~f.  Then it is clear from (1)-(3) that the function y~ =- M -~ 
-+. y* --~ k~x~wo is a solution of F~(y) - -g ,  and satisfies y~='.~M in F(as, a~), 
since y * ~ M ,  w 0 ~ l  and a ~ a .  

P A ~  X - _~ simple example.  

In  this part, T~ will stand for a differential  polynomial which is trivial 
in log~S #, and the sequence (0, 0, ...) will be denoted (01, 02, ...}. 

Let F~(y}--x-9/SyS-~yy"'--x -2. We first apply Theorem I to find par( t2) .  
The term of degree 3 will not contribute any parametr ic  monomials, since 
the crit ical equation of ~qcs) has no roots. The crit ical equation of F~ (-~) has 
the three roots, 0, I and 2. To test the root 0, we find [0; t2] (v) =- e(-5/~n'v3-~ 
+ Ivv"'-- 3vv"-]- 2Vv'}e - ' ~ -  1. Since [0; Ft] (~ is trivial, the process stops here 
for the root 0 (i.e. 0 is not the first coordinate of an s- tuple  which satisfies 
§ 21(b), relative to p =-2) .  Testing the root 1, we find [ t ; ~ ]  (v)--e(-1/:)~v3~ 
--{-vv"'--vv'--e -'~. Hence [1; ~t] (:~ is non-tr ivial  and we can continue. The 
critical equation of [1; ~]~' has 0 as its only root, and [0, 1; gt] (v)'----vv'-+-T2(v). 
Hence [0, 1; ~](~' is non-tr ivia l  and 0 is the only root of its critical equation. 
It is now clear, by continuing this process, that (i, 0, 0, ..., 0) is an s- tuple  
which satisfies §21(b) relative to degree 2, and therefore kxEpar( t2)  for 
each k. Clearly, AFIkx , gt, y ) - - - - y y ' .  Since 0 was the only root of the 
crit ical equation of [0~, 0~_~, ..., 0~, 1; ~2] (2~ for i ~  1, kx are the only para- 
metric monomials corresponding to the root i. Finally, testing the root 2, 
we find [2; t2] (2~ is trivial so the process stops. Since we have tested all the 
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non-tr ivial  homogeneous parts of ~ which are of positive degree, we conclude 
that p a r ( ~ ) - - / k ~ :  all k}. (We note that no logarithms appeared in the 
parametr ic  monomials, and of course this is due to the fact that 0 was ihe 
only root of the critical equation of [0,, ..., 01, 1 ; 12] (2), for i ~_ 1. If however, 
~2c~(y) had been yy"'+ x- lyy  '', for example, then its cri t ical  equation would 
have the two roots 0 and 1, as before 0 would not contribute anything, but 
since [1; ~2] (2) would now be vv"+ vv"' it is clear that kx and  kx log x would 
be in par (~2)). 

We now apply Theorem II  to find crit ( ~ 2 ) -  par (~2). Since ~2(3)[ *, ~] = 
-~3~w9/2, ~(~'[*, :¢]=2~--3 ,  ~2<°~[ *, :¢]-~--2, while all other ~(q'[*, ~] are - - ~ ,  
there are two admissible values, namely ~-~ 3/2 (from ~(~) and ~2 (2)) and 

: 1/2 (from ~2 (~' and D.(°)). For  ~--3/2, we find [3/2; ~](v)----v~--{3/8)v ~ -  
--(1/4)vv' .~ (3/2)vv"~ v v " ~ e  - ~ .  This has only 0 as an admissible value, 
and [0, 3 /2;  ~2](v)-- v z - ( 3 / 8 ) v  ~ ~ T2(v). Again. this has only 0 as an 
admissible value, and it is now clear that (3/8)w3/~E (erit (~2)-- par (~)), with 
AF(I3/8)x 8/2, ~2, v) "- v ~ -  (3/8)v ~. This is the only contribution from :¢ : 3/2. 
Treat ing ~ : 1 / 2  similarly, we find that ± tS/3)~/~a~/2E(cr i t (~) - -par (~)) ,  
with associated function (3/8)y ~ -  t. (Of course, -+-(8/3)~/~x~/~ are the principal 
monomials of ~2). Hence there are three non-paramet r ic  critical monomials 
of g2, and of course, each is simple. 

Since ~/~y" ' -~  x, .Q t)ossesses a type at each of the non-parametr ic  
crit ical monomials by Lemma 42(a). Computing the residual  operators in 
each case, and using [6, §44] to find the types, it is easily verified that 
Theorem IV can be applied to assert the existence of a solution c..~M in 
F ( ~  ~, ~), for each M~(cri t  (t2)-- par  (tl)). However  in this par t icular  example, 
more information about ~these solutions can be obtained by a more detailed 
investigation of the residual  operators. In  each case, it is found, using 
[6, § 1.05] that each of the residual operators is, in fact, uniformly quasi- l inear.  
Hence  [6, §99] may be+applied in each case, to assert that the equation 
t l i y ) ~ - 0  has (a} a unique solution c-,~(8/3)~/~ ~/'~ in F(--n, r:). (b) a unique 
solution c,~--(8/3)~/2a~/~ in F(--r : ,  r0, and (c) a one-parameter  family of 
solutions c,z (3/8)x~? in F(- - r : ,  r:). 

For  the parametr ic  monomials, we consider A,(z)-~Ft(kx-~-z). It  is found 
that A, has a unique (simple) principal  monomial, N,  --- (--  8/3)k~'x 1/~, at 
which it has a type. Following the same procedure as above, we find that 
the equation Aa(z)= 0 has a one parameter  family of solutions c-,,~Na in 
F(--r~, u). Thus for each non-zero k, the equation ~ ( y ) - - 0  possesses a 
one-parameter  family of solutions ~ kx in F(--~:, r:). 

Hence  in this example, for each M ~ c r i t ( t l ) ,  the equation t l ( y ) - - 0  
possesses at least one solution ~ M in F( - -  ~:, u). 
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