On the instability theory of differential polynomials (%).

by StEvEN Bank (Illinois, U.S.A\)

Summary. - In this paper a class of nth order non-linear differential equations is treated
and solutions are sought which are asymptotically equivalent to logarithmic monomials.

Parr I - Preliminaries.

1. IntrOoDUCTION - In [, 6], W. STRODT investigated the problem of
finding those solutions of an nth order non-linear ordinary differential equation,
which are of minimal rate of growth at a singular point at oo, and further-
more are asymptotically equivalent {(~) to logarithmic monomials (i.e. functions
of the form M(x) = Ka*(log x)u(log log x)* ... (log, x)*, for real «; and non-
zero complex Kj, as & — co.

In this paper, we investigate the problem of finding all! solutions of the
equation which are asymptotically equivalent to logarithmic monomials. The
class of equations treated in [D, 6] and in here, consists of equations Q(y)==0,
where  is a polynomial in an unknown function y and its derivatives,
whose coefficients are functions defined and analytic in an unbounded region
of the complex plane, and where, as @ — oo, each coefficient has an asymp-
totic expansion in terms of logarithmic monomials and/or functions (called
trivial) which are asymptotically smaller (<) than all powers of x. (For the
rigorous concepts of « <» and «co», see (5, §§12-13]).

In [5, §66], it was shown that O determines a finite set (denoted pm(Q))
of logarithmic monomials, M (called principal monomials) which are «approxi-
mate solutions» (i.e. Q(M)<Q0)) and among all approximate solutions are
of minimal rate of growth at co. These properties are shared by those exact
solutions (called principal solutions} of Qy) =0 which are oo to principal
monomials. An algorithm which produces pm(Q) in a number of steps which
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University in May, 1964. I am especially grateful to Professor WarLrTEr StRODT Who
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During a portion of the time this research was done, I was a National Science Foundation
Cooperative Graduate Fellow.
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can be bounded in advance was introduced in [5, § 66], and existence and
uniqueness theorems for principal solutions were established in [5, § 127] and
[6, §122].

If Qy) == 0 possesses a solution oc to a logarithmic monomial M (not
necessarily a principal monomial), then at M, Q must satisfy (see §5(c)) a
condition called instability, which was introduced in [9, 10], and which means
that for some function foolM, Q{f) is not oo Q(M). Furthermore, an equivalent
definition of instability (§3(b)) hints at the existence of solutions co to those
monomials at which Q is unstable. For these reasons, the concept of insta-
bility is chosen as our starting point, and we investigate all the logarithmic
monomials (called eritical) at which Q is unstable. (The problem of solutions
is taken up in Parts VIL.IX). The expected result that pm(Q) constitutes the
set of minimal critical monomials concludes Part IL

Methods for finding the critical monomials of  are developed. Two
methods are required. One is for finding those critical monomials M, (called
paramelric) such that every constant multiple of M is also critical. The second
method is for finding the non-paramefric critical monomials (among which
are included as a special case all the principal monomials). Both methods
are of an algorithmic nature, and use the same basic principle as the algo-
rithm for pm(Q), namely repeated application of the change of variables
x® = e%, y=ve**, where o is a real number determined at each stage. When
followed by multiplication by a suitable power of e*, this change of variables
transforms Qy) into a differential polynomial in v (denoted [«;Q]), which
again belongs to the class we are comsidering. Part III is devoted to the
study of this, and the successive transforms [B; [«; Q] ete. Their crucial
property (§11) is that M(x) = Ku*(logx)(log.x)* ... is eritical of € if and
only if N(u) = Ku=(logu)> ... is critical of [«,; Q]. Hence if «, is known to
satisfy a cerfain condition C, when M is critical of , then «, satisfies C
relative to [«,; ], and so on for a,, o;, .... Both methods use this algorithmic
property, and [5, § 61] (which is here strengthened and incorporated into §13),
is used to show that the process can be stopped at a predetermined point,
and the conditions C are sufficient also.

Part IV is devoted to the method for parametfric monomials. It is first
shown (§ 15) that a necessary (but certainly not sufficient) condition for M
to be parametric of Q, is that it be parametric of at least one homogeneous
part of Q. For the moment, we focus our attention on finding the parametric
monomials when © is homogeneous (§ 19). In this case, condition C takes a
simple form, namely that «, be a root of an algebraic equation, which resem-
bles the indicial equation at oo (see [4, § 161]) in the case of linear equations.
When Q is non-homogeneouns (§ 21), our condition C is phrased in such a way
that we are examining each homogeneous part of () for parametric monomials
{using the method already developed in § 19), while simultancously examining
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the behavior of the rest of Q to determine if the parametric monomial pro-
duced by a homogeneous part will actually be parametric of the whole poly-
nomial, Q. The method in §21 produces eachk parametric monomial in a
number of steps which can be bounded in advance, but except in the case
of linear or first order £, the number of steps required to produce the sef
of parametric monomials may be infinite (see § 17, Remark (2)).

Part V is devoted to the method for non-parametric critical monomials.
Here condition C takes a form similar to that for the algorithm for pm(Q),
namely that «, should be the slope of a side of a NEWTON polygon. The
resulting method (§26) produces the sef of non-parametric critical monomials
in a number of steps which can can be bounded in advance. (A simple
example illustrating both methods is given in Part X).

Since we are ultimately interested in solutions of Q(y)=0 which are
oo to critical monomials M, and since the existence of such a solution is
clearly equivalent to the existence of a solution <1 of the equation A(z)=0,
which is obtained from Q(y) =0 by the change of variables y =M 4 Mz, if
is of importance to investigate such critical monomials of A as are <1.
This is done in Part VI (§§ 31, 33}, and use is made of these results in Part VIL

Parts VII through IX are devoted to existence theorems for solutions
co M of Q(y) =0. Here the coefficients of O are assumed to be defined and
analytic in a sectorial region (more specifically, in an element of an Fla, b),
as defined in [5, §94]), and the solutions obtained are of the same type.

In Part VII (8§ 36, 38, 39), the result obtained by STRODT in [7] (see § 35),
is used to obtain solutions in certain first order cases, when the coefficients
of (1 are of the type considered in [7].

In Part VIII, non-parametric critical monomials M, of an nth order Q
are considered. It is shown (§40) that when M and Q satisfy the general
conditions analogous to those for principal monomials in [5, § 85] (when n=1)
or [6, §116] {when % >1), then under the change of variable y = M 4 Mz,
Qly) is transformed into a differential polynomial to which [b, § 126] (when
n=1) or [6, § 115} (when #» >1), can be applied, thus obtaining solutions co M.
These results are given in' §§ 44-45.

Part IX concerns critical monomials of Q(y) = ®(y) — g, where @ is an
nth order linear differential polynomial whose coefficients, along with g,
have asymptotic expansions in therms of real (but not necessarily integral)
powers of x, and/or trivial functions. In [8], it was shown that for such an
Q (in the case where it possesses a principal monomial), the equation Qfy)=0
has at least one principal solution. We utilize this, and other results in [8],
to prove (§45) that corresponding to any critical monomial M, of (, the
equation Qy)=0 has at least one solution oo M. The connection between
this and the FucHs regularity theorem ([2, p. 143], and [3, p. 358], or 4, p. 365]),
will be explored in a future paper.
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2. UNIFORM HYPOTHERES

(@) M is a logarithmic monomial.
(b n€{0, 1, 2, ...}

e} Wel0, 1, 2, ...}

(d) ref{—1,0, 1, 2, ...}

(e) §* is a complex neighborhood system of oo as defined in [5, § 3].
{That is, S# is a filter base which converges to co in the sense of [1‘, § 6],
and which consists of unbounded regions, each disjoint from the non-positive
real axis. The concept of asymptotic equivalence as x— oo, which we employ
([5, §13]), is defined relative to such a filter base, and explicit mention of
S# will be omitted when no confusion is possible).

{f) © is an nth order differential polynomial in an unknown function
y (that is, a polynomial in y, dy/dex, ..., d"y/dx”), whose coefficients are
functions of « which belong to a logarithmic domain of rank r over S*
(briefly, an LD,(S#)), as defined in [6, §49]. This condition ensures that
each coefficient of ( is either ~» to a logarithmic monomial in S* or is
trivial in S#, and further ensures that under either change of variable,
y=M-42 or y= Mz, Qy) is transformed into a differential polynomial
whose coefficients again belong to a logarithmic domain (and therefore can
be treated by our methods).

(g) At least one term in € is to have a non-trivial coefficient (briefly,
we then say ) is non-frivial). If we require that at least one term of positive
degree in the indeterminates have a mnop~trivial coefficient, we will indicate
this by the abbreviation NTPD (non-trivially of positive degree).

(k) W is the maximum of the weights of all ferms in Q, which have
non-trivial coefficients.

Parr 1II - Critical Monomials,

3. LEMMA ~ Assuome §2 and let  be NTPD. Then the following two
conditions are equivalent:

(@) Q is unstable at M.
(b) Either Q(M) is trivial, or some P¢pn(Q(M 4 2)) is <M.

Proor - Let Alz)=Q(M 4-#). If () does not hold, there exists
Pepm(QM 4 2)) with M =< P, (that is, M <P or McokP for some non-zero
constant k). Hence g < M implies g< P, and therefore, by the properties of
a principal monomial ([, § 66]), Aig)co A{0}). Thus (a) does not hold.
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Conversely, suppose (b) holds but (@) does not. Then Q(M) must be trivial,
for in the contrary case, A would have a principal monomial, P <M, and
(@) would hold since QM + P)< Q(M). Hence A(V) is trivial for any V<M.
If we chose a real number ¢ so small that a principal monomial N, of
D(2) = Afe) — 22 is < M, then ®(N)o>D(0). This contradicts the definition of
principal monomial, so (a) must hold.

4. DEFINITION - Assuming §2 with Q NTPD, we say M is a critical
monomial of Q, if M and Q satisfy either (and hence both} conditions of
Lemma 3. The set of all critical monomials of O is denoted crit (Q).

5. LemMma ~ Assume §2 with NTPD. Then under any of the following
conditions, M€ crit ((3).

{@) There exist a constant ¢, and a function goo M such that Q(g)<<Q(cM).

{(b) There exists a function # oo M which is an approwimate solution of
Q (i.e. Qk) < Q0) if QO) == 0, and Q) =0 if Q(0)=0).

{¢) There exists an exact solution of Q(y) =0, which is cc M.
(d) M€ pm(Q).

ProoF - (@) Assume M¢ecrit(Q). Then there exists NE€pm(Q(M + 2))
with M S N. Since g — M < M, g — M < N. Thus Q(g) co Q(M). Therefore, by
hypothesis, Q(M) <Q{cM). But the contradictory relation Q{cM) X Q(M) follows
from the fact that (¢ —1)M N, and N€pm(Q(M + #)), (see [5, §67]), thus
proving the result for (a).

(b) If 00) == O, then (b) follows from (a), by taking ¢ =0. If Q(0)=0,
but M ¢ erit(©2), then Q(M) is non-trivial and therefore Q(h)<<Q(M). But
then M€ crit (), by taking ¢=1 in (a). This contradiction establishes the
result for (b).

(¢} and (d) follow from (b).

6. LEMMA - Assume §2 with Q NTPD, and let Q{0) be non-trivial. Then,
(@) If N€ pm(Q), while M €{crit (Q) — pm(Q2)), then N << M.

(0) pm{Q)) constitutes the set of minimal elements (relative to « <»} of
erit ().

Proor - It obviously suffices to prove (a). If N were not < M, then
MZ N. Since M ¢ pm(Q), Q(M)=Q0). Thus Q(M) is non-trivial, and therefore
Q(M + #) has a principal monomial, G, with G < M. Hence QM + G) < QM).
But M+ Goo M, and therefore M + G is not co to any element of pm{Q).
Thus QM 4+ G) = Q(0), so Q(0) < Q(M). This contradicts the relation QM) = Q{0),
previously established, thus proving (a).
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Parr IIT - The transform [«; 0].

7. NorarioNn -~ Assume § 2.

(@) If #* = (4o, 4y, «., ¢y} is an (n -4 1)~tuple of mnatural numbers, then
the coefficient of yh(y)h ... (™) in Q is denoted Q[é*], and as in [5, §62],
the degree 4, 4 4, + ...+ ¢, and the weight 4, + 24, + ... 4 ni, of é*, will be
denoted by d(i*) and w(i* ) respectively.

() It « is a real number, then by Q(i#, «], we will mean the quantity
ad(* ) + 8y(Q[é# ) — w(é#), where as in [B, § 23-24], &,(Q[é# ]) is —oo if Q[i*]
is trivial, while in the non-trivial case, it is the exponent of @ in the loga-
rithmic monomial to which Q[é#*] is asymptotically equivalent. (In general,
3,( ) is the exponent of log;x). Q[* «] will denote the maximum, over all i#,
of the numbers Q[i#, «f.

(¢) If ®{v) is the polynomial in v, dv/du, ..., d"v/du”, obtained from
Q(y) by the change of variables x = e*, y = ve**, then the differential poly-
nomial exp(— Q[¥ «Ju)®(v) is denoted [a; Q](v).

(@) If p is a natural number, we denote by Q% the sum of all terms
in © which are of degree p in the indeterminates y, ¥, ..., ¥ (that is, Q¥
is the homogeneous part of total degree p of ). As usual, Q will be called
homogeneous of degree p it Q = QP and simply, homogeneous, if it is homo-
geneous of some degree.

8. LEMMA ~ Assume §2 and let « be a real number. Then,

(@) [a; Q] has coefficients in an LD, (where {= max {r—1, —1}), over
the complex neighborhood system log S#, defined in [5, § 8].

(0) {«, Q] is non-trivial in log S#.

(c) If Q is homogeneous of degree p, then so is [x; O],

(d) Max {w(é#): [«; Q][é#] is non-trivial | < W.

(¢) If p=0 and Q®¥* o] < Q[* a], then all the coefficients of [a; Q]®
are trivial in log S#.

(f) If p=0 and QP a] = Q[* «], then Q¥ is non-trivial in S* and
fo; QP = [a; Q@]

Proor - Under the change of variables x = e¥, y = ve*¥, it is clear that
y'? becomes K (v)e*~P* where Fy(v) is a homogeneous linear polynomial in
v, ¥, ..., v'? with constant coefficients. Thus each coefficient of [a; Q] is a
linear combination of functions of the form g(i#, u) = Q[é# ] (e¥) exp [(ad(i* ) —
— (i) — Q[* a«])u}. It E* is an LD,(S*) which contains all the coefficients
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of Q, then the coefficients of [a; Q] lie in the set log E* (defined in [b, § b1}),
which is an LD, over log S#. This follows because log E* is the complex
vector space generated by all functions which are either trivial in log S#
or are of the form h{e*)exp (— 8,(hju), where h is a non-trivial element of
E* It Qi#, a] = Q[F ], then g(i#, ) has this latter form, while g(¢*, u) is
trivial if Q[é#, «] << O[* a]. This proves (a).

To prove (b), let k# be the smallest ## (relative to the lexicographic
order) for which Q[k#, «] = Q[* «]. Then [a; Q)[k#]=g(k*, u) + fiu), where
f is trivial, so [a; Q][k#] is non~trivial, proving ().

Part (c) is clear, since each F, is homogeneous and linear.

As seen in the proof of (a), each [«; Q][j*#] is a liner combination of
the functions g(¢#*, ), and it is a routine computation to verify that
wii* ) = w(j*) and d(i* ) = d)j#) for each g(i*, u) appearing non-trivially in
this combination. Hence if w(j#) > W, then [a; Q][4#] is trivial, proving (d).
H Q@@ o] < QF o], then g(i*, u) is trivial if d{¢#)==p, so all coefficients
of terms of degree p in [«; Q] are also trivial, proving (e).

Finally, to prove (f), if Q®* a] = Q[¥, «], then Q®[* «] is not — oo and
so QP is non-trivial. The relation [a; Q]P = [a; Q?] follows easily, since
[a; QP and [«; Q®] differ only by the multiplicative factor exp[(Q¥[* a]—
— Q[ o« ju].

9. NoraTioN - Assume §2 and let ag, ,, ... be a sequence of real
numbers. By induction on Lemma 8, (o) and (b), the polynomial [et;; [oti, .
vy @3 QJ] is defined for all 4==1, and we denote it by [a;, ¢y, ..., %; £].
(For consistency, we let {@;_y, ..., %; Q] stand for Q when ¢ =0).

If M is given, then [M, 4, Q] will stand for [8;_,(M), ..., 5,(M); Q].

10. LEMMA ~ Assume §2. Liet ¢ and p be natural numbers, and let o, a4, ..., &;
be real numbers. For each j, 0 <j<i 41, let Q;=/[oy;, ..., %; Q]. Then
the following conditions are equivalent.

(@) (£44+1)® is non-trivial in log;,,S%.
() (Q)P[*, a;] = Qj[*, ;] for each j, 0 <j <.
(c) Q® is mnon-trivial and ()% = [a;_y, ..., &; Q?] for each j, 0=
<j<i+1.
(d) (2y)® is non-trivial in log,S#* for each j, 0<j <<i 4 1.
- (@) implies (b)) by Lemma 8 {e).
(b) implies (¢) by Lemma 8 (f).
(¢) implies (d) by Lemma 8 (b).
(@) clearly implies (a).

Annaii di Matematica 12
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11. LeMMA - Assume §2 with Q NTPD. Then,

(@) If M€ crit(Q) with 3(M}=a, then [o; Q] is NTPD and M(u)=
= e~ M(e¥} is critical of [«; Q].

() It for some real number v, [v; Q] is NTPD and N €crit[v; Q}, then
G(x) = x*N{log x) is critical of Q.

Proor -~ Both paris are proved using [3, § 19(d), (e}] which states that an
asymptotic equivalence holds in S# if and only if under the change of
variable x =-e%, it holds in log &#. To prove (a), we first show [a; Q] is
unstable at M,. Assume the contrary and let hoc M in §*. Hence h(u)=
= e~ **hfe*) oo M;(u) in log S# . Therefore, [a; Q] (hy(u)) oo [o; Q] (M,(u)) in log S*.
This relation then holds in S# (relative to ®) when # ==log®. But using the
definition of [o; Q], this implies (k) co Q(M) in S#, contradicting M € erit Q.
Thus [«; Q] is unstable at M,. If [«; Q] were not NTPD, then by Lemma 8(b),
only the term of degree zero in [«;{)] would be non-trivial, and this would
imply the stability of [a; Q] at every logarithmic monomial and hence at M,.
This contradiction establishes that [a; Q] is NTPD and M, € crit [2; Q],

proving (a).
() is proved similarly by assuming G is not critical of £, and showing
this would imply N is not eritical of [«; QJ.

12. LeMMA - Assume §2 with O NTPD. Let «y, o4, ..., 2,1 be real
numbers, where s =¢ -4 1 and let Q, =0, 4, ..., %; 2], Then

(a) Q;= Q, + R, where @, is a non-zero differential polynomial with
constant coefficients, while E; has only trivial coefficients in log,S#. If Q
is homogeneous of degree p, so are @, and K,.

(6) If k£ is a non-zero constant, then @ k) =0 if and only if Nix)=
= kam(log @) ... (log,_.x)%—1 is critical of L.

Proor - By Lemma 9(a) and [, §§53-54], the coefficients of £ lie in
an LD_, over log,S*, and hence each is of the form ¢ -+ I where ¢ is a
constant and T is trivial in log,S*. Part (@) now follows immediately.

To prove (b), suppose Q%) =0. Then &%) is trivial in log,S*, and
therefore k¢ orit(Q2,). By Lemma 11{b), N€ecrit(Q). Conversely, suppose @,k
is non-zero. Then @ k) =1. Now, Q,k + 2) = P(2) + Qs(k), where each term
of P(z) has positive degree and a constant coefficient. If G <1 in log,S#,
then clearly P(G)<1 in log,S#. Thus @k -+ G) oo @4k) for all G <1. There-
fore, {; is stable at %, and so N ¢ crit{Q) by Lemma 11(a).

13. LEMMaA - (Weight reduction). Let Qy) be a non-zero nth order dif-
ferential polynomial with constant coetficients. Let p and w be natural
numbers such that each ferm of ¢ has degree p and weight w. Let a be a
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real number. Then,
(@) [o; @] has constant coefficients.

(b) Suppose w > 0. Then [«; @] non-trivially involves a term of weight
less than w unless o =0 and Qy) == c(y/)*y?—"* for some constant c.

Proor - By direct calculation of [«; @], it is clear that it has constant
coefficients, and we can write [o; @] = @ + @, where the non-zero terms of
Q. (if any) have weight less than w. Let w > 0. If « <=0 then (b) follows
from [5, § 61]. Now assume a« =0 and @ is nof of the form c(y)*y?~". Then
for some constant b, we may write Qy)="0b'y)"y?" + G(y), where G is a
non-zero polynomial in y, ¢, .., " with constant coefficients, each term
of which has degree p, weight s and order =2. Then clearly, [0; Q](v)=
= b(v) P~ 4 [0; G](v). Now assume (contrary to (b)) that [0; Q) has no
non-trivial therms of weight less than w. Therefore, [0; Q] (v)= Q(v) since
@, = 0. Hence,

(¢) [0 G] (v) = Glv).

If the derivatives of y in G(y) are with respect to x, and if Pu, v) is the
polynomial in v, dv/du, ..., d"v/du”, obtained from Giy) by the change of
variables y = v, © = e*, then by definition,

(d) [O’ G (U) = equ{M’ v).

The proof now proceeds in a way similar to that of [5, § 61]. Obviously,
if y = f(x) is a solution of G(y) =0, then in view of (¢) and (d), y = f(log x)
is also a solution. Hence if B denotes the set of solutions of G(y) =0, then
fle)€ B implies f(log x)€ B. Since G(y) has constant coefficients, fla)¢ B implies
fla + x)€ B for each constant @. Finally x€B since every term of G has
order = 2.

Let a,, @1, ... be complex numbers, and define functions H,(x, aq, ..., az)
recursively, as follows: Hy(x, ao) = ao+ x, Hys(@, Gy, oy Gppa) = Gpops +
-+ log Hylx, a, ..., ap). It now follows from the preceeding that

(8) ylx) = Hx, ao, ..., a,)€B
for any s =0 and any complex numbers a,, ..., a,. (The proof is by induction
on 8).

We now prove that if s=>0 and #= H,, then the Jacobian of 2,
2/, ..., 3*z/0x* with respect to a,, ..., @, is not identically zero as a function

of {x, ao, ..., a;). When shown, the proof will be completed since for fixed w,
this implies the functional independence of 2z, 3z/%x, ..., 3°2/0x°, as functions
of ay, ..., a;, which of course contradicts (e}, for s =n.

Assume the Jacobian is identically zero. Then there exist functions
K, ..., K; of (a,, ..., a,) such that

(f) Koz/a, + ... + K;92/0a; =0
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in (¢, g, v, g with | Ko| 4 ... + | K| > 0. If ao, ..., a, ave fixed as positive
numbers, and « ranges over large positive numbers, then clearly H,, ..., H,
all — oo as x — co. Therefore, if s>j >k,

(g) (35/30&},) (Sz/aa,j)'l == (Hk—Hk—Hl . Hj_.l)—l — 0

as & — oo, But (g) clearly contradicts (f), and so the Jacobian is not iden-
tically zero.

Parr IV - The parametric case.

14. DEFINITION - Assume §2 with & NTPD.

(0) M is called a parametric monomial of €, if kM € erit (Q), for every
non-zero constant k. The set of all parametric monomials of Q is denoted
par (Q).

(b) If fookxnlog )= ... {log,x)*s in S*, then the unit monomial
x*(log x)* ... (log,x)*s is called the gauge of f and is denoted ]f[. (This concept
and notation were introduced [9, § 17]).

(¢) It B is a finite non-empty set of unit monomials, then the maximum
of B (denoted max B) is that element V of B, such that IN¢ B implies either
N<V or N=V.

15. LemMA - Assume §2 with Q NTPD. Let M€ par(Q). Then there
exists p > 0 such that Q¥ is non-trivial and M € par (Q®).

Proor - Let I be the set of all p > 0 for which Q% is non-trivial, and
assume the conclusion does not hold. Then if p €1, there is a non-zero
constant % for which kM ¢ crit (Q®). But for any » < M and any non-zero
constant ¢, Q®P(cM -+ h) = cPk—2Q®P(EM + g), where g=c¢*kh. Therefore it
follows that cM ¢ crit (Q?) for each constant ¢ and each p€I. In particular
QP(M) is non-trivial for p€ 1. Let N=max [|QP(M)[: p€IU{0}}, and let
J be the set of all p€IU {0} for which JQP(M)[= N. Then for p&J,
QP(M)cob,N, where b, is a non-zero constant. Let fla)=23{ba?:pecd},
and let % be a non-zero constant for which f(k,) == 0. Then we assert that
for any h <M, QM+ h)cofk)N. If proved, this implies %M ¢ orit (Q) which
contradicts hypothesis, and thereby establishes the lemma. To prove the
assertion, we note that if p € I, then QP (kM + h) oo QP (kM ), since kM ¢ crit Q®,
Also, QP(EM is cobykPN, if p€J and is <N if pel—J If p=0,
QWM - k) equals QP(M), while for p¢ TU{0}, QP kM -+ k) is trivial and
therefore < N. The assertion now follows immediately, since Q&M 4 h) is
the sum (over p) of all QP(k,M + h).

ReEMARK - The converse of this result is not true, for if Qy)=1y 1,
then 1 ¢ par (Q) although 1€ par (Q®).
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16. LEMMA - Assume § 2 with Q NTPD. Let O be homogeneous.
Construct a polynomial F(a) as follows:

Let N be the maximum of the gauges of ac"‘”’(i#’Q[i#] over all ## for which
Q[é#] is non-trivial, and let I be the set of all ¢# for which | Qi# ] [=N.
For #€1, let w-wﬂ'#)g[i#]c\vc(i#)l\f, where c(é#) is a non-zero constant, and
let fli#, o) = abjafe —1))= ... (dle — 1) ... (¢ — 5 - 1)) where # = (4, ..., G,).
Define F(a) = I {o(é* )f(i*, «): ¢ €I}.

Then, if M€ crit (£2),5F(8,(M)) = O.

Proor - Let p be the degree of Q, and let M = x*G where 5,(G)=0.
Then, if hoo M, it follows by induction on ¢ that A? =ax* 9Ga{a—1) ..
(@ —q 1)+ E,) where E,<1. Hence Q{h) = x*?G*N(F(o) 4 E), where E<1.
It F{e) =0, then Q{h)co QM) for all koo M, so M¢ecrit (Q), proving the lemma.

17. DeriNitioN - Under the hypothesis and notation of Lemma 16, the
equation F(a) =0 is called the crifical equation of €.

REMARKS - (1) The converse of Lemma 16 is mnot ftrue, for Qyj=
= w(log,®)y — y has no critical monomials, but zero is a root of its critical
equation.

(2) It is possible for the critical equation to be satisfied by every
complex number (e.g. Qy) = ()’ — yy’ —x'yy). However, if this is not the
case (as for example, in linear or first order {)), then the critical equation
clearly has at most W roots.

18. LEMMA - Assume §2 with Q NTPD. Let Q be homogeneous of
degree p, and let s =r + W + 2. For each i, 0=<i <(s, let o; be a real root
of the critical equation of [a;_y, ..., %; Q]. Then

a) There exist $¢{1,2, ..., p} and a non~zero complex namber ¢ such
p
that
[Gs_1y very Oo; Q} (v) = cvP—E(v')E 4 R, (v)

where the coefficients of R, are all trivial in log,S*.

(b) Zero is a root and is the only root of the critical equation of
[Ggry ors Oo; Q]

(¢) N{x) = ka2 (log ®)* ... (log,_,a)*—1 € par (£2) for any non-zero k.

Proor - Let Q;=/[oi_y, ..., %; Q] and B; = Q% 0] for 0 <i<s. Then by
Lemma 12(a), if i>=>r + 1, Q; = Q; + R; where (; has constant coefficients
and is homogeneous of degree p, while R; is trivial in log;5%. Since &; of a
non-zero constant is 0, — B; is the minimum weight of all non-zero terms
in Q. It is a routine computation to verify that the coefficient of the term
of weight O in Q; is Fla,_;) + ¢ where F(a)=0 is the critical equation of
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Q, ;, and ¢ is trivial in log,S8%. Since Fla,_,) =0, clearly — 3, > 0. Hence
every constant is a solution of Q,v)=0, and therefore (c) follows from
Lemma 12(b). Let QFf be the sum of all terms of weight — §; in @;. Then,
since [o;; QF] has constant coefficients (by Lemma 13(a)}, and since it is
easily seen that ¢; — @ and R; are both transformed into the trivial part
of Q;_,, we have

(1) [0 Q] = Qi for r+1=is=s—1L
Thus by lemma 8(dj, the sequence of weights (— B, 41, — Bygz, vy — Bs) I8 a
monotone decreasing sequence of elements of the set {1, 2, .., W}. If this

sequence were strictly decreasing. it would have at least W2 distinct
coordinates (since s=r-- W-}-2), which is'clearly impossible. Hence —8,==—3,,,
for some j€{1 +1, v+ 2, .., s —1} Therefore by Lemma 13, ;=0 and @/
is of the form QF(z) = c2?*%(¢)%. Let f=—3B,. Then 3€¢[1,2,..,p} and
since a; =0, @, 4(v) = cv?8¢)% by (1). Then a,,, =0 since its a root of the
eritical equation of Q,,. It is now clear that for 1=<{<<s—j, @ {v)=cv?F{v')%
the proof being by induction on {, using (1). For {=s — j, we obtain desired
representation in (a). Part (b) follows from Part (a), and the fact that 3> 0.

19. LEMmA - (Homogeneous case): Assume §2 with Q NTPD. Let Q be
homogeneous and let 8§ = + W -+ 2. Then

(@) M€ crit(Q) if and only if M(x)= kx>(log x)" ... (log,_1x)*—1, where
k is a non-zero constant and where o; is a real root of the eritical equation
of [ai_1, -, %g; ], for each 4, 0 <i=s5—1.

(b) crit () = par (Q).

Proor - Part (a): The condition is sufficient by Lemma 18(c). To prove
the necessity, let M € crit (). Then by induction on Lemmas 16 and 11(),
3{M) is a root of the critical equation of [M, 4, Q] for each 4=0. But then
8(M)=0 for i=s by Lemma 18(b), proving the necessity.

Part (b): This follows from Part (a).

ReEMARK - For an arbitrary Q. Lemma 18(a) provides a method for
finding par(Q®) for each p. The key step in adapting this method to the
non-homogeneous case now follows.

20. LEMMA - Assume §2 with Q@ NTPD. Let s=r + W+ 3. Suppose
there exists p>0 for which M€par(Q™) and such that [M,s, Q[P is
non-trivial on log.5#. Then:

(@) M € par(Q)
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{6) There exists an integer 8 >0 and a polynomial Cly) in y alone,
with constant coefficients, such that for any i=s, [M, {, Q](y)=(¥)*Cly)+ B.(y),
where all the coefficients of R, are trivial in log,5#.

PROOF ~ For i=>0, let Q;=1[M, i, Q] and let A, =I[M, i, Q9] when Q'
is non-trivial in S#. Letting A be the set of all ¢ =0 for which (Q,)? is
non-trivial, it follows from Lemma 10(a)(c) that for g€ 4,

(1) Q)7 =4y for O0<j=s
and letting «; = &;(M),
) 2,q + Q)% 0] = 0%, o] for 0=j<s—L.

By assumption, there exists p€ A4 such that p >0 and Mé€par Q. Hence
by Lemmas 18(a) and 19(a), ;=0 for j=s—1 and B=—A,_,,[* 0] is
>0, Let g€ A. Then since a,_; =0, B=—A;, [* 0] by (1) and (2). There-
fore, by Lemma 12(a), all non-trivial terms in A,_, , have weight =§ and
hence positive weight. Thus 1€par(A,_,,), and therefore M€ par{(Q?) by
Lemma 11(b). Hence A,_; (y) =c,y? ®(y)? + B,(y), where ¢, is a constant,
and B, is trivial. But then A, also has this form since «,_,=0. It now
follows from (1) and the definition of 4, that Qy)= (¥')¥Cly) + T(y), where
Cly)=Z{c,y?f:q€4}, and T is ftrivial. This is the desired representation
in (b), for t=s. For {=s, the representation in (b} follows easily by induction,
since’ «,_, = 0. Finally, since § >0, 1€par(Q,), and hence M€ par(Ql) by
Lemma 11(b), proving (@), and concluding the proof.

21. TaroreEM I (General ease) - Assume §2 with Q NTPD. Let s=>r+
+W 4 3. Then M€ par(Q) if and only if M(x) = kax»(log w)* ... (log,_,x)%—1,
where

{a} k£ is a non-zero constani,

{b} there exists p > 0 for which Q' is non-~trivial, and such that for
each ¢, 0=i<s—1,

~

(1) «; is a root of the critical equation of [a;_1, .., ao; Q]*, and
(2) T2ty ooy %oy ] is non-trivial on log; ., S8%.

ProoFr - Suppose (a) and (b) are satisfied for some p> 0. Then (2) implies
(C) [“./-——1: very %oy \Q](p) == [aj'-l: ey Ooy Q(P)],

for 0 <j <s, by Lemma 10(a), (¢c). Therefore (1) implies M€ par(Q#) by
Lemma 19(a). Hence M€ par () by Lemma 20(a).
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Conversely, suppose M € par (Q). Let My, = M and M ,(c)=
= exp(—3(M)x)M(e”) for ¢=0. Then by Lemma 1l{a), M;€par(Q;) for all
i =0, where Q;=[M, i Q). Letting 4; be the set of all ¢ >0 for which
(Qi)'? is non-trivial and M;€ par (Q)?, it follows from Lemma 15 that each
4; is non-empty (and each is clearly finite). Since A4, is non-empty, it
follows from Lemma (19(a) that 8(M)=0 for ¢=s, and we may write
M(x) = kx*(log )= ... (log,_.&)*s—1. We now show A4;, C 4; foralli. If p€d,,,
then by Lemma 10, (Q;)® is non-trivial and (c) holds for 0 <j <i 1. Since
M; ., € par (Qig.)®, we have M, €par (Q)® by (c) and Lemma 11{b). Hence 4;
contains A4;.,. Therefore, the intersection of all the sets A4; contains an
element p, which obviously satisfies (2). Since M€ par (Q®), it follows from
(c) and Lemma 19(a) that (1) is also satisfied.

REMARK - For an arbitrary Q, Theorem I provides a method for finding
par (), by considering separately, each p > 0 for which Q% is non-trivial,
and finding all s-tuples («, ..., #,_;) of real numbers which satisfy (1) and (2)
relative to p (taking s=r -+ W+ 3). Then corresponding fto any such
{tay oory %s_a), M(x) = kxilog ) ... (log,_,2)%—« is in par (). Conversely, for
any M €par (Q), the s-tuple (3,(M), ..., 8,_.(M})) must appear relative to some p.

Part V - The non-parametric case.

22. LEMMA - Assume §2 with Q NTPD. Let M € (crit (Q) — par (Q)), and
let 8,(M)= «. Then there exist at least two distinct natural numbers p and
q for which QP[F, a] = Q[* o] = Q9[*, «].

Proor - Assume the conclusion is false. Then the set of all p for
which Q®[* a] = Q[* «] reduces to {m] for some m. Hence if ¢ ==m, then
QP* a] < Qf* o] and therefore, [x; Q]9 is trivial. It follows that crit{e; Q)=
= crit [o; O], and therefore, par{e; Q)= par[e; Q]*". But then crit{a; Q)=
=par[z; Q], in view of Lemma 19(b) (as applied to [a; Q]"). Since M € crit{Q),
it then follows from Lemma 11(aj that e—**M(e*)€ par[a; 2], and therefore
Mé&par () by Lemma 11(p). This contradicts hypothesis, and establishes
the lemma.

23. DEFINITION - Assume §2 with QO NTPD. Then a real number o is
called an admissible value of Q, if the relation Q®[* a] = Q[* o] = Q9% a]
holds for at least two distinet p and q.

24. LeMma - Assume § 2 with Q NTPD. Let s =7r -+ 2W + 2. For each
i, 0=4¢ <s, let o; be an admissible value of Q;=/[2i_y, ..., a; O], and let
Qs = [aﬂ‘—l, ey Go; Q]' Thena
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(o) There exist a natural namber 8, and a non-homogeneous polynomial
Cly), in y alone, with constant coefficients, such that Q,(y)= (¥')?Cly) + B,(»),
where R, is trivial in log,S#.

(b) Zero is an admissible value, and is the only admissible value, of ;.

Proor - Let Bilg) = (Qi)?%, 0] and v; = Q[* ], for each ¢ and ¢. Let 4
be the set of all g for which (Q,)? is non-trivial, and let g€ 4. Then by
Lemma 10(e) and (b), (Q:)? is non-trivial and «;q 4 Bilg) =v; for 0=i <s.
Now for i=r 41, Q;= Q; + R; where @;-has constant coefficients, and B,
has trivial coefficients. Hence — Bi{g) is the minimum weight of non-trivial
terms in (Q)?. Letting P,, be the sum of all terms in (Q)? which have
weight — Bi(q), we have (as in (1) of Lemma 18}, [a;; Py] = (Qis.)?. Hence,
by Lemma 8(d), — Bi(q)= — Bilg}, for g€ 4. Now A clearly has at least
two elements. In what follows, assume ¢ and ¢ are any distinet elements of
4, and let m; = — (Bi(¢) + Bilg)). Then the sequence, (Myyy, My iy, ..., M) is a
monotone decreasing sequence of elements of the set {0, 1,..,2W}. This
sequence cannot be strictly decreasing, for otherwise, it would have at least
2W +4- 2 distinct coordinates (since s> - 2W 4 2), which is impossible.
Hence for some j, m; = m;.,. Then clearly, 8,,.(9) = 8;(q) and B, .(f) = B,(f).
It now follows from Lemma 13b), that «; =0, and that Pj,(s) = c(¢'}Pe?#
(where §=—v,), with a similar representation for P;,(2). Hence both (@, )'?
and {Q;4,)¥ are also of this form, and by induction, so are (@;1x)'® and (@,
for 1 <k<s—j. Since ¢t and ¢ were arbitrary elements of 4, it follows,
taking k=s—j, that Q.2 = (¢)*Clz), where () is a non-homogeneous
polynomial in 2 alone with constant coefficients, proving (a).

(o) follows immediately from (a).

256. DeriNITION - Under the hypothesis and notation of Lemma 24, the
sequence (%o, @, .., %i—y) is called an admissible sequence of Q, and (y¥')FC(y)
is called the s-equation of (oo, ys w., #;_4).

REMARK - B may be sirictly positive in the s-equation, as evidenced
from the example of (0,0, ..,0) in Q(y)=yy —y + x~°. (Note here that
1€ par ().

26, TaroreEM II ~ Assume §2 with QO NTPD. Let s>r -4 2W - 2.
Then M€ (crit () — par (Q)) if and only if M{x)= kx*(log x)* ... (log, %)% —1,
where (x, ..., ;_;) is an admissible sequence of Q, whose s-equation (¥)*C(y)
satisfies the conditions, =0 and C{k)=0.

Proor - The conditions are sufficient by Lemma 12(b).

Conversely, suppose M €(crit () — par (Q)). Then by Lemmas 11 and 22,
8{M) is an admissible value of [M, 7, Q] for all i==0. Hence by Lemma 24(b),

Annali di Matematica 13
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3(M)=0 for i=s. Clearly 8 =0 in the s-equation of (5,(M), ..., 3,_,(M)),
for otherwise M€par(Q) by Lemma 12(b). Finally C(k)=0 by Lemma 12(b),
since M cerit ().

ReMARK - It is clear that Theorem II provides a method for finding
the set, (crit (Q) — par (Q)}, in a number of steps which can be bounded in
advance.

Part VI - The associated function.

27, LeMMA - Assume § 2 with O NTPD. Let M€ crit (Q), with Z=M(] M)~
Then there exist a natural number 3, and a polynomial Ciy) in y alone, with
constant coefficients, such that

(@) B+ m >0, where m is zero if C(k) == 0 and otherwise is the multi-
plicity of the root & in Cly).

() For s =r+2W+ 3, we have 6,(M)=0 and [M, s, Q}{y) = (y')*Cly)+
-+ Byy), where R, is trivial in log,S*.

Proor - This follows from Theorem I and Lemma 20(b), in the case
when M is parametric, and from Theorem II, in the non-parametric case.

28. DErINiTION - Under the hypothesis and notation of Lemma 27,

(@) (¥)PCly) is called the associated function of M in Q, and is denoted
AF(M, Q, y).

(6) B is called the exponent of M.

(¢) m is called the multiplicity of M.

(d) M is called an ordinary monomial if m >0, and is called simple
if m=1.

REmMARKS - (1) If- M€ pm(Q), then the associated function defined in
[D, § 68(e)}, coincides with that defined in Definition 28(a), for in this case,
[M, i+ 1, Q] is the first image (see[5, § 63]] of [M, ¢, O].

(2) Obviously, B >0 if and only if M€ par(Q).

29. LeMMA ~ Assume § 2 with Q NTPD.

(@) Let s=r+2W -+ 3. Then M is an ordinary monomial of Q if
and only if Mx) = kx*(log x)~ ... (log,_x)%s—1, where (a, .., 2,_;) is an
admissible sequence of Q, whose s-equation (y)PC{y) satisfies the condition
Cik) = 0.
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() Let D(Q) (respectively, d(1)), denote the maximum (respectively,
the minimum) of the set of all p for which Q% is non-trivial. Then there
are precisely D(Q)— d(Q) ordinary monomials of Q, provided each is counted
as many times as its multiplicity indicates.

Proor - (a) is obvious.

To prove (b), we first prove the following assertion (4). If B={ay, ai, ..., a4}
is the set of admissible values of , where a, < a, < .. < a,, then (D(Q) —
— d(Q)) = Z {(D([as; Q) — d{[ai; Q)): 0<i <{}. First we show D([ai; Q]) =
d([@irq; Q)) for 0 <4 <{¢— 1. If this relation fails to hold for ¢, then letting
p=D([a;; Q]) and g =di[ai,; Q]), we have p < ¢q. But then using Lemma
10{a), (b), it is easily verified that the maximum of all the numbers,
(g — m)~HQ"[*, 0] — Q9% 0]) for p<m < ¢, is an admissible value of Q,
which is strietly between a; and a;,,, contradicting our representation for B.
Similarly, we prove D([a,; Q]) = D(Q) and d{[ao; Q])=d(Q), so assertion (4)
follows immediately.

Now let B; be the set of admissible sequences ({w,, oy, .., %_;) of Q.
If s=7-+4+2W--3, then by (a), it is clear that the number N of ordinary
monomials of ) is precigely the sum, over all (a, ..., 2,_,) € B, of the num-

bers D{[ot,_1, »o) to; ]) — A({&,—1, «oy %o; Q]). This sum can be written as an
interated sum, the inner one of which is over all o, , which are admissible
in [a;_y, .., %; O], and the outer sum is over all (a, .., 2, )€ B, ,. But

then applying assertion {4) to the inner sums, shows that N is the sum over
all (o, v, %) € B,y of the numbers D([a,_s, ..., o; Q]) — d{[ots—2, ...) % Q)
Repeated applications of this argument clearly leads to N = D{Q)— d(02).

30. LeMMA - Assume §2 with Q@ NTPD. Let M¢€ecrit(Q2), and let N be
a logarithmic monomial, with ¢ = N{]N[)~*. Then,

(a) It A=DNQ, we have M €ecrit(A) and AF(M, A, y) = a(AF(M, Q, y)).

(o) If @ is the N-multiplication transform of Q (i.e. ®fz) = Q(N7)),
then MN *¢€crit(®), and AF(MN, ®, y) = AF(M, Q, ay).

Proor - Part (a) is obvious.

Part (b) follows from the following assertion. If a=3,(N) and G(u)=e~**N(e*),
then for any real number v, [v; @] is the G-multiplication transform of
[« +v; Q). (Part (b) then follows by induction, taking v===8,MN-%). To prove
the assertion, we note that [v; ®] and the G-multiplication transform of
fo +v; Q] differ only by the multiplicative factor exp [(Q[*, a-+v]— @[¥, v])u].
Since both differential polynomials are non-trivial, this factor must be 1,
proving the assertion.
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31. LeMMA - Assume §2 with Q NTPD. Let M€ crit (Q) with exponent
8 and multiplicity m. Let A(z)=Q(M -+ Mz), and let® be the sum of all
terms in A of degree << B + m. Then,

{a) The set of critical monomials <1 of A is precisely the set of
eritical monomials <1 of @, {and the associated function in each is the
same]j.

{6) Any ordinary monomial of A which is <1 is an ordinary monomial
of ®. Any ordinary monomial of @ is <1 and is an ordinary monomial of A.

(¢} If Q(M) is non-trivial, then A has exactly § + m ordinary monomials
<1 (counting multiplicity).

Proor - By Lemma 30(b), 1 is a critical monomial of the M-multipli-
cation transform of €, and its associated function is of the form (y)°C(y),
where 1 is an wm-fold root of C(y). For ¢=0, let A;=[1,4, A]. Then for
sufficiently large 4, Ai(y) = (y)*C(1 + y) + Tify), where T; is trivial (the proof
of this being similar to that of Lemma 30(b)). Since 1 is an m-~fold root of
Cy), obviously for all ¢=0,

(1) (Aj&+m™ is NTPD.

Let the coefficients of A lie in an LD,(S#), and let s=1¢-2W -+ 3.

We first prove the following assertion. 1f G is a logarithmic monomial of
rank <s—1, and G <1, then for every ¢ > 3+ m, [G, s, A]? is trivial. Assume
the contrary for some ¢ > § 4+ m. Then letting j be the smallest ¢ for which
3i(@) is non-zero, it follows from Lemma 10(a), (6) that (A,)O[*, 0] > (A,)e+m[* 0],
and hence that (A;,,)®+™ is trivial. This confradicts (1), and proves the
assertion. Therefore, in view of Lemma 83}, for such a G <1 there is a
p <B - m such that [G, 5, A]® is non-trivial (and this holds for G =1 by (1),
taking p = § 4+ m). It now follows by induction that the relation,

@) (G, 4, ®] =2 ([G, 4, A]*: 0<E=<B+ m],

is valid for any @< 1 of rank <s—1, and any i, 0 <¢ <s.
Hence, if G <1, then since [@, s, A|? is trivial for ¢ > B + m, we have

(3) {Ga 8, A] = [G’ 8 CD] + 7T

where T is trivial. Part (@) of the lemma folloxs immediately from (3}.
Furthermore, (3) also implies that the ordinary monomials <1 of A are
precisely the ordinary monomials <1 of ®. Thus to conclude the proof of
Part (b), we must show that every ordinary monomial of ® is < 1.
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From (2), it follows that if G=1 then [G, s, ®] is of the form b(y')fy™ 4 R(y),
(where R is trivial), and hence there can be no ordinary monomial ~1. Now
assume © has an ordinary monomial N, with 1 < N. Then [N, s, ®] must
involve at least two terms of different degree, non~trivially. Since ® has no
terms of degree > § 4 m, there exists ¢ <f -+ m for which [N, s, ®? is
non-trivial. But then letting j§ be the smallest ¢ for which 3{N) is non-zero,
it follows from Lemma 10(a), (b) that (1,7, ®'2[* 0] > [1, j, P]e+"[* 0], and
hence that [1,s, @+ ig trivial in log,S*. But then by (2), (A,)®+™ is
trivial, contradieting (1}. This contradiction establishes Part (b).

Part (¢) follows from Part (b)) and Lemma 29(b).

32. LEMMA - Assume § 2 with Q NTPD. Let 1€ crit () with 4F(1, O, y)=
= (y)fCly). Let g=r +2W-+3, and let 6 =0, be the operator 0,y=
= (x logx ... log,_,x)y’ as defined in [, § 15]. Then there is a unit monomial
N such that when N is written as a polynomial in g, 8y, ..., 67y, it has
the form 3 #(k*, ajy*(6y)™ ... (6"y)*», where

{a) Hk*, x) S 1 for all k#
) tk#, x) <1 if k* = (k, B, 0, ... 0)
(c) Cly) =X [Uk*, + copyto: k# = (k,, B, 0, ..., 0)}.

Proor - The change of variables y=wv, x == e¥, transforms 9, ,/y into
0,70, for all p and j. Hence if we write ((y) as a polynomial in yg, by, ..., 6"y,
thén we obtain a representation for [1, g, Q] directly from the definition of
{1, ¢, Q] as a transform. Comparing this representation with that given by
the associated function, and using [, §19(e)], we easily obtain the desired
representation for N, when N{x) is taken to be x>(log a)=... (log,_1®)e—1,
where v; =11, 14, Q} [ 0].

33. LeMMa - Assume §2 with n=1 (i.e. let O be of order 1). Let Q
be NTPD. Let M¢par(Q), with exponent 3 and multiplicity zero. Let G <1
be a parametric monomial of Q(M - Mz), with exponent B, and multiplicity
m,. Then B, + m, < B.

In particular, the exponent of any critical monomial <1 of Q(M 4 Mz)
is less than §.

Proor - If I' is the M-multiplication transform of Q, then by Lemma
30(b), 1€par(l), with AF(1, T, y) of the form (y)fCly), where C(1)==0. From
Lemma 34, it follows that for sufficiently large g, there is a unit monomial
H(x), such that the coefficients of A(z)= HTI(1 -+ 2) satisfy the following
asymptotic relations:

(@) Alko, )] < (xloga...log,_ye)—F if K = §.
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(b) Alko, B))5 1.
(e} AL(O, B)] = 1.

Suppese G <1 is a parametric monomial of Q(M -+ Mz) with exponent
8, and multiplicity m,. Then by Lemma 30(a), G€par(A) with AF(G, A, y)
of the form (y)®C.fy), where C.y) has a non-zero m,-fold root. Letting b be
the degree of Ci(y), we have B; +b=<B by Lemma 31(a). Assume that the
conclusion B, 4, < § does not hold. Then since m, <b, we have B, b==24.
Then [G, i, A]® is NTPD for all i==0, and is of the form ¢(y)?y® + R; (where
R; is trivial) for sufficiently large 4. But by Lemma 10(a}, (¢}, [G, ¢, A®=[@G, 1, A]®
and since B, > 0 it follows from Lemma 12(b) that G ¢Epar (A®). Hence 3;(G)
is a root of the critical equation of [@, ¢, A®] for all ¢, by Lemma 19(a).
Since G <1, there exists j such that 3,(G)=0 if ¢ <§ while 3,(G) < 0. But
a straightforward computation (using (b, § 19(d)]) shows that the relations
(a)(c) imply that for ¢<j, the critical equation of [G, 4, A®] is of the form
aaf =0 (where a is a non-zero constantj. Thus %,(G)=0 contradicting
3,(@) < 0. This contradiction establishes the relation B, + m, < §.

The second conclusion follows from the first.

ReMARKSs - (1) The requirement that O be of order 1 is essential in
Lemma 33, for if Qy)=wy" + 2y + 2%, then 1€par(Q) with §=1 and
multiplicity zero, while x~*¢ par (Q(1 4 2)), with exponenf equal to one.

(2) The conclusion that B, 4 m; << in Lemma 33 holds .only for
parametric G, for if Qfy) = (¥)* — 2%y + «~°y + x~*, then 1€par(Q) with
=2 and multiplicity zero, while Q(1 4 2} has a principal monomial of
multiplicity two.

Pary VII -~ Solutions in ecertain first order cases,

34, DeFINITION - Assume § 2 with O NTPD. Let M€ crit(Q). We say Q
is asymptotically non-singular at M, if 3Q/dy'™, evaluated at y= DM, is
non-trivial, and 3Q/Qy" is stable at M. (This is the obvious extension of
the definition given in [B, § 77} for principal monomials).

35. REMARK - The next lemma depends only on the result proved in [7]
(see below), and not on any results we have obtained thus far. It illustrates
one method of proving the existence of solutions coM of Q(y)==0, namely
by finding principal solutions of Q(M -+ #2) =0, and this is the .main device
of this section.

A Schwartzian~-symmetric logarithmic differential field of rank p (briefly
an SLDF,) over T'#* = F(—a, a), is a differential field E* containing all
logarithmic monomials of rank =<' p, and having the property that if fis a
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non-zero element of E* then f is oo fo a logarithmic monomial of rank <p,
and E* also contains the function whose value at the conjugate of x is the
conjugate of flx). (For example, the set of all rational combinations, with
complex coeificients, of logarithmic monomials of rank <p, is an SLDF),).

1t is proved in (7], that if a first order O with coefficients in an SLDF,,
possesses a principal monomial N, at which it is asymptotically non-singular,
then Qly) =0 possesses a principal solution co N, is some F(c, d}.

36. LeMMA - Let Q be a first order differential polynomial with coeffi-
cients in an SLDF, over F(—a, a). Let O be NTPD and let M¢ crit(Q).
Then if Q is asymptotically non-singular at M, the equation Q(y) =10 has at
least one solution coM in some F(c, d}.

Proor - Assuming Q(M) =0, it is clear that Q(M +2) is asymptotically
non-singular at each of its principal monomials. Then if z, is any principal
solution of Q(M + z) =20, the function y,= M 42, is a solution coM of

87. LEMMA -~ Assume §2 with n=1, and let Q be NTPD. Let M € par ()
with AF(M, Q, y) of the form (¥)¥C(y) and multiplicity m. Then

() For sufficiently large s,

(M, s, 30/3y 1Y) = (¥')*7*B0) + Eily),
where R, is trivial in log,S5%.
by If B4-m>1, then M €ecrit (3Q/3y) and AF(M,3Q/3y, y)={y)F8Cy).
(¢) © is asymptotically non-singular at M if and only if f=1 and m=0.
Proor - Here, for any differential polynomial I', we will use the nota-
tion [;=[1, ¢, I].
If ® is the M-maultiplication transform of Q, then by Lemma 30(),
1€par(®) and AF(1, @, y) =y PEsCksy) where k= M(]M[)~*. As in the

proof of Lemma 32, we compute @, (for sufficiently large s), and find that
there is a unit monomial g(x), such that if A = g®, then

(1) A=,
2) A# ] () = A[j# ) (ex{u) (Lifes(u)) =7

for each j*, and each ¢, 0<<i<s. (Here, Li{x) is the function xlogx...log;_,,
while eju) is defined recursively by e u)==u, e, ,(u) = exp eju)).

By comparing the representation for the coefficients of A, given by (2)
(for ¢ =1s), with that given by the associated function, we abtain asymptotic
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estimates on the functions A[j#](e,(u)), in log,S*. Using (5, § 19(¢)], we obtain
the following relations for 0 <<i{<s, in log;5# :

(3) Al§# ] (eifw)) < [(Lo—itw) (Lifestw) 2 it ju == B,
(4) Al ] (eu)) ST it Gy =8
(5) 5 Olkgv) = 2 [ A[j# (e + ool : ju =B

This last relation implies that for some p =0,

(6) Allp, B = 1.

Using (2)-(6), it follows by induction that for 0<i<<s, 3A;/3y'=(3A/3y);.
In view of (1), we then see that (3A/3y), is of the form (¢ )P~ *BEC(kuy) + T.ly),
where Ty(y) is trivial. Buf since (gM)~'0A/0y is simply the M-multiplication
transform of 3Q/3y, Part (@) now follows as in the proof of Lemma 30(b).
Parts (b) and (c) follow easily from Part (¢) and Lemma 11(}).

ReMARK - Lemma 37(c) completely solves the problem of determining
in advance those parametric monomials at which a first order  is asymp-
totically non-singular. For non-parametric oritical monomials, there seems
to be no way of determining this without actually computing the stability
properties of 3(2/2y’ at these monomials (using Theorems I and II, for example).

38. LEMMA - Let £ be a first order differential polynomial with coefficients
in an SLDF, over F(—a, a). Let Q be MTPD. Then if M¢par(Q) with
exponent 1 and multiplicity 0, the equation Q{y)=0 has at least one solution
coM in some Flc, dj.

Proor - This follows from Lemmas 36 and 37(c).

39. LeMMA - Let ) satisfy the hypothesis of Lemma 38. Let M €par(Q)
with exponent 2 and maultiplicity 0. Then under either of the following two
conditions, the equation ((y)=0 has at least one solution coM in some F{c, d).

() M is a solution of ¢Q/dy' =0
) Q(M + 2) has at least one simple ordinary monomial < M.

Proor - Let A(z) = Q(M -+ Mz), and ® = 9A /3. In each case, we prove
the existence of a critical monomial, N <1 of A such that N ¢ crit (®). Then
by Lemma 36, there is a solution coN of A(z) =0, and hence Q(y)=0 has a
solution co M. We first note that by Lemmas 37(b) and 33, any critical mono-
mial <1 of ® has exponent 0, and hence, being ordinary, must be an ordinary
monomial of @40 by Lemma 31(b). (In what follows, we assame Q(M)==0).
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1f (a) holds, then ®® =0. Hence ®© + ®© has no ordinary monomials
by Lemma 29(b). Thus any principal monomial of A cannot be critical of @,
so ‘the result follows in this case.

It (b) holds, then A has two distinet ordinary monomials <1 by Lemma
31(c). At least ome of them is not in crit(®), since @ 4 @ has at most
one ordinary monomial, so the result follows if (b) holds.

REMARK - (a) is satisfied for M =1, when Q(y)=(¥)’ 4 Za.y'(y’), where
a; =0 and f(a;) < j—2 for all ¢ and j.

(b) is satisfied when Q(M + Mz) has no linear terms.

Parr VIII - On solutions in the general non-parametric ecase.

40. LeMMA - Assume § 2 with Q NTPD. Let M be a simple non-parameiric
critical monomial of Q. Let (3Q /0y*")(M) be non-trivial. Let A(z) = Q(M + Mz),
and let F(x)=(dA/%)(0). Then there is a logarithmic monomial GecoF
such that

(@) G*A0)< 1, and G~*A™(z) is mnimajoral, having one or more prin-
cipal factorization sequences, (V, .., V,). (6, §§ 13, 28]).

(6) If Q is of first order, and is asymptotically non-singular at M,
then G~*A(z) is normal (in the semse of [5, § 83]), having divergence mono-
mial —7V;.

Proor - If ® is the M-multiplication transform of (, then 1 is a
simple non-parametric critical monomial of @, and AF(1, ®, #) is of the form
C(#), where 1 is a simple root of C(z). By Lemma 32, for s sufficiently large,
there is a unit monomial N, such that when N® is written as a polynomial
in 2, 82, ..., 8,"%, then each coefficient is <1, and Oz} = 2 {,(-+} oc)e®, where
ti() is the coefficient of 2* in this representation for N®. Since 1 is a
simple root of C{), Zkiy(4 oc) = A is non-zero. A simple computation shows
that Foo G, if G is taken to be AN

Since C(1)=0, G'A0)< 1. Let G—'A®(z) =X H;8/2. Since each coeffi-
cient of N® is <1, each H;<1. Since Foo G, Hycol. It then follows from
[6, § 20], that G—"A"(#) is unimajoral. The coefficient of 2 in GAD(g) is
easily seen to be G7*M{aQ/oy")(M), which is non-trivial by hypothesis.
The existence of at least one principal factorization sequence for G—*AP(z),
therefore follows from [6, § 27), proving Part (a).

To prove Part (b), write G—*Afe} = Za,&' (). If (V;) is a principal facto-
rization sequence, then by definition, V; is in the divergence class, ap~—V*
and aicol. By Part (@), ae <1, and since each coefficient of N® is <1,
we have a,=51 for each 4. To conclude the proof that G—"A(z) is normal,

Annali di Matematica 14
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we must show there is a ¢ for which a,; < ao(Ly)?~" when j=1 and i-4j=2.
The proof of this follows from considering the transform I'(z) of 2Q /9 under
the change of variable, y = M + Mz. 1f  is asymptotically non-singular at
M, then any principal monomial of I' is not <1, by Lemma 3. With this
knowledge, the application of the algorithm of the principal monomial to T,
readily produces the desired asymptotic relations for a,;, thereby concluding
the proof.

41. DrrFinrrioy - Under the hypothesis and notation of Lemma 40,
(1) (Viy o, V,) is called a type for Q at M.
(2) G—*A is called the residual operalor for Q at M.

(8) It (Vi, ..., V,) is a weak factorization sequence (see [6, § 88]}, for,
G—*A, then (V,, .., V,) is called an asymplotically steady type for € at M.

{These definitions extend those given in [6, § 116}, for prineipal monomials).

42, TEEOREM III - Let S§#* = Fla, b), where —n<qg <b=<mn. Let Q be
a first order differential polynomial which has coefficients in an LD,(S*),
and which is NTPD. Let M be a simple non-parametric critical monomial
of 0, at which Q is asymptotically non-singular. Let {(c, %, {) be the index
(see[B, § 44]) of the type for O at M. Let f(8) = cos (8,30 4 arg(—¢)), for
a < § < b, (where &,; is the Kronecker delta), and let f(6) == 0. Then,

(@) For every point # in the open interval (a, b), there exists a positive
number v, and a funection y,, such that Q{y,)=0 and yyco M in Flu—v, u-tv).

(0) For each interval (a,, b)) in which f is positive there is a one-para-
meter family of solutions oM in Fla,, b)), of the equation Q(y)==0. For
each interval (a., b,) in which f is negative, there is a unique solution co M
in Fla,, b;), of the equation Q(y) =0.

Proor - By Lemma 40(b), the residual operator for Q at M is normal,
and its divergence monomial has index (—c¢, k, {). Hence the theorem follows
immediately from ([5, § 126], concerning solutions of normal differential
polynomials.

43. TaEOREM IV - Let @, @, and b be real numbers such that —n <a<
<o <b=m Let S*=F(a,b). Let O be an nth order differential polynomial
with coefficients in an LD(S#), and be NTPD. Let M be a simple non-para-
metric critical monomial of Q, and let (V, ..., V,) be an asymptotically steady
type for 0 at M. Let (Vi,..,V,) be unblocked {see [6,§98]] in (a, a,, b).
Then Q(y) =0 has at least one solution oo M in S#.
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Proor - Under the given conditions it follows from [6, § 115], that if
®(z) is the residual operator for O at M, then @) =0 has a solution <1
in S§*. The theorem now follows immediately.

Parr IX - Solution in the linear case.
The main result of this part is,

45. TrEorEM V - Let S*==F(a,, a,) where —=n <a, < a, < n Let
(4o, 41, .., 44, 9) be a sequence of {n 4 2) functions lying in an LD,(S#)
such that 4, is non-trivial. Let Q(y) =2 {4,y?: 0<j=<mn}], and let M be
any critical monomial of Qy) — g. Then the equation Q(y) =g¢ has at least
one solution co M in some Fla,, a,), where o, < 0y << 0y =< Q0.

We need the following lemma.

44, LeMMA - Let (Bg, By, ..., B,,, ¢) be a sequence of (n - 2) functions
lying in an LDyS*) (where S* is arbitrary). Let the maximum of the
numbers 3,(B;) be 0. Let Aly) = 2 [ Bb'y: 0<i=mn}, where ¢ is the operator
by = oy, and let M be a parametric monomial of A{y) — ¢. Then,

(@) M(x) = cx®log x)?, for some real &, some b€ {0,1,..,n—1} and
some constant c,

) h=9—AM) is <M and if kb is non-trivial, say &(h) = o, then
there exists a polynomial P{x), in x alone, with constant coefficients, such
that * = x*P(log ) is <M and 3,(A(y*) — k) < .

ProoF - For each 4, B;=0b; 4+ w, where b, is constant and S4w,) < 0.
Let ®(y) = 26,0y, I'ly) = ZTwh'y and Qy) = A(y) — ¢. A straightforward com-
putation shows A[* 0] =0. Let 3 =23,(M). Then A[* 8]=25. By Theorem I
(§21), [2; Q] is NTPD on log §#. Hence Q[* 3] =28 and therefore, 3,(p)<3.
Letting Z(v) be the transform of @(y) under y =¥ wx=1¢" we have
[B; Q] @) = e~%E{w) + T(v) — G(u), where Tiv} is trivial and G(u) = eg(e¥).
Furthermore, we can write e Ev) =2 {vo¥: 0=j<mn}, for constants v,.
Letting ¢ be the smallest j for which v;==0, then the critical equation of
[3; Q)" is vy8y(a) = 0, (where for j=4i, s;(x) is the elementary symmetric
function of degree ¢ in «, « —1, ..., 2« —j 4+ 1}. By Theorem I, b = 3,(M) is a
root of s,a) =afa —1)..(a —t+1) =0, so b€{0, 1, ..., ¢ —1}. Then clearly
ku® is a solution of E(v) = O for each constant %, so

(1) D(kxd(log x)?) = 0.
We now prove,

(2) 3o(p) << & and G(u) is trivial in log S*.
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By Theorem I, [b,3; Q] is. NTPD and so [3; Q][* b] =b—¢. Hence
%{(G) < 0, since b < ¢, and (2} follows easily.

A simple calcutation now shows that in [b, 3; Q](v), the coefficient of v
is trivial, while that of ¢ is of the form a 4 g, where a = v;8; , 4(b) and g
is trivial. Now b is clearly a simple root of s,(z) = 0, and since 8, ,.,(2) =
= dsy(«)/da, we have & = 0. Hence the critical equation of [b,3; Q]* is
ax=0, and therefore 3,(}M)=0, by Theorem I. It follows that [3,(M),b,5; Q](v)=
= av' 4 R(v), where R is trivial. Repeated applications of Theorem I, now
imply 8,(M) =0 for i =2, proving Part (a).

By (1), ®(M) =0, and therefore A(M)=Z{w,6'M: 0<i=mn}. Now 0'M is
a linear combination (with constant coefficients) of functions of the form
8;,(0)x%(log ®)?—7 for 0<5j<é. Since 3o(w,) <0, 8(A(M)) < 3. Hence by (2),
So(h) < &, where h =9 — A(M), so k<M. Suppose now h is non-trivial, with
3o(h) = a. Since s§;,(b) =0 j > b, it follows that h{x) is representable as a sum
of functions of the form fjx)(loga) for 0 <j=<w—1, where each non-trivial
f; is of the form cu% + K;, where 5,(K;) < d,. Since some f; is non-frivial,
let d be the maximum of of the d;, and let Qx) =X {ca’:d; = d}. Then
hix) = x?Q(log ®) + K{x), where 5(K) < d. Hence o = d. It is proved in [8],
that the differential equation Py} = x*Qlogx), possesses a solution of the
form y* = w>P(log x), where P(x) is a polynomial. Then y* < M since a < 8.
Finally, A(y*)—h=I(y*)—K, from which it easily follows that S (A(y*)—h)<e,
thereby concluding the proof of Part (b).

Proor oF THEOKEM V - If M€ pm(Q(y) — g), then the result is proved
in [8].

If M is not a principal monomial, then M € par(Q(y)—g), for by Lemma
29(b), Q(y) — g has no ordinary monomials if g is trivial, and has precisely
one, namely ifs principal monomial, if g is non-trivial.

Let 6 be the operator 8y = ay’, and let Q(y)=Z [(Bby: 0<=j<n}.
Then B, is non-trivial. Let ¢ be the j for which 3y(B,) is maximum, and
let v = 3,(B,). Then letting Ay) = = Q(y) and ¢x) = xglx), it is clear that
M € par (A(y) — ¢} by Lemma 30(a), and that A{y) —¢ satisfies the hypothesis
of Lemma 44.

If h =9 — A(M) is trivial, then it is proved in [8], that A(y) =% has a
trivial solution y,, in some Fla,s, 0,), and so y = M + y, is a solution oo M
of Qly)=yg.

If % is non-trivial with 2(h) = a, then by Lemma 44, 2 <M and there
is a polynomial P(x), for which y* = ax®P(log ) is <M and 3(A(y*)—h) < a.
Under the substitution y = y* - 2, the equation,

(1) Aly)=h
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becomes
(2) AMz) =T

where f=h — Aly*}. Thus 3(f) < a. Now it is proved in [8] that there exists
a finite set G of real numbers such that for any real « not in @, there is a
pon-zero constant %, for which the linear differential polynomial T,(w)=
= x~*A(k,2*w) is unimajoral and has a non-exceptional principal factorization
sequence. Choose a real 2 mot in G such that 3,(f) <« < .a. Under the
substitution z = k,x*w, (2) is transformed into a*[',(w) = f, or equivalently

(3) Pfw) = &=a.

Letting (Vi, ..., V,) be a non-exceptional principal factorization sequence
for I',, clearly there exist a,, a4 such that o, <a, < a,<a, and (V,,..,V,)
is unblocked in (as, @, as) for all a)€a,, a,). But by choice of a, x—2f <1
and so (Vi,..,V,) is a strong factorization sequence (see [6, § 88(b)]}, for
I'yw) — x—2f. Thus by [6, §99] there is a fanction w, <1 in Fla,, a,) such
that T',(w,) = x—*f. Then it is clear from (1)(3) that the function y, = M +
+ y* + kxow, is a solution of Q(y) =g, and satisfies y,co M in Flas, a4,
since y*< M, w, <1 and a < a. '

Parr X - A simple example.

In this part, T, will stand for a differential polynomial which is trivial
in log,S5#, and the sequence (0, 0, ...) will be denoted (0y, 0,, ...).

Let Q(y)=a~°"y* + yy'— a2 We first apply Theorem I to find par(Q).
The term of degree 3 will not contribute any parametric monomials, since
the eritical equation of Q has no roots. The critical equation of Q® has
the three roots, 0, 1 and 2. To test the root 0, we find [0; Q] (v) = e~ P*p’
+ ("' — 3vv'+ 2vv)e~* — 1. Since [0; Q]® is trivial, the process stops here
tor the root O (i.e. O is not the first coordinate of an s-tuple which satisfies
§ 21(b), relative to p = 2). Testing the root 1, we find [1; Q](v) = e~"P%p" +
4 0" — o' — e~*. Hence [1; Q]® is unon-trivial and we can continue. The
critical equation of [1; Q]® has O as its only root, and [0, 1; Q] (v)=—vv'+ Ts(v).
Hence {0, 1; Q] is non-trivial and O is the only root of its critical equation.
It is now clear, by continuing this process, that (1,0, 0, .., 0) is an s-tuple
which satisfies §21(b) relative to degree 2, and therefore ki€par(Q) for
each k. Clearly, AF(kx, Q, y) = —yy. Since 0 was the only root of the
critical equation of [0;, 0;_,, .., 0:, 1; Q]® for ¢=1, kx are the only para-
metric monomials corresponding to the root 1. Finally, testing the root 2,
we find [2; Q]® is trivial so the process stops. Since we have tested all the
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non-trivial homogeneous parts of (0 which are of positive degree, we conclude
that par (Q)={ke: allk}. (We mnote that no logarithms appeared in the
parametric monomials, and of course this is due fo the fact that 0 was the
only root of the critical equation of [0, ..., 0;, 1; Q]®, for 4=1. If however,
0P(y) had been yy"+ x«~'yy”, for example, then its critical equation would
have the two roots 0 and 1, as before 0 would not contribute anything, but
since [1; Q]® would now be vw"+4 v it is clear that ke and kxlogx would
be in par(Q)).

We now apply Theorem II to find orit (Q) — par (Q). Since Q®[* o] =
=8a—9/2, QP[* a]=20¢—3, Q¥ o] =—2, while all other Q@[* a] are —ooc,
there are two admissible values, namely o« =3/2 (from Q® and Q%) and
a=1/2 {from Q® and Q). For «=3/2, we find [3/2; Q]{v)=1v"—(3/8}p* —
— (1 /4" 4 (3/2)pv" + w0 — e~**. This has only 0 as an admissible value,
and [0, 3/2; Q](v) = v* — (3/8)v® + T,(v). Again, this has only O as an
admissible value, and it is now clear that (3/8)x®’¢€ (crit () — par (), with
AF((3/8)2°", Q, v) = v°— (3/8)v". This is the only contribution from «=3/2.
Treating « = 1/2 similarly, we find that ==(8/3)"*x'*€ (crit () — par (Q)),
with associated function (3/8)y* — 1. (Of course, == (8/3)'#x'/* are the principal
monomials of ). Hence there are three non-parametric critical monomials
of Q, and of course, each is simple,

Since 3Q/dy” =, Q0 possesses a type at each of the non-parametric
critical monomials by Lemma 42(a). Computing the residual operators in
each case, and using [6, § 44] to find the types, it is easily verified that
Theorem IV can be applied to assert the existence of a solation colM in
F(—m, ©n), for each M€(erit(Q)— par(Q)}. However in this particular example,
more information about these solutions can be obtained by a more detailed
investigation of the residual operators. In each case, it is found, using
[6, § 105] that each of the residual operators is, in fact, uniformly quasi-linear.
Hence [6, §99] may be”applied in each case, to assert that the equation
Q(y) =0 has (a) a unique solution oo(8/3) ' in F(—=, n). () a unique
solntion co— (8/3)*x'* in F(—m=, n), and (¢} a one-paramefer family of
solutions oo (3/8)x** in F(—m, 7).

For the parametric monomials, we consider Au(z)=Q(kx + 2). 1t is found
that Ay has a unique (simple) principal monomial, N, = (— 8/3)k"x"* at
which it has a type. Following the same procedure as above, we find that
the equation A,(#) =0 has a one parameter family of solutions oo N, in
F(—r, ). Thus for each non-zero %, the equation Q(y) =0 possesses a
one-parameter family of solutions cokx in F(— =, ).

Hence in this example, for each M €crit{Q), the equation Q(y) =0
possesses at least one solution co M in F(— =, 7).
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