On the instability theory of differential polynomials (${ }^{1}$).

by Steven Bank (Illinois, U.S.A.)

Abstract

Summary. - In this paper a class of $n^{\text {th }}$ order non-linear differential equations is treated and solutions are sought which are asymptotically equivalent to logarithmic monomials.

Part I - Preliminaries.

1. Introduction - In [5, 6], W. Strodt investigated the problem of finding those solutions of an nth order non-linear ordinary differential equation, which are of minimal rate of growth at a singular point at ∞, and furthermore are asymptotically equivalent (\sim) to logarithmic monomials (i.e. functions of the form $M(x)=K x^{\alpha_{0}}(\log x)^{\alpha_{z}}(\log \log x)^{\alpha_{\alpha}} \ldots\left(\log _{p} x\right)^{\alpha_{p}}$, for real α_{j} and nonzero complex K), as $x \rightarrow \infty$.

In this paper, we investigate the problem of finding all solutions of the equation which are asymptotically equivalent to logarithmic monomials. The class of equations treated in $[5,6]$ and in here, consists of equations $\Omega(y)=0$, where Ω is a polynomial in an unknown function y and its derivatives, whose coefficients are functions defined and analytic in an unbounded region of the complex plane, and where, as $x \rightarrow \infty$, each coefficient has an asymptotic expansion in terms of logarithmic monomials and/or functions (called trivial) which are asymptotically smaller $(<)$ than all powers of x. (For the rigorous concepts of «<» and « \sim », see [5, §§ 12.13]).

In [5, §66], it was shown that Ω determines a finite set (denoted $p m(\Omega)$) of logarithmic monomials, M (called principal monomials) which are «approximate solutions» (i.e. $\Omega(M)<\Omega(0)$) and among all approximate solutions are of minimal rate of growth at ∞. These properties are shared by those exact solutions (called principal solutions) of $\Omega(y)=0$ which are \sim to principal monomials. An algorithm which produces $p m(\Omega)$ in a number of steps which

[^0]can be bounded in advance was introduced in [5, §66], and existence and uniqueness theorems for principal solutions were established in [5, § 127] and [$6, \S 122]$.

If $\Omega(y)=0$ possesses a solution \sim to a logarithmic monomial M (not necessarily a principal monomial), then at M, Ω must satisfy (see § $5(c)$) a condition called instability, which was introduced in [9, 10], and which means that for some function $f \sim M, \Omega(f)$ is not $\sim \Omega(M)$. Furthermore, an equivalent definition of instability $(\$ 3(b))$ hints at the existence of solutions \sim to those monomials at which Ω is unstable. For these reasons, the concept of instability is chosen as our starting point, and we investigate all the logarithmic monomials (called critical) at which Ω is unstable. (The problem of solutions is taken up in Parts VII-IX). The expected result that $\operatorname{pm(}(\Omega)$ constitutes the set of minimal critical monomials concludes Part II.

Methods for finding the critical monomials of Ω are developed. Two methods are required. One is for finding those critical monomials M, (called parametric) such that every constant multiple of M is also critical. The second method is for finding the non-parametric critical monomials (among which are included as a special case all the principal monomials). Both methods are of an algorithmic nature, and use the same basic principle as the algorithm for $p m(\Omega)$, namely repeated application of the change of variables $x=e^{u}, y=v e^{\alpha u}$, where α is a real number determined at each stage. When followed by multiplication by a suitable power of e^{u}, this change of variables transforms $\Omega(y)$ into a differential polynomial in v (denoted $[\alpha ; \Omega]$), which again belongs to the class we are considering. Part III is devoted to the study of this, and the successive transforms $[\beta ;[\alpha ; \Omega]]$ etc. Their crucial property (§ 11) is that $M(x)=K x^{\alpha_{0}}(\log x)^{x_{1}}\left(\log _{2} x\right)^{\alpha_{2}} \ldots$ is critical of Ω if and only if $N(u)=K u^{\alpha_{1}}(\log u)^{\alpha_{2}} \ldots$ is critical of $\left[\alpha_{0} ; \Omega\right]$. Hence if α_{0} is known to satisfy a certain condition C, when M is critical of Ω, then α_{1} satisfies C relative to $\left[\alpha_{0} ; \Omega\right]$, and so on for $\alpha_{2}, \alpha_{3}, \ldots$. Both methods use this algorithmic property, and $[5, \S 61]$ (which is here strengthened and incorporated into § 13), is used to show that the process can be stopped at a predetermined point, and the conditions C are sufficient also.

Part IV is devoted to the method for parametrie monomials. It is first shown (§ 15) that a necessary (but certainly not sufficient) condition for M to be parametric of Ω, is that it be parametric of at least one homogeneous part of Ω. For the moment, we focus our attention on finding the parametric monomials when Ω is homogeneous (819). In this case, condition O takes a simple form, namely that α_{0} be a root of an algebraic equation, which resembles the indicial equation at ∞ (see $[4, \S 161]$) in the case of linear equations. When Ω is non-homogeneous (821), our condition C is phrased in such a way that we are examining each homogeneous part of Ω for parametric monomials (using the method already developed in § 19), while simultaneously examining
the behavior of the rest of Ω to determine if the parametric monomial produced by a homogeneous part will actually be parametric of the whole polynomial, Ω. The method in $\S 21$ produces each parametric monomial in a number of steps which can be bounded in advance, but except in the case of linear or first order Ω, the number of steps required to produce the set of parametric monomials may be infinite (see § 17, Remark (2)).

Part V is devoted to the method for non-parametric critical monomials. Here condition C takes a form similar to that for the algorithm for $\operatorname{pm}(\Omega)$, namely that α_{0} should be the slope of a side of a Newton polygon. The resulting method ($\$ 26$) produces the set of non-parametric critical monomials in a number of steps which can can be bounded in advance. (A simple example illustrating both methods is given in Part X).

Since we are ultimately interested in solutions of $\Omega(y)=0$ which are \sim to critical monomials M, and since the existence of such a solution is clearly equivalent to the existence of a solution <1 of the equation $A(z)=0$, which is obtained from $\Omega(y)=0$ by the change of variables $y=M+M z$, it is of importance to investigate such critical monomials of Λ as are <1. This is done in Part VI ($\$ 831,33$), and use is made of these results in Part VII.

Parts VII through IX are devoted to existence theorems for solutions $\sim M$ of $\Omega(y)=0$. Here the coefficients of Ω are assumed to be defined and analytic in a sectorial region (more specifically, in an element of an $F(a, b)$, as defined in [5, § 94]), and the solutions obtained are of the same type.

In Part VII ($8 \S 36,38,39$), the result obtained by Strodt in [7] (see § 35), is used to obtain solutions in certain first order cases, when the coefficients of Ω are of the type considered in [7].

In Part VIII, non-parametric critical monomials M, of an nth order Ω are considered. It is shown ($\S 40$) that when M and Ω satisfy the general conditions analogous to those for principal monomials in $[5, \S 85]$ (when $n=1$) or $[6, \S 116]$ (when $n>1$), then under the change of variable $y=M+M z$, $\Omega(y)$ is transformed into a differential polynomial to which [5, § 126] (when $n=1$) or $[6, \S 115]$ (when $n>1$), can be applied, thus obtaining solutions $\sim M$. These results are given in $\S \S 44-45$.

Part IX concerns critical monomials of $\Omega(y)=\Phi(y)-g$, where Φ is an $n t h$ order linear differential polynomial whose coefficients, along with g, have asymptotic expansions in therms of real (but not necessarily integral) powers of x, and/or trivial functions. In [8], it was shown that for such an Ω (in the case where it possesses a principal monomial), the equation $\Omega(y)=0$ has at least one principal solution. We utilize this, and other results in [8], to prove ((845) that corresponding to any critical monomial M, of Ω, the equation $\Omega(y)=0$ has at least one solution $\sim M$. The connection between this and the Fuchs regularity theorem ([2, p. 143], and [3, p. 358], or 4, p. 365]), will be explored in a future paper.

2. Uniform hypotheses

(a) M is a logarithmic monomial.
(b) $n \in\{0,1,2, \ldots\}$
(c) $W \in\{0,1,2, \ldots\}$
(d) $r \in\{-1,0,1,2, \ldots\}$
(e) $S^{\#}$ is a complex neighborhood system of ∞ as defined in $[5,83]$. (That is, S^{*} is a filter base which converges to ∞ in the sense of $[1, \S 6]$, and which consists of unbounded regions, each disjoint from the non-positive real axis. The concept of asymptotic equivalence as $x \rightarrow \infty$, which we employ ($[5, \S 13]$), is defined relative to such a filter base, and explicit mention of S^{*} will be omitted when no confusion is possible).
(f) Ω is an nth order differential polynomial in an unknown function y (that is, a polynomial in $y, d y / d x, \ldots, d^{n} y / d x^{n}$), whose coefficients are functions of x which belong to a logarithmic domain of rank r over S^{*} (briefly, an $L D,\left(S^{*}\right)$), as defined in $[5, \S 49]$. This condition ensures that each coefficient of Ω is either \sim to a logarithmic monomial in S^{*} or is trivial in S^{*}, and further ensures that under either change of variable, $y=M+z$ or $y=M z, \Omega(y)$ is transformed into a differential polynomial whose coefficients again belong to a logarithmic domain (and therefore can be treated by our methods).
(g) At least one term in Ω is to have a non-trivial coefficient (briefly, we then say Ω is non-trivial). If we require that at least one term of positive degree in the indeterminates have a non-trivial coefficient, we will indicate this by the abbreviation NTPD (non-trivially of positive degree).
(h) W is the maximum of the weights of all terms in Ω, which have non-trivial coefficients.

Part II - Critical Monomials.

3. Lemma - Assume $\S 2$ and let Ω be NTPD. Then the following two conditions are equivalent:
(a) Ω is unstable at M.
(b) Either $\Omega(M)$ is trivial, or some $P \in \operatorname{pm}(\Omega(M+z)$ is $<M$.

Proof - Let $\Lambda(z)=\Omega(M+z)$. If (b) does not hold, there exists $P \in p m(\Omega(M+z)$ with $M \precsim P$, (that is, $M<P$ or $M \sim k P$ for some non-zero constant k). Hence $g<M$ implies $g<P$, and therefore, by the properties of a principal monomial $([5, \S 66]), \Delta(g) \sim \Delta(0)$. Thus (a) does not hold.

Conversely, suppose (b) holds but (α) does not. Then $\Omega(M)$ must be trivial, for in the contrary case, Δ would have a principal monomial, $P<M$, and (a) would hold since $\Omega(M+P)<\Omega(M)$. Hence $\Lambda(V)$ is trivial for any $V<M$. If we chose a real number q so small that a principal monomial N, of $\Phi(z)=\Lambda(z)-x^{q}$ is $<M$, then $\Phi(N) \sim \Phi(0)$. This contradicts the definition of principal monomial, so (a) must hold.
4. Definition - Assuming $\S 2$ with Ω NTPD we say M is a critical monomial of Ω, if M and Ω satisfy either (and hence both) conditions of Lemma 3. The set of all critical monomials of Ω is denoted crit (Ω).
5. Lemma - Assume $\S 2$ with NTPD. Then under any of the following conditions, $M \in \operatorname{crit}(\Omega)$.
(a) There, exist a constant c, and a function $g \sim M$ such that $\Omega(g)<\Omega(c M)$.
(b) There exists a function $h \sim M$ which is an approximate solution of Ω (i.e. $\Omega(h)<\Omega(0)$ if $\Omega(0) \neq 0$, and $\Omega(h)=0$ if $\Omega(0)=0$).
(c) There exists an exact solution of $\Omega(y)=0$, which is $\sim M$.
(d) $M \in p m(\Omega)$.

Proof - (a) Assume $M \notin \operatorname{crit}(\Omega)$. Then there exists $N \in p m(\Omega(M+z)$ with $M \precsim N$. Since $g-M<M, g-M<N$. Thus $\Omega(g) \sim \Omega(M)$. Therefore, by hypothesis, $\Omega(M)<\Omega(c M)$. But the contradictory relation $\Omega(c M) \precsim \Omega(M)$ follows from the fact that $(c-1) M \precsim N$, and $N \in p m(\Omega(M+z)$), (see $[5, \S 67]$), thus proving the result for (a).
(b) If $\Omega(0) \neq 0$, then (b) follows from (a), by taking $c=0$. If $\Omega(0)=0$, but $M \notin \operatorname{crit}(\Omega)$, then $\Omega(M)$ is non-trivial and therefore $\Omega(h)<\Omega(M)$. But then $M \in \operatorname{crit}(\Omega)$, by taking $c=1$ in (a). This contradiction establishes the result for (b).
(c) and (d) follow from (b).
6. Lemma - Assume $\S 2$ with Ω NTPD, and let $\Omega(0)$ be non-trivial. Then,
(a) If $N \in p m(\Omega)$, while $M \in(\operatorname{crit}(\Omega)-p m(\Omega))$, then $N<M$.
(b) $p m(\Omega)$ constitates the set of minimal elements (relative to $\ll »$) of $\operatorname{crit}(\Omega)$.

Proof - It obviously suffices to prove (a). If N were not $<M$, then $M \underset{\approx}{ } N$. Since $M \notin p m(\Omega), \Omega(M) \approx \Omega(0)$. Thus $\Omega(M)$ is non-trivial, and therefore $\Omega(M+z)$ has a principal monomial, G, with $G<M$. Hence $\Omega(M+G)<\Omega(M)$. But $M+G \sim M$, and therefore $M+G$ is not \sim to any element of $p m(\Omega)$. Thus $\Omega(M+G) \approx \Omega(0)$, so $\Omega(0)<\Omega(M)$. This contradicts the relation $\Omega(M) \approx \Omega(0)$, previously established, thus proving (a).

Part III - The transform $[\alpha ; \Omega]$.

7. Notation - Assume § 2.

(a) If $i^{*}=\left(i_{0}, i_{1}, \ldots, i_{n}\right)$ is an $(n+1)$-tuple of natural nambers, then the coefficient of $y^{d_{0}}\left(y^{\prime}\right)^{1_{1}} \ldots\left(y^{(n)}\right)^{r_{n}}$ in Ω is denoted $\Omega\left[i^{*}\right]$, and as in $[5, \S 62]$, the degree $i_{0}+i_{1}+\ldots+i_{n}$ and the weight $i_{1}+2 i_{2}+\ldots+n i_{n}$ of i^{*}, will be denoted by $d\left(i^{*}\right)$ and $w\left(i^{*}\right)$ respectively.
(b) If α is a real number, then by $\Omega\left(i^{\#}, \alpha\right]$, we will mean the quantity $\alpha d\left(i^{*}\right)+\delta_{0}\left(\Omega\left[i^{*}\right]\right)-w\left(i^{*}\right)$, where as in $[5, \S 23-24], \delta_{0}\left(\Omega\left[i^{*}\right]\right)$ is $-\infty$ if $\Omega\left[i^{*}\right]$ is trivial, while in the non-trivial case, it is the exponent of x in the logarithmic monomial to which $\Omega\left[i^{*}\right]$ is asymptotically equivalent. (In general, $\delta_{j}()$ is the exponent of $\left.\log _{j} x\right) . \Omega\left[{ }^{*}, \alpha\right]$ will denote the maximum, over all i^{*}, of the numbers $\Omega\left[i^{\#}, \alpha\right]$.
(c) If $\Phi(v)$ is the polynomial in $v, d v / d u, \ldots, d^{n} v / d u^{n}$, obtained from $\Omega(y)$ by the change of variables $x=e^{u}, y=v e^{\alpha u}$, then the differential polynomial $\exp \left(-\Omega\left[^{*}, \alpha\right] u\right) \Phi(v)$ is denoted $[\alpha ; \Omega](v)$.
(d) If p is a natural number, we denote by $\Omega^{(p)}$, the sum of all terms in Ω which are of degree p in the indeterminates $y, y^{\prime}, \ldots, y^{(n)}$ (that is, $\Omega^{(p)}$ is the homogeneous part of total degree p of Ω). As usual, Ω will be called homogeneous of degree p if $\Omega=\Omega^{(p)}$, and simply, homogeneous, if it is homo. geneous of some degree.
8. Lemma - Assume $\S 2$ and let α be a real number. Then,
(a) $[a ; \Omega]$ has coefficients in an $L D_{t}$ (where $t=\max \{r-1,-1\}$), over the complex neighborhood system $\log S^{*}$, defined in [5, § 8].
(b) $[\alpha, \Omega]$ is non-trivial in $\log S^{*}$.
(c) If Ω is homogeneous of degree p, then so is $[\alpha ; \Omega]$.
(d) $\operatorname{Max}\left\{w\left(i^{\prime \prime}\right):[\alpha ; \Omega]\left[i^{*}\right]\right.$ is non-trivial $\} \leq W$.
(e) If $p \geq 0$ and $\Omega^{(p)}\left[^{*}, \alpha\right]<\Omega\left[{ }^{*}, \alpha\right]$, then all the coefficients of $[\alpha ; \Omega]^{(p)}$ are trivial in $\log S^{*}$.
(f) If $p \geq 0$ and $\Omega^{(p)}\left[{ }^{*}, \alpha\right]=\Omega\left[^{*}, \alpha\right]$, then $\Omega^{(p)}$ is non-trivial in S^{*} and $[\alpha ; \Omega]^{(p)}=\left[\alpha ; \Omega^{(p)}\right]$.

Proof - Under the change of variables $x=e^{u}, y=v e^{x u}$, it is clear that $y^{(q)}$ becomes $F_{q}(v) e^{(\alpha-q) u}$, where $F_{g}(v)$ is a homogeneous linear polynomial in $v, v^{\prime}, \ldots, v^{(Q)}$ with constant coefficients. Thus each coefficient of $[\alpha ; \Omega]$ is a linear combination of functions of the form $g\left(i^{*}, u\right)=\Omega\left[i^{*}\right]\left(e^{u}\right) \exp \left[\left(\alpha d\left(i^{*}\right)-\right.\right.$ - $\left.\left.w\left(i^{\#}\right)-\Omega\left[{ }^{*}, \alpha\right]\right) u\right]$. If E^{*} is an $L D_{r}\left(S^{*}\right)$ which contains all the coefficients
of Ω, then the coefficients of $[\alpha ; \Omega]$ lie in the set $\log E^{*}($ defined in $[5, \S 51])$, which is an $L D_{t}$ over $\log S^{*}$. This follows because $\log E^{*}$ is the complex vector space generated by all functions which are either trivial in $\log S^{*}$ or are of the form $h\left(e^{u}\right) \exp \left(-\delta_{0}(h) u\right)$, where h is a non-trivial element of E^{*}. If $\Omega\left[i^{*}, \alpha\right]=\Omega[*, \alpha]$, then $g\left(i^{*}, u\right)$ has this latter form, while $g\left(i^{*}, u\right)$ is trivial if $\Omega\left[i^{*}, \alpha\right]<\Omega\left[{ }^{*}, \alpha\right]$. This proves (a).

To prove (b), let $k^{\#}$ be the smallest $i^{\#}$ (relative to the lexicographic order) for which $\Omega\left[k^{*}, \alpha\right]=\Omega\left[{ }^{*}, \alpha\right]$. Then $[\alpha ; \Omega]\left[k^{*}\right]=g\left(k^{*}, u\right)+f(u)$, where f is trivial, so $[\alpha ; \Omega]\left[k^{*}\right]$ is non-trivial, proving (b).

Part (c) is clear, since each F_{q} is homogeneous and linear.
As seen in the proof of (a), each $[\alpha ; \Omega]\left[j^{*}\right]$ is a liner combination of the functions $g\left(i^{\#}, u\right)$, and it is a routine computation to verify that $w\left(i^{*}\right) \geq w\left(j^{*}\right)$ and $\left.\left.d\left(i^{*}\right)=d\right) j^{*}\right)$ for each $g\left(i^{\#}, u\right)$ appearing non-trivially in this combination. Hence if $w\left(j^{*}\right)>W$, then $[\alpha ; \Omega]\left[j^{*}\right]$ is trivial, proving (d). If $\Omega^{(p)}\left[{ }^{*}, \alpha\right]<\Omega\left[{ }^{*}, \alpha\right]$, then $g\left(i^{*}, u\right)$ is trivial if $d\left(i^{*}\right)=p$, so all coefficients of terms of degree p in $[\alpha ; \Omega]$ are also trivial, proving (e).

Finally, to prove (f), if $\left.\left.\Omega^{(p)}\right|^{*}, \alpha\right]=\Omega\left[{ }^{*}, \alpha\right]$, then $\Omega^{(p)}\left[^{*}, \alpha\right]$ is not $-\infty$ and so $\Omega^{(p)}$ is non-trivial. The relation $[\alpha ; \Omega]^{(p)}=\left[\alpha ; \Omega^{(p)}\right]$ follows easily, since $[\alpha ; \Omega]^{(p)}$ and $\left[\alpha ; \Omega^{(p)}\right]$ differ only by the multiplicative factor $\exp \left[\left(\Omega^{(p)}\left[{ }^{*}, \alpha\right]-\right.\right.$ $\left.\left.-\Omega\left[{ }^{*}, \alpha\right]\right) u\right]$.
9. Notation - Assume $\S 2$ and let $\alpha_{0}, \alpha_{1}, \ldots$ be a sequence of real numbers. By induction on Lemma 8, (a) and (b), the polynomial $\left[\alpha_{i} ;\left[\alpha_{i-1}, \ldots\right.\right.$ $\left.\left.\ldots, \alpha_{0} ; \Omega\right]\right]$ is defined for all $i \geq 1$, and we denote it by $\left[\alpha_{i}, \alpha_{i-1}, \ldots, \alpha_{0} ; \Omega\right]$. (For consistency, we let $\left[\alpha_{i-1}, \ldots, \alpha_{0} ; \Omega\right]$ stand for Ω when $i=0$).

If M is given, then $[M, i, \Omega]$ will stand for $\left[\delta_{i-1}(M), \ldots, \delta_{0}(M) ; \Omega\right]$.
10. Lemma - Assume $\S 2$. Let i and p be natural numbers, and let $\alpha_{0}, \alpha_{1}, \ldots, \alpha_{i}$ be real numbers. For each $j, 0 \leq j \leq i+1$, let $\Omega_{j}=\left[\alpha_{j-1}, \ldots, \alpha_{0} ; \Omega\right]$. Then the following conditions are equivalent.
(a) $\left(\Omega_{i+1}\right)^{(p)}$ is non-trivial in $\log _{i+1} S^{*}$.
(b) $\left.\left(\Omega_{j}\right)^{(p)} \|^{*}, \alpha_{j}\right]=\Omega_{j}\left[^{*}, \alpha_{j}\right]$ for each $j, 0 \leq j \leq i$.
(c) $\Omega^{(p)}$ is non-trivial and $\left(\Omega_{j}\right)^{(p)}=\left[\alpha_{j-1}, \ldots, \alpha_{0} ; \Omega^{(p)}\right]$ for each $j, 0 \leq$ $\leq j \leq i+1$.
(d) $\left(\Omega_{j}\right)^{(p)}$ is non-trivial in $\log _{j} S^{\#}$ for each $j, 0 \leq j \leq i+1$.

> Proof - (a) implies (b) by Lemma $8(e)$.
> (b) implies (c) by Lemma $8(f)$.
> (c) implies (d) by Lemma $8(b)$.
> (d) clearly implies (a).
11. Lemma - Assume $\S 2$ with Ω NTPD. Then,
(a) If $M \in \operatorname{crit}(\Omega)$ with $\delta_{0}(M)=\alpha$, then $[\alpha ; \Omega]$ is NTPD and $M_{1}(u)=$ $=e^{-\alpha u} M\left(e^{x}\right)$ is critical of $[\alpha ; \Omega]$.
(b) If for some real number $v,[v ; \Omega]$ is $N T P D$ and $N \in \operatorname{crit}[v ; \Omega]$, then $G(x)=x^{\nu} N(\log x)$ is critical of Ω.

Proof - Both parts are proved using [$0, \delta 19(d)$, (e)] which states that an asymptotic equivalence holds in S^{*} if and only if under the change of variable $x=e^{u}$, it holds in $\log S^{*}$. To prove (a), we first show $[\alpha ; \Omega]$ is unstable at M_{1}. Assume the contrary and let $h \backsim M$ in S^{*}. Hence $h_{1}(u)=$ $=e^{-\alpha u} h\left(e^{u}\right) \sim M_{1}(u)$ in $\log S^{\#}$. Therefore, $[\alpha ; \Omega]\left(h_{1}(u)\right) \sim[\alpha ; \Omega]\left(M_{1}(u)\right)$ in $\log S^{*}$. This relation then holds in $S^{\#}$ (relative to x) when $u=\log x$. But using the definition of $[\alpha ; \Omega]$, this implies $\Omega(h) \sim \Omega(M)$ in $S^{\#}$, contradicting $M \in$ erit Ω. Thus $[\alpha ; \Omega]$ is unstable at M_{1}. If $[\alpha ; \Omega]$ were not $N T P D$, then by Lemma $8(b)$, only the term of degree zero in $[\alpha ; 0]$ would be non-trivial, and this would imply the stability of $[\alpha ; \Omega]$ at every logarithmic monomial and hence at M_{1}. This contradiction ostablishes that $[\alpha ; \Omega]$ is $N T P D$ and $M_{1} \in \operatorname{crit}[\alpha ; \Omega]$, proving (a).
(b) is proved similarly by assuming G is not critical of Ω, and showing this would imply N is not critical of $[x ; \Omega]$.
12. Lemma - Assume $\S 2$ with Ω NTPD. Let $\alpha_{0}, \alpha_{1}, \ldots, \alpha_{s-1}$ be real numbers, where $s \geq r+1$ and let $\Omega_{s}=\left[\alpha_{s-1}, \ldots, \alpha_{0} ; \Omega\right]$. Then
(a) $\Omega_{s}=Q_{s}+R_{s}$ where Q_{s} is a non-zero differential polynomial with constant coefficients, while R_{s} has only trivial coefficients in $\log _{s} S^{*}$. If Ω is homogeneous of degree p, so are Q_{s} and R_{s}.
(b) If k is a non-zero constant, then $Q_{s}(k)=0$ if and only if $N(x)=$ $=k x^{x_{0}}(\log x)^{x_{1}} \ldots\left(\log _{s-1} x\right)^{\alpha_{s-1}}$ is critical of Ω.

Proof - By Lemma $9(a)$ and [5, §§53-54], the coefficients of Ω_{s} lie in an $L D_{-1}$ over $\log _{s} S^{*}$, and hence each is of the form $c+T$ where c is a constant and T is trivial in $\log _{s} S^{*}$. Part (a) now follows immediately.

To prove (b), suppose $Q_{s}(k)=0$. Then $\Omega_{s}(k)$ is trivial in $\log _{s} S^{\#}$, and therefore $k \in \operatorname{crit}\left(\Omega_{s}\right)$. By Lemma $11(b), N \in \operatorname{crit}(\Omega)$. Conversely, suppose $Q_{s}(k)$ is non-zero. Then $Q_{s}(k) \approx 1$. Now, $Q_{s}(k+z)=P(z)+Q_{s}(k)$, where each term of $P(z)$ has positive degree and a constant coefficient. If $G<1$ in $\log _{s} S^{\#}$, then clearly $P(G)<1$ in $\log _{s} S^{*}$. Thus $Q_{s}(k+G) \sim Q_{s}(k)$ for all $G<1$. Therefore, Ω_{s} is stable at k, and so $N \notin \operatorname{crit}(\Omega)$ by Lemma $11(a)$.
13. Lemma - (Weight reduction). Let $Q(y)$ be a non-zero nth order differential polynomial with constant coefficients. Let p and w be natural numbers such that each term of Q has degree p and weight w. Let α be a
real number. Then,
(a) $[\alpha ; Q]$ has constant coefficients.
(b) Suppose $w>0$. Then $[\alpha ; Q]$ non-trivially involves a term of weight less than w unless $\alpha=0$ and $Q(y)=c\left(y^{\prime}\right)^{w} y^{p-1 v}$ for some constant c.

Proof - By direct calculation of $[\alpha ; Q]$, it is clear that it has constant coefficients, and we can write $[\alpha ; Q]=Q+Q_{1}$ where the non-zero terms of Q_{1} (if any) have weight less than w. Let $w>0$. If $\alpha \neq 0$ then (b) follows from [5, §61]. Now assume $\alpha=0$ and Q is not of the form $c\left(y^{\prime}\right)^{p} y^{p-w}$. Then for some constant b, we may write $\left.Q(y)=b^{\prime} y^{\prime}\right)^{n} y^{p-w}+G(y)$, where G is a non-zero polynomial in $y, y^{\prime}, \ldots, y^{(n)}$ with constant coefficients, each term of which has degree p, weight w and order ≥ 2. Then clearly, $[0 ; Q](v)=$ $=b\left(v^{\prime}\right)^{w} v^{p-w}+[0 ; G](v)$. Now assume (contrary to (b)) that $[0 ; Q]$ has no non-trivial therms of weight less than w. Therefore, $[0 ; Q](v)=Q(v)$ since $Q_{1} \equiv 0$. Hence,
(c) $[0 ; G](v)=G(v)$.

If the derivatives of y in $G(y)$ are with respect to x, and if $P(u, v)$ is the polynomial in $v, d v / d u, \ldots, d^{n} v / d u^{n}$, obtained from $G(y)$ by the change of variables $y=v, x=e^{u}$, then by definition,
(d) $[0, G](v)=e^{v u} P(u, v)$.

The proof now proceeds in a way similar to that of [5, §61]. Obviously, if $y=f(x)$ is a solution of $G(y)=0$, then in view of (c) and $(d), y=f(\log x)$ is also a solution. Hence if B denotes the set of solutions of $G(y)=0$, then $f(x) \in B$ implies $f(\log x) \in B$. Since $G(y)$ has constant coefficients, $f(x) \in B$ implies $f(a+x) \in B$ for each constant a. Finally $x \in B$ since every term of G has order ≥ 2.

Let a_{0}, a_{1}, \ldots be complex numbers, and define functions $H_{k}\left(x, a_{0}, \ldots, a_{k}\right)$ recursively, as follows: $H_{0}\left(x, a_{0}\right)=a_{0}+x, H_{k+1}\left(x, a_{0}, \ldots, a_{k+1}\right)=a_{k+1}+$ $+\log H_{k}\left(x, a_{0}, \ldots, a_{k}\right)$. It now follows from the preceeding that
(e) $y(x)=H_{s}\left(x, a_{0}, \ldots, a_{s}\right) \in B$
for any $s \geq 0$ and any complex numbers a_{0}, \ldots, a_{s}. (The proof is by induction on s).

We now prove that if $s \geq 0$ and $z=H_{s}$, then the Jacobian of z, $\partial z / \partial x, \ldots, \partial^{s} z / \partial x^{s}$ with respect to a_{0}, \ldots, a_{s}, is not identically zero as a function of $\left(x, a_{0}, \ldots, a_{s}\right)$. When shown, the proof will be completed since for fixed x, this implies the functional independence of $z, \partial z / \partial x, \ldots, \partial^{s} z / \partial x^{s}$, as functions of a_{0}, \ldots, a_{s}, which of course contradicts (e), for $s=n$.

Assume the Jacobian is identically zero. Then there exist functions K_{0}, \ldots, K_{s} of $\left(a_{0}, \ldots, a_{s}\right)$ such that

$$
\text { (f) } K_{0} \partial z / \partial a_{0}+\ldots+K_{s} \partial z / \partial a_{s} \equiv 0
$$

in $\left(x, a_{0}, \ldots, a_{s}\right.$ with $\left|K_{0}\right|+\ldots+\left|K_{s}\right|>0$. If a_{0}, \ldots, a_{s} are fixed as positive numbers, and x ranges over large positive numbers, then clearly H_{0}, \ldots, H_{s} all $\rightarrow \infty$ as $x \rightarrow \infty$. Therefore, if $s \geq j>k$,
(g) $\left(\partial z / \partial a_{k}\right)\left(\partial z / \partial a_{j}\right)^{-1}=\left(H_{k} H_{k+1} \ldots H_{j-1}\right)^{-1} \rightarrow 0$
as $x \rightarrow \infty$. But (g) clearly contradicts (f), and so the Jacobian is not identically zero.

Part IV - The parametric case.

14. Definition - Assume § 2 with Ω NTPD.
(a) M is called a parametric monomial of Ω, if $k M \in$ crit (Ω), for every non-zero constant k. The set of all parametric monomials of Ω is denoted par (Ω).
(b) If $f \sim k x^{\alpha_{0}}(\log x)^{\alpha_{1}} \ldots\left(\log _{s} x\right)^{\alpha_{s}}$ in S^{*}, then the unit monomial $x^{\alpha_{0}}(\log x)^{\alpha_{3}} \ldots\left(\log _{s} x\right)^{\alpha_{s}}$ is called the gauge of f and is denoted] f [. (This concept and notation were introduced [9, § 17]).
(c) If B is a finite non-empty set of unit monomials, then the maximum of B (denoted $\max B$) is that element V of B, such that $N \in B$ implies either $N<V$ or $N=V$.
15. Lemma - Assume $\S 2$ with $\Omega N T P D$. Let $M \in \operatorname{par}(\Omega)$. Then there exists $p>0$ such that $\Omega^{(p)}$ is non-trivial and $M \in \operatorname{par}\left(\Omega^{(p)}\right)$.

Proof - Let I be the set of all $p>0$ for which $\Omega^{(p)}$ is non-trivial, and assume the conclusion does not hold. Then if $p \in I$, there is a non-zero constant k for which $k M \notin \operatorname{crit}\left(\Omega^{(p)}\right)$. But for any $h<M$ and any non-zero constant $c, \Omega^{(p)}(c M+h)=c^{p} k^{-p} \Omega^{(p)}(k M+g)$, where $g=c^{-1} k h$. Therefore it follows that $c M \notin \operatorname{crit}\left(\Omega^{(p)}\right)$ for each constant c and each $p \in I$. In particular $\Omega^{(p)}(M)$ is non-trivial for $p \in I$. Let $N=\max (] \Omega^{(p)}(M)[: p \in I \cup|0|\}$, and let J be the set of all $p \in I \cup\{0\}$ for which $] \Omega^{(p)}(M)[=N$. Then for $p \in J$, $\Omega^{(p)}(M) \sim b_{p} N$, where b_{p} is a non-zero constant. Let $f(a)=\Sigma\left\{b_{p} a^{p}: p \in J\right\}$, and let k_{0} be a non-zero constant for which $f\left(k_{0}\right) \neq 0$. Then we assert that for any $h<M, \Omega\left(k_{0} M+h\right) \sim f\left(k_{0}\right) N$. If proved, this implies $k_{0} M \notin \operatorname{crit}(\Omega)$ which contradicts hypothesis, and thereby establishes the lemma. To prove the assertion, we note that if $p \in I$, then $\Omega^{(p)}\left(k_{0} M+h\right) \sim \Omega^{(p)}\left(k_{0} M\right)$, since $k_{0} M \notin$ crit $\Omega^{(p)}$. Also, $\Omega^{(p)}\left(k_{0} M\right.$ is $\sim b_{p} k_{0} p N$, if $p \in J$ and is $<N$ if $p \in I-J$. If $p=0$, $\Omega^{(p)}\left(k_{0} M+h\right)$ equals $\Omega^{(p)}(M)$, while for $p \notin I \cup\{0\}, \Omega^{(p)}\left(k_{0} M+h\right)$ is trivial and therefore $<N$. The assertion now follows immediately, since $\Omega\left(k_{0} M+h\right)$ is the sum (over p) of all $\Omega^{(p)}\left(k_{0} M+h\right)$.

Remark - The converse of this result is not true, for if $\Omega(y)=y^{\prime}+1$, then $1 \notin \operatorname{par}(\Omega)$ although $1 \in \operatorname{par}\left(\Omega^{(1)}\right)$.
16. Lemma - Assume $\S 2$ with Ω NTPD. Let Ω be homogeneous.

Construct a polynomial $F(x)$ as follows:
Let N be the maximum of the ganges of $\left.x^{-w\left(i^{*}\right)}\right)_{\Omega\left[i^{\#}\right]}$ over all $i^{\#}$ for which $\Omega\left[i^{\#}\right]$ is non-trivial, and let I be the set of all $i^{\#}$ for which $\mid x^{-w\left(i^{*}\right)} \Omega\left[i^{\#}\right][=N$. For $i^{\#} \in I$, let $\left.x^{-w i^{*}}\right) \Omega\left[i^{\#}\right] \sim c\left(i^{\#}\right) N$, where $c\left(i^{\#}\right)$ is a non-zero constant, and let $f\left(i^{*}, \alpha\right)=\alpha^{i_{n}}(\alpha(\alpha-1))^{i_{2}} \ldots(\alpha(\alpha-1) \ldots(\alpha-n+1))^{i_{n}}$ where $i^{\#}=\left(i_{0}, \ldots, i_{n}\right)$. Define $F(\alpha)=\Sigma\left\{c\left(i^{\pi^{*}}\right) f\left(i^{*}, \alpha\right): i^{*} \in I\right\}$.

Then, if $M \in \operatorname{crit}(\Omega), S\left(\delta_{0}(M)\right)=0$.
Proof - Let p be the degree of Ω, and let $M=x^{\alpha} G$ where $\delta_{0}(G)=0$. Then, if $h \sim M$, it follows by induction on q that $h^{(q)}=x^{\alpha-q} G(\alpha(\alpha-1) \ldots$ $\left.\ldots(\alpha-q+1)+E_{q}\right)$ where $E_{q}<1$. Hence $\Omega(h)=x^{\alpha p} G^{p} N(F(\alpha)+E)$, where $E<1$. If $F(\alpha) \neq 0$, then $\Omega(h) \sim \Omega(M)$ for all $h \sim M$, so $M \notin \operatorname{crit}(\Omega)$, proving the lemma.
17. Definition - Under the hypothesis and notation of Lemma 16, the equation $F(\alpha)=0$ is called the critical equation of Ω.

Remaris - (1) The converse of Lemma 16 is not true, for $\Omega(y)=$ $=x\left(\log _{2} x\right) y^{\prime}-y$ has no critical monomials, but zero is a root of its critical equation.
(2) It is possible for the critical equation to be satisfied by every complex number (e.g. $\Omega(y)=\left(y^{\prime}\right)^{2}-y y^{\prime \prime}-x^{-1} y y^{\prime}$). However, if this is not the case (as for example, in linear or first order Ω), then the critical equation clearly has at most W roots.
18. Lemma - Assume $\S 2$ with Ω NTPD. Let Ω be homogeneous of degree p, and let $s \geq r+W+2$. For each $i, 0 \leq i<s$, let α_{i} be a real root of the critical equation of $\left[\alpha_{i-1}, \ldots, \alpha_{0} ; \Omega\right]$. Then
(a) There exist $\beta \in\{1,2, \ldots, p\}$ and a non-zero complex number c such that

$$
\left[\alpha_{s-1}, \ldots, \alpha_{0} ; \Omega\right](v)=c v^{p-\beta}\left(v^{\prime}\right)^{\beta}+R_{s}(v) .
$$

where the coefficients of R_{s} are all trivial in $\log _{s} S^{*}$.
(b) Zero is a root and is the only root of the critical equation of $\left[\alpha_{s-1}, \ldots, \alpha_{0} ; \Omega\right]$.
(c) $N(x)=k x^{\alpha_{0}}\left(\log _{,} x\right)^{\alpha_{1}} \ldots\left(\log _{s-1} x\right)^{\alpha_{s-1}} \in \operatorname{par}(\Omega)$ for any non-zero k.

Proof - Let $\Omega_{i}=\left[\alpha_{i-1}, \ldots, \alpha_{0} ; \Omega\right]$ and $\left.\beta_{i}=\Omega_{[i}{ }^{*}, 0\right]$ for $0 \leq i \leq s$. Then by Lemma $12(a)$, if $i \geq r+1, \Omega_{i}=Q_{i}+R_{i}$ where Q_{i} has constant coefficients and is homogeneous of degree p, while R_{i} is trivial in $\log _{i} S^{*}$. Since δ_{0} of a non-zero constant is $0,-\beta_{i}$ is the minimum weight of all non-zero terms in Q_{i}. It is a routine computation to verify that the coefficient of the term of weight 0 in Ω_{s} is $F\left(\alpha_{s-1}\right)+t$ where $F(\alpha)=0$ is the critical equation of
\mathbf{Q}_{s-1}, and t is trivial in $\log _{s} S^{*}$. Since $F\left(\alpha_{s-1}\right)=0$, elearly $-\beta_{s}>0$. Hence every constant is a solution of $Q_{s}(v)=0$, and therefore (c) follows from Lemma 12(b). Let Q_{i}^{*} be the sum of all terms of weight - β_{i} in Q_{i}. Then, since $\left[\alpha_{i} ; Q_{i}^{*}\right]$ has constant coefficients (by Lemma $\left.13(a)\right)$, and since it is easily seen that $Q_{i}-Q_{i}^{*}$ and R_{i} are both transformed into the trivial part of Ω_{i-1}, we have

$$
\begin{equation*}
\left[\alpha_{i} ; Q_{i}^{*}\right]=Q_{i+1} \quad \text { for } \quad r+1 \leq i \leq s-1 . \tag{1}
\end{equation*}
$$

Thus by lemma $8(d)$, the sequence of weights $\left(-\beta r_{+1},-\beta_{++2}, \ldots,-\beta_{s}\right)$ is a monotone decreasing sequence of elements of the set $\{1,2, \ldots, W\}$. If this sequence were strictly decreasing, it would have at least $W+2$ distinct coordinates (since $s \geq r+W+2$), which is clearly impossible. Hence $-\beta_{0}=-\beta_{j+1}$ for some $j \in\{1+1, r+2, \ldots, s-1\}$. Therefore by Lemma $13, \alpha_{j}=0$ and Q_{i}^{*}
 since $\alpha_{y}=0, Q_{j+1}(v)=c v^{p-\beta}\left(v^{\prime}\right) \beta$ by (1). Then $\alpha_{j+1}=0$ since its a root of the critical equation of Ω_{j+1}. It is now clear that for $1 \leq t \leq s-j, Q_{j+t}(v)=c v^{p-\beta}\left(v^{\prime}\right)$, the proof being by induction on t, using (1). For $t=s-j$, we obtain desired representation in (a). Part (b) follows from Part (a), and the fact that $\beta>0$.
19. Lemma - (Homogeneous case): Assume § 2 with Ω NTPD. Let Ω be homogeneous and let $s \geq r+W+2$. Then
(a) $M \in \operatorname{crit}(\Omega)$ if and only, if $M(x)=k x^{a_{0}}(\log x)^{\alpha_{1}} \ldots\left(\log _{s-1} x\right)^{\alpha_{s-1}}$, where k is a non-zero constant and where α_{i} is a real root of the critical equation of $\left[\alpha_{i-1}, \ldots, \alpha_{0} ; \Omega\right]$, for each $i, 0 \leq i \leq s-1$.
(b) $\operatorname{crit}(\Omega)=\operatorname{par}(\Omega)$.

Proof - Part (α): The condition is sufficient by Lemma 18(c): To prove the necessity, let $M \in \operatorname{crit}(\Omega)$. Then by induction on Lemmas 16 and 11(b), $\delta_{i}(M)$ is a root of the critical equation of $[M, i, \Omega]$ for each $i \geq 0$. But then $\delta_{i}(M)=0$ for $i \geq s$ by Lemma $18(b)$, proving the necessity.

Part (b): This follows from Part (a).
Remark - For an arbitrary Ω. Lemma $18(a)$ provides a method for finding par $\left(\Omega^{(p)}\right)$ for each p. The key step in adapting this method to the non-homogeneous case now follows.
20. Lemma - Assume $\S 2$ with Ω NTPD. Let $s \geq r+W+3$. Suppose there exists $p>0$ for which $M \in \operatorname{par}\left(\Omega^{(p)}\right)$ and such that $\left[M, s,\left.\Omega\right|^{(p)}\right.$ is non-trivial on $\log _{s} S^{*}$. Then:

$$
\text { (a) } M \in \operatorname{par}(\Omega)
$$

(b) There exists an integer $\beta>0$ and a polynomial $O(y)$ in y alone, with constant coefficients, such that for any $t \geq s,[M, t, \Omega](y)=\left(y^{\prime}\right)^{\beta} C(y)+R_{t}(y)$, where all the coefficients of R_{t} are trivial in $\log _{t} S^{*}$.

Pboof - For $i \geq 0$, let $\Omega_{i}=[M, i, \Omega]$ and let $\Lambda_{i q}=\left[M, i, \Omega^{(q)}\right]$ when $\Omega^{(q)}$ is non-trivial in S^{*}. Letting A be the set of all $q \geq 0$ for which $\left(\Omega_{s}\right)^{(q)}$ is non-trivial, it follows from Lemma $10(a) \cdot(c)$ that for $q \in A$,

$$
\begin{equation*}
\left(\Omega_{j}\right)^{(q)}=\Lambda_{j q} \quad \text { for } \quad 0 \leq j \leq s \tag{1}
\end{equation*}
$$

and letting $\alpha_{j}=\delta_{j}(M)$,

$$
\begin{equation*}
\alpha, q+(\Omega))^{(q)}[*, 0]=\Omega_{j}\left[^{*}, \alpha_{j}\right] \text { for } 0 \leq j \leq s-1 \tag{2}
\end{equation*}
$$

By assumption, there exists $p \in A$ such that $p>0$ and $M \in \operatorname{par} \Omega^{(p)}$. Hence by Lemmas $18(\alpha)$ and $19(\alpha), \alpha_{j}=0$ for $j \geq s-1$ and $\beta=-\Lambda_{s-1, p}\left[^{*}, 0\right]$ is >0, Let $q \in A$. Then since $\left.\alpha_{s-1}=0, \beta=-\Lambda_{s-1, q}{ }^{*}, 0\right]$ by (1) and (2). Therefore, by Lemma 12(a), all non-trivial terms in $\Lambda_{s-1, q}$ have weight $\geq \beta$ and hence positive weight. Thus $1 \in \operatorname{par}\left(\Lambda_{s-1,9}\right)$, and therefore $M \in \operatorname{par}\left(\Omega^{(q)}\right)$ by Lemma $11(b)$. Hence $\Lambda_{s-1, q}(y)=c_{q} y^{q-\beta}\left(y^{\prime}\right)^{R}+R_{q}(y)$, where c_{q} is a constant, and R_{q} is trivial. But then $\Lambda_{s q}$ also has this form since $\alpha_{s-1}=0$. It now follows from (1) and the definition of A, that $\Omega_{s}(y)=\left(y^{\prime}\right)^{\beta} C(y)+T(y)$, where $C(y)=\Sigma\left\{c_{q} y^{q-\beta}: q \in A\right\}$, and T is trivial. This is the desired representation in (b), for $t=s$. For $t \geq s$, the representation in (b) follows easily by induction, since $\alpha_{t-1}=0$. Finally, since $\beta>0,1 \in \operatorname{par}\left(\Omega_{s}\right)$, and hence $M \in \operatorname{par}(\Omega)$ by Lemma $11(b)$, proving (a), and concluding the proof.
21. Theorem I (General ease) - Assume $\S 2$ with Ω NTPD. Let $s \geq r+$ $+W+3$. Then $M \in \operatorname{par}(\Omega)$ if and only if $M(x)=k x^{\alpha_{0}}(\log x)^{\alpha_{1}} \ldots\left(\log _{s-1} x\right)^{\alpha_{s-1}}$, where
(a) k is a non-zero constant,
(b) there exists $p>0$ for which $\Omega^{(p)}$ is non-trivial, and such that for each $i, 0 \leq i \leq s-1$,
(1) α_{i} is a root of the critical equation of $\left[\alpha_{i-1}, \ldots, \alpha_{0} ; \Omega\right]^{(p)}$, and
(2) $\left[\alpha_{i}, \ldots, \alpha_{0} ; \Omega\right]^{(p)}$ is non-trivial on $\log _{i+1} S^{\#}$.

Proof - Suppose (a) and (b) are satisfied for some $p>0$. Then (2) implies
(c) $\left[\alpha_{j-1}, \ldots, \alpha_{0} ; \Omega\right]^{(p)}=\left[\alpha_{j-1}, \ldots, \alpha_{0} ; \Omega^{(p)}\right]$,
for $0 \leq j \leq s$, by Lemma $10(a),(c)$. Therefore (1) implies $M \in \operatorname{par}\left(\Omega^{(p)}\right)$ by Lemma $19(a)$. Hence $M \in \operatorname{par}(\Omega)$ by Lemma $20(a)$.

Conversely, suppose $M \in \operatorname{par}(\Omega)$. Let $M_{0}=M$ and $M_{i+1}(x)=$ $=\exp \left(-\delta_{i}(M) x\right) M\left(e^{x}\right)$ for $i \geq 0$. Then by Lemma $11(a), M_{i} \in \operatorname{par}\left(\Omega_{i}\right)$ for all $i \geq 0$, where $\Omega_{i}=[M, i, \Omega]$. Letting A_{i} be the set of all $q>0$ for which $\left(\Omega_{i}\right)^{(q)}$ is non-trivial and $M_{i} \in \operatorname{par}\left(\Omega_{i}\right)^{(q)}$, it follows from Lemma 15 that each A_{i} is non-empty (and each is clearly finite). Since A_{0} is non-empty, it follows from Lemma ($19(\alpha)$ that $\delta_{i}(M)=0$ for $i \geq s$, and we may write $M(x)=k x^{x_{0}}(\log x)^{x_{1}} \ldots\left(\log _{s-1} x\right)^{\alpha_{s-1}}$. We now show $A_{i+1} \subset A_{i}$ for all i. If $p \in A_{i+1}$, then by Lemma $10,\left(\Omega_{i}\right)^{(p)}$ is non-trivial and (c) holds for $0 \leq j \leq i+1$. Since $M_{i+1} \in \operatorname{par}\left(\Omega_{i+1}\right)^{(p)}$, we have $M_{i} \in \operatorname{par}\left(\Omega_{i}\right)^{(p)}$ by (c) and Lemma $11(b)$. Hence A_{i} contains A_{i+1}. Therefore, the intersection of all the sets A_{i} contains an element p, which obviously satisfies (2). Since $M \in \operatorname{par}\left(\Omega^{(p)}\right)$, it follows from (c) and Lemma $19(a)$ that (1) is also satisfied.

Remark - For an arbitrary Ω, Theorem I provides a method for finding $\operatorname{par}(\Omega)$, by considering separately, each $p>0$ for which $\Omega^{(p)}$ is non-trivial, and finding all s-tuples $\left(\alpha_{0}, \ldots, \alpha_{s-1}\right)$ of real numbers which satisfy (1) and (2) relative to p (taking $s=r+W+3$). Then corresponding to any such $\left(\alpha_{0}, \ldots, \alpha_{s-1}\right), M(x)=k x^{\chi_{0}}(\log x)^{\alpha_{1}} \ldots\left(\log _{s-1} x\right)^{n_{s-1}}$ is in par ($\left.\Omega\right)$. Conversely, for any $M \in \operatorname{par}(\Omega)$, the s-tuple $\left(\delta_{0}(M), \ldots, \delta_{s-1}(M)\right)$ must appear relative to some p.

Part V - The non-parametric case.

22. Lemma - Assume $\S 2$ with Ω NTPD. Let $M \in(\operatorname{crit}(\Omega)-\operatorname{par}(\Omega))$, and let $\delta_{0}(M)=\alpha$. Then there exist at least two distinct natural numbers p and q for which $\Omega^{(p)}\left[{ }^{*}, \alpha\right]=\Omega\left[{ }^{*}, \alpha\right]=\Omega^{(q)}\left[{ }^{*}, \alpha\right]$.

Proof - Assume the conclusion is false. Then the set of all p for which $\Omega^{(p}\left[{ }^{*}, \alpha\right]=\Omega\left[{ }^{*}, \alpha\right]$ reduces to $\{m\}$ for some m. Hence if $q \neq m$, then $\Omega^{(q)}\left[{ }^{*}, \alpha\right]<\Omega\left[{ }^{*}, \alpha\right]$ and therefore, $[\alpha ; \Omega]^{(q)}$ is trivial. It follows that $\operatorname{crit}[\alpha ; \Omega]=$ $=\operatorname{crit}[\alpha ; \Omega]^{(m)}$, and therefore, $\operatorname{par}[\alpha ; \Omega]=\operatorname{par}[\alpha ; \Omega]^{(m)}$. But then $\operatorname{crit}[\alpha ; \Omega]=$ $=\operatorname{par}[\alpha ; \Omega]$, in view of Lemma $19(b)$ (as applied to $\left.[\alpha ; \Omega]^{m}\right)$. Since $M \in \operatorname{crit}(\Omega)$, it then follows from Lemma $11(a)$ that $e^{-\alpha u} M\left(e^{u}\right) \in \operatorname{par}[\alpha ; \Omega]$, and therefore $M \in \operatorname{par}(\Omega)$ by Lemma $11(b)$. This contradicts hypothesis, and establishes the lemma.
23. Definifion - Assume $\S 2$ with Ω NTPD. Then a real number α is called an admissible value of Ω, if the relation $\Omega^{(p)}\left[{ }^{*}, \alpha\right]=\Omega\left[{ }^{*}, \alpha\right]=\Omega^{(q)}\left[{ }^{*}, \alpha\right]$ holds for at least two distinct p and q.
24. Lemma - Assume § 2 with Ω NTPD. Let $s \geq r+2 W+2$. For each $i, 0 \leq i<s$, let α_{i} be an admissible value of $\Omega_{i}=\left[\alpha_{i-1}, \ldots, \alpha_{0} ; \Omega\right]$, and let $\Omega_{s}=\left[\alpha_{s-1}, \ldots, \alpha_{0} ; \Omega\right]$. Then,
(a) There exist a natural number β, and a non-homogeneous polynomial $C(y)$, in y alone, with constant coefficients, such that $\Omega_{s}(y)=\left(y^{\prime}\right)^{\beta} C(y)+R_{s}(y)$, where R_{s} is trivial in $\log _{s} S^{\#}$.
(b) Zero is an admissible value, and is the only admissible value, of Ω_{s}.

Proof - Let $\beta_{i}(q)=\left(\Omega_{i}\right)^{(q)}\left[{ }^{*}, 0\right]$ and $v_{i}=\Omega_{i}\left[{ }^{*}, \alpha_{i}\right]$, for each i and q. Let A be the set of all q for which $\left(\Omega_{8}\right)^{(q)}$ is non-trivial, and let $q \in A$. Then by Lemma $10(a)$ and $(b),\left(\Omega_{i}\right)^{(q)}$ is non-trivial and $\alpha_{i} q+\beta_{i}(q)=v_{i}$ for $0 \leq i<s$. Now for $i \geq r+1, \Omega_{i}=Q_{i}+R_{i}$ where Q_{i} has constant coefficients, and R_{i} has trivial coefficients. Hence - $\beta_{i}(q)$ is the minimum weight of non-trivial terms in $\left(Q_{i}\right)^{(q)}$. Letting $P_{i q}$ be the sum of all terms in $\left(Q_{i}\right)^{(q)}$ which have weight - $\beta_{i}(q)$, we have (as in (1) of Lemma 18), $\left[\alpha_{i} ; P_{i q}\right]=\left(Q_{i+1}\right)^{(q)}$. Hence, by Lemma $8(d),-\beta_{i+1}(q) \leq-\beta_{i}(q)$, for $q \in A$. Now A clearly has at least two elements. In what follows, assume t and q are any distinct elements of A, and let $m_{i}=-\left(\beta_{i}(t)+\beta_{i}(q)\right)$. Then the sequence, $\left(m_{r+1}, m_{r+2}, \ldots, m_{s}\right)$ is a monotone decreasing sequence of elements of the set $\{0,1, \ldots, 2 W\}$. This sequence cannot be strictly decreasing, for otherwise, it would have at least $2 W+2$ distinct coordinates (since $s \geq r+2 W+2$), which is impossible. Hence for some $j, m_{j}=m_{j+1}$. Then clearly, $\beta_{j+1}(q)=\beta_{j}(q)$ and $\beta_{j+1}(t)=\beta_{j}(t)$. It now follows from Lemma $13(b)$, that $\alpha_{j}=0$, and that $P_{j q}(z)=c\left(z^{\prime}\right)^{\prime} z^{q-\beta}$ (where $\beta=-v_{j}$), with a similar representation for $P_{j t}(z)$. Hence both $\left(Q_{j+1}\right)^{(q)}$ and $\left(Q_{j+1}\right)^{(t)}$ are also of this form, and by induction, so are $\left(Q_{j+k}\right)^{()^{(t)}}$ and $\left(Q_{f+k}{ }^{(t)}\right.$ for $1 \leq k \leq s-j$. Since t and q were arbitrary elements of A, it follows, taking $k_{i}=s-j$, that $Q_{s}(z)=\left(z^{\prime}\right) \cdot C(z)$, where $O(z)$ is a non-homogeneous polynomial in z alone with constant coefficients, proving (a).
(b) follows immediately from (a).
25. Definition - Under the hypothesis and notation of Lemma 24, the sequence $\left(\alpha_{0}, \alpha_{1}, \ldots, \alpha_{i-1}\right)$ is called an admissible sequence of Ω, and $\left(y^{\prime}\right)^{\beta} C(y)$ is called the s-equation of $\left(\alpha_{0}, \alpha_{1}, \ldots, \alpha_{s-1}\right)$.

Remark - β may be strictly positive in the s-equation, as evidenced from the example of $(0,0, \ldots, 0)$ in $\Omega(y)=y y^{\prime}-y^{\prime}+x^{-2}$. (Note here that $1 \in \operatorname{par}(\Omega)$).
26. Theorem II - Assume $\S 2$ with Ω NTPD. Let $s \geq r+2 W+2$. Then $M \in(\operatorname{crit}(\Omega)-\operatorname{par}(\Omega))$ if and only if $M(x)=k x^{\alpha_{0}}(\log x)^{x_{1}} \ldots\left(\log _{s-1} x\right)^{\alpha_{s-1}}$, where $\left(\alpha_{0}, \ldots, \alpha_{s-1}\right)$ is an admissible sequence of Ω, whose s-equation $\left(y^{\prime}\right)^{\beta} C(y)$ satisfies the conditions, $\beta=0$ and $C(k)=0$.

Proof - The conditions are sufficient by Lemma 12(b).
Conversely, suppose $M \in(\operatorname{crit}(\Omega)-\operatorname{par}(\Omega))$. Then by Lemmas 11 and 22 , $\delta_{i}(M)$ is an admissible value of $[M, i, \Omega]$ for all $i \geq 0$. Hence by Lemma $24(b)$,
$\delta_{i}(M)=0$ for $i \geq s$. Clearly $\beta=0$ in the s-equation of $\left(\delta_{0}(M), \ldots, \delta_{s-1}(M)\right)$, for otherwise $M \in \operatorname{par}(\Omega)$ by Lemma $12(b)$. Finally $C(k)=0$ by Lemma $12(b)$, since $M \in \operatorname{crit}(\Omega)$.

Remark - It is clear that Theorem II provides a method for finding the set, ($\operatorname{crit}(\Omega)-\operatorname{par}(\Omega)$), in a number of steps which can be bounded in advance.

Part VI - The associated function.

27. Lemma - Assume $\S 2$ with Ω NTPD. Let $M \in \operatorname{orit}(\Omega)$, with $k=M(] M[)^{-1}$. Then there exist a natural number β, and a polynomial $C(y)$ in y alone, with constant coefficients, such that
(a) $\beta+m>0$, where m is zero if $C(k) \neq 0$ and otherwise is the multiplicity of the root k in $C(y)$.
(b) For $s \geq r+2 W+3$, we have $\delta_{s}(M)=0$ and $[M, s, \Omega](y)=\left(y^{\prime}\right)^{\rho} C(y)+$ $+R_{s}(y)$, where R_{s} is trivial in $\log _{s} S^{*}$.

Proof - This follows from Theorem I and Lemma $20(b)$, in the case when M is parametric, and from Theorem II, in the non-parametric case.
28. Definition - Under the hypothesis and notation of Lemma 27,
(a) $\left(y^{\prime}\right)^{\beta} C(y)$ is called the associated function of M in Ω, and is denoted $A F(M, \Omega, y)$.
(b) β is called the exponent of M.
(c) m is called the multiplicity of M.
(d) M is called an ordinary monomial if $m>0$, and is called simple if $m=1$.

Remarks - (1) If $M \in p m(\Omega)$, then the associated function defined in [$5, \S 68(e)]$, coincides with that defined in Definition 28(a), for in this case, $[M, i+1, \Omega]$ is the first image (see $[5, \S 63]]$ of $[M, i, \Omega]$.
(2) Obviously, $\beta>0$ if and only if $M \in \operatorname{par}(\Omega)$.
29. Lemma - Assume $\S 2$ with Ω NTPD.
(a) Let $s \geq r+2 W+3$. Then M is an ordinary monomial of Ω if and only if $M(x)=k x^{\alpha_{0}}(\log x)^{\alpha_{1}} \ldots\left(\log _{s-1} x\right)^{\alpha_{s-1}}$, where $\left(\alpha_{0}, \ldots, \alpha_{s-1}\right)$ is an admissible sequence of Ω, whose s-equation $\left(y^{\prime}\right)^{\beta} C(y)$ satisfies the condition $C(k)=0$.
(b) Let $D(\Omega)$ (respectively, $d(\Omega)$), denote the maximum (respectively, the minimum) of the set of all p for which $\Omega^{(p)}$ is non-trivial. Then there are precisely $D(\Omega)-d(\Omega)$ ordinary monomials of Ω, provided each is counted as many times as its multiplicity indicates.

Proof - (a) is obvious.
To prove (b), we first prove the following assertion (A). If $B=\left\{a_{0}, a_{1}, \ldots, a_{t}\right\}$ is the set of admissible values of Ω, where $a_{0}<a_{1}<\ldots<a_{t}$, then $(D(\Omega)-$ $-d(\Omega))=\Sigma\left\{\left(D\left(\left[a_{i} ; \Omega\right]\right)-d\left(\left[a_{i} ; \Omega\right)\right): 0 \leq i \leq t\right\}\right.$. First we show $D\left(\left[a_{i} ; \Omega\right]\right)=$ $d\left(\left[a_{i+1} ; \Omega\right]\right)$ for $0 \leq i \leq t-1$. If this relation fails to hold for i, then letting $p=D\left(\left[\alpha_{i} ; \Omega\right]\right)$ and $\left.q=d_{1}\left[a_{i+1} ; \Omega\right]\right)$, we have $p<q$. But then using Lemma $10(a),(b)$, it is easily verified that the maximum of all the numbers, $(q-m)^{-1}\left(\Omega^{(m)}\left[{ }^{*}, 0\right]-\Omega^{(q)}\left[{ }^{*}, 0\right]\right)$ for $p \leq m<q$, is an admissible value of Ω, which is strictly between a_{i} and a_{i+1}, contradicting our representation for B. Similarly, we prove $D\left(\left[a_{t} ; \Omega\right]\right)=D(\Omega)$ and $d\left\{\left[a_{0} ; \Omega\right]\right)=d(\Omega)$, so assertion (A) follows immediately.

Now let B_{i} be the set of admissible sequences $\left(\alpha_{0}, \alpha_{1}, \ldots, \alpha_{i-1}\right)$ of Ω. If $s=r+2 W+3$, then by (a), it is clear that the number N of ordinary monomials of Ω is precisely the sum, over all $\left(\alpha_{0}, \ldots, \alpha_{s-1}\right) \in B_{s}$, of the numbers $D\left(\left[\alpha_{s-1}, \ldots, \alpha_{0} ; \Omega\right]\right)-d\left(\left[\alpha_{s-1}, \ldots, \alpha_{0} ; \Omega\right]\right)$. This sum can be written as an interated sum, the inner one of which is over all α_{s-1} which are admissible in $\left[\alpha_{s-2}, \ldots, \alpha_{0} ; \Omega\right]$, and the outer sum is over all $\left(\alpha_{0}, \ldots, \alpha_{s-2}\right) \in B_{s-1}$. But then applying assertion (A) to the inner sums, shows that N is the sum over all $\left(\alpha_{0}, \ldots, \alpha_{s-2}\right) \in B_{s-1}$ of the numbers $D\left(\left[\alpha_{s-2}, \ldots, \alpha_{0} ; \Omega\right]\right)-d\left(\left[\alpha_{s-2}, \ldots, \alpha_{0} \Omega\right]\right)$. Repeated applications of this argument clearly leads to $N=D(\Omega)-d(\Omega)$.
30. Lemma - Assume $\S 2$ with Ω NTPD. Let $M \in \operatorname{crit}(\Omega)$, and let N be a logarithmic monomial, with $a=N(] N[)^{-1}$. Then,
(a) If $\Lambda=N \Omega$, we have $M \in \operatorname{crit}(\Lambda)$ and $A F(M, \Lambda, y)=a(A F(M, \Omega, y)$).
(b) If Φ is the N-multiplication transform of Ω (i.e. $\Phi(z)=\Omega(N z)$), then $M N^{1} \in \operatorname{crit}(\Phi)$, and $A F\left(M N^{-1}, \Phi, y\right)=A F(M, \Omega, a y)$.

Proof - Part (a) is obvious.
Part (b) follows from the following assertion. If $\alpha=\delta_{0}(N)$ and $G(u)=e^{-\alpha u} N\left(e^{u}\right)$, then for any real number $v,[\nu ; \Phi]$ is the \dot{G}-multiplication transform of $[\alpha+\nu ; \Omega]$. (Part (b) then follows by induction, taking $\left.v=\delta_{0}\left(M N^{-1}\right)\right)$. To prove the assertion, we note that $[\nu ; \Phi]$ and the G-maltiplication transform of $[\alpha+\vee ; \Omega]$ differ only by the multiplicative factor $\exp \left[\left(\Omega\left[^{*}, \alpha+v\right]-\Phi\left[^{*}, v\right]\right) u\right]$. Since both differential polynomials are non-trivial, this factor must be 1 , proving the assertion.
31. Lemma - Assume $\S 2$ with Ω NTPD. Let $M \in \operatorname{crit}(\Omega)$ with exponent β and multiplicity m. Let $\Lambda(z)=\Omega(M+M z)$, and let Φ be the sum of all terms in Λ of degree $\leq \beta+m$. Then,
(a) The set of critical monomials <1 of Λ is precisely the set of critical monomials <1 of Φ, (and the associated function in each is the same).
(b) Any ordinary monomial of Λ which is <1 is an ordinary monomial of Φ. Any ordinary monomial of Φ is <1 and is an ordinary monomial of Λ.
(c) If $\Omega(M)$ is non-trivial, then Λ has exactly $\beta+m$ ordinary monomials <1 (counting multiplicity).

Proof - By Lemma 30(b), 1 is a critical monomial of the M-multiplication transform of Ω, and its associated function is of the form $\left(y^{\prime}\right)^{P} C(y)$, where 1 is an m-fold root of $C(y)$. For $i \geq 0$, let $\Lambda_{i}=[1, i, \Lambda]$. Then for sufficiently large $i, \Lambda_{i}(y)=\left(y^{\prime}\right)^{\text {P }} C(1+y)+T_{i}(y)$, where T_{i} is trivial (the proof of this being similar to that of Lemma $30(b)$). Since 1 is an m-fold root of $C(y)$, obviously for all $i \geq 0$,

$$
\begin{equation*}
\left(\Lambda_{i}\right)^{(\beta+m)} \text { is NTPD. } \tag{1}
\end{equation*}
$$

Let the coefficients of Λ lie in an $L D_{t}\left(S^{\#}\right)$, and let $s=t+2 W+3$.
We first prove the following assertion. If G is a logarithmic monomial of rank $\leq s-1$, and $G<1$, then for every $q>\beta+m,[G, s, \Lambda]^{(q)}$ is trivial. Assume the contrary for some $q>\beta+m$. Then letting j be the smallest i for which $\delta_{i}(G)$ is non-zero, it follows from Lemma $10(a),(b)$ that $\left.\left.\left(\Lambda_{j}\right)^{(G)}\left[{ }^{*}, 0\right]>\left(\Lambda_{j}\right)^{18+m}\right)^{*}, 0\right]$, and hence that $\left(\Lambda_{j+1}\right)^{(\beta+m)}$ is trivial. This contradicts (1), and proves the assertion. Therefore, in view of Lemma $8(b)$, for such a $G<1$ there is a $p \leq \beta+m$ such that $[G, s, \Lambda]^{(p)}$ is non-trivial (and this holds for $G \approx 1$ by (1), taking $p=\beta+m$). It now follows by induction that the relation,

$$
\begin{equation*}
[G, i, \Phi]=\Sigma\left\{[G, i, \Delta]^{(k)}: 0 \leq k \leq \beta+m\right\} \tag{2}
\end{equation*}
$$

is valid for any $G \underset{\approx}{ } 1$ of rank $\leq s-1$, and any $i, 0 \leq i \leq s$.
Hence, if $G<1$, then since $[G, s, \Delta]^{(q)}$ is trivial for $q>\beta+m$, we have

$$
\begin{equation*}
[G, s, \Lambda]=[G, s, \Phi]+T \tag{3}
\end{equation*}
$$

where T is trivial. Part (a) of the lemma follo:s immediately from (3). Furthermore, (3) also implies that the ordinary monomials <1 of A are precisely the ordinary monomials <1 of Φ. Thus to conclude the proof of Part (b), we must show that every ordinary monomial of Φ is <1.

From (2), it follows that if $G \approx 1$ then $[G, s, \Phi]$ is of the form $b\left(y^{\prime}\right)^{\beta} y^{m}+R(y)$, (where R is trivial), and hence there can be no ordinary monomial ≈ 1. Now assume Φ has an ordinary monomial N, with $1<N$. Then $[N, s, \Phi]$ must involve at least two terms of different degree, non-trivially. Since Φ has no terms of degree $>\beta+m$, there exists $q<\beta+m$ for which $[N, s, \Phi]^{(q)}$ is non-trivial. But then letting j be the smallest i for which $\delta_{i}(N)$ is non-zero, it follows from Lemma $10(a)$, (b) that $[1, j, \Phi]^{q 9}\left[{ }^{*}, 0\right]>[1, j, \Phi]^{\beta(\beta+m)}\left[{ }^{*}, 0\right]$, and hence that $[1, s, \Phi]^{(3+m)}$ is trivial in $\log _{s} S^{\#}$. But then by (2), $\left(\Lambda_{s}\right)^{(8+m)}$ is trivial, contradicting (1). This contradiction establishes Part (b).

Part (c) follows from Part (b) and Lemma 29(b).
32. Lemma - Assume $\S 2$ with Ω NTPD. Let $1 \in \operatorname{crit}(\Omega)$ with $A F(1, \Omega, y)=$ $=\left(y^{\prime}\right)^{\beta} C(y)$. Let $q \geq r+2 W+3$, and let $\theta=\theta_{q}$ be the operator $\theta_{q} y=$ $=\left(x \log x \ldots \log _{q-1} x\right) y^{\prime}$ as defined in [5, § 15]. Then there is a unit monomial N such that when $N \Omega$ is written as a polynomial in $y, \theta y, \ldots, \theta^{n} y$, it has the form $\Sigma t\left(k^{*}, x\right) y^{\boldsymbol{R}_{0}}(\theta y)^{k_{1}} \ldots\left(\theta^{n} y\right)^{k_{n}}$, where
(a) $t\left(k^{*}, x\right) \precsim 1$ for all k^{*}
(b) $t\left(k^{*}, x\right)<1$ if $k^{\#} \neq\left(k_{0}, \beta, 0, \ldots, 0\right)$
(c) $C(y)=\Sigma\left\{t\left(k^{\#},+\infty\right) y^{\boldsymbol{*}_{0}}: k^{\#}=\left(k_{0}, \beta, 0, \ldots, 0\right)\right\}$.

Proof - The change of variables $y=v, x=e^{u}$, transforms $\theta_{p+1}{ }^{j} y$ into $\theta_{p}{ }^{j} v$, for all p and j. Hence if we write $\Omega(y)$ as a polynomial in $y, \theta y, \ldots, \theta^{n} y$, then we obtain a representation for $[1, q, \Omega]$ directly from the definition of $[1, q, \Omega]$ as a transform. Comparing this representation with that given by the associated function, and using [$5, \S 19(e)]$, we easily obtain the desired representation for $N \Omega$, when $N(x)$ is taken to be $x^{-v}(\log x)^{-v_{i}} \ldots\left(\log _{q-1} x\right)^{v_{q-1}}$, where $v_{i}=[1, i, \Omega][*, 0]$.
33. Lemma - Assume $\S 2$ with $n=1$ (i.e. let Ω be of order 1). Let Ω be $N T P D$. Let $M \in \operatorname{par}(\Omega)$, with exponent β and multiplicity zero. Let $G<1$ be a parametric monomial of $\Omega(M+M z)$, with exponent β_{1} and multiplicity m_{1}. Then $\beta_{1}+m_{1}<\beta$.

In particular, the exponent of any critical monomial <1 of $\Omega(M+M z)$ is less than β.

Proof - If Γ is the M-multiplication transform of Ω, then by Lemma $30(b), 1 \in \operatorname{par}(\Gamma)$, with $A F(1, \Gamma, y)$ of the form $\left(y^{\prime}\right)^{\beta} C(y)$, where $O(1) \neq 0$. From Lemma 34, it follows that for sufficiently large q, there is a unit monomial $H(x)$, such that the coefficients of $\Lambda(z)=H \Gamma(1+z)$ satisfy the following asymptotic relations:
(a) $\Lambda\left[\left(k_{0}, k_{1}\right)\right]<\left(x \log x \ldots \log _{q-1} x\right)^{k_{1}-\beta}$ if $\quad k_{1} \neq \beta$.
(b) $\left.\Lambda\left[k_{0}, \beta\right)\right] \ll 1$.
(c) $\Lambda[(0, \beta)] \approx 1$.

Suppose $G<1$ is a parametric monomial of $\Omega(M+M z)$ with exponent β_{1} and multiplicity m_{1}. Then by Lemma $30(a), G \in \operatorname{par}(\Lambda)$ with $A F(G, \Lambda, y)$ of the form $\left(y^{\prime}\right) \mathrm{E}_{1} C_{1}(y)$, where $C_{1}(y)$ has a non-zero m_{1}-fold root. Letting b be the degree of $C_{1}(y)$, we have $\beta_{1}+b \leq \beta$ by Lemma $31(a)$. Assume that the conclusion $\beta_{1}+m_{1}<\beta$ does not hold. Then since $m_{1} \leq b$; we have $\beta_{1}+b=\beta$. Then $[G, i, \Lambda]^{(\beta)}$ is NTPD for all $i \geq 0$, and is of the form $c\left(y^{\prime}\right)^{\beta} y^{b}+R_{i}$ (where R_{i} is trivial) for sufficiently large i. But by Lemma $10(a),(c),\left[G, i, A^{(\beta)}=[G, i, A]^{(\beta)}\right.$ and since $\beta_{1}>0$ it follows from Lemma $12(b)$ that $G \in \operatorname{par}\left(\Lambda^{(\rho)}\right)$. Hence $\delta_{i}(G)$ is a root of the critical equation of $\left[G, i, \Lambda^{(\beta)}\right]$ for all i, by Lemma $19(\alpha)$. Since $G<1$, there exists j such that $\delta_{i}(G)=0$ if $i<j$ while $\delta_{j}(G)<0$. But a straightforward computation (using $[5, \S 19(d)]$) shows that the relations (a).(c) imply that for $i \leq j$, the critical equation of $\left[G, i, \Lambda^{(\beta)}\right]$ is of the form a $\alpha^{\beta}=0$ (where a is a non-zero constant). Thus $\delta_{j}(G)=0$ contradicting $\delta_{j}(G)<0$. This contradiction establishes the relation $\beta_{1}+m_{1}<\beta$.

The second conclusion follows from the first.
Remarks - (1) The requirement that Ω be of order 1 is essential in Lemma 33, for if $\Omega(y)=x y^{\prime \prime}+2 y^{\prime}+x^{-3}$, then $1 \in \operatorname{par}(\Omega)$ with $\beta=1$ and multiplicity zero, while $x^{-1} \in \operatorname{par}(\Omega(1+z))$, with exponent equal to one.
(2) The conclusion that $\beta_{1}+m_{1}<\beta$ in Lemma 33 holds only for parametric G, for if $\Omega(y)=\left(y^{\prime}\right)^{2}-2 x^{-2} y^{\prime}+x^{-5} y+x^{-4}$, then $1 \in \operatorname{par}(\Omega)$ with $\beta=2$ and multiplicity zero, while $\Omega(1+z)$ has a principal monomial of multiplicity two.

Part VII - Solutions in certain first order cases.

34. Definition - Assume $\S 2$ with Ω NTPD. Let $M \in \operatorname{crit}(\Omega)$. We say Ω is asymptotically non-singular at M, if $\partial \Omega / \partial y^{(n)}$, evaluated at $y=M$, is non-trivial, and $\partial \Omega / \Omega y^{(n)}$ is stable at M. (This is the obvious extension of the definition given in [$5, \S 77$] for principal monomials).
35. Remark - The next lemma depends only on the result proved in [7] (see below), and not on any results we have obtained thus far. It illustrates one method of proving the existence of solutions $\sim M$ of $\Omega(y)=0$, namely by finding principal solutions of $\Omega(M+z)=0$, and this is the main device of this section.

A Schwartzian-symmetric logarithmic differential field of rank p (briefly an $\left.S L D F_{p}\right)$ over $T^{*}=F(-a, a)$, is a differential field E^{*}, containing all logarithmic monomials of rank $\leq p$, and having the property that if f is a
non-zero element of E^{*}, then f is \sim to a logarithmic monomial of rank $\leq p$, and E^{*} also contains the function whose value at the conjugate of x is the conjugate of $f(x)$. (For example, the set of all rational combinations, with complex coelficients, of logarithmic monomials of rank $\leq p$, is an $S L D F_{p}$).

It is proved in [7], that if a first order Ω with coefficients in an $S L D F_{p}$, possesses a principal monomial N, at which it is asymptotically non-singular, then $\Omega(y)=0$ possesses a principal solution $\sim N$, is some $F(c, d)$.
36. Lemma - Let Ω be a first order differential polynomial with coefficients in an $S L D F_{p}$ over $F(-a, a)$. Let Ω be $N T P D$ and let $M \in \operatorname{crit}(\Omega)$. Then if Ω is asymptotically non-singular at M, the equation $\Omega(y)=0$ has at least one solution $\sim M$ in some $F(c, d)$.

Proof - Assuming $\Omega(M) \neq 0$, it is clear that $\Omega(M+z)$ is asymptotically non-singular at each of its principal monomials. Then if z_{0} is any principal solution of $\Omega(M+z)=0$, the function $y_{0}=M+z_{0}$ is a solution $\sim M$ of $\Omega(y)=0$.
37. Lemma - Assume $\S 2$ with $n=1$, and let Ω be NTPD. Let $M \in \operatorname{par}(\Omega)$ with $A F(M, \Omega, y)$ of the form $\left(y^{\prime}\right)^{\beta} C(y)$ and multiplicity m. Then
(a) For sufficiently large s,

$$
\left[M, s, \partial \Omega / \partial y^{\prime}\right](y)=\left(y^{\prime}\right)^{\beta-1} \beta C(y)+R_{s}(y),
$$

where R_{s} is trivial in $\log _{t} S^{*}$.
(b) If $\beta+m>1$, then $M \in \operatorname{crit}\left(\partial \Omega / \partial y^{\prime}\right)$ and $A F\left(M, \partial \Omega / \partial y^{\prime}, y\right)=\left(y^{\prime}\right)^{\beta-1} \beta C(y)$.
(c) Ω is asymptotically non-singular at M if and only if $\beta=1$ and $m=0$.

Proof - Here, for any differential polynomial Γ, we will use the notation $\Gamma_{i}=[1, i, \Gamma]$.

If Φ is the M-maltiplication transform of Ω, then by Lemma $30(b)$, $1 \in \operatorname{par}(\Phi)$ and $A F(1, \Phi, y)=\left|y^{\prime}\right| k_{0}^{B} C\left(k_{0} y\right)$ where $k_{0}=M(] M[)^{-1}$. As in the proof of Lemma 32, we compute Φ_{s} (for sufficiently large s), and find that there is a unit monomial $g(x)$, such that if $\Lambda=g \Phi$, then

$$
\begin{gather*}
\Lambda_{s}=\Phi_{s} \tag{1}\\
\Lambda_{i}\left[j^{*}\right](u)=\Lambda\left[j^{*}\right]\left(e_{i}(u)\right)\left(L_{i}\left(e_{i}(u)\right)\right)^{\beta-j_{1}} \tag{2}
\end{gather*}
$$

for each j^{*}, and each $i, 0 \leq i \leq s$. (Here, $L_{i}(x)$ is the function $x \log x \ldots \log _{i-1} x$, while $e_{i}(u)$ is defined recursively by $e_{0}(u)=u, e_{i+1}(u)=\exp e_{i}(u)$.

By comparing the representation for the coefficients of Λ_{s} given by (2) (for $i=s$), with that given by the associated function, we abtain asymptotic
estimates on the functions $\Lambda\left[j^{\#}\right]\left(e_{s}(u)\right)$, in $\log _{s} S^{\#}$. Using $[5, \S 19(e)]$, we obtain the following relations for $0 \leq i \leq s$, in $\log _{i} S^{*}$:

$$
\begin{gather*}
\Lambda\left[j^{\#}\right]\left(e_{i}(u)\right)<\left[\left(L_{s-i}(u)\right)\left(L_{i}\left(e_{i}(u)\right)\right)\right]^{s_{1}-\beta} \text { if } j_{1} \neq \beta \tag{3}\\
\Lambda\left[j^{\#}\right]\left(e_{i}(u)\right) \underset{\approx}{\precsim} 1 \text { if } j_{1}=\beta \tag{4}\\
k_{0}^{2} O\left(k_{0} v\right)=\Sigma\left(\Lambda\left[j^{\#}\right]\left(e_{i}(+\infty)\right) v_{0}^{j_{0}}: j_{2}=\beta\right) \tag{5}
\end{gather*}
$$

This last relation implies that for some $p \geq 0$,

$$
\begin{equation*}
\Delta[(p, \beta)] \approx 1 \tag{6}
\end{equation*}
$$

Using (2)-(6), it follows by induction that for $0 \leq i \leq s, \partial \Lambda_{i} / \partial y^{\prime}=\left(\partial \Lambda / \partial y^{\prime}\right)_{i}$. In view of (1), we then see that $\left(\partial \Lambda / \partial y^{\prime}\right)_{s}$ is of the form $\left(y^{\prime}\right)^{\beta-1} \beta k_{0}^{P} C\left(k_{0} y\right)+T_{s}(y)$, where $T_{s}(y)$ is trivial. But since $(g M)^{-1} \partial \Lambda / \partial y^{\prime}$ is simply the M-multiplication transform of $\partial \Omega / \partial y^{\prime}$, Part (a) now follows as in the proof of Lemma $30(b)$.

Parts (b) and (c) follow easily from Part (a) and Lemma $11(b)$.
Remank - Lemma $37(c)$ completely solves the problem of determining in advance those parametric monomials at which a first order Ω is asymptotically non-singular. For non-parametric critical monomials, there seems to be no way of determining this without actually computing the stability properties of $\partial \Omega / \partial y^{\prime}$ at these monomials (using Theorems I and II, for example).
38. Lemma - Let Ω be a first order differential polynomial with coefficients in an $S L D F_{p}$ over $F(-a, a)$. Let Ω be $M T P D$. Then if $M \in \operatorname{par}(\Omega)$ with exponent 1 and multiplicity 0 , the equation $\Omega(y)=0$ has at least one solution $\sim M$ in some $F(c, d)$.

Proof - This follows from Lemmas 36 and 37 (c).
39. Limma - Let Ω satisfy the hypothesis of Lemma 38. Let $M \in \operatorname{par}(\Omega)$ with exponent 2 and multiplicity 0 . Then under either of the following two conditions, the equation $\Omega(y)=0$ has at least one solution $\sim M$ in some $F(c, d)$.
(a) M is a solution of $\partial \Omega / \partial y^{\prime}=0$
(b) $\Omega(M+z)$ has at least one simple ordinary monomial $<M$.

Proof - Let $\Lambda(z)=\Omega(M+M z)$, and $\Phi=\partial \Delta / \partial z^{\prime}$. In each case, we prove the existence of a critical monomial, $N<1$ of Λ such that $N \notin \operatorname{crit}(\Phi)$. Then by Lemma 36, there is a solution $\sim N$ of $\Lambda(z)=0$, and hence $\Omega(y)=0$ has a solution $\sim M$. We first note that by Lemmas $37(b)$ and 33 , any critical monomial <1 of Φ has exponent 0 , and hence, being ordinary, must be an ordinary monomial of $\Phi^{(1)}+\Phi^{(0)}$ by Lemma $31(b)$. (In what follows, we assume $\Omega(M) \neq 0$).

If (a) holds, then $\Phi^{(0)}=0$. Hence $\Phi^{(1)}+\Phi^{(0)}$ has no ordinary monomials by Lemma $29(6)$. Thas any principal monomial of Λ cannot be critical of Φ, so the result follows in this case.

If (b) holds, then Λ has two distinct ordinary monomials <1 by Lemma $31(c)$. At least one of them is not in $\operatorname{crit}(\Phi)$, since $\Phi^{(1)}+\Phi^{(0)}$ has at most one ordinary monomial, so the result follows if (b) holds.

Remark - (a) is satisfied for $M=1$, when $\Omega(y)=\left(y^{\prime}\right)^{2}+\Sigma \alpha_{i j} y^{\prime}\left(y^{\prime}\right)$, where $a_{i 1}=0$ and $\delta_{0}\left(a_{i j}\right)<j-2$ for all i and j.
(b) is satisfied when $\Omega(M+M z)$ has no linear terms.

Part VIII - On solutions in the general non-parametric case.

40. Lemma - Assume $\S 2$ with Ω NTPD. Let M be a simple non-parametric critical monomial of Ω. Let $\left(\partial \Omega / \partial y^{(n)}\right)(M)$ be non-trivial. Let $\Lambda(z)=\Omega(M+M z)$, and let $F(x)=(\partial \Lambda / \partial z)(0)$. Then there is a logarithmic monomial $G \sim F$ such that
(a) $G^{-1} \Lambda(0)<1$, and $G^{-1} \Lambda^{(1)}(z)$ is unimajoral, having one or more principal factorization sequences, $\left.\left(V_{1}, \ldots, V_{n}\right) .(6, \S \S 13,28]\right)$.
(b) If Ω is of first order, and is asymptotically non-singular at M, then $G^{-1} \Delta(z)$ is normal (in the sense of $[5, \S 83]$), having divergence monomial $-V_{1}$.

Proof - If Φ is the M-multiplication transform of Ω, then 1 is a simple non-parametric critical monomial of Φ, and $\operatorname{AF}(1, \Phi, z)$ is of the form $C(z)$, where 1 is a simple root of $C(z)$. By Lemma 32 , for s sufficiently large, there is a unit monomial N, such that when $N \Phi$ is written as a polynomial in $z, \theta_{s} z, \ldots, \theta_{s}{ }^{n} z$, then each coefficient is ${ }_{z} 1$, and $C(z)=\Sigma t_{k}(+\infty) z^{k}$, where $t_{k}(x)$ is the coefficient of z^{k} in this representation for $N \Phi$. Since 1 is a simple root of $C(z), \Sigma k t_{k}(+\infty)=\lambda$ is non-zero. A simple computation shows that $F \sim G$, if G is taken to be λN^{-1}.

Since $C(1)=0, G^{-1} \Lambda(0)<1$. Let $G^{-1} \Lambda^{(1)}(z)=\Sigma H_{j} \theta_{s}{ }^{\prime} z$. Since each coefficient of $N \Phi$ is $\preccurlyeq 1$, each $H_{j} \precsim 1$. Since $F \sim G, H_{0} \sim 1$. It then follows from [6, §20], that $G^{-1} \Lambda^{(1)}(z)$ is unimajoral. The coefficient of $z^{(n)}$ in $G^{-1} \Lambda^{(1)}(z)$ is easily seen to be $G^{-1} M\left(\partial \Omega / \partial y^{(n)}\right)(M)$, which is non-trivial by hypothesis. The existence of at least one principal factorization sequence for $G^{-1} \Lambda^{(1)}(z)$, therefore follows from [$6, \S_{2} 27$], proving Part (α).

To prove Part (b), write $G^{-1} \Lambda(z)=\Sigma a_{i j} z^{i}\left(z^{\prime}\right)^{\prime}$. If $\left(V_{1}\right)$ is a principal factorization sequence, then by definition, V_{1} is in the divergence class, $a_{01} \sim-V_{1}^{-1}$ and $a_{10} \sim 1$. By Part $(a), a_{00}<1$, and since each coefficient of $N \Phi$ is $\precsim 1$, we have $a_{i 0} \leqq 1$ for each i. To conclude the proof that $G^{-1} \Lambda(z)$ is normal,
we must show there is a q for which $a_{i j} \geqq<\alpha_{01}\left(L_{q}\right)^{j-1}$ when $j \geq 1$ and $i+j \geq 2$. The proof of this follows from considering the transform $\Gamma(z)$ of $\partial \Omega / \partial y^{\prime}$ under the change of variable, $y=M+M z$. If Ω is asymptotically non-singular at M, then any principal monomial of Γ is not <1, by Lemma 3 . With this knowledge, the application of the algorithm of the principal monomial to Γ, readily produces the desired asymptotic relations for $a_{i j}$, thereby concluding the proof.
41. Definitron - Under the hypothesis and notation of Lemma 40,
(1) $\left(V_{1}, \ldots, V_{n}\right)$ is called a type for Ω at M.
(2) $G^{-1} \Lambda$ is called the residual operator for Ω at M.
(3) If $\left(V_{1}, \ldots, V_{n}\right)$ is a weak factorization sequence (see [6, §88]), for . $G^{-1} \Lambda$, then $\left(V_{1}, \ldots, V_{n}\right)$ is called an asymptotically steady type for Ω at M.

These definitions extend those given in [6, § 116], for principal monomials).
42. Theorem III - Let $S^{*}=F(a, b)$, where $-\pi \leq a<b \leq \pi$. Let Ω be a first order differential polynomial which has coefficients in an $L D,\left(S^{*}\right)$, and which is $N T P D$. Let M be a simple non-parametric critical monomial of Ω, at which Ω is asymptotically non-singular. Let (c, k, t) be the index (see $[5, \S 44])$ of the type for Ω at M. Let $f(\theta)=\cos \left(\delta_{0 k} t 0+\arg (-c)\right)$, for $a<\theta<b$, (where $\delta_{i j}$ is the Kronecker delta), and let $f(\theta) \neq 0$. Then,
(a) For every point u in the open interval (a, b), there exists a positive number v, and a function y_{0}, such that $\Omega\left(y_{0}\right)=0$ and $y_{0} \sim M$ in $F(u-v, u+v)$.
(b) For each interval $\left(a_{1}, b_{1}\right)$ in which f is positive there is a one-para. meter family of solutions $\sim M$ in $F\left(a_{1}, b_{1}\right)$, of the equation $\Omega(y)=0$. For each interval $\left(a_{2}, b_{2}\right)$ in which f is negative, there is a unique solution $\sim M$ in $F\left(a_{2}, b_{2}\right)$, of the equation $\Omega(y)=0$.

Proof - By Lemma $40(b)$, the residual operator for Ω at M is normal, and its divergence monomial has index ($-c, k, t$). Hence the theorem follows immediately from $[5, \S 126]$, concerning solutions of normal differential polynomials.
43. Theorem IV - Let a, a_{0} and b be real numbers such that $-\pi \leq a<$ $<a_{0}<b \leq \pi$. Let $S^{*}=F(a, b)$. Let Ω be an $n t h$ order differential polynomial with coefficients in an $L D\left(S^{\#}\right)$, and be $N T P D$. Let M be a simple non-parametric critical monomial of Ω, and let $\left(V_{1}, \ldots, V_{n}\right)$ be an asymptotically steady type for Ω at M. Let $\left(V_{1}, \ldots, V_{n}\right)$ be unblocked (see $\left.[6, \S 98]\right]$ in $\left(a, a_{0}, b\right)$. Then $\Omega(y)=0$ has at least one solution $\propto M$ in S^{*}.

Proof - Under the given conditions it follows from [6, § 115], that if $\Phi(z)$ is the residual operator for Ω at M, then $\Phi(z)=0$ has a solution <1 in S^{*}. The theorem now follows immediately.

Part IX - Solution in the linear case.

The main result of this part is,
45. Theorem $V-$ Let $S^{*}=F\left(a_{1}, a_{2}\right)$ where $-\pi \leq a_{1}<a_{2} \leq \pi$. Let $\left(A_{0}, A_{1}, \ldots, A_{n}, g\right)$ be a sequence of $(n+2)$ functions lying in an $L D_{0}\left(S^{*}\right)$ such that A_{n} is non-trivial. Let $\Omega(y)=\Sigma\left(A_{j} y^{(j)}: 0 \leq j \leq n\right\}$, and let M be any critical monomial of $\Omega(y)-g$. Then the equation $\Omega(y)=g$ has at least one solution $\sim M$ in some $F\left(a_{3}, a_{4}\right)$, where $a_{1} \leq a_{3}<a_{4} \leq a_{2}$.

We need the following lemma.
44. Lemma - Let $\left(B_{0}, B_{1}, \ldots, B_{n}, \varphi\right)$ be a sequence of $(n+2)$ functions lying in an $L D_{0}\left(S^{*}\right)$ (where S^{*} is arbitrary). Let the maximum of the numbers $\delta_{0}\left(B_{i}\right)$ be 0 . Let $\Lambda(y)=\Sigma\left\{B_{i} \theta^{i} y: 0 \leq i \leq n\right\}$, where θ is the operator $\theta y=x y^{\prime}$, and let M be a parametric monomial of $\Lambda(y)-\varphi$. Then,
(a) $M(x)=c x^{\delta}(\log x)^{b}$, for some real δ, some $b \in\{0,1, \ldots, n-1\}$ and some constant c.
(b) $h=\varphi-\Lambda(M)$ is $<M$ and if h is non-trivial, say $\delta_{0}(h)=\alpha$, then there exists a polynomial $P(x)$, in x alone, with constant coefficients, such that $y^{*}=x^{\alpha} P(\log x)$ is $<M$ and $\delta_{0}\left(\Lambda\left(y^{*}\right)-h\right)<\alpha$.

Proof - For each $i, B_{i}=b_{i}+w_{i}$ where b_{i} is constant and $\hat{o}_{0}\left(w_{i}\right)<0$. Let $\Phi(y)=\Sigma b_{i} \theta^{\theta} y, \Gamma(y)=\Sigma w_{i} \theta^{t} y$ and $\Omega(y)=\Lambda(y)-\varphi$. A straightforward com. putation shows $\Lambda[*, 0]=0$. Let $\delta=\delta_{0}(M)$. Then $\left.\Lambda^{*}, \delta\right]=\delta$. By Theorem I (§21), $\delta ; \Omega]^{(1)}$ is NTPD on $\log S^{*}$. Hence $\left.\Omega_{[}^{*}, \delta\right]=\delta$ and therefore, $\delta_{0}(\varphi) \leq \delta$. Letting $\Xi(v)$ be the transform of $\Phi(y)$ under $y=v e^{\delta u}, x=e^{\prime \prime}$, we have $[\delta ; \Omega](v)=e^{-\delta u \Xi}(v)+T(v)-G(u)$, where $T(v)$ is trivial and $G(u)=e^{-\delta u} \varphi\left(e^{u}\right)$. Furthermore, we can write $e^{-\delta u} \Xi(v)=\Sigma\left\{v_{j} v^{(j)}: 0 \leq j \leq n\right\}$, for constants v_{j}. Letting t be the smallest j for which $\nu_{j} \neq 0$, then the critical equation of $[\delta ; \Omega]^{(2)}$ is $v_{t} s_{t t}(\alpha)=0$, (where for $j \geq i, s_{j i}(\alpha)$ is the elementary symmetric function of degree i in $\alpha, \alpha-1, \ldots, \alpha-j+1)$. By Theorem $\mathrm{I}, b=\delta_{1}(M)$ is a root of $s_{t t}(\alpha)=\alpha(\alpha-1) \ldots(\alpha-t+1)=0$, so $b \in\{0,1, \ldots, t-1\}$. Then clearly $k u^{b}$ is a solution of $\Xi(v)=0$ for each constant k, so

$$
\begin{equation*}
\Phi\left(k x^{5}(\log x)^{b}\right)=0 \tag{1}
\end{equation*}
$$

We now prove,

$$
\begin{equation*}
\delta_{0}(\varphi)<\delta \text { and } G(u) \text { is trivial in } \log S^{*} \tag{2}
\end{equation*}
$$

By Theorem I, $[b, \delta ; \Omega]^{(1)}$ is $N T P D$ and so $[\bar{o} ; \Omega]\left[{ }^{*}, b\right]=b-t$. Hence $\delta_{0}(G)<0$, since $b<t$, and (2) follows easily.

A simple calcutation now shows that in $[b, \delta ; \Omega](v)$, the coefficient of v is trivial, while that of v^{\prime} is of the form $a+g$, where $a=\gamma_{t} s_{t, t-1}(b)$ and g is trivial. Now b is clearly a simple root of $s_{t t}(\alpha)=0$, and since $s_{t, t-1}(\alpha)=$ $=d s_{t t}(\alpha) / d \alpha$, we have $a \neq 0$. Hence the critical equation of $[b, \delta ; \Omega]^{(1)}$ is $a \alpha=0$, and therefore $\delta_{2}(M)=0$, by Theorem I. It follows that $\left[\hat{\delta}_{2}(M), b, \delta ; \Omega\right](v)=$ $=a v^{\prime}+R(v)$, where R is trivial. Repeated applications of Theorem I, now imply $\delta_{i}(M)=0$ for $i \geq 2$, proving Part (a).

By (1), $\Phi(M)=0$, and therefore $\Lambda(M)=\Sigma\left\{w_{i} \theta^{\prime} M: 0 \leq i \leq n\right\}$. Now $\theta^{i} M$ is a linear combination (with constant coefficients) of functions of the form $s_{j}(b) x^{\delta}(\log x)^{b-j}$ for $0 \leq j \leq i$. Since $\delta_{0}\left(w_{i}\right)<0, \delta_{0}(\Lambda(M))<\delta$. Hence by ($\left.{ }^{(2)}\right)$, $\delta_{0}(h)<\delta$, where $h=\varphi-\Lambda(M)$, so $h<M$. Suppose now h is non-trivial, with $\delta_{0}(h)=\alpha$. Since $s_{j j}(b)=0 j>b$, it follows that $h(x)$ is representable as a sum of functions of the form $f_{j}(x)(\log x)^{j}$ for $0 \leq j \leq n-1$, where each non-trivial f_{j} is of the form $c_{j} x^{d_{j}}+K_{j}$, where $\delta_{0}\left(K_{j}\right)<d_{j}$. Since some f_{j} is non-trivial, let d be the maximum of of the d_{j}, and let $Q(x)=\Sigma\left\{c_{j} x_{j}: d_{j}=d\right\}$. Then $h(x)=x^{d} Q(\log x)+K(x)$, where $\delta_{0}(K)<d$. Hence $\alpha=d$. It is proved in [8], that the differential equation $\Phi(y)=x^{\alpha} Q(\log x)$, possesses a solution of the form $y^{*}=x^{\alpha} P(\log x)$, where $P(x)$ is a polynomial. Then $y^{*}<M$ since $\alpha<\delta$. Finally, $\Lambda\left(y^{*}\right)-h=\Gamma\left(y^{*}\right)-K$, from which it easily follows that $\delta_{0}\left(\Lambda\left(y^{*}\right)-h\right)<\alpha$, thereby concluding the proof of Part (b).

Proof of theonem V - If $M \in p m(\Omega(y)-g)$, then the result is proved in [8].

If M is not a principal monomial, then $M \in \operatorname{par}(\Omega(y)-g)$, for by Lemma $29(b), \Omega(y)-g$ has no ordinary monomials if g is trivial, and has precisely one, namely its principal monomial, if g is non-trivial.

Let θ be the operator $\theta y=x y^{\prime}$, and let $\Omega(y)=\Sigma\left\{B_{j}{ }^{\theta} y: 0 \leq j \leq n\right\}$. Then B_{n} is non-trivial. Let t be the j for which $\delta_{0}\left(B_{j}\right)$ is maximum, and let $\nu=\delta_{0}\left(B_{t}\right)$. Then letting $\Lambda(y)=x^{-v} \Omega(y)$ and $\varphi(x)=x^{-v g(x)}$, it is clear that $M \in \operatorname{par}(\Lambda(y)-\varphi)$ by Lemma $30(a)$, and that $\Lambda(y)-\varphi$ satisfies the hypothesis of Lemma 44.

If $h=\varphi-\Lambda(M)$ is trivial, then it is proved in [8], that $\Lambda(y)=h$ has a trivial solution y_{0}, in some $F\left(a_{3}, a_{4}\right)$, and so $y=M+y_{0}$ is a solution $\sim M$ of $\Omega(y)=g$.

If h is non-trivial with $\delta_{0}(h)=a$, then by Lemma $44, h<M$ and there is a polynomial $P(x)$, for which $y^{*}=x^{a} P(\log x)$ is $<M$ and $\delta_{0}\left(\Lambda\left(y^{*}\right)-h\right)<a$. Under the substitution $y=y^{*}+z$, the equation,

$$
\begin{equation*}
\Lambda(y)=h \tag{1}
\end{equation*}
$$

becomes

$$
\begin{equation*}
\Lambda(z)=f \tag{2}
\end{equation*}
$$

where $f=h-\Lambda\left(y^{*}\right)$. Thus $\delta_{0}(f)<a$. Now it is proved in [8] that there exists a finite set G of real numbers such that for any real α not in G, there is a non-zero constant k_{α} for which the linear differential polynomial $\Gamma_{\alpha}(w)=$ $=x^{-\alpha} \Lambda\left(k_{\alpha} x^{\alpha} w\right)$ is unimajoral and has a non-exceptional principal factorization sequence. Choose a real α not in G such that $\delta_{0}(f)<\alpha<\alpha$. Under the substitution $z=k_{\alpha} x^{\alpha} y$, (2) is transformed into $x^{\alpha} \Gamma_{\alpha}(w)=f$, or equivalently

$$
\begin{equation*}
\Gamma_{\alpha}(w)=x^{-\alpha} f . \tag{3}
\end{equation*}
$$

Letting (V_{1}, \ldots, V_{n}) be a non-exceptional principal factorization sequence for Γ_{x}, clearly there exist a_{3}, a_{4} such that $a_{1} \leq a_{3}<a_{4} \leq a_{2}$ and $\left(V_{1}, \ldots, V_{n}\right)$ is unblocked in $\left(a_{3}, a, a_{4}\right)$ for all $\left.\left.a\right) \in a_{3}, a_{4}\right)$. But by choice of $\alpha, x^{-\alpha} f<1$ and so $\left(V_{1}, \ldots, V_{n}\right)$ is a strong factorization sequence (see $[6, \S 88(b)]$), for $\Gamma_{a}(w)-x^{-\alpha} f$. Thus by $[6, \S 99]$ there is a function $w_{0}<1$ in $F\left(a_{3}, a_{4}\right)$ such that $\Gamma_{a}\left(w_{0}\right)=x^{-\alpha} f$. Then it is clear from (1).(3) that the function $y_{1}=M+$ $+y^{*}+k_{8} x^{\alpha} x_{0}$ is a solution of $\Omega(y)=g$, and satisfies $y_{1} \sim M$ in $F\left(a_{3}, a_{4}\right)$, since $y^{*}<M, w_{0}<1$ and $\alpha<a$.

Part X - A simple example.

In this part, T_{t} will stand for a differential polynomial which is trivial in $\log _{i} S^{\#}$, and the sequence $(0,0, \ldots)$ will be denoted $\left(0_{1}, 0_{2}, \ldots\right)$.

Let $\Omega(y)=x^{-9 / 2} y^{3}+y y^{\prime \prime \prime}-x^{-2}$. We first apply Theorem I to find par (Ω). The term of degree 3 will not contribute any parametric monomials, since the critical equation of $\Omega^{(3)}$ has no roots. The critical equation of $\Omega^{(2)}$ has the three roots, 0,1 and 2 . To test the root 0 , we find $[0 ; \Omega](v)=e^{(-5 / 2) u} v^{3}+$ $+\left(v v^{\prime \prime \prime}-3 v v^{\prime \prime}+2 v v^{\prime}\right) e^{-u}-1$. Since $[0 ; \Omega]^{(2)}$ is trivial, the process stops here for the root 0 (i.e. 0 is not the first coordinate of an s-tuple which satisfies $\S 21(b)$, relative to $p=2)$. Testing the root 1 , we find $[1 ; \Omega](v)=e^{(-1 / 2 u} v^{3}+$ $+v v^{\prime \prime \prime}-v v^{\prime}-e^{-u}$. Hence $[1 ; \Omega]^{(2)}$ is non-trivial and we can continue. The critical equation of $[1 ; \Omega]^{2 \gamma}$ has 0 as its only root, and $[0,1 ; \Omega](v)=-v v^{\prime}+T_{2}(v)$. Hence $[0,1 ; \Omega]^{(2)}$ is non-trivial and 0 is the only root of its critical equation. It is now clear, by continuing this process, that $(1,0,0, \ldots, 0)$ is an s-tuple which satisfies $\S 21(b)$ relative to degree 2 , and therefore $k x \in \operatorname{par}(\Omega)$ for each k. Clearly, $A F(k x, \Omega, y)=-y y^{\prime}$. Since 0 was the only root of the critical equation of $\left[0_{i}, 0_{i-1}, \ldots, 0_{1}, 1 ; \Omega\right]^{(2)}$ for $i \geq 1, k x$ are the only parametric monomials corresponding to the root 1. Finally, testing the root 2, we find $[2 ; \Omega]^{(2)}$ is trivial so the process stops. Since we have tested all the
non-trivial homogeneous parts of Ω which are of positive degree, we conclude that $\operatorname{par}(\Omega)=\{k x$: all $k\}$. (We note that no logarithms appeared in the parametric monomials, and of course this is due to the fact that 0 was the only root of the critical equation of $\left[0_{i}, \ldots, 0_{1}, 1 ; \Omega\right]^{(2)}$, for $i \geq 1$. If however, $\Omega^{(2)}(y)$ had been $y y^{\prime \prime \prime}+x^{-1} y y^{\prime \prime}$, for example, then its critical equation would have the two roots 0 and 1 , as before 0 would not contribute anything, but since $[1 ; \Omega]^{(2)}$ would now be $v v^{\prime \prime}+v v^{\prime \prime \prime}$ it is clear that $k x$ and $k x \log x$ would be in $\operatorname{par}(\Omega)$.

We now apply Theorem II to find $\operatorname{crit}(\Omega)-\operatorname{par}(\Omega)$. Since $\Omega^{(3)}\left[{ }^{*}, \alpha\right]=$ $=3 \alpha-9 / 2, \Omega^{(2)}\left[{ }^{*}, \alpha\right]=2 \alpha-3, \Omega^{(0)}\left[{ }^{*}, \alpha\right]=-2$, while all other $\Omega^{(q)}\left[{ }^{*}, \alpha\right]$ are $-\infty$, there are two admissible values, namely $\alpha=3 / 2$ (from $\Omega^{(3)}$ and $\Omega^{(2)}$) and $\alpha=1 / 2\left(\right.$ from $\Omega^{(2)}$ and $\left.\Omega^{(0)}\right)$. For $\alpha=3 / 2$, we find $[3 / 2 ; \Omega](v)=v^{2}-(3 / 8) v^{2}-$ $-(1 / 4) v v^{\prime}+(3 / 2) v v^{\prime \prime}+v v^{\prime \prime \prime}-e^{-2 u}$. This has only 0 as an admissible value, and $[0,3 / 2 ; \Omega](v)=v^{3}-(3 / 8) v^{2}+T_{2}(v)$. Again, this has only 0 as an admissible value, and it is now clear that $(3 / 8) x^{3 / 2} \in(\operatorname{crit}(\Omega)-\operatorname{par}(\Omega))$, with $A F\left((3 / 8) x^{3 / 2}, \Omega, v\right)=v^{3}-(3 / 8) v^{2}$. This is the only contribution from $\alpha=3 / 2$. Treating $\alpha=1 / 2$ similarly, we find that $\pm(8 / 3)^{1 / 2} x^{1 / 2} \in(\operatorname{crit}(\Omega)-\operatorname{par}(\Omega))$, with associated function $(3 / 8) y^{2}-1$. (Of course, $\pm(8 / 3)^{1 / 2} x^{1 / 2}$ are the principal monomials of Ω). Hence there are three non-parametric critical monomials of Ω, and of course, each is simple.

Since $\partial \Omega / \partial y^{\prime \prime \prime}=x, \Omega$ possesses a type at each of the non-parametric critical monomials by Lemma $42(a)$. Computing the residual operators in each case, and using $[6, \S 44]$ to find the types, it is easily verified that Theorem IV can be applied to assert the existence of a solution $\sim M$ in $F(-\pi, \pi)$, for each $M \in(\operatorname{crit}(\Omega)-\operatorname{par}(\Omega))$. However in this particular example, more information about these solutions can be obtained by a more detailed investigation of the residual operators. In each case, it is found, using [$6, \S 105]$ that each of the residual operators is, in fact, uniformly quasi-linear. Hence [6, §99] may be applied in each case, to assert that the equation $\Omega(y)=0$ has (a) a unique solution $\sim(8 / 3)^{1 / 2} x^{1 / 2}$ in $F(-\pi, \pi)$. (b) a unique solution $\sim-(8 / 3)^{1 / 2} x^{1 / 2}$ in $F(-\pi, \pi)$, and (c) a one-parameter family of solutions $\sim(3 / 8) x^{3 / 2}$ in $F(-\pi, \pi)$.

For the parametric monomials, we consider $\Lambda_{k}(z)=\Omega(k x+z)$. It is found that A_{k} has a unique (simple) principal monomial, $N_{k}=(-8 / 3) k^{2} x^{1 / 2}$, at which it has a type. Following the same procedure as above, we find that the equation $\Lambda_{k}(z)=0$ has a one parameter family of solutions $\sim N_{k}$ in $F(-\pi, \pi)$. Thus for each non-zero k, the equation $\Omega(y)=0$ possesses a one-parameter family of solutions $\sim k x$ in $F(-\pi, \pi)$.

Hence in this example, for each $M \in \operatorname{crit}(\Omega)$, the equation $\Omega(y)=0$ possesses at least one solution $\sim M$ in $F(-\pi, \pi)$.

BIBLIOGRAPHY

[1] N. Bourbakr, Topologie general, Chapter I, Hermann, Paris (1940.
[2] L. Fuchs, Zur Theorie der linearen Differentialgleichungen mit veränderlichn Coeff. cienten, J. für Math. 66 (1866) pp. 121-160.
[3] - -, Zur Theorie der linearen Differentialgleichungen mit veränderlichen Coefficienten, J. für Math. 68 (1868) pp. 354-385.
[4] E. Ince, Ordinary differential equations, Dover, New York (1926) 558 pp.
[5] W. Strodt, Contributions to the asymplotic theory of ordinary differential equations in the complex domain, Mern. Amer. Math. Soc. No. 13 (1954), 81 pp.
[6] - -, Principal eolutions of ordinary differential equations in the complex domain, Mem. Amer. Math. Soc. No. 26 (1957), 107 pp.
[7] --, Report on investigation in differential equations, Contract no. AF 49 (638). 644 between the Air Office of Scientific Research and Columbia University, January 1960.
[8] - -, Report on investigation in differential equations, Contract no. NSF G12984 between the National Science Foundation and Columbia University, November 1901.
[9] - -, On the algebraic closure of certain partially ordered fields, Trans. Amer. Math. Soc. 105 (1962) pp. 229.250.
[10] - -, Remark on partial orders under which differentiation is stable, Notices Amer. Math. Soc. 10 (1963), p. 589.

[^0]: ${ }^{(1)}$ This paper is a shortened version of my doctoral dissertation submitted to Columbia University in May, 1964. I am especially grateful to Professor Walter Stront who supervised the research, and whose advice was very helpful in the preparation of this paper. During a portion of the time this research was done, I was a National Science Foundation Cooperative Graduate Fellow.

