Invariants of the group of a third order differential element.

Rodney Angotti (Buffalo U.S.A.)

Snmmary. - In this note we discuss the invariant properties of the group of homographies which leave a third order differential element E_{3} invariant.

1. - In [2] Bomprani discussed the projective invariants of configurations associated with a third order curvilinear differential element E_{s}^{\prime} in the ordinary projective space P_{3}; in particular, he showed that the configuration C_{1} of the element E_{s}, a line r, and a point $P \notin r$ has a projective invariant and that the configuration C_{2} of the element E_{3} and two lines has two invariants. Furthermore, it is shown in [1] that the configuration C_{2} has another invariant in the event that the two lines are incident and, in addition, that the invariants of C_{2} which Bompiant discusses are not geometric when the two lines are incident. The purpose of this note is to discuss the projective properties of the configuration consisting of the element E_{3}, a line r and a plane $\pi \pm r$; in fact, we show that this configuration has a projective invariant and give an analytical formulation of this. We remark here that the configuration C_{3} is not the dual configuration of O_{1}. In fact the dual configuration of C_{1} would be a line, a plane and, using Bompiani's terminology, a particular pseado-element, i.e., an equivalence class of differential elements. For a precise definition of pseudo-element, see [3].

The author wishes to acknowledge here a communique from Professor Bompiani which was instrumental in the preparation of this manuscript.

In the following we will indicate points of P_{3} by the ordered tetrad (t, x, y, z) or, alternatively, by $x^{i}(i=0,1,2,3$).
2. - Let O be a curve passing regularly through the point $0(1,0,0,0)$ with tangent $y=z=0$ and osculating plane $z=0$. The equivalence class of curves (of at least class C^{2} in a neighborhood of 0) which have a contact of order three with O at 0 is called a third order curvilinear differential element E_{3} with center 0 . This element can be represented analytically by the expansions ($t=1$)

$$
\begin{aligned}
& y=a x^{2}+\alpha_{1} x^{3}+0\left(x^{4}\right) \\
& z=\quad b x^{3}+O\left(x^{4}\right)
\end{aligned}
$$

where the coefficients a, a_{1}, and b are determined by C and the symbol $O\left(x^{4}\right)$ indicates that the coefficients of the terms >4 are arbitrary.

By changing the plane $y=0$, we can always reduce the representation of the element E_{3} to the form

$$
\begin{align*}
& y=a x^{2}+0\left(x^{4}\right) \\
& z=b x^{3}+0\left(x^{4}\right) \tag{2.1}
\end{align*}
$$

where $t=1, a \cdot b \neq 0$.
The group of homographies $G\left(E_{3}\right)$ which leave the expansions (2.1) invariant (or leave the element E_{3} invariant) is represented by

$$
\begin{aligned}
& \lambda t^{\prime}=p_{1} t+p_{2} x+p_{3} y+p_{4} z \\
& \lambda x^{\prime}=q_{1} x+q_{2} y+q_{3} z \\
& \lambda y^{\prime}=p_{1}^{-1} q_{1}^{2} y+q_{4} z \\
& \lambda z^{\prime}=p_{1}^{-2} q_{1}^{3} \neq
\end{aligned}
$$

where

$$
q_{4}=a b^{-1} p_{1}^{-2} q_{1}\left(2 a p_{1} q_{2}-p_{2} q_{1}\right)
$$

Since each collineation of this group maps a generic line r, whose equations we can always write in the form

$$
\begin{align*}
t-s_{2} y-s_{3} z & =0 \\
x+h_{2} y+h_{3} z & =0 \tag{2.2}
\end{align*}
$$

onto $t^{\prime}=x^{\prime}=0$, we can express these homographies more conveniently by the equations

$$
\begin{aligned}
& \lambda t^{\prime}=t-s_{1} x-\left(s_{2}+h_{2} s_{1}\right) y-\left(s_{3}+h_{3} s_{1}\right) z \\
& \lambda x^{\prime}=n\left(x+h_{2} y+h_{3} z\right) \\
& \lambda y^{\prime}=n^{2}(y+p z) \\
& \lambda z^{\prime}=n^{3} z
\end{aligned}
$$

where

$$
\begin{equation*}
p=a b^{-1}\left(s_{1}+2 a h_{9}\right) . \tag{2.3}
\end{equation*}
$$

For a fixed line r, equation (2.3) represents a projectivity between the pencil of planes through the tangent (depending upon p) and the pencil of
planes through r (depending on s_{1}). The locus of line intersections of corre. sponding planes in this projectivity are generators of the quadric Q_{r}

$$
\begin{equation*}
a z\left(t-s_{2} y-s_{3} z\right)+\left(b y+2 a^{2} h_{2} z\right)\left(x+h_{2} y+h_{z} z\right)=0 \tag{2.4}
\end{equation*}
$$

By varying r, we obtain a linear system of quadrics of freedom three. This system is characterized geometrically in [2].
3. - Since $G\left(E_{3}\right)$ depends on six parameters, a generic line (which depends on four parameters) and a generic plane (which depends on three parameters) has an invariant under $\left.G_{(} E_{3}\right)$; in fact, we have the theorem:

Theorem 1. - Let r be a generic line with equations (2.2) and π be a plane, not passing through r, with plane-coordinates $u_{i}(i=0,1,2,3), u_{0} \neq 0$, then the function

$$
\begin{equation*}
I(\pi, r)=\frac{\left[a u_{1} \pi_{1}+b u_{0}\left(\pi_{2}-k \pi_{1}\right)\right]^{2}}{u_{0} \pi_{1}^{3}} \tag{3.1}
\end{equation*}
$$

where

$$
\begin{aligned}
\pi_{1} & =u_{2}-u_{1} h_{2}+u_{0} s_{2} \\
\pi_{2} & =u_{3}-u_{1} h_{3}+u_{0} s_{3} \\
k & =2 a b^{-1} h_{2}
\end{aligned}
$$

is invariant under $G\left(E_{3}\right)$.

Proof: - Take a transformation $g \in G\left(E_{3}\right)$ which maps r onto $r^{\prime}:[t=x=0]$. We have

$$
I\left(\pi^{\prime}, r^{\prime}\right)=\left[a \bar{u}_{1} \bar{u}_{2}+b \bar{u}_{0} \bar{u}_{3}\right]^{2} /\left(\bar{u}_{0} \bar{u}_{2}^{3}\right)
$$

where the \bar{u}_{i} are the plane coordinates of $g \pi=\pi^{\prime}$. A calculation shows that for any $f \in G\left(E_{3}\right)$

$$
I(g \pi, g r)=I\left(\pi^{\prime}, r^{\prime}\right)=I\left(f \pi^{\prime}, f r^{\prime}\right)
$$

By choosing $f=g^{-1}$, we have

$$
I(g \pi, g r)=I(\pi, r)
$$

Let $G(I(\pi, r))$ be the group of homographies which leave $I(\pi, r)$ inva. riant. Obviously $G\left(E_{3}\right) \subset G(I(\pi, r))$. In the following we show that $G(I(\pi, r)) \subset$ $\subset G\left(E_{3}\right)$ and, consequently, $G(I(\pi, r))=G\left(E_{3}\right)$.

Lemma. - A homography f which leaves the line $r^{\prime}:[t=x=0]$ invariant and has the property that $I\left(\pi, r^{\prime}\right)=I\left(f \pi, r^{\prime}\right)$, identically with respect to π, belongs to $G\left(E_{3}\right)$.

Proof. - If the homography f has the form $x^{i^{i}}=a_{i j} x^{j},(i, j=0,1,2,3)$, then $a_{i j}=0$, for $i \neq j$, and

$$
\begin{gathered}
a_{33}=a_{11}^{-1} a_{22}^{2} \\
a_{44}=a_{11}^{-2} a_{22}^{3}
\end{gathered}
$$

which imply that $f \in G\left(E_{3}\right)$.
Now take a homography $h \in G(I(\pi, r))$. The homography h has the property

$$
I(h \pi, h r)=I(\pi, r)
$$

for generic π and r. There obviously exist homographies $g_{1}, g_{2} \in G\left(E_{3}\right)$ which map r and $h r$ onto $r^{\prime}:[t=x=0]$, respectively. Since g_{1}, g_{2} leave (3.1) invariant, we have

$$
I\left(g_{1} \pi, g_{2} r\right)=I(\pi, r)=I(h \pi, h r)=I\left(g_{2} h \pi, g_{2} h r\right)
$$

The homography $f=g_{2} h g_{1}^{-1}$ maps $g_{1} r$ onto $g_{2} h r=r^{\prime}$ and leaves (3.1) invariant; therefore, by the Lemma it belongs to $G\left(E_{3}\right)$. The equality $h=g_{2}^{-1} f g_{1}$ implies that $h \in G\left(E_{3}\right)$. We have proved the following theorem:

Theorem 2. - A homography of P_{3} which leaves $I(\pi, r)$ invariant is a transformation of the group $G\left(E_{3}\right)$.

Corollary. - The invariant (3.1) of a plane and line completely characterizes the group $G\left(E_{3}\right)$.

We propose to show that the invariant $I(\pi, r)$ is transitive with respect to $G\left(E_{3}\right)$, i.e., there exists a transformation which maps a given plane-line pair π_{1}, r_{3} onto any other plane-line pair π_{2}, r_{2} for which $I\left(\pi_{1}, r_{1}\right)=I\left(\pi_{2}, r_{2}\right)$. Clearly there exist transformations, say f and g, of $G\left(E_{3}\right)$ which map r_{1}, r_{2} onto $r^{\prime}:[t=x=0]$, respectively. Since $f, g \in G\left(E_{v}\right)$, we have

$$
I\left(\pi_{1}, r_{1}\right)=I\left(f \pi_{1}, f r_{1}\right)=I\left(g \pi_{2}, g r_{2}\right)=I\left(\pi_{2}, r_{2}\right)
$$

There exists, however, a unique transformation $h \in G\left(E_{3}\right)$ which leaves r^{\prime} invariant and is such that $h f \pi_{1}=g \pi_{2}$. Therefore, the composition $g^{-1} h f$ maps
r_{1} onto r_{2}, π_{1} onto π_{2} and has the property that

$$
I\left(\pi_{1}, r_{1}\right)=I\left(g^{-1} h f \pi_{1}, g^{-1} h f r_{1}\right)=I\left(\pi_{2}, r_{2}\right)
$$

Corollary. - The invariant $I(\pi, r)$ is the only (independent) invariant of a plane and line under transformations of $G\left(E_{3}\right)$.
4. - In order to give a geometrical construction of the invariant $I(\pi, r)$, consider the envelopes of the quadrics which contain the element E_{3}, the line r, and are tangent to the plane π. The residual intersection of this system is a cubic developable on which there are four well-determined planes; namely, the plane π, the osculating plane $z=0$ and the two planes of the developable intersecting in the line r. It is only a matter of calculation to verify that the cross ratio of these four planes is a rational function of $I(\pi, r)$.

This invariant can be interpreted more directly as the cross ratio of four points on the unique skew oubic C^{3} which contains the element E_{3} and is tangent to the line r at the point $P=r \cap \pi$. In this case, the four points are the center 0 of the element E_{3}, the point P, and the two additional points, say Q, R, in which the plane π cuts C^{3}. This construction gives rise to several other equivalent interpretations of the invariant $I(\pi, r)$.
5. - If we fix the line r, the set of planes for which $I(\pi, r)=0$ is given by

$$
a u_{1}\left(u_{2}-u_{1} h_{2}+u_{0} s_{2}\right)+b u_{0}\left[u_{3}-k u_{2}-\left(h_{3}-h_{2} k\right) u_{1}+\left(s_{3}-k s_{2}\right) u_{0}\right]=0
$$

where $k=2 a b^{-1} h_{2}$. This locus is the envelope of the quadric Q_{r} obtained from the projectivity (2.3). More generally, the planes for which $l(\pi, r)$ is constant, r fixed, belong to the fourth class envelope in the pencil determined by the envelope of the quadric Q_{r}, counted twice, and the envelope composed of the star of planes through the center 0 of the element E_{3} and the pencil of planes with axis r, counted three times.

REFERENCES

[1] R. Angotil, The Projective Invariants of Troo Lines and a Third Order Differential Element, «Rend. Somin. Padovas, 35 (1965).
[2] E. Bomprani. Configurations associées à un élément curviligne du troisieme ordre dans l'espace projectif, «Journal des Math. pure et appl.», 41 (1962).
[3] E. Bompiant, Nuovi Enti Geometrici: Pseudoelementi Differenziali, «Sem. Mat. e Fisico» 33 (1963).

