Classes of biorthonormal systems.

By Jacos STeINBERG (a Haifa, Israel)

Summary. - The biorthogonal systems which are studied in this paper are composed of an
Appel set of polynomials and of a sequence of derivatives. Condilions on one sequence
are given which ensure the existence of the other. Expansion theorems in terms of deri-
vatives and by means of summabilily methods ure thén proved.

Introduection.

While linear integral equations with a symmetric kernel give rise to
orthonormal systems of functions, a non-symmetric kernel leads to biortho-
normal systems.

These last are composed of two sequences f,(f), g.(f) satisfying the
relations

[fm(t}g,,{t)dt =38,

Where the path of integration may be an interval of the real axis or a con-
tour in the complex plane. In the case of complex-valued functions it is
customary io write down the complex conjugate of g,(#), but this is not
necessary for our purpose and we shall use the definition in the form as
above; if the system f,; g, is biorthonormal in this sense, then the system
fu: j},, is biorthonormal in the customary sense.

The classes of biorthonormal systems we shall be concerned with are of
a simple formal character; the first sequence will be an Appell set of poly-
nomials and the second essentially the sequence of derivatives of a certain
function associated with the Appell set. For the path of integration we shall
consider the case of the whole real axis and the case of a circle with centre
at the origin.

If f.e L, and if ajx are the elements of the matrix of orthogonalisation,
then necessary and sufficient conditions for the existence of the sequence g,,
in L, are

o]
kzjlam%oo; §=1,2 ...

(*) This work has been sponsored by the European Office, Air Research and Develop-
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For a proof see [7; 29, 30] (). Application of this theorem seems to be very
difficult insofar as the computation of the elements a@;z is needed. In our
more special case, we shall content ourselves with sufficient conditions on
the generating function of the Appell set.

While extensive literature is available on the expansion of analytic
functions in terms of Appell polynomials and generalisations of them [1], no
expansion theorems in terms of derivatives could be found by the author in
available publications. In these circumstances the problem was dealt with
by the aid of summability methods, and as a consequence the completeness
of sequences of derivatives in L, (— oo, oc} has been proved.

Since the author has been led to this subject by considering certain
integral equations, and since the connection Wwill appear again in the proof
of Theorem 9, the first paragraph is devoted to a brief study of the integral
equations. According to our definition of biorthonmormality, the integral equa-
tion which is the transpose of that with the kernel K{(s, {} has the kernel
K{(t, s}, not K (i, s).

1. A class of integral equations.
In two papers [8; 9] the anthor studied integral equations of the type

[e o]
(1) fis)—2A [K(bs — yf({t)dt = 0.
—o
where b is a parameter and the function K(x) satisfies the conditions
(1) | K@) | <Ceh=; h>0; —co<x<oc;

(2) fo;{(w)dm 0.

-0
We shall restrict the variables s, { and the parameter & to the real
domain. The results needed in the present paragraph are as follows:
Let

o0
/ K (w)dw = 27 ;
—CO

then the integral equation (1) has the eigenvalues X, =20~ (=20, 1,2, ..),
and as corresponding eigenfunctions, an Appell set of polynomials p,(f). (The
normalisation of p,(f} is that the coefficient of * is 1/m!). The generating

(1) Brackets refer to the bibliography.
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function of this Appell set is given by

@) Aw) _—.E Le-mw); b >1
3) Aw) =%§) I~prw):  |b] <1,
where

4) Liu) = % ﬁ-—wt}((t)dt; | Rew | <h.

In the case |b | >1, A(u) is analytic in the strip | Reu | <bh, and’
tends to zero in any strip |Rewu | <<bh —38), 8> 0; [9, Theorem 3; 12,
Section 3]. If |b] <1 and if Lu)s=0 in strip | Beu | <h, then A(u) is
analytic in this strip. Furthermore, A4(u) satisfies the functional equation

(5) Afbu) = L{u)A(w)

for |Reu | <h, if |b]|>1 and for |Reu | <b~'h, if |b| <1.

Let us now consider equation (1) with &> 1; let us suppose that, in
addition to conditions 1 and 2, the function K({(x} is differentiable and that its
derivative satisfies a condiftion similar to condition 1.

‘We shall see that there exists then another set of eigenvalues for equa-
tion (1), and that the corresponding eigenfunctions are the derivatives of a
certain function. We study first the asymptotic behaviour of A(u) in the
strip | Reu | < bh.

LemMa 1. - If Ki(x} is differentiable for every real x and satisfies condi-
tions 1 and 2, and if

| K'w) | < Ce™™l,
then the generating function A(x) of the polynomial eigenfunctions of the inte-

gral equation (1), with b > 1, is analytic in the sirip | Reu| < bh and satisfies
the relation

A{u) = olu="); || ~ oo | Reu | <bh — 3); 5>0,

for any positive r.

Annali di Matematica 24
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Proor. - In the proof that A{u)—O0 in the strip, we showed that L{u)—0
in this strip [19; Theorem 1]. In the same way, since K'(x) satisfies a simi-
lar inequality for K(x), we can show that the bilateral LAPLACE transform
N(u) of K'(x) tends to zero in the strip, at infinity. Now, by a well-known
theorem on the LAPLACE transform, we have

N(u) = L{uju; | Beu | < qh,

[3; p. 104; Satz 8), and since N(u)=o(1), for |Reu | <h—35;35>0, we
obtain

Liu)=u""'Nu) =ou"); |u|—occ; |Reu|<<h—38; >0
For every n =1, 2,..., We can now Write
(6) | Lb—"u) | < Csb™ | u|*; |Reu| = bk — 8) < b"(h — 3);

If r is any positive integer, We obtain from (2) and for | Reu | <bh,
(7) | Aw) | = | Ap~"w) | T | L(p~"u) | -

By the boundedness of A(u) in any strip | Reu | < bk — &), we have
| A(ub—") | < M,

where M depends on & but not on r, since | Re(ub~") | = | Re u |. From
(6), (7), (8) follows

| A{w) | < MCsTomr+28 u|="; |Rewu | <bh —3),
this inequality leading immediately to the lemma.

LeMMA 2. - Under the same conditions as in Lemma 1, the generatling
function A(u) is the bilateral Laplace transform of an infinitely differentiable
function q(t), which is given by

L 100
—_ ut
® o) = g [ et Aiw)an

—$00
Proor. - Sufficient conditions for f(u) to be representable as

T
(10} flu) = lim | e~“*F(§)di,

Tesc0
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with
g
— ut .
(1) 20 _m.[e fuldu; @<m<m,
2400

are that f(u) should be analytic in the strip x; < Reu <, and vanish at
infinity in this strip, and that f(u) should be absolutely integrable along
any straight line in the strip: 13; p. 261, Satz 1} Nuw by Lemma 1 these
conditions are satisfied for flu} = 2ii}; 2, = — hb; . == hb. The integral (11),
with w =0, (it is independent vi ¢} couverges here uniformly for every real f;
furthermore the same is true for all the integrals

i

Fecte™ dlupdu, (r==1, 2, ..

a0 that the function F{fl = ¢/ is lalicitely differentiable,
Taking @ = {(— h + 8)b in (i1}, we get

1 x4 4% i rw
t — 5 e“t.ﬁ;!e’ﬁ' hay T — g,‘”t e‘UtA x e 'j-? -'.i’-’
alf) 2m/ e (@ - dy)idy,
R ] s

the last integral being bounded z: = luumction of {, so that
(12) gty =0fexp(—blk —2)f)}; f--4co; B3>0
Putting ® = (b — &)b in (10), we obtain in a like manner
(13) q(t) = 0 { exp (b(h — Bt} } ; t— — oo} 5>0.
Hence (10) takes the form of an ordinary bilateral LAPLACE integral

[o}

(14) Alu) = [e‘““‘qtt)dt: | Ren | < bh,
i
g(¢) being infinitely differentiable and variching exponentially a infinity as
indicated iv (13) and ({2).
Next, we seek a new sef of eigenfunctions of equation (1)

THEOREM 1. - Iimder the sames condifions as im Lowwa 1 epuafion {4
has the eigenvaluss hb™ (n==1, 2,..), the correspond ng ciginfunciwns beinyg
g, o= 1, G, ., shere oY i fhe funclicn defined in Lemm B, by (9
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Proor. - By (14}, we have

Albu) —_—]'e‘”“‘g(s)ds; | Reu | < h.

Substituting bs = v, We obtain

o
Albu) = b"lj e~ “Yqvb—)dv.
—C0

By the convolution theorem for the bilateral LAPLACE transform, L{u)d(u)
is the transform of

0

Do [K(v — tqtbat

—00

(14; p. 258, Theorem 16 b]. By the uniqueness theorem [14; p. 244, Theorem
6b), we obtain from (5),

cC
b'qlvb=) = A, [ K(v — tjq(t)at
0
Re-substitung s, we obtain
o0
(15) g(s) = bk, [ K(bs — t)g(t)dt
0
go that we see that g(f) is an eigenfunction of (1) corresponding to the eigen-

value Ab,

Differentiating (15) and using the differential equation %Isg +b %Itf = 0,

for the kernel, we obtain

=2}
q'(8) + 5% [ M{—“@g‘_{—n q(t)dt = 0.
-0
Integration by parts yields

q'(8) — b4, [ K(bs — tjg'(tidt = 0,
—00
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so that ¢'(f) is an eigenfunction corresponding to Ab°. By complete induction
we see that ¢'™(f) is an eigenfunction corresponding to the eigenvalue A"+
Let us now consider the integral equation which is the transpose of (1).

THEOREM 2. - Under conditions 1 and 2 and for b > 1, the transpose of
(1) has the eigenvalues Ab" (n =1, 2,..) and as corresponding eigenfunctions
an Appell set of polynomials whose generating funclion A¥w} is related fo
that of (1), i. e. Atu), by the equation

(16) A*wA(—u)=1;  |Reu| < bh

Proor. - The transpose equation

(1 gls) — l] Kbt — s)git)dt =0
0
can be written in the same form as (1):

gls) — A [ K*b—'s — fg(t)dé = 0,

with the parameter b* = b~ instead of b (0 <b* < 1) and with

K#x) = K(— bx).
Now

10 = [ K*(a)da = / K(hb—dt = 1/b),

hence A, = b, and equation (1*) has the eigenvalues A, = AJ(b%)~" = A b"+,
(n =20, 1, 2,...) and the corresponding polynomial eigenfunctions p,(¢) have,
by (3) (with b* instead of b), the generating function

(17) ax(w) = T { TH0%)u) 1
where
(18) L) = A} / K*{fle=*tdt = Aeb [ K(—blje—tdt

= Ab / K(v)exoPb—dy = L(— b="u).

- 0
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Finally we have, from (17}, (18), (2),

A%y = 1 L— b=ty = II L¥— b="u)}= 4~*— u).

=g =1

By condition 1, K*x) satisfies
| K¥@) | < Ce~*M=,

so that L*(u) is analytic in the strip | Rewu | < bk, and, by (17), the same is
trae for A*(u), as it can be obtained in the same way as for A(u), [9, Theo-
rem 3; 12, Section 3.

As an immediate consequence of Theorems 1 and 2, we see that, under
the conditions of Lemma 1, the integral equation (1) and ifs transpose have
a common set of eigenvalues, Ab"*+* (n =0, 1, 2....). (Cfr. FREDHOLM 8 theo-
rems !}, and that the two sets of eigenfunctions ¢(¥); pa(f) form a biortho-
gonal system; i. e.,

o0

/p,";(t)g‘"’(t)dt =0; m = n, (m, n=0, 1, 2,..).

—00

This follows in the classical way by multiplying the equation for p, by
g‘™(s), that of ¢ by pm(s), subtracting and integrating with respect to s.

If we consider the set g,(f) = (— 1)"¢™(#); (» =0, 1, 2,..) the system
(Pm; @n) is biorthonormal; this means that

o0

/ DGO = By

—o0
The equalities for m = n are obtained by integration by parts and by using
the relation (phyi) =pn, (n=0, 1, 2,...) and the equality

[;W=L

which follows from (14), for u = O, since by {4) and (2), L(O) = 4(0) = 1. The
function ¢(f) can now be expressed directly in terms of A*u) by the egunality

100
1 et
ey P L

—~420

which is a consequence of (9) and (16).
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II. Completion of an Appell set and of sequence of derivatives to a
bhiorthonormal system.,

The results of Section I lead to the following questions and also suggest
an answer to them.

Given an Appell set p,(f) with the generating function A(u), sufficient
conditions on A(u) are to be found which ensure the existence of an infinitely
differentiable function q(f) such that the sequence g,() = (— 1)"¢‘(t), n =0,
1, 2,..., should complete the sequence p.(f) to a biorthogonal system. Conver-
sely, if g(f) is given, under what conditions would there exist a set of poly-
nomials completing the set ¢.(f) to a biorthonormal system ?

The set p,.(f) and the function A(u) play here the roles of py(f) and A*(u)
of Section I

To answer the first question, let us recall the class S of infinitely diffe-
rentiable functions f(y} along the whole real axis which, together with all
their derivatives, vanish more rapidly than any negative power of y at infi-.
nity. As is well known, the FouriEr transform maps S onto itself in a
one-fo-one manner.

THEOREM 3. - Let the gemerating function A(u) of the Appell set p,l(i)
salisfy the conditions
(a) A(u) is regular in o neighbourhood of the origin; (4(0) = 1),
{b) 4=*(2y) belongs to S, as a funciion of the real variable y.
Then the function

0o =]
1 e—ut 1 e—tyt

(19) q(t) = Smi | AT du = o Mdy’

—ioo

which belongs to S, satisfies the biorthonormality relations

o0
(20} [Pmeu{t)dt - gmn s (m, = 0, 1, 2, ...),

—o0

where
gn(t) = (— 1)"g'(¥).
Proor. - Since, for real y,

o
A7(iy) = [ewgtat

-0
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by FoURIER’ s integral theorem, we have, for y = 0,

(21) [ q()dt = 4-40) = 1.

—00

By n integrations by parts, we obtain

/’pm(t)qn(t)d‘a‘ = f pSHq(b)de.

Hence if n > m, p(f) =0, so that (20) holds for this case; if % =m, then
¢ =1, and (20) again holds for this case. Let us now assume # < m,
then p{t(f) = pm_n(f) so that we have to prove that ¢(f) is orthogonal to all
the Appell polynomials except for the first p(f) = 1. Since the explicit
expression of the polynomials is [9, p. 56]

r tk

pell) = 2 @y py; (r=1, 2.,
k—=o k !

where the coefficients «, are the powers expansion coefficients of A(u), we
have

* e’
r 1 ¢ r
(22) f pAatdt = 2 ap_ppy ] trqtidt = 2 Mya,_,,
k=0 ¢ k=0
oo A
where
e s}
M, =~ [ gt = = 4= =0, 1, 2
v=gif Paa =gy a5 E=0,1 %)
00

The last equalities state that the numbers M, are the powers expansion
coefficients of A~'(u) which is analytic about the origin, since A(u) is and
4{0) = 1.

Using the CAUcHY multiplication formula for the power series of A(u)
and A4A~*(u) in the identity A(u)4d—*(u) =1, one sees that the last member of
(22) is zero for r =1, 2,.... This proves the theorem.

COROLLARY. — Let the generaling function A(uw) of the Appell sel p.(l)
satisfy the conditions

(a) A~"u) is analytic in o strip | Beu | < R,
(b) AYu)=ou="); || —oco, |Reu|<<r<R;m=1, 2,...
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Then the function q(f) defined by (19) is infinitely differentiable, and satisfies
(20) and the inequalities

[ g™ | <Oy ne"t, m=0,1,2..)

for every r < R.

Proor. - Relation (20) follows from Theorem 3. The exponential -vani-
shing of ¢(f) and its derivatives are easily obtained from the representations

shpebfon
o _ {_ 1) une-ui
() = 2ni | A(w)

0D

du; r<R

the integrals converging uniformly for all real ¢, by condition b (fake
m=n - 2.

‘We add here a simple direct proof of relations (20). Since p,(l} are the
power series expansion coefficients of A(uje** as a function of #, one has

oo

. 1 ujevt. A{u)
(28) [ Doltigu(t)t = o [ t)dt§ 4 du = 2m un(«+1d [ eutq, (d

L el

the inversion being justified by the uniform convergence of the last integral
along the ecircle.
The uniformity of the convergence follows from the inequalities

| et | < emitl; [gat) | < Cn,pe~"%;  r<r <R
Now we have

24) A7) = [eqihat; | Rew| <R

—0
and integrating by parts, n times, the last integral of (24), one obtains, by (23)

@

1 ¢ Aw) wr ,
m(t)ga(t)t 2m§uT+1 A = B
—oo {ti==r

REMARKS.

(1) If no restrictions are required for the completing sequence g,(f),
this sequence is not uniquely determined and does not have to be a sequence
of derivatives, since there exists functions which are orthogonal to all the

Annali di Matematica 25
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polynomials, namely all the functions all of whose moments vanish ; by adding
sach a function fo every g.(f}, not necessarily the same for all ¢,{f), we
obtain a new sequence Which completes the Appell set to a biorthonormal
system. But under the conditions of the corollary, we saw that every deriva-
tive of the function g¢(f) defined by (19) vanishes exponentially at infinity;
now, wWe can claim that this sequence g¢,(!) is the unique having this last
asymptotic property and belonging to L{— oo, ov). For if a second sequence
gn(t), with these properties would exist, then every function ¢, — gn Would
be orthogonal to all Appell polynomials, hence such a function would have
all its moments zero, vanish exponentially at infinity, and belong to
L{— oo, oo); but then the function g, — ¢, must vanish almost everywhere
11; p. 131}

(2) That condition (b} of Theorem 3 or of its corollary is not a neces-
sary condition for the existence of a completing set g¢,(f) is shown by the
following example. Let A(u) = 1, so that condition (a) of Theorem 3, or of
its corollary, is satisfied, but condition (b) does not hold. The Appell set is
here p,(f) =#/n!. As q(f) we may take any function all of wWhos emoments
vanish except for the first which is one, and which is infinitely differentiable.
The author has given an explicit construction of such functions and shown
(10, 12] that there exist entire functions with the required sequence of
moments 1, 0, 0, 0, ....

It is easily verified, by n integrations by parts, that all the moments
cf ¢'"(f) are zero, except for that of order m, which is (— 1)"n!. Hence, the
sequence ¢, = (— 1)"¢'™® completes the Appell set £*/n! to a biorthonormal
system. This example suggests that the conditions of Theorem 3 may be
relaxed, In fact, we shall prove the following generalisation :

THEOREM 4. - Let the generating function A(u) of the Appell sel p,(f)
satisfy the conditions

(a) Alu) is regular in a neighbourhood of the origin; Alo) = 1,
(b) A—*dy) is infinitely differentiable with respect to y; (— < ooy < oo
(¢) "4 iy)dy™ =0 (|y|°); |y | — oo, for some real number a,,

=0, 1, 2, ...
Let I(t) belong to S and have the moments 1, 0, O, O,..., and let

o

Iy = / eV (f)dt.

-0
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Then the function

o]

(19%) q(t) = 21_11: /e'“"/‘A'l(iy)I(y)dy

00

which belongs to S, satisfies the biorthonormality relations (20).

PROOF. - Since I(0) = 1, We have, from (19%),

f g(tidt = 4-Yo)I{0) = 1.

It remains thus to prove, as in the proof of Theorem 3, that g(f) is orthogo-
nal to all the polynomials p,, p., ... Equality (22) holds true here with

w, = L [ papar =2 [a-ii]”

R =g [ qt) “‘%‘!{ (#y) MLJ
—oo

the differentiations being performed with respect to y. Now, since

I®) =0, k=1, 2,..) and I(0) =1, We see, by LEIBNITZ rule, that

it 14y &) 1 -1
My = r A =4

(k)

U=0

exactly as in the proof of Theorem 3. The proof is now arrived at in the
same way.

ExAMPLE. - Every rational function A4(w) which has no zero along the
imaginary axis and for which A4(0) = 1 obviously satisfies the three condi-
tions of Theorem 4.

The simplest special case is that given before, i. e. A(u) = 1.

We shall now deal with the same problem in the case where the path
of integration, for the biorthonormality relations, is a circle about the origin.
For this purpose, we recall the definition of the BOREL-LAPLACE transform
of en entire function of exponential type, [3, Kapitel 10]. Let the entire
function

[e =
Flu)= Z c,u*

=0

satisfy the inequality

(25) | Fw) | < Ce®™l;  h>0.
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It is then said to be of exponential type h at most. The coefficients then
satisfy the inequality

(26) limm! o, | " <h;

hence the function

(27) fit)y= I nlon =",

n=0

which vanishes at infinity, is analytic for |¢| >k, and is called the BOREL-
LAPLAOE transform of F{u). The following integral representations hold:

(28) i) = [e‘"‘F(u)du; Ret>h;
(29) F(u) = §l_m eutf(t)dt; E>h.

H=R

If (25) holds for every positive %k, F(u) is said to be of minimal type, and
the relations (26), (28), (29) hold with O instead of &.

- THEOREM b. — Given an Appell set p.{t) whose generating function Alu)
is such that its reciprocal is an entire function of exponential type not excee-
ding h > o, or of minimal type; the Borel-Laplace transform q{f) of (2nid(u)y™
then satisfies the biorthonormality relations

(30) §pm(i}q%(t}dt = Bpun ; (m, n=0, 1, 2,..),
|t|=R

where B> h or R > o respectively.

The proof is essentially the sume as the special proof given for the
corollary of Theorem 3. Instead of (24), whe have here

(31) A~Yu) = §> evig(t)dt

and the inversion of the two integrals over |u| =7<R, and |¢{| =R
needs no special justification.

As the simplest example, let us take A(u)=1; p.(f)=1t"/m!; By (27),
we have q(f) = (2mit)~* and gu(f) = n! (2mit"**)~%, so that relations (30) are
directly verified, with E> 0,
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Let us now consider the converse problem. A sequence of polynomials
Put), n=0, 1, 2,... will be called a standard set if the degree of P, is
exactly n.

THEOREM 6. - Let g(f) belong to S and let it satisfy the condition

o o]

(32) / gt =1;

-0

There exists then a unique standard set, namely an Appell set, which completes
the sequence qu(f) = (— 1)"g¢™(f} to a biorthonormal system.

Proor. - We prove first that every standard set p,,, satisfying (20}, i
necessarily an Appell set. In fact, from (20), follows

(33) [ AP At = B«

If m =mn, and if C, is the coefficient of {* in p.(f), then (32) and (33) gives
Co=1/n!. If m > n, then (33) gives

(34) / ) { P () — P () + dt = O, (m=2,3,.)

But the two polynomials in brackets are of the first degree and by the for-
mer result the coefficient of { in both is 1, so that the difference of these
polynomials is a constant; by (32) and (34) this constant must be zero. Thus
PN =p=?; (m=2, 8,.. and integrating this identity, if m =3, we
obtain pin ™ = piw="¥ + C. Using again (32) and (33), we obtain C =0, and
repeating this process yields p',, =pm_., (m =2, 3,..). This identity also
holds true for m =1, since p, =1 and p, = ¢+ a,. Hence the sequence p,,
is an Appell set.

Next we prove that this Appell set is uniquely determined if such a set

satisfying (20) exists. From (20), for # = 0, we have
[ ptyattat = o; =12,

By (22), these relations are equivalent fo the system

(35) ké Myty_y =0; r=1,2,..)
=0
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with @, = M, =1, which determine uuiquely the coefficients a, and so the
Appell set itself.

Finally, since from (32} and (35) there follows (20}, the existence of the
required standard set is established.

COROLLARY. - If, in addition to the conditions of Theorem 6, the further
condition

q(t) = 0 (e~ Eit; [t} —o0; RE>0,

is satisfied then the Appell set which completes the sequence q.(t} fo a biortho-
normal system has the generating function A(w) defined by (24), this funclion
being analytic in the sirip | Reu | < R.

Proor. -~ From the analyticity of A-*(u) about the origin, (| Reu | < R)
and from the equality A(o) =1, it follows that A(u) is also analytic about
u =10. Let p;(l) be the Appell set generated by A(u). Since g(#) belongs to S,
so does A~*(iy) as a function of y.

Hence by Theorem 3, we see that the set p,(f) completes the set
(— 1)"g"(f) to a biorthonormal system. Since, by Theorem 6, the sef of poly-
nomials is unique, one has p, = p,.

For the case of the biorthonormality conditions (30), the following theo-
rem can be proved in the same manner as Theorem 6 and its corollary.

THEOREM 7. — Let the function q(t) satisfy the following conditions
(1) It is regular for |{|>h=o0.

(2) It vanishes at infinily.

(3) &q(t}dt —1; R>h,

=R

There exists then a unique standard set p.(t), namely an Appell set,
which satisfies relations (30) and whose generating function A(u) is given by (31).
The function A—*(u) is entire ; of exponeniial type not greater than h if h > o,
and of minimal type if b = o.

1I1. Fourier expansions in terms of a sequence of derivatives, for fune-
tions regular at infinity.

Let ¢(f) -satisfy the conditions of Theorem 7 and let f{f) satisfy
the two first conditious. Consider the FoOURIER series of f(f) in terms
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of g.(8) = (— 1)"g™(¥),

o
(36) S dugult);
Bz O

87) du=§ flopasids; R <h,

|8|=R

where the sequence p, is the Appell set associated with ¢(fj by Theorem 7.
Before we deal with the problem of the representability of f(¢) by means
of (36), it is instructive to Work out a simple example, which will show that
convergence of these FOURIER series is not to be expected, in general, and
that a strong summability method may be needed to sum it up.
Let g(f) = (2=i)=*({—* + £~%); the three conditions of Theorem 7 are satis.
fied with h = 0. By (31) we have, for any B> 0,

A-Mu) = § eM2mi)- (1= + 9)dt = 1 + u.
{tjI=R

The power expansion coefficients of A(u) = (1 4 u)~* are a, = p,(0) = (— 1)".
Let us compute the FOURIER coefficients of f(f) = ¢~*; by (37), they are

d, =§t—1 W(f)dt = §t~1 Wl0)df = 2mia, = 2mi(— 1)m,

The series (36) takes the form

e © d 3
(38) (=0l +m+ 1)Y= = (— 1)"n!(t’“"1 —_— t‘”—‘) .
N0 Nn=0 dt
Such a series is not convergent and not even (B) summable; for BoreL’ s
method, see [2; 311, 401]. But it is summable, by a generalisation of the (B)
method, to = for Ret=o0; {0, as it will be shown now.
The (B*)~method is defined by the relation

o S [fre

where @ is the first quarter £ =o0; y = 0; this method is known to be regular
[2; 405].

Applying (39) to series (38) the convergent series

w (— 1)"! (my) _xy/t
n=o n! t

3z (n Tty | dady,
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appears, and we obfain

X e 1 a1l
4 e y? = S eyt . | g—auty,
40) Zmi T =10 dt(te )

Restricting now { by the conditions /3=0; Rel{ =0, one has

0 L fs o]
41 [ [ e V—aYitdpdy = t* [ e ¥dy [ e~ E—2Y iy — [ {t + yrre~¥Ydy = F{i).
’ 0 0

o

Hence the double integral (39) is equal to F(f) — F'(f). But

Plty=— [+ v vdy = (¢ + o] + [+ evdy = — 1 Fi

0

We see that in fact, the series (38) is (B®)-summable to
Ey—F({t) =1t for =0, Ret>=o.

Let us now generalise,

Let P(u) be a HURwITz polynomial, i. e. a polynomial all of whose roots
have a negative real part. (Such polynomials play a fundamental role in
physical theories of stability ; for criteria to determine Whether a polynomial
is of this kind or noi, see {3; p. 395,..]). With P(u) We associate an angular
region &(P) of the {-plane, as follows; let u,, ..., %, dencte the roots of P(u);
then EI(P) is the common part of the half-planes Re (fuy)<o0; (k =1, 2,..., 7).
If « = minargu,; B=maxargu,, k=1, 2,..., r), 1—;<argu,, <§27f; it is ea-

sily verified that C(P) is the set of all points f such that
T 3r
—aty=sargi<—f+5.

With these concepts, we can formulate and prove the foliowing expansion
theorem.

THEOREM 8. ~ Let P(u) be an Hurwitz polynomial with simple rools only,
let Plo)=1 and

o o]

q(f) = 2%@ [ e~ P(u)du.

0
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If f(t) is regular for |t]| > h =0 and vanishes atl infinily, then its Fourier
series (28) in terms of q(t) is (B*)~-summable to f(f) in the part of E(P) outside
any circle || = R > h.

Proor. - 1. The theorem will be proved first for f(§) =1, (h=o0). As
in the example calculated above, the expansion coefficients for /~* are
d,, = 2nia, , where a, = p,{0o) are the power series coefficients of the gene-
rating function A4(u) of the Appell set corresponding to g(f) by Theorem 7.

By (31), with any B > o,

A-Yu) = §>eu=gmdz = Plu).

jtH=R
Since P(u) has simple roots only, we have P'(u,) 40, and

r 1

(42) = Pl )

B
z
I
Ny
L
S
|

If u, denotes the root nearest to the origin, then, for |u | <|u, |,

Alw) = g _—1 § (_"_‘)n__ Suny L
- ==y Uy P,{uh) n=0 \Ug - %=0 k=1 u‘”+1P'(uk) '
Hence
(43) gp=— 5 1

ko WEFTP (uy)
The function g¢(f) can be expressed as
2rig(t) = P(— D)t

where D denotes the differentiation operator with respect to #; in fact
D*—* = (— 1)*~*k!, so that

P(— D)t—l o % bk(—- D}*t—l =t g‘a bhk 1% o 275iQ(t).
=0

k=0 k

Hence

(44 @) = (— 11°g™() = g P(— Djn 16" (=0, 1, 3,....

Annali di Matematica 2%
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The FOURIER series of " is thus, by (43) and (44),

= ]
45) T d.gu(f) = I a.n! P(— D)=
n=0 0

M=

b}

X
Z o 2 n!P(— D)tuy)~"""
Pl P’(Mk) “eo n ( )( uk)

The (B*-summability of the series I n!(fu,)~"*, yields, as in the example
F(— tuy), for Re (fuy) =o0; t==o0, Where F(f) is defined by (41). Now, by the
uniform convergence of the double integral (34), with iu, instead of — ¢, in
the region Re (fuy)<<o, | ¢| = R > o, it is clear that

(B 3 n ! Ditu,)="—* = D(B?) 2 n ! (fuy)~"—*

and the differentiation may be repeated any number or times. Hence we get,
from (45)

@) @ 5 g = pi- ) § Tt

teP); | t|>R>0,
Let us seek a solution of the differential equation

(47) P(— Dy = t-,

in the form of an ordinary LAPLACE transform
o0
y =[e—”Y(s)ds = £Y{(s),
0

The law DLY(s) = — $sY(s), gives us, with €1 = {~* and (47),
P(— Dy = P(w D)LY (s) = £P(s)Y (s) = £1.
Hence, by the uniqueness of the LAPLACE transform
Y(s)=P~(s);
so that, by (42),

[ee]

yit) = P = [

0

2 [P(un)s — ua)]~*|ds;  Ret>0.

K=

Making the substitution s = v, We obtain by (34),

o0

o) = 2 11Puy) [ e=ilo — )« do = 3 F(— tup) Pl
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This with (46) and (47) proves that the FoURIER series of ¢ ! is (B’)-summa-
ble to {=* for all values of ¢ lying in d(P) outside any circle |¢{| =R > 0.

2. Our second step is fo consider the series

@®

48) 2 gultipals),

n=0

which arises formally from the FOURIER series of f(f) defined by (36) and (37)
by introducing (37) in (36) and inverting summation and integration. The
{B’)-summation of (48) leads, by (39), to the double integral

(49) | [ e=o=) 3 (mY~rqutipslery | dedy.
Q

We have [9; p. 64; (31)]

’pn(s) | < avk“'"ek]l']; k< | w1, (n= O, 1, 2, we

On the other hand, by (44), there exists a positive number b such that,
for ¢ 4= 0,

Lg™@) | <bm 47!t m=0, 1, 2..)

These two last sequences of inequalities show that the series of (49) con-
verges for all {40, 5, x. y. By (49) and (44) a study of the entire function
of s and 2

(50) Bs, o= S Pnl8)e"

=m0 ¥ !

is necessary regarding its asymptotic behaviour, to decide for which s and ¢
the double integral is convergent. From (50) we have

o© 1
N . e} o 2 0 s ZVp—n—1 ,
b1} E:s, 7} ...”:Op (8) 2m<§e v dv

the path being any circle | v | =¢c. But if we take ¢>|u,|"’, then the
inversion of summation and integration in (51) will be correct, since the
series X v~"p,(s) Will be uniformly convergent on |v|=c¢; in fact, this series
represents A(v=)e® for | v | > |u |~ From (51) follows now

(52) Es, 2) = «2-1—M§e‘ v-+8/0y+1 4 (v=")dw.

[o=c
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Within |v | =¢> |u, "%, there are the » simple poles of:

1
K1 MT{;;IJ{ 11 V)

14=

v AT = v e =

(by ((42), which are vx = ux"; and the essential singular point v = 0. Hence,
by (62)

T prlug s, r 1 i p2v[eY
53 E = 3 ) 5— O
( } (S’ z) o u;cP’mk) +k=1 P’{uk) 2t Y 1 — upw d’l),
joi=ey
where each path |v| = cx encloses v =0 but not vx = ui; " hence ¢ < |#x |

Substituting v = (s/¢)"*w for each integral of (53) we obtain

exp [(zs)*(w -+ 1/w}]

(@/8}* — ugrv v = guls, 2)

(54) {2m‘)-1§

{mf==ivy,

with wy = |#/s|"Pcx < 2/8 [/*|ur |~"; but since We are interested in the asymp-

totic behaviour of these integrals for |z | > | sui |, We can choose for

any positive number and consider then |z | > wk | sui |, s being fixed.
Now, for |w | = wx, one has

{B5) ] exp

(zs)12 (w + %)] 1 < exp||#s [ (w" + %c)]

The minimum value of wx 4 wr  is 2 Which is reached for w: =1, hence
we will take wy =1 for each % and in each integral (54) we consider only
lz!>|sui|. By (54), (65), with wx =1, one gets

ls]
_}uzslllz

(56) | gxls, #) | S|z K exp (2| as [ 2} > [ uis|.

By (37) and (43), the double integral (42) takes the form

L
2ni,

(57) [ [ e~ P(— D)i—*E(s, xyt—jdady.
G
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By (63) and (54) we have to study the convergeuce of the integrals

{88) /‘/'exp (—— x—y -+ :%) dacdy,
Q

(69) [ [ exp (— x — y)gx(s, oyt *)dady.
Q

For (58) the restrictions Re (fux) <<0; |{}| >4 > o ensure the uniform con-
vergence for all such values of ¢

For (59) let us first consider the part @, of @ which is defined by
€>0; y>o0; xy<2~R|tuy|; ¢ beind fixed and ¢{==o0, and R > 0. Since g(s, 2,
is an entire function of # and since here 2 = wyl~*; one has

(60) | guls, 2yt™") | < Muls); (v, y)€ €.

where Mx(s) depends only on s, not on z, y, &

For the complementary part @, to @, of @, which is defined by x> o0;
y>o0; wy>R|tur|; (t0), R>|s|, the inequality (56) holds, insce
|2| =ay/t>>R|ux | > | sur | . Let us now restrict ¢ by the condition
{t|>R>|s]|; then
61 = l§

B

=l

Now considering (569) and (56) with 2z = xyi~", we have
(62) — 2 —y + 2a(ey)’? = — (@ — y'P*)? — 2(1 — a)(uv)>.

Let o <k < 1. For the part of @, Where y =< kx, we obtain, by (62), (61)
and setting (1 —Ek'?)? =k, > 0, exp[—x —y + 2a(xy)"?] < exp [— (@' — y**)*] <
= exp (— k,x), and for the part of Q. Where y >k —'x; one obtains, in a
similar way,

exp [—a —y + 2afey)”) < exp [— (y** — 2] < exp (— Kuy).

For the remaining part of ., Where kx <y < k~'x, one has, by (62)
and (61)

exp [— & — y + 2a(zy)'”] << exp [— 2(1 — a)(@y)**] < exp [— kxfoy)*],

with k2=2(1—}%

1!2
) > 0.
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If we put Ni(s) = |s"*|ux | ~(BY — |8 [/*)~* and use (50}, we can, from
the discussion on the integrand of (59) in Qe <o; y <o) conclude that it
can be majorised in @ by the following functions of », y, s independent of #;

tor y = kx, by M exp (— x — y) + Ni exp (— kwx);
for y > k'x, by Mrexp(— x — y) + Nrexp({— ky);
for kx <y < k=", by My exp (— x — y) + Ni exp [— kafay)¥].

Tt is easily verified that these three majorizing functions are integrable
in their respective parts of ¢. Hence the integral

/ [ o—*VE (s, 6_?!) dwdy
Q

converges absolutely and uniformly for all values of ¢ lying in &(P) outside
any circle |{| =R > |s|, for a fixed s. Reverting to (57) and noting
that, by (54) *E(s, 2)/ds* is analogous in its asymptotic behaviour to E(s, 2),
we conclude that the double integral (67) or (49) represents an analytic func-
tion of { in the mentioned domain. If Wwe now keep ¢ fixed, {0, and con-
sider s such that |s| << R < |¢|, a similar reasoning would yield that
this integral (57) represents an analytic function of s in this circle. Let
us denote this function by Hf(s, f). Thus "

©3) (8 5 ltpale) = His, )3 tedlP); 1> s

3. Next we shall prove that

1

(64) His, t)=m; te i(P); el >1s].

For P(u) = A~*u) = 1; pa(s) = s"/n!; q(f) = (@mify™; it is easily verified that
series (48) converges, for |s| < |t]|, to (2ni(f—s))™", and so it is too
(B?) summable to this function.

In our general case, We prove first that H(s, ) is a fanction of ¢ —s;
for that, it is sufficient to verify that the function

(65) 2miGs, 1) = [ [ == ~Vi-1E(s, ayt—")dwdy
Q
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satisfies the equation Q— +;ﬁ-0 since, by, (50),

H(s, t) = P(— DiG(s, {) = P(— D)G{t — s).

Now, by (50} and (65)

oyl B 01 pas)eryy
=é/emunf;o - e (d.)cdy
i (s)(ey 2 ol Dalg)En
(8 © _ n(8)a" T
=[e‘f/dy%[ e~z 3 Pt ,;n_i_l 0—}—-/6‘”219 ggn-;—zy}dw%
0 13

o0

o) gy 3 PSP NR [ L5 Dal8)ay)"
/" ol 2 e+ [

o J

ey g Dl
CES TS

O T—
«o:.: =

g dady

p—a—v 3 Pn-sf8)xy)" oG
yﬂa A idwd _Z‘ms

the last equality following from p, _,(s) = p'u(s).
Hence His, {) = H(t —s).
Let us now calculate H(o, {) = H(t). By (65) and (50),

2niGo, #) = f [ e“”"”% 3 2;::?’;—?”% deedy.
®¥=0 >
4

Hence, by (45) and by part 1 of the proof, we see that 2ni H(o, ¢), Which is
equal to 2ni P(— D)G(o, ¥), is just the result of the (B*)~summation of the
Fourier series of ¢~*. Thus, we obtain that H(f) = 1/2nif, and (64) is
established.

4. Let f(f) be analytic outside |¢| =" and vanish at infinity.
We have for [ {| > R, > h.

_ 1o fls)
"-ﬁzéj’mds

'sj=R,
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where the sense along the path is clockwise, leaving the domain |{| > R,
to the left. If we take any B > R, and restrict ¢ by the conditions |{{> R;
t € &8{P), one has, by the uniformity of the (B*-summability for all s on the
circle |8 | = R,,

ity =§76)} (B 3 gultpai) {as
8=R
= (B 3 qn(t)§f{s} W(8)ds = (BY) T dugult).

n=0 n=>n

ls=Ry

This is the theorem.

IV. Fourier expansions along the real axis in ferms of a sequence of
derivatives.

Let A(u) be an entire generating function, such that A~%iy) belongs to
S as a function of the real variable y and satisfying the two inequalities

(66) | A(u) | < cexphlul|*+k|ul)
(67) | Alty) |7 < ciexp (—h|y %),

y being real and ¢>o0, ¢, >0, k>0, k>0, a> 1. If Au) is an entire
funection satisfying (66) and such that A—*(u) satisfies the inequality

| A u) | < Crexp(—hiu|?

in the strip | Rewu | <uw,, then A—*(dy) will belong to S and satisfy (67).

The simplest example is A(u) = exp(— u’): here h=1; k=0, a =2;
this function generates the sequence p,(f) = (1/n!)Hn(#/2), Hylx) being HER-
MITE’ 5 polynomials and the corresponding function g(f) is, by (19),

1 : 1
— _igt _‘y‘z — .—t?fé
o= 2n/e A = o=’
—0

and

alt) = (= 1)mg™(t) = 2,,+12V,; e~ HHL(L2).

For expansions in terms of HERMITE functions and polynomials see [6].
More generally, if » is a positive integer and E(u) is an entire function
of exponential type whose modulus has a positise lower bound in the strip
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|Re u | <-u,, then the function A(u) = E(u)exp [(— u*)"] satisfies (66), (67)
and A~ ‘(éy) belongs to S.

The function g(f} corresponding to a function A{u) of the type considered
here, by means of (19), is entire since a > 1, and belongs to S along the real
axis. With every function A4(u) we associate a class &, , containing all the
functions f(f) which are regular in a strip |Imé| < ¢,; #, > k, and satisfying,
in this strip, the inequality

(68) L(®) | < Cexp(—holt]®)

with a, > a'; (—1»+é,:1; hy> 0.

For the summation of the Fourirr series of f(f),
*
e s}
(69) gl du=riopisis,

we shall use a summability method which is a combination of the (4)-method
(ABEL-Po1ssoNn) and of the (B)-method (BoREL).

(70) (A4B)2 ¢, = lim (B)Z e b~
b w14

The (4B)-method is regular, since if X ¢, is convergent, then the series
on the right hand side of (70) is absolutely convergent for every b > 1; hence,
by the regularity of (B) and of (4) we get (dB)Z ¢, = Z .

THEOREM 9. - Let A(u) be an entire function satisfying (66) and (67)
and such that A= (iy)e S; let (pn; q.) be the biorthonormal system generated
by A(u). Then the Fourier series (69) of any function f(f) belonging to &, x is
(AB)-summable to f(t) on the real axis.

Proor. - 1. We consider first

QuGnll) _ [0y | 2 dngal) ("]
(71) (B)on b" —{ o (’E-o n! (5) )2 b>1.

The last series is convergent for every x =0, as will be clear from the
following. Using (69) for d,, one has, formally for the present,

(72) °2°0d”q””() [f \ds | 2‘&713—"@(5) |

"= n=0

Annali di Matematica 27
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The last series will now be transformed by means of the integral repre-
sentation of gu(f). namely

[ee}
1 ()"
(78) gﬁm_%—[ dliy
Hence,
R palslgulf) (2" R pals) ’gv‘"[?;y)” -
) mE T /=250 ) [y
-0
-t (5) (¢
= A(z’y)dy;,io nl ( b ) 2
-0

The inversion of integration and summation in the last equality is justified
in the following Wway.
From the equality

(79 Pols) =5, § ek du; || =R

we have

(76) | 2uls) | < peme; (B> o)

so that

(77) 3 L) (“”y> )<MexP (R s | +""W) (@ > o).

Hence, by (67}, the las integral in (74) converges when the modulus of
each term and factor is taken. Since, furthermore, tbe last series in (74)
converges uniformly in every finite interval of y, the inversion is justified
and the convergence of the last series in (72) is immediately proved.

Let us now transform the last series in (74)¢

L pals) i_@g)”_ 2 z’_y)n 1 poe*®
(78) ~ _”Eop”\s) b 27Ei|§z”+1dz

iys\ [ty
2m§ eXp (acz + bz) (bz) ds.
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Using (66), this integral representation gives the estimation

® puls) (iay l lySI |y
(79) ,ﬁon!<b) @’+h o +kbr»
By Youne’ s inequality
Xo Yo' 1 1
<< — —_— ! e =
XY a, + all b (X7 Y} Oy, O > 0; ay + all 1),

with X='—Z:J175; Y =|s|, the right-hand member of (78) is not greater than
ylrP, Ly

cexp( by —l—&; br

such that b~* <r <1 and 1 <a' <a, <a,; hence br >1 and @, < a. Rever-

ting to (74) with |Imt!<1T, T being arbitrary and positive for the present,

and using (67) we obtain the following approximation :

5 B () oxpar- 287 l“')/exp;_h[

n=0 n!
(80)

|
+—1—,|s[“1’—|—k‘—y‘). ‘We choose now r and a,
a, br

vt ) g+ T)ul] v

_csexp(mr+l |al).
1

Reverting to (72), we obtain, by (68) and (80).

3 "q"m( ) ‘<c [oeoxp(mr—l—|S]al,-—h0;s[“o)ds

n=o 0!

(81)
= C.e®"; (r<l; 2>0),

the last infegral being convergent since a,’ < a,.
Since r <1, the integral (71) converges, that is to say, the series
2 b~ "duqn(!) is (B)-summable for any complex ¢ and b > 1. Let us put

(82) fit, o) = (B) 3 &)

n—o O"

2. We shall now deduce an integral representation for f(f, b), Which

will be, in fact, an integral transform of the iype considered in Section I.
If we substitute (72) in (71), then the obtained double integral will cen-
verge absolutely by (80) and (68). We thus may invert the integrations and
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w0 obtain
(83) fit, b) = / Fls)ds /'e..wdw 3 Eopnti)g!,.(t) (g)n%

The inner integral is

(B) S PN _ ey, .

B0

By (74), we have

o]

’ -1yt
pe = o g S50 (T

0

By (78) and the result of Youne’s inequality we see that the last double
integral converges absolutely, so that

2rK s, t):f%dy /?o d.z‘} S pn(')<i9§y)n

For any fixed y, we can invert the sum and the inner integral since, in (77)
we may take B> |y |. Finally, we get

84) K, 1) = o [ i) 5 o 2V

1
=25 f exp [dy(sib — H]4~(ay) Atiy/b)dy = K(s/b — ¥)
—00

(&) K(e) = %t ] 03 4-(iy) A(in/b)dy

(6) 1, b) = ﬁ((g—t) f(s)ds
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3. Finally, we have to prove that, for real

lim f(¢, b) = 7).

b1t
Puiting
87) R(y) = [ WiK@)de; ) = f eVt (2)de,

we have, from (85) K(y) = A(iy/b)A~'(éy), so that, by (59) and (67), the
inequalities

(88) | Kly) | <ccrexp(—h(1—b%|y|*+kiy|) <coetV

hold. Substituting (84) in (86), we have, by the notations of (87)

oo

(89) fit, &) = 5= [ foyds [ ewer=cRiay

—00

o]

1 7 —~ —
= gz | e K ifiyib)dy

the inversion being justified by absolute integrability which follows from (68)
and the first inequality (88). Bearing in mind that f(f) is analylic in the strip
[Imt|<t,, t,>Fk and vanishing at infinity in this strip more rapidly than
exp(—r|t|) for any r, we conclude that f(y) is an entire function of y
satisfying the inequality

(90) | fly) | <o,exp(—t|yl)

for any f, <f{,, in every strip | Imy | <r.

Let us fix a number b, such that 1 << b, << 4/, and choose #, such that
kb, < I, <t,; we then have, for every b such that 1 < b << b,, the inequalities
4/b = t,/bo>k. By (90) and the second inequality of (88), we have, taking
r=o0,

(91) | Kw)flyb) | < coocs exp [— (bfbo — E) | | ],
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uniformly for 1 = b <b,. Since the function on the right-hand side of (91)
is integrable and independent of b, the integral (89) converges uniformly for

1<b<b
Thus, by the relations

lim K(y) =1; lim f(y/b) = f{y),
b 1 b1t
and by (89), follows
1 S
lim f{t, b) =5 [ e~ Fiydy = (1.
b—s1-4 s

COROLLARY 1. = If k=o0, the theorem holds for every function f({} of
the real variable i satisfyng the conditions,

(a) the inequality (68) holds for real t,
(b) f(#) is twice differentiable,
(e} f"(t) belongs to L{— oo, co).

Proor. - From condition ¢ follows that f'({) — o, (! — - oo); by (68),
f{{) — o, (t — =2=oc); hence, integrating the second equality (87) twice by
parts one get fly) =0 (|y|™%); (y — =oo).

From this and from (88) with £ = o, one obtains, for all b in the interval
1=b=2,

| K(u)flyd) | <C(L+ 1y ])5

where C is independent of b. This last equality replaces (91), and the proof
is now arrived at as in the theorem.

COROLLARY 2. - The function f(f, by defined by (82}, converges in the
square mean to f(t), on the real awxis.

Proor. - From (89), one has

o

[ ewtfit, bdt = K (y)flylb)-

e OO

Hence, by PARSEVAL’s equality, one can Write

2w [ 116, 0 — i Pt = [1 i) — Flo) dy.

00
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By (90) and (91) the last integrand is dominated by an integrable function
of y, independenl of b for all b in the interval 1 <b=<b,. Since this inte-
grand tends to zero as b — 1%, one obtains, by uniform convergence, that
the last integral, as well as the foregoing, tend to zero as b — 1+,

As a farther consequence of the proof of the Theorem 9 the completeness
of the sequence g,(f) in L, (— oo, oo} can be demonstrated. For this aim, we
give first a lemma of GELFAND and Sirov [4; p. 243], and because of the
simplicity of the proof given by these authors, we reproduce it here.

LeMMA. - The class &4, 5, (a>1; k = 0) is dense in L, (— oo, o).

Proo¥. - It is to be shown that to every F(f) belonging to L, and to
each e > o, there exists a function f(f) belonging to &, ,. such that

el

92) [ | Fit)— F(t) Pdt < e.

—C

For this, it is sufficient to show that the only functions G(f) of L, which are
orthogonal to each function f(f) are functions which are zero almost every-
where. Suppose, in fact, that for all f(¢) of &, , one has

[ f(HG(dt = o.

Consider
0]
(93) Hy) = [emraniamar
—c0

Wwhere f?) is one fixed function of &, ,. Then all functions £"f,(f) belong to
Fa,x and so We get

(94) H™(o) = / i fot) GltIdE = o, =0, 1, 2,..).

—co

But by (69), and by ScHWARZ’ s inequality, the integral (93) converges uni-
formly in every strip |Imy|<Y, and so H(y) is an entire function, which
is identically zero, by (94).
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Hence f5(f)G(t) vanishes almost everywhere, and the same is true for G(})
since f,(f), as an analytic function not identically zero, vanishes in an enu-

merable sef.

TuroreM 10. - Let q(t) be defined by (19) where A(u) is an entire function
satisfying inequalities (66) and (67) and such that A=*(iy) € S; then the sequence
of derivatives of q(t) is complete in L, (— oo, oo).

Proor. - 1. By the lemma, to a given function F({) of L, and a given

e > 0, there exists a function fif} of &, , such that (92) holds. By corollary 2
of Theorem 9, there exists a number b > 1, such that,

[os}

(93) [116 9 — iy rae <.

(0

2. We shall prove that the series 2 d,b—"g,(f), which is (B)-summable
to fit, b), (this was the definition of this function, by (75)), converges in the
square mean to f(f, b) along the real axis, b being fixed (b > 1).

For the partial sums of this series, one has, by (73),

N " _ 1 Oz-dyt N iy '
(96) Z dball) =57 A@:y;dy?,,éﬁ('z;) £
—0

Formally, one has, by (69) and (87)

97 £ a(2'= [ r6)] £ puo)(L)" | as = Aiumfim.

Now, by (76), with B> |y |, y being fixed, one has

3 ’p..(s) (%)” <

n=o|

b_RMeR‘-f‘l
bE—ly|’

By (68), the integral of (97) converges absolutely when modulus of each term
and factor is taken, and so one may invert integration and summation, so
that the series at the left hand side of (97) converges for every y, and equals
the right-hand member. By the equality A(iy/b)4~"(iy) = K(y), one, obtains,
from (97)

Aiy) ‘g dnfiyby = E(y)fly/b).
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Hence, by (89)

[e2)
—-i?/t { [« ]

e o =] £af3]1

By (96), (98) and PARSEVAL’ 8 equality, We obtain

oo N o0 ‘
(99) 2 [] f(t, b) — ,Eod"b—”q"(t) Pdt = [| Afey) |2

®© Ja\ P
S dy (’—y)
n=N--1

We shall now estimate the last series with respect to N. By (69)

o0 S 8= 0] 5, p (3 e

the proof being the same as for (97). By (75),

\ iy 1 ¢ A(uje* (iy \¥+
(1ot ..3%11’”{ )(b )= 2m’§u-—— Tl <Eﬁ) du
‘w=R

Let us fix a number b, such that 1 <b, <b; and let us put B :bf1|y| for
{y|>1. Then (101) and (66) yield the approximation

S pio(3)

ne=N41

o b i )

By Youn& s inequality. |sy|<|y|%/a,+|s|*/a), Where 1<a <a;
l<a' <a) < a,, (see the first part of the proof of theorem 9}. By this last
inequality and by (102} and (68) there follows the approximation:

3 d,.(’y) ‘ <01|y|—1(b‘) exp(h

e=N-t L

(102)

(103) +’y,‘) + k‘gj),

b,

for |y|>1.
For |y | <1, we choose, in (101), B =1, and this yields

£ pufs }(Zby)

n=N-1

N
=iyt

and, substituting this inequality in (100), one has

e Nl
S d,,(‘y> ’<C81 b

(104 S —
(199 p==N+t1 [y b

{(ly] <1

Annali di Matematica b ]
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Since 1 <b, <b, we see, from (103) and (104), that the right-hand integral
of (99) tends to zero as N — co. This proves our assertion on the series
Z dab—"gutt). Having fixed &> 1 such that (95) holds, we determine N such that,

0

. ~ .
(105) / lf(i, B)— S dyb rgut) | dt <.
N #=0
3. Considering the integral
o0
8 N .
/[F(t)— 2 dub"qult) | di;
| #=0

Substituting in the integrand the functions ==f(#) and =f({, b) and using
ScHARWZ' s ineqnality and (92), (95), (105) we easily find that this integral
is less than 9e. This completes the proof of the theorem.
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