
Classes  of  b i o r t h o n o r m a l  sys tems .  

By JACOB STEINBERG (a Haifa, Israel) 

Summary. - The biorthogonal systems which are studied in this paper are composed of an 
Appel set of polynomials and of a sequence of derivatives. Conditions on one sequence 
are given which ensure the existence of the other. Expansion theorems in terms of deri. 
vatives and by means of summabili ty methods are thsn proved. 

Introd uction. 

While  l inear integral equations with a symmetr ic  kernel  give rise to 
orthonormal systems of functions,  a non-symmetr ic  kernel  leads to biortho- 
normal systems. 

These last are composed of two sequences  f.(t), g.(t) sat isfying the 
relations 

f fm(t)g.(t)dt - -  ~,~. , 

where  the path of integrat ion may be an interval  of the real axis or a con- 
tour  in the complex plane. In the case of complex-va lued  funct ions it is 
cus tomary to wri te  down the complex conjugate  of g.(t), but  this is not 
necessary for oar  purpose and we shall use the definition in the form as 
above ;  if the system f .  ; g .  is bior thonormal  in this sense, then the system 
f .  ; g,, is b ior thonormal  in the cus tomary  sense. 

The classes of biorthonormal  systems we shall be concerned with are of 
a simple formal charac te r ;  the first  sequence will be an Appell set of poly- 
nomials and the second essential ly the sequence  of derivat ives of a certain 
funct ion associated with the Appell  set. For  the path of integrat ion we shall 
consider the case of the whole real axis and the case of a circle with centre 
at the origin. 

If  f .  ~ L2 and if aik are the elements of the matr ix of orthogona!isation, 
then necessary and sufficient  conditions for the existence of the sequence g .  
in La are 

00 
l ajk I s < ~ ; j = 1, 2, .... 

k= 1 
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For a proof see [7; 29, 30] {1). Application of this theorem seems to be very 
difficult insofar as the computation of the elements aik is needed. In  our 
more special case, we shall content ourselves with sufficient conditions on 
the generating function of the Appell set. 

While extensive literature is available on the expansion of analytic 
functions in terms of Appell polynomials and generalisations of them [1], no 
expansion theorems in terms of derivatives could be found by the author in 
available publications. In  these circumstances the problem was dealt with 
by the aid of summabili ty methods, and as a consequence the completeness 
of sequences of derivatives in L2 (--c~,  ~ )  has been proved. 

Since the author has been led to this subject by considering certain 
integral equations, and since the connection will appear again in the proof 
of Theorem 9, the first paragraph is devoted to a brief study of the integral 
equations. According to our definition, of biorthonormality, the integral .equa- 
tion which is the transpose of that with the kernel K(s, t) has the kernel 
K(t, s), not g (t, s). 

I. I class of  integral equations. 

In two papers [8; 9] the author studied integral equations of the type 

O0 

(1) z f K(bs - t } f ( t ) d t  = O.  

where b is a parameter and the function K(x} satisfies the conditions 

tl) [K(x) l <Ce-~l~l; h > 0 ; - - ~ < x < ~ ;  
¢D 

(2) f K(x)d'x, 4 0 .  

We shall restrict the variables s, t and the parameter  b to the real 
domain. The results needed in the present paragraph are as follows: 

Let 

1,: ( x )dx  =. ),01; 

~tttO 

then the integral equation (1) has the eigenvalues k,, --  )~ob -~, (n --- 0, 1, 2, ...), 
and as corresponding eigenfuncfions, an Appell set of polynomials p~{t}. (The 
normalisation of p,(t) is that the coefficient of t '~ is 1In!}. The generating 

(l) Brackets refer to the bibliography. 
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function of this Appell set is given by 

O0 

(2) A(u) = II L(b-"u) ; [b [  > 1 

('3) A ( u ) -  II L-l(b"u): [ b [ < 1, 

where 

(4) L(u) -- ko fe -" tK( t )d t ;  J Re u J < h. 

In  the case J b t > l ,  A(u) is analytic in the strip J R e u J  <bh,  a n d  
tends to zero in any strip J R e u l  <-- b(h -- B}, ~ > 0 ;  [9, Theorem 3; 12, 
Section 3]. If j b J < l  and if L(u):4=O in strip ] R e u l  < h ,  then A(u) is 
analytic in this strip. Furthermore, A(u) satisfies the functional equation 

(5) A(bu) -- L(u)A(u) 

for J R e u J  < h ,  if J b] > 1 and for J R e u J  <b-~h, if ]b J <1. 
Let us now consider equation (1) with b > 1; let us suppose that, in 

addition to conditions 1 and 2, the function K(w) is differentiable and that its 
derivative satisfies a condition similar to condition t. 

We shall see that there exists then another set of eigenvalues for equa- 
tion (1), and that the corresponding eigenfunctions are the derivatives of a 
certain function. We study first the asymptotic behaviour of A(u) in the 
strip J R e u J  <bh.  

LE~M~. 1. - I f  K(x) is differentiable /or every real x and satisfies condi- 
tions 1 and 2, and i f  

I K ' ( z )  I < O , e - ~ l ,  

then the generating function A(u) of the polynomial eigenfunctions of the trite. 
gral equation (1), with b > 1, is analytic in the strip ] Re u I < bh and satisfies 
the relation 

A(u) = o(u-") ; I u t - "  ~ : I R e  u I <--- b(h - -  8) ; ~ > O, 

for any positive r. 
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P~ooF.  - In  the proof that  A(u)~O in the strip, we showed that  L{u)--*0 
in this s tr ip [19; Theorem 1]. In  the same way, since K'(x) satisfies a simi- 
lar  inequal i ty  for K(x), we can show that  the bilateral  LAPLACE t ransform 
.N(U) of K'(~c) tends to zero in the strip, at infinity. Now, by a we l l -known 
theorem on the LAPLACE transform, we have 

.N(u) = L(u)u ; I Re u t < qh, 

[3; p. 104; Satz 8], and since N(u )=o (1 ) ,  for J R e u l  < : ' h - 8 ;  8 > 0 ,  we 
obtain 

L ( u )  = u- N(u) = o ( u  ; i u l - -  ; I R e  u i < h - ; 

(6) 

17) 

$ > 0 .  

For  every n = I, 2, ..., we can now wri te  

I L(b- 'u)  l < C~b" I u I-1; ] Re u l "< b(h -- 8) <= b"(h --  8}; 

If  r is any positive integer,  we obtain f rom (2) and for I R e u l  < b h ,  

J A(u) I = ]A(b-"u) l II IL (b - ' u )  l .  

By the boundedness  of A(u) in any s tr ip  I Re u I ~ b ( h -  ~), we have 

I A(ub-"}l  < M, 

] R e  (ub-") J "< I Re u I . F rom where  M depends  on ~ but  not on r, since 
(6), (7), (s)  ollows 

] A(u) t < MC~"b'r+l']~t u l -";  ] Re u t <: b(h - -  8), 

this inequal i ty  leading immedia te ly  to the lemma. 

LE~MA 2 . -  Under the same conditions as in Lemma 1, the generating 
function A(u) is the bilateral Laplace transform ot an infinitely differentiable 
function q(t), which is given by 

Joy 

P R O O F .  - Suff ic ient  condi t ions for f(u) to be representable  as 

2' 

(10) f(u) -" li._.m f e-"tF(t)dt, 
- -T 
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with  

(11) F(t)  ---- 1 i f e ' a f (u )du ;  x~ < ~ < x~ , 

are that f (u)  should be analytic in the strip ~ < R e u  < w~ and vanish at 
infinity in this strip, and that f (ut  should be absolutely integrable along 
any straight  line in the str ip:  I:~; p 2(;i~ S~,,i,z i], :'G,~ by Lemma 1 these 
conditions are satisfied for f (u!  == :~::.:} ; ~ - -  ~ hb ; ~ := hb. The integral  (11), 
with x - -  0, (it is independent ~d ~:} (;oaverges here  uuiformly for every real t ; 
fur thermore  the same is true fur all the integrals 

,i,2c 

. . . :  

(~ == 1, 2, ...}, 

so that the hmet ion  F { t ) -  ~/i/,~ i~ hifi~d~ely differentiable.  
Takir~g x. = (-- h + 8)b in (i iL we get 

x q  ;~x~, co  

i f I__ ex t ['e~VtA~ x ..L, iy)d:4, q(t) - -  2~i e " tA i~ 'A"  : :  

the last integral  being bounded ;!:~, a fuuction of t, so that 

(12) q(t) - -  0 { exp (--  b(k - -  ~)t) I ; t -* + ~ ; ~ > O. 

Put t ing  ~ - - - - ( h -  ~)b in (10), we obtain in a like manner  

03) q(t) - -  O i e x p  (b(h ~ 8)t) t ; t ~ ~ a~ ; ~ > 0. 

Hence  (10) takes the form of an ordinary bilateral  LAPLACE integral 

O0 

(14) A ( u ) - - / e - " t q ( t ) d t ;  I R e u i  < b h ,  

q(t) being infinitely differenti~ble and vanishing exponential ly a infinity as 
indicated ir~ (13) and ([2). 

Next, we seek a new se~ of eigenfunctions of equation (1). 

hc~s the e igenvalues  kob" (n ~ i ,  2, ,.), the correspc, n ~ ; ~  egE~::,ni~w~ho~ berne9 
q,,-1~(f), (n '- i, 2, ,.~), ,;q:'er~:'~ :'~.: i:, ihe func:,ivn, def ined i n  L~m,,,~. 2~ ~u,. (9! 
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PROOF. - By (14t, we have 

O3 

A(bu) = r e -  ~"'qls)ds ; 
--3G 

I R e u l  < h .  

Subst i tu t ing  bs ~ v, we obtain 

A(bu) -- b-l  f e-"Vq(vb-1)dv. 
~ ~30 

By the convolut ion theorem for the bilateral  LAPLACE transform, L(u)A(u) 
is the t ransform of 

0¢) 

),o ]'K(v - -  t)qff}dt 

[14; p. 258, Theorem 16 b]. By the un iqueness  theorem [14; p. 244, Theorem 
6b], we obtain f rom (5), 

b-lq(vb -1) : ~o f K (v - -  t)q(t)dt 

Re-subs t i tung  s, we obtain 

(15) q(s) = bXo f K(bs --  tIq(t)dt 

so that  we see that  q(t) is an e igenfunct ion of (1) corresponding to the eigen- 
value )~ob, 

3K ~K 
Different ia t ing (15) and us ing the different ial  equat ion ~ -]-b - ~  --  0, 

for the kernel ,  we obtain 

q'(s) -b b2~.o ; ~ K ( b ~ t  t) q(t}dt 
- - 0 0  

= 0 .  

In tegra t ion  by parts  yields 

o~ 

q'(s) -- b~ko ;K(bs  -- t}q'(tldt 
--OO 

= O, 
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so that  q'(t) is an e igenfune t ion  co r r e spond ing  to ),ob 2. By  comple te  induc t ion  
we see that  q(')(t) is an e igenfunc t ion  co r r e spond ing  to the e igenva lue  ),ob n+l. 

Le t  us  now cons ider  the  in tegra l  equa t ion  wh ich  is the  t r anspose  of (1). 

THEOREM 2. - Under conditions 1 and 2 and for b > 1, the transpose of 
(1) has the eigenvalues kob" (n = 1, 2, ...) and as corresponding eigenfunctions 
an Appell set of polynomials whose generating function A*(u) is related to 
that of (l}, i. e. A(u), by the equation 

(16) A*(u)A(-- u) -"  1 ; I Re u ] < bh. 

PROOF. - The  t r anspose  equa t i on  

f K(bt slg(t)dt 0 g ( s ! -  x - = 

can be wr i t t en  in the same form as (1): 

o~ 

g(s) - -  X ( K*(b-ls - -  t)g(tldt 
--CX~ 

- -  O, 

wi th  the p a r a m e t e r  b* - -  b -1 ins tead  of b (0 < b* < 1) and  wi th  

Now 

K*(x) "- K( - -  bx). 

- - 0 ~  - - 0 0  

-- 1/b),o , 

hence  )~* - -  b)~o and equa t ion  (1") has  the  e i g e n v a l u e s  ),* - -  ),*{b*} -'~ - -  ~ob "+1, 
( n - - 0 ,  1, 2, ...) and the co r r e spond ing  po lynomia l  e igen func t ions  p,*(t) have,  
by (3) (with b* i n s t ead  of b), the gene ra t ing  func t ion  

OD 

(17) A*(u) ---- II t L*[lb*}'u] }-1 
~ 0  

where  

(lS  
c o  

n*~u) "- ~*o /ge( t )e  -utdt "- ~ob f g{--bt}e-"tdt 
b O O  ~ O O  

0 0  
t" 

--  Xob ] K(v)e"Wbb-ldv "- L t - -  b-~u). 
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Final ly  we have, from (17), (18), (2}, 

O~ c o  

A*(u) -- II L-~(-- b-'-~u) = H L-:(--  b- 'u)]= A-~( - u). 

By condit ion 1, K*(w) satisfies 

[ K*(x) [ < Ce -~hlxl, 

so that  L*(u) is analytic in the strip i R e u  [ < bh, and, by (17}, the same is 
t rue for A*(u), as it can be obtained in the same way as for A(u), [9, Theo- 
rem 3;  12, Sect ion 3]. 

As an  immedia te  consequence of Theorems 1 and 2, we see that, under  
the condit ions of L e m m a  1, the in tegral  equat ion  (1) and its t ranspose have 
a common set of eigenvalues,  kob "+1 ( n - - 0 ,  1, 2 .... ). (Cfr. FRED~OLM' S theo- 
rems!),  and that  the two sots of e igenfunct ions  qC,~(/); p*{t) form a biortho- 
gonal sys tem;  i. e., 

O~ 

f p *(t)q'"(t)dt = 0 ; m :~= n, (m, n = O, 1, 2, ...). 

This  follows in the classical way by mul t ip ly ing  the equat ion  for p *  by 
q('~(s), that  of qC,) by p*~(s), subtrac t ing  and in tegra t ing  wi th  respect  to s. 

If  we consider  the set q . ( t ) - - ( - -1)"q(")( t ) ;  ( n - - 0 ,  l, 2, ...) the system 
(p* ;  q,) is b io r thonormal ;  this means  that  

03 

f p*(t)q.(t)dt 

The equal i t ies  for m - - n  are obtained by in tegrat ion by parts  and by us ing  
the re la t ion * ' * (P,+l) - ' P , ~ ,  ( n -  0, 1, 2, ...) and the equal i ty  

CO 

f q(t)dt-- 1, 
- - 0 0  

which follows from (14), for u - - 0 ,  since by (4) and (2), L(0)- - - -A(0)-  I. The  
funct ion  q(t) can now be expressed direct ly in terms of A*(u) by the equal i ty  

i ; e ~'~ 
q(t) = A*(-- u) du, 

which  is a consequence  of (9) and (16). 
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II. Completion of  an Appell set and of  sequence o f  derivat ives to a 
biorthonormal system. 

The results of Section I lead to the following questions and also suggest 
an answer  to them. 

Given aa Appell set p,,(t~ with the generat ing function A(u), sufficient 
conditions on A(u) are to be found which ensure the existence of an infinitely 
differentiable funct ion q(t) such that the sequence q , , ( t ) :  (--1)'q(')(t), n -  0, 
1, 2,... ,  should complete the sequence p,(t) to a biorthogonal system. Conver- 
sely, if q(t) is given~ under  what  conditions would there exist a set of poly- 
nomials completing the set q,,(t) to a biorthonormal system ? 

* t  The set p,,(t) and the funct ion A(u) play here  the roles of p,~() and A*(u) 
of Section I. 

To answer  the first  question, let us recall  the class S of infinitely diffe- 
rentiable functions fiY) along the whole real axis which, together with all 
their  derivatives, vanish more rapidly than any negative power of y at infi- 
nity. As is well known, the FOUn1ER transform maps S onto itself in a 
one- to-one  manner .  

T]~EOnE~ 3 . -  Let the generating function A(u) of the Appell set p,(t) 
satisfy the conditions 

(a) A(u) is regular in a neighbourhood of the origin; (A(O) -- 1), 

(b) A-l(iy) belongs to S, as a function of the real variable y. 

Then the function 

(19) 1 fe  -" t  1 f e  -'~t 
q(t) -- ~ ] ~(u} du -~ ~-~ 1 A ~ )  dy, 

- - i v  - - ~  

which belongs to S, satisfies the biorthonormality relations 

o~ 

(20) ;~.jt~q,,(t)dt = ~.~,,, 

where 

(m, n = 0, 1, 2, ...), 

q~(t)- (-- 1)-q,.,(t). 

PROOF. - Since, for real  y, 

A-l(iy) --  / e~Utq(t)dt, 
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by FoumER'  s integral  theorem, we have, for y - - 0 ,  

(21) f q(t)dt = A - ~ i O )  = 1. 

--O2) 

By n integrations by parts, we obtain 

oo CO 

= f 
- - 0 0  ~ O D  

Hence  if n > m, p(~)(t) - -  O, so that (20) holds for this case ; if n - -  m, then 
p~) ( t ) - -1 ,  and (20) again holds for this case. Let us now assume n < m, 
then p,~ ( t ) = P m - , f l )  so that we have to prove that q(t) is orthogonal t() all 
the Appell polynomials except for the first p o ( t ) -  t. Since the explicit  
expression of the polynomials is [9, p. 56] 

t ~ 
p , ( t )  = ; (r = 1, 2, ...), 

where the coefficients a,, are the powers expansion coefficients of A(u), we 
have 

oo O0 

t22) p,.(t)q(t)dt = k~=oa,_a ~.  t~q(t)dt =~=o ~ Mha,._ h, 

where  
CO 

f Ma = k.vl taq(t)dt = ~.  A-~(u) o ; (k -- 0, 1, 2, ...). 

The last equalities state that the numbers  Mh are the powers expansion 
coefficients of A-~(u) which is analytic about the origin, since A(u) is and 
A(0) = I. 

Using the CAuc]~¥ multipl ication formula for the power series of A(u) 
and A-l(u) in the identity A(u)A-~(u)= 1, one sees that the last member  of 
(22) is zero for r - - 1 ,  2, .... This proves the theorem. 

COROLLARY. - Let  the generating funct ion A(u) of  the Appell  set p,,(t) 
sat is fy  the conditions 

(a) A-I(u) is analyt ic  in  a strip I R e  u ]  < R, 

(b) A-l(u) = o(u -'~) ; l u l ~ c~, I Re u l ~ r < R ;  m - - l ,  2, .... 
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Then the funct ion q(tJ defined by (19) is infinitely di/]erentiable, and satisfies 
(20) and the inequalities 

I q("(t)  I < O, . , , , e -"I t ,  (n --- 0, 1, 2, ...) 

for every r < R. 

P~ooF.  - Relat ion (20) follows from Theorem 3. The  exponen t i a l -van i -  
sh ing of q(t) and its der ivat ives are easily obtained from the representa t ions  

(-~ ][)" ; u " e - U t d ~  
q ( ' ) ( t t -  2~i ] A(u) ; r < R  

the integrals  converg ing  uni formly  for all real  t, by condi t ion b (take 
m - - n ~ 2 ) .  

We add here  a s imple direct  proof of re la t ions (20). Since p,( t)  are the 
power  series expans ion  coefficients of A(u)e ~'t as a funct ion  of u, one has  

~3D 
' 1 ~ A(u)e"':  

__ i ~  ~ £ A[u) f e,tq,(t)dt, 

the invers ion  being jus t i f ied  by the uniform convergence of the last integral  
along the circle. 

The  uni formi ty  of the convergence follows from the inequal i t ies  

] e"t I ~ e,'itJ ; J q,(t) ] < C,, ,.,e-"' tl ; r < r' < R. 

Now we have 

(24) A-l(u) = fe"~q(t)dt; ] Re u I < R, 

and in tegra t ing  by parts,  n times, the last integral  of (24), one obtains, by (23) 

1 ~, A(u) u ~ 
"pm(t)q,,(t)dt - -  2-~i ~ ~ A(u) du -" 8,,, . 

REMARKS, 

(I) If no restr ic t ions are requi red  for the complet ing sequence q.(t), 
this sequence is not un ique ly  de te rmined  and does not have to be a sequence  
of derivatives,  since there exists funct ions  which are or thogonal  to all the 
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polynomials, namely  all the functions all of whose moments  vanish ; by adding 
such a funct ion to every q,,(t), not necessari ly the same for all q,(tt, we 
obtain a new sequence which completes the Appell set to a biorthonormal 
system. But under  the conditions of the corollary, we saw that every deriva- 
tive of the function qtt) defined by {19) vanishes exponential ly at inf ini ty ;  
now, we can claim that this sequence q,,(ti is the unique having this last 
asymptotic property and belonging to L ( - -oc ,  ~ ) .  For if a second sequence 
q,,(t}, with these properties would exist, then every function q , , -  q* would 
be orthogonal to all Appell polynomials: hence such a function would have 
all its moments  zero, vanish exponential ly at infinity, and belong to 
L(--cx~, cx~); but then the function q , , -  q* must vanish almost everywhere  
11; p. 131]. 

(2) That  condition (b) of Theorem 3 or of its corollary is not a neCes- 
sary condition for the existence of a completing set q,,(t) is shown by the 
following example. Let Atu l - -  1, so that condition (a) of Theorem 3, or of 
its corollary, is satisfied, but condition tb) does not hold. The Appell set is 
here p,,(t)--t '*/n!.  As q(t) we may take any function all of whos emoments 
vanish except for the first which is one, and which is infinitely differentiable.  
The author  has given an explicit  construction of such functions and shown 
I10, 12] that there exist entire functions with the required sequence of 
moments  1, 0, 0, 0, .... 

It is easily verified, by n integrations by parts, that all the moments 
cf q("(t) are zero, except for that of order n, which is ( - - 1 ) ' h i .  Hence, the 
sequence q, -- ( - - 1 ) ' q  (") completes the Appell set t"/n! to a biorthonormal 
system. This example suggests that the conditions of Theorem 3 may be 
relaxed. In  fact, we shall prove the following generalisation : 

T~r~:ORE~t 4 . -  Let the generati~w function A(u) of the Appell set p,,(t} 
satisfy the conditions 

(a) A(u) is regular in a neighbourhood of the origin ; A(o) --  1, 

(b) A-~(iy) is infinitely differentiable with respect to y; ( - - <  oc y < c,o). 

(c) d"A-l(iy)/dy ' * - 0  (]y[%);  I Y I "-~c°, for some real number a , ,  
(n = O, 1, 2, ...). 

Let I(t) belong to S and have the moments 1, O, O, O, ..., and let 

O0 

I(y) = ; e~vtI(t)dt. 
- - 0 0  
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Then the function 

(19") 1 fe_,UtA_~(iy)~(y)dy q(t) = 

which belongs to S, satisfies the biorthonormality relations (20). 

PROOF. - Since I ( o ) -  1, we have, f rom (19"), 

OO 

q(t)dt = A-:(o)I(o) --  1. 
. - - o o  

It  remains  thus to prove, as in the proof of Theorem 3, that  q(t) is orthogo- 
nal  to all the polynomials  p~, p~, .... Equal i ty  (22) holds t rue here  wi th  

oo 

f [ ~ l(k) 1 t~q(t)dt i -~ [Ail(iy)i{y~j,= ° ; Mk = ~  = - ~ .  

the different ia t ions being per formed wi th  respect  to y. Now, 
I(a~(o) : 0, ( k - - 1 ,  2, ...) and ~ o ) - - 1 ,  we see, by LEIBnitZ rule, that  

i - ~ ' l  , ~ , .  ,1 (k) 1 

since 

exactly as in the proof of Theorem 3. The proof is now arr ived at in the 
same way. 

EXA~PLE. - Every rat ional  funct ion  A(u) which  has no zero along the 
imaginary  axis and for which  A ( o ) ~  1 obviously satisfies the three  condi- 
t ions of Theorem 4. 

The s implest  special  case is that  given before, i. e. A ( u ) ~  1. 
We shall  now deal with  the same problem in the case where  the pa th  

of integrat ion,  for the b ior thonormal i ty  relations, is a circle about the origin. 
For  this purpose,  we recall the def ini t ion of the BOREL-LAPLACE t ransform 
of en ent i re  funct ion  of exponent ia l  type, [3, Kapi tel  10]. Let  the ent ire  
funct ion  

satisfy the inequal i ty  

(25) 

F(u)  = ~. c . u  '~ 

I F(u) I < Ceil"t; h > O. 



196 J. STEINBERG: Glasses o] biortho~ormal sy.~tems. 

It  is then said to be of exponent ia l  type h at most. The  coefficients then  
satisfy the inequal i ty  

(26) l i m ( n ! t o .  I) ~I" ~---h; 

hence the funct ion 

O0 

(27) f(t) --  ~ n ! c, t  -"-~, 
~ 0  

which  vanishes at infinity, is analyt ic  for It i >  h, and is called the BOREL- 
LAPLACE t ransform of F(u). The following integral  representa t ions  ho ld :  

(28) f(t) = f e-" F(u)du ; ne  t > h ; 
0 

1 ~e,tf(t)dt ; R > h .  {29) F(u) --= 
itl=R 

If  (25) holds for every posit ive h, F(u) is said to be of min ima l  type, and 
the relat ions (26b, (28), (29) hold with 0 instead of h. 

T~EORE~ 5. - Given an AppeU set p~(t) whose generating function A(u) 
is such that its reciprocal is an entire function of exponential type not excee- 
ding h > o, or of minimal type; the Borel-Laplace transform q(t) of (2r:iA(u)) - I  
then satisfies the biorthonormality relatioJ~s 

(30) ~ p,,(t)q~(t)dt -" ~,,,, ; 
Itl=R 

(m, n -  O, 1, 2, ...), 

where R > h or R > o respectively. 

]:he proof is essential ly the same as the special  proof given for the 
corollary of Theorem 3. Ins tead  of (24), whe have here  

(31) A-l(u) -" ~ e"tq(t)dt 
i~l=R 

and the invers ion of the two integrals  over l u ]  - - r < R ,  and I t I - - R  
needs no special  jus t i f icat ion.  

As the s implest  example,  let us take A(u) --  1 ; p,,(t) --  t" /m I ; By (27), 
we have q(t)--(2rcit) -1 and q,(t)-" n I (2r:it'~+~) -~, so that  relat ions (30) are 
direct ly verified, with  R > 0. 
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Let us now consider the converse problem. A sequence of polynomials 
/),,(t), n - - 0 ,  1, 2,... will be called a s tandard set if the degree of P ,  is 
exact ly  n. 

THEOm~,x 6. - Let q(t) belong to S and let it satisfy the condition 

(32) /'q(t)dt -- 1 ; 

There exists then a unique standard set, namely an Appell set, which completes 
the sequence q, ,{ t ) -  (--1)'q~")(t) to a biorthonormal system. 

PROOF. - We prove first that every s tandard set p , , ,  satisfying (20), is 
necessari ly an Appell set. In  fact, from (20), follows 

Oo 

(33) [ q(t}p~)(t)dt --  ~ , ,  . 

If  m - - n ,  and if C, is the coefficient of t n in P,(O, then (32) and (33) gives 
C , - -  1 /n! .  If m > n, then (33} gives 

] q(t) t p~-l) ( t )  p~'--?)(O t dt = O, = (34) - -  (m 2, 3, ...) 

But the two polynomials in brackets  are of the first degree and by the for- 
mer  result  the coefficient of t in both is 1, so that  the difference of these 
polynomials is a constant ;  by (32) and (34) this constant must  be zero. Thus 

~(m--2) p~,~-l) _./~,,,-1 ; (m --  2, 3, ...) and integrat ing this identity, if m ~ 3, we 
obtain p~-2)_p(,~__-~a)~ C. Using again (32)and  (33), we obtain C - - 0 ,  and 
repeat ing this process yields p',~ --  p,,,_l, ( m - -  2, 3, ...). This identi ty also 
holds true for m - -  1, since Po --  1 and pl  --  t ~ a~. Hence  the sequence p,, 
is an Appelt set. 

Next we prove that this Appell set is uniquely determined if such a set 
satisfying (20) exists. From (20), for n - - 0 ,  we have 

oo 

f p,.(t)q(t)dt --  0;  

By (22), these relations are equivalent  to the system 

135) ~ 2J,a,,_h = 0 ; 
k = 0  

(r = 1, 2, ...). 

(r - -  1; 2, ...) 
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with ao = Mo = i, which determine uuiquely the coefficients ah and so the 
Appell set itself. 

Finally, since from (32) and (35) there follows (20), the existence of the 
required s tandard set is established. 

COnOLLARY. - If, in addition to the conditions of Theorem 6, the further 
condition 

q(t) = O (e -RIll); i t t ~ ~ ; R > O, 

is satisfied then the Appell set which completes the sequence q,(t) to a biortho. 
normal system has the generating function A(u) defined by (24), this function 
being analytic in the strip I Re u ] < R. 

PROOF. - From the analyt ici ty of A-l(u) about the origin, ( I Re u I < R) 
and from the equali ty A(o)- -1 ,  it follows that A(u) is also analytic about 
u -  0. Let  p*(t) be the Appell set generated by A(u). Since q(t) belongs to ~S, 
so does A-l(iy) as a funct ion of y. 

Hence by Theorem 3, we see that the set p*(t) completes the set 
(--1)'qcn~(t) to a biorthonormal system. Since, by Theorem 6, the set of poly- 
nomials is unique, one has p*  =p ,~ .  

For the case of the biorthonormali ty conditions (30), the following theo- 
rem can be proved in the same manner  as Theorem 6 and its corollary. 

THEOREt5 7. - Let the functior~ q(t t satisfy the following conditions 

(1) It  is regular for I t I > h ~ o .  

(2) I t  vanishes at infinity. 

(3) ~ q ( t ) d t ~ - l ;  R > h ,  
Itl=R 

There exists then a unique standard set ~v,(t), namely an AppeU set, 
which satisfies relations (30) and whose generating function A(u) is given by (31). 
The tunction A-l(u) is entire ; of e~cponenlial type not greater than h i f  h > o, 
and of minimal  type i f  h - - o .  

III. Fourier expansions in terms of a sequence of  derivatives, for func- 
tions regular at infinity. 

Let q(t) .satisfy the conditions of Theorem 7 and let f(t) satisfy 
the two first  conditions. Consider the FOURIER series of f(t) in terms 
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o f  q . ( t ) =  ( -  1 ) ' ¢ " ' ( 0 ,  

(361 ~, d,,q, tt) ; 

(37) d,, - -  ~ f(s)p,(s)ds ; R < h, 
lal=R 

where  the sequence p ,  is the Appell set associated with q(t) by Theorem 7. 
Before we deal with the problem of the representabi l i ty  of f(t) by means 

of (36), it is instruct ive to work out a simple example,  which will show that 
convergence of these FOURIER series is not to be expected, in general,  and 
that a strong summabil i ty  method may be needed to sum it up. 

Let  q(0 = (2'~/)-~(t-x + t-2}; the three conditions of Theorem 7 are satis- 
fied with h = o. By (31} we have, for any R > 0, 

A-a(u) - - ~  eut{2~:i)-~(t -1 n t- t-2)dt --  1 + u. 
ttl=R 

The power expansion coefficients of Atu) = (1 + u) -1 are  a ,  = p,,(o) = (--  1)". 
Let  us compute the FOURIEI~ coefficients of f { t ) =  t - l ;  by (37), they are 

d,, - -  ~ t-~p,~(t)dt - ~ t-lpn(o)dt = 27:ia,, - 2~i{-- 11". 

The series (36) takes the form 

(38~ ( E ( - - 1 ) " n t [ t - " - l + ( n + l ) t - , - 2 ] =  ~ ( - -  1)"nV t - ' - ~  d \ 
-=o  " . = o  " - -  d~ t - " - 1  . 

Such a series is not convergent  and not even (B) summable ;  f o r  BOI~L' s 
method, see [2; 311, 401]. But it is summable,  by a generalisat ion of the (B) 
method, to t -1 for Re ~ > o; t =]=o, as it will be shown now. 

The (B2)-method is defined by the relat ion 

(39) (B 2) ~, c , , - -  e_~_ v ~ e,  ~%,,  dxdy, 
Q 

where  Q is the first quar te r  x ~ o ; y ~ 0 ; this method is known to be regular  
[2 ; 405]. 

Applying (39) to series (38) the convergent  series 

( - -  1 ) -  
. : o Y ( 7 1  ° _-e 
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appears,  and we obtain 

(40) Cn x ' y "  ~ ~ e - x y l t  d 

Restr ict ing now t by the conditions t :4: o; Re t ~.  o, one has 

t-~ e-X-y-xy/tdxdy 
Q o o 

= f(t + yl-~e-Vdy -- F{t). 
0 

Hence  the double integral (39t is equal  to F ( t ) -  F'(t). But 

F'(t)-=--f(t-~y)-=e-Udy--[(t-+-y)-te-Vl~o q - f , t - l - y ) - l e -Vdg  
0 o 

= - -  t + F ( t ) .  

We see that in fact, the series (38) is (B2)-summable to 

F(t) --  F'(t) -- t -1, for t ~ o ; Re t ~ o. 

Let  us now generalise. 
Let  P(ut be a HunwI~z  polynomial, i. e. a polynomial  all of whose roots 

have a negative real part. (Such polynomials play a fundamenta l  role in 
physical  theories of s tabi l i ty;  for criteria to determine whether  a polynomial  
is of this kind or not, see [ 5 ; p .  395,...]b Wi~h P{u) we associate an angular  
region ~ ( P )  of the t-plane,  as follows ; let ul ,  ..., u,. denote the roots of P(u) ; 
then ~(P} is the common part  of the hal f -p lanes  Re (tub) ~ o ; (k --- 1, 2, ..., r). 

37r 
If  ~ --  rain a r g u h ;  ~ = max arg ua,  (k --  1, 2,. . . ,  r), ~ < arg uh <--~;  it is ea- 

sily verified that ~(P} is the set of all points t such that 

7: 3n  
- -  : ¢ + ) ~ _ _ a r g t ~ - -  ~t + ~ - .  

With  these concepts, we can formulate  and prove the following expansion 
theorem. 

THEORE~ 8 . -  Let P(u) be an Hurwitz polynomial with simple roots only, 
let P(o) - -  1 and 

1 fe_.tp(u)du. qtO = 
0 
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I f  f(t) is regular  for I t I > h ~ o a n d  vanishes  at  in f ini ty ,  then its Four ie r  
series (28} in  terms of  q(t) is (B~)-summable  to f(t} in  the p a r t  o f  ~(P~ outside 
a n y  circle [ t l -"  R > h. 

PROOF. - 1. The theorem will be proved first for f ( t ) =  t - t ,  (h = o). As 
in the example calculated above, the expansion coefficients for t -~ are 
d,, = 2 ¢ i a , ,  where a ,  =p , , (o )  are the power series coefficients of the gene- 
rat ing funct ion A(u) of the Appell set corresponding to q(t) by Theorem 7. 

By I31), with any R > o, 

O 
A-~(u) - -  ~ e"tq(t)dt - -  P(u).  

Itt =R 

Since P(u)  has simple roots only, we have P'(uh):~= O, and 

(4~) A(u) = p -~ (u )  = ~ 1 
k=, P'(u~)(u - uk) ' 

If  ul denotes the root nearest  to the origin, then, for J u ]  < Ju t  I , 

Hence 

A(u) = Y, w,  . . . .  E u"  E 1 
k=l uh P (us,) .=o \Uk/ --  .=o i,=~ u"+tP' (uk)  " 

(43) a , , -  -- .,. 
k=~ u'~+tP'(uk}" 

The function q(t) can be expressed as 

2uiq(t) - -  P ( - -  D}t -~ 

where D denotes the differentiat ion operator with respect to t ;  in fact 
Dat -1 - -  ( - -  1)at-a- lk  !, so that 

P ( - -  D)t - t  "-  ~ bh(--  D}at -1  - -  t - t  ~ bak l t -~ -" 2uiq(t). 
~=0 k=O 

Hence 

(44) q.(0 = ( -  1)-q,-,(t) = ~ P{-- D)n ! t- .-I., (n = O, 1, 2, ...). 

Annali di Matematica 26 
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The FOURIER series of t -1 is thus, by (43) and (44), 

(45) Y~ d.q.( t )  ---- E a,,n I P ( - -  D)t - ' - ~  -" E Y, n !P( - -  D)( tuh) - ' -L  
.=o ,=o k=l P'(uh) ,=o 

The (B2)-summability of the series ~ n l(tu~) -" -~ ,  yields, as in the example 
F ( - - t u k ) ,  for Re (tuk)~--'o; t :~= o, where F(t} is defined by (41). ~ow, by the 
uniform convergence of the double integral  (34), with tub instead of ~-  t, in 
the region R e ( t u k ) ~ o ,  ] t ] ~ R > o ,  it is clear that 

(B 2) Z n l D(lu,) - ' - t  - -  D(B 2) E n ! (tu,) - '~- t  

and the differentiat ion may be repeated any number  or times. Hence  we get, 
from (45) 

(46) (B') ~ d,,q,(t)-~ P ( - - D )  E F ( - - t u , )  n=o ~=o P'(u,} ; t e ~ ( P ) ;  ] t [ > _ R > 0 ,  

Let us seek a solution of the differential  equation 

(47) P ( - -  D)y - -  t -~, 

in the form of an ordinary LAPLACE t ransform 

O0 

y =fe-,~Y(s)ds = ~Y(s) ,  

0 

The law D ~ ( s )  "- - -  ~sY(s), gives us, with ~1 --  t -1 and (47), 

P ( - -  Djy - -  P ( - -  D)~Y(s} - -  9P(s)Y(s} = ~1. 

Hence,  by the uniqueness  of the LAPLACE transform 

Y(s) = P - ~ ( s )  ; 

so that, by (42~, 

/ u(t) = ~P-~(s) = e -"  y. [P'(u,)(s--  u~)] - ~  de; 
k-~:. l  

0 

R e t  >0 .  

Making the substitution s t - - v ,  we obtain by (34), 

c o  

y(t)- E 1/P'(uh). 
0 

• dv = ~ F( - -  tu~)/P'(uh). 
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This  wi th  (46) and (47) proves that  the FOUaIER series of t ~ is (B-')-summa- 
ble to t -~ for all values of t lying in ~ ( P )  outs ide any circle I t ]  - - R >  0. 

2. Our second step is to consider  the series 

t48) ~ q.(t)p.(s), 
n = 0  

which  arises formal ly  f rom the FOURIER series of f(O defined by (36) and (37) 
by in t roduc ing  (37) in (36) and inver t ing  summat ion  and integrat ion.  The  
(B~)-summation of (48) leads, by (39), to the double integral  

i I (49) e - x - v  ~, (n l)-2q,(t)p,(s)x"y" dxdy. 
~ 0  

We have [9; p. 64; (31)] 

] p,(s) j < ak-"e*:'J; k < [ ul [ , (n = 0, 1, 2, ...). 

On the other hand, by (44), there exists a positive number  b such that,  
for t =4= 0, 

[ q~"'(t) I < b{n + r) ! I t I-"-~; (n = 0, 1, 2, ...). 

These  two last sequences  of inequal i t ies  show that the series of (49) con- 
verges for all t :4:o, s, x. y. By (49) and (44! a s tudy of the ent ire  funct ion  
of s and z 

(5o~ Ets, z} = ~ p.(s)z" 
n=o n ! 

is necessary regard ing  its asymptot ic  behaviour ,  to decide for which  s and  t 
the double integral  is convergent .  F rom (50} we have 

(51) E',s, z ) =  ~ pn(s) e*Vv-'~-Idv, 
~ 0  

the path  being any circle I v ]  " -o .  But  if we take c > l u l 1 - 3  , then  the 
invers ion of summat ion  and in tegrat ion in (51) will be correct,  s ince the 
series E v- 'p , (s )  will be uniformly convergent  on Iv I - -  c ; in fact, this series 
represents  A(v-1)e'; ~ for I v [  ."-I ul 1-1. F rom (51) follows now 

t5.9) 1 ~ e,,+,/Vv+lA(v_~)dv" 
IVI~C 
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i -~ there are the r s imple poles of:  Wi th in  I v ]  - - - - c > l u l ,  , 

v_~A(v_l )  = v_~p_~(v_~  = ~ 1 
l:=1 P'(u~)(1 - -  vu D 

(by ((42), which are v k -  u~ "~', and the essential  s ingular  point  v -  o. Hence,  
by (52) 

(53) E(s, z ) - -  ~ eZ/'~+~'~-{- E= 1 1 ~ e~/~° ,, - -  dv, ~=~ UkP'~uk) ~ P'(uD ~ i  1 - -  ukv 
Iv',=e~ 

- - 1  where  each path  Iv I - -ok  encloses v----o but  not v k : u ~  hence c k < l u ~ [  -1 • 
Subs t i tu t ing  v -  (s/z)~/% for each integral  of {53) we obtain 

(54) {2z:i)_l~exp [tzs)l/2(w + llwt] dw 
tz/s)~/~ - -  u k w  = gk(s, z) 

with wa -~ [z/s ]1/2ck < i zls 11/2 I uk 1-1 ; but  since we are interes ted in the asymp- 
totic behaviour  of these integrals  for ]z I > [ su~ [ , we can choose for wk 
any posit ive number  and consider  then ] z I > w2 2 , k [ sukj  s being fixed. 

NOW, for i w l  -=wk,  one has 

(55) ] exp [(zs)l,~2 (w + ~)] l .~_ exp [I zs ll/~ (wk + l )] 

The m i n i m u m  value of wk-{-ro~ 1 is 2 which is reached for w k - - 1 ,  hence 
we will  take w k -  1 for each k and in each integral  (54) we consider  only 
l zl > I su~ t . By {54), (55), wi th  wk - -  1, one gets 

(5(~) I gk(s, z) I --<l ]1/~ I s I ~/2 - -  l u~,s  11/~ e x p  (~ I ~s ?/~); t ~ I > I u i 8  1 • 

By (37) and (43), the double integral  (42) takes the form 

(57) 2 ~  ~ f e - X - a [ P (  - D)t-lE(s, xyt-1)]d~cdy. 
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By (53~ and (54) we have to s tudy the convergeuce  of the integrals  

Q 

(59) f f exp (-- -- y)g (s, x y t -  ~)dx, dy. 
Q 

For  (587 the res t r ic t ions  Re (tuD ~ 0 ; I t I ~ to > o ensure  t h e  uni form con- 
vergence for all such values  of t. 

For  (597 let us first consider  the par t  Qt of Q which  is def ined by 
x > o ; y ~ o ; x~y ~ '  t~ I tu~ I ; t beind fixed and t =~= o, and  R ~ 0. Since g(s, z, 
is an entire funct ion  of z and since here  z - - ~ y t - ~ ;  one has 

(6o) I xyt i < y) Q1. 

where  Mk(s) depends  only on s, not on x, y, t. 
For  the complementa ry  par t  Q2 to Q~, of Q, which  is def ined by w >  o;  

y > o ; x y  > R I tu~ [ ; (t :4: o), R >  [ s t ,  the inequal i ty  (56) holds, insce 
2 2 

] z ] - - x y / t - ~ > R l u k l >  I s u k l .  Let us now restr ict  t by tho condi t ion 
I t l ~ R >  I s ] ;  then 

5Tow consider ing (59) and ~56) wi th  z - - -xy t  -~, we have 

(627 __ ~ __ y _{_ 2a(x,y)l/2 __ _ (xl/2 _ y~/2)~ _ 2(1 - -  a)(uvT~l 2. 

Let  o ~ k ~ 1. For  the par t  of Q~ where  y ~-- ]~v, we obtain, by (62), (61) 
and set t ing (1 - -  kin) ~ - -  kl  > o, exp [--  x - -  y T 2a(wY) ~/'] ~ exp [--  (~1/2 _ y~/2)2] <:: 
_<-2exp(--klw), and for the par t  of Q~ where  y ~ k - l w ;  one obtains, in a 
s imilar  way, 

exp [--  x~ - -  y -1- 2a(~y)I/~] ~ exp [--  (y~l ~ - -  x ~1'~] ~ '  exp (-- k~y). 

For  the remain ing  part  of Q~, where  k~  ( y  < :k -~x ,  one has, by (62) 
and (61) 

exp [--  x - -  y ~- 2a(xy)~/2] .~  exp [-- 2(1 - -  a)(x~)~/2] ~ exp [--  k2(x,y)l/~], 
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If  we p u t  -~k(s) = is  i'J~!u~ I-~(R ~/: - is I~/~) -~ and use (50~, we can, from 
the discussion on the integrand of (59) in Q ( , x ~ _ o ; y ~ o ) c o n c l u d e  that it 
can be majorised in Q by the following functions of x, y, s independent  of t ;  

for y ~ '  kx, by Mk exp (-- x - -  y) ~ Nk exp (--  k~x) ; 

for y ~ k-~w, by Mk exp (--- ~ ~ y) ~ Nk exp ( -- k~y) ; 

for kx  ~ y ~ k-~x, by Mk exp (--  x ~ y) ~ N~ exp [ - -  k~(xy)~/2]. 

It  is easily verified that these three majorizing functions are integrable 
in their  respective parts of Q. Hence the integral  

Q 

converges absolutely and uniformly for all values of t lying in ~ ( P )  outside 
any circle I t ]  = R  ~ I s ] ,  for a fixed s. Revert ing to (57) and not ing 
that, by (54) ~*E(s, z)/Oz ~ is analogous in its asymptotic behaviour  to E(s, z), 
we conclude that the double integral  (67) or (49} represents  an analytic func- 
tion of t in the ment ioned domain. If we now keep I fixed, t :~= o, and con- 
sider s such that Js  [ ~ R , ~  ] t I ,  a similar reasoning would yield that 
this integral  (57) represents  an analyt ic  function of s in this circle. Let  
us denote this function by H(s, t). Thus 

(63) (B 2) ~. q.( , )p.(s)--H(s,  ,);  t e ~ ( P ) ;  I t t  > t s t .  

3. 5Text we shall prove that 

t 
(64) H(s, t ) -  2~:i(t--s); t e n ( P ) ;  I t l > I s l .  

For P(u) - -  A-~(u) - -  1 ; p,(s) = s ' l n  I ; q(t) - -  (27:it) -1 ; it is easily verified that 
series (48) converges, for ] s [  < I t ] ,  to {2~i( t - -s))  -~, and so it is too 
(B ~) summable to this function. 

In  our general  case, we prove first that H(s, t) is a function of t - - s ;  
for that, it is sufficient to verify that the function 

(65) 
Q 
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~G ~G 
satisfies the equation ~ - +  ~-~--0, since, by, (50), 

H(s, t) - -  P ( - -  DiG(s, t) - -  P ( - -  D)G(t - -  s). 

Now, by (50} and (65) 

ff I :n+',-(')"''."(,,,+` - -  2~i ---- - -  e - = - u  E dxdy  
~ = o  n I , , 

Q 

O0 CO 

0 0 

-- f e-=d~ ) [e-U Y~ (n--Pds)(a;;V-)"+1-{-- 1), t"+'lo]~°J--- .[ e-U IX (nP"(s)(xY)"+']-')=f- i) , t'i+'] aYl 
0 0 

p,,(s)(xy)"+1 
- -  [ f  e - = - u t E ( n  + 1), t , + , l d w d y  

Q 

f[  = p._l(s)(xy)" I ~G - -  e - = -  u E dxdy  - -  - -  ; 
, ,,=~ n I t "+1 2~i ~s 
q 

the last equality following from p,~_l(s)---p',(s). 
Hence H(s, t) "-- H( t  ~ s). 
Let us now calculate H(o, t ) =  H(t). By (65) and (50), 

2uiG(o, t ) - -  f f e- -u i 2uia-"(xY)" t ,=o n ! t "+1 ~ dxdy.  
q 

Hence, by (45) and by part 1 of the proof, we see that 2~:i H(o, t), which is 
equal to 2rci P(--DiG(o, t), is just the result of the (B~)-summation of the 
FOURIER series of t -1. Thus, we obtain that H ( t ) =  1/2rcit, and (64) is 
established. 

4. Let fq) be analytic outside I t i  = h and vanish at infinity. 
We have for I t l  ~ R o > h .  

_ r(sl 
f ( t )  _ 2 , : i  ~ t - s ds 

I s l = R o  
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where the sense along the path is clockwise, leaving the domain I t l  > Ro 
to the left. If we take any R > Ro and restrict t by the conditions I t i > R ;  
t e ~ ( P ) ,  one has, by the uniformity of the (B~)-summability for all s on the 
circle I s  I - - R o ,  

el=R0 

- - ( B  ~) Y, q,,(t) f(s}p,~(s)ds- (B2t Y. d,~q,~(tt. 
Is'=Ro 

This is the theorem. 

IV. Fourier expansions along the real axis in terms of  a sequence of  
derivatives. 

Let A(u) be an entire generating function, such that A-~(ig) belongs to 
S as a function of the real variable y and satisfying the two inequalities 

(66) I A(u) t • c exp (h i u ta -{- k l u l ), 

(67) ] A(iy) ]-1 < 01 exp (-- h [ y  1% 

y being real and c > o ,  c 1 > o ,  h > o ,  k ~ o ,  a >  1. If A4u) is an entire 
function satisfying (66) and such that A-~(u) satisfies the inequality 

I A-~(ul I < C1 exp  ( - -  h i u !~') 

in the strip I Re u I ~ Uo, then A-l(iy) will belong to S and satisfy (67}. 
The simplest example is A ( u } - - e x p ( - - u 2 ) :  here h - - l ;  k - - o ,  a - - 2 ;  

this function generates the sequence p , ( t ) -  (1/nl)H~(t/2), H~(x,) being HEw- 
MI~E'S polynomials and the corresponding function q(t) is, by (19), 

o o  

- - 0 0  

and 

q.(t)  = ( - -  1)"q<"'(t) _ - -  

1 
e-~/~H.( t l2) .  2"+W~ 

For expansions in terms of HER~[ITE functions and polynomials see [6]. 
More generally, if n is a positive integer and E(u) is an entire function 

of exponential type whose modulus has a positise lower bound in the strip 
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i Re u [ ~ ' u o ,  then the function A(u) = E(u) exp [(-- u2) "] satisfies (66), (67} 
and A-¢(iy) belongs to S. 

The function q(t) corresponding to a function A(u) of the type considered 
here, by means of (19), is entire since a > 1, and belongs to S along the real 
axis. With every function A(u) we associate a class ~a,h containing all the 
functions f(t) which are regular  in a strip I Imt I ~,  to; to > k, and satisfying, 
in this strip, the inequali ty 

(68) [/(t} I < C exp (-- ho I t ]" 9, 

1 1 
with a o > a ' ;  a + a , = l ;  ho>o. 

For the summation of the FOURIER series of f(t), 

j'f(s)p.(s)ds, (69) ~, d.q.(t) ; d. - -  

.------0 
--oo 

we shall use a summabil i ty method which is a combination of the (A)-method 
(ABEL-PoIssoN) and of the (B)-method (BOREL). 

(70) (AB) E o. -- lira (B) E c.b-". 
b ~ i-}- 

The (AB)-method is regular,  since if ~, o. is convergent,  then the series 
on the r ight  hand side of (70) is absolutely convergent  for every b > t ; hence, 
by the regulari ty of (B) and of (A) we get (AB)E 0 , -  E c, .  

THEOREM 9. - L e t  A(u) be an entire function satisfying (66) and (67) 
and such that A-l(iy) e S;  let (p,~ ; q.) be the biorthonormal system generated 
by A(u). Then the Fourier series (69) of any function f(t) belonging to ~a, h is 
(AB)-summable to f(t) on the real axis. 

PROOF. - 1. We consider first 

¢O 

(71) (B) ~ d.q.(t) [ I ~=o b n -- e-Xdx 
o 

n!  ; b > l .  

The last series is convergent for every x ~  o, as will  be clear from the 
following. Using (69) for d , ,  one has, formally for the present, 

Qo 

n! \b} 

A n n a l i  d i  M a t e m a t W a  27 
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The last series will  now be t ransformed by means of the integral  repre- 
sentat ion of q,(t), namely  

(78) 1 ['(iy)" e_,ytdy" 
q.(t) - -  ~ ] A(iy) 

Hence,  

(74) 
. = o  n!  \b ] - -  ~=o n !  

--CiD 

_ f e  - '~t  ~ p.(s) i yx  " 

The inversion of in tegrat ion and 
in the following way. 

F r o m  the equal i ty  

summat ion  in the last equal i ty  is jus t i f ied  

1 ]~A(u)e ~ 
(75) p.(s)  - -  2-~i ~ u "+~ du  ; [ u I - -  R .  

we have 

M B'S (76) I p . (s)  I < R;i e ~ ; (I~ > o), 

so  t h a t  

{77) E__ ° ~ < M exp R I s [ -}- ; ix > o). 

Hence,  by (67), the las integral  in (74) converges when  the modulus  of 
each te rm and factor is taken. Since, fur thermore ,  the last series in (74) 
eonverges  un i formly  in every finite interval  of y, the invers ion is jus t i f ied  
and the convergence of the last series in (72) is immedia te ly  proved. 

Let  us now t ransform the last series in (74)~ 

E p . ( s ) ( ~ y ~ _ _  -~ ~ ~o~(~y~ 1 ~ e x~ (78) ~ ,  ~ • ~'-,oIL ,. l dz 
. = o  ' , , ,  \ ~ , /  ,,=o \ ~ , -  2 ~ i 3 ~  

Izl=r 

- -  2,:--i exp z -{- bz ] \bz] dz. 
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Using (66), this integral  representa t ion  gives the es t imat ion 

oo p.(s) ixy ~ (xr + h l ~r a l yS I 

By YouNc~' s inequal i ty  

y a l  ! x r s Z ° ' +  ; 
al ai' 

1 1 1) X,  Y, al ,  m ' > o ;  ~ +  a-~,-- , 

_ l y r  
with X -  --b--r--; Y --  I s I , the r i gh t -hand  member  of (78) is not greater  than  

a + al br -F E~ I s -k br ) " c exp x r - f f  h 1 y a, 1 ira, We choose now r and  a~' 

such that  b - l < r < l  and l < a ' < a ~ ' < a o ;  hence b r > l  and a ~ < a .  Rever- 
t ing to (74) with J im t j ~  T, T being arbi t rary and positive for the present ,  
and us ing (67) we obtain the fol lowing approx ima t ion :  

- - 0 0  

t8o) 
18 = exp (xr + m' ] 

Rever t ing  to (72), we obtain, by (681 and (80). 

(81) 

OD 

- -00 

- -  c~,e x'" ; (r < 1 ; x ~ 0)~ 

the last in tegral  being convergent  since a l ' <  ao. 
Since r < l ,  the integral  (71) converges, that  is to say, the 

~. b- 'd ,q~( t )  is {B)-summable for any complex t and b > 1. Let  us put  
series 

d,~qdt ) 
(82) f(t, b) -~  (B) 2, b" 

~ 0  

2, We shall  now deduce an integral  representa t ion  for f(t, b), which  
will be, in fact, an integral  t ransform of the type considered in Sect ion I. 

I f  we subst i tute  (72) in 171), then the obtained double integral  will  cen- 
verge absolutely by (80) and (68}. We thus may invert  the in tegrat ions  and 
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so obtain 

(83) 
(,=o n !  

- - ~  GG 

The inner  integral is 

(B) ~ pn(s)q.It) 
.~=o .... --  K(s,  t). 

By (74), we have 

2=K(s, t) = ;e - '~dx  ~ e - 'y t  ~ p.(s) " 

0 - - ,~  

By (78) and the result  of Yov~G's  inequali ty we see that the last double 
integral  converges absolutely, so that 

27:K(s, t ) - ' j  ix,) . .=o n !  \ b / " 
--03 0 

For any fixed y, we can invert  the sum and the inner  integral since, in {77) 
we may take R ~  I Y I , Finally, we get 

(84) K(s, t) = ~-~ ! A ~ )  dY l ,~=o ~ p.(s) 

oO 

--  2 r : / e x p  [iy(s/b - -  t)]A-l(iy)A(iy/b)dy 
--00 

- -  K(s/b -- t) 

with 

(Sb) K(z)  = 

cr~ 

j e ~u~A-l(iy)A(iy/b)dy. 

Hence 

(86) 
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3. Finally,  we have to prove that, for real t, 

lim f(t, b) - -  f(t). 
b ~ 1 +  

Put t ing  

(87) =f.-,...(,),o; 
we have, from (85) _~(y)--A(iy/b)A-~(iy), so that, by (59) and (67), the 
inequali t ies 

(88) I /C (v )  I < ~cl exp ( - -  h(1 - -  b-")l y i" + k i y t) < cclealVl 

hold. Substi tut ing (84) in (86), we have, by the notations of (87) 

(89) 
QO O0 

1 / 
= ~ j  e-'VtK(y)f(y/b)dy 

the inversion being justif ied by absolute integrabil i ty which follows from (68) 
and the first inequali ty (88). Bearing in mind that f(O is analylie in the strip 
I Im t ] ~ to, to :> k and vanisbing at infinity in this strip more rapidly than 
e x p ( - - r ] t l )  for any r, we conclude that ~y) is an entire function of y 
satisfying the inequali ty 

(90) ] ~ y )  < o,. exp (--  L_ i y [ )  

for any tl < to, in every strip [m y I ~ r. 
Let us fix a number  b~ such that 1 ~ bo ~ to~h, and. choose t~ such that 

kbo ~ t~ < to ; we then have, for every b such that t ~ b ~ bo, the inequali t ies 
t~/b~ tl/bo> k. By (90) and the second inequali ty of (88), we have, taking 

(91) I K(y)f(y/b) l  < COot1 exp [ - - ( t l / b o -  k) l y I ] ,  
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uni formly  for 1 ~ b  ~ bo. 
is integrable  and independent  of b, 
l ~ b ~ b .  

Thus,  by the relat ions 

lim /~(y) --  1 ; 

and by (89), follows 

l im f(t, b} --- 
b ~ l ~ -  

Since the funct ion on the r igh t -hand  side of (91} 
the integral  (89) converges uni formly  for 

l im ~ y l b ) -  /"(y), 

f e-~Vtf(y}dy = f(t). 

COROLLARY 1 . - I f  k - "  o, the theorem holds for every function f(O of 
the real variable t satisfyng the conditions, 

(a) the inequality (68} holds for real t, 

(b) f(t) is twice dif[erentiable, 

(c) f"(t~ belongs to L(--c,% ~ ) .  

PRoo]~. -  F rom condit ion c follows that  f'(t} ~ o, (t ~ ~-c~}; by 168~, 
f(t) ~ o, (t ~ ~ c ~ ) ;  hence,  in tegra t ing  the second equal i ty  (87) twice by 
parts  one get f'{y} --  0 ( i Y i -2) ; (Y "-- ± ~}.  

F rom this and from (88) wi th  k----o, one obtains, for all b in the interval  
l ~ b < Z 2 ,  

I K(y)f(y/b)l < C(1 -I- t Y I )  -~, 

where  C is independent  of b. This  last equal i ty  replaces (9D, and the proof 
is now arr ived at as in the theorem. 

COnOLLAR¥ 2. - The function f(t, bl defined by (82}, converges in the 
square mean to f(t), on the real a~is. 

PROOF. - From (89), one has 

f dutfit, b)dt -- I~(y)f(ylb). 

Hence,  by PARSEVAL'S equality,  one can write  

27: f l f(t, b } -  f(t) IZdt = f l K(y}f(y/b) - f{y)12dy. 
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By ~90) and {91) the last in tegrand is dominated by an integrable function 
of y, independenl  of b for all b in the interval  1 <_b_<,bo. Since this lute- 
grand tends to zero as b --* 1 +, one obtains, by uniform convergence,  that 
the last integral, as well as the foregoing, tend to zero as b--* 1 +. 

As a fur ther  consequence of the proof of the Theorem 9 the completeness 
of the sequence qn(t) in L2 ( - -co ,  ~ )  can be demonstrated.  F o r  this aim, we 
give first a lemma of GELFAI~D and SILOV [4; p. 243], and because of the 
simplicity of the proof given by these authors,  we reproduce it here. 

LEM~t~. - The class ~=, k,  (a > 1; k ~ o) is dense in  L~ ( - - co ,  ~ ) .  

PROOF.- It is to be shown that to every F(t) belonging to L~ and to 
each ¢ > o, there exists a function f(t} belonging to ~a, a. such that 

O0 

(92) f [ f(t) - -  F(t) i~dt < ~. 

For this, it is sufficient to show that the only functions G(t) of L2 which are 
orthogonal to each function f(t) are functions which are zero almost every- 
where.  Suppose, in fact, that for all f(t) of o"~a, k one has 

f(t)G(t)dt - -  o. 
~OD 

Consider 

(93) H(y) -- f e' tfo(OG(Odt ; 

where  fo(t} is one fixed function of ~a, h. Then all functions t"fo[t) belong to 
~a,h and so we get 

O0 

(94) H'"'to) = ; t"fott~G(t)dt - -  o, in - -  0, 1, 2, ...). 

But by t69), and by ScRwA~z's  inequality,  the integral  (93) converges uni. 
formly in every strip I lmyl<:_  Y, and so H(y) is an entire  function, which 
is identical ly zero, by (94). 
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Hence  fs(t)G(t) vanishes  almost  everywhere,  and the same is t rue for G(t) 
since fo(ti, as an analyt ic  funct ion  not identical ly zero, vanishes in an enu- 
merable  set. 

THEOREM 10. - Let q(t} be defined by (19) where A(u} is an entire function 
satisfying inequalities (66) and {67) a~d such that A-~(iy) e S; then the sequence 
of derivatives of q(t) is complete in L~ ( - - ~ ,  ~ ) .  

PROOF. - 1. By the lemma, to a given funct ion  F(tt of L2 and a given 
~ o, there  exists a func t ion  f(t) of ~a,~ such that  (921 holds. By corollary 2 

of Theorem 9, there exists a number  b ~ 1, such that,  

(95) f l f(t, b) - -  f(t) 12dr < ~. 

2. We shall  prove that  the series E d,~b-~q,,(t), which  is iB)-summable  
to flt, b), (this was the def ini t ion of this function,  by (75)~, converges  in the 
square  mean  to f(t, b) along the real  axis, b being f ixed (b ~ 11. 

For  the part ial  sums of this series, one has, by (73), 

06) Z d,b,q,(t) --  ~-~ ] A ~ }  d/y ~ d,, . 
--00 

Formally,  one has, by (69) and (87} 

(97} ,E g,,I~- ) - - = o  f(s) ,=oY"P"{s)~ , ds--A(iy/b)fiy/b).  

Now, by (76), with  R ~  I Y l , Y being fixed, one has 

~, p.(s~ < b -R- -  lyl " 

:By (6S), the integral  of (97) converges absolutely when  modulus  of each term 
s ud factor is take:~, and so one may invert  integrat ion and summation,  so 
that  the series at the left hand side of (97) converges for every y, and equals 
the r i gh t -hand  member.  By the equali ty A(iy/b)A-l(iy)--t~(y),  one, obtains, 
f rom (97) 

A'-~(iy} E d, jiy/b) 's --  K(y)f(y/b). 
~ 0  
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Hence, by (89} 

08) 

co 

1 ] ' e  -~y$ 
f(t, b) -- ~-~ ] - ~ t  dy I 

By (96), (98) and Pil~SEVAL' S equality, We obtain 

(99) 27: f(t, b) -- ~ d,b-"q,,lt) I' dl = A(iy) I 

We shall now estimate the last series with respect to IV. By (69) 

(ioo) 
oo 

n =N-}-i n=N-}-i \ ] 
- - c o  

the proof being the same as for (97). By (75), 

(101i , ZN+p,(s)(:~) - - ~ - i ~ u = ~ b \ ~ - u ]  du. 
'ul =R 

Let us fix a number b~ such that l < b l < b ;  and let us put R--b~-~lyl  for 
l YI>  1. Then (101) and (66) yield the approximation 

(102) l ~ i " (bJb) N+I ( h l ~ r + k l ~  _]_ b~ ] 

By Y o u ~ '  s inequality. IsYl <'lylm/a*'{-Is]~':/a*', where l < a ~ < a ;  
1 < a ' < a l ' <  ao, (see the first part of the proof of theorem 9). By this last 
inequality and by (102) and (68) there follows the approximation: 

i (103) Z d. 
n = N - ~  1 

< C1 [ y ]-1( b l ) _  exp(h ~]a~-]Ylm-t-kL~]),a~bl -- 

for lyl>i. 
For I Y I ~ i, we choose, in {101), R -  1, and this yields 

b - N - 1  

<02i_ l Y i b - l  e!'l' 

and, substituting this inequality in (100), one has 

t ° t ;L (104) Z d, < C ,  b-1 ( lY  I ~1} .  
.=N+I 1 -  l Y I 

Annali di Matematica 
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Since 1 < b ,  ~ b ,  we see, from {103) and (104), that the r igh t -hand  integral  
of (99) tends to zero as _h T ~ o¢. This proves our assertion on the series 

d.b-"g.(t). Having fixed b > 1 such that (95) holds, we determine ~ such that, 

f 
' N 2 

(105) f(l, b ) -  Z d.b-"g.(t) dt < ~. 

3. Considering the integral 

5~ 

f N d.b-"gdt) ~dt F ( t ) -  ~ . ; 
! n~D 

Substi tut ing in the integrand the functions ~f( t )  and ~f ( t ,  b) and using 
Sc~Anwz ' s  inequali ty and (92), (95~, (105) we easily f ind that this integral 
is less than 9~. This completes the proof of the theorem. 
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