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Summary. - A proof is given of  the BOTT periodicity theorems using only well known 
techniques of  algsbrdbc topology. 

0. Introduction. 

In  this paper we give a proof of the BOTT periodicity theorems [4] for 
the infinite classical groups using only well known techniques of algebraic 
topology. Whereas  there is some overlap with the proof given by MOORE in 
the CARTAN Seminar  [7], the algebraic techniques are ent i re ly  different.  
~IooRE uses homological algebra methods in dealing with spectral  sequences 
of universal  bundles. In  this proof the main argument  consists in showing 
that the Bo~:~ maps [5] induce isomorphisms in integral  homology, and this 
is done by showing th:lt they induce isomorphisms rood p, p or odd prime, 
and rood 2. For  the rood p proof (section 3) all that are  used are  some com- 
mut ing  topological diagrams (also used by MooR]~) and the fact that certain 
fibrations may  be considered as product spaces as far  as rood p homology 
is concerned. (This last was pointed out to us by Buu~o  HARRIS). The rood p 
result  is a trivial consequence of these facts (in :particular no spectral  
sequence erguments  are needed). For the rood 2 result  (section 4) (besidest 
he commuting diagrams referred to above), a short spectral  sequence a rgument  
is used in the case of each map, based on STEE~ROD squaresf  or the 
cohomology sequences and on the analogous rood 2 homology operations of 
ARAKI and KUDO for the homology sequences. 

The proof for the un i ta ry  group (section 2) was developed in the SUM~ER 
of 1959 at the Univers i ty  of Chicago and presented in a course in the FALL 
of 1959. The essential a rgument  is due to R. Sw/~ .  (We unders tand that 
MooRE's proof is very  s imi lar -but  we have not seen it). 

(') This research was done in part while the first author held a Sloan l~oundation 
Fellowship and the second author held a Senior 5Tational Science Foundation Fellowhip. 
It was also supported in part by the l~ational Science Foundation under contract number G-10369. 
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Section 1 is devoted to the definition of the BoT~ maps and their elementary 
properties. 

1. The Bot t  maps (see [5]). 

Let W2, , -  W,, • W,, be the 2n-dimensional  quaternionic vector space 
with right and left symplectic inner products. Let Sp(2n) be the group of 
symplectie transformations of W~ commuting with right multiplication by 
the quaternions H. Let (1, i. j, k) be the usual generators of H over t:he real 
field /L Let C c H be the complex subfield generated by (1, i). By ~his means 
we may consider Wz, to be a 4n-dimensional  comple~ vector space under 
rigt multiplication by C, and an 8n-dimensional  real vector space. The complex 
part of the right symplectic inner product becomes an hermetian inner product, 
and the real part of the sympleetic inner product becomes an orthogonal 
inner  product. From this s tructure we get the inclusions 

(i.l) sp(n) x sp(n) = sp(2n) ~ v (4,~) = so(sn), 

where U(4n) is the group of unitary transformations and 50(8n) the group 
of special orthogonal transformations. We note that U(4n) and Sp(2n) are 
characterized as those subgroups of SO(8n) acting on R~,, which commute 
with right multiplication by C and /-/respectively. 

:Now consider in the above sequence of groups, the respective subgroups 
that commute with left multiplication by H. These groups form the sequence:  

(1.2) o(n) × o(n) = o(2,~) = u (2 . )  = sp(2n). 

Here Sp(2n) is the group of symplectic transformations with respect to 
the left tuner product. Fur ther  there are subspaces Rz,, c Cs,, ~ W~,,, for which 
the inner  product becomes orthogonal and hermetian respectively. 0(2n) and 
U(2n) are the subgroups of Sp(2n) leaving R2,, and Cs,, invariant. 

Explicit ly:  C2, = i~v e W~/w = iwi-~ }, R,,, = I w e C~,,/w = jvj-~ !. 
The inclusion of (1.2) in (1.1) induces the inclusions: 

(1.8) r.(R) ~ r,,(H); U (2n)/ O(2n) c U (4n)lS_v(2n), 

s~(2.)iv (2n) ~ so(sn)/v (4n), sp(2n) ~ so(s.) ,  

where P,,(R) ----. O(2n)/O(n) X O(n) and 1~,,(/-/) = Sp(2n)/Sp(n) X SPin). 
The BOT~ maps are as follows (where ~ is the space of paths from the 
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base point of the space in question to another fixed point as described below): 

~o: u(4n)/u(~,~) × u(~n) -* ~(U(4n)) 
~,:  r . ( H ) -  ~(U(4n)/Sp(2n)) ~,: r . ( R ) -  ~(U(2n)/O(2n) 

~: V(4n),Sp(2n)- ~(SO(8n)/U(4n)) ¢¢~: U(2n)/O(2n)- ~(Sp(2n)/U(2n)) 

~.: SO(8n)/U(4n) -- ~(SO(8n)) %: Sp(2n)/U(2n).-* f~(Sp(2n)). 

To define ~i, i from 0 to 6, write G~ and K~ for the groups in the numerator 
of the domain and the numerator (inside the brackets) of the range of ~ resp.; 
then G~ ~ K~ by (1.1) and (1.2). Let G~ and Ki be the respective quotien~ spaces. 
We firs~ define a map ~: E G~ ~ ~:~ of the two point suspension of G~ into ~'~; 
then ¢?~: G~--* ~2~K~ will be the naturally associated map of G~ into the space 
of paths in ~ going from the image under ~of  the south pole to the image 
of the north pole; i.e. ~(T--)(0)= ~(T, 0), 2re G-~, 0 the suspension parameter. 
To define ~i, let T e  Gi ~ K~, then ~ is the map induced from 

(i.~) ~,: G, × [0, ,~] - -  g,,-~,(T, 0) = r , , ( 0 )T - ' ,  

by passage to the quotients, where for (x~, x2)¢ W, $ W, 

It follows from the above, that ~4, ~ ,  ~,~ are obtained from ~1, ~ ,  ¢?8 respe- 
ctively, by restriction. (See (1.3). (We also note in this connection that ~(0) 
commutes with left multiplication by H). 

As is well known, ~ is of the same homology type as the ordinary loop 
space g! (the spaces in question being connected). We may obtain a map 
0,: G~--* R~ which wilt be equivalent to (1.4) under such a homotopy equi- 
valence (in fact a homeomorphism) by setting 0i(T)(O)~---~i(T, 0), where 

(1,5) ~/,(T, 0) = Ta,(0) T-la,(0) -1. 

On the other hand, such a homotopy equivalence may be obtained by adding 
any path from ~i(~) to ~i(O) to the paths in Q~. In particular, if we add the 
path ~ i ( = -  0), the resultant map 

(1.5)' +/(T, ~)--  
~,(2~ - -  20), ~/2 ~ 0 ~ 

Annali di Matematiza 30 



234 E. DYER - R. LASHOF, ..4 topological Proo] o] the Bott  etc. 

defines a map (I)~': Gi ~ ~2/~ homotopic to 0~. In  fact (I)i~ 

~,(0) ~ is essentially (I)i; 
a~(2~ - -  20) -~, 7:/2 ~ 0 ~ ~' 

but ~ is homotopic to the trivial loop. Although (1.5) is simpler, (l.5)' has 
the advantage that the corrrespondence with ~ is natural  under maps of 
K~ into Ki, which take Q~K~ into Q~Ki" We also note that in each case 0~, 
and hence 0~' map G~ into the arc componeot of the trivial loop; and in the 
rest of the paper ~ X  will mean the connected component of the trivial loop. 

PROPERTIES OF TttE ~APS ~ .  

Choose a fixed ordered set of basis vectors bi, i - -  1, 2, ~, ..., in the 
countably infinite quaternionic vector space ~%, and let W,, be the subspace 
spanned by the first n basis vectors. This defines inclusions of W,~ in W,+I, 
W,, $ W, in W,+, ¢ W,+~, and hence of all the groups and homogeneous 
spaces for n in the corresponding ones for n +  1. It  is clear from {1.5} that 0~ 
commutes with the inclusions, and defines a map on the direct limit. Wri t ing 
Sp = Li.mit Sp(,),  etc.; We get: 

(I)o: B y - -  QU 

¢~: Ssp -* ~(U/Sp) ¢ , :  Bo - -  Q(U/O) 

¢~: U/Sp - ~ ( s o / v )  ¢~: u /o  - Q(s~/v)  

,:  8 o / v - ~  QSO ¢~; 8p/~ - -  QSp. 

The proof of the B o ~  periodicity theorems then amounts  to showing that all 
the maps (1)i above are weak homotopy equivalences; i.e., induce isomorphisms 
on the homotopy groups. 

Fur ther  we claim we may give all the homogeneous spaces above an 
H-space s tructure;  i.e. a multipli.cation which is hemotopy associative and 
has a homotopy unit. To do this map W~ back into itself on the one hand 
by sending bi to b~-i and on the other hand by sending b~ to b~. This defines 
a map:  Wins  W~--* W~; which in turn defines a multiplication in all the 
groups and homogeneot~s spaces involved. The desired properties are easily 
checked:  The only thing involved is a permutat ion of pairs of coordinates. 
Since in each case the permutat ion matrix is homotopic to the identity (the 
groups being connected), conjugation by the permutat ion matrix is homotopic 
to the identity. The homotopies for each pair of coordinates are performed 
in succession (in half the remaining time). Since only a finite number of 
coordinates is involved for any given element of the direct limit, this is well 



E. DYER - R. LASHOF: A topological Proo] of ttTc Bott etc. 235 

defined. Also by the same argument  one sees that all these H-space  structu. 
res are homotopy commutative.  Consequently, the POR'TI~JX(~II~ homology (2) 
rings are  commutative,  associative rings with unit. 

:Now for the loop space of an H-space,  the addition of loops is homo- 
topic to the mult ipl icat ion on the loop space induced by the multiplication 
in the under ly ing H-space.  Likewise the direct  limit mult ipl ication in the 
infinite groups is homotopic to the multiplication defined above - again by 
a permutat ion of coordinates at 'gument. Thus in both cases, the POI~TRJAGII,T 
rings are the same for the two multiplications. 

Finally, we note by (1.5) that the maps 0i are H-maps  with respect  to 
the above multiplication. 

The f~,ct that the maps are H-maps  enables us to use a ref ined form 
of the Whi tehead theorem:  

THEOREM 1.6 - Let  f :  X ~ Y be a map of connected topological spaces; 
if / , :  ,~,(X) ~,:~(Y) all i, then / , :  tI~(X; Z)~H~(Y, Z) all i. Conversely, if f 
is an H-map of H-spaces  and f ,  : H~(X; Z) ~ Hi(Y; Z) all i, then f ,  : u~(X) ~ ,:,(Iz) 
all i. 

PROOF. - L,~t C be the mapping cyl inder  of f, then X may be considered 
as a subspace of C, and Y is a deformation retract  of C. Also f is the inclu- 
sion map of X into C followed by the retract ion onto Y. The first part  of 
the theorem follows from the relative HuR~:wIcz theorem (see theorem, p. 166 
of [10]) and the homotopy and homology sequences of the pair  (C, X).  To 
prove the converse, note that we may  define an action of X on j  C by 
(x, t)x' --  (a~m', t) E C, 0 ~ t < 1, and (y)m' --  (yf(~')), since f is an H-map.  It 
follows that 7:~(X) acts tr ivially on ui(C, X),  i ~ 2, by a s tandard argument .  
On the other hand, 7:,(X) and =~(Y) are abelian (since they are H-spaces),  
and by the na tura l i ty  of the HUREWICZ hom)morphism yr,(X) maps isomer. 
phical ly onto ~:,(C) -- =,(Y), and hence u~(C, X) -- 0. The result  now follows 
by the HUREWlcZ theorem referred to above. 

REMARK. - We note the above proof still applies if the hypothesis of 
the converse is we~,kened to read:  If X is an H-space  operat ing on Y such 
that f commutes  with the action of X (acting on itself by r ight  translation), 
~ ( Y )  is abelian, and f , :  H~(X; Z)~Hi(Y; Z) all i, then f,: :,(X) ~_~,(Y) all i. 

Finally,  a trivial application of the WHImEltEAD mapping cyl inder  and 
the universal  coefficient theorem gives: 

Tg~ORE~ 1.7. - Let X and Y be topological spaces with H~(X) and 
H~(Y) f ini tely generated all i. i map f:  X - - -  Y induces isomorphisms on 

(~) W e  use singular homology theory throughout this paper. 
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the integral homology groups if and only if f induces isomorphisms on the 
mod p homology groups, p an odd prime, and on the rood 2 homology groups (s). 

2; The Unitary Group. 

For purposes of this section, it is unnecessary to assume an underlying 
quaternionie vector space, so to simplify notation we merely assume that U(2n) 
is acting on C~,,-- C,,q~ C, and q)o: U(2n)/U(n) X U ( n ) ~ 2  U(2n), where 
~o(T, O) = Tao(O)T-:ao(O)-: and ao(~)(x~l, x~) -- (xld ~, x~e-~O), (xl, x~) e C, ~ C,. 

Now let j :  U(n-t-1)--~ U(2n), where we consider U(n + I) acting on 
C, ~ C~ and C. ¢ C, -- C, ¢ C, ¢ Cn-:; i.e. j (T) -- (T, I,,_~), T e U(n -}- i). 
Then Go carries ]U(n -4- I) into the image of fdU(n -~ 1) in QU(2n) under ~2j 
(Qj the map on the loop spaces induced by j) ;  i.e. 

 00T, (T, °, - '  = " K,-~)((er, e7~), e;~°) -1 

-- (T(e~ °. eTi°)T-:(e-7 ~, e?), In-:) G jU(n  + 1) = U(2n), 

where e~r ~ means right multiplication by e ~ in the given subspace, consequently, 
v ( n +  ,) 

we may define (I)o: U(n) X U(I) -"  ~ U(n + 1) by the formula 

~o(T, 0 ) -  Tao(0)T-~o(0) -~, ao(0)(a~,, x~)--(a~e '~, a~2e-'°), 

(x~, ~ )  e Ca (9 C~; and get the commutative diagram 

U(n + 1)/U(n) X U(l) +-2-° Q U(n ~- I) 

u(2n)/u(.)  × u( . )  Q U(2n). 

Now U(n-I- 1)/U(n) X U(1) is just  complex projective space CP(n), and we 
write C P - -  Lira CP(n);  then (Po: CP ~ Q U. We wish to prove that q),, maps 
H,(CP;  Z)monomorph ica l ly  into H,(g  U; Z), and that the image generates 
the PON~/~G:~ ring of ~ U. i t  is well  known that j , (H,(CP; Z)) generates 
the PON~RJAG:N ring of H,(B~;  Z) (see Prop. 2.6), and hence the fact that 
Go,: H , ( B : ;  Z ) ~ H , ( ~  U; Z) will follow from the commutativity of he. 

LE~l~X 2.1. Let r:: U(n-{-- I) ~ U(n ~- 1)/U(~) -- S,.+, be the natural 
projection. The map ~Po: (ECP(n), ECP(n --  l)) --* (U(n ~- 1), U(n)) --. (S,.+~, p) 
induces ~:,d/, : H , (ECP (n), ECP(n --  1) ; Z) ~_ H,((S~, ~ ,  p); Z}. 

P~oo~'. - ~po(T, 0) is homotopic to ~(T, 0 ) -  ~o(T, 0)(I,,, eT"z~°). (For 
0 ~ s ~ 1, set F(s, T, 0) --  ~o(T, 0)(I,, e~ "~ ~).) It follows that ~(I', 0) is defined 

(8) I n  th i s  paper ,  coef f ic ien ts  rood p wi l l  m e a n  w i t h  r e spec t  to a n d  odd p r i m e  p.  
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by ~(T, 0 ) - - ~ ( 7 ,  0)(ln, e~ '°) by passage to the quotient. Explicit ly ~(T, 0) -- 
-- Y(e~, e~'°) T-X(e7 ~°, e?)([,, e72~°)--T(e,O, e;iO)T-~(e-~ ~o, eT. 4o) -- T(I,,  e~'m)T -~. 

Now g~(T, 0 ) - -~(T ,  0)% c e C, c C. ~ C~, the unit vector left invariant 
by U(n). Let y be the unit  vector in C~, then ¢ = T ( y ) c + ( e - - T ( y ) c ) ,  
c -  [% T(y)] (hermetian inner product) and T(~)I_ ( ¢ _  f(~)c). Hence 

~(T, O) = T(,/)~e -m 4- (¢ -- T(y)c) = s Jr T(y)c(e -'~ -- I). 

For ~40, ~; ~(T, ~)~ = ~ ~-~ T(~) '_~. 
On the other hand, for any unit  vector u::~=~ 

u - ~ [~, u ]  - -  ~ It u - -  ~ li' ~ + ~[~,  v ] ( ~ - " ~  - 1),  
u ' - " ~ + u - - ~ = ~ +  I l u - -~ l l  I l u - -~ l l  [ ~ , u ] - - I  -- 

u - -  ~ a n d  e - , , o  [~, u ]  - -  1 ( s i n c e  N u - -  ~ II ~ = [ u  - -  s,  u - -  , ]  = w h e r e  v - II u - -  ~ t  - -  [~, u ] - -  1 

- - 2 -  [% u ] -  [¢, u [ -  1 -  [% u ] - { - 1 -  [% u]). From this one sees easily that 
r:,.~ is a relative homeomorphism, and the result follows. 

Let G--* E ~ SK be a principal fibre bundle over a K-sphere. Let DK 
be the unit  disc in Eimlidean K-space with boundary Sr¢-1. Let f:  (DK, 
SK-1) --* (Sg. p), p a base point, be a map such that f , :  H,((DK, SK-I); Z) 
H,((SK, p); Z). We may lift f to a map g: (Dg, SK-1) ---- (E, G), since DE is 
contractible to a point. The class ~ e ~:_I(G) of the map g/SK-, is the ehara. 
cteristic homotopy class, and its HUREW~CZ image aeH~:_~(G, Z) is called 
the characteristic homology class of the bundle. 

L~M~[A 2.3. - The WA~e sequence 

H,(G; Z) '.2* H,(E; Z) )--~ H,_K(G; Z) Y-~* H,_~(G; Z) . . . .  

is an exact sequence of H,(G; Z) modules and % is left multiplication by 
the characteristic class a. 

If a - - 0 ,  then H,(E;  Z) is the free H,(G, Z) module with generatros 1 
and any c!ass xKeHK(E, Z), such that r:,(xK) is a basis element of HK(SK; Z). 

PROOl~. - Let u:  (E, 6') X G --* (E, G) be right action on both factors. 
Then h - - u o ( g X  1): (DK, SK_~) X G--* (E, G) X G--~ (E, G) is a relative 
homeomorphism. It is easy to see (oven if the spaces are not compact) that 
h , :  H,((D~:, SK-2)X G; Z ) ~  H,((E, G); Z). Start ing fl'om the exact sequence 
of the pair we have: 

-- H,(G; Z) ~ H,(E; Z) 5~ H,(E, G) ; Z) ~-~ H,_~(G; Z) - -  

//~((DK, SK-O X G; Z} --,-/:fi-l(Sa:_l X G; Z) 

m_x(e; z) 
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From this the WAnG sequence and its properties listed above folb~w imn~ediateiy. 

REMARK. - The result  also holds with a field of coefficients. For fur ther  
details see [9]. 

Now for any r ing R, let AR(Xt~ , x/2. ...) be the graded exterior  ring over 
R with generators of dimension i~, i2, ...; and let R[r~l, x~ . . . . .  ] be the graded 
polynomial ring over R with generators of dimension i~, i2, ... • 

PROPOSI~IO1,T 2.4. - H,(U(n-{-l); Z)~Az(x~, x3, .,., x2,÷~), where  the 
${s, i=~= l, are' the images of an additive basis of H,(ECP(n); Z) under  '~o,. 

P ~ o o F . -  Let  p: (D2,~1, S2,)--~(ECP(n), ECP(n-1) )  be the map 
which  at taches the top dimensional  cell of ECP(n). By Lemma 2.1, =,'~o,P,: 
H,((D2~+~, 82,); Z) -- H,((S2~-~, p); Z), and hence +oP: 82, --~ ECP(n-- l) 
--* u(n) defines the characteris t ic  class. Since H2,(ECP(n -- 1) ; Z)  - -  0. a = 0. 
By 2.3 it follows that ~ /rr~,l ; Z)  maps muuomorphical ly  into H,(U(n ~ 1) ; Z).  
Since (see section 1) H,(U: Z) is commutative,  H,(U(J~); Z)  is commutative,  
all n .  

The result  is trivial for n----0, assume the result  for U (n); i.e., 
H,(U(n); Z)~Az(x~, x,2 . . . .  , x.,,_~). By the above paragraph and 2.3, it follows 
that H,(U(n + 1); Z) is the free H,(U(n);  Z) module with generators 1 and 
the class r~,+z, image of the top dimensional class of ECP(n) under  q , .  
Since H,(U(n + 1); Z )  is commutat ive by the above paragraph,  x~ ,+~- -0  
and H,(U(n + 1); Z)  ----- Az(,rl, x2, ..., x2~+~). 

As ~o(ECP(n))~ SU(nq-1), we may conclude by exact ly the same ar- 
gument  that:  

P:ROPOSITIOI, T 2.5. - H,(SU(n+ 1); Z)~__Az(x3, xs, ..., x2,~+~), the xi's 
being the images of the additive basis of H,(ECP(r~); Z). 

COROLLARY 2.6. - H,(~2SU(n + 1); Z) ~H,(f~U(n + 1); Z) c?2Z[d2, d~, . . . ,  

d~], and the generators are  the images of the additive basis of H,(CP(n); Z) 
under  (l)o. 

PROOF. - The simply connected covering space U(n + l) of U(n+ l) is 
homeomorphic to R X SU(n + 1). Hence  H,(U(n + 1) ; Z) ~ H,(SU (n + 1) ; Z) 
is t ransgressively generated by Prop. 2.5. By the theorem stated below, the 
result  follows. 

TK~OREM 2 . 7 . -  Let X be an H-space  such that H,(X; K) is a trans- 
gressively generated exterior  algebra on odd generators,  K a field or the 
integers. Then  H,(QX; K) is a polynomial algebra generated by their trans- 
gressions. 

The proof i s  by a s tandard application of the comparison theorem for 
spectral  sequences (see [8]). Actually, one does not need to assume H,(X; K) 
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is transgressively generated as this follows by a slightly more difficult 
argument  (see [8]). This theorem may be looked at as the dual of Bom~L's 
transgression theoaem for groups whose cohomology algebra is exterior. 

T m ~ o ~ a  2 . 8 . -  cI)o,: tt,(Bv; Z) ~ H,(~2U; Z). 

PROOF. - From (2.6) it follows by taking the direct limit, that H,(OU; Z) _~ 
Z[d2, d4, . . ,  d2~ . . . .  ] and the generators are the images of the additive 
basis of H,(CP; Z) under Oo. Since H,(Bv; Z)~Z[Z2,  Z~, ..., Z2i, ...] 
and the generators are the images of the additive basis of H,(CP; Z) 
under  J ,  (see Prop, 2.9 below), it follows from ho that q)o,: H,(BU; Z) 
H,(~2U; Z). (note that although J:  U(n+ 1 ) ~  U(2n) does not induce the 
identity map in the limit, it nevertheless induces the identity map in homo- 
loaF in the limit, since J , :  H~(U(n + 1) ~H~(U(2n)), i < 2 n  + 2; and hence 
.o.j, is the identity on homology). 

The following is essentially a restatement of the WKI~EY sum theorem 
for C ~ E ~  classes. 

PROPOSITIO.N 2 . 9 . -  H*(Bv; Z)~Z[C~, C4 . . . .  , C2~, .,.], C2~ the 2i-dim 
C]Z]~R~ class, wi~h codiagonal map ~*C2~-- ~ C2i @ C2~. Dually, it follows 

j+k=i 
that H (Bu; Z) -- Z[Zs, Z4, ..., Z2i, ...], with diagonal map d,Z2i = Z Z~ i @ Z2~, 

i+k=~ 
where Z2, = 0~, C-~ the dual class to C~ for the additive basis of H*(Bu; Z) 
consisting of the monomials in the C~i. 

Further,  Ii*(CP; Z)--H*(Bv(~; Z)--Z[b2], and the inclusion map J: 
Brj(~) ~ Bv indudes J*(C2~) --  0, i ~ 1, J*(C2) -- 52, and consequenlty, J , (~)  -- 
Z2~; i.e., J* maps the additive basis of H,(CP; Z) onto the generators of 
the PON~RJAGIN ring H,(Bg;  Z). 

Finally, the primitive subspace of H,(Bu; Z) is the free module over Z 
with basis the dual classes to the C~ERN classes C~. The vrimitive basis 
elements P2~ being given by the formula 

p2~ - p2(~-1) • Z2  + p 2 ~ - 2 )  • Z ,  - ... "+" iZ,~ = O. 

3. 0r thogonai  and symplectie groups rood p homology. 

The inclusion ~: O(4n)--* U(4n). We wish to extend the sequence of 
inclusions (1.i) one step further  to U(8n). To simplify notation, however, we 
halve the dimension. We will define a map p mapping as follows: 

sp ( . )  = = 0(4n) 2- Sp(n) × Sp(n) c Sp( n) = v ( 4 . )  

o(n) = v ( . ) '  = 8p(n) O(n) × o(n) = o( n) c 
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(U(2n)' is the subgroup of O(4n) which  commutes  wi th  r ight  mul ip l ica t ion  by 
j instead of i. Similar ly  for U(n)'). 

To def ine p, first consider  ix, x') ~ Wn • W,, with the following s t ruc ture  : 

(x, x')i = (--x ' ,  x), (x, x')j - @j, - -x ' i ) .  

Let O(4n) act on W,, considered as R ~ .  For  T~  O(4n), set + ( T ) =  (T, T). 
Then  ~b(T)commutes  with the action of i; i.e. ~b(T) belongs to the group 
U(4n) associated with this s t ructure .  

We wish to convert  this s t ruc ture  into the usual  s t ructure  on W,, $ W,,; 
i.e. 

(X, *')i = (~,  *'i), (~, *')j = (*j, *)'). 
To do this set:  

Then  

• :@, x ' ) - - ( ~ ,  x'-I- a~*)2 

o~(~, ~ ' ) =  (~, ~)'), ~,(x, ~ ' )=  (~, ~'i). 

Hence define e ( T ) =  ~,~,~+(T)~-~o7~7 ~. 
Besides the proper t ies  l isted above, ~ has the following proper t ies  which  

we leave to the reader  to cbeck. 

1. ~: 0(4n) ~ U(4n) is equivalent  (under  an i somosphi rm of U(4n)) 
to the inclusion of O(2n) in U(2n) of (1.2) (in twice the dimension).  

2. ~: S p ( n ) ~  U(2n) is equivalent  to the inclusion of Sp(2n) in 
U(dn) of (1.1). 

3. ~: U ( 2 n ) ' ~  Sp(2n) is equivalent  to the inclusion of U(2n) in 
sp(2,0 of (1.2). 

4. p: b(n) '  ~ O(2n) is equivalent  to the inclus ion of Ui4n ) in O(Sn) 
of (1.1). 

5. Tak ing  the usua l  U(2n) c Oi4n ) we have (4) for T e  U(2n), ~(T) --  
IT, jrTj~-l). We nosy consider  some fibrat ions with mod p cross-sec t ions .  

( 1 ) 
(~) 

(3) 

(4) 

sv(2n) '-' t](an) ~ y(dn)/S~(~n) 

so(2n) '-' u(2n) ~ y(2n)/So(2n) 

SO(8n)/U(4n) ~ Bv(~.) ~ Bso(.,o 

sv(2n)/U(2n) ~'-- Bu,.) ~ B~,.~. 

{4) Jr means right multiplication by j. 
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(All maps are induced by the inclus ions  (1.1) or (1.2)). In  the direct  l imit  of 
these f ibrat ions we will  see that  the rood p homology splits and that  this 
spl i t  is given by a map  of the base space into the total space. Wi th  this in 
mind  we define maps :  

),~: U(4n)/Sp(2n)--* U(4n) k,:  U(2n)/O(2n)--* U(2n) 

),a: Bo(4n~ --* Bu(a.) ~a: Bsp(.) --* By( , . )  

),~ is aef ined by ~',: U(4n)--* U(4n), ~ ( T ) - - T f l T - ~ j - ~  ~, by passage to the 
quotient. 
~2 is defined by restriction of ),~. 
)~8 is the map induced by p (see above). 
k~ is the map induced by the restriction of f~. 
We note that in all the above fibrations except (2). the fibre is totally non- 
homologous to zero rood p (see [2j). In the ease (2), the difficulty is the non. 
stable class in dimension n--I; and in fact in the fibration 
SO(2n ~ I) ~ U(2n ~ 1) ~ U(2n ~- I)/S0(2n -{- I), the fibre is totally non-ho- 
mologous to zero rood p. Consequently we have: 

LE~,tMA 3.1. - In the f ibrat ions 

(1) sp ~ u ~ u/so (2) so  ~ u ~ u/so 

(3) 80/5 ~ By ~ Bso (4) Sp/U ~ By ~ Bsp 

the fibres are totally non-homologous  to zero rood p .  Consequent ly,  the 
cohomology of the total space is (additively only in cases (3) and (4)) the 
tensor  product  of the cohomology of the base and fibre, wi th  rood p coeffi- 
c ients  [2]. 

We now prove : 

LEM~A 3.2. 

x~*p.*: H*(U/Sp; Zp) ~_H*(U/Sp; Zp) 

X,*p,*: H*(U/SO; Zp) ~_H*(V/O; Zp) 

X.*p~*: It*(Bso; Zp) ~_ H*(Bo; Zp) 

L'p,*: H*(Bsp; Zp) ~_ H*(Bsp; ZD. 

RE;~ARK. - We have used 0 in place of SO on the right.  This  does not 
effect the rood p cohomology, and will  be useful  later.  

PROOF. 

(I) It  follows from (3.1) that  H*(U/Sp; Zp)~A~(vl, v~, ..., v,~-8, ...) and 

AnnaU diMatcmatlca 
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pl*v,~-8(Jc4~-.8) ~ 1, x,~-s the generator of H,(U; Zp). Now consider the com. 
mutative diagram : 

U ~--~-~. U 

U/Sp  iSp. 

We clain )~1,(~v4~-3)"-2x,~_s, and hence that ~lP~* is monomorphism mod p, 
and by the commutativity of the diagram that ),~*p~* is a monomorphism and 
consequently an isomorphism (by equality of the ranks of the cohomology 
groups). 

To compute )~, it is only necessary to see what conjugation C(j~) by jr 
does to H,(U(4n); Z). For this, take the subgroup U(2n) of U(4~) invariant 
under left multiplication by H, then U(2n) acts on C ~ c  W2n (see (1.2)). 
Choosing a fixed basis for W2~ and hence C2,, 1'e U(2~) is represented by 
a complex matrix M; and it is easy to see that then . . . .  jrTjr is represented 
by /~, the complex conjugate of M. To see what complex conjugate does to 
H,(U(2n); Z) we use the characterization of the generators given in the 
proof of Prop. 2.4; i.e. that they project onto the generator of the corresponding 
sphere. From this one gets easily that C(j~),x,,i_a : -x~ i -3  and C(j~),x4i-~ 
--'x,i-~. Since the inclusion of U(4n) into U(8n), U(8~) acting on ~A~,, 
commutes with C(j~), the same formulas hold for C(j,.)* in H*(U(4n); Z). 
From this the formula for ).~, follows, and the first part of the lemma is proved. 

(2) It follows from (3.1) that 

H*(U/80; Zp)~Ap(w,, ws, ..., w4,-,, ...) and p~*w4~-8(x4~-~)-----1, x4i--a the 
generator of H,(U; Zp). Since U/O is an H-space with U/SO as double 
covering, it follows from the CARTAN-LERAY spectral sequence that H*(U/O; 
Z~) ~H*(U/SO; Zp). The result now follows as in (1) from the commutative 
diagram : 

U ~ " ~  U 
$ $,, 

F/O P'x----'~ U/SO. 

(3) To prove (3) consider the map: 

8o(4n) v ( 4 . )  - so(sn). 

By definition ~ ( T ) :  a~z~(T)z a i ¢~:, and v~, ~i, ~:eSO(8n). Hence p 
is homotopic to ~ in S0(8n). Since ~ ( T ) - - ( T ,  T), ~ is homotopic to the 
map T --~ T ~. It  follows that the map H*(SO; Zp) ~ H*(SO; Zp) ~ H*(SO; Zp) 
sends the primitive generators onto twice themselves, and hence is an iso- 
morphism. Since the transgressions of these primitive generators, generate 
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THEOREM 3.3 - Let  

(i~ X A)*y*: 

(i, X ;~)*y*: 

(& × ;~)*~,*: 

(& X L)*'r*: 

(i~ X L)*~'*: 

(& X A)*~'*: 

COROLLARY 3.4. 

H*(Bso; Zp)]it~follows that the mal): H*(Bso;!Zp) ~ H*(Bo; Zp) ~ H*(Bo; Zp) 
--~ H*(Bso; Zp) is an isomorphism. Since H*(Bo; Zp)~H*(Bzo; Zp), ks*p,* 
is an isomorphism. 

(4) The argument  for (4) is just  the same as in (3), since the map 
Sp(n) ~ U(2n) ~ Sp(2n) is jus t  T--* (T, T), by property 5 of p. 

From (3.1) and (3.2) we get: 

7: U X U ~ U be the multiplication, then (additively) 

H*(U; Zp) ~_ H*(Sp; Zp) ® H*(U/Sp; Zp) 

H*(U; Zp) ~_ H*(SO; Zp) ® R*(U/O; Zp) 

H*(B~; Zp) ~_ H*(SO/U; Zp) ® H*(Bo; Zp) 

H*(B~; Zp) ~_ H*(Sp/U; Zp) ~ H*(Bsp; Zp) 

H*(U; Zp) _~*(Sp; Zp) ~ ~*(U/O; Zp) 

H*(U; Zp) ~--H*(SO; Zp) @ H*(U/Sp; Zp) 

(Qi4 X Q)~,)*(Qy)*: H*(•Bu; Zp) ~ H*(Q(Sp/U); Zp) @ H*(QBsp; Zp) 

(Qil × ~zl)*(-oy)*: H*(~U; Zp) ~zZ*(.qSp; Zp) ®H*(Q(~,@); Zp) 

(~i8 N flk~)*(~2,,,)*: H*(i2Bv; Zp) ~H*(Q(SO/U); Zp) ® H*(2Bo; Zp) 

(.o,i, X ~)'~)*(Qr)*: H*(aV; Zp) ~_H*(~SP; Zp) ~ H*g~(V/O); Zp). 

PROO~.-  The first four  isomorphisms of the theorem are immediate.  
For the last two isomorphisms it is sufficient  to note from the proof of 
Lemma 3.2, that i~* and /,* have the same kernel.  

To prove the corollary, it is easy to see that the isomorphisms of the 
theorem persist  if we replace all the spaces involved by their  simply connected 
covering spaces. From this it follows (by the comparison theorem argument)  
that the is0morphisms persist  if we replace each space by its loop space. 
(We did not list the other  two isomorphisms in the corollary, or other  com- 
binations in the theorem since we will have no need of them). 

We now make some remarks  on path spaces which we will need short ly;  
Let (E, B, F )  be a fibre space with total space E, base B, fibre /7, and 

projection p: E ---* B. Let  be be the base poillt in B, and let eoep-l(bo) = F. 
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We will assume B is connected and simply connected, and F is connected. 
Let 

Let 

P(E) --!paths in E starting at eo 

PF(E) = paths in E starting at eo and ending in F = p-l(bo) 

P(B) = p a t h s  in B starting at bo 

Q(B) = paths in B starting and ending at bo. 

= ~tE: P(E) --~ E, be the endpoint projection in E 

--~ts: P(B)--* B, be the endpoint projection in B. 

Consider the commutative diagram: 

P(E)  P(P)~ P(B)  

B ~-~ B 

p ~ :  P (E)  --* B is a fibre space map with fibre P~(E) 

pB: P(B)  --* B is a fibre space map with fibre •(B) 

P(p):P(E)--~  P(B) is a fibre preserving map. 

Since the total spaces are contractible it follows that P(p) :  PF(E) ~ ~.(B) 
is a weak homotopy equivalence. 

l~'ow consider another map of fibre spaces: 

B <> B 

If ~(E)  ----0, i ~ n, then ~: PF(E) --* Fwi l l  induce isomorphisms on homotopy, 
i < n, and consequently in homology, i < n (see [10], p. 167). 

Some commuting diagrams: 

. y ( ~ n )  

sp(.) x sp(n) u(~n) x v(~) O(n).,X./ O(n) V(.) X V(.) 

(U(2.)~ g(V(4n)/Sp(~n))a~ £(4n)) ako---(~ ] ~ £(~:(~-)) 
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U(4n) ~ ~ U(4n) U(2n) x, -> U(2n) 
s~(2~) o(~.) 

(c(8.)~ Pv(..)(SO(8n)) ~'(~). Pv(..) \~](4n)] Pv(2.)(Sp(2n)) ~'(~. P {U(4n)\ 
_ _ ~(~.)~(~)) 

(SO(8n)l .(e)~ ~ { U(Sn) ~ ,..[6p(2n)i,)~). g { U(4n) '~ 

so(8.) p> u(sn) sp(sn) ±> v (4.) 
U(4u) u(4.) x u(4.) u(2n) u(2.) x U(2n) 

O. SO(8n) "¢_2P!, Q U(8n) Q(bp(2n)) ~(~> Q U(4n). 

The maps ~, and ~5 are defined by ~, and ~b~ (1.5) before passing to the 
quotient, i.e., t i 2 - - P ( P ) ~ ,  tips-" P ( P ) ~ .  The map i~, i2 are those induced 
by (1.1) and (1.2). 

All the maps in the diagrams for t i , ,  ti~, tis are the restrictions of the 
corrisponding maps in those for ti~, ti2, tis respectively. Hence  the commuta- 
tivity of the diagrams for t i , ,  ti~, ti6 will  follow from the commutat ivi ty of 
those for Cx, ti2, ti3. 

Proof of commutat ivi ty:  

THE DIAGRAM :FOR t i l . -  From the discussion in section 2, it is clear 
that it is sufficient to prove the commutat ivi ty for the diagram with ~, and ?o 
in place of til' and tic' and o.  in place of Q. 

Let T~Sp(2n}, then 

k~,~q( T, 0) = ~ (T~(O) T - ¢) -- T~x(0) T-~ T~(0)-* r -y~-~ 

-- T~(O)TT-y~(O)-~]~-~T-~-- T~(O)]~(O)-*j;XT -~ 

= T~(0)a,(6) T -~ = Ta~(20)T-~ 

~o(i, T, 0) -- Tao(0) T -~. 

B u t  ~o(0) - -  a , (20) .  

T H E  DIAGRAM FOR t i 2 .  - The commutat ivi ty of the bottom square is 
trivial once we Observe that the map SO(8n) .L U(Sn) .... U(8n)/U(4n) is fibre 
preserving. But for r e  U(4n)j p(T) = (T, jrTj~ ~) e U(4n) X U(4n) (property 
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5 of p), hence the image {(T, " "-~ ~ )rTj~ ), in U(Sn) /U(4u)  is equal  to {(T, I ) I  
For the top square we have:  T~  U(4n) 

~{ ~b,(,T, 0)} = 1'{ ~(T~,(O)T-*~(8) -*)} = 

-- i~ { ( T, ], T]j*)(a=(O) , ],a~(8)fi-~)( T -~, ], T -~]~-~)(~(8)-*, ]~(8)-~j~)} 

= ~I (ra,(O)T-%(o)-', fiTa~(O)T-Xa,(O)-gT x) 

-- ~{ (Ta,(o)r-'a,(O) -~, I)} ---- rj~T-~i;-', 

since the endpoint of a2(0) is j. ~ ( T )  = TilT" -~'-~. 

THE DIiGRAM FOR (I),. - Again we substi tute % and % for (I),' and ~o'. 
Let  T e SO(8n)  

p~3(T, O) --  ~(T%(0)T -~) - -  ~(T)~(%(0))~(T) -~ 

~o(~(T), 0) = p(T)~o0)~(r )  -~ 

But ~(%(0)) - -  (a~(0), i~%(0)j7 ~) - -  (%(0), :%(0) -~) --  no(0). 

THEOREI~ 3.5. - From the commutat ivi ty  of the above diagrams for every n, 
we get the following commutat ive diagrams in cohomology (or homology); 
arbi t rary  coefficients : 

H*(Bs,,) .~ ~.-- H*(B~,.) 

H*(QW/Sp)) ~(~). H*(a V) H*(~-(~/0)) ~(o~0~. H*(~ U) 

m(U/Sp) .( ~" H*(u) ~*(u/o) ,~ ~e H*(u) 

V V 
lz (o(so/v))  ~<o'.)" H*(~B~) H*(Q(Sp/U) ~o,,,. H*(~aBv) 

H*(SO/U) .( '.* H*(B,9 

H*(oSO) ,~ "~* H*(Q U) 

~ (Sp lU)  ~ '." H*(B~) 
>o. 

H*(osp) ~ e H*(QU). 

For  the changes in the notation for the maps, see the plopret ies 1 to 4 of 
and the definit ion of the maps l~, i - -  1, 2, 3, 4. 
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Combining these diagrams with Theorem 3.3 and Corollary, we get: 

THEOREM 3.6. - The following diagrams commute; rood p cofficients 

H*(Sp) ~ H*(U/O) ~-~ H*(U) 

H*(QBsp) ® H*(gS~/U ) ,~-~ ~*(aBv) 

H*(SO) ~ H*(U/Sp) ~-~ re(u) 

H*(OB~o) ® H*(oSO/O) ,E-~ H*(aBv) 

V 

~*(Bo) ® H*(SO/V) ~-)  H*(B,) 

H*(UUIO) ® H*(US0) ~-~  H*(UU) 

The double arrows indicate isomorphisms proved in previous theorems. 
Immediately from Theorem 3.6 we have: 

THEOREM 3.7. - O~, (I)2, (I)8, ~b4, ~, (1)e induce isomorphisms on rood p 
eohomology (and hence in homology rood p). 

4. 0rthogonai and symplectic groups mod 2 homology. 

TIlE MAP (I)1. - In the fibration Sp ~ U ~ U/Sp (section 3), both i~, p~ 
are weak H-maps, and Sp is totally non-homologous to ~ero integrally [2]. 
It follows that p~*: H,(U; Z)---H,(U/Sp; Z) is onto, and H,(U/Sp; Z)~_ ~ 
H,(U; Z)//(H,(Sp; Z) as HOPF algebras. Thus 

(4.1) H,(U/Sp; Z) ~_ Az(Ul, uo, ..., u,,_, . . . .  ). 

The simply connected covering space of U/Sp is U / S p -  R X (SU/Sp). Using 
the fibration Sp-~ U-~ U/Sp, we get as above: 

(4.2) H,(SU/Sp; Z)~_Az(u,, u,,  ..., u , ,+l ,  ...). 

Since H,(U; Z) is transgressively generated (see (2.5) and corollary), 
H,([I/Sp; Z) is transgressively generated and hence, (by (2.7)) 

(4.3) H.(Q(U/Sp); Z)~_Z[Y,, Y,,  . . . ,  17,,, ...]. 

Now looking at diagram 1 of (3.5) (in homology), ~ , :  H,(Bsr; Z,) --. H,(Bu; Z,) 
is a monomorphism (since the dual map in eohomology is onto). Since (I)o, 
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is an isomorphism, q)~,: H,(Bsp; Z ~ ) ~  H,(~(U/Sp); Z2) is a monomorphism. 
Since the ranks of the corresponding rood 2 homology groups are the same 
(see Prop. 4.4 below), (I)~, is an isomorphism rood 2 and hence integrally. 

We have used, see (2.9): 

PROPOSlTIOl~I 4.4. - H*(Bsp; Z) ~ Z[p,,  ps . . . .  , p~,, ...], with eodiagonal 
(P~)=~P~iT_ _ ®P~g" Dually, it follows that H,(Bs~; Z )o°Z[Z , ,  ..., Z~,, ..], 

and d.(Z~)--- ~ Z~ i @ Z~K, where Z~--p,~,  p~ the dual class to p~. 
i+ K=i 

Further, H*(~P; Z) =/~*(Bs~(,; Z)co Z[b,], H P  the infinite quaternionic 
projective space, and the map j . :  B8~(t)--* Bs~ induced by the inclusion 
Sp(1) = Sp, satisfies j*(p,,) = O, i > 1, i f (p,)  = b,. Consequently, j . (b,  i) = Z~; 
i.e., j .  maps the additive basis of H.(HP; Z) onto the generators of the 
P o l ~ J A ~ I ~  ring H,(Bz~; Z). 

T~tE ~[/~P (I)2.- In  the fibration U i.L SO 2~ SO/U, the direct limit of 
the fibration U(n) --  80(2 , )  ~ SO(2n)/U(n), U is totally non-homologous to 
zero rood 2 ([2]). Hence H,(SO, U; Z~)~H,(80; Z~)//H,(U; Z~) as HoPr alge. 
bras. l~ow H*(SO; Z2) ~ Z2[ht, ks, ..., h~,-~, ...], h2,-~ primitive, all n:  and 
hence H.(SO; Z~)-~ A~(a~, a2, ..., a , ,  ...), with a~,_~ primitive (see [2]). Since 
H.(U;  Z,) ~_h,(x,, oc,, ..., x,,_~, ...), H,(SO/U; Z,) ~h2(d, ,  d,, ..., d2,, ...), 
and hence the classes dual to d , , ,  in particular the classes g~,,-2 dual to d, , -2,  

- - h ~ _ t  (the only primitive class in dim 4n- -2) .  are primitive. Thus P*(g,,-2) 2 
it follows that the subalgebra of H*(SO/U; Z~) generated by the g,.-2 is a 
polynomial algebra, and must be all of H*(SO/U; Z2) by comparison o[ ranks 
with the homology groups. Thus 

(4.5) H*(SO/U; Z2)~Z.,[g2, g~, ...], 9,,-3 primitive. 

From diagram 2, section 3, we get the commuting d iagram:  

~r,(E(u/sp); z) ~+.~ H,(EU; Z) 

~,(SO/~; Z) ~ ~,(Bv; Z) 

where v.:  H.(EU; Z ) ( E ~  H.(EPv(Ev); Z)  -~ H,(EQBv; Z) - -  H.(Bv; Z). 
The suspension a,~-2 of the generator u , . -a  of H.(U/Sp; Z) maps onto 
25~,,,_2, ~:,,,-2 the suspension of the primitive generator x, .-8 of H . (U;  Z), 
(see proof of (3.2)) under  EX~.. Since C,,,_~(v,2,,_ d - -1 ,  C,.-2 the CHEE~ 
class, v.(EX1),~,,,_2 is divisible by exactly 2. On the other hand, since 
i , . :  H,(SO/U; Z~)--*H.(Bu; Z~) is trivial (in the fibration SO/U2~BuP-~'Bso; 
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p~* : H*(Bso; Z2) --~ H*(Bu; Z.) is onto [3]), the image under  i 3 of any inte- 
gral class in SO/U must be divisible by at least 2 in H , (Bu ;  Z). Conse- 
quently,  q~2*u~,~-2 cannot  be divisible in H.(SO/U; Z), and q~*uo,-~ reduced 
rood 2 is not zero. Since t~2*ao,--~ ls primitive, ~2.a~,-2 reduced rood 2 is 
dual to g4,,-4, and g~_~ suspends non-t r iv ia l ly  onto a class e~,_, in 
H*(~SO/U; Z~), with ~P~*e~,,_,--u~,,_~ (reduced rood 2). 

The subalgebra generated by the e,,,_s maps onto H*(U/Sp ; Z,) under  4)~*. 
We will show that this subalgebra is ex ter ior ;  i.e., that e],,_~ ---- 0. But 
e~_.~ -- Sq*"-'e~,,_~ - -  suspension of Sq~'*-~g~,_~ - -  0 (no odd classes in 
H*(SO/U; Z2). Consequently, the subalgebra is a transgressively generated 
exter ior  algebra. Let  S be the cam, nical spectral  sequence with trivial E¢o 
term, for such an exterior algebra, then E *'° is a polynomial algebra gene- 
ra ted by the transgression of the exter ior  generators.  Let  S' be the spectral  
sequence (mod 2) for the fibration Q(.'~O/U)-~ P(SO/U)~  SO/U. The fact 
that the e~,_a are transo, ressive implies that there is a spectral sequence 
map S--.- S' sending exterior  generators in E~'* into exterior  generators  in 
E,O,. Since then the map E *'° E2 *'° is an isomorphism and both E~o 2 • 2 " ~  

terms are  trivial, the map E °'* --~ E~ °'* is an isomorphism by the comparison 
theorem [8]. Consequently, the subalgebra generated by the e~,_, is the whole 
algebra H*(~SO/U; Z~) and hence (I),* is an isomorphism rood 2, and there- 
fore integrally.  

It  now follows that H*(f~'O/U; Z) C~H*(U/Sp; Z) is an exterior  algebra 
(in fact t ransgressively generated),  and hence H*(SO/U; Z) is a polynomial 
a lgebra (by BOREL'S theorem):  

(4.6) H*(SO/U; Z) Z[g,,  g , ,  .., g , , _ , ,  ...]. 

We remark  that it follows from the above that ia*(C4,_2) is divisible by 
2 and in fact must  be twice a genera tor  (since its Value on ~ . ~ _ ~  is 2), 
and hence we may choose g4,-2 so that i~*(C4,,_~)--2g,._2. From this and 
the fibration SO~U-- Bu--~ Bso being totally non-homologous to zero rood p ; 
the mod p HOPF algebra structure,  in par t icular  the diagonal map in 
cohomology rood p of the g~,-2 is determined.  Since the g4,,-~ are primitive 
rood 2 (~i,*(C4,-,)=i,*~C4,,_2=i~* ~ C,,®C2i-~2g~,_~2g,,_2@l-{-l@ 

~+1= 2.--i 

2g~,_2(mod 4), since ia*(C2i) and i:~*(C,j) are both divisibl~ by 2), and there is 
no torsion, the integral  codiagonal maps is uniquely  determined.  

TIaE MAP (I)~. - From the map U(n)~ SO(2n) we get a map [7(n)--* Spin(2n). 
Now H*(Spin; Z2 ) -  Z~[h 3 , ..., h2.,+~, ...], where  the ]~2,,+, are primitive (use 
for example, the CAR~A~-LER~Y spectral sequence for the double covering 
of SO, the ]~z,,+, are the images of the h.,,÷l in H*(SO; Z2)). The map 
H,(~];  $2)-* H.(Spin; Z2) sends the primitive generators  onto the classes 

A n n a / /  d i  M a : e m a : u ~ a  3 ~  
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dual  to h~,+2. Since the generators of H,(/.7; Z~) t ransgress  (section 2), it 
follows that the ]~2,+~ suspend non-tr ivial ly onto primitive classes f~,, in 

H*(~SO; Z2). Since ~ ( i  hghj-  j)ht+j (where we set h21 = h~ 2, [2], in 1I*(80; Z~), 

Sq~t(~,,-2)h~i(~,,._2)+~ = ~t2i÷'~,,-2)+~ and hence Sq2~(~,-2): f~(,.-~) f-.~÷'~-2) ; i.e. 
f~(4,,-~) : f~:,-2)" Also since the f~,-2 map non trivially into H*(~2U; Z2) and 
this last is a polynomial algebra, it follows that the powers of f~,,-2 are 
non-zero. The subalgebra generated by the f~,_~ is a sub-HoPF algebra of 
H*(GSO; Z~) and must be a polynomial algebrd since the primitive generators 
are of infinite height. Since the base space in the canonical  spectral  sequence 
( E ~ - - 0 )  of a polynomial algebra whose generators and their  2 ~a powers 
transgress is the polynomial algebra generated by the transgression of these 
classes, it follows from the comparison theorem (see similar  a rgument  for 
the map ~ )  that the subalgebra is the whole a lgebra;  i.e., 

Since the f~,_~ are primitive, the dual algebra is an exter ior  algebra 
generated by the classes dual to the f4,-~ and their  2 ~t" powers. Since the 
images of the generators of H,(~U; Z~) have value 1 on the f~.-2), it• follows 
that H,(~2U; Z2)--H,(.QSO; Z2) is onto. On the other hand, ~he map 
H,(QU; Z~)--~ H,(~Q,~'O; Z2)~H,(~U; Z:) is trivial as we shall see below, 
so that ~i~. is trivial. In  fact U(4~) ~ ,'~'O(Sn) -. U(8,~) send T ~ (T, j~Tj;~). 
Now the map T ~ j , . T j ;  -~ induces an automorphism of the HoPF algebra 
H , (U ;  Z) and hence sends each primitive generator  onto -~ itself. The indu- 
ced map on H,(OU; Z) sends each generator  d2i into -~d~-{-p~,., where p,[ 
is some primitive class (since diagonal must  be preserved);  but p~ suspends 
non-t r ivia l ly  into H,(U; Z), unless it is zero (Prop. 2.9). It now follows that 
the map H,(~2U; Z ) ~  H,(~SO; Z)--.-H*(~2U; Z) sends d2, into 2d~, or 0, 
and the corresponding map mod 2 is trivial. 

From the proof that  (I)~, is an isomorphism we have i~.'O~.~-~._~ : 2v:~,_~. 
Since from the above, the image of any integral class in H,(flSO; Z) under  
Gi~. is divisible by at least 2,. we see from the diagram for ~ ,  that 
(])a*'~*u~,-~ is not divisible , and hence is non-zero rood "2. Since these classes 
are pr imit ive ,  they are dual to the f~**_~, and hence (I)~* maps f~._~ non-tri- 
vially. Since f~,,_~ is primitive ffP~f~,,_~:g~,~_~., and (I)~* is an isomorphism 
mod 2, and hence integrally.  

THE ~ I  ~ (I)~. - In  the fibration Sp/U ~ Bu ~.~ Bsp, the fibre is totally 
non-homologous to zero integral ly [2], so that H,(:~'p/U; Z)~H*(Bu; Z)/H*(Bs~; Z) 
as HoPF algebras. In  particular,  since H*(Bv)--.-H,(Bs~) has an algebraic 
cross-section, H, (B~;  Z )_~H, (Sp /U;  Z)® H,(Bz~; Z) as rings. Hence 

(4.8) HASp/U;  Z) ~_ z [ ~ ,  x , ,  ..., x,,,_~, ...]. 
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Now looking at diagram for q)~ in the form 

H,(ESp/U) '.-'*. H, (EBv)  

we see that ~b~, takes the suspension g:,,_~ of the generators x,,_~ of 
H,(Sp /U i Z) onto the primitive generators  of H,(Np; Z), since '~oi,*(:c,,,-~) 

. in the primitive generator  of H , (U;  Z). It follows that H , ( , p ,  Z) is trans- 
gressively generated and hence by (2.7), 

H,(iis:p ; Z ) ~ Z [ y ~ ,  Y6 . . . . .  Y,~-~, ...]. 

Fur the r  (I)8,x,n_2--Y,,,-2, and (I)6, is an isomorphism integrally. 

T~E )tAP q)~. - In the fibration U(n)/O(n).-*Bo(,,)-.-Bv(,,), t t ,(Bu(,); Z~)-- 
It*(Bo~,); Z2) is a monomorphism, and hence H,(Bo(,); Z~)-~ H,(Btj(,); Z2) 
is onto. Since U/O ~ Bo is a weak H-map,  the diHerential  in the homology 
spectral sequence for the fibration U/O ~ Bo ~ Bu is a derivation, and 
consequent ly  by the above the differential  is trivial. Fur the r  since the map 
I t , (Bo ; Z2) ~ H , (Bv  ; Z2) has an algebraic cross-section, H,(Bo;  Z~) ~'~ 
H, (Bu  ; Z~) ® H,(U/O ; Z.~) as algebras. Hence  since H,(Bo ; Z~) -- Z2[v~, v2, .... 
v , , . . . ]  see (Prop. 4.15), 

(4.10) H,(U/O; u,,,_,,...]. 

Now looking at the diagram for q), In ,rtv form 

 ,(EBo ; ; 
¢,'I T 0" 

H,W; 

We see that '~4. takes the suspension v2,+1 of the generators v2,, of H,(Bo; Z~) 
onto primitive classes in H,(U/O; Z~) whose image under  ).~. are the primitive 
generators  x~,,+l of H , (U;  Z~). It follows that tp,v2,~+1 is not decomposable 
and hence must be a generator.  Consequently, we may assume ~,v~._l -- u2,,-~, 
n > t, and hence that H,(U/O; Z2) is pr imit ively generated and k2*u2,-~-- 
x~._l, n > 1. Fu r the r  ~:,(U/O) --  Z (from the homotopy sequence for 0__~ Vp_~ U/O, 
we have ei ther Z or Z ~ Z ~ ,  but from (4.10) it must  be Z, and p , :  
r~l(U) ~ 7h(U/O) sends the genera tor  onto twi~e a generator)  and ).~, : 
~I(U/O) ~ v:I(U). Hence  ),~,u~ - -  ~c~. 
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Now in the diagram for (I)~: 

H,(EU/O; Z,) Z,) 

H,(%IU:, H,(Bv;  

v,$~ "-p~, the primitive element reduced rood 2. Now from Prop. 2.9, P,i-2 
rood 2 is equal to a generator plus decomposable elements, and hence the 
p ~  generate a polynomial subalgebra. I t  follows that the qbs*a4i-z (~,~-~ the 
suspension of the generator u~_, of H,(U/O; Z~) generate a polynomial 
snbalgebra of H,(Sp/U; Z~), since i,,'~,(a,~_~ -- v,E),~,(~%,~_2) -- p,~ (see previous 
paragraphs). Since the r~nks of corresponding groups are equal (4.8), the 
subalgebra is all of H,(Sp/U; Z.,). Consequently H,(Sp/U; Z~) is transgressi- 
re ly  generated. By the theorem of h t ~ K I  and KUDO stated below (see [1], [8]), 

(4.11) H,(QSp/U; ,v,, ..., ...]. 

Now by the commutativity of the diagram for ~5 (in its original form), Ss* 
maps the generators onto non-decomposable elements in H.(fL~p/U; Z~); and 
hence onto generators. Thus ~ o  is an isomorphism mod 2, and hence integrally. 

THEORE~i 4.12 (ARAKI and KUDO). - Let X be an associative H-space 
with unit, and suppose that H, (X;  Z~) is a transgressively generated polyno- 
mial algebra, then the 2 ~  powers of these generators also transgress, and 
H , (~X;  Z2) is a polynomial algebra generated by the transgressions of these 
classes. 

NOTE. - In  order to apply Theorem 4.12, we use the isomorphism (1)e, 
already obtained, so that we may consider that we are working with QSp, 
which may be given an associative H-space structure with unit. 

THE M A P  ( I ) , .  - The simply connected covering space of U/O is [7/S0--  
R )< SU/SO. Consider the fibration SO~SO --* Bso "-~ Bsu. Now H*(Bso ; Z2) 
Zs[rv2, w~, ..., w~+l, ...], w~ the ita STIEFEL-WHI~IqEY class. Under  the map 
H*(Bsu; Z~) ~ H*(Bso; Z2) the CEERN classes (~,~+2, i > 0 map onto w~+l~. 
Hence H*(SU/SO; Z~)= H*(Bso; Z.~)I/H*(Bsu; Z~)~ A2(b~, ba,..., b~+~, ...] (the 
fibration is trivial in homology by the same argument as for UIO above, 
and hence trivial in cohomology). The duals b~÷l of the classes b~+~ are 
primitive. In particular,  b2,-~ must map onto u~, 1 under the map 
H,(SU/SO; Z~) --* H,(U/O; Z~), and similarly b2 maps onto u~. The fact that 
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this map is a monomorphism can be seen from the commutative diagram 

H*(SU'SO ; 7,,) - -  ~*(V/O ; Z,) 
t t 

H*(Bso ; Z~) - -  R*(Bo ; Z,) 

i.e., H*(U/O; Z=) is an exterior algebra with a generator in each dimension 
which maps onto the corresponding generator in H*(SU/80;  Z=) (except for 
the first generator). Hence 

(4.13) 1t,([7/80 ; Z,) ~ H,(SU/SO ; Z,) ~-- Z,[&,, 7,,, ..., u,~+~, ...] 

where u,~÷~ maps onto u=t+~ and u= maps onto u~ under the covering map. 
Since the classes u=~+~ are in the image of H,(EBo;  2[2) under ~**, 

H,(~]/SO; Z=) is transgressively generated, and hence by (4.12), 

(4.14) H,(QU/O ; 7,2) ~_ Z~[r~, r=, ..., r , ,  ...]. 

It remains to prove that H,(Bo;  Z,) maps 
Consider the commutative diagram 

U(n) ' c  b~p(n) is the subgroup commuting 

monomorphieally into H,(f~U/O; Z=). 
(for definition of p see section 3, 
with j) 

H,(SplU' ; Z.,) ~ H,(Bu,  ; Z=) 
~.I I 

H,(U/O ; Z~) --. H, (Bo;  Z~). 

The maps on top and at right are both monomorphisms, hence the map at 
left is a monomorphism. Since both H,(Sp/U; Z2) and H,(U/SO; Z=) are 
transgressively generated, it follows from (4.12) that Ha(fL~p/U; 2[2) 
H,(QU/O; Z.~) is a monomorphism. 

Now consider the diagram 

u(.)'/o(n) ~ o(9.,,) 
o(.) × o(.) 

*'.1 *'.! 
g(sp(.)/u(,,)') P_ u(u(~,,)/o(~n)).  

To prove this is commutative, we may replace d~',, 4)'5, by ¢~,, % respectively 
and Q by ~2~ (see section t). Since U(n)' is (aken as the subgroup commuting 
with j,  ~(T, 0 ) =  Te~°l~T-I (i.e. e~/' instead of ei,.e/=). Then 

• g - - / e l ' .  ¢_-igl=,-l~ STy_ 1 ~5(T, (~) = p(T)p(e~"12)p(T)-' = p(T)(e~ °/2, 3~ , Jr ~ J, )PL I 

- -  p (T ) (e?  '=, e~°/=)p(f)-' 
~,(p(T), ~) = p(T)=,O)p(T )-* = p(T)(e~, 0'=, eT'~Is)p(T)-~. 
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H e n c e  the fo l lowing  is c o m m u t a t i v e  

H*(U'/O ; Z~) < H*(Bo ; Z2) 

H*(~Sp/U') ~ - -  H*(aU/O ; Z,). 

Since  ¢ *  is an i somorph i sm cP*~* is onto. Consequen t ly ,  the re  mus t  ex is t  a 
n o n - d e c o m p o s a b l e  class  Zi in each  d im in H*(~U/O; Z2) ma p p i n g  onto the 
g e n e r a t o r s  of H*(U'/O ; Z2) in each  d imens ion .  ~*Z~ mus t  be non-decoml )osab le  
in H*(Bo; Z2) and  h e n c e  a genera to r .  Consequen t ly ,  alp* is onto and (I)4. is 
a m o n o m o r p h i s m .  

By  compar i son  of r anks  of c o r r e s p o n d i n g  homology  g roups  it now fol- 
lows tha t  (I)4. is an  i somorph i sm mod 2 and  hence  in tegra l ly .  W e  have  used 
[11]: 

PROPOSITION 4.15. - H*(Bo ; Z2) ~ Z2[~v~, w2 .... , w , ,  ...], w i t h  cod iagona l  
~t(w~) = E w i ® w ~ .  Dual ly ,  it fo l lows tha t  H , ( B o ;  Z~)~Z2[v~,  v~, . . . ,  v,,, . . .] 

i+K=~ 
i i i and  d , (v i ) - "  Z v i®  v~:, w h e r e  v~----w~, w~ the dua l  c lass  to w~. 

i+K=~ 
F u r t h e r ,  H * ( P ;  Z 2 ) =  H*(Bo(~); Z2)~Z2(u~),  ]P the in f in i te  rea l  p ro j ec t i ve  

space,  and  the map  j ,  : Bo(~) -* Bo i nduced  by  the inc lus ion  0(1) ~ O, sat isf ies ,  
- - - - 7  

j*w~ - -  O, i > 1, j*w~ = u~. Consequen t ly ,  j , (u])  .= vi ; i.e., j ,  maps  the addi t ive  
bas is  of H , ( P ;  Z~) onto  the g e n e ra t o r s  of H, ( Bo ;  Z~). 
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