A topological Proof of the Bott Periodicity Theorems.

Memoria di E, Dyer and B. Lassor (1) (a Chicago in U.S.A.).

To Enrico Bompiani on his scientific Jubilee.

Sammary. - 4 proof is given of the Borr periodicity theorems using only well known
techniques of algebrdbe topology.

0. Introduction.

In this paper we give a proof of the Borr periodicity theorems [4] for
the infinite classical groups using only well known techniques of algebraic
topology. Whereas there is some overlap with the proof given by MoOORE in
the CARTAN Seminar [7], the algebraic techniques are entirely different.
MooRE uses homological algebra methods in dealing with spectral sequences
of universal bundles. In this proof the main argument consists in showing
that the BorT maps [5] induce isomorphisms in integral homology, and this
is done by showing thut they induce isomorphisms mod p, p or odd prime,
and mod 2. For the mod p proof (section 3) all that are used are some com-
muting topological diagrams (also used by MooREg) and the fact that certain
fibrations may be considered as product spaces as far as mod p homology
is concerned. (This last was pointed out to us by Bruno Harris). The mod p
result is a trivial consequence of these facts (in particular no spectral
sequence erguments are needed). For the mod 2 result (section 4) (besidest
he commuting diagrams referred to above), a short spectral sequence argument
is used in the case of each map, based on STEENROD squaresf or the
cohomology sequences and on the analogous mod 2 homology operations of
ArAKI and Kupo for the homology sequences.

The proof for the unitary group (section 2) was developed in the SUMMER
of 1959 at the University of Chicago and presented in a course in the FaALL
of 1959. The essential argument is due to R. SwaN. (We understand that
MoorE’s proof is very similar-but we have not seen it).

(1) This research was done in part while the first author held a Sloan Foundation
Fellowship and the second author held a Senior National Science Foundation Fellowhip.
It was also supported in part by the National Seience Foundation under contract number G-10369,
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Section 1 is devoted to the definition of the BorT maps and their elementary
properties.

1. The Bott maps (see [5]).

Let Wiy = W, ® W, be the 2n-dimensional quaternionic vector space
with right and left symplectic inner products. Let Sp(2n) be the group of
symplectic transformations of W,, commuting with righ! multiplication by
the quaternions H. Lef (1, ¢, 7. k) be the nsual generators of A over the real
field R. Let C < H be the compiex subfield generated by (1, ¢). By this means
we may consider W,, to be a 4n-dimensional complex vector space under
rigt multiplication by C, and an 8n-dimensional real vector space. The complex
part of the right symplectic inner product becomes an hermetian inner produect,
and the real part of the symplectic inner product becomes an orthogonal
inner product. From this structure we get the inclusions

(1.1) Sp(n) X Sp(n) < Sp(2n) < U (4n) < SO(8n),

where U{4n) is the group of unitary transformations and SO(8n) the group
of special orthogonal transformations. We note that U(4n) and Sp(2n) are
characterized as those subgroups of S0(8r) acting on W, Which commute
with right multiplication by C and H respectively.

Now consider in the above sequence of groups, the respective subgroups
that commute with leff multiplication by H. These groups form the sequence:

(1.2) O(n) X O(n) = 0(2n) < U(2n) < Sp(2n).

Here Sp(2n) is the group of symplectic transformations with respect to
the left iuner product. Further there are subspaces R,, < C;, & W,., for Which
the inner product becomes orthogounal and hermetian respectively. O(2n) and
U (2n) are the subgroups of Sp(2n) leaving R,, and G, invariant.

Explicitly: Cop=iw € Wyn/w=1iwi""}, By = {w & Cou/w = juj—*1.

The inclusion of (1.2) in (1.1) induces the inclusions:

(1.3) ['W(B) € [L(H), U(@2n)/0@2n) < U(4n)/Sp(n),

Sp(2n)/U (2n) < SOBn)/T (4n), Sp(2n) < SOEn),

where TI'.(R) = 0(2n)/0(n) X O(n) and T.(H) = Sp(2n)/Sp(r) X Sp(n).
The BoTT maps are as follows (Where Q, is the space of paths from the
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base point of the space in question to another fixed point as described below):

9ot U(dn)/U(2n) X U(2n) — Q,(U(4n))

¢1: Tu(H) — Q,(U (4n),Sp(2n)) 9e: Tu(B) — (U (2n)/0(2n)
9, U(dn)' Sp(2n) — Q(SO8n)/Udn)) ¢s: U(2n);0(2n) — L,(Sp(2n)/U (2n))
9t SO8n)/U (4n) — 2,(SO(8n)) ¢s: Sp(2n)/U (2n) — Q,(Sp(2n)).

To define ¢;, ¢ from O to 6, write G; and K; for the groups in the numerator
of the domain and the numerator (inside the brackets) of the range of v; resp.;
then G; <K, by (1.1) and (1.2). Let G; and K; be the respective quotieu spaces.
We first define a map &;: EG; — K; of the two point suspension of G; into K;;
then ¢;: G; — Q,K; will be the naturally associated map of G; into the space
of paths in K; going from the image under & of the south pole to the image
of the north pole; ie. ¢iT)(t) =E&(T, t), Te G, 0 the suspension parameter.
To define &;, let Te G; < K;, then & is the map induced from

(1.4) & Gi X [0, m] — K;, E(T, 6) = Tai(8) T,
by passage to the quotients, where for (x,, x,)e W, & W,

“o(g)(“cu @) = (x.e%, Q}ze“i“)
a(B) (e, ) = oy (B) (i, %) = (0,672, arpe—i012)
a(0) (1, ) = as(B)(0r, ®;) = (.19, 1,070/%)

as(0) (21, @) = ae(B)(@s, @) = (1,09, x,e%9).

It follows from the above, that ., 9,, 9, are obtained from ¢,, p;, ¢, respe-
ctively, by restriction. (See (1.3). (We also note in this connection that a(6)
commutes With left multiplication by H).

As is well known, Q, is of the same homology type as the ordinary loop
space @ (the spaces in question being connected). We may obtain a map
@;: G; — K; which will be equivalent to (1.4) under such a homotopy equi-
valence (in fact a homeomorphism) by setting G:(T)(f) = $i(T, 6), Where

(1.5) DT, 0) = Taui(6) T as(6)~.

On the other hand, such a homotopy equivalence may be obtained by adding

any path from ai(n) to «i(0) to the paths in Q,. In particular, if We add the
path a;(r — 6), the resultant map

E(T, 28), O<b<n/2

1.5y § T, 8} =
(1.5) i ) ai(2n — 28), n2=<b<n

Annali di Matematica 0
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defines a map ®/: G; — QK; homotopic to @;. In fact @B

—1 by
Bi(6) :\ (@), 0=8 <2 , is essentially ®;;

) ai(2n — 20), 72 <b<n
but fB; is homotopic to the trivial loop. Although (1.5) is simpler, (1.5)' has
the advantage that the corrrespondence with @, is natural under maps of
K; into I?,-, which take Q,K; into Q,,l?f. We also note that in each case @,
and hence @ map G; into the arc componeot of the trivial loop; and in the
rest of the paper QX will mean the connected component of the trivial loop.

PROPERTIES OF THE MAPS U;.

Choose a fixed ordered set of basis vectors &;, ¢= 1, 2, 3, ..., in the
countably infinite quaternionic vector space Wy, and let W, be the subspace
spanned by the first » basis vectors. This defines inclusions of W, in W,
Wee Wy in Wy, ® Wyyt, and hence of all the groups and homogeneous
spaces for n in the corresponding ones for w4 1. It is clear from (1.5) that &;
commutes With the inclusions, and defines a map on the direct limit. Writing
Sp = Limit Sp(n), etc.; We get:

®,: By— QU

®.: Bg, — Q(U/Sp) ®,: Bo — 2(U/0)

@,: U/Sp — Q(S0/U) ®s: U0 — Q(Sp;U)
s: SO/U — Q80 ®e; Sp/U — QSp.

The proof of the Borr periodicity theorems then amounts to showing that all
the maps ®; above are weak homotopy equivalences; i.e., induce isomorphisms
on the homotopy groups.

Further we claim we may give all the homogeneous spaces above an
H-space structure; i.e. a multiplication which is homotopy associative and
has a homotopy unit. To do this map Wy back into itself on the one hand
by sending b; to b,_, and on the other hand by sending b; to b,. This defines
a map: Wo® Wy, — Wy; Which in turn defines a multiplication in all the
groups and homogeneouns spaces involved. The desired properties are easily
checked: The only thing involved is a permutation of pairs of coordinates.
Siunce in each case the permutation matrix is homotopic to the identity (the
groups being connected), conjugation by the permutation matrix is homotopic
to the identity. The homotopies for each pair of coordinates are performed
in succession (in half the remaining time). Since only a finite number of
coordinates is involved for any given element of the direct limit, this is well
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defined. Also by the same argument one sees that all these H-space structu-
res are homotopy commutative. Consequently, the PONTRIAGIN homology (%)
rings are commutative, associative rings with unit.

Now for the loop space of an H-space, the addition of loops is homo-
topic to the multiplication on the loop space induced by the mulfiplication
in the underlying H-space. Likewise the direct limit multiplication in the
infinite groups is homotopic to the multiplication defined above - again by
a permutation of coordinates argument. Thus in both cases, the PONTRIAGIN
rings are the same for the two multiplications.

Finally, we note by (1.5) that the maps @; are H-maps Wwith respect to
the above multiplication.

The fact that the maps are H-maps enables us to use a refined form
of the Whitehead theorem:

THEOREM 1.6 - Let f: X — Y be a map of connected topological spaces;
if for ni(X) =2 my(Y) all 4, then f,: H(X; Z) > H{(Y, Z) all i. Conversely, if f
is an H~map of H-spaces and f,: Hi(X; Z) =2 H(Y; Z) all i, then f: n;(X) 2 =,(Y)
all 4.

Proo¥. - Lot C be the mapping cylinder of f, then X may be concidered
as a subspace of G, and Y is a deformation retract of C. Also f is the inclu-
sion map of X into C followed by the retraction onto Y. The first part of
the theorem follows from the relative HUREWICZ theorem (see theorem, p. 166
of [10]) and the homotopy and homology sequences of the pair (C, X). To
prove the converse, note that We may define an action of X onjC by
(x, )’ = (', )€ C, O <t <1, and (y)x' = (yf (%)), since f is an H-map. It
follows that m,(X) acts trivially on =;(C, X), ¢ =2, by a standard argument.
On the other hand, m(X) and =,(Y) are abelian (since they are H-spaces),
and by the naturality of the HurREWIOZ hom)morphism =n,(X) maps isomor-
phically onto m,(C) = n,(Y), and hence n,(C, X) = 0. The result now follows
by the Horewicz theorem referred fo above,

REMARK. - We note the above proof still applies if the hypothesis of
the converse is Weakened to read: If X is an H-space operating on Y such
that / commutes With the action of X (acting on itself by right translation),
m(Y) is abelian, and f,: H(X; Z) > H{(Y; Z) all 4, then f,: ni(X) 2 m(Y) all 4.

Finally, a trivial application of the WHITEHEAD mapping cylinder and
the universal coefficient theorem gives:

THeorREM 1.7. - Let X and Y be topologleal spaces with Hy{(X) and
H(Y) finitely generated all 4. A map f: X — Y induces isomorphisms on

{*} We use singular homology theory throughout this paper.
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the integral homology groups if and only if f induces isomorphisms on the
mod p homology groups, p an odd prime, and on the mod 2 homology groups (*).

2; The Unitary Group.

For purposes of this section, it is unnecessary to assume an underlying
quaternionic vector space, 80 to simplify notation we merely assume that U (2n)
is acting on C,, = C, ® 0, and ®@,: U(2n)/U(n) X U(n)— Q U(2n), where
$o(T, 8) = Tao(8) T ()" and ao(f)(ws, 22) = (1,60, @69, (1, 2) € Cu @ C,.

Now let j: U(n + 1) — U{(2n), where we consider U{(n + 1) acting on
CnoC and C, ®C,=0,® C, @ Cyy; le. J(T)=(T, L), Te Un+1).
Then @, carries jU(n - 1) into the image of QU(n + 1) in QU (2n) under Qj
(Qj the map on the loop spaces induced by j): i.e.

BT, ) = (T Tnca(er's )y e NI L2)((e, &), o)
= (T(e. &7 YT—Yer ™. e), I,—) € jU(n + 1) < U(2n),

where e} means right multiplication by e in the given subspace. consequently,

. . Um+1)
we may define ®,: T X T QU(n 4 1) by the formula

Go(T, 8) = Toto(8) T—o(8) 2, cra(8)(r, o) = (6%, wwae™19),
{(®:, x) € C, @ C,; and get the commutative diagram
U(n + 1)/Un) X U(1) 2QUMK + 1)
pii loj

U@n)/U(n) X Uln) & QU @2n).

0

Now U(n 4 1)/U(n) X U(l) is just complex projective space CP(n), and we
write OP = Lim CP(n); then ®,: CP — QU. We wish to prove that ®,, maps
H,(CP; Z) monomorphically into H,(QU; Z), and that the image generates
the PONTRIAGIN ring of QU. 1t is well known that j (H.(CP; Z)) generates
the PONTRIAGIN ring of H . (Bpj; Z) (see Prop. 2.6), and hence the fact that
D,,: Hy(By; 2) 2 H,(QU; Z) will follow from the commutativity of A,.

Leuma 2.1, Let n: U(n+1) — U(n + 1)/U(n) = Szura be the natural
projection. The map w,: (ECP(n), ECP(n — 1)) — (U(n + 1), U(n)) — (Sants, D)
induces m,: H(ECP(n), ECP(n —1); Z) 22 Hy((Sznt1, D); Z).

PrOOF. - o(T, 8) is homotopic to (T, ) = do(T, O)(L., er™). (For
0<s=<1, set F(s, T, 8) = Go(T, 0)(Lu, & **%).) It follows that ¢(T, 6) is defined

(3) In this paper, coefficients mod p will mean with respect to and odd prime p.
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by c;)(T 8) = (7, 8)(1s, e 2’6) by passage to the quotient. Explicitly q)(T 0) =
—T(Gr, e; ie) 1(6——16’ efﬁ)(ln —210) T(e'e e—ueT (e:le, e;m WT(In, 72‘0)17_1

Now nd(T, 8) = ¢(7, )¢, e C, < C, ® C,, the unit vector left invariant
by U(n). Let y be the unit vector in C;, then e¢= T(y)c+ (¢ — T(y)c),
¢ =[e, T'(y)] (hermetian inner product) and T'(e) L (¢ — T'(¢)c). Hence

(T, 8) = T(y)ee=*® + (e — T(y)e) = ¢ + T(y)ele—*° — 1).
For 030, n; $(T, O)e =c <> T'(y) Le.
On the other hand, for any unit vector ug=e¢
u—e [eul—1 jlu—c|?
Nu—eil Ju—e]l [e,u]—1

Uu=c-tu—e=e- = ¢ + vfe, v)(e™2® — 1),

Where v::”—;i—__:—iﬂand e—ziez-%-:”—l}—i(smce fuw—e|*=[u—e u—e =
=2—e, ul—[e, u{=1—[¢, u] + 1 —J¢, u]). From this one sees easily that
ny is a relative homeomorphism, and the result follows.

Let G — E = Sk be a principal fibre bundle over a K-sphere. Let Dy
be the unit dise in Eaclidean K-space with boundary Sk_,. Let f: (Dxk,
Sk—1) — (Sk. p), p a base point, be a map such that f,: H,((Dk, Sg—,); Z) =~

H.((Sx, p); Z). We may lift f to a map g: (Dx, Sk—) — (E, G), since Dy is
contractible to a point. The class aeng ,(G) of the map g/Skx—, is the chara.
cteristic homotopy class, and its HorREWICZ image aeHg_,(G, Z) is called
the characteristic homology class of the bundle.

Lemma 2.3. - The WaNG sequence
~ H{G; Z) & H{E; Z) 2* H, «x(G; Z) = H,_(G; Z) —

is an exact sequence of H,(@; Z) modules and o, is left multiplication by
the characteristic class a.

If a =0, then H(E; Z) is the free H (G, Z) module with generatros 1
and any class zx € Hx(E, Z), such that m,(xg) is a basis element of Hg(Sk; Z).

Proor. - Let u: (E, G) X G — (B, G) be right action on both factors.
Then h=wuo(g X 1): (Dk, Sk) X G — (B, G) X G — (E, G) is a relative
homeomorphism. It is easy to see (even if the spaces are not compact) that

hy: H ((Dg, Sxk—) X G; Z)~<=H((E, G); Z). Starting from the exact sequence
of the pair we have:

— H{G; Z) % H(E; Z) % 0B, @); 2) % B,_(G; z) ~

22T h, h.
H{(Dx, Sk—s) X @; Z) —~ His(Sx_s X G; Z)

H;_x(G; Z)
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From this the WaANG sequence and its properties listed above follow immediately.

REMARK. - The result also holds with a field of coefficients. For further
details see [9].

Now for any ring R, let Ag(x;, ®i,. ...) be the graded exterior ring over
R with generators of dimension 4,, #,, ...; and let E[r;, w;, ...] be the graded
polynomial ring over B with generators of dimension 4,, 4,, ... .

ProrosITiON 24. - H (U + 1); Z)=2Az{x:, ®s, .., %aui.), Where the
xis, i1, are the images of an additive basis of H (ECP(n); Z) under t,,.

Proor. - Let p: (Days, Sin) — (ECP(n), ECP(n — 1)) be the map
which attaches the top dimensional cell of ECP(n). By Lemma 2.1, m,{o.0.°
H((Dengss San); Z) — Hy((Sansr, D); Z), and hence dop: Syy — ECP(n — 1)
— U(n) defines the characteristic class. Since H;o(ECP(n — 1); Z)=0.a =0,
By 2.3 it follows that H (I7{r); Z} maps monomorphically into H(U(n + 1); Z).
Since (see section 1) H (U: Z) is commutative, H,(U(n); Z) is commutative,
all n.

The result is trivial for » =0, assume the resuli for U (n); i.e.,
H(U(n); Z)=>>Az(w., @5, ..., T,.—1). By the above paragraph and 2.3, it follows
that H,(U(n + 1); Z) is the free H (U(n); Z) module with generators 1 and
the class o,,4,, image of the top dimensional class of ECP(n) under ¢,.
Since H(U(n + 1); Z) is commutative by the above paragraph, «},;, =0
and H (U(n+1); ZY2 Az(er, 23, o) Tanga)-

As o(ECP (n)) = SU(n + 1), we may conclude by exactly the same ar-
gument that:

ProposiTioN 25. - H. (SUn+1); Z)=2Azlx,, %, .., Xmy), the /s
being the images of the additive basis of H (ECP(n); Z).

CoROLLARY 2.6. - H (QSU(n+ 1); Z)>=2H(QU(n + 1); Z)>Z[d,, d,, ..,
d.s), and the generators are the images of the additive basis of H (CP(n); Z)
under @, .

PROOF. - The simply connected covering space U(n + 1) of U(n -+ 1) is
homeomorphic to B X SU(n + 1). Hence H(U(n 4 1); Z) 22 H(SU (n + 1); Z)
is transgressively generated by Prop. 2.5. By the theorem stated below, the
result follows.

TrEOREM 2.7. - Let X be an H-space such that H. (X; K) is a trans-
gressively generated exterior algebra on odd generators, X a field or the
integers. Then H.(QX; K) is a polynomial algebra generated by their trans-
gressions.

The proof is by a standard application of the comparison fheorem for
specfral sequences (see [8]). Actually, one does not need to assume H.(X; K)
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is transgressively generated as this follows by a slightly more difficult
argument (see [8]). This theorem may be looked at as the dual of BoREL’s
transgression theozem for groups Wwhose cohomology algebra is exterior.

TEEOREM 2.8. - @y, : H (By; Z) > H,(QU; Z)-

Proor. - From (2.6) it follows by taking the direct limit, that H (QU; Z)
Z[d,, dg, .., dy, ..] and the generators are the images of the additive
basis of H,(CP; Z) under ®,. Since H(By; Z)NZ(Z,, Ziy o, Zux, ..
and the generators are the images of the additive basis of H,(CP; Z)
under J, (see Prop, 2.9 below). it follows from A, that Do,: H (BU; Z) <
H,(QU; Z). (note that although J: U(n + 1) — U(2n) does not indmce the
identity map in the limit, it nevertheless induces the identity map in homo-
logy in the limit, since J,: HiU(n + 1) X H(U(2n)), i <2n + 2; and hence
QJ, is the identity on homology).

The following is essentially a restatement of the WHITNEY sum theorem
for CHERN classes.

ProrosiTioN 2.9. - H¥By; Z)22Z[C;, Cs, .., Cu, ..], Cu the 2i-dim
CHERN class, Wish codiagonal map p*Cu= I C,; ® Cx. Dually, it follows
jte=i
that H (By; Z) = Z|Z,, Z,, ..., Zsi, ...}, with diagonal map Qi = I Zyp ® Zu,
k=i

where Z,; = C,, O, the dual class to C} for the additive basis of H*(By; Z)
consisting of the mono:mijals in the ;.

¥urther, H¥(CP; Z)= H*(By,; Z)=Z[b,, and the inclusion map J:
Bui) — By indudes J*(Cy) =0, i3 1, J*(C,) =b,, and consequenlty, J, (%) =
Zsj; i.e., J* maps the additive basis of H,(CP; Z) onto the generators of
the PONTRIAGIN ring H (By; Z).

Finally, the primitive subspace of H,(By; Z) is the free module over Z
with basis the dual classes to the CHERN classes C,. The primitive basis
elements p,; being given by the formula

Dai - Pati—) * Z, + Dotiz) » Zy — .= iy =0,

3. Orthogonal and symplectie groups mod p homology.

The inclusion p: O(4n) — U(4n). We wish to extend the sequence of
inclusions (1.1) one step further to U(8x). To simplify notation, however, we
halve the dimension. We will define a map p mapping as follows:

Sp(n) € U@nY < 04n) £ Sp(n) X Sp(n) < Sp(2n) < U (4n)
O(n) € U (n)y < Sp(n) % O(n) X O(n) < 022x) < U (2n).
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(U(2n) is the subgroup of O(4m) which commutes with right muliplication by
j instead of i. Similarly for U(n)).

To define p, first consider (x, ) e W, ® W, with the following structure:

(x, x)i=(—2, x), (x, ) = (&, — 7).

Let O(4n) act on W, considered as E,,. For T'e O(4n), set §(T)= (T, T).
Then ¢(T) commutes With the action of i; ie. ¢(T) belongs to the group
U (4n) associated with this structure,

We wish to convert this structure into the usual structure on W, & W,;
ie.

(@, @)i = (wi, &'9), (v, @Y = (@), »).

To do this set:

“(, @) =(w gw’z’ x 42—300)
o,(x, *) = (x, =), oi(w, ') = (x, ).
Then
6i04T8,T Y07 "0; (2, ®) = (xi, x5
siof,ilo; o (x, x) = (o ).

Hence define p(T) = oio71d(T)z—*c; ‘o .
Besides the properties listed above, p has the following properties which
we leave to the reader to check.

1. p: O(dn) — U(4n) is equivalent (under an isomosphirm of U (4n))
to the inclusion of O(2xn) in U(2x) of (1.2) (in twice the dimension).

2. e: Sp(n) — U(2n) is equivalent to the inclusion of Sp(2n) in
U(4n) of (1.1).

3. p: U(2n) — Sp(2n) is equivalent to the inclusion of U(2n) in
Sp(2n) of (1.2).

4. p: U(n) — O(2n) is equivalent to the inclusion of U(4n) in O(8n)
of (L.1).

5. Taking the usual U(2n) < O(4n) we have (*) for Te U(2n), o(T) =
(7, j»Tj;"). We now consider some fibrations with mod p cross-sections.

(1) Sp(2n) & U (4n) & U (4n)/Sp(2n)
2) SO(2n) & U (2n) 2 U(2n)/S0(2n)
(3) SO(8n)/U (4n) = By £ Bsoew
4) Sp(2n)/ U (2n) “~ By sy 2* Bspean -

{*) j, means right multiplication by j.
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(All maps are induced by the inclusions (1.1) or (1.2)). In the direct limif of
these fibrations we will see that the mod p homology splits and that this
split is given by a map of the base space into the total space. With this in
mind we define maps:

A U(dn)/Sp(2n) — U{dn) 222 U(2n)/0(2n) — U(2n)

A BO(m.\ -+ By Al BSp(n) b BU(zn)
A, is defined by A,: U(4n) — U(4n), L(T) = Tj.T -j*, by passage to the
quotient.
X, is defined by restriction of 2,.
A; is the map induced by p (see above).
A, is the map induced by the restriction of p.
‘We note that in all the above fibrations except (2). the fibre is totally non-
homologous to zero mod p (see [2]). In the case (2), the difficulty is the non-
stable class in dimension » — 1; and in fact in the fibration
S0@2rn+ 1) — U(2n + 1) — U@2n + 1)/SO(2n + 1), the fibre is totally non-ho-
mologous to zero mod p. Consequently We have:

LeMma 8.1. - In the fibrations

(1 Sp2 U2 yso 2 So& Uyso
) SOU % By Bsy (4) Sp/U-Z By 2 Bs,
the fibres are totally non-homologous to zero mod p. Consequently, the
cohomology of the total space is (additively only in cases (3) and (4)) the
tensor product of the cohomology of the base and fibre, with mod p coeffi-
cients [2].
We now prove:
LeMma 3.2.
Mt HYU|Sp; Zp) = BHX(U/Sp; Zp)
A*p.*: HY(U/SO; Zp) = H*(U|0; Zp)
A*p*: H¥(Bso; Zp) =2 H*(Bo; Zp)
A*p ¥ H¥Bsy; Zp) = H¥Bsp; Zp).

REMARK. - We have used O in place of SO on the right. This does not
effect the mod p cohomology, and will be useful later.

Proor.

(1) It follows from (3.1) that H*(U/Sp; Zp) < Ay(v:, Vs, w., Vsi-s, +.) and
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P *Vsis(ai-s) = 1, X4i—5 the generator of H (U; Zp). Now consider the com.
mutative diagram:

21) U

U
P’\L ém
U/Sp 2l 175 Sp.

We eclain El*(x4;_a) = 243, and hence that A,p,* is monomorphism mod p,
and by the commutativity of the diagram that A,*p,* is a monomorphism and
consequently an isomorphism (by equality of the ranks of the cohomology
groups).

To compute Ay it is only necessary to see What conjugation C(j,) by j,
does to H,(U(4n); Z). For this, take the subgroup U(2nr) of U(4n) invariant
under left multiplication by H, then U(2n) acts on Cp < Wi, (see (1.2)).
Choosing a fixed basis for W,, and hence C.,, L'e U(2n) is represented by
a complex matrix M; and it is easy to see that then j.Tj," is represented
by M, the complex conjugate of M. To sec What complex conjugate does to
H,(U(2n); Z) we use the characterization of the generators given in the
proof of Prop. 2.4; i.e. that they project onto the generator of the corresponding
sphere. From this one gets easily that C(4,) 4= —x4_s and C(j,), %
= #4,. Since the inclusion of U(4n) into U(8n), U(8n) acting on Wi,
commutes With C(4,), the same formulas hold for C(j)* in H*(U(4dn); Z).
From this the formula for XL* follows, and the first part of the lemma is proved.

(2) It follows from (3.1) that

HYU/SO; Zp) 2 Apy(wy, Ws, .., Wi_s, ..) and p*wu_g(si-s) = 1, @4 the
generator of H,(U; Zp). Since U/O is an H-space with U/SO as double
covering, it follows from the CARTAN-LERAY spectral sequence that H*(U/O;
Zp) = H*(U)SO; Zp). The result now follows as in (1) from the commutative
diagram:
v s U
| .
U/0 % U/S0.
(3) To prove (3) consider the map:
SO@n) & U(4n) — SO(8n).
By definition p(T) = aiojid(T)r6; "0, ", and o, o;, 1€ SO(Bn). Hence p
is homotopic to ¢ in SO(8n). Since ¢(T)= (T, T), ¢ is homotopic to the
map T — T It follows that the map H*(SO; Zp) — H*(SO; Zp) — H*(SO; Zp)

sends the primitive generators onto twice themselves, and hence is an iso-
morphism. Since the transgressions of these primitive generators, generate
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H*(Bso; Zp)}itifollows that the map: H*(Bso;'Zp) & H*(Bo; Zp) X H*(Bo; Zp)
— H*Bso; Zp) is an isomorphism. Since H*¥*(Bo; Zp) = H*(Bso; Zp), As*ps*
is an isomorphism.

(4) The argument for (4) is just the same as in (3), since the map
Sp(n) — U(2n) — Sp(2n) is just T — (T, T), by property b of p.

From (3.1) and (3.2) we get:

TaEOREM 3.3 ~ Let y: U X U — U be the maultiplication, then (additively)
(8 X Wy*: HYU; Zp) ~ H*(Sp; Zp) @ H*(U/Sp; Zp)
(6. X X)*y*: H¥U; Zp) ~ H¥SO; Zp) @ H*(U/0; Zp)
(is X Xa)*v*: H¥(By; Zp) = HXSO0/U; Zp) @ H*(Bo; Zp)
(i X A)*y*: HY(By; Zp)~ H*(Sp/U; Zp) @ H*(Bsp; Zp)
(i X X)*y*: HYU; Zp) ~B¥Sp; Zp) o H*(U/0; Zp)

(f: X A)*v*: HYU; Zp) > HXSO; Zp) @ H*(U/Sp; Zp)

COROLLARY 3.4.

(Ris X QX)*(Qy)*: H¥QBy; Zp) > HYQ(Sp/U); Zp) ® H*(QBg,; Zp)
(@i X QU)H@)*: HYQU; Zp) ~HYQSp; Zp)  ® H¥(Q(U/Sp); Zp)
(Qis X Qu)*(Qy)*: HQBy; Zp) = H¥QSOU); Zp) ® HXQBo; Zp)

(R, X Q)XQy)*: H¥QU; Zp) ~=H*QSP; Zp) o HYQ(U;0); Zp).

Proor. - The first four isomorphisms of the theorem are immediate.
For the last two isomorphisms it is sufficient to note from the proof of
Lemma 3.2, that i,* and 4,* have the same kernel.

To prove the corollary, it is easy to see that the isomorphisms of the
theorem persist if We replace all the spaces involved by their simply connectod
covering spaces. From this it follows (by the comparison theorem argument)
that the isomorphisms persist if we replace each space by its loop space.
(We did not list the other two isomorphisms in the corollary, or other com-
binations in the theorem since We Will have no need of them).

We now make some remarks on path spaces Which we will need shortly;

Let (E, B, F) be a fibre space with total space E, base B, fibre F, and
projection p: £ — B. Let b, be the base point in B, and let e,&p—*(b) = F.
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We will assume B is connected and simply connected, and F is connected.
Let

P(E) =!paths in E starting at e,

Pp(E) = paths in E starting at ¢, and ending in F = p—(b,)

P(B) = paths in B starting at b,

Q(B) = paths in B starting and ending at b,.

Let
g = pg: P(E) — E, be the endpoint projection in E
u = pp: P(B) — B, be the endpoint projection in B.

Consider the commutative diagram:

P(E)22s P(B)
PPEJ ‘LPB
v

B <«» B

ppr: P(E) — B is a fibre space map with fibre Pp(E)
p: P(B) — B is a fibre space map with fibre Q(B)
P(p): P(E) — P(B) is a fibre preserving map.

Since the total spaces are contractible it follows that P(p): Pr(E) — Q(B)

is a weak homotopy equivalence.
Now consider another map of fibre spaces:

P(E)E>E
PP-E"L VP
B <«>B

If n(E) =0, i < n, then p: Pr(E) — F will induce isomorphisms on homotopy,
i < m, and consequently in homology, ¢ <n (see [10], p. 167).
Some commuting diagrams:

Sp(2n) Gy U(4n) t'}(Z’_':fz)ﬂ___~ Y U(2n)
Sp{n) X Sp(n) U(2n) X U(2n) O(n) X O(n) Un) X Un)
o) v oy v

QU (4n)/Sp(2n) > Qdm) Q (’gg’%) > QUEn)
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Soro 2 i g—-—gzg LR U:2n)
" * UBn " ) U(dn
Pown(SOEn) 225 Pow g7\ Poan(Sp(2n) 7> Pocon 751
P(P)\L \LP(P) P(P)‘ll ‘LP(P)
50(8n) U (8n) Sp(2n) U (dn)
Q(U(4n)) 0> Q(U(4n) X U(4n)) Q(U(zn))g(ﬂ g(U(?n) X U(z'n'))
So@n) , U (8n) Sp(em) , U (4n)
Tdw) > U(n) X Udn) U@n) > U@n) X U@n)
by’ | @y’ & I &y’
Q 50(8r) %0, Q T (8n) Q(Sp(En)) 40, Q U(4n).

The maps ®, and @ are defined by ¢, and $; (1.5) before passing to the
quotient, i.e., ®, = P(p)(f,, D, = P( p)(E. The map ¢,, ¢, are those induced
by (1.1) and (1.2).

All the maps in the diagrams for ®,, ®,, ®, are the restrictions of the
corrisponding maps in those for ®,, ®,, @, respectively. Hence the commuta-
tivity of the diagrams for ®,, ®;, ®, will follow from the commutativity of
those for ®,, ®,, @,.

Proof of commutativity:

THE DIAGRAM FOR ®,. - From the discussion in section 1, it is clear
that it is sufficient to prove the commutativity for the diagram with ¢, and g,
in place of ®,' and @, and Q, in place of Q.

Let T e Sp(2n), then

TEAT, 0) = Xy(Tea(8) T = Tan(8) T, Tty (02T
= Ta,(O)TT Yoy (6) %, " T = = Ty (8)jy,(0)~%, *T -2
= Ta,(0)x,(8) T = T, (26)T
Eo(is T, 68) = Tao(6) T
But «,(6) = «,(26).
THE DIAGRAM FOR ®,. - The commutativity of the bottom square is

trivial once We observe that the map SO(Bn) . U(8n) . U(8n)/U(4n) is fibre
preserving. But for TeU(dn), o(T)= (T, j.Tj;")e U(4n) X U(4n) (property
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b of p), hence the image {(T, 7. Tj, )} in U(8n)/U (4n) is equal to {(T, I).
For the top square We have: Te U (4n)

pipda(T, 0)} = pip(Tas(6)T~"as(6) ) =
= pH (T G T ) (@), JraaB)i W T2, 5T ) (@a0) ™, fral0) Y
= i (Taa(®) T~ (6)~", i Ta(6) T—"2a(0) ")
= u{ (Tan(0) To(68)%, 1)} = TjrT %0,

11

since the endpoint of «,(8) is j. 7,(1’) = T5.T7 Y, .

THE DIAGRAM FOR ®@,. - Again We substitute ¢, and ¢, for @, and @,
Let TeSO(8n)

pdo(T, 8) = p(Te, () T ) = p(T )o(a,(8))e(T)~
$olp(T), 8) = p(T)(8)e(T) "
But p(x,(8)) = (2,(0), 7o, (8)7) = (2,(6), #,(8)~%) = o(6).
TEEOREM 3.5. - From the commutativity of the above diagrams for every m,

weo geot the following commutative diagrams in cohomology (or homology);
arbitrary coefficients:

H*(Bgy) <+~ H*(Byp) H*(Bo) <&~ H*(BU)
L ?“1’0' b ‘1’0'
H+Q(U/Sp)) <@ H*(QU) HYQ(U/0)) <22 H *(Q U)
H*(U/Sp) <2 H*(U) 1’3"‘(5’/0) < H*(U)
b* I q’s‘ |
H*Q(S0,U)) %" A*@By) H*(Q(Sp/U) <04* H¥QBy)
H¥(SO/T) <. H"(By) HY(Sp/U) <4 H*(Bo)
oy "\ | ‘1’0 ‘l’e' b*
H*(QS0) <% H*QU) H*@Sp) <" H*QU).

For the changes in the notation for the maps, see the piopreties 1 to 4 of ¢
and the definition of the maps A;, i=1, 2, 3, 4.
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Combining these diagrams with Theorem 3.3 and OCorollary, we get:

TueoreM 3.6. - The following diagrams commute; mod p cofficients

H*Sp) @ HHU/0) <> H*{U) H*(S0) @ H*(U/Sp) <> H*(U)
A A A A A
p* i \ly s pe X \‘I/ e
H*(@Bs,) @ H¥QSp/U) <> H*QBy) H*QBso) @ H*QS0/0) <> H*QBy)

H*(Bs,) ® H*(Sp,U) <> H*(Bp) H*(Bo) ® H*(SO/U) «»> H*(Bp)
A A

A A A A
L A | D \;@”. ; P.* P, LA
H*QU/Sp) ® H*(QSp) <> H*QU) H*QU/0) @ HQS0) <> H*QU)

The double arrows indicate isomorphisms proved in previous theorems.
Immediately from Theorem 3.6 we have:

TaeoreM 3.7. - @, ¢, O, ¥,, D,, O, induce isomorphisms on mod p
cohomology (and hence in homology mod p).

4. Orthogonal and sympleetic groups mod 2 homology.

THE MAP ®,. - In the fibration Sp 4 U 2. U/Sp (section 3), both 4;, p,
are weak H-maps, and Sp is totally non-homologous to zero integrally [2].
It follows that p,*: H(U; Z) — H,(U/Sp; Z) is onto, and H.(U/Sp; Z)=
H(U; Z)//(HSp; Z) as HopFr algebras. Thus

(4.1) H*(U/Sp; Z)SAZ(“], 'u;,, ey u‘,“_g, ..-).

The simply connected covering space of U/Sp is U/Sp = R X (SU/Sp). Using
the fibration Sp — U — U/Sp, we get as above:

4.2) H (SUISp; Z) == Az{us, o, oy Uanta, oo

Since H.(U; Z) is transgressively generated (see (2.5) and corollary),
H.(U/Sp; Z) is transgressively generated and hence, (by (2.7))

(4.3) H(QU/Sp); Z) =2 Z[Y,, Yo, vy Tam, o)

Now looking at diagram 1 of (3.5) (in homology), A: H, (Bsp; Z;) —~ H,(Bu; Z,)
is a monomorphism (since the dual map in cohomology is onto). Since ®,,
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is an isomorphism, ®,,: H. (Bsp; Z,;) — H,(QU/Sp); Z.) is a monomorphism.

Since the ranks of the corresponding mod 2 homology groups are the same

(see Prop. 4.4 below), ®,, is an isomorphism mod 2 and hence integrally.
‘We have used, see (2.9):

ProPoSITION 4.4. - H*(Bsp; Z)>Z[ps, Ps+ -5 Pans -}, With codiagonal
t(pu) = ...\ P ® p.x. Dually, it follows that H (Bsp; Z)2Z[Zs, oy Zin, - -}

and d (Z;,) = E Z4,®Z4K, where Zg == p‘, ps the dual class to p/.

Further, H*(HP‘ Z) = H¥(Bspy; Z)==2Z[b,}, HP the infinite quaternionic
projective space, and the map j,: Bspu — Bsy induced by the inclusion
Sp(1) < Sp, satisfies j*(pu) =0, i > 1, j*(ps) = bs. Consequently, j.(b) = Zu;
i.e., j, maps the additive basis of H,(HP; Z) onto the generators of the
PONTRIAGIN ring Hy(Bsp; Z)-

Tag MAP ®,. - In the fibration U % SO 2 S§0/U, the direct limit of
the fibration U(n) — SO(2n) — SO(2n)/U(n), U is totally non-homologous to
zero mod 2 ([2]). Hence H, (SO, U; Z,) == H,(S0; Z,)//H,(U; Z,) as HoPF alge-
bras. Now H*(SO; Z,) ~ Z,[h,, hs, ..., han—1, ..}, han—, primitive, all n: and
hence H,(SO; Z,) = As(a, @z, ..., Gu, ...), With @z, primitive (see [2]). Since
H(U; Z) >~ As(zy, @5y ooy Xan—s, )y H(SO/U; Zo) 2 Ay(de, diy ..., Gan, ),
and hence the classes dual to d,., in particular the classes g,,—, dual to dy_.,
are primitive. Thus p*(gus—z) = Hze—: (the only primitive class in dim 4n —2).
it follows that the subalgebra of H*(SO/U; Z,) generated by the g,,. is a
polynomial algebra, and must be all of H*(SO/U; Z;) by comparison of ranks
with the homology groups. Thus

4.5) H*(SO/U; Z;) 2 Z)g., 9s) «)y Gan—e primitive.

From diagram 2, section 3, we get the commuting diagram :

H(E(U/Sp); Z) By H(EU; Z)
doe Ve

H,(S0/U; Z) 2=y H,(Bu; Z)

where v,: H,(EU; Z) "% H(EPy(Ey); Z) — H,(EQBy; Z) — H,(Bu; 2).
The suspension @, of the generator u,.—, of H,(U/Sp; Z) maps onto
QZi—2, Zin—: the suspension of the primitive generator X, of H,(U; Z),
(see proof of (3.2)) under Eise. Since Oy .3(VeZan—z) =1, Ci—r the CHERN
class, v (EX,) -, is divisible by exactly 2. On the other hand, since
iy H(SO/U; Z,) — H,(By; Z) is trivial (in the fibration SO/U % By £2 Bso;
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p.*  H¥(Bso; Z,) — H*(By; Z) is onto [3]), the image under i, of any inte-
gral class in SO/U must be divisible by at least 2 in H.(By; Z). Conse-
quently, $sil,,—, cannot be divisible in H (SO/U; Z), and ¢ty reduced
mod 2 is not zero. Since (Yy#iy... is primitive, $pit,,—, reduced mod 2 is
dual to gy, and gs,, suspends non-trivially onto a class e, in
H*(QS0/U; Z;), with ®,*¢4n-3 = ten—s (reduced mod 2).

The subalgebra generated by the e,,., maps onto H*(U/Sp ; Z;) under ®,*,
We will show that this subalgebra is exterior; i.e., that ej,_; =0. But
€i—ns = S@*"%,,_; = suspension of S¢*3g,,—, =0 (no odd classes in
H*(SO|U; Z,). Consequently, the subalgebra is a transgressively generated
exterior algebra. Let S be the eanonical spectral sequence with trivial E,
term, for such an exterior algebra, then E;’° is a polynomial algebra gene-
rated by the transgression of the exterior generators. Let S’ be the spectral
sequence (mod 2) for the fibration Q(NO/U) — P(SO/U) — SO/U. The fact
that the e,,_, are transgressive implies that there is a spectral sequence
map S — §' sending exterior generators in Ey * into exterior generators in
E;”*. Since then the map E}*° — E,*° is an isomorphism and both E.
terms are trivial, the map Ey* — E,”* is an isomorphism by the comparison
theorem [8]. Consequently, the subalgebra generated by the e,_; is the Whole
algebra H*(QSO/U; Z,) and hence ®,* is an isomorphism mod 2, and there-
fore integrally.

It now follows that H*(QSO/U; Z) <> H*(U/Sp; Z) is an exterior algebra
(in fact transgressively generated), and hence H*(SO/U; Z) is a polynomial
algebra (by BOREL’s theorem):

(4.6) HYSO/U; Z)22Z[gs, Goy oy Gan-2y o

We remark that it follows from the above that ¢*{C,,—,) is divisible by
2 and in fact must be twice a generator (since its value on Ypite—, is 2),
and hence We may choose g,._, so that 4,*(Ci—;) = 2g4s—.. From this and
the fibration SO/U — By — Bso being totally non-homologous to zero mod p;
the mod p Hopr algebra structure, in particular the diagonal map in
cohomology mod p of the g.,_. is determined. Since the g**—* are primitive
mod 2 (!—W (Gm—z) =1, P'Cm»z =1, * 2 Czs ®027 =204 = 20in—2 @ 1+1g

29.n—(mod 4), since i,*(C;) and i, (Cz;) are both divisible by 2), and there is
no torsion, the integral eodla,gonal maps is uniquely defermined.

THE MaP @,. - From the map U(n) —S0(2n) we get a map U(n) — Spin(2n).
Now H*(Spin; Zz)_Zg[ 37y Rania, ], Where the h,,., are primitive (use
for example, the CARTAN-LERAY spectral sequence for the double covering
of SO, the 1"1,2,,“,_1 are the images of the h,,,, in H*(SO; Z;)). The map
H(U; S) — H,(Spin; Z,) sends the primitive generators onto the classes
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dual t0 7y4.. Since the generators of H,(U; Z,) transgress (section 2), it
follows that the h,,,, suspend non-trivially onto primitive classes f,, in

H*(QS0; Z,). Since b;hj =(;)hi+, (where we set h,, = k2, [2), in H¥SO; Z,),

qu"(m—z)ﬁzi(m._z)_;_l = he'*tun—2+1 and hence Sgiun-2 = frun—2 frriun—s ; i.e.
[Fan—z) :f?:”_z). Also since the f,,—, map non trivially into H¥QU; Z;) and
this last is a polynomial algebra, it follows that the powers of f,,_. are
non-zero. The subalgebra generated by the fu_. is a sub-Hopr algebra of
H*(QS0; Z;) and must be a polynomial algebra since the primitive generators
are of infinite height. Since the base space in the canonieal spectral sequence
(Ex =0) of a polynomial algebra Whose generators and their 2" powers
transgress is the polynomial algebra generated by the transgression of these
classes, it follows from the comparison theorem (see similar argument for
the map ®,) that the subalgebra is the Whole algebra; i.e.,

H*QS80; Z) 2 Z)/ f3, fos o+ [an—zyon]:

Since the fu., are primitive, the dual algebra is an exterior algebra
generated by the classes dual to the f,»—. and their 2'* powers. Since the
images of the generators of H,(QU; Z,) have value 1 on the feu_z, it follows
that H,(QU; Z) — H,(QSO; Z,) is onto. On the other hand, the map
H,(QU; Z;) — H,(QN0; Z;) — H(QU; Z,) is trivial as We shall see below,
so that Qizs is trivial. In fact U(dn) — SO(8n) —- U(Bn) send T — (T, 5. Tj5°).
Now the map T — j.Tj,' induces an automorphism of the HopF algebra
H,(U; Z) and hence sends each primitive generator onto == itself. The indu-
ced map on H,(QU; Z) sends each generator d,; into ==d,; 4 p.;, Where p,,
is some primitive class (since diagonal must be preserved); but p,; suspends
non-trivially into H.(U; Z), unless it is zero (Prop. 2.9). It now follows that
the map H.(QU; Z) — H,(QS0; Z) — H,(QU; Z) sends d,; into 2dy or 0,
and the corresponding map mod 2 is trivial.

From the proof that @, is an isomorphism We have dgwysiln_p = 2vZ_».
Since from the above, the image of any integral class in H (2S0; Z) under
Qi is divisible by at least 2,. we see from the diagram for ®,, that
Dye)petlyn, is not divisible, and hence is non-zero mod 2. Since these classes
are primitive, they are dual to the f,,_., and hence ®,* maps f,,—, non-tri-
vially. Since fi—. is primitive @,fiu_2 = gun-», and @,* is an isomorphism
mod 2, and hence integrally.

THE MAP ®;. - In the fibration Sp/U *+ Dy 2+ Bg,, the fibre is totally
non-homologous to zero integrally {2, so that H (Sp/U; Z)>H*(By; Z) /H*(Bsyp; Z)
as Hopr algebras. In particular, since H*(By) — H,(Bsp) has an algebraic
cross-section, Hy(By; Z) X H(Sp/U; Z)® H,(Bsp; Z) as rings. Hence

(4.8) H (Sp/U; Z)==2Z[xs, Tgy .oy Xan—zy o)
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Now looking at diagram for @, in the form

HESp/U) * H,(EBy)
el i Jo
H,(Sp) ¥ Hy(D)

we see that ¢, takes the suspension Z,., of the generators w,,., of
H.(Sp/U; Z) onto the primitive generators of H.(Sp; Z), since $eie(Eam_,)
in the primitive generator of H,(U; Z). It follows that H.(Sp; Z) is trans-
gressively generated and hence by (2.7),

(4.9 H (@305 Z2Y2Z1Y2, Yor ooy Yan—zy o)

Further ®geXi—z = Yan—s, and @ is an isomorphism integrally.

THE MAP @,. ~ In the fibration U(n)/O(n)— Bowm)— Bum), He(Buwmy; Z:)—
H¥(Bow ; Z,) is a monomorphism, and hence H (Bow); Z:) — H(Buw; Z)
is onto. Since U/0 — By is a weak I-map, the differential in the homology
spectral sequence for the fibration U/O — By — By is a derivation, and
consequently by the above the differential is trivial. Further since the map
H(Bo; Z,) — H(By; Z;) has an algebraic ocross-seciion, H,(Bo; Z;) =
H.(By; Z,) ® H(U/O; Z,) as algebras. Hence since H,(Bo; Z:) = Z,[v,, v, ..
vy, ...] see (Prop. 4.15),

(4.10) H(U|O; Zy) > Z[uy, gy .oy Upn—y, oo
Now looking at the diagram for @, in the form

H.EBo; Z;) %« H (EBy; Z)
4y 'l l"!“’.

H(UIO; Z)) 2 H(U; Z).

We see that ) takes the suspension v,,,, of the generators v,, of H,(Bo; Z.)
onto primitive classes in H (U/O; Z;) whose image under X, are the primitive
generators x,,., of H(U; Z). It follows that ¢,v,,., is not decomposable
and hence must be a generator. Consequently, We may assume %?J,,,-l = Upp—y
n> 1, and hence that H,(U/O; Z,) is primitively generated and Aypeu,,_, =
Zan—1, 1> 1. Further n,(U/0) = Z (from the homotopy sequence for O_, U2 U/0,
we have either Z or Z @ Z,, but from (4.10) it must be Z, and p,:
m(U) — m,(U/0) sends the generator ontc tWice a generator) and Xge:
(U] 0) =2 n,(U). Hence Apou, =, .
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Now in the diagram for ®;:

H,(EUJO; 7)) B H(EU; Z,)
%al 1‘,.

H*(Sﬁ//U; Zz) :ﬁ: H*(BU; Zg)

VuZ2: = Dai, the primitive element reduced mod 2. Now from Prop. 2.9, p,_,
mod 2 is equal fto a generator plus decomposable elements, and hence the
Py—: generate a polynomial subalgebra. It follows that the gty _, (@, the
suspension of the generator wu, ., of H,(U/O; Z,) generate a polynomial
subalgebra of H. (Sp/U; Z,), since éePee(liyi- 2 = v, Else(tlyi_s) = psy (see previous
paragraphs). Since the ranks of corresponding groups are equal (4.8), the
subalgebra is all of H,(Sp/U; Z.). Consequently H.(Sp/U;: Z,) is transgressi-
vely generated. By the theorem of ArAxI and Kupo stated below (see [1], [8]),

(4.11) H(QSpIU; Z2) 2 Zmw,, W,, ) Wap—s, )

Now by the commutativity of the diagram for ®, (in its original form), P
maps the generators onto non-decomposable elements in H,(QSp/U; Z,); and
hence onto generators. Thus Py is an isomorphism mod 2, and hence integrally.

TerOREM 4.12 (ARAXI and Kupo). ~ Let X be an associative H-space
with unit, and suppose that H(X; Z;) is a transgressively generated polyno-
mial algebra, then the 2** powers of these generators also transgress, and
H(R2X; Z,) is a polynomial algebra generated by the transgressions of these
classes.

Nore. - In order to apply Theorem 4.12, we use the isomorphism e
already obtained, so that We may consider that we are working with QSp,
which may be given an associative H-space structure with unit.

Tae MaP ®,. - The simply connected covering space of Uj0 is [//SO =
R X 8U/SO0. Consider the fibration SU/SO — Bgo — Bsy. Now H*(Bgo; Z,) <~
Zw,, w,, ..., Wi, ...], w; the ¢** STIEFEL-WHITNEY class. Under the map
H*(Bsy; Z.) ~ H*(Bso; Z,) the CHERN classes Ugyia, % >0 map onto wj,.
Hence H*(SU/SO; Z;) = H*(Bso; Z:)!/H*(Bsy; Z:) <3 As(bs, by, ..., biyq,..] {the
fibration is trivial in homology by the same argument as for U;0 above,
and hence trivial in cohomology). The duals b, of the classes b;,, are
primitive. In particular, b, wmust map onto u,, , under the map
H(SU/SO; Z)) — H,(U/O; Z,), and similarly b, maps onto u!. The fact that
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this map is a monomorphism can be seen from the commutative diagram
H*(SU'SO; Z,) — H¥U|O; Z))
! !
H*(Bso; Zz) -— H*(Bo; Zz)

ie., H*(U/O; Z;) is an exterior algebra with a generator in each dimension
which maps onto the corresponding generator in H*(SU/SO; Z;) (except for
the first generator). Hence

(4.13) H(U/S0; Z) > H(SUISO; Z) 22 Zfus, Uy, e, Uiy, o]

where #,, maps onto #s,, and %, maps onto u; under the covering map.
Since the classes wu,,, are in the image of H.(EBo; Z;) under ¢,
H(U/S0; Z,) is transgressively generated, and hence by (4.12),

(4.14) H(QUIO; Z) =2 Z)fry, 12y ny 7., ..)

It remains to prove that H,(Bo; Z,) maps monomorphically into H, (QU/0; Z,).
Consider the commutative diagram (for definition of p see section 3,
U(n) < Sp(n) is the subgroup commuting with j)

Hy(Sp/U’; Z,) s H.(Bu; Zy)
Pe l
H(UI0; Z)) — Hy(Bo; Z,).

The maps on top and at right are both monomorphisms, hence the map at
left is a monomorphism. Since both H(Sp/U; Z,) and H(U/SO; Z;) are
transgressively generated, it follows from (4.12) that H,(QSp/U; Z.) ~
H,(RU/0; Z,) is a monomorphism.

Now consider the diagram

, 0(2n)
&g A
Q(Sp(n)/U(n)) £ &U(2n)/0(2n)).

To prove this is commutative, We may replace &'y, @'y, by ¢,, s respectively
and Q by Q, (see section 1). Since U(n) is taken as the subgroup commuting
with j, E(T, 8) = Te,*T-1 (i.e. ¢, instead of ¢/°%). Then
P, €) = e(T)e(er )e(T) = e(T)(er™, Grer joer ™7 )o(T)
= p(T)(er'?, & *")p(T)
E(e(T), 6) = p(T)aulB)e(T)* = o(T)(er, &5 ™ p(T)
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Hence the following is commutative

HYU'|0; Z) <— H¥(Bo; Z)
A A
Py* ‘ LA
HQSp/U') <— HYQU/O; Z).

Since @ is an isomorphism ®;* is onto. Consequently, there must exist a
non-decomposable class Z; in each dim in H*(QU/O; Z,) mapping onto the
generators of H*(U'/0 ; Z,) in each dimension. ®;Z; must be non-decomposable
in H*(Bo; Z;) and hence a generator. Consequently, ®; is onto and @, is
a monomorphism.

By comparison of ranks of corresponding homology groups it now fol-
lows that ®,» is an isomorphism mod 2 and hence integrally. We have used
[11]:

ProposiTiON 4.15. - H¥(Bo; Z;) ~ Zj[w:, W, ..., W,,...}, With codiagonal
p(w) = I w;® wg. Dually, it follows that H.(Bo; Z,) ™ Z,v,, 02, «.., Vn, -]
jR=i

and dy(v) = Z v;Q® vk, Where v; = Eﬁ, w' the dual class to w} .
K=
Further, H*(P; Z,) = H*(Bow; Z:) =2 Z,(u,), P the infinite real projective
space, and the map j,: Bou — Bo induced by the inclusion O(1) =0, satisfies,
*w; =0, i > 1, j*w, = u,. Consequently, j.(u}) = vi; i.e., j, maps the additive
basis of H(P; Z,) onto the generators of H.(Bo; Z,).
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