On closed sets of rational functions.

+ Memoria di Orro Szisz (University of Cincinnati, Ohio} (*).

Summary. - This paper confains proofs of the closure of cerfain sefs of rational functions

in various spaces. Thus, for example, conditions are derived for the closure of the sequence
ot — )

T2 in ¢(—1, +1). Analogous
1 — etz

resulis are proved for other related sets of rational functions. Some of these resulls are
new; others are new proofs of known theorems. The main point is that a uniform method

is used throughout this paper. For a description of the method see article 1.

(@2 4 2,21 in the space ILy(0, oo), and for the set

1. Introduction. - The following theorem is well known [see 4 and 5] (').
A necessary and sufficient condition for the closure of the sequence {#w},
v=1, 2,.., in L0, 1} is
21— 2R), 1
E—z W = oo, Rx, > — .2(2).
The basic steps of the proof were.
a) Find a special sequence {{»}, which is closed; here we may take
A, =v — 1, by WEIERSTRASS s approximation theorem.
b) Find the minimum, W, , of

[ | 2wt | 2dt = f: Uty N

ya 0 p.+)\v+1

where #, == 1, and )\0 any given integer k= 0.
¢) The set |t} o, is closed if and only if for each k m, — 0, as n — co.
One advantage of this direct, elementary procedure is that it applies as
well to the more general case of triangular systems. We shall also employ
it to discuss some sets of rational functions in the infinite interval (0, oo).

2. Fundamental concepts. - L,(0, 1) denotes the space of real or complex
valued functions fif) in 0 < ¢ <1, such that f(f) and /f{{)/’ are integrable;
here, p = 1. Distance in this space is defined by

t.. £ —([if, £ 17at) "

(*) Questo lavoro pervenne in redazione il primo giugno 1952 e I'A. rivide le prime 17
pagine delle bozze. A causa della Sua morte, improvvisamente avvenuta il 19 setiembre 1952
a Montreux (Svizzera) 1'ulteriore lavoro di revisione fu assunto dal Prof. H. Davip Lupsicu.

Gli Annali di Matematica rivolgono un commosso pensiero alla memoria del lore colla-
boratore OTTO SzAsz ben noto nel mondo matematico internazionale.

(Y Numbers in square brackets refer to the list at the end of this paper.

{?) Rz denotes the real part of z; 2 is the conjugate complew of 2.
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Lot0, 1) denotes the space of measurable, essentially bounded functions.
Distance in this space is defined by

(f1 3 fz) == e88. u. b./f‘(t) - fz(t)/'
01

C(0, 1) denotes the space of continuous functions. Distance in this space is
defined by

(f4 ’ fe) = max /ft(t) - fz(t)/
O<t<t

Clearly L, L, for p> q; let p’ = p/(p — 1), and p’ =occ for p=1; p and
p' are called conjugate numbers.

A sequence of functions fu(f) € L,0, 1) is called complete in this space,
if the only function g(#) € L, which is orthogonal to all f.(#), i. e. for which

1
lFa, 9] = [ Fubgttiat = 0, =12 3.,
[}

is g(fj0. Here g(f) is the conjugate complex to g(f}; g(t)co 0 means g(f) =0
almost everywhere (a. e.).

The sequence fu(/) € L0, 1), (or in C) is called closed in this space, if
to any function ¢(¢) & L, there exists a sequence of linear aggregates

»

ln(t) =3 cvnfu(t)

y=1
such that
lim ($, L) =0.
n— 00
It is known that completeness in L, and closure in L, (1 <p<oo), are
equivalent. Furthermore completeness in L, implies completeness in L, for
any q < p <<oo. (CL [1], pp. 73-74).
The same properties extend easily to any finite interval, by a linear
transformation of the variable ¢.
Finally a sequence of functions in C(0, 1) is called complete in this

space if for any function g({) of bounded variation the infinitely many
equations

1
f Fult)dgit) = 0, m=1,2 3.
0

imply g(f) = g(1) = ¢(0), except at an enumerable set of points. Again closure
and completeness in C(0, 1) are equivalent. (Cf. [1], p. 73).
Similar definifions and properties hold for an infinite interval.
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We also introduce the space H, of functions f(z), regular in /z/ <1,
and such that

2n
M, f; ri= (1/213[} flre®) ‘pde)up: 0(1) as r11;
8

H, is the class of functions f(#) regular and bounded in /z/ < 1.
It is known that if f(z) ¢ H,, then lim f(re®) = f(¢®) exists a. e., and
rfl

2n
[ ey s
0
is finite.
A sequence of functions u.(#) € H, is said to be complete in H, if for
any g(s) € H, the equations
2n
91 = [ wale)gle)a8 = 0, (=1, 2.,
¢
imply g(z) = 0. Here 1 << p <<oo. For p =2, see MaLmMQuist {3}
The sequence u,(z) is called closed in H, (1 <<p << oo if to any function
f(z) & H, there exist a sequence of linear aggregates

1l

2 Gy, (7 = L2),
y==1

such that
2
@.1) ) L) = (1/271: [ | Flef%) — 1,(e") | vds)upn 0 as 1 — oo,
0

It can be shown by using a standard device, that completeness and
closure in some H, are equivalent.
The sequence ua(2) € H, is called orthogonal and normal, if

0, for vk
= E=1, 2 ...
[M'V) uk] ; 1’ fO]_‘V::k (V, H 2 )
3. Preliminary lemmas.
Lemma 1. - If Rz > 0 (%), then
o
dx £

A6 = | =2
]

(3) For our purpose there is no loss of generality in the restriction Re>> 0.



198 0. Szisz: On closed scts of rational functions

This is a well known formula and can be found in many textbooks. Note
that
A(z) =2 2A(z™Y) ; A(— z) = A(2).

Lemma 2. - If Bu>>0, Bz > 0, then

oo
dx _ ™

Blu, 2) EO[(mg + w)x® + 2 - Quziu + 2)

In fact

1 i _ i 1 1
4w - w22 — u
Hence. in view of Lemma 1,

o)

1
—u‘/(m u® m2+z2)dw

Blu, 2)

1 7
) Quzu + 2)°

Levmma 3. - If g,, r, (v= O, 1, .., ®) are real or complex numbers, then
the determinant
Dy =gy +r)"*];
has the value

n

D,= T (g+r)~'s I (g — gr)lr, — 7).

v, k=0 v>h=0
For references see [5).
A consequence of this Lemma is:

[(gv + 'rk)—i]: — 1 ﬁ (gv - go)(rv - 'ro) .
gy + o) F 9o+ 7o v=1 gy + 7o)iry + 9))

LeMMA 4. - Given a sequence of real or complex numbers z,, 2, , ..., 2,32,
in the halfplane Rz > 0. If the sequence has a finite limit point { with
BC > 0, then the sequence

(3.1)
is complete in L,(0, o).

To prove this, we wish to show that if f(x) is a function in L0, o),
and sunch that

1

—_ 9
o T zvz s (V = 1, gy ...)

o0
M— =0, v=1, 2.
z* + 2’

0’ v

Then f{x) =0 almost everywhere.
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The function

= T
0

is analytic in the halfplane Re¢ > 0, and vanishes at infinitely many points,
with a limit point in the domain of regularity. Hence

Fizy=0 in Re>0.
Now for real 2 >0

oo
— [ e— @+t
0

1
a:’l__’_zﬁ

hence,
Fiz) = [ flx)e—=+=Vdidz,
0

and the double integral is absolutely convergent for # > 0. On putting

= [ flx)e—=tdx
0

we have now

it follows that
®(f) =0 a. e. in (0, o),
hence
fh=0 a. e.

This proves the lemma. It is known that completeness and closure in
L,(0, oo} are equivalent. Hence under the assumption of Lemma 4 to any
given € >0 and to any function f(x) & L,0, oo} there exists a linear

(]
aggregate X a,{x® + 2,%)~* such that
1

(3.2) [ i fla) — % < e

1 {BZ—|—Z

We shall employ Liemma 3 and 1 to find the necessary and sufficient
condition for the closure of the sequence (3.1).
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4. Closure of the sequence {x* + 2,%)~* in L0, ).

A necessary and sufficient condition for the closure of the sequence (3.1)
is that any preassigned fraction (x*+ 2))~', Rz, >0, can be approximated
by (3.1} in the sense of (8.2). The sufficiency follows evidently from Lemma 4.
Consider now the minimum of

e 2
oy
0. =2 o
0"+ 27
0
for u,=1 and #,, «,,.., %,, arbitrary. The approximation is possible if
and only if
min Q, = p,z,) — 0 as n — oo
Now
(o]
n -
Qn= I Couatily, Cop = [(m’ + 2,0) 7 x® + 2,°) " tde,
v, k=0 d

and

min Q, = [cul; : [} -
By Lemma 2

ki3

Cop — 7T =3
22\,2/‘(2‘; g zk)

thus Lemma 3 yields (with g, = 2,, 7, = &,)

2

" J—
pp=—— | 2T R
2/z,/*2, +2,) L2, 2,
On patting 2, = v, + éw, and
(4.1) =1 — |2 "%
Zn -+ 2,
we have

(4.2) S LI
[&n 4+ 20[2

ol -
Thus g, — O if and only if T v,/2, + 2,/7* = occ. We may choose z, real and
1

positive, so that the condition becomes

fo'e] Un
(4.3) b i . =00
1 (Vn + 1) 4 Wy
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But
[2a]* 4 05 << (Un + 0, + 0,7 < 2(/20/" + 1)

hence {4.3) is equivalent to

Uy

) G )
[2a]* 2}

If this holds for some wv,, it holds for every positive v, hence we may
choose v, == 1. We have established the following theorem:
THEOREM 1. -~ The sequence (x* + 2,°)~!, Rz, >0, v =1, is closed (complete)
in L0, oc) if and only if
S Rz, _
v=1 1+ / zv/ 2

5. Closure of the sequence x(x® + 2,°)~*! in L,(0, o).
The sequence x(x* + 2,°)~!, R#> 0, can be ftreated in much the same
way. If f(x)e L,, then
[os]
Fig) = | @ g
'+ 2
0
represents a regular function for Rz > 0. If F({,) = 0 and the sequence {{,

has a limit point inside the halfplane Rz >> 0, then F(z) = 0. Now for real
positive z,
[e el o]

Flg) = / [ xf (x)e—=*+=" dida
0

jeo]

Il
c\\
®
|
%
o~
hod
=
u
S

where

DY) = [ af (x)e—="dwx.
0
As before it follows that f(x)coO in (0, o). We next consider the mi-
nimum of

o0
n

"=_/m2 z
[

1 &

Uy

2
5| de, for w,=1; wu,, u,,.., u, variable.
-+ 2y

2

Now

n
Q” = X CypUyily,
v, Fezz ()

4 1i di Mai
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where

a®da 1 2,0 2,°
Oy == 2 23 2 '2=_2 2 2 T p? 2d:13
(@® + &%) x* + 2,7 a2\t -2y "+ 2
0

_ 11:(5,, —2) P
T et — 2 20k + 2,)

(from Lemma 1)

Lemma 3 yields (with g, =#,, r,= )

T 2

min @, = - I”I
2z, + 7,) 1

18y — 2,

2, + 2,
Thus the condition for closure remains the same as in the previous case.

We have proved:
THEOREM 2. — The sequences | x/(x® + 2,4, Rz, >0, is closed in L,(0, o)

if and only if = Ba/(L + [a,)?) = co.
1

On pufting ~
2 ol+2) 1
A= T, T Ty
B g 124
1+ /2,72 "1+ 2,7

we get

and the condition X z,/(1 + /#,/*) = oo becomes

1+ 22,

STERET

which is exactly the necessary and sufficient condition for the closure of
the sequence {a™! in L0, 1) (cf. [4]). On writing

1 2 _ R
zy""/zv/z_'YV) m2+zvz'—YV 1_’_%27112’

it is seen that the sequences

1 _ L
ol e
are simultaneously closed or not closed. Furthermore Ry, > 0 if Rz, > 0 and
conversely. Iinally

©.1) o By _~§v‘i _ By,
' Taef T T mr el Tl

Thus Theorem 1 is eqmivalent to:
TeEOREM 3. - The sequence (1 -+ x*v,”), Ry, > 0, is closed in L0, o if
and only if the series (5.1} is divergent.
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6. The sequence = e—*/2,
Let f(x) € L,(0, oc); the function

6.1) Fle) = / e+ (@) Ao

0

is regular in the halfplane Kz > ———é. Hence if F(z,) =0, v=1, and the se-
i

quence #, has a finite limit point inside the halfplane Bz > — 5

Now fore>0

then Fiz) =0.

e-icn
1/2%i [z“azdz = %

c~—400

1, for a > 1
0, for 0 <a < 1.

Hence for a > 0, using (6.1)

e~-800 0
1/2xi f 2 Fg)a*dez = | e—=I3f(x)de.
cico ila
Thus if F(2) = 0, then
[e0]

[ e*Pfla)de =0 for all « > 0;

&%

it follows that f(x)co0 in (0, o). We have proved:
THEOREM 4. - The sequence | e—*2x™ | is complete in L, 0, oo) if the se-
quence z, has a finite limit poinl inside the halfplane Rz > — ;

Denote by §,, ¢,, ... a sequence of real numbers such that §, — ¢ -—-%.
By Theorem 4 the sequence e—/%x™ is closed in L,(0, oo). Thus a sequence
{ e==i2x™ |, Re, >0, will be closed in L,(0, co) if and only if each e—=2%* can
be approximated by linear aggregates of the functions e~*2x™ in L,(0, oc).
Consider one such §, which is different from each z,; denote it by 2,. Now
write

0

=
0

=)

= [ ( 3 uvuke—”wz“*';")dx.

v, k=0
0

2

dx

n
S u,e— 2™
y=0
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In particular let 2, = «, and

2, = o -V, v=1, 2, 3,...; where a>—1'

27
then
n o T@u4v+ k4 1)
— ;
Qn -‘—v’kf-‘z(;u’v Uy P(za_’_ 1)

Now [cf. 6, p. 46] min @, — O(w — oc}; if follows that the sequence
ng=1
{e~®Rgriv ], o, is complete in L0, oo). For other proofs ef. {10] and [2].

7. Closure of the sequence
et —z,

1 —ctz,
in C(—1, -+ 1).
Let ¢ be a real or complex comstant, 0 < /o/ << 1; if ¢(f) is of bounded
variation, then

3
= | &7
P = | 7o 0
is regular in /2/ < 1, and
+1
B < [ jagit).

—1
Assume that Fiz,)=0 for v=1, 2, 3,.., and that S (1 — /2,/) = oo; it
then follows from BLASCHEE’s theorem, that F(z) = 0. Now
¢t — 2 x

_= = of — (1l — Jo/*) 2 (ect)",
1 — ¢tz 1

and termwise integration is permitted as the series is boundedly convergent
to a continuos function. For, we have for — 1 <<{=C1

kd

S (zctyt

foill — o) |2
= (14 [et/}(1 — [ct/™) < 2.

<3 (1— /o) ot P!

Thus
+1
F(z) = c[tdq)(t) — 23 (1 — Je/*)(zct)"—*dY(t) = O;
1
21
it follows that

1

+1
j @l =0, [(L—jortpr=iasy =0, m=1,2.)
1

21
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or
1 1 1
/_tdcf)(t) == 0, ft““’dqa{i) = /c/zft"“dq;(t), (n = 1).
1 —1 |
Thus
1
[t"’"“‘dap(t) =0, k=1, 2, 3,..),
—1
and
1
(7.1) Iy aft”‘dtp(t) = e/’ xi1s k=0,1,2.)
it

It follows that /Jy/ << /Jxy,/ Furthermore
Jk =/G/_2hJo’ k=0, 1’ 2; '");
hence if /¢ < 1, then [Jp/ — oc, unless J, = 0. Bat

i
Nﬁ;ﬁww,

hence J, =0 and J, =0, k=1, 2, 3,....
The system {{"}0, co being closed in C(— 1, 1), it follows, using a
well known theorem of F. RiEsz on closure, that the system

G2yl S(l—ja)) = oo,
1 — ctz,
is eclosed in C(—1, +1).
If j¢/ =1, then write

1 i
[ £ = 4(1) — 4l 1) — 2% [ £pi0at

hence
1
i =dJ, — 2k f AT [
1
Now from (7.1) J; = J, hence
1
f R t)dt = 0, k=12 3..)

-1
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or
(7.2) 2kft Y(t) — $(— &) — J, | Bt = — J,.

Clearly
gl =d{f) —Y(—¥8 —J, — 0 as {11

Given & >0, choose v so that /g{f)) <& for 1 —n <i <1, and M so
that /g(f})) < M ; then from (7.2)

1—m 1
1J,] < 2M f =gy 4 e [ pr—tdy,
0 1—n

thus
[dof < M(L—n)* +e{1—(1—n"],
and letting & — co
] <e.

Hence J, =0, J, =0, k=1, 2, 3,....
(For continuous f(f), P. FuNnk proved (Math. Ann. 77, 1916, p. 146-147)

1
that [ fit)i"dt — f(1) as n — oo).
0

Summarizing, we have proved:

THEOREM b. - Let 0 < ¢/ < 1, [2,/ < 1, Z(1 — [3,/) = oo, then the sequence
E—=2 s closed in C(— 1, + 1).
1 —ctz,

8. Completeness of the sequence 1/(1 —=z,2) in H.
It flze H,, and

27
(8.1) [e—‘”’f{e“)dt =0, n=0,1, 2, ..}
0
<o
then, putting f(2) =§c,,z" we have
2n
(8.2 [e—""‘f(e“)dt = 2mo, = 0, (=0, 1, 2,...),

0

hence f(z) =0. Thus the sequence 2", # =20, 1, 2,..., is complete in H,.
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DEerFiNITION 1. - The class of functions f(z) regular in /z/ < 1 and con-
tinuous in /z/ <1 shall be denoted by K,; a sequence u,(z)c K is called
closed in K if to any function f(2}&€ K and to any given & > O there exists

a linear aggregate [, = Z cn4, so that
1
(8.3) /Fle) — ey <e for /o/< 1.

It follows from a theorem on normed vector spaces [ef. [1], p. 58, Theo
rem 7}, that the sequence {u,(z)} is closed in K, if and only if the infinitely
many equations

2

(8.4) [ u,{et)dd(t) = 0, m=1,2 8,.)
0
imply
2n
(8.5) [ gle®dd(t) =0 for every glz)e K.

0

Here ¢(f) is of bounded variation. On putting g(z) = 2”, it follows from
(8.5) that
2n
(8.6) /e“”qu»(t) =0, (r=0,1, 2 ...

0

Conversely if (8.6) holds, then employing a well known theorem of FEIER
on arithmetic means, it follows that (8.5) holds.

Thus the sequence 2", w =0, 1, 2,..., is closed in K and the statements
(8.5) and (8.6) are equivalent. OQur aim is to prove the following theorem.

THEOREM 6. - Lef

/a,/ <1, 2,2, for v==k;

the sequence

1
ryl2) = T’ v=1,2 3,..),

is complete in Hy if and only if T(1 — /2,/) = cc.
Consider the funefion
2r
gle™")

Flz) = / =T dt, gl e H));
0

it is regular for /2/ < 1; by assumption Ffz,) = 0.
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Furthermore, by termwise integration
2
o0
Flz)=2#» [ e—dig(eit)dt ;

"

hence F(z) =g(s)€ H,, and by a theorem of ¥. Riesz, F(z)=0. It follows that
2n
[ e Vigleitydt = 0, v=1, 2, 3,..}

hence g(z) = 0. '

Conversely, if g(l — /2,/} < oo, then the product
[t
@ E., -2
1 _z_v — 2/2,/*

is a function, regular in /z/ </ 1 and belonging to H.
By Farou’ s theorem on the boundary function

h(z)

1 [hixde 1 h(e“)e“dt

Oni| x—2z 9m| eff —z
la)=1 0

hiz) =

2
_1]hwwt

T 9%/ 1 —zet
b

By assumption,

eﬂ
fl —2, e“” 0;

hence the sequence 1/{1 —z,2) is orthogonal to the function 7{z). Thus we
have proved that the condition X (1 — /z,/) = co is sufficient for completeness
of the sequence {1/(1 —#e#)! in H,, and necessary for the completeness
in H,, 1 <p<oco

In this connection, the following theorem is of interest:

TuEOREM 7. - If u.(2)e H, (or K), and if the sequence {u,(2)} is closed
in H, (or K), then the sequence |u.,(2), w.'2)} 2= e is closed in L, (or C)
for all real or complex valued functions of t in (0, 2m).

For the proof, note that any real valued function ®(f) e L, (0, 2x) (or C)
is the real part of a function f(e*’) where f(z)€ H, (or K). Now f(z) belongs
to the span of the sequence {u.(z)}, hence f(z) belongs to the span of the
sequence {#,(z)1. This yields our assertion for real valued functions. If ®(¢)
is complex valued ®(f) = @,(f) + ¢®,(f), then the same argument applies to
®, and ®,, which proves our theorem. A corresponding theorem holds for
completeness.
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9. Direct proof of closure in H,.

It is of interest to give a direct elementary discussion of the closure of
the sequence {1/(1 —2,2)} in H,. It is parallel fo the one used in §§ 1, 2.

Suppose that f(z)s H,, and that

.
fle*)ai

1 —zett
)

=0 (v=1, 2,..).

Consider the funetion
2

.n ‘_"t"d
o= [ 22,

0

it is elear that F(z) is regular for /2/ <1, and Fg)=0 for v=1, 2,....
If the sequence |{2z,! has a limit point inside the unit circle, then by an
elementary theorem F(z) = 0. But for /2/ <1

2n
Flo)=3 f etF{eHdt
’ 0
hence

2r

[eiytf(éi—th =0, v=20,1, 2, 3,..).

]

It follows that f(e*)co0. We have thus proved the lemma:

LemMa b. - If {z,} h's a limit point inside the unit circle, then the
sequence {1/(1 — 2,2)} is complete (closed) in H,.

In particular we may choose 2, =@+ 1)~ v=1, 2, 3,.... Now a
sequence |(l —z,2)~*} is closed in H, if each element of the sequence
{{1 —v~'2)~*} can be approximated in the sense of (2.1) (p =2) by linear
aggregates ¢l — z,2)~% Denote a term of { (1 — (v 1)7*2)~*}, if it is not
contained in the sequence {1 — 2,2)~*, by (1 — 2,2)~*. Consider the minimum
of the Hermitian form

Q| u!-/

2 u(l — 22~ ]vdt, for z=ce" u,=1;
PES

we have
2

n dt
Qiut= X uyu[ - == X U, UiCpr, SAY.
v, k== ko (1 — zet)(1 — 2pe™") R y

Annoli di Matematico o7
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210
Here
21
(s 9] O _
Con = [(E z;‘e‘“‘)(z 2x'Me” '"")dt
0 0
0
2= 2
1— 22 2t —a)
and
9.1 min @ lui= [G”k]:; =m,, say.
{cvk}i

Now (cf. Lemma 3 with ¢, =2,7', r,= —g, for a =0 or 1)
I (Z{'i —_ Zk_i)(ék - év)

@r)r=ot e
{Cvk}gz n R n _
H &y 731 (zv—':l - Zk)
v, k=a

[+4

Thus
s - =Ny
22; 1 }L(Zv 2y )(Zn 2)

Wy, = —» =
2 -1 .
0 &, 2y I (Zv—i — ZO)(Zo_i . Zv)

and this espression reduces easily to

. on nl oo s,
Mo =T T ’1 — 28y
(1 —/2,/ 1 —/2,/%))

/I1 ‘_fgozw/z

9.2 e
{ ) 1 — /50/1 1
To have closure in H, it is evidently necessary and sufficient that

m, — 0, and this is the case if and only if

1—/2,/° _
/T—2&/? o0 OF

S (1 — /2,/) = oo

z

(9.3)
Thus the sequence {1/(1 — 2,2)} is closed in H, if and only if (9.3} holds.

10. Orthogonalization of the sequence 1/(1 — 2.2).

If 2,2k 2y, for v= £k, then
Dn = [Guk] :*:' 05
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hence the functions 7,(2) =1/(1 —22), v=1, 2,..., are linearly independent.
Orthogonalization and normalization yields the sequence p,(z) where
Prz), ... ral®)
Oy ceey Ony
eal2) =M, ! “ e
}i c‘:ﬂ—l ’ Gn,n-—x

and

kX
M, =38, {[eali-[oult ™ 15, /3./=1;

employing again Lemma 3, yields

. 1 1—2
0— 2y
pn(z)-—nnl__znz ]iI /zv,/l—zzv

where 7, is the normalizing factor.

In terms of the orthogonal sequence {p,(2) the linear aggregate of best
approximation in H, to a given function f(z) can now be found by the
standard method. We have

2
Q, = [[ f(e*) — 2 c,p,(e*) |*dt
] 1

F4:4 2r
- [ | Fle®) [Pdt + 1§ ot — 2R % e, [ ot = 0.
3
] 0

Now put
2m
/ Pv(‘g“)f(_e??)dt = Yvs
4]
then
3 9" k3 n
Z/GU‘YV/2:§/CV/2+Z/Y\»/E . 2Bzchu;
1 1 1
and
2n
n n
0n =5 /0=t [ sften  at =5 e
(1}
Hence @, becomes minimal for variable ¢, ,..., ¢., if

Cy = Ty v=1 2 .., n).
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We get
2r
min @, = [ /fle)/at — 5 /v, /.
. 1
The development of f(z) in terms of the sequence {p,(z)} is

(10.1) ) 2o Z apule).

If Z{1 — /2,/) = oo then the development converges uniformly to f(2) in
any circle /z/<r <1, and in the mean on /z/ =1, whenever f(z)c H,,
(cf. [8]). If 2=z, k an integer, then

ea(z) =0, for n=k+1, k+2,..,
and

k L —
f(zh) = 3‘11 vav(zk) = V§1 YVPV(zk), for n=k.
It follows that the partial sum S,(2) of (10.1) takes on the values f(z,)
for 2 =12, k=1, 2,..., n, hence it represents the interpolation for f(z) at
the given points 2,, .., 2,.
For another proof cf. MaLmqQuist [3], TAKENAKA [11] and WaALsH [12],
[(13]; WALSH gave some more general results.

11, Closure of triangular sequences.

We can use the device of the previous sections to answer the following
question:

Given a triangular system of constants in the unit circle 2,1, %uz2, ...,
Zan, W=1, 2, 3,..; /2s/ <1; under what condition can every function

n
in H, be approximated by linear aggregates X ¢,/(1 —z,,2? We assume
vzl

Zn, v F 2 for vk, v, k=1, 2,..., n; if 2, , =12, indipendently of n, we
get the previous case. We introduce auxillary coustants z,, p=1, 2, .., so
that /z,/ <1, 2, == 2,, for all u, n, v, and assume that the sequence 1/(1 — z,2)
is closed in H,.

We now seek the minimum of the Hermitian form (2., stands for a

tixed z,)
2n

3 Uy 12 it P
Q{’Mz%: Hol—zz |dt, z:e,uozl,
P ny
0
the minimuam is

" — [y

L 7

{ka]x
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where now

2n
Z"’ v(z ,u_‘ . Zn, k)

Cyre ==

We find, replacing in (9.2) 2, by z,,,,

2z =y (L= /2Nl —/2a,./)
Moy = 7 e 1113 1 i C————we .

We now must have lim m, =0, which is equivalent to 3 (L —/2n,v/) — o0

0n— 00 v=1
as n — oo. Our result is:
THEOREM 8 - Given a iriangular system {2, ,}v=1,2,..,n,n=1,2, 3,..,
Jen/ <1, 2n,yF=2ux for vk In order that every function in H, can be

approximated by linear aggregales X c¢,/(1 — 2,,,2), it is necessary and suffi-
v=1
cient that

{ n

lim |n— E Jem ot | = oo,
”n—s 00 y=1 |

On writing 2y,, = 1/,,, the basic rational functions become &, ,/(Cn,s — 2);

this form was used by WaLsH, who discussed more general approximation

problems for such systems. (cf. [13], chapters VIII and IX; see also TAkE-
NAKA, [11]).

12. Closure in C(0, o).

We now discuss the closure of the sequence |1/(x’ + 2,%)!1, 0 in C{0, co);
we may replace z,*> by {, and «* by (1 —#)/f, 0 < < 1: we thus consider the
sequence {/(1 — ¢ + (,t) for 0 << < 1. Replacing 1 — ¢, by v, we get the sequence
t/(1 — v,8) = r,(#), say. Note that »,(0) =0, v=1, 2, 3, .... Adjoining the constant
r.(f) =1, the sequence [7,(f)lp,0 Will be closed in C(0, 1) under certain
conditions for y,. We employ the following criterion: the sequence |r.(f)! is
closed in C(0, 1) if the infinitely many equations

1

(12.1) [ r(8)d(t) = O, v=0,1,2.)

0
imply ¢(f) = 0.
$(0) =0, ¢(ti =

ere ¢(f) is any normalized function of bounded variation,

H
% 19t +0) + $(f — 0)t, 0 << ¢ < 1. Consider the function

)= [ b0
0
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it is regular in the complex plane outside a cut along the real axis from 1
to -+ occ. By (12.1).

1
(12.2) [dq»(t) =0, thus $(1)=$0) =0,

0

and F(y,)=0, v=1, 2, 3,.... To employ an elementary theorem assume that
the sequence |y,! has a finite limit point outside the line 2>=1; then F{2} =0.
For /2/ < 1
© 1
Fio) =3 & [er1ay,
0
0

hence in view of (12.2)

1
[t”dnk(t}: 0, for v=0,1, 2,...

0

But the sequence |y o is closed in C(0, 1) hence ¢(f) = 0. This yields
the theorem (for a related result see [7]):

THEOREM 9. — If the sequence {y,| has a finite limit point, not on the
line z =1, then the sequence ; 1/(1 — vt} is a base for all continuous funmctions
in [0, 1], vanishing at t = 0.

As a corollary we have the result:

THEOREM 9. - If the sequence (, has a finile limit point ouiside the
negative real axis, then the sequence |(x* + {,)~'1 is a base of all continuous
functions in [0, oo], vanishing at x = oo.

We now put x° = u, and use the formula

1
1
— b1 1 .
Wit ft dt, u=0, R{>0;
0

we employ Theorem 9" with a particular sequence {{,}, e. g. §, = (v + 1)/v,

v=1, 2, 3,..., and denote an arbitrary term of this sequence by {, ; let
¢, =1, and ¢, ¢,, ..., be arbitrary constants. Then
11
ST f (g c,,t“**g”’l)dt,
ouw+ G, 1
é
hence

dt.
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We have proved [5], that the sequence |¥~*| is closed in L,(0, 1) and
a fortior: in L (0, 1), if

2RG, — 1
1+ /6, —1/2

(12.3) BL,>; and 3 — o

Thus, under this assumption the function (u -+ §,)~* belongs to the span
of the sequence {(u—+G)~*t. In view of Theorem 9 we have proved the
theorem :

THEOREM 9’ - If (12.3) holds, then the sequence | x* 4§, )  is a base of
all continuous functions in [0, oo], vanishing at x = co.

In view of Theorem ¢ the case of main interest is when /{,/ — oco.
In this case the condition (12 3) reduces to

1 RE,

RCV>Q and ZW=OO, or Z%ZOO.

The sequence |x/{x*+2z,)| can be discussed in a similar, though less
simple manner.

We replace «* by (1 —#)/t, and 2,* by 1 —&,; then

2 =]/r:t 1 _Vit—14
©+2° | ¢ (1%15)-%-1—& 11—

The function

1
Fig = [ Y= ayg)
]

is regular if 2z is not on the line 2>1. For /2/ <1

Fl) =2¢ [ BVIL — Bdd(t).
0 0
1t

1
Vil — ¥ _ _
I 1=t ab(t) = F(G) =0,

and if the sequence %, bas a finite limit point outside the line 2 =1, then
F(z) = 0, hence
p
]tv+%v1 ZHapl) =0, v=0, 1, 2, ....

0
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But the sequence 1, VI — ¢ #+sVI — ¢, v=0, 1, 2,..., is closed in C(0, 1)
{91, § 8; hence the sequence
_® ____* |
Vies 1#+1-G,

is closed in C(0, o). We have now proved
TrrorEM 10. - If the sequence 2, has a finile limil point outside the ne-
gative real awxis, then the sequence

x [ x |

b Vide |&+24e

is closed in C(0, oo).

To eliminate the condition of a finite limit point, we employ the formula

[00]

jte'” sin wtdt = ¢/(x* + 2°), Rz>0, ©=0.
0

Thus
" oo
xZc/(x +2°) = [ t sin x¢ (E c,g“&) dai,
0 0
0

and

X

® 1
" " \
2o/ f + 2 éft[zcue—w dté[[ﬂcv‘v“ildt.
0 0
0 0

Concluding as before we get the theorem :

Tarorem 10. - If Rz, >} and

2
2Rz, — 1
T3 —1pf
then the sequence
x ) x

1,

T4+a 12"+ 2" 1,0

18 closed in C(0, co).

We finally remark that closure propertiers of the sequence x/(x* + 2,%)?
can be discussed in a similar manner.

Closing nofe. - In a recent paper H. KOBER (A note on approximation
by rational functions, « Proc. of the Edinburgh Mathematical Society », Series 2,
vol. 7, 123-133) gave a proof of Theorem 6; moreover, he proved closure in K,
on employing and extending a result due fo J. E. LirtLewoon. Here is an
account of his proof:
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Consider the function
2

Flo) = [ 20

1 — ze—tt’

and assume at first that {(f) is real and monotone. Then

27

1 — Reze—t
)= | " ___dd(t) >0, ¢ ;
Fie) 0/ e R Y >0, for 2/ <1

thus the function 1w = F(z) maps the circular region /z/ <1 onto the half-
plane Rw > 0, or on part of i, while the function

y(z) = %’527 c= [ dti)(t},
1]

maps /z/ <1 on the whole halfplane. Moreover,

2r

F(0)= | ai(t) = o = y0);
0

hence F(z) is subordinate to y(z), (cf. W. RocosINSKI, « Mathematische Zeits-
chrift », 17, p. 262). It folloows from LrrTLEWoOD’ s theorem (« Proe. London
Mathematical Society » (2), vol. 23, Thecrem 2} that

2r

Myp; F)= %i [ | Fpe®) [ dt Y

'y
s < Me; v,

2

0

where 0 < p <1, 0 <X <1; but My(e; y) < Ax, where 4, is a constant,

depending only on A. A similar inequality now follows for any ¢(¢) of bounded
variation. ~

Let now F(e)=0, v=1,2,3,.., and £(1 — /2,/) = oo, then by a theo-

reom of F. RiEsz (« Mathematische Zeitschrift >, 18, p. 87-95), F(z) = 0. But

%
. S v — vt
Fg) = % 2 ‘ [ e—dd(t),

b
hence

2

/e—"vtdcp(t) =0, v=0, 1, 2,....

0
The theorem now follows from the closure of the sequence |e**| in K.

Annali di Matemaotica o8
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