Functions with Generalized Gradient and Generalized Surfaces (*).

by W. H. Fleming (a Lafayette, Indiana, U. S. A.).

1. Introduction. - De Grongi [3a] has generalized the notion of gradient for functions $f(x)$ of k real variables by associating with each f for which a certain number $I(f)$ is finite a vector measure Φ. I call such a vector measure exact, and also say that Φ is the generalized gradient of f. In terms of distribution theory, f is a function whose first order derivatives are measures; see Krickeberg [5b].

In [4a] L. C. Young and the author defined a general notion of boundary and closed surface, within the framework of Young's theory of generalized surfaces. A $k-1$ dimensional generalized surface L in k-space defines a vector measure Φ, termed closed if L is closed. It is shown that for measures Φ with compact support closed is equivalent to exact (Theorem 2) ('). I then investigate the extreme points of the set of all f vanishing outside a fixed cube K for which $I(f) \leq N$. Each extreme point is a multiple of a characteristic function, but not conversely (Theorems 3 and 4). Finally, any f with $I(f)$ finite is represented as a mixture of characteristic functions. The proofs of all these theorems rely on machinery developed in [4].

Functions with generalized gradient are closely related not only to distribation theory (and De RHam's theory of currents as well) bat also with work of Cesari, Goffman, and many other mathematicians. See the succeeding papers by Krickeberg [5b] and Pauc [6b]. For functions with compact support (the only case considered here) the condition $I(f)$ finite is equivalent to the requirement that f be of bounded variation in Cessarr's sense on any cube whose interior contains the support of f. For continuous functions this notion of bounded variation agrees with Tonecli's.

2. Functions with generalized gradient.

Notatron and Definitions. - $x=\left(x_{1}, \ldots, x_{k}\right)$ denotes a generic point in euclidean k-space $R_{k}(k \geq 2)$, and K a given cube in R_{k}. K remains fixed throughout. m denotes k-dimensioual Lebesgue measure: $f(x)$ an integrable
(*) This research was supported by the United States dir Force through the Office of Scientific Researchof Air Research and Development Command.
(1) This result has been obtained independently by Krickeberg [5b] using distribution theory.
function which vanishes outside $K . f_{E}(x)$ is the characteristic function of the set $E . \Phi=\left(\Phi_{1}, \ldots, \Phi_{k}\right)$ denotes a vector valued Radon measure, with support in K and finite total variation $V(\Phi) .|\Phi|$ is the total variation measure associated with Φ.

I say that $f(x)$ has generalized gradient Φ if, for every continuously differentiable function $g(x)$:

$$
\begin{equation*}
\int_{K} f(x) \operatorname{grad} g(x) \mathrm{dm}=-\int_{K} g(x) d \Phi, \tag{2.1}
\end{equation*}
$$

Let us define, with De Grongi [3a],

$$
\begin{equation*}
I(f)=\lim _{\lambda \rightarrow 0} \int_{R_{k}}\left|\operatorname{grad} f_{2}(x)\right| d m, \tag{2.2}
\end{equation*}
$$

where $f_{\lambda}(x)$ is an appropriate gaussian average of $f(x)$ defined in [3a]. De Grorgr showed [3a, Theorems 1 and -3] under different assumptions on f (bounded, not necessarily vanishing outside a cube) that f has a generalized gradiend if and only if $I(f)$ is finite; moreover, if Φ is the generalized gradient of f, then $I(f)=V(\Phi)$. The proofs of these results also apply with the present assumptions. Let \mathfrak{F} denote the set of all f with $I(f)$ finite, and \mathfrak{F}_{N} the subset for which $I(f) \leq N$.

I call the measurable set $E \subset K$ a Caccioppoli set if $I\left(f_{E)}\right.$ is finite. Cacgroppoli [1] considered the case when E is an open set whose frontier has measure 0 , and assumed that E is the limit in measure of polyhedra π_{n} whose frontiers have bounded areas. In [3a] De Grorgi extendet these ideas to include arbitrary measurable sets, and showed that the approximation property assumed by Caccioppoli is equivalent to the condition that $I\left(f_{E}\right)$ be finite. Following De Grorei, I write $P(E)$, and say perimeter of E, to stand for $I\left(f_{B}\right)$. Let ${ }^{6}$ denote the set of all Cacoloppoli sets, embedded in \mathscr{F} in the obvious way, and $\mathscr{G}_{N}=\mathfrak{F}_{N} \cap \mathfrak{G}$.

Continutity and compactness. - $\left\{\right.$ give \mathfrak{F} the ordinary l_{1} topology. \mathfrak{G} is a closed subset of \mathscr{F}, and on $\mathscr{6}$ the l_{1} topology reduces to convergence in measure of sets E. The space of measures Φ is given the weak topology. Let u denote the mapping carrying f onto the negative of its generalized gradient Φ. It is immediate from (2.1) that u is one-one between \mathscr{F} and $u \mathscr{F}$, functions f differing in a null set being identified (from its definition $I(f)$ is not affected by changes of $f(x)$ on null sets). u is linear and continuous. We shall need the fact that u^{-4} is continuons on $u \mathscr{F}_{\mathbb{N}}$ for every N. This follows from biuniqueness and the following:

Lemma 1. - \mathfrak{F}_{N} is compact in the l_{1} topology for every $N>0$.
Proof. - De Giorgr showed that \mathscr{G}_{N} is compact [3b, Theorem 1]. We shall modify his reasoning to cover the present case. It is easy to show from the
definition of $I(f)$ that \mathfrak{F}_{N} is complete. To prove compactness it will then suffice to show that \mathfrak{F}_{N} is totally bounded; i. e., given any $\varepsilon>0, \mathfrak{F}_{N}$ can be covered by finitely many spheres of radius ε. Choose $\rho<\varepsilon / 2 h^{\frac{1}{2}} N$, and let $T_{1}, \ldots, T_{h}, \ldots$ be disjoint half-open cubes of side ρ covering k-space. Given $f \in \mathscr{F}_{N}$ define $\overline{\bar{f}}$ by the elementary averaging process:

$$
\begin{equation*}
\bar{f}(x)=\rho^{-k} \int_{\boldsymbol{T}_{h}} f(t) d m, x \in T_{h}, h=1,2, \ldots . \tag{2.3}
\end{equation*}
$$

\bar{f} is constant in T_{h} for each h and vanishes if T_{h} does not intersect K. The $l_{\text {, }}$ distance of f and \bar{f} does not exceed $\varepsilon / 2$. The proof of this follows De Giorgi's reasoning [3b, Lemmas 1 and 2]. In it the analogous estimate for the gaussian averages f_{λ} is obtained first, and then λ tends to 0 .

Let a denote the side length of K. By an easy calculation involving $f_{\text {}}$, and passage to the limit on λ we find, since $f(x)=0$ outside K and $I(f) \leq N$, that

$$
\begin{equation*}
\int_{K}|f(x)| d m \leq a N \tag{2.4}
\end{equation*}
$$

and therefore that the same inequality holds for \bar{f}. The set of functions which take a constant value in each cube T_{h}, vanish for cubes not meeting K, and have l_{t} norm not exceeding $a N$ is totally bounded; hence, this set is covered by a finite number of spheres of radins $\varepsilon / 2$. Thus, \mathscr{F}_{N} is covered by a finite number of spheres of radius ε.
3. Generalized Surfaces. - In this section we collect some known fundamental properties of generalized surfaces, together with useful consequences of them. K is the same fixed cube as above. Let $F(x, \theta)$ denote a continuous function of $(x, \theta), x=\left(x_{1}, \ldots, x_{k}\right) \in K, \theta=\left(\Theta_{1}, \ldots, \theta_{k}\right) \in R_{k}$ satisfying the homogeneity condition:

$$
\begin{equation*}
F(x, p \Theta)=p F(x, \Theta), p \geq 0 \tag{3.1}
\end{equation*}
$$

Ω denotes the space of all such F. A ($k-1$ dimensional) generalized surface L is simply any non-negative linear functional on the space $\Omega\left({ }^{2}\right)$. A generalized surface L is closed if $L(F)=0$ for all exact $F[4 \mathrm{a}]$. For L to be closed it suf. fices that $L(F)=0$ for all continuously differentiable exact F, and every such F is the form:

$$
\begin{gather*}
F(x, \theta)=G(x) \cdot \Theta=\sum_{i=1}^{k} g_{1}(x) \Theta_{i}, \text { where } \tag{3.2}\\
G(x)=\left[g_{i}(x), \ldots, g_{h}(x)\right] \text { and } \operatorname{div} G(x)=0 .
\end{gather*}
$$

$\left(^{2}\right)$ What we have defined would be called in the usage of [4] or [7a] generalized sur. face situated in the cube K.

Let S_{k} denote the surface of the unit sphere in θ-space. By the Riesz representation theorem. every generalized surface L is represented by a Radon measure γ on $K \times S_{k}$, and conversely. Let $\mu(A)=\gamma\left(A \times S_{k}\right)$, all Bores sets $A \subset K$. By known theorems there exists, for μ-almost all x, a measure α_{x} on S_{k} with $\alpha_{x}\left(S_{k}\right)=1$ (conditional distribution for fixed x) such that $\alpha_{x}(B)$ is Borel measurable in x for every Borel set $B \subset S_{k}$ and:

$$
\begin{equation*}
L(F)^{v}=\int_{K} \int_{S_{k}} F\left(x, \text { A)d } d \alpha_{x} d \mu . \quad \text { all } \quad F \in \Omega .\right. \tag{3:3}
\end{equation*}
$$

α_{x} is unique up to a f-mull set. The norm $a(L)$ equals $\mu(K)$, finite. $a(L)$ is additive and weakly continuous in the space of generalized surfaces. Let $\Theta(x)$ denote the center of gravity of α_{x}. Then $|\Theta(x)| \leq 1$ with equality if and only if α_{x} is carried by the single point $\Theta(x) \in S_{k}$.

Let t denote the mapping carryinm L into the vector measure Φ defined by:

$$
\begin{equation*}
\Phi(A)=\int_{A} A(x) d \mu, \text { all Boret sets } A . \tag{3.4}
\end{equation*}
$$

Φ is the track (measure) of L. By known theorems:

$$
\begin{equation*}
|\Phi|(A)=\int_{A} \mid \Theta(x) d \mu \text {, all Borel sets } A ; \tag{3.5}
\end{equation*}
$$

in particular.

$$
\begin{equation*}
I^{\prime}(\Phi)=\Phi\left|(\kappa)=\int_{\kappa}\right| \Theta(x) \mid d \mu . \tag{3,6}
\end{equation*}
$$

Given Φ, the set $t^{-1} \Phi$ is infinite. However, there is just one element of this set of least norm. I call it $\tau \Phi$. Using the Badon-Nikodym theorem there is a function $\Theta_{n}(x)$. uniquely determined and of absolute value 1 except for an Φ-null set, such that:

$$
\begin{equation*}
\Phi(A)=\int_{A} \Theta_{n}(x) d \mid \Phi: \text { all BoreL sets } A . \tag{3.7}
\end{equation*}
$$

Then $\tau \Phi$ has the representation:

$$
\begin{equation*}
\tau \Phi(F)=\int_{K} F\left[x, \Theta_{0}(x)\right] d \Phi \mid, \text { all } F \in \Omega . \tag{3.8}
\end{equation*}
$$

From these remarks follows:
Lemma 2. - If $\Phi=t$ then $V(\Phi) \leq a(L)$ with equality if and only if $L=\tau \Phi$.

If $\Phi=t L$ then $\Theta_{0}(x)=\left|\Theta(x)^{-1} \Theta(x),|\Phi|\right.$-almost everywhere. Using the homogeneity condition (3.1) and (3.5):

$$
\begin{equation*}
\tau t L(F)=\int_{K} F[x, \Theta(x)] d \mu, \text { all } F \in \Omega\left(^{3}\right) \tag{3.9}
\end{equation*}
$$

The space of generalized surfaces, as well as the space of vector measures Φ, is given the weak topology. This topology for generalized surfaces can be metrized by the McShane distance [7a]. If $t L=\Phi$ and F has the form $G(x) \cdot \Theta$:

$$
\begin{equation*}
L(F)=\int_{K} G(x) \cdot d \Phi \tag{3.10}
\end{equation*}
$$

Therefore, the operation t is linear and continuous. Although τ is neither linear nor continuous, the following statements hold:

Lemma 3. - Let $L_{0}=p L_{1}+q L_{2}$, where L_{0} has the least norm property and p, q are real positive. Then L_{1} and L_{2} have the least norm property.

Proof. - Let $\Phi_{i}=t L_{i} i=0,1,2$. Then $\Phi_{n}=p \Phi_{1}+q \Phi_{2}, V\left(\Phi_{i}\right) \leq \alpha\left(L_{i}\right)$, and

$$
a\left(L_{0}\right)=p a\left(L_{0}\right)+q a\left(L_{2}\right) \geq p V\left(\Phi_{1}\right)+q V\left(\Phi_{0}\right) \geq V\left(\Phi_{0}\right)=a\left(L_{0}\right)
$$

Hence, $a\left(L_{i}\right)=V\left(\Phi_{i}\right)$ for $i=1,2$.
$F(x, \Theta)$ is called positive semi-regular if F is convex in Θ for each fixed x.
Theorem 1. - Let Φ_{n} be a sequence of vector measures supported in K, such that $V\left(\Phi_{n}\right)$ is bounded and $\Phi_{,}$tends reakly to a limit Φ_{0}. Let $L_{n}=\tau \Phi_{n}$, $n=0,1,2, \ldots$.
(a) For every positive semi-regular $F \in \Omega, L_{0}(F) \leq \liminf _{n \rightarrow \infty} L_{n}(F)$.
(b) If in addition $V\left(\Phi_{n}\right)$ tends to $V\left(\Phi_{0}\right)$, then L_{n} tends weakly to L_{0}; i. e., $L_{0}(F)=\lim _{n \rightarrow \infty} L_{n}(F)$ for every $F \in \Omega$.

Proof. - It suffices to establish that every subsequence contains a further subsequence for which the conclusions hold. Since $a\left(L_{n}\right)=V\left(\Phi_{n}\right)$ is bounded it will therefore suffice to consider the case when L_{n} tends weakly to a limit L^{*}. Let us write, according to (3.3),

$$
\begin{equation*}
L^{*}(F)=\int_{K} \int_{S_{k}} F\left(x, \Theta \mid d \alpha_{x}^{*} d \mu^{*}, \text { all } F \in \Omega\right. \tag{3.11}
\end{equation*}
$$

and $\Theta^{*}(x)$ the center of gravity of α_{x}^{*}. Since $\Phi_{n}=t L_{n}$ tends to $t L^{*}$ by continuity of t, and also to $\Phi_{0}, t L^{*}=\Phi_{0}$.

[^0]If F is positive semi-regular, the inner integral in (3.11) is no less than $F\left[x, \Theta^{*}(x)\right]$; therefore, $L^{*}(F) \geq L_{4}(F)$ by (3.9). Since the norm is weakly continuous, $\left.\lim a\left(L_{n}\right)=a!L^{*}\right)$. Thas, under the hypotheses of (b), $\alpha\left(L^{*}\right)=V\left(\Phi_{0}\right)=a\left(L_{0}\right)$. By Lemma 2, $L^{*}=L_{0}$.
4. Closed if and only if exact. - I call Φ exact if Φ is the generalized gradient of some $f \in \mathcal{F}$; and Φ closed if the integral of $G(x) \cdot d \Phi$ over K is 0 for every continuously differentiable $G(x)$ for which $\operatorname{div} G(x)=0$. For Φ to be closed it is necessary and sufficient that Φ be the track of at least one closed generalized surface. Following [4a], a generalized surface L is an irreducible closed polyhedron if there is a geometric polyhedron Q in k-space R_{k} separating R_{k} into exactly two components of which Q is the common boundary, and a constant $\varepsilon= \pm 1$ called orientation of L, such that if $\Theta(x)$ denotes the exterior unit normal to Q (defined except on edges) and $H, k-1$ dimensional measure in R_{k} :

$$
\begin{equation*}
L(F)=\int_{Q} F[x, \varepsilon \theta(x)] d H, \text { all } F \in \Omega \tag{4,1}
\end{equation*}
$$

If π is the bounded component of $R_{k}-Q$, then by Gauss' theorem:

$$
\begin{equation*}
u f^{\pi}=\varepsilon t L \tag{4.2}
\end{equation*}
$$

In Theorem 2 we mast, strictly speaking, assume $k=2$ or 3 , since the proof depends on an approximation theorem for closed generalized surfaces proved only for these values of $k[7 b][4 a]$. On the other hand, there seems to be no difficalty in extending the approximation theorem to arbitrary values of k. When we refer to [4a] or [4b] below, it is understood that if $k=2$ the corresponding result of [7b] is used instead.

Theorem 2. - Φ is closed if and only if Φ is exact.
Proof. - Exact implies closed is immediate. Let Φ be closed and $L_{0}=\tau \Phi$. By (4.2) $t L \in u \mathscr{F}$ for every irreducible closed polyhedron L. Since t is linear and $u \mathscr{F}$ is a vector space the same is true if $L=\Sigma p_{i} L_{i}$ (finite sum), where p_{i} is real positive and L_{i} is irreducible closed. By [4a. Theorem (1.1)] the closed generalized surface L_{0} is the weak limit of L_{n}, where L_{n} is such a positive linear combination of irreducible closed polyhedra. Let N be an upper bound for $a\left(L_{n}\right)$. Then $t L_{n} \in u \mathscr{F}_{N}$, since $I\left(u^{-1} t L_{n}\right)=V\left(t L_{n}\right) \leq a\left(L_{n}\right) \leq N$. $u \Im_{N}$ is compact by Lemma 1 and continuity of u; and $t L_{n}$ tends to $t L_{0}$ by continuity of t. Therefore, $\mathrm{t} L_{0} \in u \mathscr{F}_{N} \subset u \mathcal{F}$.

From Theorem 2 and earlier remarks it is easy to show:
Corollary 1. - The operation $u^{-1} t$ is a linear, continuous mapping of the space of closed generalized surfaces onto \mathscr{F}.

Conollany 2. - Every $f \in \mathscr{F}$ can be written $f=f^{+}-f^{-}$where f^{+}, f^{-} are non-negative and $I(f)=I\left(f^{+}\right)+I\left(f^{-}\right)$.

Proof. - Let $L=\tau u f$ (closed generalized surface of least norm corresponding to f). As above, L is the weak limit of L_{n}, where $L_{n}=\sum_{i} p_{i n} L_{i n}, p_{i n}>0$, and $L_{i n}$ is irreducible closed. Let L_{n}^{+}, L_{n}^{-}be the sum of those terms for which $L_{i n}$ is positively, negatively oriented, respectively. The functions $f_{n}^{+}=u^{-1} t L_{n}^{+}$ and $f_{n}^{-}=-u^{-1} t L_{n}^{-}$are non-negative. For a subsequence of n, L_{n}^{+}and L_{n}^{-} tend weakly to limits L^{+}and L^{-}; and $L=L^{+}+L^{-}$. By Corollary $1, f_{n}^{+}, f_{n}^{-}$ tend in l_{1}, to $f^{+}=u^{-1} t L^{+}, f^{-}=u^{-1} t L^{-}$, respectively, and $f_{n}^{+}-f_{n}^{-}$tends to f, as n describes this subsequence. Thus $f \pm f^{+}-f^{-}$. By Lemma $3, L^{+}$and L^{-} have the least norm property. Therefore

$$
I(f)=a(L)=a\left(L^{+}\right)+a\left(L^{-}\right)=I\left(f^{+}\right)+I\left(f^{-}\right)
$$

5. Caccioppoli sets and extreme points. - The sets \mathcal{F}_{N} are convex and compact in l_{1} for every $N>0$. Therefore, by the Khein-Milman theorem each \mathscr{F}_{N} is the convex closure of its extreme points. In fact, using a recent beautiful result of CHOQUEr [2] every element of \mathfrak{F}_{N} has an integral represen. tation in terms of a measure carried by the set of extreme points. We shall return to this question in $\S 6$; at present we seek to identify the extreme points. A complete answer is given only for $k=2$. As in $\S 4$ we shall use theorems for generalized surfaces proved only for $k=2,3$, but which presumably remain true for higher values of k.

LEMMA 4. - f is an extreme point of \mathscr{F}_{N} if and only if $L=\tau u f$ is an extreme point of the set \mathcal{G}_{N} of all closed generalized surfaces of norm N.

Proof. - Necessity is an easy consequence of the definitions and Lemma 3. To prove sufficiency, suppose $L=\tau u f$ is an extreme point of \mathfrak{G}_{N}. Let $f=q f_{1}+$ $+(1-q) f_{z}$ with $0<q<1$ and $I\left(f_{i}\right) \leq N, i=1$, 2. Since $I(f)=\dot{a}(L)=N$, we have by convexity of $I, I\left(f_{i}\right)=N$ for $i=1,2$. Let $L_{i}=\tau u f_{i}$. Then $q L_{i}+(1-q) L_{2}$ has track uf and norm equal to N. Therefore $q L_{1}+(1-q) L_{2}=L$, since L has track uf and least norm property. This implies $L_{i}=L$, and hence $f_{i}=f$, $i=1,2$.

Remark, - The requirement that L be an extreme point of \mathcal{G}_{N} is equiva. lent to the statement that L is of norm N and basic closed in the sense of [4a]. L is basic closed if L is closed and $L=L_{1}+L_{2}$ with L_{1}, L_{2} closed implies $L_{\mathrm{t}}=p L$ where $0 \leq p \leq 1$.

Theorem 3. - If f is an extreme point of \mathfrak{F}_{N}, then there exists a Cacciop. poli set E of positive perimeter $P(E)$ such that

$$
\begin{equation*}
f_{E}= \pm N^{-1} P(E) f \tag{5.1}
\end{equation*}
$$

Proof. - Let $L=\tau u f$. A generalized surface is singular if its track is 0 .

Since $V(t L)=a(L)=N>0 L$ is not singular. Therefore, by Lemma 4 and a slight refinement of [4a, Theorem (1.3)] proved in [4a, pp. 476.477], see also $[4 b,(5.2)]$, there exist $p>0$ and a sequence L_{n} of irreducible closed polyhedra such that $p L$ is the weak limit of L_{n}. Let Q_{n} be the carrier of L_{n} and π_{n} the bounded component of $R_{k}-Q_{n}$. By (4.2)

$$
\begin{equation*}
f_{\pi_{n}}=\varepsilon u^{-1} t L_{n} \tag{5.2}
\end{equation*}
$$

We may assume either $\varepsilon=-1$ for all n or $\varepsilon=-1$ for all n. The right side of (5.2) tends in l_{1} to $\varepsilon p f$. Since $\left(\dot{\sigma}\right.$ is a closed subset of \mathfrak{F}, this implies $\varepsilon p f=f_{N}$ for some Caccioppoli set E. Since $I(f)=N$ we conolude that $p=N^{-1} P(E)$.

Theorem 4 . If $k=2$, a necessary and sufficient condition that f be an extreme point of \mathcal{F}_{N} is that there exist a rectifiable simple closed curve Q contained in K such that, if E denotes the interior of Q and λ the length of Q, then

$$
\begin{equation*}
f_{E}= \pm N^{-1} \lambda f \tag{5.3}
\end{equation*}
$$

Proof. - To show necessity let up proceed as immediately above. Q_{n} is now a simple closed polygonal curve, with bounded length. The weak limit $L_{n}\left(=p L\right.$ of L_{2} is a closed generalized curve [7 c$]$ with the least norm property. Hence, by the representation theorem for generalized curves [7e]; L_{0} is a rectifiable closed curve: i. e.. there is a lipschitzian vector function $x(t)$ on (0, 1) with $x|0|=x(1)$ and $\mid x^{\prime}(t)>0$ almost everywhere, such that:

$$
\begin{equation*}
L_{0}(F)=\int_{0}^{1} F\left[x(t), x^{\prime}(t)\right] d t, \text { all } F \in \Omega \tag{5.4}
\end{equation*}
$$

Consider any pair t_{1}, t_{2} with $x\left(t_{1}\right)=x\left(t_{2}\right)$, and let $L^{\prime}, L^{\prime \prime}$ denote respectively the closed curves represented on the interval $\left(t_{1}, t_{2}\right)$ and the complementary part of (0. 1). $L_{0}=L^{\prime}+L^{\prime \prime}$; since L_{0} is basic closed, both L^{\prime} and $L^{\prime \prime}$ are scalar multiples of L_{0}. It follows that $x(t)$ represents on $(0,1)$ a simple closed curre Q described a certain number n times in the same sense. Now $x(t)$ is the uniform limit of representations of the polygons $Q_{n}[70]$. Since Q_{n} is simple closed the topological index of any point $x \notin Q_{n}$ with respect to Q_{n} is 0 , 1 , or -1. Passing to the limit, the same is true for any point $x \notin 0$ with respect to Q. This implies $n=1$; moreover the index of every point in the interior E of Q is ± 1, which implies that π_{n} tends to E in measure. Since $P(E)=\lambda$ we find as in the proof of (5.1) that $f_{E}= \pm N^{-1} \lambda f$.

To prove the converse, assume for definitenesses that the + sign holds in (5.3) and that $N=1$. Let $x(t)$ be a parametric representation of the simple closed curve Q, positively oriented. Then $L_{0}=\tau u f_{F}$ is given by (5.4). Let Γ denote the set of all closed L situated in Q (i. e., such that the corresponding measure f has support in $Q\rangle$. $\mathcal{G}_{2} \cap \Gamma$ is convex and weakly compact.

Let L be an extreme point of $\mathcal{G}_{\lambda} \cap \Gamma$. If $L=q L_{1}+(1-q) L_{2}$ with $0<q<1$, then L_{i} and L_{z} are situated in Q. Therefore, L is also an extreme point of \mathfrak{G}_{2}. Suppose L is not singular. Then, as abore, $p L$ is the limit of simple closed polygons L_{n} of bounded length for some $p>0$. By results of [7c] $p L$ is a closed generalized curve with the same track as an ordinary curve L^{\prime} having Lipschitzian representation $y(t)$ which is the uniform limit of representations $y_{n}(t)$ of L_{n}. Since $y(t) \in Q$ for all t and every curve $y_{n}(t)$ is simple closed, there exists ε with value 0 . 1 , or -1 such that the topological index of every point of E with respect to the curve $y(t)$ is ε. By Green's theorem and passage to the limit, $t L^{\prime}=\varepsilon t L_{0}$. Since $a(L)=a\left(L_{0}\right)=\lambda$ and L_{0} has least norm property, $p \geq 1\left(\varepsilon= \pm 1\right.$ since $\left.t L^{\prime}=p t L \neq 0\right)$.

Thus, every extreme point of $\mathcal{G}_{2} \cap \Gamma$, and consequently every element of $\mathcal{G}_{2} \cap \Gamma$, has track $r t L_{0}$ where $r \mid \leq 1$. It follows from this and least norm
 Lemma 4 this completes the proof.

Remark. - Considerable information is available about the structure of Caccioppoli sets; see [3b], [4b, Theorems 3 and 5], [4c, Theorem 4]. For $k \geq 3$ it is an open question what stronger statements can be made in case the characteristic function of a Cacceoppoli set defines an extreme point.
6. Mixtures. - In this section we represent any function f with generalized gradient by an integral over the set \mathfrak{G} of Caccioppoli sets; in the terminology of [7b] and [4b], f is a mixture of \mathcal{G}. The result obtained is similar to [4b, Theorem 2], but is stronger in a sense in that we represent f pointwise rather than merely as an abstract vector integral.

For $\nu=1,2, \ldots$ cover K by a net $N_{\text {, }}$ of half-open cubes T of side v^{-1}. For each $\nu, T \in N_{\nu}, x \in T \cap K$, and $E \in \mathcal{E}$, let

$$
\begin{equation*}
w_{v}(x, E)=\frac{m(E \cap T)}{m(T)} \tag{6.1}
\end{equation*}
$$

Now w_{v} is continuous on $T \times\{$ for each T, consequently Borel measurable in (x, E). Then

$$
\begin{equation*}
W(x, E)=\limsup _{v \rightarrow \infty} w_{v}(x, E) \tag{6.2}
\end{equation*}
$$

is also Borel measurable in (x, E). F'or given $E, W(x, E)=f_{E}(x)$ almost everywhere in $K . P(E)$ is lower semi-continuous.

Theorem 5. - Given $f_{0} \in \mathcal{F}$ there exists a signed Radon measure ω_{10} on \mathcal{G} of total variation equal to $I\left(f_{n}\right)$ such that, for almost all $x \in K$:

$$
\begin{equation*}
f_{n}(x)=\int_{\mathscr{G}} \frac{W(x, E)}{P(E)} d \omega_{n} \tag{6.3}
\end{equation*}
$$

Proof. - For simplicity take $I\left(f_{n}\right)=1$. Let Γ be the weak closure of the set of all L of the form $\mid a\left(\left.L^{\prime}\right|^{-1} L^{\prime}\right.$ where L^{\prime} is an irreducible closed polyhedron. Every $L \in \Gamma$ has norm 1 . The set Γ_{s} of all singular $L \in \Gamma$ is weakly closed. By [4b, (5.2)] $\Gamma-\Gamma_{s}$ is the union of disjoint sets Γ^{+}and Γ^{-}such that if $L \in \Gamma^{+}\left(L \in \Gamma^{-}\right)$then there exists $\rho>0$ such that $p L$ is the weak limit of a sequence of positively (negatively) oriented irreducible closed polyhedra. Moreover, if $L_{n} \in \Gamma^{+}$tends to $L \in \Gamma^{+}$then the corresponding numbers p_{n} are bqunded away from 0 and ∞.

Let $L_{0}=\tau u f_{0}$. By the approximation theorom of [4a] cited previously L_{0} is the wak limit of convex combinations of I. Then since I is compact there exists a Radon measure ω ou Γ with $\omega(\Gamma)=1$ such that:

$$
\begin{equation*}
L_{0}(F)=\int_{\Gamma} L(F) d \omega, \text { all } F \in \Omega \tag{6.4}
\end{equation*}
$$

Since L_{0} has the least norm property, so do w-almost all L by [4b, (4.4)] (extension of Lemma 3 above). Therefore, if $\Gamma_{1}{ }^{+}, \Gamma_{1}{ }^{-}$denote the set of $L \in \Gamma^{+}, \Gamma^{-}$respectively with least norm property, then $\omega\left(\Gamma_{t}^{+}\right)+\omega\left(\Gamma_{1}-\right)=1$. As in the proof of Theorem 3 , to each $L \in \Gamma_{1}^{+}$corresponds a set $E \in \mathcal{G}$ denoted by $\sigma(L)$ such that $P\left(E \mid u^{-1} t L=f_{E}\right.$. The mapping σ is continuous on $\Gamma_{1}{ }^{+}$.

Let the measure $\omega_{0}{ }^{+}$on \mathfrak{g} be defined by $\omega_{0}+(U)=\omega\left(\sigma^{-1} U\right)$. By a known theorem we have:

$$
\begin{equation*}
\int_{i_{1}^{\prime}+} \psi[\sigma(L)] d \omega=\int_{\mathscr{G}} \psi\left(f_{E}\right) d \omega_{n}+ \tag{6.5}
\end{equation*}
$$

for every $\omega_{0}{ }^{-+}$-measurable function $\psi(f)$ for which either integral in (6.5) exists. Let us take, for given continuonsly differentiable $g(x)$:

$$
\psi(f)=\frac{1}{I(f)} \int f(x) \frac{\partial g}{\partial x_{1}} d m
$$

If $F(x . \theta)=g(x) \theta_{1}$ (6.5) becomes:

$$
\begin{equation*}
\int_{\Gamma_{1}^{\prime}+} L(F) d \omega=\int_{\mathcal{E}} \frac{1}{P(E)} \int_{K} W(x, E) \frac{\partial g}{\partial x_{1}} d m d \omega_{0}^{+} \tag{6.6}
\end{equation*}
$$

Taking $g(x)=x_{1}$ we see that $[P(E)]^{-1} W(x, E)$ is $m \times \omega_{0}{ }^{+}$integrable.
Similary we define a measure $\omega_{0}-$ on $\Gamma_{1}-$ such that, for all such F :
(6.7)

$$
\int_{\Gamma_{1}^{\prime}+} L(F) d \omega=-\int_{\Xi} \underset{K}{1} \underset{K}{-E} \int_{K} W(x, E) \frac{\partial g}{\partial x_{1}} d m d \omega_{0}-
$$

Let $\omega_{0}=\omega_{0}^{+}-\omega_{0}^{-}$. Using $(6.4),(6.6),(6.7)$ and FUBINI's theorem we have:

$$
\begin{equation*}
L_{0}(F)=\int_{K} \frac{\partial g}{\partial x_{1}}\left(\int_{\mathfrak{G}} \frac{W(x, E)}{P(E)} d \omega_{0}\right) d m \tag{6.8}
\end{equation*}
$$

The left side of (6.8) is also equal to the integral over K of $f_{0} \partial g / \partial x_{1}$. Since g is arbitrary, (6.3) must hold almost everywhere in K.

Clearly the total variation of ω_{0} is ≤ 1 with equality if and only if $\omega_{0}+$ and $\%_{0}^{-}$form the Jordan decomposition of ω_{0}. That $\omega_{0}{ }^{+}$and $\omega_{0}-$ form the Jordan decomposition follows from the least norm property of L_{0}. We omit the details.

Remark. - Using Choquet's theorem [2] one may require in (6.4) that the extreme points of $\mathcal{G}_{\text {, }}$ have ω-measure 1 . With this $[P(E)]^{-1} f_{E}$ is an extreme point of \mathfrak{F}_{1} for ω_{0}-almost all E.

REFERENCES

[1] R. Caccroppoli. Misura e integrazione sugli insiemi dimensionalmente orientati. "Rend. Accad. Naz. Lincei ". Cl. Sc. fis. mat. nat. 5 vol. 12 (195)2) pp. 3-11 and 137-146.
[2] G. Choquex, Existence des représentations intégrales an moyen des points extrémaux fans les cônes convexes, "C. R. Acad, Sci.", vol. 243 (1950) pp. 699.702 and 736-737.
[3] E. De Giongi,
(a) Su una teoria generale della misura (-1) dimensionale in uno spazio ad r. dimensioni, "Annali di Mat.", 4 vol. 36 (1954) pp. 191-213.
(b) Nuovi teoremi relativi alle misure $(r-1)$-dimensionali in uno spazio ad r dimensioni. "Ricerche di Mat.", vol $\pm(190 \overline{)})$ pp. 00.11.
[4] W. H. Fleming and L. C. Yoling,
(a) A generalized notion of boundary. *Tans. Amer. Math. Soc.*, vol. 76 (1954) pp. 475. 84.
(b) Representations of generalized surfaces as mixtures, "Rend. Circ. Mat. Palermo». $\underline{2}$ vol. 5 (1956) pp. 117.144.
(c) Generalized surfaces nith prescribed elementary boundary; "Rend. Cire. Math. Palermo*. 2 vol. 5 (1456) pp. 320.340.
[5] K. Krickeberg,
(a) ひ̈ber den Gaussschen und den Stokesschen Integralsatz, "Math. Nachr.». vol. 10 pp. 261.314.
(b) Distributionen, Funktionen beschränlter Variation, und Lebesgueschen Inhalt unstetiger nicht paramehischer Flächen, "Annali di Mat.", 4. These papers are to appear in the same "Annali" as the present one.
[6] Cir. Pauc,
(a) Considerations sur les grä̈ients genénalisés de G. Fichera et E. De Giorgi, "Annali di Mat.", 4 vol. 40 (1955), pp. 183192.
(b) Fuictions with generalized gradient in the theory of cell functions. annali di Mat., 4. These papers are to appear in the same annali" as the present one.
[7] L. C. Young,
(a) Surface parametriques généralisées, «Bull. Soc. Math, France », rol 79 (1951) pp. 59.85.
(b) Champs vectoviels attachés à une mesure plane, Journ. de Math.", vol. 35) (1956) pp. 345-358.
(c) Generalized curves and the existence of an attained absolute minimum in the calculus of variations, «C. R. Soc. Sei. et Lettres Varsovies, Cl. 1II, vol. $30(19$ 37) pp. 912.235 .

[^0]: (3) In view of (3,9) the present definition of track differs only in form from that given in [4b].

