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1. In t roduct ion .  - DE GIOI~GI [3a] has generalized the notion of gradient 
for functions f(x) of k real variables by associating with each f for which a 
certain number I(fi is finite a vector measure (I). I call such a vector mea- 
sure exact, and also say that ffP is the generalized gradient of f. In  terms of 
distribution theory, f is a function whose first order derivatives are measures ; 
see KRICI~BE~  [5b]. 

In [4a] L. C. Y o u n g  and the author defined a general notion of boundary 
and closed surface, within the fr~tmework of Yov:,~'  s theory of generalized sur- 
faces. A k - - 1  dimensional generalized surface L in k-space defines a vector 
measure ~P, termed closed if L is closed. I t  is shown that foc measures ¢ with 
compact support closed is equivalent to exact (Theorem 2} (l). I then investigate 
the extreme points of the set of all f vanishing outside a fixed cube K for 
which I(f) ~ h\ Each extreme point is a multiple of a characterist ic function,  
but not conversely (Theorems 3 and 4). Finally, any f with I{f) finite is repre- 
sented as a mixture of characterist ic functions. The proofs of all these theo- 
rems rely on machinery developed in [4]. 

Funct ions with generalized gradient are closely related not only to distri- 
butio~t theory (and DE R ~ ' s  theory of currents as well) but also with work 
of CEsta[ ,  GOFF~AN, and many other mathematicians.  See the succeeding 
papers by KRICKEBER@ [5b] and PAuc [6b]. For functions with compact s u p  
port (the only case considered here) the condition I(fl  finite is equivalent to 
the requirement  that f be of bounded variation in C:~SARI's sense un any 
cube whose interior contains the support of 1'. For continuous functions this 
notion of bounded variation agrees with TONELLI' S. 

2. Functions with generalized gradient. 

NOTATION AND DEFINITIONS. - X ----- (X t , ..., Xa} denotes a generic point in 
euclidean It-space R~(k ~ 2), and K a given cube in Rh. K remains fi~ced 
throughout,  m denotes k-dimensional  LEBESGUE measure:  f(x) an integrablc 
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function which vanishes outside If. fEtX) is the characteris t ic  function of the 
set E. (I) ~ ((I)~, ..., (I)kt denotes a vector valued RADON measure,  with support 
in K and finite total variation V((P). I (I) l is the total variation measure asso- 
ciated with O. 

I say that f(x) has generalized gradient (P if, for every continuously dif- 
ferentiable funct ion glx): 

(r(x)grad g(x)dm = -  (g (x) de ,  

K K 

Let us define, with DE GIo~GI [3a], 

,.;,p I(f)  ~--- lim /1  grad f).(x,) t din, 
;,,--~ 0 ] 

R k 

where f~(w)is an appcopriate gaussian average of f(x) defined in [3a]. DE 
GIORG[ showed [3a, Theorems 1 and-3]  under  different  assumptions on f 
(bounded, not necessari ly vanishing outside a cube) that f has a generalized 
gradiend if and only if I(f) is f ini te;  moreover, if (I) is thu generalized gra- 
dient of f, then I(f} = V((P). The proofs of these results also apply with the 
present assumptions. Let ~ denote the set of all f with /'if) finite, and ~N 
the subset for which I ( f ) ~  N. 

I call the measurable set E C  K a C~CClOPPOLI set if I(fE) is finite. CAc- 
oloePoLi [1] considered the ease when E is an open set whose frontier  has 
measure 0, and assumed that E is the limit in measure of polyhedra u,, whose 
frontiers have bounded areas. In [3a] DE GIORGI extende:l these ideas to include 
arbitrary measurable sets, and showed that the approximation property assumed 
by CACClOPPOLI is equivalent to the condi t ion  that I(fE) be finite. Following 
D~ G~oR(~I, I wri te  P(E~, and say perimeter of E, to stand for I(fz). Let ~ 
denote the set of all CAcclOPPOLI sets, embedded in ~ in the obvious way, 
and ~iv : ~.~ (5 ~. 

CO~,TINUIT¥ AND C O M P A C T N E S S .  - [ give ~ the oL'dinary l, topology. 8 is 
a closed subset of ~, and on 8 the l~ topology reduces to convergence in 
measure of sets E. The space of measures • is given the weak topology. Let u 
denote the mapping carrying f onto the negative of its generalized gradient  4). 
It is immediate from (2.1) that u is one-one between ~ and u~,  functions f 
differing in a null set being identified (from its definition I ( f ) i s  not affected 
by changes of f(x) on null sets), u is l inear a , d  continuous. We shall need 
the fact that u - '  is continuous ou u~v  for every N. This follows from biuni- 
queness and the following: 

LE~IMA I. - ~ is compact in the l~ topology for every N > O. 

PROOF. - DE GIORGI showed that 8N is compact [3b, Theorem 1]. We shall 
modify his reasoning to cover the present case. It  is easy to show from the 
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definit ion of Iif)  that ~lv is complete. To prove compactness it will then suf- 
fice to show that ~v is totally bounded;  i. e., given any ~ > 0, ~lv can be 

i 
covered by finitely many spheres of radius e. Choose p < ~/2k~lV, and let 
T, , . . . ,  T~,... be disjoint hal f -open cubes of side ~ covering k-space. Given 
f E ~ -  define f by the e lementary  averaging process: 

( ( 2 . 3 )  - f ( t ) d m ,  x h = 1, 2, . . . .  

[ is constant in Th for each h and vanishes if Th does not intersect  K. The l, 
distance of f and f does not exceed ~/2. The proof of this follows De Gxo~aI' s 
reasoning [3b, Lemmas I and 2]. In it the analogous estimate for the gaussian 
averages f). is obtained first, and then ?. tends to 0. 

Let  a denote the side length of K. By an easy calculat ion involving f~. 
and passage to the limit on ), we find, since f(x)'--O outside K a n d  I(f)~_.N, 
that 

(2.4) - / t f (x) i dm aN; 
J 

K 

and therefore that the same inequali ty holds for f The set of functions which 
take a constant value in each cube T~, vanish for cubes not meet ing K, and 
have l, norm not exceeding aN  is totally bounded;  hence, this set is covered 
by a finite number  of spheres of radius ~/2. Thus, ~N is covered by a finite 
number  of spheres of radius ~. 

3. Generalized Surfaces. - In  this section we collect some known funda- 
mental  properties of generalized surfaces, together with useful consequences 
of them. K is the same f i xed  cube as above. Let F($,  O) denote a continuous 
function of (x, 0), ~ =  (xi, . . . ,  xk) EK, 0 - -  (Ol,..., O~)ERh satisfying the 
homogeneity condition: 

(3.1) F(x, pO) = pl~'(X, 0), p ~ O. 

~2 denotes the space of all such /7'. A (k - -1  dimensional)generalized surface L 
is simply any non-negat ive  l inear  functional  on the space O. (~). A generalized 
surface L is closed if L(F) --: 0 for all exact F[4a]. For L to be closed it suf. 
flees that L ( F ) =  0 for all continuously differentiable exact F, and every 
such F is the form: 

k 
{3.2) F(~, 0) : G(x) • (9 : Z g,(x)O,, where  

i= l  

G(x) = [g,(x), ..., gh(x)] and div e(x) "- 0. 

(~) W h a t  w e  h a v e  de f ined  wou ld  be cal led in the usage  of ~4] or [7a] genera l i zed  sur.  

face s i tua ted  in the cube K.  
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{3.51 

in particnlar.  

(oM 

Let  Sk denote  the surface of the uni t  sphere  in O-space. By the RIEsz repre.  
sentat ion theorem, every generalized surface L is represented by a RADO~¢ 
measure  7 on K X Sh, and conversely.  Let  ~t(A)---7(A X Sk), all BOREL sets 
A C K. By known theorems there exists, for ~t-almost all x, a measure  ~z x 
on Sk with a~(S~) : -1  (conditional dis t r ibuHon for fixed x) such that  :¢~,(B} is 
BOREL measurable  in x for every BoREI~ set B C Sa and:  

(3,'~) L(F}:= f ]F(x,  O)da~dl~. a l l  FE P,. 
! 

K S k 

:¢~, is un ique  up to a It-null set. The ~orm a(L) equals  ~t~K), fblite, a{L) is 
addit ive and weakly cont inuous in the space of generalized surfaces. Let  O(x) 
denote the center  of gravity of ax. Then ] 0(x) i ~  l with equali ty if and only 
if :¢x is carried by the single point  (9(x)E S~. 

Let  t denote ~he mapping  carry inm L into the vector measure  (I) defined by: 

fO(x)d~, all Bo~ET~ sets A. (3.4) (I)(A) 
f 

(I) is the track (measure) of L. ]3y known theorems:  

i ¢ I ( A ) :  f ! O t x )  d~, all BOREL sets A: 
1 

A 

K 

Given (I), the set t - t  (I) is infinite. However,  lhere is jus t  one e lement  of 
this set of least norm. I call it z(I). Using the ~ADON-~]KODYM theorem there 
is a funct ion On(x). unique ly  determined and of absolute value l except  for 
an ~(l)-null  set, such that:  

f (3.7t ~(A/----- (9,(xld I(I) ~:, all BOREL sets A. 
X 

Then ~(l) has the representa t ion:  

[ 

(3.8) ~(I)(F) ---- / F[x, O~{x,j]d i (I) I, a,ll F E ~. 
/ 

K 

]~rom these rema:rks follows: 

L]~)~)~ 2. - I f  ( b - - t L  then YffI)) ~ a(L) with equality i f  and only 
i f  T; ~ ":~. 
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If • ~ tL then Oo(x) = 10(x) ~,-~O(x), ]O i-almost everywhere.  Using the 
homogeneity condition (3.t) and (3.5): 

(3.9) ztL(F) = fF[x ,  O(x)]d~, all •E ~Q ~'~). 
J 

K 

The space of generalized surfaces, as well as the space of vector measures (I), 
is given the weak topology. This topology for generalized surfaces can be 
metrized by the M e S ~ E  distance [7a]. If IL~-CP and F has the form G(x).O: 

(3.10t L(F)  : G(x) . dO. 
K 

Therefore,  the operation t is l inear  and continuous. Although x is nei ther  
l inear  nor continuous, the following statements hold: 

L]~)I)xA 3. - Let Lc, - -  pL~ + qL~, where Lo has the least norm property 
and p, q are real pesitive. Yhen L~ a~d L~ have the least norm properly. 

PROOF. - Let O~= tL~, i = 0 ,  1, 2. Then O, ,=pO,  +qO~,  V(q)~) ~ a(L~), and 

a(Lo) -~- pa(L~) + qa(L~) ~ p V.. {O ,) + q V (O2) ~ V (Oo) = atLo). 

Hence,  a(L~)--V(@~) for i - - 1 ,  2. 
F(x ,  O) is called positive semi-regular if F is convex in 0 for each fixed x. 

T~[EO~aEM 1 . -  Let O,  be a sequence of  vector measures supported in K, 
such that V~O,,) is bounded and O,, te~ds weakly to a limit • o. Let  L ,  = xO,,, 
n----0, 1, 2, .... 

(a) For every positive semi-regular 2'E .o., L0(/r) ~ lira inf L,,(F). 

(b) I f  in  addit ion V(O,) tends to V[Oo) , then L ,  tends weakly to Lo; i. e., 
Lo(F) = lira L , (F )  for every F E  ~2. 

PRooF. - It  suffices to establish that every subsequence contains a fur ther  
subsequence for which the conc]usicns hold. Since a(L,,)~- V(O,) is  bounded 
it will therefore suffice to consider the case when L ,  tends weakly to a 
limit L*. Let us write, according to !3.3t, 

.; ] * . 13.11t .L*IF)= FIx,  O}da~d'~ ~, all FE  f~, 

K S k 

and I')*tx ) the center  of gravity of ~*. Since O, = tL,, tends to tL* by conti- 
nuity of t, and also to O~,, t L * =  • o. 

(~) I n  v i e w  of (3.9) | h e  p r e s e n t  def in i t ion  of I rack  d i f fe r s  on ly  in form f rom tha t  
g i v e n  in  [~b]. 

Annali di Matematica x3 
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If F is positive semi-regular ,  the inner  integral  in (3.11) is no less than 
_Fix, O*(x)]; therefore, L*(F)~_ L,,(F) by (3.9). Since the norm is weakly con- 
tinuous, lira a(L,,)=a!L*). Thus, under the hypotheses of (b), a(L*)--: V(c~o)--a(Lo). 
By Lemma 2, L * = L o .  

4. Closed i f  and only i f  exact. - I call qb exact if ~p is the generalized 
gradient  of some fE  ~;  and (P closed if the integral of G(x} • dg9 over K is 0 
for every continuously differentiable G(x} for which div G(w)--=-0. For qb to 
be closed it is necessary and sufficient  that (P be the track of at least one 
closed generalized surface. Following [4a], a generalized surface L is an irre- 
ducible closed polyhedron if there is a (~eometric polyhedron Q in k-space Rh 
separat ing Rk into exact ly two components of which Q is the common boundary, 
and a constant ~-----:t:: 1 called orientation of L, such that if @(x) denotes the 
exterior unit  normal to Q (defined except on edges) and H, k- -  1 dimensional 
measure in Rh: 

(4,1) L(F) --=- f Fix,  ~)(x)]dH, t i l t  F ~  Q. 
/ 

Q 

If 7: is the bounded component of R k - -  Q, then by GAvss' theorem: 

(4.2) uf~. ~-- ~tL. 

In Theorem 2 we must, strictly speaking, assume k -  2 or 3, since the 
proof depends on an approximation theorem for closed generalized surfaces 
proved only for these values of k[7b] [4a]. On the other hand, there seems to 
be no difficulty in extending the approximation theorem to arbi t rary values 
of k. When  we refer  to [4a] or [4b] below, it is undelstood that if k - - 2  the 
corresponding result  of [7b] is used instead. 

THEORE~ 2. - ~ is closed i f  and only i f  09 is exact. 
P R O O F .  - Exact implies closed is immediate.  Let q5 be closed and Lo-----':(P. 

By (4.2) tL E u~  for every irreducible closed polyhedron L. Since t is l inear 
and u ~  is a vector space the same is true if L = ~,p~L~ (finite sum), where p~ 
is real positive and L~ is irreducible closed. By [4a, Theorem (1.1)] the closed 
generalized surface Lo is the weak limit of Ln,  where L ,  is such a positive 
lineal" combination of irreducible closed polyhedra. Let N be ~ln upper bound 
for a(L,). Then tL , ,Cu~i ,  since [(u-ltL,,)--: V(tL,} ~ a ( L , ) ~ N .  u ~  is 
compact by Lemma 1 and continuity of u;  and tL,, tends to tLo by continuity 
of t. Therefore,  tLo E u ~  C u~. 

From Theorem 2 and earl ier  remarks i~ is easy to show: 

COROLLARY 1. - The operation u-~t is a linear, continuous map~ving of 
the space of closed generalized surfaces onto ~. 
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COROL:~AaY 2. - Every f E ~ can be writlen f -- f+ -- f -  where f+, f -  
are non.negative and I( f )  -- I(f+) ~ I ( f - ) .  

PROOF. - Let L--~uf  (closed generalized surface of least norm corresponding 
to f).  As above, L is the weak limit of L , ,  where  L , : E p ~ , L ~ , , ,  p , , > 0 ,  

i 

and L~,~ is i rreducible closed. Let L~-, L~- be the sum o f ~ m s e  ~e.~s  for which 
L , ,  is posit 'vely, ne,.at:vely or:ented, respectively. The functions f~ - - u -  tL,  
and f-~ : - - u - : t L :  are non-negative. For  a subsequence of n, L~ + and L~- 
tend weakly to limits L + and L - ;  and L - - L  + ~ L- .  By Corollary 1, f~-, f [  
tend in l , ,  to f + - - u - : t L  +, f - - - u - : t L  - ,  respectively, and f~ ' - - f~"  tends to f, 
as n describes this subsequenee. Thus f ~ f + - - f - .  By Lemma 3, L + and L -  
have the least norm property. Therefore  

I(f)  -~ a(L) -- a(L +) + a(n-} ~- I ( f  +) + I ( f - ) .  

5. Cacooppoli  sets and ex t reme  points. - The sets ~N are convex and 
compact  iu l~ for every N >  0. Therefore,  by the KREI~-MIL~IAN theorem 
each ~N is the convex closure of its extreme points. In  fact, using a recent  
beautiful  result  of CgoQuE~ [2] every element of 9~v has an integral represen.  
t~.tion in terms of ~. measure carried by the set of extreme points. We shall 
re turn  to this question in § 6; at present  we seek to identify the extreme 
points. A complete answer is given only for k :  2. As in § 4 we shall use 
theorems for generalized surfaces proved only for k - - 2 ,  3, but which presu- 
mably remain true for higher values of k. 

L E ~ A  4. - f is an extreme point of ~ i f  and only i f  L ---- "cuf is an 
extreme point of the set ~v of all closed generalized surfaces of norm .N. 

PROOF. - Necessity is an easy consequence of the definitions and Lemma 3. 
To prove sufficiency, suppose L ~ ' : u f  is an extreme point of ~N. Let f - - q f t  -'r 
+ (1 - -  q)f~ with 0 < q < 1 and I(f~) "-< N, i --- 1, 2. Since I( f)  -~ a(L) - -  N, we 
have by convexity of I, I ( f ~ ) : N  for i ~ 1 ,  2. Let L~-----xuf~. Then qL~-[-(1--q)L 2 
has t rack uf  and norm equal to 25. Therefore qL~ + ( l -  q)L.,. ~ L, since L 
has t rack uf  and least norm property. This implies L~ := L, and hence fi----f, 
i ~ 1 ,  2. 

R E M A R K .  - The requi rement  that L be an ext reme point of ~iv is equiva- 
lent to the statement that L is of norm 25 and basic closed in the sense of [4a]. 
L is basic closed if L is closed and L-~-L~-b  L2 with L~, L.2 closed implies 
L , - - p L  where  0 ~ p ~ l .  

THEORE~ 3. - I f  f is an extreme point o/ ~ ,  then there exists a Caceiop. 
poli set E of positive perimeter P(E) such that 

(5.1) f~ := -+- N -  ~P(E)f. 

PROOF. - Let L ~ r.uf. A generalized surface is singular if its track is 0. 
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Since V(tL)~-a(L) = IV> 0 L is no~ singular. Therefore, by Lemma 4 and a 
slight refinement of !4a, Theorem (1.3}] proved in ida, pp. 476-477], see also 
[4b, (5.2)], there exist p > 0 and a sequence L,, of irreducible closed polyhe- 
dra such that pL is the weak limit of L,,. Let 0,, be the carrier  o~ L~ and 7:, 
the bounded component  of Ra - Q, .  By (4.2) 

(5.2) f ~  = ~u-~tL,, : 

we~may assume either ~ : - - 1  for a l l n o r  ~ - - - - 1  for a l ln .  The right side 
of (5.2} tends in l¢ to ep/'. Since (,~ is a closed subset  of ~, this implies ~p f - -  fl~: 
[or some C~cc[o~'[~o[~:[ set E. Since I~ f j -  N we conclude that p = N-~P(E). 

TanoaE~I 4. I f  k - ~  2, a necessary and suf[icient conditio~ that f be an 
e.r.treJ~e poiJ# of ~.v is that there exist a rectifiab!e .~imple closed curve Q con- 
trained in K s~eoh that, i f  E deJ~gtes the i~terior of Q and k the length of Q, then 

t5.3i f~ = -- N-~, f .  

P a c e r .  - To show necessity let np proceed as immediately above. Q,, is 
now a simple closed polygonal curve, with bounded length. The weak  limit 
L,(-~-pLi of L,~ is a. closed generalized curve [7c] with the least norm pro- 
perry. Hence,  by the representat ion theorem for genernlized curves [7c]; Lo 
is a rectif iable closed curve:  i. e.. there i~ ~r lipschitzian vector function x(t) 
on (0, l) with .r,(0} = x(lb and I x'(t} i > 0 ahnost everywhere,  such that : 

(5.4~ Lo(Ft :=./Fix(t),  x'(t}]dt, all F E Q. 
0 

Consider any pair t,, t~ with x(t~} =x(t~), and let L', L" denote respecti- 
vely the closed curves represeuted on the interval (t,. t,} and the complemen- 
tary part. of {0, 1). L0 ~---L'+ L";  since L 0 is basic closed, both L' and L" are 
scalar mul t iples  of L,~. It follows that x(t} represents  on (0, 1) a simple closed 
curve Q described a certain number  n times in the same sense. Now x(t) is 
the unifot'm limit of representat ions of the polygons Q, [7c]. Since Q. is sim- 
ple closed the topological index of any point x ~  Q,, with respect  to Q, is 0, 
1, or - 1 .  Passing to the limit, the same is true for any point x ~  Q with 
respect  to O. This implies n =  1; moreover the index of every point in the 
interior E of Q is ~ I, which implies that r:,, tends to E in measure.  Since 
P(E)--~ we find as in tile proof of (5.1} that f E - - ~  N-~i~f. 

To prove the converse, assume for definitenesses that the + sign holds 
in (5.3i and that 2 ¢ - - 1 .  Let x(t} be a parametr ic  representat ion of the simple 
closed curve Q, positively oriented. Ttlen L 0 = , u f ~ :  is given by (5.4). Let F 
denote the set of all closed L situated in Q (i. e., such that the correspon- 
ding measure  ~ has support  in Qi. c3). (~ P is convex and weakly  compact. 
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Let L be an extreme point of ~). (3 F. If  L --  qL, + (t - -  q)L.~ with 0 < q  < 1, 
then L~ and L~ are situated in Q. Therefore. L is also an extreme point 
of c?,~. Suppose L is not singular. Then, as above, p L  is the limit of simple 
closed polygons L,, of bounded length for some p > 0. By results of [7c] pL 
is a closed generalized curve with the same track as an ordinary curve L' 
having Lipschitzian representation y(t} which is the uniform limit of repre- 
sentations y,(t} of L , .  Since y(t)E Q for all t and every curve y,(t) is simple 
closed, there exists s with value 0. 1, or - - 1  such that the topological index 
of every point of E with respect to the curve y(t) is ~. By GREE~'S theorem 
and passage to the limit, tL ' - -~ tLo .  Since a(L)--a(L<,}-~ ), and L o has least 
norm property, p ~ 1 (~ ~ --+-- i since tL' = ptL :4: 0). 

Thu% every extreme point of ~. ('1 F, and consequently every element of 
~). (3 F, has track rtL o where r [  < 1. It follows from this and least norm 
property for L 0 that L 0 is an extreme point of ~). (3 F. and so of ~). By 
Lemma 4 this completes the proof. 

R E M A R K .  - Considerable information is available about the structure of 
CACCIOPPOLI sets; see [3b], lib, Theorems 3 and 5], [4c, Theorem 4!. For 
k > 3  it is an open question what stronger statements can be made in case 
the characterist ic function of a CACCzI-OPPOLI set defines an extreme point. 

6. Mixtures. - In this section we represent any function f with genera- 
lized gradient by an integral over the set ~ of CACCIOPPOLI sets; in the ter- 
minology of [7b] and [4b], f is a mixture of ~. The result obtained is similar 
to [4b, Theorem 2], but is stronger in a sense in that we represent f point- 
wise rather than merely as an abstract vector integral. 

For v 1, ~ K by a ~, . . .  cover net ~:~ of half-open cubes T of side ,+-t 
For each v, T E Nv, x E T ('1 K, and E E ~, let 

~6.1) w,~(x, E} = m(E A Tt 
m( T } 

Now w.~ is continuous on T X ~ [or each T, consequently BOWEL measurable 
in !x, E). Then 

(6.2) Wtx, E) --- lira sup w.~(x, E} 

is also BOREL measurable in {x. E}. For given E, W(x, E)----rE(x} almost 
everywhere in K. P(E) is lower semi-continuous.  

TIIEOREM 5. - Given fo E ~ there exists a signed RADon" ,, easure o),, on 
of total variation equal to I(fo) such that, for almost all x E K: 

/ W~x, El 
16.3) fo(x) = P(Ei d°)°" 

g 
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PROOF.  - F.or s impl ic i ty  take Iif,~} ~ l. Le t  F be the weak closure of the 
set of all L of the form [a(L'~]-' L' where L'  is an i r reducib le  closed poly- 
hedron.  Every  L E  F has norm 1. The set 1'.~ of all s ingular  L E F is weak ly  
closed. By [4b, (5.211 | ' -  F.¢ is the un ion  of dis joint  sets F + and F - s u c h  that  
if L E F  + ( L E I ? - )  then  there  e x i s t s p > 0  such that  pL is the weak  l imit  of 
a sequence  of posi t ively (negatively) or iented i r reducible  closed polyhedra .  
)[oreover,  if L,~ E F + tends to L E F ÷ then the cor responding  numbers  p,~ are 
b~unded a wtly from 0 and  ~ .  

Le t  L o = ~f,f(,. By the approxim~l.tion theorem of [4a] ci ted previous ly  L o 
is the weak  l imit  of couvex combina t ions  of l'. Then since 1' is compact  
there  exists a RADO~ measure  ¢o on F with  (o i l ' )=  1 such tha t :  

((;.4) Lo(Ft ~ fL(F)d¢o, all F E  -Q. 

F 

Since L 0 has the least norm property,  so do to-almost all L by [4b, (4.4}] 
textension of L e m m a  3 above). Therefore ,  if ['~+, I~,- denote  the set of 
L E F ,~-, F -  respect ively  with least  norm property,  then ¢o(P~ +) + to(l'~-) ----- 1. 
As in the proof of Theorem 3, to each L E [' ,+ corresponds a set E E,~ '~ deno- 
ted by z (L) such that  P(Ebu-~tL ~ fz. The mapp ing  ¢~ is con t inuous  on 1'~ +. 

:Let the measure  ¢%÷ on ~ be def ined  by ¢%+(U} --~ ~o(z-'~U}. By a known 
theorem we have :  

((;.sb f ~[a(L)]d¢o : f ~(fE) dtoo + 

for every took--measurable funct ion  ,.~(f) for wlfich e i ther  in tegra l  in (6.5) 
exists.  Le t  us take for given con t inuons ly  d i f fe ren t iab le  g(x): 

K 

If  Fqx. 01 - -  g(x)O~ (6.5) becomes:  

" l 1 / L(F  to = p(Fi.( w(x'  e ,o ÷. 

Tak ing  g(xt ~ :r~ we see that  [PtE~] -( W(x, E} is m X t% + in tegrable .  

S imi l a ry  we det'ine a measure  ~%- on F~- such that,  for all  such F :  

IE f ~gdmd,~)o-. 4t .7) ] LtF eo,=-/p i C 
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Let  to o - -  ~Oo+--t%-. Us ing  (6.4), I6.6), (6.7) and  F u m ~ I ' S  theorem we have :  

~g W(x, El dc%)dm" (6.8) L°(F) = .  ~ ,  PIEI 
K 6 

Tile left side of (6.8} is also equal to the integral over K of fo ?g/~x,. Since g 
is arbitrary, (6.3) must hold almost everywhere in K. 

Clearly the total variation of to o is < 1 with equality if and only if too+ 
and (%- form the JORDA~ decomposition of %,. That too + and ¢%- form the 
JORDA~ decomposition follows from the |east norm property of L o. We omit 
the details. 

REMA:R~. - Using C~Oq)U~T's theorem [2] one may require in (6.4) that 
the extreme points of ~, have to-measure 1. With this [P(E)]-~fE is an extreme 
point of ~'~ for o)0-atmost all E. 
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