Fuanctions with' [Generalized Gradient
and Generalized Surfaces (*).

by W. H. FreMinG (a Lafayetie, Indiana, U. 8. A.).

1. Introduction. - DE GIORGI [3a] has generalized the notion of gradient
for functions f(x) of k real variables by associating With each f for which a
certain number I(f) is finite a vector measure ®. I call such a vector mea-
sure exact, and also say that @ is the generalized gradient of f. In terms of
distribation theory, f is a funection Whose first order derivatives are measures;
see KRICKEBERG [db].

Tn [4a] L. C. YounNG and the author defined a general notion of boundary
and closed surface, within the framework of Youxe’s theory of generalized sur-
faces. A k — 1 dimensional generalized surface L in k-space defines a vector
rmeasure @, termed closed if L is closed. It is shown that for measures ® with
compact support closed is equivalent to exact (Theorem 2 (*). I then investigate
the extreme points of the set of all f vanishing outside a fixed cnbe K for
which I{f) << N. Each extreme point is a multiple of a characteristic function,
bat not conversely (Theorems 3 and 4). Finally, any f with I{f) finite is repre-
sented as a mixture of characteristic functions. The proofs of all these theo-
rems rely on machinery developed in [4].

Fuanctions with generalized gradient are closely related not only to distri-
bution theory (and DE RuAM’s theory of curreunts as well) but also with work
of CESARI, GoFrMAN, and many other mathematicians. See the succeeding
papers by KRICKEBERG [3b] and Pauc [6b]. For functions with compact sup-
port (the only case considered here) the condition I(f) finite is equivalent to
the requirement that f be of bounded variation in CESARI's sense on any
cube Whose interior contains the support of f. For continunous functions this
notion of bounded variation agrees with ToNELLI s.

2. Fuanctions with generalized gradient.

NoTATION AND DEFINITIONS. — % = (%, ..., ¥4} denotes a generie pointin
euclidean k-space R,k >=2), and K a given cube in R,. K remains fired
throughout. m denotes k-dimensional LEBESGUE measure: f(x) an integrable

(*) This research was supported by the United States Air Force through the Office of
Scientific Researchof Air Research and Development Command.

(!} This result has been obtained independently by KrickeBerG [5b] using distribution
theory.
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function which vanishes outside K. frlx) is the characteristic function of the
set B. & =(®,,.., ®,) denotes a vector valued BRADON measure, With support
in K and finite total variation V(®). | ®| is the total variation measure asso-
ciated with ®.

I say that f(x) has generalized gradient ® if, for every continuously dif-
ferentiable function gfx):

(2.1 [f(.fr) grad gle) dm == _fg (x) dD
K K
Let us define, with D GIoraI [3a],

(2.2 I{f)= hm [[ grad fi(x) | din,

where f(x) is an appropriate gaussian average of f(x) defined in [3a). D
GiorgI showed [3a, Theorems 1 and-3] under different assumptions on f
(pounded, not necessarily vanishing outside a cube) that f has a generalized
gradiend if and only if I(f) is finite; moreover, if @ is the generalized gra-
dient of f, then I(f) = V(®). The proofs of these results also apply with the
present assumptions. Let & denote the set of all f with I{f) finite, and &y
the subset for which I{f}<< N.

I call the measurable set B C K a CaccropproLl sef if I(fg) is finite. Cac.
cI0PPOLI [1] considered the case when E is an open set whose frontier has
measure 0, and assumed that £ is the limit in measure of polyhedra =, Whose
frontiers have bounded areas. In [3a] DE GiorcI extended these ideas to include
arbitrary measurable sets, and showed that the approximation property assumed
by Cacororpoul is equivalent to the condition that I(fz) be finite. Following
Dz Giore1, I write P(E), and say perimeter of E, to stand for I(fg). Let &
denote the set of all CaccroppoLr sets, embedded in & in the obvious way,
and 8y =&y N 6.

CONTINUITY AND COMPACINESS. - [ give & the ordinary /, fopology. & is
a closed subset of &, and on & the [, topology reduces to convergence in
measure of sets B. The space of measures ® is given the weak topology. Let u
denote the mapping carrying f onto the negative of its generalized gradient ®.
It is immediate from (2.1) that # is one-one between § and u&, functions f
differing in a null set being identified (from its definition I(f) is not affected
by changes of f(x) on null sets). » is linear and continuous. We shall need
the fact that w—' is continuous on u&y for every N. This follows from biuni-
queness and the following:

LEMMA 1. - &y is compact in the 1, topology for every N > 0.

ProoF. - DE G10RGI showed that Sx is compact [3b, Theorem 1]. We shall
modify his reasoning to cover the present case. It is easy to show from the
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definition of I(f) that Fy is complete. To prove compactness it will then suf-
fice to show that Fy is totally bounded; i. e., given any e¢>0, Fy can be

i
covered by finitely many spheres of radius e. Choose p < ¢/2k*N, and let
T,, .., Tu,.. be disjoint half-open cubes of side p covering k-space. Given
f€ &y define [ by the elementary averaging process:

(2.3) flx) = o=* / fltydm, x € Ty, h=1,2, ...

Tlc

f is constant in Ty for each % and vanishes if T does not intersect K. The [,
distance of f and f does not exceed ¢/2. The proof of this follows DE Giorar’s
reasoning [3b, Lemmas 1 and 2). In it the analogous estimate for the gaussian
averages [, is obtained first, and then A tends to 0.

Let a denote the side length of K. By an easy calculation involving f,
and passage to the limit on A we find, since f(x)==0 outside K and I(f)< N,
that

(2.4) j-i f(x) |dm < aN;

K

and therefore that the same inequality holds for f. The set of functions which
take a constant value in each cube T, vanish for cubes not meeting K, and
have I, norm not exceeding alN is totally bounded; hence, this set is covered
by a finite number of spheres of radins ¢/2. Thus, &y is covered by a finite
number of spheres of radius e.

3. Generalized Surfaces. - In this section we collect some known funda-
mental properties of generalized surfaces, together with useful consequences
of them, K is the same fixed cube as above. Liet F(x, ©) denote a continuous
function of (@, ©), x=(x,,..., X)) €K, 6=(0,,.., 0,)€ R, satisfying the
homogeneity condition:

(3'1) Fx, p®)=pk(x, 6)7 p=0.

Q denotes the space of all such F. A (k—1 dimensional) generalized surface L
is simply any non-negative linear functional on the space @ (*). A generalized
surface L is closed if L{F)=0 for all exact F[4a]. For L to be closed it suf-
fices that L(F)=0 for all continnously differentiable exact F, and every
such F is the form:

(3.2) Flw, 0) = ) - 6=2 2@, Whore
‘ Gx) = [g,(), ..., gule)] and div Ga) =0O.

{2} What we have defined would be called in the usage of [4] or {7a] generalized sur-
face situated in the cube K.
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Let S, denote the surface of the unit sphere in ©-space. By the Riusz repre-
sentation theorem. every generalized surface L is represented by a Rapon
measure y on K X &,. and conversely. Let p(d) = v(4 X S;), all BOREL sets
ACK. By known theorems there exists, for p-almost all o, a measure a,
on 8, with «,{S,) = 1 (conditional distribution for fixed ) such that «,(B) is
BoreEL measurable in « for every BoREL set B(C S, and:

(B3) L{Fy= [ /F(m. Alda,dp. all FEQ.
K 8,
a, 18 unique up to a p-null sef. The norm a(L) equals u(K?}, finite. a{L) is
additive and weakly continuous in the space of generalized surfaces. Let O(x)
denote the center of gravity of «,. Then | O(x) | << 1 with equality if and only
if a, is carvied by the single point Ox) € S,.
Let t denote the mapping carryinm L into the vector measure @ defined by:

(3.4} Dld) = [ G{x)dp, all BorEL seis 4.
4

@ is the frack (measure) of L. By known theorems:

(3.5) (@4 = /1@{%} dp. all BOREL sets 4;
A
in particular.
(3.6) (@)= & (k)= / Gem
K

Given @, the set {~! @ is infinite. However, there is just one element of
this set of least norm. I call it ®@. Using the RADOR-N1KODYM theorem there
is a fanction O (x). uniquely determined and of absolute value 1 except for
an ' ® -null set, such that:

~

(8.7) B(A) = / O,(@)d | @ !, all BoREL sets A.

4

Then 1@ has the representation:

(3.8) «O(F) = / Fix, 0,@)]d| @, all FEQ,
N X
From these remarks follows:

Leymya 2. - If ©=1tL then VI®) = a(L) with equality if and only
Zf L = "C(I).
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1If ®={L then O/ x)=|08(x) ~'Ox), | P|-almost everywhere. Using the
homogeneity condition (3.1) and (3.5):

(3.9) HL(F) = | Flx, O))dp, all FEQ (3.

The space of generalized surfaces, as well as the space of vector measures @,
is given the weak topology. This topology for generalized surfaces can be
metrized by the McSHANE distance [7al. If {IL=0 and F has the form G(x).©:

(3.10) LF) = / Glx) - dD.

K
Therefore, the operation ¢ is linear and continuous. Although < is neither
linear nor continuous, the following statements hold:

Lemma 3. - Let L, = pL, 4+ qL,, where L, has the least norm property
and p, q are real pcsitive. Thew L, and L, have lhe least norm property.

PROOF. - Let ®; = tL;, i=0, 1, 2. Then ®, = p®, + ¢®,, V() < a(L;), and
a(Ly) = pa(L,) + qa(L,) = pV(® ) + q V(D) = V(@) = alL,).

Hence, a(Lij) = V(®;) for i=1, 2.
F(x, 0) is called posifive semi~regular if F is convex in © for each fixed .

THEOREM 1. - Let ®, be o sequence of wveclor measures supporied in K,
such that V(®,) is bounded and @, tends weakly to a limit ®,. Let L, = =9,,,
n:O, 1, 2,....

(a) For every positive semi-regular F€Q, L(F) <lim inf L,(F).

P ke (L)

(b) If in addition V(®,) tends to V(D) then L, lends weaklyto L,; 1. e.,
L(F)= lim L,(F) for every F¢€Q.

L e OO
Proor. — It suffices to establish that every subsequence contains a further
subsequence for which the conclusions hold. Since a(L,)= V(®,) is bounded
it will therefore suffice to consider the case When L, tends weakly to a
limit L*. Let us write, according to (3.3},

(3.11) LHF) = ,l [ Flx, O)datdp*, all F€Q,

K 'Slc

and O*w) the center of gravity of ar. Since @, = iL, tends to tL* by conti-
nuity of ¢, and also to @,, {L¥* = @,.

(3} In view of (3.9) the present definiticn of {rack differs only in form from that
given in [4b].

Annali di Matematica 13
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If F' is positive semi-regular, the inner integral in (3.11) is no less than
Flx, ©*x)); therefore, L*(F) = L,(F) by (3.9). Since the norm is weakly con-
tinuous, lim a(L, }=a!L*). Thus, under the hypotheses of (b), a(L¥*)= V(@ )=a(L,).
By Lemma 2, I*=1L,.

4. Closed if and only if exaet. - I call ® exact if ® is the generalized
gradient of some f€&; and ® closed if the integral of Gx). d® over K is O
for every continuously differentiable G{x) for which div G(x) == 0. For @ to
be closed it is necessary and sufficient that @ be the track of at least one
closed generalized surface. Following [4a], a generalized surface L is an érre-
ducible closed polyhedron if there is a geometric polyhedron @ in k-space R,
separating B, into exactly two components of which @ is the common boundary,
and a constant e ==k 1 called orienfation of L, such that if ©(x) denotes the
exterior unit normal to ¢ (defined except on edges) and H, k¥ — 1 dimensional
measure in By

(4,1) L(F) = [ Flz, «O(x)]dH, all FEQ.
Q

If = is the bounded component of R, — @, then by GAUss’ theorem:
4.2) ufr = elL.

In Theorem 2 we must, strictly speaking, assume £ =2 or 3, since the
proof depends on an approximation theorem for closed generalized surfaces
proved only for these values of E[7b] [4a]. On the other hand, there seems to
be no difficulty in extending the approximation theorem to arbitrary values
of k. When we refer to [4a] or [4b] below, it is undeistood that if k=2 the
corresponding result of [7b] is used instead.

THEOCREM 2. - @ is closed if and only if ® is exact.

Proor. - Exact implies closed is immediate. Let @ be closed and L,=1®.
By (4.2) {L € u& for every irreducible closed polyhedron L. Since ¢ is linear
and u& is a vector space the same is true if L =2p,L,; (finite sum), where p,
is real positive and L, is irreducible closed. By [4a, Theorem (1.1)) the closed
generalized surface L, is the weak limit of L, , where L, is such a positive
linear combination of irreducible closed polyhedra. Let N be an upper bound
for a{L,). Then tL, €u§y, since I(w=*{L,)= V({L,) <a(L,) < N. uSy is
compact by Lemma 1 and continuity of #; and {L, tends to {L, by continuity
of ¢, Therefore, tL, € uFy C ug.

From Theorem 2 and earlier remarks it is easy to show:

COROLLARY 1. - The operation u='t is a linear, continuous mapping of
the space of closed generalized suvfaces onfo .
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COROLLARY 2. - Bvery €& can be written f=[f* — f~ where [+, f~
are non-negative and I\f)=I(f+)+ I{f~).

Proor. - Let L=tuf (closed generalized surface of least norm corresponding
to f). As above, L is the weak limit of L,, where L, =2 p;, Lin, pi» > 0,
i

and L,, is irreducible closed. Let L, L; be the sum of those ferms for which
L;, is positively, negatively oriented, respectively. The functions fy = u~'tL;
and f, = —u~'{L, are nonmegative. For a subsequence of n, Ly and L,
tend weakly to limits L+ and L—; and L =L+ L~. By Corollary 1, 5 fo
tend in {,, to fT=w""L+, f~=wu""{L—, respectively, and fa—fa tends to f,
as n describes. this subsequence. Thus fx=f+-—f—. By Lemma 3, L+ and L~
have the least norm property. Therefore

If) = all) = o(LF) + o{L™) = I(f+) + I(f ).

5. Cacecioppoli sets and extreme points. - The sets &y are convex and
compact in /; for every N > 0. Therefore, by the KreiN-MILMAN theorem
each &y is the convex closure of its extreme points. In fact, using a recent
beautiful result of CHOQUET [2] every element of &y has an integral represen-
tation in ferms of a measure carried by the set of extreme points. We shall
return to this question in § 6; at present we seek to identify the extreme
points. A complete answer is given only for k=2. As in § 4 we shall use
theorems for generalized surfaces proved only for £ =2, 3, but which presu-
mably remain true for higher values of k.

Levma 4. - f is an extreme point of Fy if and only if L =ruf is an
extreme point of the set Sy of all closed generalized surfaces of norm N.

PRroOF. - Necessity is an easy consequence of the definitions and Lemma 3.
To prove sufficiency, suppose L=ruf is an extreme point of Gy. Let f=¢qf, +
+ (1 —g)f, with 0 < g <1 and I(fy) <N, i=1, 2. Since I(f)=a(L)= N, we
have by convexity of I, I{f;=N for ¢ =1, 2. Let L; = tuf;. Then ¢L,4(1—q)L,
has track #f and norm equal to N. Therefore gL, + (1 — q}L, = L, since L
has track uf and least norm property. This implies L; = L, and hence f;=f,
=1, 2.

REMARK. - The requirement that L be an extreme point of Sy is equiva-
lent to the statement that L is of norm N and basic closed in the sense of [4a].
L is basic closed if L is closed and L =1L, 4+ L, with L , L, closed implies
L, = plL where 0 <p < 1.

TuroreM 3. - If f is an extreme point of v, then there exisls a Cacciop-
poli set F of positive perimeter P(E)} such thal

(0.1) fg == N-'PE).

Proor. - Let L =tuf. A generalized surface is singular if its track is O,
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Since V(tL) =a(L) = N> 0 L is not singular. Therefore, by Lemma 4 and a
slight vefinement of [4a, Theorem (1.3)] proved in [4a, pp. 476-477], see also
[4b, (5.2)], there exist p >0 and a sequence L, of irreducible closed polyhe-
dra such that pL is the weak limit of L, . Let @, be the earrier of L, and =,
the bounded component of B, - @,. By (4.2)

(2.2) f”n = en L,

we ymay assume cither e = — 1 for all w or e = — 1 for all n. The right side
of (3.2) tends in [ fo epf. Since & is a closed subset of &, this implies epf = [/
for some Caccroppoul set 7. Since I{f) = N we conclude that p — N—'P(E).

TaeoreM +. If k=2, a necessary and sufficient condition that f be an
extreme point of Fx is that there exist a rectifiable simple closed curve @ con-
tained in K such that, if E denoles the interior of @ and X the length of @, then

{5.3) fe==N"'Af.

Proow. - To show necessity let up proceed as immediately above. @, is
now a simple closed polygonal earve, with bounded length. The weak limit
L (=pl) of L, is a closed generalized curve [Tc] with the least norm pro-
perty. Henece, by the representation theorem for generalized curves [7¢]; L,
iz a rectifiable closed curve: i. e.. there is a lipschitzian vector function x(f}
on (0, 1) with x(0) = (1) and |£'(: > 0 almost everywhere, such that:

i

(5.4 L(F)= | Flatt), «'tiat, all FQ.

%

9

_Consider any pair {,, ¢, with x{f ) ==({,), and let L', L” denote respecti-
vely the closed curves represenfed on the interval (f,. {,) and the complemen-
tary part of (0. 1. L, = L' 4 L"; since L, is basic closed, both L' and L" are
scalar multiples of L,. It follows that x(f) represents on (0, 1) a simple closed
curve @ described a certain number » times in the same sense. Now x(f) is
the uniform limit of representations of the polygons @, [7¢]. Since @, is sim-
ple closed the topological index of any point x ¢ @, with respect to 0, is 0,
1, or — 1. Passing to the limit, the same is true for any point ¢ @ with
respect to Q. This implies #=1; moreover the index of every point in the
interior £ of Q is =1, which implies that =, tends to ¥ in measure. Since
P(EY=2X we find as in the proof of (5.1) that fr== N-!)\f.

To prove the converse. assume for definitenesses that the -+ sign holds
in (3.3) and that N = 1. Let x{f) be a parametric representation of the simple
closed carve @), positively orviented. Then L, = tufy is given by (5.4). Let T
denote the set of all closed L situated in @ (i. e., such that the correspon-
ding measure 1 has support in @) § NI is convex and weakly compact.
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Let L be an extreme point of & NT. If L =qL, + (1 —q)L, with 0 <q < 1,
then L, and L, are sitnated in . Therefore, L is also an extreme point
of §,. Suppose L is not singular. Then, as above, pL is the limit of simple
closed polygons L, of bounded length for some p > 0. By results of [7¢] pL
is a closed generalized curve with the same track as an ordinary curve L’
having Lipschitzian representation y(f) which is the uniform limit of repre-
sentations #,(f) of L,. Since y(f) € @ for all { and every curve y,(f) is simple
closed. there exists ¢ with value 0. 1, or — 1 such that the topological index
of every point of E with respect to the curve y(¢) is e¢. By GREEN's theorem
and passage to the limit, {L' =efL,. Since a(L) =a(L,) =X and L, has least
norm property, p =1 (¢===1 since {L = piL = 0).

Thus, every extreme point of &, N I', and consequently every element of
g, N T, has track rtL, where r|<1. It follows from this and least norm
property for L, that L, is an extreme point of & NI, and so of §,. By
Lemma 4 this completes the proof.

RemMARK. - Considerable information is available about the structure of
Caccropponl sets; see [3b], [4b, Theorems 3 and 5j, [4ec, Theorem 4]. For
k=3 it is an open question what stronger statements can be made in case
the characteristic function of a CAcckoproLl set defines an extreme point.

6. Mixtures. - In this section we represent any funection f with genera-
lized gradient by an integral over the set & of CaccroPPOLI sets; in the ter-
minology of [7Tb] and [4b], f is a mixture of 6. The result obtained is similar
to [4b, Theorem 2], but is stronger in a sense in that we represent f point-
wise rather than merely as an abstract vector integral.

For v=1, 2, ... cover K by a net N, of half-open cubes T of side v—.
For each v, TEN,, x€ TN K, and E€G, let

m(E N T)

6.1} wlx, B)= (T

Now w, is continuous on T X & for each T, consequently BOREL measurable
in (. E). Then

{6.2) Wiz, E) = lim sup w,fx, E)

. v — 0

is also BoREL measurable in (x. ). For given E, Wix, F)=fglx} almoss
everywhere in K. P(E) is lower semi-continuous.

THEOREM D. - Given f, €& there exists a signed RADON neasure v, on &
of total variation equal to I(f,) such that, for alnost all x€ K:

(6.3) fole) = | 53— dw, .
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Proor. — For simplicity take Iif,) = 1. Let I' be the weak closure of the
set of all L of the form [q(L}|=' L' where L’ is an irreducible closed poly-
hedron. Every L €T has norm 1. The set I'y of all singular L €I is weakly
closed. By [4b, (3.2)] I' — I, is the union of disjoint sets I'+ and I'~ such that
it Lel+ (L€T) then there exists p > 0 such that pL is the weak limit of
a sequence of positively (negatively) oriented irreducible closed polyhedra.
Moveover, if L, €I'* tends to L € I+ then the corresponding numbers p, are
beuuded away {rom 0 and oc.

Let L, = wuf,. By the approximation theorem of [4a] cited previously I,
is the weak limit of convex combinations of I'. Then since I' is compact
there cxists a RApoN measure o on I' with o{I') =1 such that:

(6.4) L (F) = [L{F}dw, all FeQ.

r

Since L, has the least norm property, so do w-almost all L by [4b, (4.4)]

lextension of Lemma 3 above). Therefore, if U+ I' — denote the set of
L e+, T~ respectively with least norm property, then o(f =) 4 o(l',7) = 1.
As in the proof of Theorem 3, to each L €I'F corresponds a set F€& deno-
ted by o (L)} such that P(Ew='{L = fr. The mapping o is continuous on I',*.

Let the measuve w,™ on & be defined by w,"(U) = w(c~*U}. By a known

theorem we have:

(6.5) [ ol L))do = [ Pfr)deo,
I+ 8

for every o, -measuvable function ¢(f} for which cither integral in (6.5)
exists. Let us take, for given continuonsly differentiable g(x):

L r 2g
O(f) = I‘fi ‘/f(oc) 9.701 dmn.
K

It Fize. 8 = g(x)9, (6.5) becomes:

”

o 1 " o9 N
(6.6) / L(F)dw —[P(El[ Wiz, E’aE din dw,".
é K

e
Taking glx) =, we see that [PV~ W, E) is m X o, integrable.
Similary we define a measure w,~ on I''~ such that, for all such F:

- . _ 1 , g _
6.7) { LiFdy = — / P(E / Wiz, E]&_‘ dm dw,~.

Iyt & K
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Let w, = w,™ — o,~. Using (6.4), 16.6), (6.7} and FuBINI's theorem we have:

, 39 [ (Wi, B
(6.8) L(F) = [g/f ILTE,’ O)dm.

The left side of (6.8) is also equal to the integral over K of f, dg/ox,. Since g
is arbitrary, (6.3) must hold almost everywhere in K.

Clearly the total variation of w, is <<1 with equality if and only if w,*
and o,~ form the JORDAN decomposition of w,. That w,* and w,” form the
JORDAN decomposition follows from the least norm property of L,. We omit
the defails.

ReEMARK. - Using CHOQUET's theorem [2] one may require in (6.4) that
the extreme points of §, have w-measure 1. With this [P(E)]~!fg is an extreme
point of §, for w,~almost all K.
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