
Contributions to the Spectral Theory 
for Nonlinear Operators in Banach Spaces (*) (**). 

M. FURI (Firenze) - M. )/~ARTt~LLI (Firenze) - A. VIG~OLI (L'Aquila)  

Sunto .  - Si introduce una de]inizione di spettro ~(]) per applieazioni continue de]inite in uno 
spazio di Banaeh. Tale definizione coincide con ~uetla etassica net caso in eui ] sia lineare 
e continua. Alcuni de~ ~'isultati pi~ noti della teo~'ia spettrale lineare vengono estesi al easo 
q~o~ lineare. I~  particolare si dimostra ehe a(]) ~ eIduso e ehela  sua #ontiera ~ eontenuta 
q~ello spettro puntuale approssimato %(]). 

1 . -  I n t r o d u c t i o n .  

Our main  t a sk  here  is to give a not ion of s p e c t r u m  for nonl inear  maps  defined 
on Banach  spaces in such a way  to preserve  as much  proper t ies  of the  spec t ra  for 
l inear  opera tors  as possible. I n  par t icu la r ,  we shall  in t roduce  the  spec t rum for  
nonl inear  m~ps  such t h a t  when appl ied to  l inear  opera tors  i t  gives exac t ly  the  usual  
spec t rum of the  l inear  theory .  

This p r o g r a m m  will be accompl ished in several  steps. 
The  second sect ion of this p a p e r  contains  mos t  of the  nota t ions  and  definitions 

to be  used in the  sequel. I t  also contains  some p re l imina ry  results .  The  m a j o r i t y  

of t h e m  are well-known and  are therefore  presented  wi thou t  proofs.  
I n  the  th i rd  section we s t a r t  to buff up the  mach ine ry  t h a t  will lead us even-  

tuMly to  the  definit ion of spec t rum for  nonl inear  maps .  Given a n y  cont inuous m a p  
/ :  E -~ F f rom ~ B anach  space E into a Banach  space J~ we define the  following 
three  ex tended  rea l  numbers  

d(x) = l im inf ill(x) It 

:¢(]) : inf ( k > 0 :  ~( / (A))<~k~(A)  for any  bounded  A c E } ,  

fl(/) = sup ( k ~  0: ~(](A))  >~ k~(A)  for  a n y  bounded  A c E } ,  

where  g s tands  for the  Kura towsk i  measure o] noncompactness (see Sect ion 2). The 
ma in  proper t ies  of d(]), ~(]) and  fl(]) are  given.  I t  is of independen t  in te res t  t h a t  a 

(*) Entra~a in Redazione i l  17 g iugno 1977. 
(**) Work performed under the auspices of the National Research Council of I taly (C.ZN.R.). 
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continuous l inear opera tor  JL: E -+ i~ is l~redholm if and only if fl(L) and fl(L*) are 
bo th  positive, where Z* is the adjoint  of L. 

The four th  section is ent i re ly  dedicated to the s tudy  of s trong surjections tha t  
are defined as follows. A continuous mup / f rom a Banach  space E into a Banach  
space /7  is called a strong surjection if the  equa,tion ](x) ~- h(x) has a solution for a n y  
cont inuous map  h: E - + F  such t h a t  h(E) is compact .  The following resul t  holds. 

PR0~0SITION 4.1.1. -- Let / : E -~ F be a continuous map. Assume that there exist 
a Banaeh space G and a continuous map g: G --> E such tha t /og  is a strong surjection. 

Then ] is a strong surjection. 

A Continua,tion Principle for  s trong surjections is also given (see Proposi t ion 4.1.3). 
In  the  second par t  of section 4 we give two coincidence theorems.  One of t hem 

in par t icular  (see Theorem 4.2.1) will be the essential tool in proving the closedness 
of spectra for nonlinear operators.  I t  should be remarked  tha t  Theorem 4.2.1 is a 
generalization of Schauder 's  classical fixed point  theorem (it also extends  G. DAlC- 
]3o's [3] ~nd B. N. SADOVSlCm~s [22] fixed point  theorems).  The second coincidence 
theorem (see Theorem 4.2.2) is an extension of the  well-known Banach  Contrac- 

t ion Principle.  
In  the fifth section we int roduce the not ion of stably-solvable maps and in- 

vest igate  some of their  properties.  A continuous m~p /:  E - +  F ,  where E and iv 
are Banach,  is said to be stably-solvable if the  equat ion 

/(x) = h(x) 

has a solution for any  continuous and compact  map  h: E - + F  such tha t  

ilh(x) lt 
Ihl ---- lira s u p -  ----0. 

Stably-solvable maps and  strong surjections are closely related.  In  fact, the  

following proposi t ion holds 

PI~oPost~IO~ 5.1.1. - L e t / :  E -+ F be such that d(/) > O. Then the/ollowing con- 

ditions are equivalent: 

(a) the equation/(x)  ---- h(x) has a solution x ~ E for any compact map h: E -+ F 

with bounded support; 

(b) / is a strong surjeetion; 

(c) ] is stably-solvable. 

In  the con tex t  of l inear operators ,  s tably-salvable maps are character ized as 

follows. 
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THEOI~E~ 5.1.1. -- Let .L: E ---> F be linear and bounded. Then L is stably-solvable 
i/ and only if it is onto. 

I n  the  second p a r t  of Sect ion 5 we s ta te  a Cont inuat ion  Principle for s tably-  

solvable maps .  
Section 6 is devo ted  to  the  s t udy  of regular  maps  b y  means  of which we shall  

define the  spec t rum for  nonl inear  maps .  L e t / :  E --> 27 be cont inuous,  then  / is said 
to  be  regular if i t  is s tably-solvable  and,  moreover ,  d(/) and  fl(/) are  bo th  posit ive.  

Fo r  l inear  opera tors  we h a v e  

P~oposrrlOZ~ 6.1.2. - Let L:  E -+ 27 be linear and bounded. Then L is regular if 
and only if JL is an isomorphism. 

The following resul t  will be  of impor t ance  in the  nonl inear  spec t ra l  theory .  

P~OPOSlTIO~ 6.1.3. -- L e t / :  S -+ F be regular and let g: S -->27 be such ~hat co(g) < 
< fl(/), Ig] < d(/). Then / + g is regular. 

I n  the  second p a r t  of Sect ion 6 we res t r ic t  our  a t t en t ion  to finite dimensional1 

spaces and  give a charac ter iza t ion  of regular  maps  b y  means  of h o m o t o p y  classes 
of maps  defined on spheres.  

I n  the  th i rd  p a r t  of Section 6 we t ake  up  the  p rob lem of character iz ing essen- 
t ial  compac t  vec tor  fields us ing the  concept  of regular  maps .  We recall  t h a t  a non- 
vanish ing  compac t  vec tor  field /:  S -+ So f rom the uni t  sphere 2 of a Banach  space S 
into a subspace So is called essential if a n y  extension of / to a compac t  vec tor  
field g: D -> S0 to the  uni t  bal l  D of S vanishes a t  some point  Xo e D. 

I n  this con tex t  we have  the  following 

PROPOSlTIO~¢ 6.3.1. - Zet f: S -> So be a nonvanishing compact vector field. Then / 
is essential if and only if ] is regular where ](x) : ]lxll/(x/HxI]) if x ¢ o and ](0) = O. 

Section 7 represents  a k e y  step in developing our nonl inear  spectral  theory.  I n  
the  first p a r t  we show t h a t  the  set  a (S ,  F )  consist ing of all  non  regular  maps  f r o m  a 

Banach  space S into  a B anach  space 27 is a dosed  subset  of the  vec tor  space C(S, 27) 
or all cont inuous maps  f rom S into 27 endowed with  a sui table  topology.  This ex- 
tends  the  wel l -known fac t  t h a t  the  set  of all l inear  i somorphisms is open in Z(E,  27). 

I n  the  second p a r t  we decompose  a(S,  27) as follows: 

where 

and  

a(E, •) = a~(E, F) u a0(E, ~'), 

a~(E, F) = {f e C(E, F) :  / is no t  s tab ly-solvable} ,  

, ~ ( s ,  ~ )  = { / e  c (B,  F ) :  aft) = o or ~(/) = o}. 
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I t  turns  out  t ha t  (~,(E, F) is closed. Moreover,  the boundary  ~rJ(E, F) of a(E, ~)  
is conta ined in a . (E ,  17) (see Theorem 7.2.1). This resul t  turns  out  to  be ve ry  im- 
po r t an t  in nonlinear  spectral  theory .  

The th i rd  pa r t  of Section 7 opens with a Continuat ion Principle for regular  maps. 
A consequence of this principle (see Corollary 7.3.1) has, to a cer ta in  ex ten t  sur- 
prising, ~pplications to  the theory  of monotone  operators .  More precisely, the fol- 

lowing result  holds. 

Pl~oeoslTIO~ 7.3.2. - .Let ]: E-~.  E be monotone, coercive and proper. Assume, 
moreover, that / is locally o~-.Lipsehitz sending bounded sets into bounded sets. Then ] 
is a strong surjeelion. 

We recall  t ha t  a map / :  E - ~ E  is called monotone if t ~ e < f ( x ) -  ](y), z ' > > 0  
for all x, y ~ E and  some z 'e  J ( x -  y), where J :  E - +  E* is the dual i ty  map  and 

( . , .  } is the pair ing between E and its dual  E*. 
The following well-known resul t  (see J.  SC~AVDEg [23]) is a direct  consequence 

of Corollary 7.3.1. 

Pl~oposI~O~ 7.3.3. - .Let .Lo, .LI: E - > F  be bounded linear operators. Assume that 

(a) .Lo is an isomorphism, 

(b) there exists a real number k > 0 such that [Ixll <. kt!H(x , t)II /or any x ~ E and 
t ~ [0, 1], where H(x, t) = Lo(x) + t(.Ll(x) -- Lo(x)). 

Then L1 is an isomorphism. 

In  Section 8 we define the spec t rum for continuous maps acting on Banach  spaces 

and s tudy  some of its propert ies.  
I n  the first pa r t  of Section 8 we define the  spect rum a(]) of a contimtous map 

]: E --> E as follows 

(~(l) = {2 e K: 2 --  ] is no t  regular} .  

This definition is obviously equivalent  to 

s(I) = {2 e K: ~ - -  ] e a(~ ,  ~ ) } .  

We also define 

and  
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We have  0(]) = o~(f) k) ~(]) .  ~ o r e o v e r ,  in the  con tex t  of bounded  l inear maps  
we get  the  following 

THE0~E~ 8.1.1. - Let Z: E - ~  .E be bounded and linear. 

(a) o(L) is the usual spectrum of L. 

(b) o~(L) is the approximate defect spectrum of L. 

(c) o~(L) is the approximate point  spectrum of L. 

We also have  the  following 

Then 

TItE01~EH 8.1.2. - Zet f ~ C(E, E). 

(a) o(f) is closed, 

(b) (~(f) is closed, 

(c) ~ ( f )  c o~(]). 

Then 

Other  proper t ies  of 0(]) are conta ined  on Propos i t ion  8.1.2. 
The second p a r t  of Sect ion 8 deals wi th  the  p rob lem of the  nonempt iness  of 0(]). 

Several  resul ts  in this direct ion are obtained.  As an  example  we s ta te  the following 
result .  

P1,.OPOSI~IO~ 8.2.1. - L e t / :  E - ,  E be quasibounded and o:-Lipsehitz. Assume that 
dim E = + c¢ and o:(]) < d(]). Then (~(/) ~: O. 

The end of the  second p a r t  doses  wi th  an  example  of a cont inuous m a p  
f:  C 2 - ~  C 2 with  e m p t y  spec t rum.  

I n  the  th i rd  p a r t  of Section 8 we show t h a t  the  mul t iva lued  m a p  t h a t  to every  
] ~ C(E, E) associates its s pec t rum a(f) is u p p e r  semicont inuous,  ex tending  to the  
nonl inear  con tex t  a wel l -known fac t  of the  l inear  theory  (see e . g . T .  KA~o [15]). 

I n  Section 9 we give a F r e dho lm  a l te rna t ive  for nonl inear  maps .  I n  the first 
p a r t  we observe  t h a t  the  classical F r edho lm  a l te rna t ive  for  l inear  opera tors  m a y  

be in te rp re ted  in t e rms  of spect ra l  theory ,  more  precisely,  we have  t h a t  for  a l inear 
compac t  opera to r  K :  E - * / ~  the  equal i ty  o . ( ' K ) =  o(K) is equiva len t  to the  fol- 
lowing wel l -known F redho l m  a l ternat ive .  

Le t  ~ ~ K,  assume moreover ). ~: 0 if dim E = ~ .  Then the equation ~x -- K x  = y 
is solvable for any y ~ E if and only if the equation ~x = K x  has only the trivial solution. 

This s imple observa t ion  mo t iva t e s  the  in t roduct ion  of the following notion.  
A cont inuous m a p  f:  E --> E is called alternative if o(f) ----- o~(/). 

Exam pl e s  of a l t e rna t ive  m a p s  are  g iven b y  the  following 

T H E O ~  9.1.1. - Let f: E--> E be asymptotically odd and compaet. Then f is 
alternative. 
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We say t ha t  ]:  E -+ E is asymptotically odd if there  exists an odd map  g: E -+ E 

such t ha t  HI(x) --  g(x)Ii/I]xI[ - ~  o as  Hx[I -+ + ~ .  

The second pa r t  of Section 9 exhibits other  examples of a l ternat ive  maps. 
A bounded  l inear opera tor  A:  E -+ E is called balanced if a~(A) = up(A) where 

a~(A) = {~ e K:  2 --  A is no t  F redho lm of index 0},  

is the essential spect rum of A,  and 

~ (A)  = {2 ~ K:/3(~ --  A) = 0 ) .  

Examples  of balanced operators are, among others,  normal  operators  (therefore,  
self-adjoint operators) ,  operators such t h a t  its n- th  i tera te  is compact  for  some n e N, 
and quasini lpotent  operators (i.e. operators  whose spectral  radius is zero). The 
following theorem mot iva tes  the  in t roduct ion  of balanced operators.  

THEOICE)i 9.2.1. -- Zet A :  E --> E be balanced and h: E --.'. E be compact and asym- 

ptotically odd. Then A + h is alternative. 

Notice tha t  Theorem 9.2.1 extends Theorem 9.1.1 since the identical ly zero map 

is balanced.  
I n  Section 10 we gather  some topological consequences of the  nonlinear spectral  

theory .  
In  the first pa r t  we show tha t  some classical results such as the Birkoff-Kellog 

theorem,  the  t Iopf  theorem on spheres, the Borsuk-Ulam theorem and  others may  
be proved  by  means of pure ly  spectral  tools. 

I n  the second par t  we introduce the following notion.  Le t  X c 3~ and f: X --> E 
be continuous.  Then  ] is called hypocompac t  if fl(,t + ] ) >  0 for a n y  ~ > 0. The 
class of hypoeompac t  maps is quite large. I n d e e d ,  compact  maps, compact  (x-con- 
t ract ive ,  condensing) vec tor  fields, monotone  operators ,  cont inuous maps act ing on 
a finite dimensional space, are examples of hypocompac t  maps. In  this con tex t  

we have  the following 

Tm~o~E~ 10.2.1. - Let ]: E --> E be a coercive, proper hypocompact map. Assume that 

(a) ] is locally o:-Lipsehitz, sending bounded sets into bounded sets~ 

(b) lim inf fl(1 + t]) > 0 as t --> 0 +. 

Then ] is a strong surjection. 

We would like to r emark  tha t  Theorem 10.2.1 is p roved  using spectral  techniques.  
The following consequence of Theorem 10.2.1 is of independent, interest .  
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COROLLARY 10.2.1. -- Let U be a bounded open subset of a Banaeh space E. Then 
the boundary ~ U of U is not a retract of U under a locally ~-_Sipschitz hypocompaet map. 

Notice t h a t  Corollary 10.2.1 extends  results previously  known for  compac t  (con- 
densing) vec tor  fields. 

In  Section 11 we obtain some results on asympto t ic  bifurcat ion points.  
In  the  first pa r t  we s tudy  asympto t ic  bi furcat ion points for  equat ions of the 

fo rm ~x ~ g(x)~ ~ ~ K,  where g: E -+ E is continuous.  We recall  t ha t  X e K is an  
asympto t ic  bifurcat ion point  for g if there  exists a sequence ( ~ ,  x~) in K × E  such 
t ha t  I[x~lt -> ~- c~, ~, -~ )~ and  ~ x~ -~ g(x~) (see A. ~¢I. K~ASNOSEL'SK~J [16]). We show 
t h a t  the  set of all a sympto t i c  b i furcat ion points  of g denoted  b y  B(g) is a subset  of a(g). 
Actually,  a more  precise result  holds (see Proposi t ion 11.1.1). 

For  conditions ensuring t ha t  B(g):/= 0 see Theorem 11.1.1. Another  result  is 
the  following 

THEOREM 11.1.2. -- ~Let g: E - - > E  be continuous. Zet ~o~ ~ ~ K~c6~(g) be such 
that Zorn(g) and 2 ~ q ( g ) .  Then ),o and ~ belong to different components of 
K ~(B(g )  ~) a~(g)). 

When g is defined on a finite dimensional space one can get  (by means of h o m o t o p y  
classes on spheres) results  regarding B(g). F o r  example we have  the  following 

Tn-~ORE~ 11.1.3. - Let g: R ~"+1 -+ R 2"+1 be such that ]gl -~ lira sup llg(x) II/llxll < + 
as []xlt -> -~ c~. Then B(g) • O. 

The second pa r t  of Section 1 t  is devoted  to  the more  general  problem of asymp- 
tot ic  bifurcat ion points for equat ion of the form ~(x~ ~ ) ~  0, where ~: E × K - ~  F 
is continuous and such tha t  the map  ~ -~ ~( . ,  2) is continuous.  A result  analogous 
to  Theorem 1t.1.2 is given (see Theorem 11.2.1). 

In  the  first p~rt  of Section 12 we consider a definition of numerical  range for 
nonlinear  maps act ing on a complex Hi lber t  space H.  Le t  ]: H -~ H be continuous. 
Define the numerical range n(f) of f as n(f) = Z(f~,), where f~v(x) = ((/(x), x)/llxi[ 2) x 
is the  normal  componen t  of f and  Z(f~.) is the  asympto t ic  spec t rum of f~v in t roduced 
in [9], i.e., 

This definition is equivalent  to tha t  in t roduced  in [10] and coincides with the 
closure of the usual numerical  range in the  l inear case. We obtain t h a t  X(f) c n(]) 
for  a n y  continuous ]: H --~ H.  ~ o r e o v e r  if If.~'l < -~ ~ ,  t hen  n(]) is n o n e m p t y  con- 
nec ted  and compact  (see Theorem 12.1.2 and Theorem 12.1.3 respectively).  

In  the second par t  of Section 12, with the aid of this numerical  range, we in- 
t roduce  the  not ion of (nonlinear) self-adjoint map.  An ~-Lipsehitz map  ]: H - ~  H 
is said to be self-adjoint if tfN] < ~- ~ and  n(f) c R.  This extends the well-known 
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not ion of bounded  l inear  self-adjoint  opera tor .  Fo r  self-adjoint  maps  we have  the  

following. 

C01~0LLAt~¥ 12.2.1. -- .Let A :  H --> H be bounded, linear and h: H --> H be compact. 

I] A and h are both self-adjoint then 

(a) g(A ~-h)  is a compact subset o/ R ,  

(b) A q- h is alternative, i.e., (r(A -~ h) --~ c~(A ~- h). 

I n  the  th i rd  p a r t  of Section 12 we obta in  the  following result .  

TKE0~Eig 12.3.1. - .Let /: C ~ -+ C ~ be continuous with tf2vl < -~ oo. Assume that 
there esists a linear isomorphism A:  C a - + C  ~ such that n ( A o / o A - ~ ) c C _  where 
C_ = {1 ~ C: l%e 2 < 0}. Then all the solutions o/ the di]]erential equation ~ = / ( z )  
are bounded as t--> ~- oo. 

The las t  resul t  of this pape r  (Proposi t ion 12.3.1) shows t h a t  Theo rem 12.3.1 
ex tends  a wel l -known cri ter ion for  the  boundedness  of solutions of l inear  differential  

equations.  

2. - Nota t ions  and def ini t ions .  

I n  this section we collect some of the  nota t ions  and  definitions t h a t  we shall 
more  c o m m o n l y  use in this paper .  Nevertheless ,  due to length of this work  and  in  

order  to  avo id  a too f requen t  b a c k  and  for th  reading  we shall repea t ,  in places scat-  
t e red  along the  paper ,  some of the  definitions and  recall  some of the  resul ts  of this 

section. 

2.1. Generalities. 

The symbol  K will s t and  e i ther  for the  field of complex  numbers  C or for the 

field of the  reals R .  
The  capi ta l  le t ters  E a n d  F ,  unless otherwise s ta ted,  will be  used to denote  Banach  

spaces over  K and  H is used to denote  a Hi lbe r t  space (over K).  
Spheres and  dosed  bulls centered  a t  the  origin and  with  radii  r > 0 are denoted  b y  

S~ = (x e E:  I[xH = r } ,  Dr ----- {x e E:  IlxH <r)  , 

respect ively.  
Given a n y  m a p / -  E -~ F we denote  the  image of / b y  I m / .  
A cont inuous m a p  [:  E - ~  F is said to be  quasibounded if there  exist  two con- 

s tan ts  A,  B ~ O  such t h a t  H/(x)tI<AllxH + B for a n y  x e E .  The in f imum of those  
A ~ 0 for which there  exists B ~ 0 such t h a t  the  above  inequal i ty  is satisfied is called 
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the quasinorm of / and denoted  b y  [/I. In  o ther  words, if / is quasibounded,  then it  
sends bounded  sets into bounded  sets and  

~- lira sup I[/(x)]I < 

(see A. GI~A~AS [13]). 
We list now some of the propert ies  of quasibounded maps.  I f / ,  g: E --> E are 

quasibounded,  then  

(a) l~/I = 141111, l e K ,  

(b) I/+ gI<I/I + igl, 

(c) I/ogI< I/llgl, 

(d) if L:  E -~ F is bounded  and  linear,  then  fL 1 ---- H L tl, where IIL lI is the  norm of Z. 

A continuous m a p / :  E --> F is said to be asymptotically linear (see A. 25. K~AS- 
~OSEL'SKIJ [16]) if there  exists a bounded  l inear opera tor  Z:  E - + F  such t h a t  
l / -  LI ----- 0. The (unique) opera tor  J5 is called the  asymptotic derivative of / and is 
denoted  by  /'(c~). We have  the following obvious fact.  

(e) I f  / :  E - - > F  is asymptot ica l ly  linear, then  If! = IIi'(c~)II • 

A continuous m a p / :  E --> F is called compact if the closure /(A) o f / ( A )  is com- 
pac t  for  any  bounded  set A c E.  

2.2. The Kuratowski measure o/ noneompactness. 

Here  we give the definition of the  Kura towski  measure of noncompactness  [17] 
and collect its main propert ies .  

Given any  bounded  subset A c E define the  Kuratowsl~i measure o] noncompact- 
hess ~(A) of A as the inf imum of those ~ > 0 such tha t  A can be covered with a 
finite number  of subsets of A having diameter  less than  or equal  to e. The Kura-  
towsld measure of noncompactness  has the  following propert ies .  

Le t  A and B be bounded  subsets of a Banach  space E. Then  

(a) ~(~A) : Iilz¢(A), i ~ K. 

(b) a(A) : 0 if and only if A is compact .  

(c) I n ( A ) -  a(B)t<~(A -~ B)<zc(A) ~- a(B) 

(d) 

(e) 

(/) 

(see G. DA~BO [3]). 

~([0, 1] .A)  = ~(A), where [0, 1 ] .A  -= {tx: t e [0, 1], x e A}. 

e(A L~ B) = m a x  {~(A), ~(B)}. 

I f  d i m E  = @ c~, then  :¢($1)= 2 (see 1~. D. NUSBAU~I [21] and [8]). 

1 6  - A n n a l i  dl Matemat lca  
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(g) Le t  B(A ,  e) -~ ~3 {B(x, e): x~ A}, where e >  O and B(x, e) -~ {y e E: fix-- y [] < e}, 
then  a(B(A, s))<~(A) -}- 2s. 

(h) a(c--dA)~--a(A), where e--o A stands for the closed convex hull of A (see 
G. DAI~D0 [3]). 

We shall also need the following proper ty  of a. Le t  E and  F be B~nach spaces 
and A c E,  B c F be bounded subsets. Consider E × F  with the norm 

II( x, Y)I] = max{HxN, I]y[1) • 

Then 

(i) a(A ×B)  : max {a(A), a(B)}. 

In  fact,  assume tha t  max  {a(A), a(B)} = a(A) and let ~ > O be given. Then 
~ta ~qt~ 

there exist A~, i = l , . . . , n ~  and Bj, j = l , . . . , m ~  such tha t  A-----[.JAi, B =  [JB~ 
n = l  j=l 

~nd diam 2[i < a ( l )  ~- e, i ~- 1, ..., n~; diam B~ < ~ ( i )  -}- e, j ---- 1, ..., m~. Moreover, 
A x B C U A ~ x B j ;  i - - - ] , . . . , n ~ ;  j - ~ l , . . . , m ~ ,  and d iam(A~xB~. )<max  {diam A,,  

diam B~). 
Indeed,  diam (A~ × B~) ---- sup { t! (x~, y~) -- (x~, y~)I!: (~ ,  Y~), (x~, Y~) e A,  X Bj} < 

< m ~ x  (diam A,,  diam Bj). Therefore, a(A × B ) < m a x  {a(A), a(B)). On the other 
hand  the canonical projections P E : E × F - > E  and P F : E × ~  ~ -->F are such tha t  
IIP [I = IIP ]I = m. Thus, a(A) = a(P (-a ×B))  < ]IP [la(A ×B)  = a(A ×B) .  Hence, 
a(A ×B) = a(A). This implies tha t  a(A ×B) = max  {a(A), a(B)}. 

We recall the following well-known definitions. 
A continuous map /:  E - + E  is said to be a-Lipsehitz with constant  K > 0  if 

a ( / ( A ) ) < K a ( A )  for a n y  bounded subset A c E.  The map / is called a-contractive 
if 0 < K <  1 and  a-nonexpansive if K = 1. Clear ly , / :  E - + E  is compact  iff i t  is a-Lip- 
sehitz with constant  K == 0. A continuous map /:  E -+ E is said to be condensing 
if ~ ( / (A) )<  a(A) for any  bounded subset A c E with a ( A ) >  0. 

A useful example of an a-nonexpansive n~ap is represented by the radial  retrac- 
t ion :r: E -+ D of a Banaeh space E onto its uni t  ball (see I~. D. NUSSBAU~ [21]). 

2.3. Some facts. 

We list here some well-known results to be used throughout  this paper. 

THEOREM 2.3.1 (A. M. K~ASNOSEL%KIJ [16]). - Zet /: E - +  E be asymptotically 
linear and compact. Then its asymptotic derivative / '(c~): E - >  E is compact. 

Tm~0HE~ 2.3.2 (see e . g .N .  DUSFOHD - J .  T. SCHWARTZ [5]). -- Let 1: E -+ E be 
compact and Frdchet differentiable at zero. Then the Frdehet di//erential /'(0) o / / a t  zero 

is compact. 
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T ~ o ~ E ~  2.3.3 (see e . g . N .  DV~FO~D - 5. T. SChWArtz [5]). - A bounded linear 
map L: E--> F is compact if and only if its adjoint Z*: ~ * - +  E* is compact. 

TgEO~E~ 2.3.4 (see G. DA~]~O [3]). - Let Q c E be bounded closed and convex and 
let f: Q-> Q be a-contractive. Then / has a fixed point  x s Q. 

T~E0tCE~I 2.3.5 (see B. N. SA])ovs~Ij  [22]). - Let Q c E be bounded closed and 
eonvex and let f: Q --> Q be condensing. Then f has a ]ixed point  x ~ Q. 

3 .  - Pre l iminary  results. 

The definitions and  p re l imina ry  resul ts  conta ined  in this section are  given for 

cont inuous maps  f r o m  a B a n a e h  space E into i tself  even though  they  could be  s tg ted  

for maps  act ing be tween  different Banach  spaces. 
Given a cont inuous m a p  f:  E - +  E we in t roduce  th ree  ex tended  real  number s  

d(f), a(/) and  fl(/) gnd give some of thei r  p roper t ies  to be  used in the  sequel. Our  
purpose  is to avoid  cumbersome  no ta t ions  in the  nonl inear  spec t ra l  t heo ry  t h a t  
will be developed in this paper .  I t  is r e m a r k a b l e  thu t  all of the  above  three  number s  
have  a mean ing  wor th  of a t t en t ion  in the  case when f is a l inear  opera tor .  I n  par -  
t icular ,  g t  the  end of this section,  we will show t h a t  ~ bounded  l inear  opera to r  
L :  E -+ E is F redho lm if ~nd only  if fl(L) and  fl(L*) are  g rea te r  t h a n  zero, where  L* 
is the  ad jo in t  of L. 

3.1. Definition of d(]), o:(]), fl(]) and their properties. 

Let  ]: E - >  E be a cont inuous map .  Consider the  ex tended  tea.1 number .  

d(]) = l im inf ill(x)II 
li,H~+= IlxlI 

The main  proper t ies  of d(]) are  conta ined  in the  following 

P~01"0SITION 3.1.1. - Let f, g: E -+ E be continuous m a p s / t o m  a Banach space E 
(over K) into itself. Then (whenever it makes sense) 

(a) 0<d(f)< ifJ. 

(b) d(~f) : IX[d(/), ~ e K. 

(c) d(])-- tgi<d(/+ g)<d(?) + Igl. 

(d) td(f) --  d(g) I < I f--  gl. I n  particular, I f - -  gl ~-- 0 ==> d(]) = d(g). 

(e) d(/)d(g) < d(fog) < ]/Id(g). 

(]) I f  f is a homeomorphism with quasibounded inverse, then d(])-~ ]f-ll-1. 
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P~OOF. - Due to the fact  t h a t / ,  g need not  be quasibounded one has to modify  
slightly the arguments  used in [9], [10] and  [12] to  p rove  (a)-(e). %Ve have  only to 
prove (/). 

[I-I[ = lim sup ll/-l(x)[[ = lim sup I[y]I _ ( l im inf tI/(Y)I]~ -1 
ll~ll-++oo " [[xl----~ il~[l-~+~ ]]f(y)]l [l]v]l-~+~ ][yI[ ] == d(])-l" Q.E.D. 

Given any  continuous map  / :  E - ~  E we consider the  following ex tended  real  
number .  

a(f) = inf (g~> 0: o~(/(A)) < g a ( A )  for any  bounded A c E } ,  

where c¢ is the Kura towski  measure of non compactness.  
The following proposi t ion contains the  main propert ies  of :¢(]). 

PR0e0SITI0~ 3.1.2. - Let f~ g: E --> E be continuous maps from a Banach space E 
(over K) into itself. Then (whenever it makes sense) 

(a) ~ ( y )  = l~l~(/), ~ e K.  

(b) la( / ) -  a(g)j<~(f ÷ g)<a(f) + ~(g). 
(c) :¢(/og) < ~(f)~(g). 

(d) ~(/) = 0 i/  and only i/  / is compact. 

(e) I] dim E = ~- ~ and / is compact, then ~ ( ~ - - / ) :  141. 

P~ooF. - (a) I f  dim E < - ~  c~ then  the  equal i ty  is trivial.  In  the  case when 
dim E = + ~ the s t a t emen t  is ~n e~sy consequence ~ of the following two facts 

i) a(~A)-----I~la(A). (See Notat ions  and definitions 2.2). 

ii) ~(/) can be equivalent ly  defined as follows 

~(/) = sup (~(f(~))/~(A): ~(A)> 0}. 

(b) The s t a t emen t  is t r ivial  when d i m E < - ~  ~ .  I f  d i m E - - - - - ~  ~ and 
~(A) > 0 then  ~(( / -~ g)(A))/a(A)< [a(/(A)) ~- o:(g(A))]/~(A). Taking the sup on bo th  
sides of this inequal i ty  we get  ~ ( / -~  g)<~( / )  -~ ~(g). The proof  of the  left  hand-  

side inequal i ty  is s traight-forward.  

(e) I t  follows immedia te ly  f rom the propert ies  of the Kura towski  measure 
of noncompaetness  (see ~o ta t ions  and definitions 2.2) and the definition of ~(/). 

(d) I t  follows immedia te ly  f rom the fact  t ha t  ~(A) = 0 <=>A is compact .  

(e) I t  follows f rom (a), (b) and  (d) since ~ ( I ) =  1 ( d i m e  == -~ c~, I ~ t h e  

iden t i ty  on E). Q.E.D. 
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Let  / :  E--> E be continuous.  Consider the  ex tended  real  number  

8(/) = sup ( K > 0 :  :¢(/(A)) > K a ( A ) ,  for a n y  bounded  A c E } .  

The following proposit ion holds. 

PZ%0P0SITI01~ 3.1.3. -- L e t / ,  g: E --> E be continuous maps / rom a Banach space E 
(over K) into itsel/. Then (whenever it makes sense) 

(a) fl(,V) = I~t[8(1), ;, e K .  

(b) 8(/)8(g) <8(l°g) <~(/)fl(g). 

(c) I /  8 ( / ) >  O, then / is proper on bounded closed sets. I /  moreover, d(/) > O, 
then / is proper. 

(d) I /  d i m E - - - - - { - o o ,  then 8(/)<o~(/), and 8(/)-----F co i/ d i m E <  Jr oo. 

(e) 8(/)- ~(g)<8(I + g)<8(/) + ~(g). 

(I) 18(/) - 8(g) l < ~ ( / -  g). 

(g) I /  / is a homeomorphism and 8 ( / ) >  O, the~ o:(/-~)8(/) = 1. 

(h) I /  dim E = -F co and / is compact, then f l ( ~ - / )  = l~l. 

PI~OOF. (a) I f  d i m E < - F  co then  the equal i ty  is trivial.  If d i m E  = ~ - c ~  
the s ta tement  is a consequence of the following two facts 

i) :¢(AA)=/~l~(X);  

ii) fl(/) can be equivalent ly  defined as follows fl(/) = inf{zc(/(A))/a(A): :¢(A) > 0}. 

(b) I t  follows immedia te ly  f rom the propert ies  of the Kura towski  measure of 
noncompactness  and the defblition of a(/) and fi(/). 

(c) Le t  us show tha t  fi(]) > 0 and  d(/) > 0 imply tha t  / is proper .  Le t  A ¢ E 
be compact .  Since d(/) > 0, then  the inverse i m a g e / - I ( A )  of A is bounded.  On the 
other  hand  if r is any  posit ive real n u mb e r  smaller t han  fl(/) we have :¢(](B))>~ ra(B) 
for  any  bounded  set B ¢ E.  

Therefore,  set t ing B = / - I ( A )  we get  

0 = a(A) • ra(/- l(A)) ,  

i.e. / -:(A) is compact ,  since it  is closed. 

In  the case when only fl(/) > 0 then  the above proof shows tha t  / is proper  on 
bounded  closed sets. 

(d) I t  follows immedia te ly  f rom the  definitions of a(/) and fl(/). 
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(e) I f  dim E < + c~ the inequali ty is trivially satisfied. I f  dim E = + co ,  

then 

fl(] + g) = inf {a((! + g)(A))/~(A): a(A))0} < 

< inf {[~(/(A)) + ~(g(A))]/~(~): ~(~) > 0} < 

< inf {~(!(A))/o:(A): o:(A) > 0} + 

+ sup {~(g(A))/~(A): ~(A) >- 0} = fl(/) + ~(g). 

Thus 

Using this inequali ty we get 

fl(t) = f l ( ] -  g + g)<fl(!  + g) + ~(g) . 

~ ( ] ) -  ~(g)<fl(! + g). 

(/) I t  follows from the inequal i ty 

~(l) = t i f f -  g + g)<fl(g) + ~ ( I -  g). 

(g) I f  dim E < + co the equali ty is tr ivially satisfied (we use the convention 
1 / c ~ = 0 ) .  I f  d i m E - ~  + co we have 

~(1-1) = sup {oc(/-~(A))/c~(A): a(A) > O} = sup {:¢(B)/~(I(B)): ~(B) > O} = 

= (inf > 0}) -1=  

(h) I t  follows from (a) and  (e). The assertion is fa,lse if d i m E <  + co 
(see (d)). Q.E.D. 

3.2. d, ¢¢ and fl in the context of linear operators. 

The following proposition gathers some useful information on d, o: and fl in the 
context  of linear operators. 

P~oPoslTIO~ 3.2.1. - _Let Z: E --> :E be a continuous linear operator ]rom a Banach 
space E (over K) into itsel]. Then 

(a) fl(15) > d(15). 

(b) =(15) < 111511. 
(e) I] L is an isomorphism, then d(15)= ILL-111-1. 

(d) fl(15)> 0 if and only i! 15 is le]t semi-Fredholm (i.e. Im  15 is closed and 
dim Ker  L < + co). 

(e) f l (Z*)>  0 /f and only i/ 15 is right semi-Fredholm (i.e. I m  15 is closed and 
dim Coker 15 < + ~) .  Thus~ 15 is Fredholm if  and only i! fl(Z) > 0 and fl(Z*) > O. 
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P~OOF (a), (b). - I f  d im E < ~ ~ then  the  inequali t ies are  tr ivial .  Assume t h a t  

d im E = -~ c~. Since 

a(L) = ins {ttL(~)11III~I]: ~ # 0 } ,  

we have <S(Z,)II~II<II2)(~)I1. On the other hand tlL(m)lI<lJ2)llllxll. Thus, Sor any 
bounded  set  A c E,  we have  d(L)o~(A)<~(L(A))< IIL]I~(A). This inequal i ty  ensures 

t h a t  fl(L)>d(2)) and  ~ ( L ) <  lIzI]. 

(c) I t  follows immed ia t e ly  f rom Propos i t ion  3.1.1-(/) and  f rom the equal i ty  

ILl = HL]t for a n y  l inear  bounded  opera to r  2): E -~ E.  

(d) Le t  us show first, t h a t  fl(2)) > 0 implies t h a t  d im K e r  2) < 4- c~ and  I m  2) 
is closed. B y  Propos i t ion  3.1.3-(c) 2) is p rope r  on D 1 - - t h e  uni t  closed bal l  of E.  
Thus,  K e r  2) (~/)1 is compac t ,  i.e. d im K e r  2) < ~ ~ .  We  p rove  now t h a t  I m  2) is 

closed. Since d im Ker  2 ) < - ~  c~ there  exists a closed subspace  Eo c E such t h a t  
E = Eo O K e r  2). Le i  {y~} be a sequence in I m  2) converging to some Yo and  let  
{~.} be a sequence in Eo such t h a t  2)(x~) : y~: S ince /~  is p roper  on bounded  closed 
sets (see Propos i t ion  3.1.3-(c)) we get  t h a t  Y0 e I m  2) in the case when {~} is bounded.  

I f  this is not  the  case, we m a y  assume 1]$,11-~-~- c~. Set z.  = x~/lIx~ll. Clearly, 

L(z )=L(  lIlm lt)---y.lllm II-->o, as  n - ~  ÷ ~ .  P u t  A =  {z~: n e N } .  Then,  
~(2)(A)) = 0. On the  o ther  h a n d  ~(2)(A))>fl(2))o:{A). Hence,  using the  fac t  t h a t  
fl(2)) > 0 we get  ~(A) = 0, i.v. {z~} is compac t .  W i t h o u t  loss of genera l i ty  we m ~ y  
assume  t h a t  {z~} converges to some e lement  z e Eo, lizlI = :L Thus  2)(z)-~ 0, con- 
t rad ic t ing  /~0 n K e r  2) = {0}. 

We have  to show now t h a t  if I m  L is closed and  d im K e r  L < ~ c~, then  fl(2)) > O. 
Since dim K e r  2) < ~- ~ ,  then  E = Eo (~ Ker  2), where Eo is a closed subspace of E.  

Le t  Pc: E- ->  Eo be the  canonical  pro jec t ion  onto Eo and  set  P~ = I -  Pc. P u t  
: LIEo. Since I m  2) is closed, t h e n / ~  is an i somorphism of Eo onto I m  2) = I m  

(use the  Closed Graph  Theorem).  Therefore,  d(~) > 0. Thus fl(~) > 0 since fl(~) > d(/~). 
On the  o ther  hand  L = ~ o P  o. Hence  fl(2))>fl(L)fl(Po). 
Now, fl(Po)-= f l ( I - - P ~ ) =  1 since _Pl is compac t  (see Propos i t ion  3.1.3-(h)). 

Therefor% fl(2)) > 0. 

(e) L e t  us show first t h a t  fl(2)*)> 0 implies t h a t  I T 2 )  is closed ~nd 
d im Coker Z < -~ c~. On the  basis of (d) we have  t h a t  I m  2)* is closed and  hence 
I m  2) is closed (see Dunford-Schwar tz  [5]). Moreover,  b y  (d), d im K e r  L* < ~- c~. 

Now, let  {g~,.. ,  g,} be a basis for K e r  2)*. We have  I T 2 )  --~ (h {Ker g~: i = 1, ..., n}. 
This implies t h a t  d im Coker L ~ ~- ~ .  

We shall  show now t h a t  if I m  2) is closed and  dim Coker 2) ~ ~- ~ ,  then  fl(2)*) ~ O. 
I t  is known t h a t  if I m  L is closed then  so is h n  L* (see Dunford-Schwar tz  [5]). 
On the  o ther  hand  there  are n cont inuous l inear  funct ionals  f~, ..., f~ such t h a t  
I m  2) = (~ {Kerfs :  i = 1, ..., n}. Clearly, ]~ E K e r  2)*, i = :1, ..., n and  a n y  e lement  
of K e r  2)* is a l inear  combina t ion  of f~, ..., ]~: Thus  dim K e r  L* < -~ c~. The resul t  
p roved  in (d) implies t h a t  f l(L*)> 0. Q.E.D.  
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R]~AI~K 3.2.1. - Proposi t ion 3.2.1 shows t h a t  a l inear operator  L:  E - >  E is 
F redho lm if and  only if fl(/,) and fl(L*) are bo th  grea ter  t han  zero. 

The following examples show t h a t  the ineqnalities f l (L)>d(L) ~nd a ( L ) <  ]tZIt 
do no t  hold in the  non]inea, r ease. 

EXA~M~LE 3.2.1. -- Le t  r:  E --~ D~ be the  radial  re t rac t ion  of an  infinite dimensional 
B~nuch space E onto  its un i t  closed ball  /)1. Clea.rly Irl = 0 and  ~(r)~>l s i n c e / ) i  
is not  compac t  (actually,  ~(r) = 1). Thus, Irl < x(~'). 

EXA~X_PI,E 3.2.2. - Le t  12 be the  H~ber t  space of squ~re summabte sequences of 
real  numbers.  T ~ k e / :  12 --> l ~ defined b y  ](x) = ([lxll, o~ ..., o, ...). Clearly, f is com- 
pac t  and thus fl(f) = O. On the other  hand  d(]) -~ 1. Thus fl(]) < d(/). 

The following proposi t ion contains some equivalent  conditions to the p rope r ty  
fl(Z) > 0 for a bounded linear operator  L:  E - ~  E.  

PROP0SlTI0~ 3.2.2. - .Let I~: E--> E be a bounded linear operator. 

lowing conditions arc equivalent 

Then the ]ol- 

(1) fl(L) > 0, 

(2) i /  A c E is bounded and o~(A) > 0 then ~(Z(A)) > 0, 

(3) the restriction o] L to the closed wait ball D~ is proper~ 

(4) q {a=} is such that [la~il = 1 and I~a~--~ 0 then {am} has a convergent sub- 

sequence, 

(5) Im  L is closed and dim K e r / )  < + oo. 

PI~00F. - (1) =*~ (2). I t  follows immedia te ly  f rom the definition of fl(L). 

(2) ==> (3). Le t  K c E be compact  and  pu t  A = D1 (~/~-I(K). Then /~(A) c K 
and o~(L(A))-~ O. I t  follows t h a t  a (A) -~  0. Therefore  A is compact  since it  is 

obviously closed. 

(3) => (4). P u t  {a~: n e N} -~ A and K -~ {L(A)} (J {0}. K is compact .  Since 

A c L - I ( K ) ~  DI i t  follows tha t  {am} is a compact  sequence. 

(4) ~ (5). The fa, ct  t ha t  Ker  L if finite dimensional follows immedia te ly  
since Ker  L C~ D1 is compact .  I t  remains to show t h a t  I m  L is closed. 

Since dim K e r L <  + oo there  exists a closed subspace EI c E  such tha t  
E = E1 Q Ker  Z. ~Te have L(E)----Z(E~) thus  it  is enough to p rove  ~hat L(E~) 
is closed. 

This is the  case if LIE~: El  -> L(E~) has ~ bounded  inverse, i.e. there  exists m > 0 
such t ha t  IIL(x) I/>mllxll for  any  x ~ E~, lIx]I ----- 1. Assume the contrary .  Then  there  
exists a sequence (x~}, [Ix~lI .=:1~ x , ~ E 1 ,  such t h a t  Lx,~-->0. Therefore,  b y  (4), 
we m a y  assume tha t  x~--~xEE~,  ]Ixl[-~ 1. Clearly, Lx ~-0 ,  and this is ~ contra- 

diction since E~ n Ker  L ----- (0). 
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(5) ==> (1). See Proposi t ion 3.2.1. Q.E.D. 

After  this paper  was wr i t ten  J.  MAWnZ~ brought  to our a t t en t ion  tha t  the equiv- 
alence (~ (1) ¢=> (5) ~ of Proposi t ion 3.2.2 has a l ready been proved by  G. HETZEI~ 

in [25]. 
Le t  L :  E - >  E be bounded  and linear. In  Proposi t ion 3.2.1 we proved  t h a t  

d(L) <fl(L).  Therefore  if d ( L ) >  0 then  f l ( L ) >  O. Thus the condit ion d ( L ) >  0 in- 
sures tha t  L is an isomorphism between E and L(E)  since it  is inject ive (d(L) > 0) 
and its image is closed (fl(L), > 0). 

On the  other  hand  there  are examples of cont inuous l inear operators  L which 
are inject ive bu t  d(L) ~ O. The following proposi t ion shows t h a t  this is impossible 

if fl(L) > 0. 
In  other  words, the condit ion d ( L ) =  0 implies f l ( L ) ~  0 in the case when 

the opera tor  is 1 - - 1 .  

P~oPosI~ION 3.2.3. - Let ]: E - ,  E be a continuous positively homogeneous map. 
Assume that fl(/) > O. Then the equation ](x) -~ 0 has only the trivial solution i] and 
only if d(]) ~ O. 

P~OOF. - Obviously,  the  condit ion d(]) > 0 implies t h a t  the  equat ion  ](x) -~ 0 has 
only  the  t r ivial  solution. Le t  us prove  the contraposi t ive  under  the  assumption fl(]) > O. 
In  other  words, we have  to show tha t  the conditions fl(]) > 0 and  d(]) -~ 0 imply 
the existence of an element  x e E,  x ee 0, such tha t  ](x) ~ O. Since ] is posit ively 
homogeneous there  exists a sequence (x~}, ]]x~[] : 1, such tha t  ](x~)-->0. P u t  
A -~ (x,:  n ~ N } .  T h e n 0  = ~(](A))>fl(])~(A).  I t  follows t h a t  :¢(A)~-- 0. We m a y  
assume, wi thout  loss of general i ty,  x,--~-x, tlxi]-~ ]. The cont inu i ty  of ] implies 
tha t  f(x) ~- O. Q.E.D. 

4. - Strong surjections and coincidence theorems. 

In  the first pa r t  of this section we in t roduce the concept  of strong surjective maps 
and  give some of their  propert ies.  In  the second par t  we exhibi t  a coincidence the- 
orem for strong surject ions t ha t  will p lay  a key  role in proving the  closedness of spectra 
for  nonlinear  operators .  

4.1. De]inition of strong surjeetions and properties. 

A continuous map  ]: E--> F is called a strong surjection if the  equat ion ](x) 
--- h(x) has a solution for a n y  cont inuous ma p  h: E -> i~ with h(E) compact .  

1Votice t ha t  using Schauder 's  fixed point  theorem is no t  ha rd  to show tha t  the 
iden t i ty  I :  E--~  E is a s trong surjection. 

The following proposit ions give conditions for a continuous map  ]: E - -> /v  to 
be a s trong surjection. 



246 M. F u j i  - ):[. I~AI~TELLI - A. VIG~0LI: Contributions to the spectral theory, etc. 

PR01~0SITI0~ 4.1.1. -- ]Let/: E -+ F be a continuous map. Assume that there exist a 

Banavh space G and a continuous map g: G -+ ]~ such t h a t / o g  is a strong surjection. 

Then / is a strong surjection. 

PI~.00F. - Le t  k: E -+ F be continuous and  such t h a t  k(E) is compact .  We have  
to  show tha t  the  equat ion /(x) --~ k(x) has a solution x ~ E.  Since /og is ~ s trong 
surjeet ion and kog(G) is compact ,  the  equa t ion /og(y)  -~ kog(y) hus a solution Yo e G. 

Hence  g(Yo) = Xo is such t ha t  /(Xo) = k(xo). Q.E.D. 

Proposi t ion 4.1.1 combined with the fact  t ha t  the iden t i ty  is a s t rong surjection 
ensures t ha t  any  continuous map / :  E -+ F with a cont inuous r ight  inverse is a s trong 

surject ion.  
Notice t h s t  a suitable definition of s trong surject ion in the contex t  of topological 

spaces can be given as follows. Le t  X ,  ~ be topological spaces. A continuous mup 
/ :  X - +  17 is called a strong surject ion if the equat ion /(x) ---- h(x) has a solution 
provided tha t  h: X - +  Y is continuous~ homotopic  to a cons tant  (superfluous on 
Banach  spaces) and h(X) is compact .  In  the case when X is gn Absolute Neigh- 
bourhood l%etract then  one can prove  (e.g. via the Lefschetz fixed point  theorem) 
t ha t  the iden t i ty  I :  X --> X is a s trong surjection. 

P~Ot'OSITIO~ 4.1.2. - Let /: E - + F  be continuous and such that II/(x)[1--> 4- co 
as [Ixll -+ ~- oz. Then the /ollowing two conditions are equivalent. 

(a) / is a strong surjection, 

(b) the equation / ( x ) =  h(x) has a solution x ~ E /or any compact h: E - +  ~ 

with bounded support. 

PI~OOF. - Clearly, (a) implies (b). Therefore  we have only to prove tha t  (b) im- 
plies (a). Le t  h: E- -~-~  be continuous and sfich tha t  h(E) is compact .  For  any  
n ~  IV, let  a~: E - +  [0, 1] be continuous and such tha t  

{ f if II TI<n, 
as(x) = 

0, if II il>2n. 

Clearly, the equat ion /(x) = a,(x)h(x) has a solution x~ e E.  Hence,  II/(xn) ll < 
< ]Ih(x,)lI. This implies tha t  ][x~I 1 <~ for some ~ N, since h(E) is bounded.  Thus, 

/(x~) = h(x~), since (~(x~)----1. Q.E.D. 

The following resul t  is of independent  interest .  

PI~OPOSITIOIN 4.1.3. - (A Continuation Principle /or strong surjections). Let 
/ : E - + t  ~ be a strong surjection and h : E x [ 0 , 1 ] - - > F  be continuous compact with 
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h(x, O)-= 0 /or any  x ~ E.  As sume  that 

( , )  there exists a bounded open set U c E such that ]-1(0) c U and  ~ U (3 S = O, where 
S = {~ ~ E :  ](x) ----- h(x, t) ]or some t ~ [0, 1]}. 

Then  the equation /(x) = h(x, 1) has a solution x e U. 

PlcooF. - P u t  N = S n U. Clearly, N is not  empty .  Moreover,  N is c loser  since 
S ( ~ U - - - - - O  and S, by  the cont inui ty  of J and h, is closed. Le t  ~ : E - + [ 0 , 1 ]  be 
any  Uryson 's  funct ion such tha t  9(x) = 1 if x e ~q and 9(x) = 0 if x ~ U. 

Define k: E -~ F b y  k(x) -~ h(x~ qJ(x)) and  observe tha t  k(E) is compact .  Thus, 
the  equat ion ] ( x ) =  k(x) has a solution xoGE.  Assume Xo~ U. Then k (Xo )=  
= h(x.,  9(xo)) ----- h(xo, 0) = 0. Hence  ](xo) = 0, contradic t ing the assumption ]-1(0) : U. 
Therefore,  x0 E U. Since 9(x0)G [0, 1] we get  x0 E S, which implies tha t  9(xo) = 1. Q.E.D. 

Notice t ha t  i f / :  E -+ F is a strong surjection and  g: E --~ F is such t h a t  g(E) is 
compact ,  t hen  ] -[- g is a s trong sm'jection. This observat ion shows tha t ,  Proposi- 
t ion ~.1.3 holds t rue  if we replace the  conditions << h(x, 0) == 0 for all x E E ~> and  
<, ] -1(0)c  U ~ with the  weaker  assumptions 

is cor.t,a t > and  

We add in passing t ha t  condit ion ( . )  is clearly satisfied if S is bounded.  

4.2. Coincidence theorems. 

We shall now give a coincidence theorem for strong sm'jections tha t  contains as 
par t icular  cases the well-known fixed point  theorems of Schauder,  G. Darbo [3] 
and  B. N. Sadovskij  [22]. 

THEO]~.E~ 4.2.t .  -- _Let ]: E - ~ E  be a strong subjection. 
h: X ---> F be continuous. 

A s s u m e  that 

(i) / - 1 ( ~  h(X)) : X, 

(ii) h(X)  is bounded, 

(iii) e ( / ( X ) ) =  o:(h(A)) =~ _A compact. 

Then the equation ](x) = h(x) has a solution x E X .  

Let  X c E be closed and  

P R O O F .  - We shall const ruct  a sequence {x~} in E as follows. Take Xo e X and 
choose xl  ~/-1(h(xo)).  Clearly f(xl) = h(xo). Now take  x~ ~ / - l (h (x l ) ) .  Obviously 
](x2) -= h(xl). This procedure  yields a sequence {x~} such t h a t  ](x~) -= h(x._l) .  De- 
note  with A----{x~: n ~ N } .  The sequence {x.} was defined in such a way  t h a t  
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](A)-=-/(Xo) t3 h(A). ~o t i ce  t h a t  b y  (ii) h(A) is bounded.  Therefore  zc( / (A))= 
: -  c¢(h(A)), and _~ is compact  by  (iii). Le t  us denote  with A '  the  set of cluster points 
of (x~}. Since X is closed then  A ' c  X.  

We wa.nt to show tha t  A'c]-~(h(A')) .  In  other  words we have  to show tha t  if 
x e A '  then  f(x) e h(A'). Since x is a cluster  poin t  of the  sequence {x,} then  there  
exists a subsequence {x~} of (x,} such tha t  x ,~-> x. Therefore  h(x.~_~) = ](x.~) -+ 
-7". ](x). Let  y e A'  be a cluster  point  of {x,~_~}. Clearly h ( y ) =  ](x). Denote  by  
d~-~ { M c X :  A '  c M ,  Mis  closed and  ]-~('d-6 h(M)) c M}.  The family v ~ i s n o t  e mp t y  
since X e.AL. P u t  Mo = ¢3 {M: M e d~}. We have  to  show now t h a t  ] - ~ ( ~  h(1t/o)) = Mo. 
Since ]-~(-d-6 h( Mo) ) c ]-~(c-d h( M) ) c M for any  M e dig we have  tha t  ]-~(c'6 h( Mo) ) c Mo. 
Thus i t  is enough to show th a t  ]-~('d'd h(Mo))= M~ e ~ .  Clearly M~ is closed. 
Moreover  ]-'(-d-6 h(M1)) c ]-~(C-d h(Mo)) = M~ and A ' c  l-~(h(A')) c ] - ~ ( ~  h(Mo)) = M~. 
Hence  co h(Mo) :-  ](Mo). 

Since h(Mo) is bounded  we have tha t  a(~6 h(Mo)) : a(h(Mo)) = o:(f(Mo)), thus Mo 
is compact .  By  Dugundji ' s  extension theorem [4] the  map  h: Mo--> h(Mo) can be 

ex tended  to a cont inuous map g: E--> co h(Mo). 
Clearly g(E) is compact .  This implies t h a t  the  e q u a t i o n / ( x )  : g(x) has ~ solu- 

t ion x0 ~ E since ] is a strong surjection. On the  other  hand  ](xo) e co h(Mo). Thus 

xo e ]-~ (c-o h(Mo)) = Mo: Therefore,  ](xo) : g(Xo) : h(xo). Q.E.D. 

Notice t ha t  condit ion (iii) is satisfied if h(X) is compact  and  ] is proper.  
We show now tha t  some well-known fixed point  theorems are direct  consequences 

of Theorem 4.2.1. 

COROLLA~Y 4.2.1 (B. H. SAD0VSKIir [22]). - Let C c E, be bounded, closed and 
convex. Let h: C --> C be condensing. Then h has a ]ixed point x ~ C. 

P~ooF. - Apply Theorem 4.2.1, taking ] =1 ~  the iden t i ty  on E, and 

X = C. Q.E.D. 

Corollary 4.2.1 contains as par t icular  eases Schauder 's  fixed point  theorem and 

the  fixed point  theorem of G. Darbo [3]. 
We give now a coincidence theorem which is of independent  interest ,  representing 

an extension of the well-known Banach  Contract ion Principle.  

Tn:EOI~E~ 4.2.2. --/bet X and Y be metric spaces, Y being complete. :bet f, h: X -> Y 
be continuous. 

Assume that there exists K e R ,  0 < K  < 1, such that 

d(h(x), h(y)) < Kd(](x), ](y)), Vx, y e X .  

I] ] is onto and either ] or h is proper then there exists x ~ X such that ](x) : -  h(x). 

P R O O F .  - Construct  a sequence {x~} in X as in Theorem 4.2.1. We want  to show 
tha t  {h(x~)} is Cauehy ill Y and hence convergent .  
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Clearly d(h(x~), h(x~+l))<<.K~d(h(xo), h(xJ). The fac t  t h a t  ]~ K ~ < + ~ im- 
n = 0  

plies t ha t  {h(x~)} is Cauehy. Le t  Yo e 17 be such t h a t  /(x~+J = h(x~)-+ Yo. The  
sequence {x~} is contained in the inverse image under  ] (or h) of the compact  set 
A ---- {Yo} ~J {/(x~): n e N}. Hence  b y  the  properness of ] (or h) we have  t h a t  {x~} 
is compact .  Le t  {x~} be a subsequence of {x~} converging to xo e X. Clearly /(Xo) 
and  h(xo) coincide with Yo. Q.E.D. 

The Banach  Contract ion Principle follows immedia te ly  b y  taking X = Iz and 
/ =  ] ,  the  iden t i ty  on X. 

5.  - S t a b l y - s o l v a b l e  m a p s .  

In  this section we give the definition of stably-solvable maps  between Banach  
spaces. We also give their  main  propert ies  and show how they  are re la ted to s t rong 
surjections. Stably-solvable maps  will p lay  an  impor t an t  role in the nonlinear  spec- 
t ra l  t heory  to be developed in section 7. In  part icular ,  using the concept  of stably- 
solvable maps,  we will be able to give a decomposit ion of the spec t rum for nonlinear 
operators in such a way  tha t ,  when reduced to the l inear case it  coincides with a 
well-known decomposit ion of spectra  for l inear operators.  

We would like to point  out  t h a t  the concept  of stably-solvable maps is s t r ic t ly  
re la ted to the problem of solvabili ty of nonlinear  opera tor  equations.  To this pur- 
pose see [11] where stably-solvable maps have  been in t roduced  and  some results 
(without  proofs) are given. 

5.1. Definition of stably-solvable maps and properties. 

Let  / :  E --> F be a cont inuous map f rom a Banach  space E into a Banach  space F .  
The map f is said to be stably-solvable if the  equat ion 

/ (x)  = h(x) 

has a solution x ¢ E for a n y  continuous compact  map  h: E - >  F with quas inorm 

Ihl = 0. 

Obviously, any  stably-solvable map  / :  E - ~  F is onto. The converse does not  

hold as the following example  shows. Take  ]: R ~ -~ R ~ defined by  f(x) : x/%/1 ~-IIxI!. 
Clearly, the map f is continuous,  onto and I/I = 0. Thus,  if we choose h: R ~ --> R ~, 
defined by  h(x)--~/(x)-~ xo with xo¢:  0, then  the  equat ion  ] ( x ) =  h(x) has no 
solutions. 

The following proposi t ion gives a re la t ion be tween stably-solvable maps  and 
s t rong surjections. 
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PI~OPOSITI0~ ~ 5.1.1. -- Let  /:  E -+ ~ be such that d(/) > O. Then  the following con- 
ditions are equivalent. 

(a) The equation f(x) = h(x) has a solution x E E for any  compaet map  h: E --> F 
with bounded support,  

(b) f is strong surjeetion, 

(e) ] is stably-solvable. 

P~OOF. - Clear ly  (e) ::> (b) ~ (a). Since d(/) > 0 we  h a v e  thattllli_+m¢o lI/(x)I] = + co. 

There fo re ,  (a) ::~ (b) on  t h e  bas i s  of  P r o p o s i t i o n  ¢.1.2. H e n c e  i t  is e n o u g h  to  show 

t h a t  (b) ~ (c). L e t  / :  E - + E  be  a s t r o n g  su r j ec t ion  a n d  h: E - + E  be  c o n t i n u o u s  
c o m p a c t  w i t h  Ih[---- 0. W e  h a v e  to  show t h a t  t he  e q u a t i o n / ( x )  = h(x) has  a solu- 
t i o n  x ~ E .  

F o r  a n y  n ~ N le t  a . :  E --> [0, 1] be  a U r y s o h n ' s  f u n c t i o n  such  t h a t  a . (x)  = 1 if 
IIxll<n a n d  a ~ ( x ) =  0 if IIxll~2n. Clearly,  the  e q u a t i o n  ] ( x ) =  a~(x)h(x) has  a 
so lu t ion  x .  ~ E f o r  a n y  n ~ N.  I f  Ilx.tl ~<n for  some  n ~ N w e  a re  done ,  s ince a . (x . )  = 1. 

A s s u m e  t h e r e f o r e  t h a t  Ilx~ II > n fo r  a n y  n ~ N. 

Obv ious ly ,  

for a n y  n e N. Since h(x.)/lIxnlt ~ o as n -+ + ~ and  (¢n(x.)} is b o u n d e d  we g e t  
](x~)/IIx~lI-+ o as n - ~  ~ c~, c o n t r a d i c t i n g  t h e  i n e q u a l i t y  d(]) > O. Q.E .D .  

No t i ce  t h a t  on the  bas is  of P r o p o s i t i o n  5.1.1. t he  i d e n t i t y  I :  E - - ~  E is s t ab ly -  

so lvab le  ( I  is a s t r ong  su r j ec t ion  w i th  d ( I ) =  1). 
I n  t h e  c o n t e x t  of b o u n d e d  l inea r  o p e r a t o r s  i t  is poss ib le  to  c h a r a c t e r i z e  t h e  

s t a b l y - s o l v a b l e  m a p s .  N a m e l y ,  we h a v e  the  fol lowing.  

T ~ 0 ~ E _ ~  5.1.1. - Let L :  E -+ F be linear and bounded. Then  L is stably-solvable 

i] and  only i] it is onto. 

P~OOF. - T h e  t( on ly  if ~) p a r t  is t r iv ia l .  L e t  L :  E - +  F be  on to .  B y  Michae l ' s  
se lec t ion  t h e o r e m  [18] t h e r e  exis ts  a con t i nuous  m a p  g: F ~ E  such  t h a t  g ( y ) e  

e L- l (y ) ,  where  L- l (y )  = (z  e E :  L(z)  = y}, a n d  fig(Y)II < M ]IY H, Y e /F ,  for  some  M > 0. 
L e t  h: E - + F  be  c o m p a c t  w i th  lht = 0. W e  h a v e  to  show t h a t  t he  e q u a t i o n  

L(x)  = h(x) has  a so lu t ion  x e E .  ~-ow, o b s e r v e  t h a t  if y E F is a so lu t ion  for  t h e  
e q u a t i o n  y = h(g(y)), t h e n  g(y) is a so lu t ion  for  t he  e q u a t i o n  L x  = h(x), s ince 
L(g(y))  = y, y E F .  Clearly,  t he  m a p  /tog: F -+ F is c o m p a c t  a n d  lhog]< ]h[lg] = 0. 

Since t h e  i d e n t i t y  I :  F -+ ~ is s t a b l y - s o l v a b l e  t h e  e q u a t i o n  y = h(g(y)) has  a solu- 
t i on  y ~ F .  Q .E .D .  
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Other  examples  of s tably-solvable  maps  can be given on the basis of the following 
observa.tions. 

1) Zet E, F and G be Banach spaces. Zet /: E --> F be stably-solvable and let 
r: G --~ E be a continuous map having a qu~sibounded right inverse s: E -~ G. Then 
the map g ~ ]or: G---~F is stably-solvable. I n  fact ,  let  h: G - ~ F  be compac t  wi th  
[h I = 0. Since ] is s tably-solvable  and  hos is compac t  wi th  lhosf< Ihtlst ~ O~ the  
equa t ion  ](x) ~ h(s(x)) has a solution x e E.  Hence  s(x) ~ G is a solution of the  equa-  

t ion g(y) ~- h(y). 
As an  exumple  of the  above  observa t ion  consider the  m~p  ]:  E -~ E defined b y  

](x)-~ Hxl[x. The inverse ]-l(y)_~ y / V / ~  is quasibounded.  Hence  ] is s tab ly-  

solvable.  

2) Let E, fF and G be Banach spaces. JSet f: E-->.~ be stably-solvable and 
g: F - - ~ G  be right invertible with continuous quasibounded inverse s: G - + F .  Then 
go]: E - +  G is stably-solvable. Let h: E---> G be compact with lh]-~ O. We h a v e  to 

show t h a t  the  equat ion  g(f(x)) ~- h(x) has a solution. Clearly, the  equat ion  ](x) 
= s(h(x)) has  a solution x e E.  Now,  a p p l y  g to bo th  sides of this equat ion.  

3) Let E, JF and G be Banach spaces. Let ]: E --> F and g: G --> E be continuous. 
I f  g is quasibounded and log is stably-solvable, then ] is stably-solvable. I n  fact ,  t ake  
h: E -~ F com pac t  wi th  lh] -~ 0. We have  to show t h a t  the  equa t ion  ](x) -~ h(x) 
has a solution x e E.  Since /og is s tably-solvable  the  equa t ion  ](g(y))~-h(g(y))  
has  a solution y ~ G. Clearly, ](x) -~ h(x) with  x = g(y). 

5.2. A Continuation Princip le /or  stably-solvable maps. 

The following resul t  allows us to deal wi th  equat ions  of the  fo rm ](x) -= h(x), 
where ]:  E - ~  F is s tably-solvable  and  the  c o m p a c t  m a p  h: E- ->  ~ need not  be  
quasibounded.  

Tm~oRE~I 5.2.1 (see [11]) (The Continuation Principle for stably-solvable maps). - 
_Let ]: E - ~  be stably-solvable and h: E X [ 0 ,  1] -~ F be continuous compact and such 
that h(x~O)~-O for any x ~ E .  Let S = { x ~ E : f ( ~ v ) = h ( w , t )  for some t~[0 ,1]} .  
I f  ](S) is bounded then the equation 

/(~) = h(~, 1) 

has a solution. 

P ~ o o s .  - There  exists an  r > 0 such t h a t  ](S) is conta ined  in the  inter ior  of D~. 
Le t  ~: E -~ [0, 1] be a Urysohn ' s  funct ion  such t h a t  ~(y) = 1 if y~] (g )  and ~(y) = 0 
if Ilyll>~r. Consider the  equa t ion  ] ( x ) =  zoh(x ,~ ( / (~ ) ) ) ,  where  ~:  F - + D ~  is the  
radia l  re t rac t ion  o f /~  onto D~. Clearly, z o h  is compac t  and  its quas inorm [~oh] -~ 0. 
Therefore,  there  exists a solution no ~ E of the  above  equat ion.  Assume t h a t  Ilf(~o) II > r. 
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This implies t h a t  q~(f(Xo)) = 0. This contradic t ion  shows t h a t  ]I](%)]] < r. There-  

fore, f ( x o ) = h ( x o ,  q~(](Xo))). Since 0 < ~ ( / ( X o ) ) < l  it  follows t h a t  x o a S .  Thus 

~(/(Xo)) = 1 and /(x o ----- h(xo, 1). Q.E.D.  

I~E~ARK 5.2.1. -- A condit ion t h a t  ensures the  boundedness  o f / (S )  is the  following. 

l im sup Ilh(x, t)ll 
~a[0,1J 

< 1 .  

I n  fact ,  if there  would exis t  a sequence {(x,, t,)} such t h a t  {/(x~)} -> + oo and  
I~ x ~, ](X~) = h(x, ,  t.) we would have  i,]~ -J -~ llh(x~,t~)II • Thus  

lira sup ]]h(x, t)l ] 

t~[O,1] 

- - ~ > 1 .  

6. - Re g u l a r  maps .  

I n  this section we int roduce the  class of regular  maps  t h a t  will be  used la ter  for  
the  definition of the  spec t rum for  nonlinear  maps  ac t ing  on a Banach  space E.  

6.1. Definition o/ regular maps and properties. 

A continuous m a p / :  E -> F f rom a Banach  space E into a Banach  space /7 is 
said to  be  regular if i t  is s tably-solvable  and  if d(]) and fl(]) are  bo th  posit ive.  

P~oeos ITIo~  6.1.1. - The identity I :  E -* E acting on a Banach space E is regular. 

PgooF.  - The s t a t e m e n t  is an immed ia t e  consequence of the  fac t  t h a t  the  iden t i ty  

is s tably-solvable  and  d ( I ) - ~  fl(I) ---- ]. Q.E.D. 

The following proposi t ion character izes  the  regular  maps  among  bounded  l inear 

operators .  

P~OPOSITION 6.1.2. - Let Z:  E -* F be linear and bounded. Then L is regular i] 
and only if L is an isomorphism. 

P~ooF.  - Le t  L be regular .  Then  L is inject ive since d(L) > 0 and  obviously  L 
is surjective.  Hence  L is an  isomorphism.  Assume now t h a t  L is an  isomorphism.  
Then d ( L ) >  0 (see Proposi t ion 3.2.1-(e)). Fm. thermore ,  fl(L)>~d(L) (see Proposi-  
t ion 3.2.1-(a)), therefore  fl(L) is also posi t ive.  Since L is onto,  then  b y  Theorem 5.1.1 

it  is s tably-solvable .  Q.E.D.  
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The following proposi t ion shows tha t  the  p rope r ty  of being regular  is invar iant  
under  (( small ~> per turbat ions .  Namely  

P~o:eosr['~o~ 6 . 1 . 3 .  - Zet  ]:  E -> ~ be regular and let g: E --> _F be such that ~(g) < 
< fl(]) and Ig! < d(]). Then ] ~- g is regular. 

PaooF.  - We have  d(] + g ) > d ( ] ) -  [g] > 0 and fl(] + g ) > f l ( ] ) -  g(g) > 0. There- 
fore, it  remains to show tha t  the equat ion ](x) ---- -- g(x) ~ k(x) has a solution x ~/~ 
for a n y  continuous and  compact  k : E - + _ F  with lkl----0. In  this case we have 
[ - - g  + k l -~  tgl and  o: ( - -g - - / k )  = ~(g), therefore,  i t  is enough to show tha t  the 
equat ion ](x)-~ h(x) has a solution x ~ E ,  whenever  h: E - + F  is continuous and  
such tha t  [h[ < d(]) and ~(h) < fl(/). Now, let  b, c e R be such t h a t  [h] < b < c < d(/). 
This implies t ha t  there  exists a, r > 0  such t h a t  [Ih(x)l]<a÷ bIlx]] and ]I](x)II>~ 
>c(Ilxll - r) for all x e E (to obtain the  last  inequal i ty  choose r > 0 such t h a t  ll](x)I1 
>~cl]x]l for all ]lxH > r ) .  Le t  e > 0 sat isfy a -~ b e < c(e --  r). We shall apply  Theo- 
rem 4.2.1 with X = D o =  ( x e E :  ]]xl]<e}. Clearly, h(X) is contained in the set 
C =  (xe2~ :  ]lxlI<a ~-bo~}, hence condit ion (ii) of Theorem 4.2.1 is satisfied. Now 

let us take x e E  such tha t  ](x) e C. We have  a ~- be> ]t/(x)ll>c(l[xH- r). This 
implies itxtl <~ ,  i.e. ]-~(C)c X .  Therefore~ condit ion (i) of Theorem 4.2.1 is satisfied. 
Moreover,  the inequnli ty  ~ ( h ) <  fl(f) implies g ( h ( A ) ) <  ~(f(A)) for  any  A c X with 
a(A) > O. In  fact,  if ~(A) > 0 we have  a ( ] ( A ) ) ~ f l ( ] ) ~ ( A ) >  : ¢ ( h ) ~ ( A ) ~ ( h ( A ) ) .  
This implies tha t  condition (iii) of Theorem 4.2.1 is also satisfied. Q.E.D. 

The following is an interest ing p rope r ty  of regular  maps. 

P~OPOSITION 6.1.4. - Let /: E - - > F  be regular. Then ]-l: 2 ' - - o E ,  de]ined by 
]-~(y) ---- (x~ E: ](x) ~ y}, is upper semicontinuous with compact values. 

PtCOOF. -- I t  is an easy consequence of the following well-known p rope r ty  of upper  
semicontinuons maps. 

Zet g: X - - o  Y be a multivalued m a p / t o m  a metric space X into a metric space Y. 
Then g is upper semicontinuous if and only if. 

(i) the graph of g is closed (in X x Y). 

(ii) g sends compact sets into relatively compact sets. 

Now, f - i  satisfies condit ion (i) since ] is continuous.  ]Koreover, b y  Proposi- 
t ion 3.1.3-(c), f is proper .  Thus,  condit ion (ii) is also satisfied. Q.E.D. 

I~E~ABK 6.1.1. -- We recall  t h a t  a continuous map ~v: E -+ E is culled a compact  
vector  field if ~v(x) ~- x -- h(x), where h: E -+ E is compact .  

1 7  - A n n a l i  d~ Malemat ica  
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An impor tan t  class of regular maps is represented by  compact  vector fields 
satisfying the following conditions: 

(i) d(~) > 0, 

(ii) deg (~0) v~ 0, where deg (V) stands for the I~eray-Schauder degree deg (V, B,, 0), 
which is independent  of r > 0 for sufficiently large r. 

A proof of this f~ct can be found in [9]. 
We shall give now the following result  for regular maps, which is a consequence 

of Proposition 6.1.3. 

P~OPOSITIO~ 6.1.5. - Zet ]: E - - ~ F  be regular and h: E - - > F  be oaZipsehitz on 
bounded sets. Then, there exists ~ > 0 such that the equation 

/ (x)  = lh(x)  , 2 e K , 

is solvable provided that ]t[ < e. 

P]cOOF. Since d ( f ) >  O, the inverse image / - I (X)  of any  bounded set X c F is 
bounded. Then, there exists r >  0 such tha t  It/(x)It < 1  implies IIxlt < r .  Le t  z :  E -+Dr 
be the radial  retract ion of E onto D~ = {x ~ E :  ]Ixll <r}.  Since h is ~-Lipschitz on D~ 
and z is ~-nonexpansive, the map hou: E -> F is ~-Lipschitz and its image coincides 
with h(D~), which is bounded. Therefore, there exists e > 0 such tha t  sa(hoT~) < fl(]) 
andsilh(7~(x))It 4 1  for all x a E .  Take ~ e K  with Ill < e. 

W e  h ~ v e  ~ (&ho~)  = [2.I~(ho~) < fl( /)  a n d  0 ---- l)~ho~l < d( / ) .  T h u s ,  by  Proposi- 
t ion 6.1.3 the equation 

i (~ )  = ~ h ( ~ ( ~ ) ) ,  

has a solution xo e E. I t  remains to show tha t  z(xo) = xo, i.e., xo ~ D~. This follows 
at  once from the fact  t h a t  

II/(Xo)II = I~ l I l (~ (xo) ) II<z  • q . n . D .  

The following result shows tha t  s tar t ing from regular maps one can produce 
other regular maps by means of suitable homotopies. 

PROPOSI~ON 6.1.6. -- Let ]: .E -> F be regular and h: E × [ 0 ,  1] - + ~  be compact. 

Assume that 

(i) h(x, O) = 0 for all x e E, 

(it) the set {x E E: ](x) @ h(x, t) = O for some t a [0, 1]} is bounded, 

(iii) d(](-) -}- h(. ,  1)) > 0. 

Then the map /( . )  ~ h(.,  1) is regular. 
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P~ooF. - By Proposition 5.1.1 it  suffices to to show tha t  the equation /(x) + 
h(x, 1 ) =  k(x) has a solution provided /¢: E - ~ F  is compact  wi th  bounded sup- 

port.  I~ow apply Proposition 4.1.3. Q.E.D. 

We close this par t  wi th  the following 

EXA_~CPL]~ 6.1.1. - Le t  / :  [0, 1 ] × R '~ --> IR ~ be continuous and  such tha t  }I/(t, x) 11 < a + 
+ bllxll, for some a, b > O. Consider the operator M:  C~([O, 1]) --> C°([0, 1]) × R  ~, 
defined by  M(x)( t ) -~  ( $ ' ( t ) - / ( 6  x(t)), x(0)). Using Proposit ion 6.1.6 one can show 
tha t  M is regular (the proof of this fact  will be given elsewhere). Therefore if 
g: [O, 1 ] × R ~ × R ~ - + R  ~ is a C ~ map and  k: 01([0,1])-->R ~ is continuous, then 
(see Proposit ion 6.1.5) the problem 

{ x ' = / ( t ,  x) + lg ( t ,  x,  x')  

x(O) = xo + l k ( x )  

has a solution x e C,~([0, 1]), provided tha t  1 is sufficiently small. 

6.2. A characterization o/regular maps i n / i n i t e  dimensional spaces. 

Let  S 1"-~, S~ -~ be the uni t  spheres of R" and  R "  respectively and  le t / ,  g: ~n-zl 1__>~1~.~- ~ 
be continuous. We recall tha t  / and g are said to be homotopiv ( / ~  g) if there exists 
a continuous map H:  S~ -1 ×[0, 1]--> S~ -1 such tha t  H(x, O)----/(x) and H(x,  1 ) =  
-= g(x) for any  x ~ S~ '-1. This is an equivalence relation and  we shall denote by  [/] 
the homotopy class of /. The map /: S~ -~ -+ S~ -~ is called homotopically trivial if 
there is a constant  map in its equivalence class. For  fur ther  informations on homo- 
topy  classes of maps in the sense ment ioned above see S. T. H v  [14]. 

We shall show tha t  to every continuous map / : R  ~ -->R '~ such tha t  /-~(0) is 
bounded can be associated a unique homotopy  class [/]. Le t  1: R "  -+ R ~ be as above, 
then there exists r o >  0 such t h a t / ( x )  ~ 0 for any  x e R  ~ with IIxlI>ro: Le t  r>ro, 
Define /~: S~ - I  -->S~ -1 by  /~(x) -~/(rx)/lt/(r$)lt, x e ~1 . The homotopy  class [/] as- 
sociated to / is the homotopy  class of /~. 

We have to show tha t  this definition is independent  of r>ro. Let  s, r>ro. 
Define the  homotpy  H:  ~S~ -~ × [0, 1] -+ S~ ~-1 b y  

t ( t rx  + (1 - -  t ) sx )  
~ ( x ,  t) = lll(trx + (~ - t ) sx)  l] " 

Clearly, H(x, O ) = / , ( x )  and H(x,  1)----/~(x). Thus, the homotopy  class of / is . in- 
dependent  of r>ro. 

PICOPOSITION 6.2.1. - .Let H: R ' x [ 0 ~  1]- ->R '~ be continuous and such that the set 
{x ~ R ' :  H(x,  t) = 0 /or some t ~ [0, 1]} is bounded. Then [H(. ,  0)] = [H(. ,  1)]. 
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Pr~ooF. - Take  r > 0 such t h a t  H(x,  t) V= 0 for a n y  x E R ~ wi th  IIxtl ~>r and  t e [O, 1]. 
The resul t  follows immedia t e ly  b y  considering the h o m o t o p y / t :  S~ -1 × [0, 1] --~ S~ -~ 

defined b y  / t (x ,  ~) : H(rx, t)/I]H(rx , t)If. Q.E.D. 

I~E)L~X 6.2.1. -- The  above  proposi t ion  shows t h a t  if f :  R ~ -~ R ~. is cont inuous 
and  such t h a t  d ( ] ) >  0, then  [f] : If + w], for a n y  cont inuous w: R~--> R ~ with  

Iwl = 0 .  
The following resul t  character izes the  regular  maps  on finite dimensional  spaces 

b y  means  of h o m o t o p y  classes on spheres.  

PI¢OPOSITIO~ 6.2.2. - Let ]: R ~ -> R ~ be continuous with d(f) > O. Then f is regular 
if and only if the homotopy class [/] associated to f is not trivial. 

P~ooF.  We shall  first p rove  t h a t  if f is no t  regular  then  If] is tr ivial .  On the  

basis of l~emark 6.2.1 we m a y  assume t h a t  f(x) V= 0 for  a n y  x ~ R% The h o m o t o p y  

t~(x, t) = ](tx) ¢"-~ t e [ 0 , 1 ]  
ill(tx) ll' x e . ,  , 

shows t h a t  fl is homotop ic  to the  cons tan t  m a p  f(o)/[If(o)i I. Thus,  U] is tr ivial .  I t  
remains  to show t h a t  if [/] is t r iv ia l  then  f is not  regular.  Le t  r > 0 be  such t ha t  
](x) =/= 0 for any  x ~ R n with I]xll >jr. Since If] is t r iv ia l  then  the  restr ic t ion 
f ISh-l:  S~. -~ - + R m \ { 0 }  is homotopic  to a constant .  Therefore,  there  exists an  ex- 

tension h: z}, ~ R ~ \ { o )  of i lS~ -~, where  ~ = (~ ~ R~: !Ix!I < ' ) .  The  map g: R °  - + R ~  
defined b y  

h(x) ,  if I lxlI<r ,  

g ( x ) =  f(~), if HxI]>r, 

is clearly no t  vanishing,  t~ence, f is no t  regular  since I f - -  gl = 0. Q.E.D. 

6.3. l~egular maps and essential compact vector fields. 

Let  ]~ be an infinite dimensional  Banach  space and  E0 be  a finite codimensional  

closed subspace of E.  We recall  t h a t  a m a p  f:  X --> E0, X c E is called a compac t  
vec tor  if ( 1 -  f ) : X - - >  E is compac t  (1 being the  iden t i ty  on E). A nonvanish ing  

compac t  vec tor  field f :  ~q -+ E0, S ~ {x E E :  IIxtI -~ 1}, is said to be  essential if a n y  
extension of f to a compac t  vec tor  field g: D --> Eo, D : {x e E :  Hxl! < 1}, vanishes 

a t  some point  xo ~ D  (see A. G~A~AS [13]). 
]'j. ~IlCEN:BE~G [19] gave  a character iza t ion  of essential  compac t  vec tor  fields 

using a rguments  of s table h o m o t o p y  theory ,  exhibi t ing some interes t ing applica-  

t ions to par t i a l  differential  equations.  
I n  this p a r t  we shall  character ize  essential  compac t  vec tor  fields in t e rms  of 

regular  maps .  
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Let  / :  S - * E 0  be a compact  vector field. Define ]: E - * E o  by  

](x) = I I lxl l /(x/ l txlI), i f  x o, 

L 0 ,  if x : 0 .  

Clearly, ] is a positively homogeneous vector field and coincides with / on S. 
Moreover fl(]) -~ 1, and d ( ] ) >  0 if and only if / is nonvanishing. 

Pt~0t'0SITI0~ 6.3.1. - Zet /: S ---> Eo be a nonvanishing compact vector/ield. Then / 
is essential i /  and only if  ] is regular. 

PnooF. - (If). Assume tha t  ] is regular and let g: D -* Eo be any  compact  vector 
field such tha t  the restriction giS = / .  Define h: E - ~  Eo by  

] ( x )  - g ( x )  , if ] txIt<l ,  
h(x) ! O, if i[xI1 >1.  

Since h is compact  with bounded support  the equation ](x) = h(x) has a solu- 
t ion xo e D. Hence, g(xo)= 0. Therefore, / is essential. 

(Only if). Assume tha t  / is essential. Since d(]) > 0 it is enough to show tha t  
the equation ](x)-~ h(x) has ~ solution pro~-ided tha t  h: E--> Eo is compa, ct with 
bounded support  (see Proposition 5.1.1). Define g: D --> Eo by  g(x) = ](x) -- r-Ih(rx), 
where r > 0 is such tha t  h(x) = 0 for any  I[xl} > r .  

Clearly, g is a compact  vector field and gtS = / .  Therefore, g vanishes at  some 
point  x o e D .  Hence, ](x0) = r-lh(rxo), i.e., rxo is a solution of the equation ](x) = 
= h(x). Q.E.D. 

Theorem 6.3.1 below shows tha t  for a compact  vector field / :  E - > E o ,  with 
d(/) > 0 the proper ty  of being regular depends only on its behavior on a sufficiently 
large sphere ST C E. 

We need first some notations.  L e t / :  E --~ Eo be as above. Since d(/) > 0, there 
exists ro > 0 such tha t  / ( x ) ¢  0 for any  ]lxt] >rÜ: Let  r > ro and denote by /~ the 
restriction/IS~ and  by ]~ its positive homogeneous extension. Clearly, ]~ is a compact 
vector field with d(]~)> O. 

Let  r, s > r,.  The homotopy  H:  E×[0~ 1] -*Eo defined by  

t) = x - -  Ilx]l(tr-' + ( 1 -  + ( 1 -  t)s)x/[]xL]], 

where h is the compact  par t  of [, implies (see Proposition 6.1.6) tha t  ]~ and ]. are 
either both  regular or both  non regular. Therefore, by  Proposition 6.3.1, [,. and /~ 
are either both  essential or both inessential. 
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This observat ion plays a ke y  role in the following 

Tn-E01~E~ 6.3.1. - I, et /: E --> Eo be a compact vector field with d(/) > O. Let ro > 0 
be such that/(x) V= 0 for ]I$]] >%.  Then / is regular if and only i f /~ is essential for 
some s~ro (hence f~ is essentia~ /or all r>~ro). 

PR00F. - (If). We  have  to  show t h a t  the  equat ion  /(x) = h(x) has a solution 
provided tha t  h: E - +  E0 is compact  with bounded  support .  Le t  r > ro be such 
t ha t  h(x) = 0 whenever  ItxI1 > r .  Clearly, f~ is essential. S i n c e / - -  h is an extension 
of f~ to D,, there  exists x, e D~ such t h a t  /(xo) = h(xo). Thus, / is regular. 

(Only if). Assume tha t  / is regular  and take  s > ro: Le t  g: D~ --> Eo be a compact  
field extending / , .  Set h: E--> Eo, as follows 

I / ( x ) - g ( x ) ,  if ] lx l l>s ,  
h(x) 

l o,  if II II < s . 

Since / is regular  the equat ion /(x)-= h(x) has a solution x0 e D~. Hence 
g(Xo) -~ O. Q.E.D. 

7.  - On the  structure  o f  the  space C(E. ~). 

This section is of fundamenta l  impor tance  in developping the spectral  theory  
for nonl inear  operators.  

In  the  first pa r t  of this section we s tudy  the space C(E~ F) of all continuous maps 
f rom a Banach  space E into a Banach  sp~ce F .  We endow C(E, F) with a suitable 
(for our purposes) topology and examine the subset a(E~/~) of C(E, IT) consisting of 
all n o n  regular  maps f rom E into F .  

The second pa r t  is devoted  to the analysis of a decomposit ion of a(E, 2~). 
In  the  th i rd  pa r t  we give a Cont inuat ion Principle for  regular  maps tha t  will 

be used in the s tudy  of bifurcat ion points (see Section 11). 

7.1. The subset a(E, ~v) of C(E, F). 

We shall denote  b y  C(E,/~) the  (vector) space of all continuous maps f rom E 
into F, by  Q(E, ~) the  subspace of C(E, F) consisting of all quasibounded, a-Lip- 
schitz maps and by  L(E,  F)  the  subspace of Q(E, F) of all bounded  l inear operators  
f rom E into F .  We introduce a topology on C(E, F) in such a way  tha t  it  induces 
a Banach  s t ruc ture  on Q(E, F) and reduces to the s tandard  topology of uni form 
convergence on bounded sets in Z(E,  E). 

Given ~ > 0 we denote  b y  

= {f P) :  II/(x)Ii < + ItxiI), 
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We endow C(E, F) with the  topology induced by  taking the fami ly  {U(s): s > 0} 
as a fundamenta l  sys tem of neighbourhoods of the origin. B y  t ransla t ion this yields 
a fundamenta l  sys tem of neighbourhoods of any  point  of C(E, .F). 

This topology will be called the  strong topology of C(E, F) which is s t ronger 
t han  the  q-topology defined below (see ~ e m ~ r k  7.1.1). 

I t  should be remarked t ha t  C(E, F) with the  s t rong topology is no t  a topological 
vec tor  space. This is due to the fac t  t h a t  the U(e)'s are no t  absorbing. However ,  i t  
can be shown tha t  the  subspace Q(E, F) of C(E, 1~) is ac tual ly  a Banach  space. 

Denote  by  a(E, F) the  subset of C(E, ~) of all maps which are no t  regular.  We 
have  the  following 

THE01~EZ~ 7.1.1. -- (~(E, ~) is a closed subset of C(E, F). 

P~oo~.  - We shall prove  tha t  C(E, F)\(r(E, F) is open. I~et f ~ a(E, F)  and take  
e > 0 such tha t  e < rain {d(f), fl(/)}. I t  suffices to show t h a t  f -[- g is regular  for all 
g ~ U(e). This follows immediate ly  f rom Proposi t ion 6.1.3. In  fact ,  g ~ U(e) im- 
plies t ha t  ]gl < e ~nd ~(g) < s. Q.E.D. 

Notice tha t ,  on the basis of Proposi t ion 6.1.2, the above theorem represents  an 
extension of the well-known fact  t ha t  the set of all l inear isomorphisms f rom a Banach  
space E into a Banach  space F form an open subset of the Banach  space Z(E~ F)  
of all bounded  linear operators  f rom E into F .  

I~EMA~C 7.1.1. -- By  choosing in C(E, F) the  following fundamenta l  system of 
neighbourhoods of the  origin 

v(~) = {i e c (~ ,  ~) :  q(/) < e}, 

where q(f)= max  {a(]), Ill}, we get  a topology weaker  t h a n  the s trong topology. 
An inspection of the proof  of Theorem 7.1.1 shows t h a t  a(E,  F )  is closed in this topo- 
logy, which will be called in the sequel the q-topology of C(E, 1~). 

7.2. A decomposition of a(E, F). 

In  wha t  foltows, unless otherwise s tated,  we shall take  C(E, F) endowed with 
the s trong topology.  

Define the  following subsets of (r(E, F). 

~ ( E ,  F ) =  ( / e  a(E~ F) :  / is not  s tably-solvable},  

an(E, ~) = { / e  ¢(~, F ) :  a( / )  = o or  fl(1) = 0 } .  

We have  the following obvious proper ty .  
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P~OPOS~ON 7.2.1. a(E, .~) : a~(E, ~) U (r~(E, ~). 
We want  to show tha t  the boundary  ~a(E, F) is contained in as(E, F). To this 

aim we need the following two lemmata .  

I~E~:MA 7.2.1. -- a,(E, F) is closed in C(E, F). 

P~oor .  - F r o m  the inequalities fl(/) -- d(g) l< I/-- g[ and [fl(/) -- fl(g)]< ~(/--  g); 
], g ~ C(E, ~) it  follows t ha t  fl ~nd d are continuous maps f rom C(E, F) into the com- 
pact  in terval  [0, ~ c~]. Thus as(E, F) is closed. Q.E.D. 

LE~-~A 7.2.2. -- c~(E, F)\a~(E,  ~) is open in C(E, F). 

P~oor .  - Le t  ] ~ (r(E, F) \a~(E,  F). Since a,(E, F) is closed it  is enough to find 
a neighbom'hood U(e) of the  origin such tha t  ] ~ - g  is not  stably-solvable for any  
g ~ U(e). Assume the contrary .  Then  there  exists a sequence (g.} in Q(E, F) such 
t ha t  Ilg~(x)ll < ( l /n)(1 + IIx]l), ~(g~) < 1/n and  ] ~- g~ is stably-solvable. Since ] is 
no t  stably-solvable there  exists a compact  map  h: E - + / ~  with [hi : 0 such tha t ,  
](x) ~ h(x) for any  x e E.  On the other  hand  (since ] ~ g~ is stably-solvable) there  
exists ~ sequence (x~} in E such t h a t  ](x.) + g~(x~) --~ h(x.). The sequence (x~} is 
bounded.  In  fact ,  if this is no t  the  case then,  b y  taking a suitable subsequenee, we 

m a y  assume tha t  Ilx~ It ~ -~- ~ We have .  

II < llg (x )il + I[h(x )]l < (1/n)(1 + llx l]) + Ilh(x )II. 

This implies I[](x.)I]/Ux~]l --> o. Thus d(]) = 0, contradict ing ] ~ gz(E, F).  There- 
fore, there  exists M : >  0 such tha t  ]]x,][<M for a n y  n ~ N .  We have  

II/(x.)-  h(x.)II < < (1/n)(1 + i ) .  

This shows t ha t  ](x~) -- h(x~) --> O. Since fl(] -- h) z fl(/) > 0 and {x~} is bounded 
then  (x~} is a compact  sequence. B y  taking a convergent  subsequence of (x.} we get  
an  e lement  g~ ~ E such tha t  f ( ~ ) ~  h(~). A contradict ion.  Q.E.D. 

We are now in a position of proving the following 

THEO~E~ 7.2.1. -- The boundary ~(~(E, F) o] a(E, F) is contained in az(E, F). 

PgooF.  - Le t  / e ~a(E, ~).  Clearly, f c a(E, /F)  since a(E, F )  is closed. As- 
sume t ha t  / ~ a~(E, F). Then / ~ a(E, ~)~a~(E, ~) which is open, contradict ing 

] ~ 3a(E, .E) .  Q.E.D. 

We have  now the  following consequence of Theorem 7.2.1. 

COrOLLArY 7.2A. - .Let Y2 be a connected component of C(E, F) \as (E ,  t'). I f  ] e Y2 
is regular, then any other map g ~ Y2 is regular. 
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PlCOOF. -- We recall  first t ha t  a topological space X is connected if and  only if 
any  n o n e m p t y  subset  A of X with e mp t y  bonnda ry  coincides with X. l~ow, /2 is a 
connected  topological space. Define A ----- {g E/2:  g is regular}. Clearly, A ~ 0 and 
its boundary ,  re la t ive  to /2 ,  is emp t y  in view of Theorem 7.2.1. Thus, A = / 2 .  Q.E.D. 

Le t  E , / ~  be Banach  spaces and let  A the (( pa ramete r  space ~)--be a topological 
space. Consider a cont inuous ma p  ~: E × A  -->/C Asslune t h a t  the  map ). ~-, ~(-.  ).) 
f rom A into C(E, ~)  is continuous.  We in t roduce the following definition. An ele- 
ment  ~ e A is said to be a spectral value for ~ if ~( . ,  4) ¢ ¢(E, F) .  Denote  by  ¢(~) the 
set of all spectral  values of q0. Analogously, one can define ¢.(~) and  (~(~). Clearly, 
¢(~) = ¢~(~)U (r~(~0). Moreover (r(~) is closed and  ~¢(~)c a~(~o). Other  propert ies  
of 6(~0) and ~ ( ~ )  can be obta ined  f rom the results contained in this section. 

We close with the following observat ion.  I t  is well-known t h a t  the  set of all l inear 
bounded  operators f rom E into /~, which are no t  onto is closed in Z(E,  F). I t  is, 
therefore,  na tura l  to ask (see Proposi t ion 5.1.1) whether  the set (~(E, ~)  of ~11 non 
stably-solvable maps f rom E into _F is closed or not  in C(E, t"). We do not  know 
the  answer to  this question. 

7.3. A Continuation Principle for regular maps. 

We point  out  t ha t  in the proof  of Proposi t ion 4.1.3 the compactness  of the per- 
turbing homotopy  plays an essential role. The results contained in this section allow 
us to  prove a Cont inuat ion Principle for regular maps where the compactness assump- 
t ion on the  pe r tu rba t ion  is dropped (see Theorem 7.3.1 below). 

We in t roduce  the  following notat ion.  Le t  H :  E × [0, 1] -+/~ and  ~: E -+ [0, 1] 
he continuous maps. Define He: [0, 1] -+ C(E, F) b y  H~(~)(x) : H(x,  ~(r(x)). We 
need the following 

L ] ~ A  7.3.1. - Zet X c E be bounded and ~: E--> [0, 1] be such that ( ~ ( x ) :  1, 
for any x e X .  Assume that H :  E x [0, 1] -+ 9~ is such that Ho: [0, 1] --> C(E, F)  is 
continuous (in the strong topology o] C(E, F)).  Then ]or any e > 0 there exists ~ > 0 
such that 

l iH(x,  - -  t )II < 

whenever Itl -- t~ 1 < (~ and x ~ X .  

PROOF. - The cont inui ty  of H~ implies tha t  for any  e > 0 there  exists (5 > 0 
such that - -  <41  + ilx][), whenever  j).-- ~1l < 8. Therefore,  for 
any  x e X we have  

till(x, ; . ) -  R(x, ;.1) iI = < ( i  ÷ M ) ,  

where M = sup {]Ixll: x ~ X} < -~ oo. Q.E.D. 
We have the following Continuat ion Principle. 
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Tm~o~E~ 7.3.1. - Let H: E × [ 0 ,  1 ] - - ~ F  be continuous and such that 

(a) H(. ,  O) is regular, 

(b) there exists a >  0 such that fl(H(., t))>a for any t~  [0, 1], 

(e) any compact set K ¢ E has an open neighbourhood U such that the map Ha 
is continuous, whenever (~: E--> [0, 1] is a continuous map whose support 
supp a c U. 

Then, the equation H(x, 1) ~ 0 has a solution x ~ E, provided that the set H-~(O) 
is compact. 

P~ooF.  - B y  assumption the set S ~ { x ~ E : H ( x , t ) : O  for some t ~ [ 0 , 1 ] }  
is compact .  Le t  U be a neighbourhood of S satisfying condit ion (c). Dtte to the  
fac t  t ha t  E is normal,  there  exists an open set V such tha t  S c V c V c  U. By  
taking a continuous funct ion 9:  E--> [0, 1] such tha t  supp ~ c U and  ~0(x) ~ 1 for 
any  x e V, we obtain,  on the  basis of IJemma 7.3.1, t h a t  for  a n y  e > 0 there  exists 

> 0  such t ha t  HH(x , t~ ) - -H(x , t~ ) [ [<e ,  whenever  I t ~ - t 2 t < ~  and x ~ V .  Now, 
let  a: E - ~  [0, 1] be continuous and such t h a t  supp a c V  and a(x )= 1 for any  
x e S. I t  suffices to show tha t  the equat ion H(x, a(x)) = 0 has a solution xo ~ E.  
In  fact ,  since 0 <g(x0)<1,  we have  t h a t  Xo ~ S and a(xo) = 1. 

Observe t ha t  Ha(0) = H(. ,  0) is regular,  i.e., Ha(0) 6(~(E, F). Since the map  Ha 
is cont inuous i t  is enough to show t h a t  Ha()¢) ~ a,(E, ~) for  a n y  ). e [0, 1]. In  fact,  
if this is the  case, we obtain tha t  Ha(l)  is regular,  since ~a(E, F ) c  a~(J~,/v). 

Le t  us prove  tha t  d(Ha(~))> 0 and fl(Ha(~))> 0 for any  ~ e [0, 1]. The first 
inequal i ty  is easily verified since Ha(~)(x)= H(x, 0) for  a n y  ~ e  [0, 1] and  a n y  x e E  
of sufficiently large norm. I t  remains to show t h a t  fl(H,(2)) > 0 for any  ~ e [0, 1]. 

:bet A c E be bounded  with ~(A) > 0 and let  e > 0 be given. By  our choice of V 
there  exists n e N such t ha t  It~ -- t~] < ]/n implies t h a t  HH(x, t~) -- H(x, t~)t] < eo:(A) 
for  a n y  :e e V. Define Ao -~ {x e A: a(x) -~ 0}, A K = (X e A :  ( g - -  1)/n < a(x)<K/n), 
K = a ,  2 , . . . , n .  Observe tha t  A = ~ J { A K : K = 0 , 1 , . . . , n ) ,  A K c V  for any  K > I  
and  ~(A)= ~(A,) ~or some i (reehll a ( X U  Y ) =  max  {~(X),a(Y))).  

Therefore,  

~(Ea(Z)(A)) = ~(Ha(~)(A)) > ~(Ha(Z)(A,)). 
~(A) ~(A~) ~(A~) 

Since, A c E and e > 0 are arbi t rary ,  we obtain fl(Ho(~))>~a for any ~ e [0, 1], 
ii we show tha t  o:(H~(~)(A))/o:(A)~a--2e. This is clearly satisfied if the  above 
inequal i ty  holds for i -~ 0. In  fact ,  

a<~(H( . ,  o))< ~(H(Ao, 0)) _ ~(~().)(Ao)) 
~(Ao) ~(Ao) 
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since a(x) = 0 for any  x e A0. Assume, therefore,  t ha t  i~>1. Clearly, for a n y  x e A,  
and any  2 ~  [0, 1] we have 12a(w)-- ~i /n]<l /n .  Thus, I]Hz(2)(x)-- H(x, 2i/n)H : 
-= IIH(x, 2a(x)) -- H(x,  ~i/n)]I < szt(A), for any  x E A~, since A,  c V. This implies 
t h a t  

g(Ho(2)(A~)) >~(A~., ~ i / n ) )  - 2 e ~ ( A )  , 

(recall a(B(X ,  e)) <~(X)  + 2e). Therefore,  

a(H~(~)(A~)) a(H(A~, 2J/n)) - -  2sa(A) 
> a - - 2 e ,  

~(Ai) c~(Ai) 

since fl H ( . ,  ,~i/n))>a and  ~(A) : a(A~). Q.E.D. 
We have  the  following 

COI¢0LLARY 7.3.1. -- Zet H:  E × [ 0 ,  1 ] - ) . F .  be continuous and satisfy conditions 
(a), (b) and (c) of Theorem 7.3.1. Assume that 

(d) for any t ~ [0, 1] we have 

l im H(x,  t) = H(x,  to) 
t->to 

uniformly on any bounded subset of E. 

Then, the equation H(x,  1) = h(x) has a solution for any compact map h: .E -~ F 
with bounded support provided that the set S : {x e E: H(x,  t) ~-- 0 for some t e [0, 1]} 
is bounded. 1], moreover, d (H( . ,  1)) > 0, then H(- ,  1) is regular. 

P~oo~'. - I~et h: E - - + F  be compact  with bounded  support .  Set 

~ ( x ,  t) = H ( x ,  t) - h(x) 

and 

= {x ~ E: I:I(x, t) = 0 for some t e [0, 1]}. 

On the basis of Theorem 7.3.1 H(x, 1) = 0 has a solution if we show tha t  ~q is compact .  
Take a sequence {x,} in 8. There  exists a sequence {t.} in [0, 1] such t h a t / t ( x . ,  t~) = 0. 
We m a y  assume tha t  t .  -+ t ¢ [0, 1]. Tow,  ~ is bounded  s ince/~(x,  t) = H(x,  t) for  
t]xll sufficiently large. Hence,  b y  condit ion (d), we get 

/~ (x . ,  t) = / ~ ( x . ,  t) - / ~ ( x . ,  t.) -+ o 

as n -~  + ~ .  ~ o w ,  ~ ( ~ ( - ,  t)) = ~ ( ~ ( - ,  t)) > o. 
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Therefore, {x~} has a convergent subsequence. This implies tha~ ~ is compact. 
Therefore, the equation H(x, 1)----h(x) has a solution x e E. 

Now, if d(H( . ,  1)) > 0, then on the basis of Proposition 5.1.1 we get t ha t  H( . ,  1) 
is regular. Q.E.D. 

The proof of Corollary 7.3.1 shows tha t  if we replace the assumption d(H(. ,  1)) > 0 
with the weaker assumption 

lira llH(x, 1)tl = + c~,  

we obtain tha t  H( . ,  1) is a proper strong silrjection (use Proposition 4.1.2). 
Notice t ha t  conditions (c) and (d) of Corollary 7.3.1 are verified if H :  E × [0, 1] -+ F 

is such tha t  

(CO ]or any continuous (~: E --> [0, 1] with bounded support the map Hs: [0, 1] -~ 
-> C(E, ~)  is continuous. 

We shall give now some other sufficient conditions ensuring tha t  assumption (e) 
of Theorem 7.3.1 is satisfied. 

(C2) The continuous map H : E × [ O ,  1]--~F is suck that t~ -~H( . , t )  is con- 
tinuous ]rom [0, 1] to C(E, F). 

Actually,  (C~) implies (C0. In  fact,  if ~: E - +  [0, 1] has bounded support and 
e > 0, then there exists ~ > 0 such tha t  ]t~- t~] < b implies 

t 0  - -  t )II + • 

Thus 

- + ! I x ! l ) ,  

whenever [2i -- 22] < 3. On the other hand,  there exists ~1 > 0 such tha t  it1 -- t~ t < ~ 
implies ~(H(. ,  t 0 - - H ( . ,  t~))< s. With  a technique similur to tha t  used in The- 
orem 7.3.1 one obtains o~(H~(),~) -- Hd2~)) < e, provided tha t  ]2~- 2~ I < ~1" Thus, 
H~: [0, 1] -> C(E, F) is continuous. 

(Q) H(x, t) ----- ](x) + 2(t)g(x), where f, g: E -~_F, )~: [0, 1] -~ K are continuous 
and, moreover, g is locally ~-Lipsehitz (in particular this holds if g = gl + h, 
where gt is a C 1 map and h is compact). 

The implication (C3) => (c) is based on the following three facts. 

(1) for any  com3oact set K c E there exists a bounded open set U z K such 
tha t  the restriction g]U is ~-Lipschitz; 
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(2) for a n y  cont inuous a:  E - >  [0, 1] wi th  supp o~c U we have  

~(t~)(x)  -- ~(t~)(x)  = ~(t~(x))  -- ~(t~ ~(x)) g(x) 

(3) i(t~a(x)) -- l(t~a(x)) -~ 0 if x ~ U ~nd ~(t(~(x)) --~ )~(to(~(x)) un i fo rmly  in E, 
for a n y  to e [0, 1], as t --~ to. 

I~E~ARK 7.3.1. -- Notice t h a t  condit ion (C8) with the  fm' ther  a s sumpt ion  g sends 
"bounded sets into bounded sets, implies conditions (c) ~nd (d) of Corollary 7.3.1. 

The following results on mono tone  opera tors  are consequences of Corollary 7.3.1. 
We recall  first t h a t  a cont inuous m a p / :  E -+ E is called strongly monotone if there  

exists a > 0 such t h a t  

Re <l(x) - t(y),  z'> > a l l x -  y[]~ 

for all x, y e E  and  some z ~ e J ( x - - y ) ,  where J : E - - o E *  is the  dual i ty  m a p  de- 
fined b y  J ( x ) =  { x ' e E * : x ' ( x ) =  ]lx]l s and  Hx'/] : [Ix][}. The symbol  < . , .>  s tands  
for the  pai r ing  be tween  E and  its dual  E*. 

Plcol, osI~IO~ 7.3.1. - L e t / :  E --> E be a strongly monotone locally ~-Lipschitz map, 
sending bounded sets into bounded sets. Then ] is regular. 

Pl~ooF. - Define a h o m o t o p y  joining the  iden t i ty  wi th  f b y  H(x, t) = x + t(/(x) -- x). 
We wan t  to show t h a t  H satisfies all of the  conditions of Corollary 7.3.1. Condit ion (a) 
is clearly satisfied since H(x, O) ~ x. Conditions (c) and  (d) are also satisfied since / 
is locally ~-Lipschitz and  sends bounded  sets into bounded  sets (see l~emark 7.3.1). 

moreover ,  l~e <H(x, t) -- H(y, t), z '>>bllx-- Y[[5 where z ' e J ( x - -  y) and  b ---- min  {1, a}. 
Thus ]IH(x, t) -- H(y, t)]l >bII x -  Y[]. This inequal i ty  gives the  following. Firs t ,  the  

set  S =  { x e E : H ( x , t ) - ~ 0  for some t e l 0 , 1 ] }  is bounded.  Second, fl(H(.,t))>~b 
for any  t e [ 0 , 1 ] .  Third,  d(H( . , 1 ) )>b .  Now, app ly  Corollary 7.3.1. Q.E.D. 

F r o m  Proposi t ion  7.3.1 we get  a more  general  result .  We  recall  first two defi- 
nitions. A cont inuous m a p / :  E --~ E is said to be monotone if l~e </(x) - - / ( y ) ,  z'}>~0 
for all x, y e E and  some z 'e  J ( x - - y ) .  The m a p  / is called coercive if 

ICe</(x),y'>/[lx][-~+ ~ as  [ l x i ] - ~ +  ~ ,  

where y 'e  J(x). 

PROPOSITIOn 7.3.2. -- Let /: E--> E be monotone, coercive and proper. Assume, 
moreover, that f is locally o~-Lipschitz, sending bounded sets into bounded sets. Then / 
is a strong surjection. 

PnooF.  - Clearly, b y  Proposi t ion 7.3.1, the  maps  / ~ ( x ) =  (l~n)x + / ( x ) ,  n e N, 
are regular.  Therefore,  if h: E - +  E is cont inuous and  such tha t  h(E) is compact ,  
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there exists a sequence {xn} in E satisfying (1/n)xn + / ( x . )  ---- h(xn). This equality 
implies 

y'> 
(1/ )!lx Tl 

where y~ ~ J(x,) .  Thus, l~e </(x.), y'~>/llx~iI <. IIh(x~)H. Since / is coercive and h(E) 
is bounded~ the sequence (x~} must be bounded. Therefore, / (x~) -  h(x~)--> 0 as 
n --> ~- ~ .  Since {h(x.)} is a compact sequence, so is (/(x.)}. ~ow, the properness 
of / implies the existence of a cluster point ~ of {x~}. Clearly,/(~) -~ h(~). Therefore, 
/ is a strong surjection. Q.E.D. 

In Section 10 we shall give a result generalizing Proposition 7.3.2 (see The- 
orem 10.2.1). 

We would like to remark that  Corollary 7.3.1 contains the following well-known 
Continuation Principle for linear operators which is a classicM tool in proving the 
existence of solutions of partial differential equations. 

P~oPosI~ION 7.3.3 (see J. Se~AUD]~ [23]). - Let Lo, L~: E - >  E be linear and 
bounded operators. Assume 

(a) Zo is an isomorphism, 

(b) there exists a real number k > 0 such that HxII<ktIH(x, t)II /or any x e E 
and t ~ [0, 1], where H(x,  t) = Zo(x) -~- t(L~(x) -- Lo(x)). Then L1 is an iso- 

morphism. 

Pnoo~. - We have that  H( . ,  0 ) =  Lo(') is regular since L0 is an isomorphism 
(see Proposition 6.1.2). Furthermore, condition (b) ensures that  the remaining as- 
sumptions of Corollary 7.3.1 are satisfied. Hence, H( . ,  1)-~ Z~(.) is regular and, 
being linear and bounded, is an isomorphism. Q.E.D. 

We close this section with the observation that  Corollary 7.3.1 also contains the 
criterion for existence of solutions for compact vector fields based upon the homotopy 
invariance property of the Leray-Schauder topologicM degree (see [9] and 
l~emark 6.1.1). 

8. - The  spec trum for n o n l i n e a r  map s .  

In the first part  of this section we introduce a notion of spectrum o(/) for non- 
tinear maps /: E - ~  E, where E is a B~nach space over K. We show that  this de- 
finition of spectrum coincides with the usual concept of spectrum for linear operators 
in the case when / is linear (this motivates the notation a(/)). 

We also consider a decomposition of the spectrum a(f). Namely, a(/) is expressed 
as the union of the approximate point spectrum a:~(f) of / and the approximate defect 
spectrum a~(/) of /. 
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I n  the  case when  / is l inear  a,(]) and  ~( ] )  are exac t ly  the  a p p r o x i m a t e  poin t  
spec t rum and  the  a p p r o x i m a t e  defect  spec t rum for l inear  opera tors  respect ively.  
For  these definitions see e . g . S . K .  BEI~BE~IA~ [1]. 

The ma in  resul t  contMned in the  first p a r t  of this section is represen ted  b y  The- 
orem 8.1.2 where we show t h a t  aft)  is a closed sllbset of K and t h a t  the  b o u n d a r y  
~ ( f )  of aft)  is conta ined  in 6~(/). This ex tends  wel l -known resul ts  of ,the l inear  spec- 
t r a l  theory .  

Af te r  giving ~ finer decomposi t ion of ~(]) we collect in Proposi t ion  8.1.2 o ther  
proper t ies  of ~(]). 

Theo rem  8.1.3 gives sufficient condit ions for the Sllrjectivity of the  m a p  ~ -  f, 
where  ] is a cont inuous m~p  act ing  on ~ B~nach  space E ~nd )~ e K. 

We  close this p a r t  wi th  Propos i t ion  8.1.3 devo ted  to  the  s t u d y  of the  spec t rum 
of ~ com pac t  m u p  defined on an  infinite dimensional  Banach  space. 

The  second p a r t  of this section deals wi th  the  p rob lem of nonempt iness  of aft). 
A t  the  end of this p a r t  we give ~n example  of a cont inuous m a p  defined on C ~ wi th  
e m p t y  spec t rum.  

I n  the  th i rd  of this section we show t h a t  the mul t iva lued  m a p  f v-o(~(]), 

t ha t  associates to ] its spec t rum,  is uppe r  semicont inuous.  This is a general izat ion 
of a wel l -known resul t  of the  l inear  theory .  

8.1. Spectrum for nonlinear maps: definition and properties. 

Let  f:  E -> E be a cont inuous m a p  act ing on a Banach  space E over  the field K.  
Define the  spectrum a(/) of f as follows 

or, equivMently,  

Define also 

and  

W e  have  the  following 

aft) ---- {~ e K:  ~ - -  / is no t  regular} ,  

~(/) = {4 e K: z -  I + ~(~,  E ) } .  

THEOI~E~I 8.1.1. - I,.et L: E ~ E be bounded and linear. 

(a) ~(L) is the usual spectrum of .L, 

(b) a6(L) is the approximate defect spectrum of Z~ 

(e) an(L) is the approximate point spectrum of L. 

Then 
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PROOF. -- (a) Follows direct ly  f rom Proposi t ion 6.1.2. 

(b) We recall  t ha t  the approximate  defect  spectrum of /5 is the set of all 
~ K such tha t  2 --  L is no t  onto  (see S. K. BEt~BERIAIg [1]). On the basis of The- 

orem 5.1.1 we get  

o'd/~) = {~t z K :  ~t - - / ~  is no t  on to} .  

(c) We recall  (see [I]) t h a t  the approximate  point  spect rum of "5 is the set of 
all 2 e K such tha t  

in]  { I I . ~ -  "sxll= b l l  = 1 }  = O. 

Let  2 ~ K be such tha t  the above equal i ty  holds. Since 

el(2 - -  .5 )  = l i r a  i n f  [ t2x - -  "SxIl = i n ]  l l2x  - " s x [ [ .  
II<l ~ ÷ ~  lixl[ II~ll=~ 

I t  follows tha t  d(~ -- L) = 0. Thus 2 ~ a~("5). 
Conversely, assume t ha t  ~ --  .L s s~(E, E). In  view of the fac t  t h a t  fl(~-- L) >~ 

j> d(,t -- "5) (see Proposi t ion 3.2.i-(a)) we ma y  assume tha t  d ( ~ - - l ) ) =  0. This 
implies tha t  

in]  {[[ ; .~-  L~I[- [!~I[ = 1} = o .  QJE.D 

On the basis of Theorem 8.1.1 ¢o(]) and ~ ( ] )  will be called the approximate deject 
spectrum o]] and the approximate point spectrum of ] respectively,  also in the ease 
when ] is no t  linear. 

The following results are well-known in the l inear spectral  theory .  Le t  
"5 ~ L(E, E), then  

(a) ¢(L) is closed, hlore precisely, ~("5) and  a:(L) are closed; 

(b) the bounda ry  ~("5) o£ ¢(L) is conta ined in ~(/5).  

The nex t  theorem shows tha t  these propert ies  hold t rue  in the context  of non- 
l inear maps (except  for the  fac t  tha~ a d ]  ) is closed). 

TIIEORE~ 8.1.2. -- Let ] E C(E, E). 

(a) ~(1) = ~=(/) w ~o(]), is closed', 

(b) q=(]) is closed; 

Then 

P]~oom - Consider the continuous map ~: K --> C(E, .E) defined, b y  to(k) = 2 , -  ]. 
We have a ( ] ) =  WI(g(E, E)), a~(f)= ~o-l(o'~(E, .E)) and, b y  the  cont inui ty  of ~,, 
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3~(1) ---- ~y~-~(a(E, E)) c ~-~(~g(E, E)). ~Tow, since (~(E, E) and (~:~(E, E) arc closed 
(see Theorem 7.1.1 and  Lemma  7.2.1), then  (a) and (b) hold t rue  f rom the con- 
t inu i ty  of ~o. 

Moreover,  since ~a(E, E ) c  a~(E~ E) (see Theorem 7.2.1) we have  

Q.E.D. 

The following theorem gives sufficient conditions for the equat ion , ~ x -  f(x) = y, 
2~ e K, ]:  E - + E  continuous,  to  be solvable for  a n y  y ~ E. 

THEORE)I 8.1.3. -- I, et f: E - + E  be continuous. Then 

(a) I f  )~i, .~2 belong to the same component o] K \ 6 n ( / ) ,  then ~ - -  ] and ~ - -  ] 
are either both regular or both not regular. 

(b) I f  K = C, a(f) is bounded (this is true in particular if f is quasibounded 
and a-Lipschitz) and ~ belongs to the unbounded component of C~6n(f),  then 

- - f  is regular. 

(c) I f  K = R,  a(f) is bounded above (below) and 2 belongs to the right (left) un- 
bounded component of R \g~(] ) ,  then ~ -  f is regular. 

PROOF. -- (b) and (c) follow f rom (a) which is a consequence of Corol- 
lary 7.2.1. Q.E.D. 

Theorem 8.1.3 represents  an extension of a resul t  previously proved  in [8] for 
the par t icu lar  case when f: E - +  E is quasibounded and compact .  

We recall  t ha t  a continuous map f belongs to ¢~(E, E) if ei ther d(]) = 0 or fi(f) = O. 
On the basis of this f~ct one can consider a finer decomposit ion of ~(]). More precisely, 
¢~(f) c~n be regarded as the union of the following two sets 

and 

~z(i) = {~ e g :  ~ ( ~ -  i) = 0} 

z ( i )  = {z e K :  d(~ - / )  = o ) .  

The definition and propert ies  of I ( f )  where given in [9], [10] and [12]o 
~Ioreover we h~ve ~the following 

:PRoPosITION 8.1.1. -- L e t / :  E --> E be continuous. Then (~(/) and ~(/)  are closed. 

PROOF. -- The resul t  follows immedia te ly  h 'om the  proof  of Le mma  7.2.1 and  the 
cont inu i ty  of the  funct ion yJ: K -.- C(E, E) defined b y  F(~) = 2 --  f. Q.E.D. 

In  what  follows the  nota t ion  a ( f ) ~  a(g) stands for a ~ ( f ) =  a~(g), I ( f ) =  I (g)  
and as(f) = (~(g) simultaneously.  

1 8  - A n n a l i  dl Matemat lca  
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PEOPOSITIOI~" 8.1.2. - Zet ]~ g: .N -+ E be continuous. 

(a) (r(2f) ~ 2o(/), 2 ~ K;  

(b) 

(c) 

(~) 

(e) 
(/) 

Then 

~(2 q- / )  ~ 2 -ff ¢(f), 2 ~ K. 

o(Ao/oA -~) ~-o(~), /or any linear isomorphism A : ;E-> E. 

r(/)<~(f) ,  where r(/) = sup {12I: 2 ~ o([)} and q(f) = max  {~(/)), ]/l}- 

q ( / -  g) = 0 implies 0(/) - -  o(g). 

Zet /i: Ei -~ El,  (i = 1, 2), be continuous. 

Then o(/1 ×f~) o o(I ) u o(1~). More precisely, Z(/1 ×/~) = Z(/~) U Z(12); o~(/1 ×12) = 
= o~(fi) u o~(fi) an~ ~ ( i l  x M  ~ 0c(I1) u ¢~(fi). 

P~ooF. - (a) The equal i ty  is obvious if 2-----O. Le t  2 ¢ 0. Clearly, (~()o])= 
20z(f) and Z ( 2 ] ) ~  2S(/). ~oreover ,  oe(2])-~ 2go(i) since f is stably-solvable if 

and only if so is 2]. 

(b) The proof runs as in (a). 

(c) The equali ty Z ( A o f o A  -1) -~ X(/) has been established in [9]. To prove 
o~(f) = o~(Ao]oA -1) i t  suffices to show tha t  fi(f) = 0 if and  only if f l (Ao foA -I) = O. 
Clearly, f l (AofoA -~) = 0 implies f l(])-~ O, since fl(Ao]oA-~)>~fl(A)fl(])fl(A -t) and 
fl(A), fl(A -~) are different from zero (see Proposition 3.1.3-(g)). 

The converse implication is obtained by sett ing g = A o ] o A  -~ and by considering 
f l (A-logoA).  

(d) The fact  tha t  [21 ~ q ( / )  implies d ( 2 - - ] ) ~  0 has been shown in [8]. 
I t  also implies f l (2--  ]) > O since fl(2-- ] ) ~  t),l-- ~( / )~  j2[-- q([) (see Proposi- 
t ion 3.1.3-(e)). I t  remains only to show that if 12[ > q(]) then 2 -- )¢ is stably-solvable. 
Since q(] + h) -~ q(]) for ~ny compact  map h with lh[ = 0, i t  is enough to show tha t  
the equation 2 x - - ] ( x ) =  0 has a solution for any  12] > q(/). ~ o w  the map 2-~/ 
is an ~-contraction and the inequali ty I / I<  ]21 ensures tha t  there exists / ~ > 0  
such tha t  2 -~] maps the closed ball D, into itself. By Darbo's fixed point  the- 
orem [3], the equation x = 2-~f(x) has a solution. 

(e) Clearly, I f -  g{ = o implies Z(]) = Z(g) (see [9]). ~oreover ,  g ( ] -  g) ~-~ 0 
implies fi(])-~ fl(g) (see Proposition 3.1.3-(/)). Finally,  q ( / - - g ) =  0 implies tha t  
/ -~ g ~- h~ where h is compact with ]hi = 0. Thus ] is stably-solvable if and only 
if so is g. 

(]) For  the sake of simplicity we take E~×E2 with norm t](x~y)l] 
= max  (lIxIt, IIyII}. The inclusion (~(]:) u o~(f~)c(~a(]:×]~) follows from the fact  tha t  

if fl(f~) = 0 then  fl(f~ ×f~.) = 0. 
In  fact~ let A~ c E , n ~ N be such tha t  a(A~) V: 0, ~ E N and a(/dA~))/~(A~) 

goes to zero as n --~ -~ c~. I t  suffices to consider the sequence of subsets of E~ X E~ 
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of the  fo rm Q~ = A~ x {0), n ~ N. Clearly, e(q~) ---- e(A,)  and  ~(], x/~(Q~)) ---= 
= o:(]l(A,~)). The opposite inclusion is a consequence of the following facts. 

For  any  Q c E 1 x E ~  we have ~ ( Q ) =  ma x  {~(P(Q)),o:(P~(Q))}, where -P , :E~x  
xE~-->Ei ,  i = 1 ~ 2 ,  are the canonica.1 project ions of E x x E ~  onto E~, i = 1 ~ 2 .  

Le t  Q,~c.E~xE~, n ~ N  be such tha t  o~(/~xl~(Q~))/a(Q,~) tends to zero as n - -> -F  pp. 
Wi thou t  loss of general i ty  we m a y  assume t h a t  for  infinitely m a n y  indices zc(Q~) ~- 
= o:(PdQ~)). On the  o ther  hand  PI(]Ix]~(Q~))= ]~(PdQ~)), n e N, and e(P~(/1x 
x/~(Q~))) ~<ce(llxJ~(Q~)). Hence  

~(fi(PdQ,d)) _~(Pl(.fixt~)(Q,,))) ~(fixfdQ,d)_~o. 

The equal i ty  Z(fl  × ] ~ ) =  X(/~)w X(]~) has been established in [10]. 
To show tha t  oe(]~ ×Is) D (~e(/~) u ao(/~) i t  suffieies to prove t h a t  if/1 ×]~: E1 xE~ --> 

-+ E~ ×E~ is stably-solvable then  so are ]1: E~ -~ E1 and ]~: E2 -~ E~: Le t  h~: E~ -+ E1 
be compact  with Ih~l = 0. Consider the map  h: E1 × E~ --> E1 × E ,  defined b y  h(x, y) = 
= (hi(x), 0). Clearly, h is compact  and [h I = 0. Hence  the sys tem 

{ f i(x)  + h i ( x )  = 0 

/~(y) ---- 0 

has a solution (x, y )~  E1 x E~. This implies t h a t  ]1 is stably-solvable. The proof 
t ha t  f~ is stably-solvable runs as above.  Q.E.D. 

I~E~A~: 8.1.1. - - W e  40 no t  know whether  the inclusion ae ( /1x /~)co~( f l )U 
u ae(f2) holds t rue.  This would obviously imply (~(f~ ×f~) _~ a(]l) W (r(f2). 

I~E~A~E 8.1.2. -- F r o m  the proof of Theorem 8.1.1-(c) it  follows tha t  if L:  E -+ E 
is bounded  and  linear, then  o~(L) = X{L). Thus,  in this case, we have  t h a t  a(Z) = 

as(L) w X(~5) and ~o(L) c 2:(L). I t  is, therefore,  na tura l  to ask whether  the  in- 
clusion ~o(1) c X(]) remains valid in the con tex t  of nonlinear  maps. 

The following example shows tha t  the inclusion ~o(1)c 27(/) does not  hold in 
general,  and justifies the in t roduct ion  of a~(/). 

In  [7] an example of an e-Lipschitz re t rac t ion  r of the uni t  closed ball D of a 
Banach  space E onto  its bounda ry  was given. Define ]: E -~ E b y  

l(x)=I r(x), ifxe.D 
[ x ,  if x ~ D .  

Clearly I/I = 1 and  / is ~-Lipschitz. Hence  ~(1) is bounded.  On the other  hand  
2:(]) = {1}. Therefore  the inclusion 3o(f) c X(/) would imply  t h a t  o(i) = {1}, contradict-  
ing the  fact  t h a t  0 6 0(]), being ] not  onto.  
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Theorem 8.1.2 shows t h a t  i t  is of in teres t  to give es t imates  of g~(/). I n  this direc- 

t ion we have  the  following 

PnOPOSITIO~'8.1.3. - Let  /: E - ~  E be continuous.  Then  

(a) i ~ Z ( / )  ~ d ( / )< I ) , I< I / I ,  

P~ooF. - since d ( 1 ) :  g(,~)~ f l (~ )~  ILl, then (a) and (b) follow from the in- 
equalities d ( / - -  g) >7 d(/) - -  ]gl and  fl(] - -  g) >~fl(/) - -  ~(g). Q.E.D. 

We  shall  res t r ic t  now our a t t en t i on  to the  case when f:  E -+ E is compact .  As 
we will see in this case one can obta in  a more  precise in format ion  a b o u t  the  s t ruc ture  

of the  spec t rum.  Namely .  

P]aO]~OSITION 8.1.4. -- L e t / :  E --> E be a compact map de]ined on an in]inite dimen- 

sional Banaeh  space E.  Then  

(a) as(f) -~ {0}, therefore ¢r,(/) = {0} (3 Z(/) ,  

(b) / (E)  V= E .  I n  particular,  0 ~ a,( /) ,  

(c) 0 ~ Z( / )  implies  that the connected component o] K \ Z ( / )  containing zero lies 
entirely in  ao(/). I n  particular, 0 is an  interior po in t  of a~(/). 

(d) I]  moreover / is positively homogeneous, then Z(/ ) \{O} -~ { t  ~ K:  l x  : / ( x ) ,  

for some x ~ 0}. 

Pt~ooF. - (a) follows immedia t e ly  f rom the equa l i ty  fl(1 - - / )  -~ 12]. (b) We have  
](E) = 0 {](D~): n ~ N}. Now,/(D~o), n e N, are nowhere  dense subsets  of E since ] 
is com pac t  and  d im E---- ~ c~. Thus,  / ( E ) ~  E since E is of second category.  
(c) F r o m  (a) and  the  condit ion 0 ~ Z( / )  i t  follows t h a t  0 is an isolated point  of a~(/). 
Therefore,  on the  basis of Theorem 8.1.3-(a), i t  suffices to show t h a t  for 1 small  
enough 3 ~ - /  is not  onto. Assume t h a t  this is not  the  case. Then there  exists a 
sequence {i,} in K such t h a t  ~t~ -+ 0 and  ~, - -  / is onto  for a n y  n ~ N. 

Take  a > 0 such t h a t  2a < d(f). There  exists b > 0 such t h a t  1t/($)I] >~2a!]xlI --  b. 
In fact ,  b y  the  definition of d(/), there  exists r > 0 such t h a t  [/(x)[ I >~2a[xll , when 
llx!I ~>r. Hence ,  if we take  b --~ 2ar the  inequal i ty  ][/(x)H >~2ai!xII - b holds for all x e E.  

Therefore,  if [ztl< a we have  I I ~ x - / ( x ) [ l > a l I x l l -  b. Le t  y e E  with  t lyII<i .  
There  exists a sequence {x,,} in E such t h a t  ~ = x ~ - - / ( x , ) ~ - y .  W i t h o u t  loss of 

genera l i ty  we m a y  assume t h a t  I2~I < a for any  n e N. Thus,  1 >  ] l ~ x ~ - - / ( x ~ ) [ >  
= a [ ] x ~ ] ] -  b. Hence,  ]lx~U<(1 ~ b)/a = c. Therefore,  /(x~) -->-- y, since ~ x ~  ->0 .  
This shows t h a t  ] (D, )~  D~, which is impossible since/(D¢) is compact .  (d) follows f rom 

lira inf I[ix - -  f(x)]l - -  in~ II)~x - - / ( x ) l  ! 

and  the compactness  of /. Q.E.D. 
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8.2. Nonemptiness of the spectrum for nonlinear maps. 

Let  E be a Banach  space over the  field C of complex numbers.  ;It is well-knwon 
tha t  the  spec t rum a("L) o~ a l inear bounded opera tor  "L: E -~ E is no t  e mp t y  (it m a y  
be emp ty  if E is a Banach  space over the reals R). 

We shall now invest igate the problem of nonemptiness  of the spect rum of a non- 
l inear m~p f:  E- -~  E,  where E is over  K (C or R). 

The first resul t  in this direction regards compact  maps defined on infinite dimen- 
sional Banaeh  spaces. 

Tm~onE~ 8.2.1. - .Let f: E - ~  E be continuous compact and d i m e - - - - ~ - o o .  
We have 

(a) ~ ( / ) =  {o}, 

(b) 0 e a~(]), 

(c) if a(f) V= K,  then Z(]) =/= O, 

(d) if  0 ~ Z(/)  and (~(f) is bounded, then the connected component of K ~ Z ( f )  con- 
taining 0 is bounded. Thus~ Z(f) contains a positive and a negative value. 

PI~OOF. - (a) and  (b) have  been proved in Proposi t ion 8.1.4. (c) I f  0 e 2:(]) we are 
done. Assume 0 ~Z(]) ,  then  Proposi t ion 8.1.4-(c) ensures t h a t  0 ~  3a(f). Now. 
~ ( ] )  ¢ a~(]) (see Theorem 8.1.2-(c)) and a~(f) = (0} U Z(]), (see Proposi t ion 8.1.4-(a)). 
Thus,  $~(f) c Z(]). The result  now follows f rom the fact  t ha t  3a(]) V: 0 since 0 e a(f) 
and a(f) ~: K. 

(d) Follows direct ly f rom Proposi t ion 8.1.4-(c). Q.E.D. 

Theorem 8.2.1-(d) was a l ready proved  in [12] for the case when f is quasibounded. 
The following proposi t ion ~s a fu r the r  resul t  abou t  the nonemptiness  of the  spec- 

t r um  for possibly noneomp~et  maps. 

PRoPosI~Io~ 8.2.1. - "Let ]: E - ~  E be quasibounded and ~-"Lipschitz. Assume 
that dim E ~ -~ c~ and a~(]) < d(f). Then Z(/) ~= O. 

Proposi t ion 8.2.1 is a consequence of a more general  resul t  t ha t  will be proved 
la ter  (see Theorem 11.1.1). 

The following example shows tha t  Proposi t ion 8.2.1 is false wi thout  quasibounded- 
ness assumptions.  Le t  E be an infinite dimensional Banaeh  space and e ~ E be such 
t ha t  I]el]--1.  Define f:  E - ~ E  b y  f ( x ) =  ]]xlI2e. Clearly, 0 = ~ ( ] ) <  d ( f ) =  -~ co. 
]~u~, 2(I) = 0. 

l~evertheless, we have the following 

P ~ o P o s ~ I o ~  8.2.2. - Let E be an infinite dimensional Banach space and / :  E -+ E 
be such that ~(/) < d(/). Then 0 is an interior point o~ (;~(/). 



274 ]g. Fv~I  - M. ~[AICTELLI - A. VIG~OLI: Contributions to the spectral theory, etc. 

PRoov. - We wilt show first t ha t  i f / :  E - ~ E  is onto then  a(/) >~ d(/). I f  d(/) = 0 
we are done. Assume d(]) > 0 and  take  0 <: a < d(/). There  exists b > 0 such t h a t  
l[/(x)t[>altxII-b for  a n y  s e E .  This implies tha t  if / ( x ) e D ~ =  {xeE:  Ilxlt<<.n } 
t hen  IIxll < (n ~ b)/a -~ r , .  This inequal i ty  and  the sur ject ivi ty  o f / g i v e s  ](D~,) c D~. 
Therefore,  

o~(/(D~,)) 2n n 
~(])> ~(D~) > 2r~ n ~- b a '  

(we recall  t ha t  if dim E ----- -~ c~ then  a(D~) ----- 2r, see 1~. D. NVSS]3AV~ [21] and [8]). 
Therefore,  ~ ( / )> l im na/(n -~ b) -~ a. Thus,  :¢(/)>~d(/). 

The cont inui ty  of ~ and  d and the  assumption ~(/) < d(/) imply tha t  there  exists 
s > 0  such t h a t  ~ ( 1 - - / ) < d ( i - - / )  for a n y  [4 ]<e .  Hence,  i - - /  is not  onto if 

141 < e. Q.E.D. 

Observe t ha t  the above proposi t ion implies an(/)V= O in the case when o ( ] ) ¢  K 
(recall t ha t  ~o(/) c an(/)). 

In  the contex t  of finite dimensional real  spaces we have the following. 

PROPOSITION 8.2.3. -- Le t / :  R ~+1 -~ R 2~+1 (n ~ N)  be quasibounded. Then X(/) ~ O. 

This proposi t ion will be proved  la ter  in a more general  form (see Theorem 11.1.2). 
Notice tha t  Proposi t ion 8.2.3 is false wi thout  quasiboundedness assumption (even 

if 2:(]) is replaced by  0(])). In  fact ,  consider / :  R --> R defined b y  /(x) = x 3. We 
have  d(/) = fl(]) ---- ~ ~ .  This implies t h a t  on(f) ~ 0. ]V[oreover, 1 -  / is clearly 

stably-solvable for  any  t e R.  Thus,  o(/) = 0. 
We give now an example of a continuous map with empty  spectrum. 
Define ]: C ~ -> C ~ b y  /(x, y) -~ (~, i~), (x, y) ~ C ~. The fact  t h a t  Z:(/) = 0 has 

been established in [12]. Moreover,  o~(/) -~ 0 since /? ( )~- / )  : -~ c~ for any  2 e C. 
I t  remains to  show tha t  (;~(f) -~ 0. This is a consequence of the following two facts:  

(i) ~o(/)  : o.~(1), 

(if) ]h I > q(/), i e If,  implies t h a t  2 - /  is regular.  

Since, in our  case, o n ( l ) =  Z ( / ) w  0 8 ( ] ) =  0, then  ei ther  o ( 1 ) =  C or o ( / ) -~  0. 
B u t  q ( / ) =  1 implies t ha t  o(/)V= C. Hence  ~ ( / ) =  0. 

8.3. Upper semicontinuity o/ the spectrum. 

I t  is well-known (see e . g .T .  KATO [15]) t ha t  the m u l t i v a h e d  map tha t  associates 
to every  A e L(E,  E) its spect rum a(A) is upper  semicontinuous. 

In  this section we will ex tend  this result  to the context  of nonlinear maps. To 
this aim we show first t ha t  the mul t iva lued map tha t  to every  / E C(E, E) associates 
its spect rum ~(/) is upper  semicontinuous in a sense to be specified below. F r o m  this 
fac t  will follow tha t  when we res t r ic t  our a t t en t ion  to maps / ~ Q(/~, E) then  we get  
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the  usual  uppe r  semicontinuity~ thus  generalizing the  resul t  of the  l inear  case. 
Th roughou t  this section the  topology considered in C(E, E) and  Q(E, E) is the  

q-topology. 

T~Eo~E)[ 8.3.1. - L e t / :  E -+ E be continuous and let M c K be compact. Assume 

that M (5 o ( ] ) - ~ 0 ,  Then there exist ~ > 0 such that f ~ ~ a(g), whenever tt ~ M and 

q ( t -  g) < ~. 

PBOOF. - Assume the  con t ra ry .  Then  there  exist  a sequence {fn} in C(E, E) 
and  a sequence (#,} in M such t h a t  q ( / , , - / )  --~ 0 and  /~. e a(]n). Wi thou t  loss of 
genera l i ty  we m a y  assume t h a t  f t . - - > #  ~ M. We  have  q((/~ - -  ]~) - -  (# - -  /)) < 

< itt~ - tel ~- q(f~ - ]). H e n c e / ~  - f .  converges  to # - ] in the  q- topology of C(E, E). 
The closedness of a(E, E) implies t h a t  / ~ - - / e ( ~ ( E ,  E),  i.e. /~ea( ] ) .  A contradic-  
t ion.  Q.E.D.  

Analogous results  hold t rue  if we replace in Theorem 8.3.1 (T(]) b y  a=(f), ~ ( ] )  
or X(]) respect ively.  

:[~E~At~K 8.3.1. -- The following existence resul t  is a direct  consequence of The- 
o rem 8.3.1. 

.Let /: E --> ~ be continuous and let M c K be compact and such that M (5 (~(]) = O. 
Then there exists ~ > 0 such that the equation 

z x - i ( x )  = g(x) 

has a solution x ~ E / o r  any tt ~ M and g ~ C(E, E) with q(g) < s. 

Theorem 8.3.1 says t h a t  the  mul t iva lued  m a p  /~-o ~( / ) i s  uppe r  semicont inuous 
in the  following sense. 

For  a n y  / e  C(E, E) and  a n y  open ne ighbourhood U of a(/) whose complemen t  
in K is bounded  there  exists a ne ighbourhood  V of ] (in the  q-topology, see 
t~emark  7.1.1) such t h a t  a ( g ) c  U for  a n y  g e V. 

I n  the  subspace  Q(E, E) of C(E, E) we have  the  following s t ronger  result .  

Tt~EOI~E~ 8.3.2. - The multivalued map (~: Q(E, E ) - - o K ~  which assigns to each 

] e Q(E, E) its spectrum (~(/), is upper semicontinuous (with compact values). 

P~ooF.  - Le t  U ~ 0(]) be open. Take  r > q(]) -~- 1 and  set  M = D , \ U ,  where 
D~ ~ { t r e K :  I#]<r}.  Clearly, M is compac t  and  M ( 5  o(/) = 0. Choose e >  0 as 
in Theorem 8.3.1 a n d  such t h a t  e < 1. Fo r  a n y  g sueh t h a t  q ( ] - - g ) ~  s we have  
~(g) ¢~ M = 0. moreover ,  

q(g) <q(])  + q ( f -  g) < qff) ÷ e < q(l) + t < r .  
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Therefore,  ¢(g) c D, since the spectral  radius r(g) of g is less t han  or equal to 
~/(g) < r (see Proposi t ion 8.1.2-(d)). Thus ¢(g)cD~N, M c U. Q.E.D. 

Theorem 8.3.2 remains valid if ¢(f) is replaced by  Z(f),  ~ ! ] )  and ¢~(/) respectively.  
The upper  semicont inui ty  of the  m~ t) f ~-o X(])~ for f quasibounded,  was already 

proved  in [12]. 
As a consequence of Theorem 8.3.2 we have the following. 

CO~0LLA~¥ 8.3.1. -- The set 

O(E) = {f e Q(~, E): ¢(f) ~ ~},  

is closed. 

PnooF.  - We shall show tha t  the complement  of f2(E) is open. Le t  f @ ~(E) .  
By  Theorem 8.3.2 given any  open set U o ~(]) there  exists a neighbourhood V of / 
such t ha t  ~(g) c U for any  g e V. :Now, tuke U = 0. Q.E.D. 

9. - F r e d h o l m  al ternat ive  for n o n l i n e a r  maps .  

In  the first pa r t  of this section we observe tha t  ~ well-known al ternat ive  for 
linear operators can be in te rpre ted  in the set t ing of the linear spectral  theory.  This 
in te rpre ta t ion  le~ds na tura l ly  to the definition of a l ternat ive  maps. We give ,also 
an  extension of the Fredholm al ternat ive  to the context  of nonlinear compact, m~ps. 

The second par t  is devoted  to the s tudy  of (not necessarily compact)  a l ternat ive  

m~ps. 

9.1. Fredholm alternative for nonlinear compact maps. 

Let  K :  E -~ E be a compact  l inear operator .  We recall  the  following well-known 

F redhohn  a l ternat ive :  

Let 2 ~ K~ assume moreover 2 ~ 0 i / d i m  E -~ + co. Then the equation 2x -- K x  = y 

is solvable/or any y ~ E if  and only if  the equation 2x -- K x  ~ 0 has only the trivial 

solution (i.e. 2 is not an eigenvalue for K) .  

:Notice tha t  if d i m E =  + 007 then  /3(2-- K) ----- ]21 and f l ( 2 - - K ) =  + oo if 
dim E ~ q- c~. Therefor% 2 ~ K(2 V = 0 if dim E ~ q- c~) is an eigenvalue for K if 
and only if 1% e 6~(K) (see Proposi t ion 3.2:3). This shows tha t  the  above al ternat ive 

is equiva]ent  to the equal i ty  (~(K):= 6~(K). 
This fac t  mot iva tes  the  following definition. A continuouu map ]: E--> E is 

said to be alternative if a ( ] ) =  ~ ( f ) .  
In  order to ex tend  the above Fredholm al ternat ive  to the nonlinear ease we 

reeM1 the  definition of ~symptot ieal ly  odd map in t roduced in [9]. 
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A map ]: E--~  E is said to  be asymptotically odd if there  exists an odd map 
g: E -~ E such t ha t  I] -- g[ ~ 0. I f  ] is also compact  then  there  exists a compact  odd 
map /~: E - - > E  such t ha t  If--/~I = 0. In  fact ,  define the  odd compact  map  k b y  

~(x)  = i f ( x )  - i ( -  x))/2. We have 

y ( x )  - -  k(x)li < ½ill(x) - g(x)lI + ½Hg(- x) - I ( -  x) H, 

hence  ] i - -  k] = O. 

LE~AV~A 9.1.1. -- Let ]: E--> E be odd and compact. Then ] is alternative. 

P~ooF.  - Le t  )~ ~ K be such t h a t  d()~ --  ]) ~ O. I t  is enough to show tha t  ~ --  ] 
satisfieds p rope r ty  (a) of Proposi t ion 5.1.1. IJet h: E -> E be compact  with bouded 
support .  Clearly, there  exists r > 0 such t h a t  h(x) -= 0 and  ~x - - / ( x )  =/= O ~or a n y  x 
with Hxll>~r. Since ~=~ 0 (recall t ha t  fl(]) --~ 0) the vector  field G: D~ - ~ E  defined 
by  G(x) ~- x -- ).-~](x) -~ ~-~h(x) is odd and singulari ty free on S~ ---- (x ~ E :  ]txll = r}. 
By  Borsuk 's  theorem (see e .g .A .  G~A~AS [13]) i t  vanishes at  some point  Xo e D~. 

Thus ~xo -- ](xo) ~- h(xo) : 0 and  hence ~ -- ] is stably-solvable. Q.E.D. 

Theorem 9.1.1 belOw cun be regarded as an extension of the Fredholm al ternat ive  
for l inear compact  operators  and  (by Proposi t ion 3.2.3) it contains as well the non- 
linear version given in [6] (Theorem 3.2). Actual ly  in [6] the Authors s tudy  un operator  
of the form ~T -- S, where T, S: E -~ F and  ~ ~ K. However ,  since T is a suitable 
homeomorphism,  this opera tor  can be reduced into one of the form ) , -  ] (] compact  
and homogeneous)~ by  considering the composite map  

THEORE)I 9.1.1. -- Let ]: E -> E be asymptotically odd and compact. Then ] is al- 
ternative. 

PnooF.  - There  exists a compact  odd map g: E -÷ E such tha t  I] -- gt = O. Since 
] -  g is compact  we get q ( ] -  g) ~ O. B y  Proposi t ion 8.1.2-(e) we have a(]) ~ a(g). 
B y  IJemma 9.1.1 ~ ( g ) ~  ¢~(g). Hence  a ( / ) :  (~(g)-~ ~ ( ] ) .  Q.E.D. 

9.2. Further examples o] alternative maps. 

Notice t ha t  the equalities a(# -~ ]) ---- # ~ a(]), az(/~ -~ ?) = # -~ a~(]), imply 

t ha t /~  -~ ] is a l te rnat ive  whenever  so i s / .  This furnishes exampl~s of non compact  
a l ternat ive  maps. Other  examples are given below. 

There  are several  definitions of essential spectrum aJA)  for a bounded  linear 
opera tor  A:  E--~ E.  We shall use the following 

~JA) : n {(T(A ~- K) :  K compact  and  l inear}.  
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I t  is well-known tha t  this definition coincides with the following 

a~(A) = {~ e K:  ~ -  A is no t  Fred~olm of index zero}.  

We say t ha t  a bounded  linear opera tor  A:  E - +  E is bataneed if a~(A) = a,(A). 
Notice, t ha t  in generM a~(A) c a,(A), since fl(2 --  A) = 0 means tha t  2 -- A is not  
lef t  semi-Fredholm (see Proposi t ion 3.2.t-(d)). 

We sh~ll show (see Theorem 9.2.1 below) tha t  any  bM~nced operator  is Mtern~- 
t i re .  The following are examples of balanced operators.  

(a) The ]~ne~r opera tor  x - >  ~ is ba lanced for  a n y  ~ e K. Clearly, a~(~)=  
= a~(~) = {~} if dim E = + oo and a~(~) = a~(2) ~ 0 if dim E <  + oo. 

(b) Any  l inear operator  .4: E - > E ,  d i m E < . +  o% is b~laneed. I n  this case 

~o(~t )  = a a ( A )  = 0 .  

(e) Any  normal  opera tor  A acting on a Hi lber t  sp~ce H is balanced (recM1 
tha t  A is norm~t if A o A *  = A * o A ,  where A* is the  adjoint  of A, thus any  self- 
adjo in t  opera tor  is normal).  I n  f~ct, if A:  H --> H is norln~l; then  H = Ker  A ® 

I m  A (see e.g.A. T~ylor [24]). Therefore,  if ~ 6aa(A) we h~ve tha t  ~--  A is normal,  
d i m K e r ( ~ - - A ) < +  c~ and  I m ( ~ - - A )  is closed. Thus,  H = K e r ( ~ - - A )  Q 

I m  (2. --  A). This shows ~h~t 2 --  A is Fredholm of index 0, i.e., 2 6 ao(A). 

(d) Le t  A : E - +  E be bounded,  l inear ~nd such tha t  the i te ra te  A ~', for some 
h e N ,  is compact .  Then  A is balanced.  To prove  this we m a y  assume tha t  
d i m e  = + co. We h~ve O ~ ( A ) ,  since f l (Ap<f l (A~)<~(V  ~) = O (see Proposi t ion 
3.1.3-(b)). I t  remains to show tha t  ~ ¢ 0 implies tha t  ~66~(A) (recall aa(A)ca~(A)). 
We h~ve 2 ~ -- A ~ = T o ( ~ -  A), where 

Therefore,  if ~ ¢  0 we get  0 < 121" = fl()P-- A")<~(T)fl(.~ - A).  Thus,  8 (2 - -  A) > 0. 
Since A *" is also compact  we obta in  t h a t  f l ( ~ - - A * ) >  0. This shows tha t  ~ - - A  
is F rcdho lm (see Proposi t ion 3.2.1-(e)). Since (tA) ~ is compact  for any  t e R we get 
t ha t  ~ -- tA  is F redho lm for a n y  t e R ~nd ~ ¢ 0. The cont inui ty  of the index yields 

ind ( ~ -  A) = ind (~) = O. 

(e) Le t  A : E -~ E be ~ bounded linear operator  whose spectral  r~dious is zero 
(i.e., ~/L~-~ -~ 0 as ~ - >  + c~). We have (if dim E = + ~ )  

~(A) = ¢/~(A)"< ~/~(A'~) < V ~ A " )  < V]IA"II • 

Thus,  0 e #~(A). On the  other  hand  ~ ( A )  c ~ (A)  c ~(A) = {0}. Hence,  #~(A) = ~(A) .  

(/) Clearly, if A is balanced, then so is # + A for any  tt E K, since ~( / t  + A) = 

= # + as(A) and a~(# + A) = tt + ao(A). 
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The following result can be regarded as an extension of Theorem 9.1.1. 

Tm~0RE~ 9.2.1. - Let A:  E- ->E be balanced and h: E - + E  be compact and 
asymptotically odd. Then A ~-h  is alternative. 

PI~ool~. - We have to show that  a(A 2c h) ---- a=(A -~ h), i.e., if ~ ¢ a~(A + h) 
then 1 -- (A ÷ h) is regular. Since fl(2 -- A) ~/7(~ -- (A 2c h)) > 0 we get ~ ~ an(A). 
Hence, / -  A is Fredholm of index 0, since A is balanced. Therefore, there exists 
a compact linear operator K:  E - + E  such that  ~ - - ( A - t - K )  ~ L is an isomor- 
phism. Thus, it is enough to show that  L-~o( l - - (A -~ -h ) )  ~-I--%-~o(h-t-K) 

is regular. 
Obviously, 

/7(1-- L-~o(h -t- K)) = 1 

and 

d(1-- ~-,o(h + K)) = a(~-lo(~-- (A ÷ h)))>a(~-,) .a(Z-- (A + h)) > O. 

Hence 1 ~D a:~(L-lo(h -t- K)). Now, L-lo(h ~ K) is asymptotically odd ~nd compact. 
Thus, by Theorem 9.1.1 we obtain 1 - -L -1o (h - t -K)  is regular. Q.E.D. 

Another class of alternative maps is given in Section 12 (see Theorem 12.2.1). 

10. - Topological consequences of  the nonlinear spectral theory. 

In the first part  of this section we show that  some well-know results of topological 
Character in Banaeh spaces can be derived from the spectxM theory for nonlinear maps. 

In the second part  the notion of hypocompact maps is given, generalizing the 
notion of compact (a-contractive or condensing) vector fields as we~ as the notion 
of monotone operators. We Mso give some results regarding hypocompact maps. 

10.1. Existence theorems and retractions. 

Let S be the unit sphere of a Banach space E a n d / :  S --~ E be continuous with 
bounded image. In this section we shall denote by ] E--> E the following exten- 
sion of /. 

llxlt/(xlllxtt), if t1~1I ~= o 
] ( x )  = o ,  i f  x = O . 

The following facts are easy to check. 

(a) ] is continuous and positively homogeneous, 
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(b) d(]) = inf  { y ( x )  ll: x e S } ,  

l]l = sup {ill(x)II" x e S } .  

(c) ]if f l ( ~ - - ] ) > 0 ,  then  2~X( ] )  if and only if L~ - - ] ( x )  for  some x e S .  

(see Proposi t ion 3.2.3). 

Tm~o]~E~ 10.1.1. - Let ]: S '~ --> S ~ be continuous, where S ~ -~ {x ~ R~+I: ]]xl] : 1}. 
Assume that ] is not onto. Then ] has a ]ixed point (and an antipodal point). 

P~oo~.  - Clearly, d ( ] ) =  1]1 : 1. Thus 2 . - - ]  is regular  for a n y  ~. ~ K with 
] 4 ] > 1  and  ~ ( ] ) = X ( ] ) c S  ° - ~ { - 1 , 1 } .  Since ] i s  not  onto 0 belongs to ~(]). I t  
follows t h a t  (~(]) : [-- 1, 1] and  X(]) = S ° (recall t h a t  ~g(]) c ¢~(])). Therefore,  

1 ~ Z(]). Thus ] has a fixed point .  Q.E.D. 

T]~EO~EH 10.1.2. -- Zet S = (x e E: Ilxtl-~ 1} be the unit  sphere in an in]inite 

dimensional Banach space E and let f: S - ~  S be continuous and compact. Then ] 

has a ]ixed point (and an antipodal point). 

P~ooF.  - Since ]: E -~ E is compact ,  we have  fl(1 --  ]) : 1 > 0. Thus,  it  suf- 
fices to show tha t  1 ~ X(]). Clearly, X(]) c S ~ (~ K and a(]) is bounded.  Therefore,  on the 
basis of Theorem 8.2.!-(d), the component  of K \ Z ( ] ) c o n t a i n i n g  0 must  be bounded.  

This implies tha t  X(] ) -~  S ~ n K. Q.E.D. 

THEOREH 10.1.3. - Let f: S" --> S ~ be continuous and odd. Then ] is onto. 

P~ooF. - Clearly, g.(]) = Z(]) c S °. Thus 0 ~ g.(]). Since ] is a l ternat ive  0 ~ g(]) 

and hence ] is onto. Therefore,  ] is onto. Q.E.D. 

Tn:EO~E~ 10.1.4. -- ~et E be an in]initc dimensional Banach space and ]: S ---> S 

be compact. Then ] cannot be odd. 

P~ooF.  - Assume tha t  ] is odd. CIearly, X(]) c S ~ n K and  a~(]) = (0}. Since ] is 
a l ternat ive  a(]) = a~(]). This is impossible since 0 is an inter ior  poin t  of %(]) (see 

Proposi t ion 8.1A-(c)). Q.E.D. 

TIIEOICEh~ 10.1.5 (Birkoff-Kellog theorem).  - _Let E be an infinite dimensional 
Banaeh space and let ]: S --> E be continuous and compact such that ](S) is bounded 

away ]rom zero. Then f has a positive eigenvaIue. 

P]~ooF. - Clearly, d(]) > 0, so 0 ~ X(]). On the  other  hand  I]1 < + c~, since ](S) 
is bounded.  Thus, by  Theorem 8.2.1-(d), the connected component  of K \ Z ( ] )  con- 
tainiug 0 is bounded.  Ther6fore, there  exists r ~ 0 such t h a t  r ~ X(]). Hence,  r is 

an eigenvalue since f i (r--  ]) : r > 0. Q.E.D. 

TttEOI~EI~ 10.1.6 (Hopf theorem on spheres). - Zet f: S ~ -> R 2~+~ be continuous. 
Assume (/(x), x) : 0 ]or all x e S 2~, where ( . , .  ) is the euclidean inner product on R 2~+~. 

Then, ] vanishes at some point x e S 2'~. 
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Ply001% - Clearly, ]: R ~+~ -+ R 2n+1 is quasibounded. Thus, b y  Proposi t ion 8.2.3, 
Z(/) v~ 0. Le t  2 e Z(]). Then  there  exists x e S 2~ such tha t  ;ix ~ / ( x ) .  This implies 
2 = (/(x), x) = O. Q.E.D. 

T~IEO]~E~ 10.1.7 (Borsuk-U]am Theorem).  - Let ~: ~--> E be a compact vector 
/ield such that 9(S) is contained in a proper closed subspace F o/ E.  Then there exists 

x ~ S such that 9(x) -~ 9(--  x). 

PRooF. - Define $,: S --> F by  V(x) = ~(x) --  9( - -  x). Clearly, fl(~) > 0 (actuMly, 
fl(v~) : -[- oo if dim E < + oo and  fl(v~) : 2 if dim E : -[- oo). Thus,  0 ~ a,(v~). 

On the other  hand  vfi, being not  onto, is not  regular.  Hence,  0 ~ Z(~),  since %~ is 
a l ternat ive  (see Section 9). B y  Proposi t ion 3.2.3, there  exists w e S such tha t  

y~(s) : 0. Q.E.D. 

TI:IEOI~E~r 10.1.8 -- Let U be an open and bounded subset o] a Banach space E. 
Then the boundary ~U o/ U is not a retract of U under a compact vector /ield. 

P~ooF.  - Assume tha t  there  exists a compact  vector  field 9:  U - >  ~U which is 
a re t rac t ion  of U onto its boundary .  Define 

i 9(x) ' if x e U 
l(x) ! x ,  if x ~  U .  

Clearly, q (1 - - f )==  0. Thus, on the basis of Proposi t ion 8.1.2-(e), we get  a ( / ) =  
----a(1) = {1}. Therefore,  0 6 a(/) and ] mus t  be onto which is obviously impos- 
sible. Q.E.D. 

10.2. Itypocompact maps. 

Let  ~: X ---> E,  X c E,  be continuous and of the form q~(x) = x -- f(x). We recall  
t ha t  9 is called a compact, g-contractive, condensing or ~-nonexpansive vector field if 
/ is compact ,  a-contract ive,  condensing or a-nonexpansive respectively.  I t  is easy 
to see tha t  these vector  fields ure included in the following more generM class of maps. 

A continuous map / :  X - >  E is called hypocompact if 

f l ( 2 ~ ] ) > 0  for gny ) . > 0 .  

Any  monotone  operator  / :  E - + E  is a hypocompae t  map since fl(2 + / ) > 2  for 
any  2 > 0 (see the proof of Proposi t ion 7.3.1). iKoreovcr, if / is hypoeampae t  and h 
is compact ,  then  2 ~ #] ~ h is hypocompac t  provided  tha t  2, # ~> 0. In  part icular ,  
any  compact  map  is hypocompact .  

The following result  is a generalizat ion of Proposi t ion 7.3.2. 



282 ~ .  l~u~I - M. MA]~EL~I - A. Vm~OLI: Contributions to the spectral theory, etc. 

Tn-Eo~]~ 10.2.1. - Let /: E --~ E be a coercive, proper hypocompaet map. Assume that 

(a) ] is locally ~-~ipschitz, sending bounded sets into bounded sets, 

(b) lira inf fl(1 q- t/) > 0 as t -+ 0 +. 

Then f is a strong surjection. 

PROOF. - Let  us prove first t ha t  if 2 < 0, then  2 ~ a(/). This will be accomplished 
in three steps. First ,  since ] is hypocompact  then 2 ~ aa(]) whenever ), < 0. Second, 
take 2 > 0, then 

R e  </ (x) ,  x'> ]~e <)~x + 1(x), x'> ll~x ÷/(x)ll 
~t + Itxll~ - - - [ l x l l  ~ < IlxI[ ' 

where x '~  J(x). The coerciveness of ] implies tha t  

l im in f  I~e</(x),z'>/IIxl]~>o as H¢tI -+ q- oo. 

Hence, d(2 q- ]) > 0 and  this implies t ha t  if 2 < 0 then  ), ~ 2:(1). Third, -- 1 ~ a(]), 
i.e. 1 q- ] is regular. Consider the homotopy H(x, t) = x ~ tf(x). Clearly, H satis- 
fies conditions (a), (c) and (d) of Corollary 7.3.1. ~oreover ,  fl(H(.,  t)) = tfl(1/t + ]) 
if t > 0. Hence, the hmet ion  t ~ f l ( t t ( . ,  t)) is continuous for t > 0. This fact,  the 
assumption lim inf fl(1 -4- t]) > 0 as t -+ 0 + and fl(H(.,  0)) = 1 imply fl (H(. ,  t)) > a 
for some a > 0 and t ~ [0, 1], i.e. condition (b) of Corollary 7.3.1 is also satisfied. 

To apply Corollary 7.3.1, in order to show tha t  i + ] is regular, i t  remains only 
to show tha t  the set S : { x e E : H ( x , t ) : 0  for some t e [ 0 , 1 ] }  is bounded. ]bet 
x ~  S, then  1-]-t(f(x),  x)/l[x[[~ = 0 for some t e [0, 1]. This equal i ty  and  the coer- 
civeness of ] imply  tha t  S cannot  be unbounded.  

Since 3a(f) c a~(]), -- 1 ~ a(f) and any  2 < 0 is such tha t  2 ~ an(]), then  we have 
2 ~ a(]) whenever 2 < O, i.e., 2 + ] is regular for any  2 > O. 

The same argument  used in the proof of Proposition 7.3.2 yields t ha t  ] is a strong 

surjection. Q.E.D. 

~ot ice  t h a t  condition lira inf fl(1 ~ t]) > 0 as t -+ 0+ is satisfied in the following 

two eases. 

(1) f is ~-~ipsehitz. In  fact,  in this case lim fl(1-~-q) = 1 as t--~ 0. 

(2) ] is monotone.  In  fact,  fl(1-[-t]) > 1 for any  t > 0. 

The following consequence of Theorem 10.2.1 extends Theorem 10.1.9 as well 
its generalizations to a-contractive and condensing vector fields. 

COrOLLArY 10.2.1. - I, et U be a bounded open subset o] a Banach space E. Then 
the boundary ~ U of U is not a retract of U under a locally :¢-Lipschitz hypocompact map. 
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P~ooF.  - Assume tha t  there  exists a locally ~-Lipschitz hypocompac t  re t rac t ion  
r: U --> ~ U. Define 

r(x) , i f x e U  
l(x) 

t x ,  zC~ U.  

All the assumptions of Theorem 10.2.1 are verified by  the map )~ -{-/, wherever  
2 > 0. t tence,  A ~- ] is a strong surjection (actual ly A ~- / is regular  if i > 0, since 
d( t  -~ ]) = )~ ~ ] > 0). This implies tha t  I m  ] is dense in E.  In  fact ,  take  p ~ E.  

Then there  exists a sequence {x~} in E such tha t  (1/n)x~ ~ - / ( x n ) =  p. Since, f is 
the iden t i ty  outside U the sequence x~ must  be bounded.  Thus, ](x~) ~ p, so Im  f 
is dense in E.  This contradicts  the fact  t h a t  U (3 Im  f =-0 .  Q.E.D. 

l l .  - Bifurcat ion points for possibly non  differentiable maps.  

In the first pa r t  of this section we examine some questions re la ted to asympto t ic  
bifurcat ion points for equat ions of the form 

),x -- g(x) = 0 ,  ~ ~ K ,  

where g: E -+ E is continuous.  We show t h a t  the  set B(g) of all a sympto t ic  bifurca- 
t ion points of this equat ion is a (closed) subset  of Z(g). We also give some results 
regarding the nonemptiness  of B(g). 

In  the second pa r t  we s tudy  the more general  problem of asympto t ic  bifurcat ion 
points for  equations of the following type.  

~(x, 2) = 0 ,  ~ e K ,  

where 9:  E x K - + / v  is a cont inuous map.  We give extensions to this context  of 
some of the  results obta ined in the  first pa r t  of this section. 

11.1. Bifurcation points for maps from a Banavh space into itself. 

Let  g: E -+ E be a cont inuous map.  A point  i E K is said to be an asymptotic 
bifurcation point for g (see A. 9I. K~AS~0SEL'SKZJ [16]) if there  exists a sequence 
{(A~, x~)} in K × E  such t ha t  IIxnl[-+ ~ c~ 2~-+ A and  ~nx~ : g(x,). The  set of 
all a sympto t ic  bifurcat ion points for g will be denoted  by  B(g). 

PI~01"0SlTIO~ 11.1.1. - Let g: E -+ E be continuous. Then B(g) is a closed subset 
o/ X(g). 
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PnOOF. -- Obviously, B(g) is closed. )/Ioreover, if 2 e B(g), then  there  exists a 
sequence {(2., x~)} in K × E  such t h a t  ilx.tl --> ~ oo, 2~ -+ 2 and  ~ x ,  - -  g(x,). Thus, 

II - g(x )II 
IIx+,lI = IA , - 21-->- 0 a s  n + o o .  

Hence,  2 ~ X(g). Q.E.D. 

Tn:~OI~E~ 11.1.1. - Let E be an in]inite dimensional Banach space and g: E --> E 
be quasibounded and :t-Lipschitz. Assume that d(g) > :¢(g). Then B(g) V= O. 

Pt~ooF. - T~ke s > 0 such t h a t  d ( g ) -  e > ~(g). Then  the  map  g~: E - + E  de- 

fined b y  

g(x) 
g~(x) -- d(g) - -  e 

is an ~-contrgction with d(g~) > 1. We can therefore  assume, wi thout  loss of gener- 
ality, t ha t  we are dealing with a map  g: E -+ E which is ~-contractive quasibounded 
and  d ( g ) > 1 .  Choose r >  0 such t h a t  llg(x)lI > [Ixtl for a n y  x e E  with tl<l>r and 
let z~: E ->D~+~ be the radial  re t rac t ion  of E onto D~+~. The map g~+.: S~+. --> S~+. 
defined by  g~+~(x)= z~og(x) is ~-contractive.  Thus, by  I~. D. 5Tussbaum's fixed 
point  theorem[20] ,  there  exists x~6 S~+~, and  2 , > 1  such t h a t  ,~x~=g(x~) .  Let  

us show tha t  the  sequence {4,} is bounded.  In  fact ,  

Thus, 

I2 ,I = lt .,xoll/llx,,ll = l lg(xo) l l /x: l ! .  

l im sup IP~!<lim sup IIg(x.) II 

Hence,  the sequence {2,} is compact  and any  cluster point  of {2~} is a bifurcat ion 

poin t  for g. Q.E.D. 

The following is an existence theorem for bifurcat ion points of continuous maps. 
I t  also gives a more detailed informat ion  abou t  the spect rum of nonlinear maps. 

Tm~o~E~ 11.1.2. - Let ]: E,---~E be continuous. Let ~o, 21 ~ K~(~(] )  be such that 
%o ~ a(f) and ~1 ~ ~(]). Then B(]) t.) ~(])  separates 2o ]rom 21, i.e., ~o and ~ belong 
to diNerent components of K \ \ ( B ( / )  t ) (~(])) .  

PR00P. - We have  to show tha t  given a continuous pa th  4: [0, 1]--> K, with 
2(0) ---- 2o and 2(1) ~ ~1, t hen  2(t) mus t  belong ei ther  to  B(]) or to  a~(]) for some 
t e [0, 1]. Assume this is not  the case. Consider the homotopy  H :  E × [ 0 ,  1 ] - ~  E 
defined by  H(x, t) -~ 2(t) -- ](x). This h o m o t o p y  satisfies conditions (a)-(d) of Corol- 
la ry  7.3.1. In  fact ,  (a) is satisfied since H ( . ,  0) ~ 2 0 -  / is regular.  Condition (b) 
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is satisfied since the function t ~ f l (H(. ,  t)) is continuous and 2(t)~ (~z(]) for all 
t e [0, 1]. Thus inf ( f l (H(. ,  t)): t ~ [0, 1]} > 0. Conditions (c) and (d) are satisfied 
(see the examples following Corollary 7.3.1 and recall t ha t  the ident i ty  is ~-Lipschitz). 
Clearly, the condition /(t) ~ B(/) for any  t ~ [0, 1] implies tha t  the set S ---- (x ~ E :  
a(t)x=--/(x), for some t e [ 0 , 1 ] }  is bounded. Moreover, d ( H ( . , 1 ) ) > 0  since 
~, ~ g=(]). Thus, on the basis of Corollary 7.3.1, )~ -- ] must  be regular, contradicting 
the assumption 2~ ~ ~(]). Q.E.D. 

We shall now investigat  e the set of asymptot ic  bifm'cation points B(g) for a map g 
defined on a finite dimensional space. 

The example following Proposition 8.2.3 shows tha t  B(g) m a y  be empty  in the 
case when dim E is even. 

We shall prove tha t  if dim E is odd and g is quasibounded~ then  B(g) is not  empty.  
This extends Proposition 8.2.3. 

TgE0~E~ 11.1.3. - Net g: R ~'~+~ __>iT~n+1 be quasibounded. Then B(g) ~ O. 

P~OOF. -- Le t  us prove first t ha t  if Ill > Igl then  [2.--g] ~-[2.]. Clearly, the 
homotopy  H:  R 2~+~ × [0, 1] -+ R 2~+~, defined by  H(x, t) : ~x -- tg(x), satisfies Pro- 
position 6.2.1~ since the set of solutions of the equation ~ x -  tg(x)----O~ t ~ [0, 1], 
is bounded. This follows at  once from the fact  tha t  there exists r ~ 0 such tha t  
]lx]] > r  implies 

lIxil > tit(x)II • 

Hence, if $ ~ E is a solution of the above equation then llx I] ~ r. 
On the other hand,  [~]---- [1] if ) ~ > 0  and [ ~ ] ~ [ - - 1 ]  if ~ 0 .  Therefore, if 

~.o, )~1 e R are such tha t  ).o < -- Igl and 2~ > Igl, then [).o -- g] = [-- 1] and  [)~ -- g] ---- [1]. 
I f  we show tha t  [1] ¢ [ - -1]  then, on the basis of Proposit ion 6.2.1 the set 

S---- {x e R ' :  t2ox + ( 1 - - t ) t ~ x - ~  ](x), for some t E [0, 1]} is unbounded.  Thus, there 
exists ~ sequence {x,,  2~)} in S×[2o,  2~] such tha t  ][x~]I-~-~ c~ and {;~} is con- 
vergent to some ~ e [~o, ~].  Hence, ) ~  B(g). Therefore~ it  remains to show tha t  
[1] =/= [-- 1]. The Leftschetz number  of the ident i ty  coincides with the Euler charac- 
teristic of S ~ and equals 2. On the other hand,  the antipodM map on S 2~ is fixed 
point free and thus its Lefschetz number  is zero. Hence, the ident i ty  and the anti- 
podM map are not  homotopic. Q.E.D. 

11.2. Bi]ureation points /or maps between diNerent Banach spaces. 

Let  ~: E × K - ~  17 be continuous. Consider the equation 

(*) ~ ( x , ; 0 = 0 ,  ) ~ E K .  

19 - .dnnali dg Male~nat~ca 



286 1~[. FURI- ~-~. IV[ARTELLI - A. VI@NOLI: Contributions to the spectral theory, etc. 

A point  2 ~ K is called an asymptotic bi]urcation point for the equat ion ( , )  
(see A. M. KRASZ~OSEL%KX5 [16]) if there  exists a sequence {(x,, 2,)} in E × K  such 
that ,  ]lx~]I -+ -~ 0% 2~ -+ 2 and  90(x~, 2~) : 0. 

The set of all asympto t ic  bifurcat ion points for the equat ion ( , )  will be denoted  

by  B(~). 
We have the following. 

PlCOPOSlTIO~ 11.2.1. - The set B(9) is closed. 

P~ooF. - Le t  {2~} be a sequence of points of B(~) converging to 2. For  any  

n ~ N we can choose /~  e K, x~ E E such tha t  ]/~ -- 2~ ] < 1/n, ]l x~ II >~ n and 90(x~,/~) = 0. 

Clearly /~  -~ 2 and  1 ~ B(~). Q.E.D. 

We have shown tha t  if / :  E - + E  is continuous then  B(/)c27(/) (see Proposi- 
t ion 11.1.1). Analogously, one could show tha t  

B(V) c z ( v )  = K: d(v( . ,  = o } ,  

provided tha t  the map 2 ~-* ~0(., ~) is continuous f rom K into C(E, F) wi~h the 

strong topology.  
B y  slightly modifying the  proof of Theorem 11.1.3 and taking into account  con- 

dition (C2) following Corollary 7.3.1 we get  a more general  result.  

TItEOREI~ 11.2.1. -- Let of: E×K--> F be as above. Zet 20, ~ K~er~(~) be such 
that to ~ a(qD) and 21 ~a(q~). Then B(~o) U a~(q~) separates 20 /rom 2~. 

Here,  = {2 K: 2)) = 0}. 
For  the definitions of (~(q0) and ¢~(~0) see Section 7. 
We add  in passing t ha t  K in Theorem 11.2.1 can be replaced b y  a n y  pa th  con- 

nec ted  topological space A (the <~ paramete r  space >>). 

12. - The numerical  range for nonlinear maps.  

In  this section H will s tand for a complex t t i lbe r t  space and ( . , - )  will denote  the 
inner p roduc t  on H which is l inear in the first variable and conjugate  linear in the 

second. 
In  the  first pa r t  we consider a not ion of numerical  range for continuous maps 

acting on H.  This not ion turns  out  to be equivalent  to tha t  given previously in [10]. 
B y  means of  the  numerical  range for nonlinear maps we are able to ex tend  to the 
nonlinear context  the not ion of self-adjoint map.  We obtain tha t  the sum of a bounded  
linear self-adjoint operator  with a (possibly nonlinear) compact  self-adjoint map 
is ~t ternat ive (see Corollary 12.1.1). This is done in the second par t .  
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In  the  th i rd  pa r t  of this section we show t h a t  the  concept  of numerical  range for 
nonlinear maps is s t r ict ly re la ted to the asympto t i c  behaviour  of the sohttions of 
nonlinear o rd inary  differential equations.  

12.1. Definition of the numerical range and properties. 

Let  H be a complex Hi lber t  space and f: H - + H  be continuous.  Define 
f,v: H~{0}  --> H, the normal component of f, b y  

?~(x) if(x), x) 
ilxll ~ 

The map fN is clearly continttous (and can be cont inuously ex tended  to H by  pu t t ing  
fN(0) -~ 0 in the  ease when ](0) ~-- 0). The map  f~ ~ f -  f~ is called the tangent com- 
ponent of f. 

Observe tha t  if ]~ and ]~ are compact  then  so is f. The opposite implicat ion is 
not  t rue  as the following example shows. 

EXA~IPLE 12.1.1. -- Le t  12 be the  Hi tber t  space of square summable sequences of 
complex numbers  and let  L:  l~--> 1 ~ be defined b y  

L(x) = (el, x) c i ,  

where {e,) is any  or thonormal  basis. 
We have 

~ - ( X )  -~- ( e l '  ~ X .  
IlxJi ~ 

L~ is no t  compac t  since i t  maps the bounded  sequence {el ÷ e,} into the sequence 
{(e~ ÷ e.)/2} which does no t  have  cluster  points.  

The following propert ies  are easy to verify.  

PROP0SITI0~ 12.1.1. - Let ], g: H -> H be continuous. Then 

(b) tfA < Ill; 

(c) (f ÷ g)~, = f~ ÷ g~.; 

(e) f = fly if  and only if f(x) : q~(x)x for all x ~ 0 and some continuous ]unc- 
tion ~: H \ ( O }  --> C. 
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Le t  L:  H -~ H be l inear  and  bounded.  We  recall  t h a t  the  numer ica l  range,  w(L), 
of L is defined as the set  

w(~) = {(L~, x): llxll -~ 1} .  

I t  is known t h a t  w(L) is convex and  its closure contains the  spec t rum of Z. }lore- 

over,  w(L) -~ co 6(L) in the  case when _L is normal  (i.e. ZoL* = L*oL). 
The following theorem holds. 

THEO~E~ 12.1.1. -- _Let _L: H --> H be linear and bounded. Then the closure, w(Z)~ 
o/ the numerical range o/ L coincides with Z(I~) .  

P n o o s .  - Since LN is homogeneous  we have  t h a t  

Z(L~) = {i  e C: inf [ ] 4 x -  L~(x)II = o}.  
li~1[=1 

On the  other  hand  if l!xll ~ 1 then  

Hence  

4x - .L~(x) = ( 4 -  (Lx, x ) )x .  

II4x- L~(x)il = t 4 -  (~x, x)I. 

This implies t h a t  

z ( ~ )  -- {(~x, x)= I[xEl = 1} = w(~) .  Q.E.D. 

RElVSA~K 12.1.1. -- The above  theo rem shows t h a t  Z(L~r) is convex and  there- 

fore implies t h a t  L~- is no t  l inear  in the  case when dim H < -{- c~ and  (~(L) has  more  

t h a n  one point .  
Theorem 12.1.1 justifies the  following definition of numer ica l  range  for (possibly 

nonlinear)  cont inuous maps  of a Hi lbe r t  space H into itself. 
Le t  / :  H -~ H be cont inuous and  let  f ~ : / / ~ { 0 }  -+ H be the  normal  componen t  

o f / .  W~e define the  numerical range, n(f), of / as the  set  n(/) -~ Z(]~). This clearly 

makes  sense even if ]~ is not  defined a t  0. 
The following theo rem holds. 

Tn-EO~E~ 12.1.2. -- Let /: tI---> H be continuous. Then X ( / ) c  n(/). 

PgooF.  - I t  is enough to  show t h a t  

d ( 4 - / ~ )  < d ( 4 - / )  

for all 1 ~  C. Since ( 4 - - / ) N  ~- t - - / ~  we have  only to prove  t ha t  d(/~v)<d(/). This 
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follows at  once f rom the fect  t ha t  

lit,,-(x)II - l l q ( x ) , x ) x l l  il¢(x)llllxll ~ ilxll~ < llxlt~ - l ! l ( x ) H .  Q.E.D. 

The numerical  r~nge has the following properties.  

PlCOPOSITIO~ 12.1.2. - Let ], g: H - >  H be continuous. Then 

(a) n(~]) = ~n(/), n(~ + / )  = ~ + n(l), ~ e C. 

(b) I] IN is quasibounded aug i s n(f) then I~l< ]fsI. 

(v) I] l / s -  ga~I = o then n(f) = n(g). 

(d) I f  f.v is quasibounded then n(/ -~ g) c n(f) -4- n(g). 

PROOF. - We shall prove  only (d). The other  propert ies are easy to verify.  As- 
sume tha t  Jl E n(]-F g). Then  there  exists a sequence {x~}, Ilx, l] ->-4- oo such tha t  

(l(x~) + g(x~), x~) - ~  ~ .  

On the  other  hand  

(f(x~), x.)  
IIx4 ~ 

is bounded  and we may  therefore  assume, wi thout  loss of generali ty,  t ha t  

Thus, i ~n ( ] )  and (g(x.), x~)/lIx~l[ ~ -~ A-- I ~, which is clearly a point  in n(g). 

We give now ~ resul t  concerning the  s t ruc ture  of n(]). 

T]zi~o~E~ 12.1.3. - Let ]: H -> H be such that ]N is quasibounded. 
nonempty, connected and compact. 

Q.E.D. 

Then n(]) is 

PRoos.  - Let  ~: H \ { O } - +  C be defined b y  ~(x)----(/(x),x)/ITxHs. Since ]s is 
quasibounded the set q~(H\D~) is bounded for sufficiently large n. On the  other  
and H \ D ~  is connected and so is ~s(H~D~). Therefore,  it  is enough to show tha t  

n(t) = 27(f~) = (h {qs(H~D.): n e N}, 

since (as it  is well known) the intersect ion of a decreasing sequence of n o n e m p t y  
connected and compact  sets is nonempty ,  connected and compact .  
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Le t  2~ e (~ { ~ ( H \ D , ) :  n e N}. Then  there  exists a sequence {x.}, x,~ ~ H \ D ,  for 
a n y  n e N, such t ha t  ~ - -  ~(x.) -+ 0 and  this implies t h a t  2 ~ Z(]~v) = n(]). 

Assume now t h a t  A e Z(/~). Then  there  exists  a sequence {x.}, Hx~]] > n for a n y  

n e N, such t h a t  A - -  q(x~) -~ 0. 
We  w a n t  to p rove  t h a t  2 e q~(H\D,) for ~ny n. 
I f  ~ ~ ~(H\D~) for some ~ e N then  there  exists a neighborhood V of 2 such 

t h a t  V has  e m p t y  intersect ion wi th  cf(H\D~) for all n > ~. 
On the  other  hand  ~(x~)e  ~ ( H ~ D . )  since lIx~lI > n. Hence,  ~(x~) canno t  be 

convergent  to ~, which is a contradict ion.  Q.E.D.  

I n  [10] the  numer ica l  r~nge of a quas ibounded m a p  ]:  H - ~  H was defined in 

a different way,  n a m e l y  

where ~ ( x ) =  (](x),x)/llx]] 2. The proof  of Theorem 12.1.3 shows t h a t  the  two de- 

finitions are  equivalent .  
F u r t he r  resul ts  on the  numer ica l  range  and  extensions to the  contex t  of Banach  

spaces are  ob ta ined  b y  J .  CA~AVA~I in [2]. 

12.2. Nonlinear self-adjoint maps. 

~eca l t  t h a t  a bounded  l inear  opera to r  A:  H -+ H is called self-adjoint  if (Ax, y) 
-~ (x, Ay) for all x, y e H.  Le t  ]: H -~ H be cont inuous and  assume t h a t  (/(x), y) -~ 
--~ (x, ](y)) for  all x ,  y ~ H .  Then  i t  is easy to check t h a t  ] is linear. Therefore,  the  

above  definition cannot  be  ex tended  to the  nonl inear  case. 
On the  o ther  h a n d  i t  is known t h a t  a bounded  l inear opera tor  A : H - ~  H is 

self-adjoint  if and  only if (Ax, x) is real  for every  x ~ H.  This allows us to ex tend  

the  definition of self-adjoint  opera tor  to the  nonl inear  case. 
A cont inuous ~-lipschitz m a p  ]: H -~ H is said to be sel]-adjoint if ]N is quasi- 

bounded  and  n(]) c R.  
Proposi t ion 12.1.2 implies t h a t  the  set  of all  self-adjoint  maps  f rom H into H 

is a closed real  subspace  of C(H, H). 
I t  is known  t h a t  a bounded  l inear self-adjoint  opera tor  A : H -~ H is a l te rnat ive ,  

i.e. a(A) ~ a~(A). We  wan t  to show now t h a t  this resul t  can be ex tended  to a more  

general  class of nonl inear  self-adjoint  maps .  
W e  need first the  following lemma~ which is also of independen interest .  

L E ~ A  12.2.1. - Let /: H --> H be eontinuous. Then r( / )<max {~(/), I/~l}, where 
r(]) in the speetral radius o/ ]. 

P ~ o o r .  - L e t  [Z[ > m a x  {~(D,  I/~L}. T h e n  3 (~  - -  1 ) >  tZl - -  z ( t )  > 0 a n d  ~ q Z ( D ,  
since Z ( I ) c  n(]). Therefore,  ~ ~a=(/).  We  have  only to show t h a t  if h: H - + H  is 
cont inuous and  such t h a t  h(E) is re la t ive ly  compac t ,  then  the  equat ion  ~x -~ [(x) 
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-~ h(x) is solvable. This is equivalent to require t ha t  the map g(x)= ~-~(](x)~- 
h(x)) has a fixed p o i n t .  
Given n ~ N, let ~ :  H --> H be the radial retract ion of H onto the closed bM1 

D.  -~ {x e H:  ttxI] <n}.  Since z~ is a-nonexpansive (actuMly, in this case, it  is non- 
exp~nsive) and  g is a-contractive, by  Darbo's  Fixed Point  Theorem, the map 
g.(x) ~-~(g(x))  has a fixed point  x~ e D~. 

I f  I[z.(g(x~))t] < n for some n a N we are done. In  fa.ct, in this case, z~(g(x.)) = 
= g(x.). Assume therefore ltTl.(g(x.))]I>n for all h e N .  This implies ]]x.]]->-~ c~ 
~s n->-~-  ~ .  Clearly~ there exists a sequence {t~}, t ~ < l  for M1 n ~ N, such tha t  
x~ = t,g(x.), i.e. ~x~ ---- t.((x~) -~ h(x.)). Hence, 

12-1 > I/.~l = 11~, + h~ , I> l im sup ](/(x,~) + h(w.), x,~)] 

> l i ra  sup t(~xo, x~)l = I;,I. 
~ ÷ ~  IixoiI ~ 

A contradiction. Q.E.D. 

We are now in u position of proving the following result. 

THEOI¢E~I 12.2.1. - Let f: H - .  H be sel]-adjoint and such that as(I)c R. 

(a) a(]) is a compact subset of R,  

(b) ] is alternative. 

Then 

e ~ o o r .  - (a) w e  h a v e  a . ( ] )  = a~(/) w Zff )  c as(/) w n(D c R .  

~ ( / )  c a~(]) and,  by  L e m m a  12.2.1, aft) is bounded. 
So af t )  c R .  

On the other hand 

(b) Le t  ~ ~(r=(]). We have to show tha t  1 ~ aft). Now, by  (a), i belongs to 
the unbounded component  of C ~ . ( ] ) .  Thus, by  Theorem 8.1.3-(b)~ ~ ~ aft). Q.E.D. 

COI¢OLLA~Y 12.2.1. - Let A: H -+ H be bounded, linear and h: H - .  H be compact. 
I] A and h are both self-adjoint, then properties (a) and (b) of Theorem 12.2.1 hold. 

P~ooF. - Since A ~- h is self-adjoint, it  is enough to show that ~#(A -~ h) c R 
We have as(A ~- h) = as(A), since h is compact,  and (~#(A) c X(A), since A is linear. 
Therefore, as(A) c Z'(A) c n(A) c R. Q.E.D. 

12.3. Boundedness of solutions for nonlinear ordinary di]/erential equations. 

Let  ]: C " - > C "  be continuous,  with quasibounded normM part .  Consider the 
following ordinary differential equation 

~ = / ( z ) .  
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Theorem 12.3.1 below gives a sufficient condit ion for the  solutions of this equat ion 

to  be  bounded  as t - .  @ co. 

THEOI~E~ 12.3.1. - Let  ]: C ~ --~ C ~ be continuous with I]~v] < @ c~. A s s u m e  that 

there exists a l inear i somorphism A :  C ~ --> C ~ such that n ( A o f o A  -~) ¢ C_ ,  where C = 

= {~ ~ C: I~e ~ ~ 0}. Then  all the solutions o] the di]/erential equation, 

are bounded as t - +  @ ~ .  

P ~ o o L  - P u t  w = A z .  

= / ( z )  

Then  the  differential  equat ion  2 = ](z) becomes 
= Ao]oA-~(w)  = g(w). Therefore,  i t  is enough to show t h a t  M1 the solutions of 

the  differential  equa t ion  u ) =  g(w) ~re bounded  (as t - +  @ c~). Since the  compac t  
set  n(g) is conta ined  in C_, then  there  exists ~ > 0 such t h a t  :Re )~ < -  ~ for  aH 

e n(g). F r o m  the definition of numer ica l  range  it  follows tha t  there  exists r > 0 

such t h a t  t ~ e ( g ( w ) , w ) < - ~ [ l w [ t  ~, whenever  [Iwll > r .  Le t  w(.)  be any  solution 

of ~, = g(w). 
Then (d/dt)[]w(t)[I~= (~(t), w(t)) + (w(t), ~(t))  = 2 l~e (g(w(t)), w(t)).  :Now, the last  

t e r m  is nega t ive  if 

d 
Iiw(t)]l > r ,  i .e. ,  ~ Nw(t)ll~< 0 if llw(t)ll > r .  

This implies t h a t  w(-) is bounded.  Q.E.D. 

Le t  L :  C ~ -+ C ~ be linear. I t  is well known t h a t  the following resul t  holds. 

solutions o] the di]]erential equation 

The 

are bounded as t - *  @ co, pro.vialed that a(L) c C_.  
On the other  hand  if a(L) c C_,  the  numer ica l  range  n(L)  need not  be contained 

in C .  However ,  the  following proposi t ion shows t h a t  there  exists a l inear isomor- 
ph ism A:  C ' - >  C ~ such t h a t  n ( A o Z o A  -1) c C .  Therefore  Theorem 12.3.1 can be 

regarded  as an extension of the  resul t  ment ioned  above.  

PPuOPOSITI01~ 12.3.1. -- Let  A :  C ~ --> C ~ be linear. Then  for any  open set U con- 

ta ining c--o ~(A)  there exists a l inear i somorphism L:  C ~ -+ C ~ such that 

n ( L - l o A o L )  c U . 

PROOF. -- B y  choosing a sui table basis on C ~ the  l inear opera tor  A can be  repre-  
sented with  an upper  t r iangular  ma t r i x  M (e.g. its J o r d a n  canonical  form). Wr i te  M 

in the  fo rm 
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w h e r e  D is t h e  d i a g o n a l  r n~ t r i x  w h i c h  is o b t a i n e d  b y  t ~ k i n g  t h e  diagona,  l of M.  

H e n c e ,  a ( M ) ~  a(D).  G i v e n  t >  0 we c o n s i d e r  as  .L(t) t h e  d i a g o n a l  m a t r i x  

L t  = d i ag  (t, t 5 . . . ,  t~). C lea r ly ,  Z ~  ~ = d i a g  (t -~, t -~, ..., t-~). B y  s t a n d a r d  c o m p u -  

t a t i o n s  one  curt s h o w  t h a t  

a n d  

O n  t h e  o t h e r  h a n d  

1 1 ~ ] 1  -+o,  as ~->o,  

LT~ DL~ -~ D . 

m 

Since  D is o b v i o u s l y  n o r m a l  we  h a v e  n(D)  ~ co a(D) ~ co a(M) .  H e n c e ,  

The  r e s u l t  n o w  is a c o n s e q u e n c e  of t h e  f a c t  t h a t  if  

Q . E . D .  
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