Topological aspects of the Bel-Petrov classification.

J. D. Zund (Raleigh, N. C.) (*)

Abstract

Summary. - The topological aspects of the Bel-Petrov classification of the curvature tensor are examined for compact orientable space-times in which the Einstein equations for the exterior case are satisfied. It is shown that for such space-times of Bel Case III the metric tensor is singularity-free and that the Pontrjagin number identically vanishes. Bel Cases I and $I I$ are examined and conditions are given for which the metric is singularity-free and the Pontrjagin number vanishes. Applications to gravitional radiation in general relativity are discussed.

§ 1. - Introduction.

In a previous paper, [24], the author has given an integral formula for the Pontrjagin number and index of a compact orientable $4 k$ dimensional differentiable manifold which has a Riemannian metric of arbitrary signature. In this paper that investigation will be continued for the four dimensional differentiable manifolds of general relativity by considering the Bel-Pertrov classification. Some topological results of Avez [2], [3], Chern [8], and Zund [24] are reviewed in § 2. The necessary preliminaries about the Bel-Perrov classification, together with an important lemma are given in $\S 3$. The topological consequences of this classification are presented in $\S 4$.

Throughout this paper, except for minor changes, the notation and terminology of BEL [6], Lichnerowicz [15], and [24] are employed.

§ 2. - Topological preliminaires.

Let V_{4} be a four dimensional differentiable manifold which is provided with a Riemannian metric $g_{\alpha \beta}\left(x^{\lambda}\right)$ of hyperbolic normal signature. For brevity such a V_{4} will be called a space-time. If V_{4} is compact and orientable it is known, Avez [2] and Chern [8], that the Euler-Porncart characteristic is given by the integral formula

$$
\begin{equation*}
\chi\left(V_{4}\right)=-\frac{1}{32 \pi^{2}} \int_{V_{4}} \Delta \cdot \eta \tag{1}
\end{equation*}
$$

(*) Research supported in part by National Science Foundation grant GP. 7401 to North Carolina State University.
where

$$
\begin{equation*}
\Delta \stackrel{\text { def }}{=} \eta_{\alpha \beta \gamma \gamma} \eta_{\lambda \mu \rho \sigma} R^{\alpha \beta, \lambda_{\mu}} R^{\gamma \delta, \rho \sigma}, \tag{2}
\end{equation*}
$$

$\eta \stackrel{\text { dof }}{=} \sqrt{-\operatorname{det}\left(g_{\alpha \beta}\right)} d x^{0} \Lambda d x^{1} \Lambda d x^{2} \Lambda d x^{3}$, and $\eta_{\alpha \beta \gamma \gamma^{\delta}}$ is the Levi-Crvipa permutation symbol. The results of [3] and [24] show that the Pontrjagin number of a compact orientable space-time can be expressed by

$$
\begin{equation*}
p\left[V_{4}\right]=-\frac{1}{8 \pi^{2}} \int_{\overline{V_{4}}} \widehat{\Delta} \cdot \eta \tag{3}
\end{equation*}
$$

where
(4)

$$
\widehat{\Delta} \stackrel{\text { dop }}{=} \frac{1}{4} R_{\alpha \beta, r \gamma} R^{o \beta}, \lambda_{\mu} \eta \eta^{\gamma \delta \mu} \cdot\left({ }^{1}\right)
$$

Gefiemiat and Debever [10] have shown that in V_{4} one may construct at most the following six scalars from the curvature tensor and its adjoints:

$$
\begin{aligned}
& A \stackrel{\text { def }}{=} \frac{1}{8} R^{\alpha \beta},{ }_{\alpha \mu} R^{\lambda \mu,}{ }_{\alpha \beta} \\
& B \stackrel{\text { def }}{=} \frac{1}{8} R^{\alpha \beta}, \lambda_{\mu \mu} * R^{\lambda \mu}, \alpha \beta_{\alpha \beta} \\
& C \stackrel{\text { dof }}{=} \frac{1}{8} R^{\alpha \beta}, \lambda_{\mu} * R * \lambda_{\mu},{ }_{\alpha \beta}
\end{aligned}
$$

(5)

$$
\begin{aligned}
& D \stackrel{\text { def }}{=} \frac{1}{16} R^{\alpha \beta}, \lambda_{\mu} R^{\lambda \mu},{ }_{\rho \sigma} R^{\rho \sigma},{ }_{\alpha \beta} \\
& E \stackrel{\text { dof }}{=} \frac{1}{16} R^{\alpha \beta}, \lambda_{\mu} R^{\lambda \mu},{ }_{\rho \sigma} * R^{\rho \sigma},{ }_{\alpha \beta} \\
& F \stackrel{\text { def }}{=} \frac{1}{16} R^{\alpha \beta}, \lambda_{\mu} R^{\lambda \mu},{ }_{\rho \sigma} * R *{ }^{\rho \sigma},{ }_{\alpha \beta}
\end{aligned}
$$

where
(6)

$$
* R^{\lambda \mu},{ }_{\alpha \beta} \stackrel{\text { dot }}{=} \frac{1}{2} \eta^{\lambda \mu \rho \sigma} R_{\rho \sigma, \alpha \beta}
$$

(4) $\operatorname{In}(24) \bar{\Delta}$ was denoted by Δ_{4} and $p\left[V_{4}\right]$ was written $p^{4}\left[V_{4}\right]$.
and

$$
\begin{equation*}
* R *{ }_{\alpha \beta, \lambda \mu}=\frac{1}{4} \eta_{\alpha \beta \gamma \delta} \eta_{\lambda \mu p \sigma} R^{\gamma \delta, \rho \sigma} . \tag{7}
\end{equation*}
$$

The six scalars of (5) are called the fundamental scalars.
Lemma. - In V_{4}, Δ and $\bar{\Delta}$ are related to the fundamental scalars by

$$
\begin{align*}
& \Delta=32 C \tag{8}\\
& \bar{\Delta}=4 B
\end{align*}
$$

and if V_{4} is an Einstein space

$$
\begin{equation*}
\widehat{\Delta}=-32 A \tag{10}
\end{equation*}
$$

Proof. - Equation (8) is an obvious consequence of (2), (5) and (7). Equation (9) was obtained and discussed by the author in [24] for the case when V_{4} is an Einstern space, however it is clearly valid without this restriction. Equation (10) is established by noting that the Ruse-Lanczos identity [21], [14] reduces to

$$
\begin{equation*}
R_{\alpha \beta, \lambda_{\mu}}+* R *{ }_{\alpha \beta, \lambda_{\mu}}=0 \tag{11}
\end{equation*}
$$

if and only if V_{4} is an Einstein space.
Thus the first theree fundamental scalars naturally occur as the integrands of the topological invariants $X\left(V_{4}\right)$ and $p\left[V_{4}\right]$ for compach orientable space-times. It is clear from (5) and (11) that $C=-A$ and $F=-D$, hence in an Einstein space there are only four fundamental scalars.

§ 3. - The Bel-Petrov classification.

In this section we present an expose of some of the features of the BelPerrovelassification as developed by Bex in his thesis [6].

Since $g_{\alpha}\left(x^{\lambda}\right)$ is of hyperbolic normal signature, at each point $x \in V_{4}$ the line element can be locally reduced to

$$
\begin{equation*}
d s^{2}=\left(\theta^{0}\right)^{2}-\sum_{j=1}^{3}\left(\theta^{j}\right)^{2} \tag{12}
\end{equation*}
$$

where the θ^{α} are a system of linearly independent Prafrian forms. In such a frame the volume element η reduces to

$$
\begin{equation*}
\eta=\theta_{0} \Lambda \theta^{1} \Lambda \theta^{2} \Lambda \theta^{3} \tag{13}
\end{equation*}
$$

Throughout the remainder of this paper all tensor components will be considered with respect to the frame θ^{x} of (12). When Δ or $\bar{\Delta}$ is evaluated in this frame, (13) may be used, together with the standard partition of unity technique [19], to obtain (1) and (3).

In the Bel-Petrov classification the frame components of $R_{\alpha \beta, \lambda \mu}$ are written in a symmetric 6×6 matrix $R=\left\{R_{I J}\right\}$, where I denotes the row and J denotes the colum j and the $\alpha \beta$ and $\lambda \mu$ indices are relabelled according to the scheme

$\alpha \beta$	or	$\lambda \mu:$	23	31	12	10	20	30
I	or	$J:$	1	2	3	4	5	6.

If the Einstein equations for the exterior case are satisfied, the matrix can be written in the form

$$
R=\left(\begin{array}{rr}
-\boldsymbol{Y} & \boldsymbol{Z} \tag{14}\\
\boldsymbol{Z} & \boldsymbol{Y}
\end{array}\right)
$$

where Y and Z are real 3×3 traceless matrices, i.e. $\operatorname{Tr} . Y=\mathrm{Tr} . Z=0$. For the calculation of the fundamental scalars it is convenient to introduce the matrix of mixed components $\boldsymbol{R}_{\text {mix }}=\left(R_{J}^{I}\right)$,

$$
\boldsymbol{R}_{\text {mix }}=\left(\begin{array}{rr}
\boldsymbol{Y}_{\text {mix }} & -\boldsymbol{Z}_{\text {mix }} \tag{15}\\
\boldsymbol{Z}_{\text {mix }} & \boldsymbol{Y}_{\text {mix }}
\end{array}\right)
$$

and its adjoint components

$$
{ }^{*} \boldsymbol{R}_{\operatorname{mix}}=\boldsymbol{R} *_{\operatorname{mix}}=\left(\begin{array}{rr}
-\boldsymbol{Z}_{\operatorname{mix}} & -\boldsymbol{Y}_{\operatorname{mix}} \tag{16}\\
\boldsymbol{Y}_{\operatorname{mix}} & Z_{\operatorname{mix}}
\end{array}\right) .
$$

It is easy to show by using these expressions that

$$
\begin{align*}
& \Delta=-\frac{1}{64} \operatorname{Tr} \cdot\left(R_{\mathrm{mix}} R_{\mathrm{mix}}\right) \tag{17}\\
& \widehat{\Delta}=\frac{1}{8} \operatorname{Tr} \cdot\left(R_{\mathrm{mix}} * R_{\mathrm{mix}}\right) . \tag{18}
\end{align*}
$$

According to the Bel-Petrov classification, if $R_{\alpha \beta}=0$, one has six eanonical forms for the curvature tensor depending on the degeneracy of the eigenvalues of $\boldsymbol{R}_{\text {mix }}$:

Oase I
(19)

$$
\boldsymbol{R}_{\operatorname{mix}}=\left(\begin{array}{lll:|rr}
\alpha_{1} & 0 & 0 & -\beta_{1} & 0 \\
0 & \alpha_{2} & 0 & 0 & -\beta_{2} \\
0 & 0 & \alpha_{2} & 0 & 0 \\
\hdashline \beta_{1} & 0 & 0 & -\beta_{8} \\
0 & \beta_{2} & 0 & 0 & \alpha_{1} \\
0 & 0 & \beta_{8} & 0 & 0 \\
\alpha_{3} & 0 \\
0 & 0 & \alpha_{3}
\end{array}\right)
$$

where
(20)

$$
\sum_{j=1}^{3} \alpha_{j}=0 \quad \text { and } \quad \sum_{j=1}^{3} \beta_{j}=0
$$

Case II_{a}
(21)

$$
\boldsymbol{R}_{\text {mix }}=\left[\begin{array}{rrr:rrr}
2 \alpha & 0 & 0 & 2 \beta & 0 & 0 \\
0 & -\alpha & 0 & 0 & -\beta & 0 \\
0 & 0 & -\alpha & 0 & 0 & -\beta \\
\hdashline-2 \beta & 0 & 0 & 2 \alpha & 0 & 0 \\
0 & \beta & 0 & 0 & -\alpha & 0 \\
0 & 0 & \beta & 0 & 0 & -\alpha
\end{array}\right]
$$

Case H_{b}
(22)

$$
\boldsymbol{R}_{\operatorname{mix}}=\left[\begin{array}{ccc:ccc}
2 \alpha & 0 & 0 & 2 \beta & 0 & 0 \\
0 & \sigma-\alpha & \tau & 0 & -(\beta+\tau) & -\sigma \\
0 & -\tau & -(\alpha+\sigma) & 0 & -\sigma & \tau-\beta \\
\hdashline-2 \beta & 0 & 0 & 2 \alpha & 0 & 0 \\
0 & \beta+\tau & \sigma & 0 & \sigma-\alpha & -\tau \\
0 & \sigma & \beta-\tau & 0 & -\tau & -(\alpha+\sigma)
\end{array}\right]
$$

(Either τ or σ can be made to vanish by a suitable rotation in the 232 -plane).
Case III_{a}
(23)

$$
\boldsymbol{R}_{\operatorname{mix}}=\left[\begin{array}{rrr:rrr}
0 & \mu & -\nu & 0 & -\nu & -\mu \\
\mu & 0 & 0 & -\nu & 0 & 0 \\
\hdashline \nu & 0 & 0 & -\mu & 0 & 0 \\
\hdashline 0 & \nu & \mu & 0 & \mu & -\nu \\
\nu & 0 & 0 & \mu & 0 & 0 \\
\mu & 0 & 0 & -\nu & 0 & 0
\end{array}\right]
$$

(Either μ or \vee can be made to vanish by a suitable rotation in the 232 -plane).

Case $\mathrm{III}_{\mathrm{b}}$

$$
\left[\begin{array}{rrr:rrr}
0 & 0 & 0 & 0 & 0 & 0 \\
0 & \sigma & -\tau & 0 & -\tau & -\sigma \\
0 & -\tau & -\sigma & & -\sigma & \tau \\
\hdashline 0 & 0 & 0 & 0 & 0 & 0 \\
0 & \tau & \sigma & 0 & \sigma & -\tau \\
0 & \sigma & -\tau & 0 & -\tau & -\sigma
\end{array}\right]
$$

(Same indetermination of frame as in CASe II_{b}).
Case 0

$$
\begin{equation*}
\boldsymbol{R}_{\operatorname{mix}}=(0) \tag{25}
\end{equation*}
$$

which is merely the Mrnkowski space-time of special relativity.
In our opinion one of the advantages of this method of classification lies in the natural manner in which the fundamental scalars appear and play a basio role in the determination of the Bel-Perrove cases:

Theorem $1\left({ }^{2}\right)$. - If the Einstein equations for the exterior case are satisfied then the exterior oase are satisfied then the space-time V_{4} is of
1°) Case III. - If and only if $A=B=D=E=0$
2°) CASE II. - If and only if $(A+i B)^{3}=6(D+i E)^{2}$
3°) Case. - If and only if neither 1° nor 2° is satisfied.
The Bel cases are related to the Petrov types as used by Sachs, [22], by the scheme

Bel Case	1	II_{a}	II_{b}	$\mathrm{III}_{\mathrm{a}}$	$\mathrm{III}_{\mathrm{b}}$	0
Petrov Type	I	D	II	III	N	0.

Further details about the Bel-Perrov classification can be found in [4] and [5].

§ 4. - Topological consequences in General Relativity.

The results of $\S 2$ and $\S 3$ have shown that the Bel-Petrov classifica. tion is intimately related to two fundamental scalars and that in a compact

[^0]orientable space-time for which $R_{\alpha \beta}=0$ two of these scalars, A and B, occur in the integral formulae for the Euler-Poincare characteristic and Pontrjagin number. By the first part of Theorem 1, one obtains.

Theorem 2. - Let V_{4} be a compact orientable space-time in which $R_{\alpha \beta}=0$. If V_{4} is of Bel Case III then $\chi\left(V_{4}\right)=0$ and $p\left[V_{4}\right]=0$.

This result can also be immediately seen by using (23) and (24) to verify that the expressions for Δ and $\bar{\Delta}$ given in (17) and (18) vanish identically. Part of this theorem, $p\left[V_{4}\right]=0$, was given by Avez [3].

It is well known, [1], that $\chi\left(V_{4}\right)=0$ is the necessary and sufficient condition for the existence of a continuous non-zero tangent vector field on V_{4}. In particular, [17], [23], this is equivalent to the existence of a singularityfree metric tensor field $g_{\alpha \beta}\left(x^{\lambda}\right)$ on V_{4}. Although Einstein never formally required that the physically meaningful solutions of his equations be singu-larity-free, he often expressed the desirability of such solutions [9]. Thus part of Theorem 2 states that a compact orientable space time of BeL Case III, in which $R_{\alpha \beta}=0$, always admits topologically a singularity.free metric. The physical interest in this result is related to the fact that space-time of Bel Case III are frequently [7], [17] identified as representing the most idealized form of gravitational radiation. In fact Bec Case $\mathrm{III}_{\mathrm{b}}$ exhibits the same type of algebraic structure

$$
\begin{equation*}
l^{\alpha} R_{\alpha \beta, \alpha_{\mu}}=0 \tag{26}
\end{equation*}
$$

$$
l^{\alpha} * R_{a \beta, \lambda_{\mu}}=0
$$

possessed by the tensor $F_{\alpha \beta}$ in singular electromagnetic fields [16]. A number of exact solutions are known for BeL Case III: e.g. the plane and planefronted gravitational waves of Case $\mathrm{III}_{\mathfrak{b}}$, [7], [26]; and the Case $\mathrm{III}_{\mathrm{a}}$ solution of Kerr and Goldberg [13]. Unfortunately it is not known whether any of these solutions are compact.

The Bel-Petrov classification makes no assumption about the real scalars appearing in the canonical matrices (19) - (25) other than requiring that $\sum_{j=1}^{3} \alpha_{j}=0$ and $\sum_{j=1}^{8} \beta_{j}=0$ in Case I. Hence by direct calculation of Δ and $\bar{\Delta}$ one obtains the following:

Theorem 3. - Let V_{4} be a compact orientable space-time on which $R_{\alpha \beta}=0$. Then one has

Bel Case I:

$$
\begin{equation*}
\chi\left(V_{4}\right)=\frac{1}{\pi^{2}} \int_{V_{4}}\left(\sum_{i=1}^{s} \alpha_{j}^{2}-\sum_{j=1}^{s} \beta_{j}^{2}\right) \cdot \eta \tag{27}
\end{equation*}
$$

$$
\begin{equation*}
p\left[V_{4}\right]=\frac{1}{\pi^{2}} \int_{\bar{V}_{4}} \sum_{j=1}^{s} \alpha_{j} \beta_{j} \cdot \eta \tag{28}
\end{equation*}
$$

Bel Case II:

$$
\begin{equation*}
\chi\left(V_{4}\right)=\frac{6}{\pi^{2}} \int_{V_{4}}\left(\alpha^{2}-\beta^{2}\right) \cdot \eta \tag{29}
\end{equation*}
$$

Bel Case Π_{a} :

$$
\begin{equation*}
p\left[V_{4}\right]=-\frac{2}{3 \pi^{2}} \int_{\nabla_{t}} \alpha \beta \cdot \eta \tag{30}
\end{equation*}
$$

Bel Case II_{b} :

$$
\begin{equation*}
p\left[V_{4}\right]=-\frac{1}{\pi^{2}} \int_{V_{4}}\{\bar{\omega} \alpha \beta+(\tau \sigma-\alpha \tau+\sigma \beta)\} \cdot \eta \cdot\left({ }^{8}\right) \tag{31}
\end{equation*}
$$

It is clear that in general $\chi\left(V_{4}\right)$ and $p\left[V_{4}\right]$ need not vanish for spacetimes of Bel Case I and II. Using (27) and.(29) one may select special space-times of Case I and II for which $\chi\left(V_{4}\right)=0$:

Theorem 4. - Let V_{4} be a compact orientable space-time in which $R_{\alpha \beta}=0$. Then $g_{\alpha \beta}$ is singularity-free in each of the following special space-times:

Bel Case I:

$$
\begin{equation*}
1^{\circ} \quad \alpha_{j}=\varepsilon \beta_{j}, \quad \varepsilon= \pm 1, \quad j=1,2,3 \tag{32}
\end{equation*}
$$

or

$$
\begin{equation*}
2^{\circ} \text { The } \alpha_{j} \text { are a permatation of the } \beta_{j} \text {. } \tag{33}
\end{equation*}
$$

Bel Case II:

$$
\begin{equation*}
\alpha=\varepsilon \beta, \quad \varepsilon= \pm 1, \quad \alpha, \beta \neq 0 \tag{34}
\end{equation*}
$$

Similarly one can select special space-times for which $\bar{\Delta}=0$:
Theorem 5. - Let V_{4} be a compact orientable space-time in which $R_{\alpha \beta}=0$. Then $p\left[V_{4}\right]=0$ in each of the following special space-times:

Bel Case I:

$$
\begin{equation*}
\left.\sum_{j=1}^{3} \alpha_{j} \beta_{j}=0 \quad \text { where } \sum_{j=1}^{\alpha} \alpha_{i}=\sum_{j=1}^{3} \beta_{j}=0{ }^{4}\right) \tag{35}
\end{equation*}
$$

${ }^{(3)}$ The integrand may be simplified. See the remark following (22).
${ }^{4}$) For example $\alpha_{j}=0$ or $\beta_{j}=0$ for $j=1,2,3$.

Bel Case II_{a} :

$$
\begin{equation*}
1^{0} \quad \alpha=0, \quad \beta \neq 0 \tag{36}
\end{equation*}
$$

or

$$
\begin{equation*}
2^{\circ} \quad \beta=0, \quad \alpha \neq 0 \tag{37}
\end{equation*}
$$

Bel Case II_{b} :

$$
\begin{equation*}
1^{\circ} \quad \tau=0, \quad \sigma=-5 \alpha \tag{38}
\end{equation*}
$$

or

$$
\begin{equation*}
2^{\circ} \quad \sigma=0, \quad \tau=5 \beta \tag{39}
\end{equation*}
$$

The proof is immediate by using (28), (30) and (31). It is interesting to note that (37) is similar to the situation for the Schwarzschild solution where $\alpha=-\frac{k m}{r^{3}}$ and $\beta=0$. The special space-times of Theorems 4 and 5 are not the same except in Bel Case \amalg_{b} for the obvious choices of σ or τ.

If V_{4} is compact and orientable the Pontrjagin number $p\left[V_{4}\right]$ is related to the index of $V_{4}, \tau\left(V_{4}\right)$, by Hirzebruch's index theorem, [11],

$$
\begin{equation*}
\tau\left(V_{4}\right)=\frac{1}{3} p\left[V_{4}\right] . \tag{40}
\end{equation*}
$$

By definition this index is equal to the difference between the number of positive and negative signs in the quadratic form associated to the cohomology product $f^{2} \cup g^{2}, f^{2}, g^{2} \in H^{2}\left(V_{4} ; \mathbb{R}\right)$. The coefficients of this quadratic form are written as the intersection matrix $a_{i j}$, [12], and given by

$$
\begin{equation*}
J\left(z_{2}^{i}, z_{2}^{i}\right)=a_{i j} \tag{41}
\end{equation*}
$$

where the indices i, j range from $1,2, \ldots$ up to the second Bexti number $b_{2}\left(V_{4}\right)$ of V_{4}, and $\left\{z_{2}^{i}\right\}, i=1, \ldots, b_{2}\left(V_{4}\right)$ is a basis for $H_{2}\left(V_{4} ; \mathbb{R}\right)$. The intersection matrix is then related to the cohomology product by the formula

$$
\begin{equation*}
J\left(\mathfrak{D} f^{2}, \mathfrak{D} g^{2}\right)=\left(f^{2} \cup g^{2}\right)\left(z_{4}\right) \tag{42}
\end{equation*}
$$

where $\mathfrak{D}: H^{q}\left(V_{4} ; \mathbb{R}\right) \rightarrow H_{4-q}\left(V_{4} ; \mathbb{R}\right), q=1, \ldots, 4$, is the isomorphism of the Poinoart duality theorem; $f^{2}, g^{2} \in H^{2}\left(V_{4} ; \mathbb{R}\right)$, and z_{4} is the generator of $H_{4}\left(V_{4} ; \mathbb{R}\right)$. By the familiar properties of the cohomology product, the Poincart duality and (46) it follows that the intersection matrix is symmetric and non-singular.

In [24] the anthor prematurely assumed that $\tau\left(V_{4}\right)=-2$, i.e. that the signatures of $a_{i j}$ and $g_{\alpha \beta}$ were identical. This is not necessarily true. Theorem 2, by (40), asserts that for compact orientable space-times with $R_{\alpha \beta}=0$ that $\tau\left(V_{4}\right)=0$ for Bel-Petrov Case III. The general determination for $\tau\left(V_{4}\right)$ for connected four dimensional differentiable manifolds has recently been investigated by Milnor, [18].

BIBLIOGRAPHY

(1) P. Aldxandroft-H. Hopf. Topologie, Springer-Verlag (1935), Chelsea reprint (1966).
(2) A. A vez, Formule de Gauss-Bonnet-Chern en métrique de signature quelconque, C. R. Acad. Sci. 255 (1962). pp. 2049-2051.
(3) - - Index des variétés de dimension 4, C. R. Acad. Sci. 959 (1964), pp. 1934-1937.
(4) L. Bel, Etude algebrique d'un certain type de tenseurs de courbure, Le cas 3 de Petrov, C. R. Acad. Sci. 247 (1958), pp. 2096-2099.
(5) - -, Quelques remarques sur la classification de Petrov, Étude du cas 2, C. R. Acad. Sci. 248 (1959), pp 2561-2563.
(6) - - La radiation gravitationelle, Thèse (1960) Paris.
(7) H. Bondi-F. A. E. Prrani-I. Robinson, Gravitational waves in general relativity III, Exact plane waves, Proc. Roy. Sou. (London) A 251 (1959), pp. 519-533.
(8) S.S. Chern, Pseudo-Riemannian geometry and the Gauss-Bonnet formula, An. Acad. Bras. de Ciências 30 (1963), pp. 17.26.
(9) A. Einstenn, The meaning of relativity, 5th edition, Princeton Univ Press (1955).
(10) J. Géhéntau-R. Debever, Les invariants de l'espace de Riemann à quatre dımensions, Bull. Acad. Roy. de Belg. Cl. Sc. 42 (195̄6), pp. 114-128.
(11) F. Hirzebruch, Topological methods in algebraic geometry, Springer-Verlag (1966).
(12) W. V. D. Hodge, The theory and applications of harmonic integrals, 2nd edition, Cambridge Univ. Press (1959).
(13) R. P. Kerr-J. N. Goldberg, Einstein spaces with four-parameter holonomy groups, Jour. Math. Phys 2 (1961) pp. 332.i355.
(14) C. Lanozos, A remarkable property of the Riemann tensor in four dimension, Ann. Math. 39 (1988), pp. 842-850.
(15) A. Lichnerowicz, Théorie globale des connexions et des groupes d'holonomie, Cremonese (1962).
(16) - -, Ondes et radiations électromagnétiques et gravitationelles en relativité générale, Ann. di Mat. Pura e. App- 50 (1960), pp. 1-95.
(17) L. Markus, Line element fields and Lorente structures on differentiable manifolds, Ann. Math. 62 (1955), pp. 411-417.
(18) J. W. Milnor, On simply connected 4 -manifolds, Symposium International de Topologia Algebraica, La Universidad Nacional Autonoma de Mexico and UNESCO, (1958) pp. 122-128.
(19) G. De Ryam, Variétes differentiables, formes courants, formes harmoniques, ASI 12\&2, Hermann (1960).
(20) I. Robinson-A. Trautman, Some spherical gravitational waves in general relativity, Proc. Roy. Soc (London) A 265 (1961) pp. 463-473.
(21) H.S. Ruse, On the line geometry of the Riemann tensor, Proc. Roy. Soc. (Edinburgh) 62 (1944), pp. 64.73.
(22) R.K. Sachs, Gravitational waves in general relativity VI, the outgoing radiation condition, Proc. Roy. Soe. (London) A 264 (1961), pp. 309.338.
(23) N.E. Steenrod, The topology of fibre bundles, Princeton Univ. Press. (1951).
(24) J.D. Zund, Pontrjagin numbers and pseudo-Riemannian geometry, Ann. di Mat. Pura - App. 72 (1966), pp. 319-324.

[^0]: $\left(^{2}\right)$ This theorem was proven by L Bel in his thesis (6).

