Topological aspects of the Bel-Petrov classification.

J.D. Zuxp (Raleigh, N. C.) (*)

Summary. - The topological aspecis of the Bel-Petrov classification of the curveture femnsor
are examined for compact orientable space-times in which the Binstein equaiions for the
exterior case are satisfied, It is shown that for such space-times of Bel Case III the
metric tensor is singularity-free and that the Ponirjagin number identically vanishes.
Bel Cases I and IT are examined and conditions are given for which the wmelric is
singularity-free and the Ponirjagin nwmber vawishes. Applications io gravitional ra-
diation in general relativily are discussed.

§ 1. - Introduction.

In a previous paper, {24], the author has given an integral formula for
the PoNTRJAGIN number and index of a compact orientable 4% dimensional
differentiable manifold which has a Riemannian metric of arbitrary signature.
In this paper that investigation will be continued for the four dimensional
differentiable manifolds of general relativity by considering the BEL-PETROV
classification. Some topological results of Avez (2], [3], CHERN [8], and ZUND
[24] are reviewed in § 2. The necessary preliminaries about the BEL-PETROV
classification, together with an important lemma are given in § 3. The topo-
logical consequences of this classification are presented in § 4.

Throughout this paper, except for minor changes, the notation and ter-
minology of BeL [6], LioENEROWICZ [15], and [24] are employed.

§ 2. - Topolegical preliminaires.

Let V, be a four dimensional differentiable manifold which is provided
with a BIEMANNIAN metric g,(a*) of hyperbolic normal signature. For brevity
siich a V, will be called a space-time. If V, is compact and orientable it is
known, AvEz [2] and CHERN [8], that the EULER-POINCARE characteristic is
given by the integral formula

1
i (V)= =g [ Ao

Vs

{*) Besearch supported in part by National Science Foundation grant GP-7401 to North
Carolina State University.
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where
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1}2—13 V — det (g,0) dx*Ada* Adx*Ada®, and 7,s is the LEVI-CIVITA permutation
symbol. The results of [3] and [24] show that the PONTRJAGIN number of a
compact orientable space-time can be expressed by
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GEEENIAU and DEBEVER [10] have shown that in V, one may construet
at most the following six scalars from the curvature temsor and its adjoints:
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) In (24) A was denoted by A, and p[V,] was written p[V,].
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and
1 8, oo
(7 * B % op,2p = 1 Nopraipeold™ 7.

The six scalars of (B) are called the fundamental scalars.

LeMMA. - In V,, A and A are related to the fundamental scalars by
(8) A=32C
9 A =45,
and if V, is an BINSTEIN space
(10) A=_—324.

ProoF. - Equation (8) is an obvious consequence of (2), (5} and (7). Equa-
tion (9) was obtained and discussed by the aunthor in [24] for the case when
V, is an EINSTEIN space, however it is clearly valid without this restriction.
Equation (10) is established by noting that the Ruse-LaANoczos identity [21],
[14] reduces to

(11) RaB,M&'*' *R*ag,mzﬁ
if and only if V, is an EINSTEIN space.

Thus the first theree fundamental scalars naturally occur as the inte-
grands of the topological invariants X{V,) and p[V,] for compact orientable
space-times. It is clear from (B) and (11) that C = — 4 and F= — D, hence
in an EINSTEIN space there are only four fundamental scalars,

§ 3. - The Bel-Petrov classification.

In this section we present an expose of some of the features of the BrL-
Prrrov classification as developed by BEL in his thesis [6].

Since g,g(#*) is of hyperbolic normal signature, at each point x€ V, the
line element can be locally reduced to

3

(12 ds’ = {6°) — I (84"

=1

where the 64 are a system of linearly independent PrA¥FIaN forms. In such
a frame the volume element v reduces to

(18) 7 = BoABTAB2AGS,
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Throughout the remainder of this paper all tensor components will be consi-
dered with respect to the frame 8% of {12). When A or A is evaluated in this
frame, (13) may be used, together with the standard partition of unity technique
[19], to obtain (1) and (3).

In the BEL-PETROV classification the frame components of R, ,, are
written in a symmetric 6 X 6 matrix R = (R}, where I denotes the row and
J denotes the colum j and the «f and Ap indices are relabelled according to
the scheme

af or Ap: 23 31 12 10 20 30
l or J: 1 2 3 4 bH 6.

It the EINSTEIN equations for the exterior case are satisfied, the matrix can
be written in the form

—Y Z
(14) R=( )
Z'Y

where Y and Z are real 3 X 8 fraceless matrices, i.e. Tr. ¥ == Tr. Z = 0. For
the calculation of the fundamental scalars it is convenient to introduce the
matrix of mixed components R,z = (R,

Ymix - Zmix
(15' Rmix = ( )
Zmix Ymix
and its adjoint components
- Zmix - Ymix
(16) * Ry = R pix= ( .
Ymix Zmix

It is easy to show by using these expressions that

1
(17 A= — & T (Rmix Ruix)

(18) A = z Tr.(Ryix * Ruyx).

Q01 et

According to the BEL-PETROV classification, if R,z =0, one has six ca-
nonical forms for the curvature tensor depending on the degeneracy of the
eigenvalues of Ruix:
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Case 1
(@, 0 O — B 0 0
0 %z 0 0 — 32 0
0 0 o 0 0 —B
(19) - P U O,
B, 0 O oy 0 0
0 8. O 0 g 0
0 0 B 0 0 ot )
wherse
(20) T 4=0 and X §=0.
=1 j=1
Casg II.
[ 2a 0 0 : 28 0 0)
0 —a L0 —8 0
0 0 —a2 {0 0 —38
(1) Roix == | rerveererereesreressesseeseesesoee oo tomoeeceecenreeeee
— 28 0 0} 2 0
0 B8 0 0 —a O
L0 0 B8 0 0 —al
Case II,
[ 2 0 0 i 28 0 0 )
0 c—a T 0 —B+7v9 —o
0 —= —(a+9i0 —a t—§
(22) - S SR S ——"—
— 28 0 0 - 2a 0 0
0 B4 o ‘o c—a —1
L 0 o B—t 0 —= — (% + o))
(Either t or ¢ can be made to vanish by a suitable rotation in the 23 2-plane).
Case I1I,
[ 0 p —v 0 —v —p
p O 0: —v 0 0
—v 0 0: —p 0 0
(23) Ripig == | oo erseeeeceer

L s 0 0 0)

(Either g or v can be made to vanish by a suitable rotation in the 23 2-plane).
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Case 11,
[0 0 0:0 0 (th
0 6 =1 0 —1T ¢
0 —1 —o0 —C T

0 T ci0 6 — 1T

L0 g —3i0 —1 —0g)

(Same indetermination of frame as in Casm II).
Casg 0
{25) Rmix = (0)

which is merely the MiNKOWSKI space-time of special relativity,

In our opinion one of the advantages of this method of classification lies
in the natural manner in which the fundamental scalars appear and play a
basic role in the determination of the BEL-PETROV cases:

THEOREM 1 (%)). ~ If the EINSTEIN equations for the exterior case are sa-
tisfied then the exterior case are satisfied then the space-time V, is of

1) Case ITII. - If and only if A=B=D=E=0
20) Case II. - If and only if (4 + iB)® = 6(D 4 ¢Ef*

30 CAsE. - If and only if neither 1° nor 2° is satisfied.

The BEL cases are related to the PETROV types as used by SacHs, [22],
by the scheme

Brr Cass 1 I, I, III, 111, O
Pergov Ty I D 1I 111 N 0.

Further details about the BrL-PrTROV classification can be found in [4]
and [B].

§ 4. - Topological consequences in General Relativity.

The results of § 2 and § 3 have shown that the BerL-PrrrROoV classifica.
tion is intimately related to two fundamental scalars and that in a compact

(*) This theorem was proven by Ii BeL in his thesis (6).
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orientable space-time for which R,; =0 two of these scalars, 4 and B, occur
in the integral formulae for the EULER-POINCARE characteristic and PoON-
TRIAGIN number. By the first part of Theorem 1, one obtains.

THEOREM 2. - Let V, be a compact orientable space-time in which R,z=0.
If V, is of BEL Casg I1I then x{Vy==0 and p[V.,]=0.

This result can also be immediately seen by using (23) and (24) to verify

that the expressions for A and A given in (17) and (18) vanish identically.
Part of this theorem, p[V,] =0, was given by Avuz [3].

It is well known, [1], that x(V., =0 is the necessary and sufficient con-
dition for the existence of a confinuous non-zero tangent vector field on V,.
In particular, [17], [23], this is equivalent to the existence of a singularity-
free metric tensor field g.«x*) on V,. Although EINSTEIN never formally
required that the physically meaningful solutions of his equations be singu-
larity-free, he often expressed the desirability of such solutions [9]. Thus
part of Theorem 2 states that a compact orientable space-time of BrL Case
II1, in which R,; =0, always admits topologically a singularity-free metric.
The physical interest in this result is related to the fact that space-time of
BeL Case III are frequently [7], [17] identified as representing the most idea-
lized form of gravitational radiation. In fact Ber Case III, exhibits the same
type of algebraic structure

1B, 5, = 0
(26)
1% x Rag, = 0

possessed by the tensor F,; in singular electromagnetic fields |16]. A number
of exact solutions are known for BreL Case IIl: e.g. the plane and plane-
fronted gravitational waves of Case Ill,, [7], [26]; and the Case III, solution
of Kerr and GoLDBERG [13]. Unfortunately it is not known whether any of
these solutions are compact.

The BrL-PETROV classification makes no assumption about the real
scalars appearing in the canonical matrices (19) - (25) other than requiring

3 3
that ¥ a;=0 and Z B;=0 in Case 1. Hence by direct calculation of A and

fo= 1=

A one obtains the following:

THEOREM 3. - Let V, be a compact orientable space-time on which R,z=0.
Then one has

Brn Case 1:

| o

@) XV = f(z B

=1 72l
Ve

E |
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1 3
(28) ﬂﬁ=;J§%Mn
j=1
BeL Case 11:
6
29) (V)= s [ =89
Vs
BeL Case 1l,:
2 r
(30) sVl =—g. | a7
V.

BEeL Case Il:

31) AV =— % [ 1086 + e —as - B .0
7

It is clear that in gemeral x(V, and p[V.] need not vanish for space-
times of BrL Case I and II. Using (27) and .(29) one may select special
space-times of Case I and II for which %(V,)=0:

THEOREM 4. ~ Let V, be a compact orientable space-time in which R,z==0.
Then g,; is singularity-free in each of the following special space-times:

Ber Case I:

32) 1° a;=ef;, e==x1, j=1,2 3
or
(33) 20 The «; are a permutation of the f§,.

Brr Case I1:
(34) a=c¢ef, e==21 « B0

Similarly one can select special space-times for which A = 0:

THEOREM 5. - Let V, be a compact orientable space-time in which E,g==0.
Then p[V,] =0 in each of the following special space-times:

Bxrrn Case I:

3 a 8
(35) D=0 where 2a;= B§=0()

=1 f=1

(3) The integrand may be simplified. See the remark following (22}.
(4} For example aj=0 or 8; =0 for j=1, 2, 3.
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Brer Case I1,:

{36) 1o a=0, =0
or
(37) 20 =0, a0

BzrL Case 11;:

(38) 1 =0, o= —>ba
or
(39) 20 =0, ©=>5Hf.

The proof is immediate by using (28), (30) and (31). It is interesting to
note that (37) is similar to the sitnation for the SCHWARZSCHILD solution
where a = — I‘;—? and B ==0. The special space-times of Theorems 4 and 5 are
not the same except in BrL Case II, for the obvious choices of ¢ or =.

If V, is compact and orientable the PONTRIAGIN number p[V,] is related
to the index of V,, 7(V,), by HirzZEBRUCH’S index theorem, [11],

o) (V) = g0l

By definition this index is equal to the difference between the number of
positive and negative signs in the quadratic form associated to the cohomology
product f*U g% f% g°e HYV,; R). The coefficients of this quadratic form
are written as the intersection matrix a;;, {12], and given by

(41) Jiz, 2) = Qg

where the indices 4, § range from 1, 2,.. up to the second BETTI number

bo(Ve) of Vi, and {251, =1, ..., by(V,) is a basis for Hy(Vy; R). The intersection
matrix is then related fo the cohomology product by the formula

(42) (D, D)= (f* Y 9°) (&)

where D : HUV,; R)— Heeg(Ve; R), g=1,..., 4, is the isomorphism of the
PoiNnoArE duality theorem; f* ¢°e€ H*V,; R), and 2, is the generator of
H{(V,; R). By the familiar properties of the cohomology product, the POINCARE
duality and (46) it follows that the intersection matrix is symmetric and
non-singular.
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In [24] the author prematurely assumed that t(V,) = — 2, i.e. that the
signatures of a;; and g,s were identical. This is not necessarily true. Theorem
2, by (40), asserts that for compact orientable space-times with R, =0 that
t(Vs) = 0 for BeL-PErROV Case III. The general determination for <(V, for
connected four dimensional differentiable manifolds has recently been inve-
stigated by MILNoOR, [18].
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