Topological aspects of the Bel-Petrov classification.

J. D. ZUND (Raleigh, N. C.) (*)

Summary. - The topological aspects of the Bel-Petrov classification of the curvature tensor are examined for compact orientable space-times in which the Einstein equations for the exterior case are satisfied. It is shown that for such space-times of Bel Case III the metric tensor is singularity-free and that the Pontrjagin number identically vanishes. Bel Cases I and II are examined and conditions are given for which the metric is singularity-free and the Pontrjagin number vanishes. Applications to gravitional radiation in general relativity are discussed.

§ 1. – Introduction.

In a previous paper, [24], the author has given an integral formula for the PONTRJAGIN number and index of a compact orientable 4k dimensional differentiable manifold which has a Riemannian metric of arbitrary signature. In this paper that investigation will be continued for the four dimensional differentiable manifolds of general relativity by considering the BEL-PETROV classification. Some topological results of AVEZ [2], [3], CHERN [8], and ZUND [24] are reviewed in § 2. The necessary preliminaries about the BEL-PETROV classification, together with an important lemma are given in § 3. The topological consequences of this classification are presented in § 4.

Throughout this paper, except for minor changes, the notation and terminology of BEL [6], LICHNEROWICZ [15], and [24] are employed.

§ 2. - Topological preliminaires.

Let V_4 be a four dimensional differentiable manifold which is provided with a RIEMANNIAN metric $g_{\alpha\beta}(x^{\lambda})$ of hyperbolic normal signature. For brevity such a V_4 will be called a space-time. If V_4 is compact and orientable it is known, AVEZ [2] and CHERN [8], that the EULER-POINCARÉ characteristic is given by the integral formula

(1)
$$\chi(V_4) = -\frac{1}{32\pi^2} \int_{\boldsymbol{p}_4} \Delta \cdot \boldsymbol{\eta}$$

^(*) Research supported in part by National Science Foundation grant GP-7401 to North Carolina State University.

where

(2)
$$\Delta \stackrel{\text{def}}{=} \eta_{\alpha\beta\gamma\delta}\eta_{\lambda\mu\rho\sigma}R^{\alpha\beta,\,\lambda\mu}R^{\gamma\delta,\,\rho\sigma},$$

 $\eta \stackrel{\text{def}}{=} \sqrt{-\det(g_{\alpha\beta})} dx^0 \Lambda dx^1 \Lambda dx^2 \Lambda dx^3$, and $\eta_{\alpha\beta\gamma\delta}$ is the LEVI-CIVITA permutation symbol. The results of [3] and [24] show that the PONTRJAGIN number of a compact orientable space-time can be expressed by

(3)
$$p[V_4] = -\frac{1}{8\pi^2} \int_{V_4} \widehat{\Delta} \cdot \eta$$

where

(4)
$$\widehat{\Delta} \stackrel{\text{def}}{=} \frac{1}{4} R_{\alpha\beta, \gamma\delta} R^{\alpha\beta}, \ _{\lambda\mu} \eta^{\gamma\delta\lambda\mu}. \ ^{(1)}$$

GÉHÉNIAU and DEBEVER [10] have shown that in V_4 one may construct at most the following six scalars from the curvature tensor and its adjoints:

$$A \stackrel{\text{def}}{=} \frac{1}{8} R^{\alpha\beta}, \ _{\lambda\mu}R^{\lambda\mu}, \ _{\alpha\beta}$$
$$B \stackrel{\text{def}}{=} \frac{1}{8} R^{\alpha\beta}, \ _{\lambda\mu} * R^{\lambda\mu}, \ _{\alpha\beta}$$
$$C \stackrel{\text{def}}{=} \frac{1}{8} R^{\alpha\beta}, \ _{\lambda\mu} * R * {}^{\lambda\mu}, \ _{\alpha\beta}$$
$$D \stackrel{\text{def}}{=} \frac{1}{16} R^{\alpha\beta}, \ _{\lambda\mu}R^{\lambda\mu}, \ _{\rho\sigma}R^{\rho\sigma}, \ _{\alpha\beta}$$
$$E \stackrel{\text{def}}{=} \frac{1}{16} R^{\alpha\beta}, \ _{\lambda\mu}R^{\lambda\mu}, \ _{\rho\sigma} * R^{\rho\sigma}, \ _{\alpha\beta}$$
$$F \stackrel{\text{def}}{=} \frac{1}{16} R^{\alpha\beta}, \ _{\lambda\mu}R^{\lambda\mu}, \ _{\rho\sigma} * R * {}^{\rho\sigma}, \ _{\alpha\beta}$$

where

(5)

(6)
$$* R^{\lambda\mu}, \ _{\alpha\beta} \stackrel{\text{def}}{=} \frac{1}{2} \eta^{\lambda\mu\rho\sigma} R_{\rho\sigma, \ \alpha\beta}$$

⁽⁴⁾ In (24) $\overline{\Delta}$ was denoted by Δ_4 and $p[V_4]$ was written $p^4[V_4]$.

and

(7)
$$*R *_{\alpha\beta,\lambda\mu} = \frac{1}{4} \eta_{\alpha\beta\gamma\delta} \eta_{\lambda\mu\rho\sigma} R^{\gamma\delta,\rho\sigma}.$$

The six scalars of (5) are called the fundamental scalars.

LEMMA. - In V_4 , Δ and $\overline{\Delta}$ are related to the fundamental scalars by

$$(8) \qquad \qquad \Delta = 32C$$

(9)
$$\widehat{\Delta} = 4B,$$

and if V_4 is an EINSTEIN space

$$\widehat{\Delta} = -32A.$$

PROOF. - Equation (8) is an obvious consequence of (2), (5) and (7). Equation (9) was obtained and discussed by the author in [24] for the case when V_4 is an EINSTEIN space, however it is clearly valid without this restriction. Equation (10) is established by noting that the RUSE-LANCZOS identity [21], [14] reduces to

(11)
$$R_{\alpha\beta,\,\lambda\mu} + *R * {}_{\alpha\beta,\,\lambda\mu} = 0$$

if and only if V_4 is an EINSTEIN space.

Thus the first theree fundamental scalars naturally occur as the integrands of the topological invariants $\chi(V_4)$ and $p[V_4]$ for compact orientable space-times. It is clear from (5) and (11) that C = -A and F = -D, hence in an EINSTEIN space there are only four fundamental scalars.

§ 3. – The Bel-Petrov classification.

In this section we present an expose of some of the features of the BEL-PETROV classification as developed by BEL in his thesis [6].

Since $g_{\alpha\beta}(x^{\lambda})$ is of hyperbolic normal signature, at each point $x \in V_4$ the line element can be locally reduced to

(12)
$$ds^{2} = (\theta^{0})^{2} - \sum_{j=1}^{3} (\theta^{j})^{2}$$

where the θ^{α} are a system of linearly independent PFAFFIAN forms. In such a frame the volume element η reduces to

(13)
$$\eta = \theta^{0} \Lambda \theta^{1} \Lambda \theta^{2} \Lambda \theta^{3}.$$

Throughout the remainder of this paper all tensor components will be considered with respect to the frame θ^{α} of (12). When Δ or $\widehat{\Delta}$ is evaluated in this frame, (13) may be used, together with the standard partition of unity technique [19], to obtain (1) and (3).

In the BEL-PETROV classification the frame components of $R_{\alpha\beta,\lambda\mu}$ are written in a symmetric 6×6 matrix $\mathbf{R} = (R_{IJ})$, where I denotes the row and J denotes the colum j and the $\alpha\beta$ and $\lambda\mu$ indices are relabelled according to the scheme

$$\alpha\beta$$
 or $\lambda\mu$: 23 31 12 10 20 30
I or J: 1 2 3 4 5 6,

If the EINSTEIN equations for the exterior case are satisfied, the matrix can be written in the form

(14)
$$\boldsymbol{R} = \begin{pmatrix} -\boldsymbol{Y} & \boldsymbol{Z} \\ \boldsymbol{Z} & \boldsymbol{Y} \end{pmatrix}$$

where Y and Z are real 3×3 traceless matrices, i.e. Tr. Y = Tr. Z = 0. For the calculation of the fundamental scalars it is convenient to introduce the matrix of mixed components $R_{\text{mix}} = (R^{I}_{J})$,

(15)
$$\boldsymbol{R}_{\text{mix}} = \begin{pmatrix} \boldsymbol{Y}_{\text{mix}} & -\boldsymbol{Z}_{\text{mix}} \\ \boldsymbol{Z}_{\text{mix}} & \boldsymbol{Y}_{\text{mix}} \end{pmatrix}$$

and its adjoint components

(16)
$$* \mathbf{R}_{\min} = \mathbf{R} *_{\min} = \begin{pmatrix} -\mathbf{Z}_{\min} & -\mathbf{Y}_{\min} \\ \mathbf{Y}_{\min} & \mathbf{Z}_{\min} \end{pmatrix}.$$

It is easy to show by using these expressions that

(17)
$$\Delta = -\frac{1}{64} \operatorname{Tr.} \left(\boldsymbol{R}_{\min} \boldsymbol{R}_{\min} \right)$$

(18)
$$\widehat{\Delta} = \frac{1}{8} \operatorname{Tr.} (\boldsymbol{R}_{\min} * \boldsymbol{R}_{\min}).$$

According to the BEL-PETROV classification, if $R_{\alpha\beta} = 0$, one has six canonical forms for the curvature tensor depending on the degeneracy of the eigenvalues of R_{mix} :

	CASE I							
	Ā		α 1	0	0	β1	0	ן 0
			$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	$-\beta_2$	0			
(19)		D		0	0	-β8		
		$\kappa_{\rm mix} =$	β1	0	0	α1	0	0
			0	β_2	0	0	α _s	0
			lo	0	βs	0	0	α_{s}

where

(20)
$$\sum_{j=1}^{3} \alpha_j = 0 \quad \text{and} \quad \sum_{j=1}^{3} \beta_j = 0.$$

CASE II_a

	$R_{\rm mix} =$	[2α	0	0	2β	0	ך0
		0	— a	0	0	— β	0
(91)		0	0	— α	0	0	_β
(41)		-2β	0	0	2α	0	0
		0	β	0	0	— α	0
		ιo	0	β	• 0	0	— α

CASE II_b

(22)
$$\boldsymbol{R}_{mix} = \begin{pmatrix} 2\alpha & 0 & 0 & 2\beta & 0 & 0 \\ 0 & \sigma - \alpha & \tau & 0 & -(\beta + \tau) & -\sigma \\ 0 & -\tau & -(\alpha + \sigma) & 0 & -\sigma & \tau -\beta \\ \hline -2\beta & 0 & 0 & 2\alpha & 0 & 0 \\ 0 & \beta + \tau & \sigma & 0 & \sigma - \alpha & -\tau \\ 0 & \sigma & \beta - \tau & 0 & -\tau & -(\alpha + \sigma) \end{pmatrix}$$

(Either τ or σ can be made to vanish by a suitable rotation in the 23 2-plane). CASE III_a

(23)
$$\boldsymbol{R}_{\text{mix}} = \begin{pmatrix} 0 & \mu & -\nu & 0 & -\nu & -\mu \\ \mu & 0 & 0 & -\nu & 0 & 0 \\ -\nu & 0 & 0 & -\mu & 0 & 0 \\ 0 & \nu & \mu & 0 & \mu & -\nu \\ \nu & 0 & 0 & \mu & 0 & 0 \\ \mu & 0 & 0 & -\nu & 0 & 0 \end{pmatrix}$$

(Either μ or ν can be made to vanish by a suitable rotation in the 23 2-plane).

Annali di Matematica

CASE III_b

ſO	0	0	0	0	ן 0
0	σ	τ	0	$-\tau$	— o
0	τ	σ		— σ	τ
0	0	0	0	0	0
0	τ	σ	0	σ	- τ
$\lfloor 0 \rfloor$	σ	— τ	0	— τ	— σ J

(Same indetermination of frame as in CASE II_b).

CASE 0

$$\boldsymbol{R}_{\min} = (0)$$

which is merely the MINKOWSKI space-time of special relativity.

In our opinion one of the advantages of this method of classification lies in the natural manner in which the fundamental scalars appear and play a basic role in the determination of the BEL-PETROV cases:

THEOREM 1 (²). - If the EINSTEIN equations for the exterior case are satisfied then the exterior case are satisfied then the space-time V_4 is of

1°) CASE III. - If and only if A = B = D = E = 0

2°) CASE II. - If and only if $(A + iB)^3 = 6(D + iE)^2$

3°) CASE. - If and only if neither 1° nor 2° is satisfied.

The BEL cases are related to the PETROV types as used by SACHS, [22], by the scheme

BEL CASE I II_a II_b III_a III_b 0 PETROV TYPE I D II III N 0.

Further details about the BEL-PETROV classification can be found in [4] and [5].

§ 4. – Topological consequences in General Relativity.

The results of § 2 and § 3 have shown that the BEL-PETROV classifica. tion is intimately related to two fundamental scalars and that in a compact

⁽²⁾ This theorem was proven by L BEL in his thesis (6).

orientable space-time for which $R_{\alpha\beta} = 0$ two of these scalars, A and B, occur in the integral formulae for the EULER-POINCARÉ characteristic and PON-TRJAGIN number. By the first part of Theorem 1, one obtains.

THEOREM 2. - Let V_4 be a compact orientable space-time in which $R_{\alpha\beta}=0$. If V_4 is of BEL CASE III then $\chi(V_4)=0$ and $p[V_4]=0$.

This result can also be immediately seen by using (23) and (24) to verify that the expressions for Δ and $\widehat{\Delta}$ given in (17) and (18) vanish identically. Part of this theorem, $p[V_4] = 0$, was given by AVEZ [3].

It is well known, [1], that $\chi(V_4) = 0$ is the necessary and sufficient condition for the existence of a continuous non-zero tangent vector field on V_4 . In particular, [17], [23], this is equivalent to the existence of a singularityfree metric tensor field $g_{\alpha\beta}(x^{\lambda})$ on V_4 . Although EINSTEIN never formally required that the physically meaningful solutions of his equations be singularity-free, he often expressed the desirability of such solutions [9]. Thus part of Theorem 2 states that a compact orientable space-time of BEL Case III, in which $R_{\alpha\beta} = 0$, always admits topologically a singularity-free metric. The physical interest in this result is related to the fact that space-time of BEL Case III are frequently [7], [17] identified as representing the most idealized form of gravitational radiation. In fact BEL Case III_b exhibits the same type of algebraic structure

(26)

$$l^{\alpha} * R_{\alpha\beta, \lambda\mu} = 0$$

 $l^{\alpha}R_{\alpha\beta,\lambda\mu}=0$

possessed by the tensor $F_{\alpha\beta}$ in singular electromagnetic fields [16]. A number of exact solutions are known for BEL Case III: e.g. the plane and planefronted gravitational waves of Case III_b, [7], [26]; and the Case III_a solution of KERR and GOLDBERG [13]. Unfortunately it is not known whether any of these solutions are compact.

The BEL-PETROV classification makes no assumption about the real scalars appearing in the canonical matrices (19) - (25) other than requiring that $\sum_{j=1}^{3} \alpha_j = 0$ and $\sum_{j=1}^{3} \beta_j = 0$ in Case I. Hence by direct calculation of Δ and $\widehat{\Delta}$ one obtains the following:

THEOREM 3. - Let V_4 be a compact orientable space-time on which $R_{\alpha\beta} = 0$. Then one has

BEL Case I:

(27)
$$\chi(V_4) = \frac{1}{\pi^2} \int_{V_4} \left(\sum_{j=1}^3 \alpha_j^2 - \sum_{j=1}^3 \beta_j^2 \right) \cdot \eta$$

(28)
$$p[V_4] = \frac{1}{\pi^2} \int_{V_4} \sum_{j=1}^s \alpha_j \beta_j \cdot \eta$$

BEL Case II:

$$\chi(V_4) = \frac{6}{\pi^2} \int_{V_4} (\alpha^2 - \beta^2) \cdot \eta$$

BEL Case II_a:

(30)

$$p[V_4] = -\frac{2}{3\pi^2} \int\limits_{\mathbf{V}_4} \alpha\beta \cdot \eta$$

BEL Case II_b:

(31)
$$p[V_4] = -\frac{1}{\pi^2} \int_{V_4} \{5\alpha\beta + (\tau\sigma - \alpha\tau + \sigma\beta)\} \cdot \eta_{\cdot}(^{8})$$

It is clear that in general $\chi(V_4)$ and $p[V_4]$ need not vanish for spacetimes of BEL Case I and II. Using (27) and (29) one may select special space-times of Case I and II for which $\chi(V_4) = 0$:

THEOREM 4. – Let V_4 be a compact orientable space-time in which $R_{\alpha\beta}=0$. Then $g_{\alpha\beta}$ is singularity-free in each of the following special space-times:

BEL Case I:

(32)
$$1^{\circ} \quad \alpha_j = \epsilon \beta_j, \quad \epsilon = \pm 1, \quad j = 1, 2, 3$$

 \mathbf{or}

(33)
$$2^{\circ}$$
 The α_j are a permutation of the β_j .

BEL Case II:

(34)
$$\alpha = \epsilon\beta, \ \epsilon = \pm 1, \ \alpha, \ \beta \neq 0.$$

Similarly one can select special space-times for which $\widehat{\Delta} = 0$:

THEOREM 5. – Let V_4 be a compact orientable space-time in which $R_{\alpha\beta}=0$. Then $p[V_4]=0$ in each of the following special space-times:

BEL Case I:

(35)
$$\sum_{j=1}^{3} \alpha_{j}\beta_{j} = 0 \quad \text{where} \quad \sum_{j=1}^{\alpha} \alpha_{j} = \sum_{j=1}^{3} \beta_{j} = 0 \ (4)$$

⁽³⁾ The integrand may be simplified. See the remark following (22).

⁽⁴⁾ For example $\alpha_j = 0$ or $\beta_j = 0$ for j = 1, 2, 3.

BEL Case II_a:

(36)	1° $\alpha = 0, \beta \neq 0$
or	
(37)	2° $\beta = 0$, $\alpha \neq 0$
BEL Case II _b :	
(38)	1° $\tau = 0$, $\sigma = -5\alpha$
or	
(39)	$2^{\circ} \sigma = 0, \tau = 5\beta.$

The proof is immediate by using (28), (30) and (31). It is interesting to note that (37) is similar to the situation for the SCHWARZŞCHILD solution where $\alpha = -\frac{km}{r^3}$ and $\beta = 0$. The special space-times of Theorems 4 and 5 are not the same except in BEL Case II_b for the obvious choices of σ or τ .

If V_4 is compact and orientable the PONTRJAGIN number $p[V_4]$ is related to the index of V_4 , $\tau(V_4)$, by HIRZEBRUCH'S index theorem, [11],

(40)
$$\tau(V_4) = \frac{1}{3} p[V_4].$$

By definition this index is equal to the difference between the number of positive and negative signs in the quadratic form associated to the cohomology product $f^2 \cup g^2$, f^2 , $g^2 \in H^2(V_4; \mathbb{R})$. The coefficients of this quadratic form are written as the intersection matrix a_{ij} , [12], and given by

(41)
$$J(z_2^i, z_2^j) = a_{ij}$$

where the indices *i*, *j* range from 1, 2, ... up to the second BETTI number $b_2(V_4)$ of V_4 , and $\{z_2^i\}, i = 1, ..., b_2(V_4)$ is a basis for $H_2(V_4; \mathbb{R})$. The intersection matrix is then related to the cohomology product by the formula

$$(42) J(\mathfrak{D}f^2, \ \mathfrak{D}g^2) = (f^2 \cup g^2)(z_4)$$

where $\mathfrak{D}: H^q(V_4; \mathbb{R}) \longrightarrow H_{4-q}(V_4; \mathbb{R}), q = 1, ..., 4$, is the isomorphism of the POINCARÉ duality theorem; f^2 , $g^2 \in H^2(V_4; \mathbb{R})$, and z_4 is the generator of $H_4(V_4; \mathbb{R})$. By the familiar properties of the cohomology product, the POINCARÉ duality and (46) it follows that the intersection matrix is symmetric and non-singular.

In [24] the author prematurely assumed that $\tau(V_4) = -2$, i.e. that the signatures of a_{ij} and $g_{\alpha\beta}$ were identical. This is not necessarily true. Theorem 2, by (40), asserts that for compact orientable space-times with $R_{\alpha\beta} = 0$ that $\tau(V_4) = 0$ for BEL-PETROV Case III. The general determination for $\tau(V_4)$ for connected four dimensional differentiable manifolds has recently been investigated by MILNOR, [18].

BIBLIOGRAPHY

- (1) P. ALEXANDROFF-H. HOPF. Topologie, Springer-Verlag (1935), Chelsea reprint (1966).
- (2) A. AVEZ, Formule de Gauss-Bonnet-Chern en métrique de signature quelconque, C. R. Acad. Sci. 255 (1962), pp. 2049-2051.
- (3) —, Index des variétés de dimension 4, C. R. Acad. Sci. 259 (1964), pp. 1934-1937.
- (4) L. BEL, Étude algébrique d'un certain type de tenseurs de courbure, Le cas 3 de Petrov, C. R. Acad. Sci. 247 (1958), pp. 2096-2099.
- (5) —, Quelques remarques sur la classification de Petrov, Étude du cas 2, C. R. Acad. Sci. 248 (1959), pp 2561-2563.
- (6) –, La radiation gravitationelle, Thèse (1960) Paris.
- (7) H. BONDI-F. A. E. PIRANI-I. ROBINSON, Gravitational waves in general relativity III, Exact plane waves, Proc. Roy. Soc. (London) A 251 (1959), pp. 519-533.
- (8) S. S. CHERN, Pseudo-Riemannian geometry and the Gauss-Bonnet formula, An. Acad. Bras. de Ciências 35 (1963), pp. 17-26.
- (9) A. EINSTEIN, The meaning of relativity, 5th edition, Princeton Univ Press (1955).
- (10) J. GÉHÉNIAU-R. DEBEVER, Les invariants de l'espace de Riemann à quatre dimensions, Bull. Acad. Roy. de Belg. Cl. Sc. 42 (1956), pp. 114-123.
- (11) F. HIRZEBRUCH, Topological methods in algebraic geometry, Springer-Verlag (1966).
- (12) W. V. D. HODGE, The theory and applications of harmonic integrals, 2nd edition, Cambridge Univ. Press (1959).
- (13) R. P. KERR-J. N. GOLDBERG, Einstein spaces with four-parameter holonomy groups, Jour. Math. Phys 2 (1961) pp. 332-335.
- (14) C. LANCZOS, A remarkable property of the Riemann tensor in four dimension, Ann. Math. 39 (1938), pp. 842-850.
- (15) A. LICHNEROWICZ, Théorie globale des connexions et des groupes d'holonomie, Cremonese (1962).
- (16) —, Ondes et radiations électromagnétiques et gravitationelles en relativité générale, Ann. di Mat. Pura e. App. 50 (1960), pp. 1-95.
- (17) L. MARKUS, Line element fields and Lorentz structures on differentiable manifolds, Ann. Math. 62 (1955), pp. 411-417.
- (18) J. W. MILNOR, On simply connected 4-manifolds, Symposium International de Topologia Algebraica, La Universidad Nacional Autónoma de Mexico and UNESCO, (1958) pp. 122-128.
- (19) G. DE RHAM, Variétés différentiables, formes courants, formes harmoniques, ASI 1222, Hermann (1960).

- (20) I. ROBINSON-A. TRAUTMAN, Some spherical gravitational waves in general relativity, Proc. Roy. Soc (London) A 265 (1961) pp. 463-473.
- (21) H.S. RUSE, On the line geometry of the Riemann tensor, Proc. Roy. Soc. (Edinburgh) 62 (1944), pp. 64-73.
- (22) R. K. SACHS, Gravitational waves in general relativity VI, the outgoing radiation condition, Proc. Roy. Soc. (London) A 264 (1961), pp. 309-338.
- (23) N.E. STEENROD, The topology of fibre bundles, Princeton Univ. Press. (1951).
- (24) J.D. ZUND, Pontrjagin numbers and pseudo-Riemannian geometry, Ann. di Mat. Pura e App. 72 (1966), pp. 319-324.