Cauchy's problem for generalized differential equations.

R.G. LINTZ (Ontario, Canada)

Summary. We give here the discussion of Cauchy's problem of existence of solution of differential equation for the case of generalized differential equation and initial conditions.

1. In my paper [1] I discuss the foundations of a generalized calculus in abstract spaces and here I solve a question raised there about the Cauchy problem for g-differential equations. I start from the assumption that the reader is familiar with the main concepts outlined in my paper refered to above. More precisely, I intend to study here the equation

$$Df = 0$$

and «initial conditions» for it. So I begin by discussing some definitions and concepts needed in what follows. The empty set is indicated by \emptyset and unless stated any set considered is supposed to be non-empty.

2. Given a special g-function f, I want to give a meaning to the statement f = 0, i.e., «f is equal to zero».

DEFINITION I. – A special g-function

$$f: (X, V) \longrightarrow [R, V_R)$$

is equal to zero, written f = 0, if for any number $\varepsilon > 0$ there is a covering $\sigma \varepsilon V$ such that

$$\forall \tau \in V, \text{ and } \sigma < \tau, \quad A \in \tau, \quad \Rightarrow f_{\tau}(A) \subset [0, \epsilon)$$

where $[0, \varepsilon)$ is the set of all real numbers x, with $0 \le x < \varepsilon$.

A special g-function such as in Definition I above will be usually called a zero g-function. In particular a special g-function which is zero in any open set of any covering of V is a zero g-function. Note also the similarity of this concept with that of differential given in (1; III, B, 6). Their difference lies in the fact that a zero-function is something approaching zero uniformly while the differential only does that locally.

DEFINITION II. – Let (X, \mathcal{F}) be a Gauss space and M a sub-set of X and given $\alpha \in \mathcal{F}$ let us call α_M the collection of all sets of α which intersect M. We say that \mathcal{F} is of finite type, relative to M, if given any two coverings α , $\beta \in \mathcal{F}, \alpha < \beta$, there are two integers $k(\alpha, \beta)$ and $\bar{k}(\alpha, \beta)$, such that no set of α_M intersects less than $k(\alpha, \beta)$ sets of β_M and no set of α_M intersects more than $\bar{k}(\alpha, \beta)$ sets of β_M (¹).

DEFINITION III. - A Gauss transformation $G: \mathcal{F} \to \mathcal{F}'$ for the Gauss spaces (X, \mathcal{F}) and (Y, \mathcal{F}') , where \mathcal{F} and $G(\mathcal{F}) \subset \mathcal{F}'$ are of finite type relative to $M \subset X$ and $M' \subset Y$ respectively, is called non-increasing (non-decreasing) if

$$\forall \alpha, \quad \beta \in \mathfrak{F}, \quad \alpha < \beta \Longrightarrow k(\alpha, \beta) \ge k[G(\alpha), G(\beta)]$$
$$(\bar{k}(\alpha, \beta) \le k[G(\alpha), G(\beta)]).$$

3. As it is well known in classical analysis, the Cauchy problem for ordinary differential equation of first order is the following: given the equation

$$(1) y' = f(x, y)$$

where f(x, y) is defined in some open set L of the plane, and the point $(x_0, y_0) \in L$, to find a function y(x) such that

$$\begin{cases} y(x_0) = y_0 \\ y'(x) = f[x, y(x)] \end{cases}$$

for all x in a certain neighborhood $V(x_0)$ of x_0 . If such a function y(x) exists it is called a *solution* of (1) satisfying the *initial conditions* $y(x_0) = y_0$. Conditions for the existence and unicity of solutions are well known and I do not speak about that here. What I have in mind in recalling these classical concepts, is how they can be led to the domain of generalized differential equations in the line of non-determinist mathematics? To be more precise given the g-differential equation

$$Df = \Phi \circ f$$

⁽⁴⁾ In this definition, intersection means that they have common interior points.

where Φ is a given *g*-field

$$\Phi: (Y, V') \longrightarrow [R, V_{\Phi}],$$

what is an analogous of Cauchy's problem for the class of continuous g-functions f

$$f: (X, V) \longrightarrow (Y, V'); (r: V \longrightarrow V')$$

for given families of coverings V and V'?

We have to clarify two things: the meaning of solution » of (2) and the meaning of «initial conditions» in non-determinist terminology.

Let us begin with the concept of solution of (2). Suppose M is some given sub-set of X. We say that f is a solution of (2) in M if

$$\forall \sigma \in V, \quad A \in \sigma_M \Longrightarrow D_{\sigma} f(A) = \Phi_{\sigma'}[f_{\sigma}(A)], \quad (\sigma' = r(\sigma)).$$

Let us give now a set $M \subset X$ and a set $M' \subset Y$. We say that a solution of (2) satisfies initial conditions relative to the pair (M, M') if

$$\forall \sigma \in V; \quad \forall A \in \sigma_M \Rightarrow A' = f_{\sigma}(A) \subset M'.$$

Now, the Cauchy problem for g-differential equations can be easily stated, namely, given the g-differential equation

 $Df = \Phi \circ f$

for a given g-field Φ and given the pair (M, M') as before, to find a continuous g-function

$$f: (X, V) \longrightarrow (Y, V')$$

which is a solution of equation (2), satisfying initial conditions relative to the pair (M, M').

In this general form I do not know how to solve this problem. So I study the particular case where the g-field Φ is zero, that is

$$Df = 0$$
,

and the pair (M, M') is such that M is arbitrary and M' is open. We make this more precise in the existence theorem which follows. I hope that the method used in this particular case can be improved in such a way that we can solve the general case also.

4. EXISTENCE THEOREM. - Suppose (X, \mathcal{F}) and (Y, \mathcal{F}') are Gauss spaces and (M, M') is a pair with $M \subset X$ arbitrary and $M' \subset Y$ open. Let $G: \mathcal{F} \to \mathcal{F}'$ be a non-increasing Gauss transformation with \mathcal{F} and $G(\mathcal{F}) \subset \mathcal{F}'$ of finite type relatively to A and M' respectively (¹). Let V and V' be two families of open coverings of X and Y respectively and suppose the following conditions are satisfied:

a) V is a sequence $\{\sigma_i\}$, (i = 1, 2, ...) of open coverings such that $i < j \Rightarrow \sigma_i < \sigma_j$ and any $\sigma_i \in V$ has only a finite number of sets intersecting M;

b) V' is cofinal in the set of all coverings of Y;

c) given any open set $H \subset X$, with $H \cap M \neq \emptyset$ and any integer *n*, there is a covering $\alpha \in \mathcal{F}$ having more than *n* sets intersecting $H \cap M$.

Then given the g-differential equation

$$Df = 0$$

there is a continuous g-function f

$$f: (X, V) \longrightarrow (Y, V')$$

which is a solution of (3) in M and satisfies initial conditions relative to the pair (M, M').

PROOF: Take $\sigma_1 \in V$ and consider any $A_1 \in \sigma_1$ with $A_1 \cap M \neq \emptyset$. Take $\alpha_1 \in \mathfrak{F}$ arbitrary and $F'_1 \in \alpha'_1 = G(\alpha_1)$ such that $F'_1 \cap M'$ has a non-empty interior. Take now a $\sigma' \in V'$ such that there is $A' \in \sigma'$ with $A' \subset F'_1 \cap M'$, which is possible because V' is cofinal in the set of all open coverings of Y. Note this particular σ' by σ'_1 and A' by A'_1 . We have

$$n(A'_1, \sigma'_1, \alpha'_1) = 1$$
 and $n(A_1, \sigma_1, \alpha_1) \ge 1$

where, according to ((1); II, 4), $n(A, \sigma, \alpha)$ in general means the number of sets of $\alpha \varepsilon \mathcal{F}$ intersecting $A \varepsilon \sigma \varepsilon V$. Now to any other $A \varepsilon \sigma_1$ we associate the same A'_1 and also for any $A \varepsilon \sigma_1$ we have $n(A, \sigma_1, \alpha_1) \ge 1$. Let us study the limit

$$\frac{1}{\alpha_1 < \alpha_1; \alpha_2; \alpha_2; \alpha_3; \alpha_3; \alpha_3} \frac{n(A'_1, \sigma'_1, \alpha')}{n(A_1, \sigma_1, \alpha)}$$

where $\alpha' = G(\alpha)$. As G is non-increasing we have for any two α , $\beta \in \mathcal{F}$ with $\beta < \alpha$ and $\alpha' = G(\alpha)$, $\beta' = G(\beta)$,

$$\frac{n(A'_{1}, \sigma'_{1}, \beta')}{n(A_{1}, \sigma_{1}, \beta)} \ge \frac{k(\beta', \alpha')n(A'_{1}, \sigma'_{1}, \beta')}{k(\beta, \alpha)n(A_{1}, \sigma_{1}, \beta)} \ge \frac{n(A'_{1}, \sigma'_{1}, \alpha')}{n(A_{1}, \sigma_{1}, \alpha)}.$$

(1) A is any arbitrary set of $\sigma \in V$, below, witt $A \cap M \neq \emptyset$.

Therefore

$$\overline{\lim_{\alpha_1 < \alpha; \ \alpha \in \mathfrak{F}}} \frac{n(A'_1, \ \sigma'_1, \ \alpha')}{n(A_1, \ \sigma_1, \ \alpha)} \leq 1.$$

Now let us define

$$f_{\sigma_1}: \sigma_1 \longrightarrow \sigma'_1$$

by

$$f_{\sigma_1}(A) = A'_1$$
, for any $A \varepsilon \sigma_1$

and put also $\sigma'_1 = r(\sigma_1)$.

We intend to define

$$r: V \rightarrow V'$$

and

$$f_{\sigma_1}:\sigma_i \to \sigma'_i = r(\sigma_i)$$

for the whole family V. Therefore let us suppose that we have already defined f_{σ_i} and r and let us see how we define $f_{\sigma_{i+1}}$ and r for i + 1.

Take any $A_{i+1} \varepsilon \sigma_{i+1}$ with $A_{i+1} \cap M \neq \emptyset$ as before, and $\alpha_{i+1} \varepsilon \mathcal{F}$ such that

$$n(A, \sigma_{i+1}, \alpha_{i+1}) \ge i+1$$

for any $A \varepsilon \sigma_{i+1}$, intersecting M, using conditions a) and c) of the theorem. Select $F'_{i+1} \varepsilon \alpha'_{i+1} = G(\alpha_{i+1})$ such that $F'_{i+1} \cap A'_i$ has a nonempty interior and take a $\sigma' \varepsilon V'$ such that there is $A' \varepsilon \sigma'$ with $A' \subset F'_{i+1} \cap A'_i$ and note this σ' by σ'_{i+1} and A' by A'_{i+1} . Now to each $A \varepsilon \sigma_{i+1}$ put

and

$$\sigma'_{i+1} = r(\sigma_{i+1}).$$

 $f_{\sigma_{i+1}}(A) = A'_{i+1}$

In this case we have

$$\frac{n(A'_{i+1}, \sigma'_{i+1}, \alpha'_{i+1})}{n(A_{i+1}, \sigma_{i+1}, \alpha_{i+1})} \leq \frac{1}{i+1}.$$

Now, reasoning analogously as we did for σ_1 we conclude that:

$$\lim_{\alpha_{i+1} < \alpha; \ \alpha \in \mathfrak{F}} \frac{n(A'_{i+1}, \ \sigma'_{i+1}, \ \alpha')}{n(A_{i+1}, \ \sigma_{i+1}, \ \alpha)} \leq \frac{1}{i+1}$$

In conclusion, we have defined by induction, the following:

1) To each $\sigma_i \varepsilon V$ there corresponds $a \sigma'_i \varepsilon V'$ and therefore a function

 $r: V \longrightarrow V';$

Annali di Matematica

2) Given any $\sigma_i \varepsilon V$ and any $A \varepsilon \sigma_i$ we associated with it the set $A'_i \varepsilon \sigma'_i$ as defined above and so we have a function:

$$f_{\sigma_i}:\sigma_i\to\sigma'_i=r(\sigma_i)$$

given by

$$f_{\sigma_i}(A) = A'_i.$$

3) With the notation of ((1); II, 4) for g-derivatives we have

$$D_{\sigma_i}f(A) = (a_i, b_i), \quad (i = 1, 2, 3, ...),$$

where (a_i, b_i) is an interval in the real numbers with

$$0 \le a_i \le b_i \le \frac{1}{i}$$

for any $A \varepsilon \sigma_i$, with $A \cap M \neq \emptyset$.

In this way we have defined a g-function

 $f: (X, V) \rightarrow (Y, V')$

and also its g-derivative

$$Df: (X, V) \longrightarrow [R, V_R],$$

where V_R is defined as usual by all collections of sets (a_i, b_i) for each integer $i \ge 1$.

Now it is easy to see that f satisfies all our requirements. Indeed:

1) f is continuous; this is because for any two σ_i , $\sigma_j \in V$ with $\sigma_i < \sigma_j$, by construction we have

$$\forall A \varepsilon \sigma_i, \quad B \varepsilon \sigma_j, \quad B \subset A \Longrightarrow f_{\sigma_j}(B) \subset f_{\sigma_i}(A);$$

2) f is a solution of (3) in M, because given any $\varepsilon > 0$ we can select an integer i such that $1/i < \varepsilon$ and so by construction

$$D_{\sigma_j}f(A) \subset [0, 1/i] \subset [0, \varepsilon]$$

for any $A\varepsilon\sigma_j$, with $\sigma_i > \sigma_j$ and $A \cap M \neq \emptyset$;

3) f satisfies initial conditions relative to the pair (M, M'), because $\forall A \varepsilon \sigma_i$ and $A \cap M \neq \emptyset \Longrightarrow A' = f_{\sigma_i}(A) \subset M'$, for any $\sigma_i \varepsilon V$.

The existence theorem is therefore completely proved.

5. I finish this paper with some remarks and outlines of possible further developments. I begin by discussing some typical cases where the existence theorem would have a meaning.

a) Let X and Y be [the real line. Take as F and F' the canonical standard families ((1); II, 7) and as $G: \mathcal{F} \to \mathcal{F}'$ the canonical Gauss transformation; namely, the one which associates to each $\alpha \varepsilon \mathcal{F}$ that $\alpha' \varepsilon \mathcal{F}'$ whose sets have the same length as those of α . Take as M any bounded subset of X and as M' any open set of Y. It is easily seen that \mathcal{F} and \mathcal{F}' are of finite type relative to M and M' respectively and that G is non-increasing. Actually for any α , $\beta \varepsilon \mathcal{F}$, with $\alpha < \beta$ we have $k(\alpha, \beta) = \overline{k}(\alpha, \beta)$ and G is also non-decreasing, so $k(\alpha, \beta) = k[G(\alpha), G(\beta)] = \overline{k}[G(\alpha), G(\beta)]$. Take as V the family of open coverings σ_i , where σ_i is of order 2 and is made up of open sets of length $1/2^i$ and such that i < j implies $\sigma_i < \sigma_j$. Take as V' any cofinal family of open coverings in Y. Now it is easily seen that all conditions of the existence theorem are satisfied and therefore the equation

Df = 0

has a solution in M satisfying initial conditions relative to the pair (M, M').

b) Let X and Y be metric spaces. Suppose M is any compact sub-set of X and M', any open sub-set of Y with compact closure. As it is known ((1); 1I, 3, th. 1) X and Y can be supplied with a structure of Gauss space, indicated by (X, \mathcal{F}) and (Y, \mathcal{F}) . Now given any $\alpha \in \mathcal{F}$, there is only a finite number of sets of α intersecting M. Indeed, to each $x \in M$ associate a neighborhood V(x) intersecting only a finite number of elements of α ((1); II, 2, Def. I). As we can cover M with only a finite number of V(x) our assertion is proved. So, with our previous notations α_M is finite and if we take any two α , $\beta \in \mathfrak{F}$, with $\alpha < \beta$, then, as α_M and β_M are both finite, the numbers $k(\alpha, \beta)$ and $k(\alpha, \beta)$ are well defined and F is of finite type relative to M. Analogously \mathcal{F}' is of finite type relative to M'. Take now a finite number of balls of radius 1 covering M and consider (also the set X - M. All these sets together make up a covering σ_1 of X. Look now to the Lebesgue number λ_1 of σ_1 relative to M and consider the covering σ_2 of X made up of a finite number of balls of radius less than λ_1 covering M and the set X - M. So by induction we define a sequence V of coverings having the conditions given by the existence theorem. Take V' any cofinal covering of Y and $G: \mathcal{F} \longrightarrow \mathcal{F}'$ any non-increasing Gauss transformation. Finally we have to suppose that condition c) of the existence theorem is true, because, obviously this is not always the case, as we see when X is a finite space. Again the g-differential equation (3) will have a solution satisfying initial conditions relative to the pair (M, M').

Going now to a more general situation, if we know how to handle the equation

$$Df = g$$

where g is a given special g-function, we know also how to handle the case

$$D^n f = g \qquad (n > 1).$$

Indeed, by definition of g-derivatives of order n((1); II, 7, def. IV) we put

$$D^{n-1}f = g_{n-1}, \qquad D^{n-2}f = g_{n-2} \dots Df = g_1.$$

Now, for initial conditions we must give the pairs $(M_1, M_1') \dots (M_{n-1}, M'_{n-1})$, where $M_1, M_2 \dots M_{n-1}$ are subsets of X and $M_1', M_2' \dots M'_{n-1}$ are open subsets of the non-negative real numbers, and also the pair (M, M') is such that Mis a subset of X, and M' an open subset of Y. After that Cauchy's problem will be to find a solution of $D^n f = g$ in M satisfying the initial conditions

- a) Ass and $A \cap M \neq \emptyset = > A' = f_{\sigma}(A) \subset M'$.
- b) As σ and $A \cap M_i \neq \emptyset = > A'_i = D^i_{\sigma} f(A) \subset M'_i \ (i = 1, 2, ..., n-1).$

An important case is the equation

$$D^2 f = \Phi$$

where Φ is a uniform *g*-field, that is,

$$\Phi: (Y, V') \longrightarrow [R, V_{\Phi}]$$

such that, for every $\sigma' \in V'$ the value $\Phi(A')$ is always the same for all $A' \in \sigma'$. If we give initial conditions (M, M') for f and (M_1, M_1') for Df, this means physically, that a particle entering the g-field $\Phi((i); III, D, 2, \text{ def. VI})$ with velocity Df, known relative to the pair (M_1, M_1') and with a position f, known relative to the pair (M, M'), must follow some g-path ((1); III, B, 2, def. V) satisying equation (4) and initial conditions relative to the pairs (M, M') and (M_1, M_1') .

It should be extemely interesting to study the general case

$$D^2 f = \Phi \circ f$$

for a given g-field due to its physical meaning ((1); III, B), but it looks very difficult for me.

Naturally at this point one could ask something about *unicity* of solutions. It is not easy to introduce such a concept in non-determinist mathematics, but maybe something can be done, up to some equivalence relation; for instance, do not distinguish two g-functions if they generate the same usual continuous function in compact metric spaces. This leads us to the general question: given a differential equation in the usual sense, is it possible to find a g-differential equation whose solutions generate solutions of the classical equation? This should be a very interesting problem to think about.

Finally we can ask if it is possible to introduce some kind of «integration» process for g-functions in such a way that by this process we could define some g-function g «integral» of some g-function f satisfying Dg = f?

This should be a «generalized fundamental theorem of calculus» and also very interesting for further research.

REFERENCES

[1] R. G. LINTZ, Introduction to General Analysis, Mimeograph notes, Department of Mathematics, McMaster University, Hamilton, Ontario, Canada. To be published elsewhere.