Cauchy's problem for generalized differential equations.

R. G. Lintz (Ontario, Canada)

Abstract

Summary, - We give here the discussion of Cauchy's problem of existence of solution of differential equation for the case of generalized differential equation and initial conditions.

1. In my paper [1] I discuss the foundations of a generalized calculus in abstract spaces and here I solve a question raised there about the Cauchy problem for g-differential equations. I start from the assumption that the reader is familiar with the main concepts outlined in my paper refered to above. More precisely, I intend to study here the equation

$$
D f=0
$$

and «initial conditions» for it. So I begin by discassing some definitions and concepts needed in what follows. The empty set is indicated by \varnothing and unless stated any set considered is supposed to be non-empty.
2. Given a special g-function f, I want to give a meaning to the statement $f=0$, i.e., « f is equal to zero».

Defintition I. - A special g-function

$$
f:(X, V) \rightarrow\left[R, V_{R}\right)
$$

is equal to zero, written $f=0$, if for any number $\varepsilon>0$ there is a covering $\sigma \varepsilon V$ such that

$$
\forall \tau \varepsilon V, \quad \text { and } \quad \sigma<\tau, \quad A \varepsilon \tau, \quad \Rightarrow f_{\tau}(A) \subset[0, \varepsilon)
$$

where $[0, \varepsilon)$ is the set of all real numbers x, with $0 \leq x<\varepsilon$.
A special g-function such as in Definition I above will be usually called a zero g-function. In particular a special g-function which is zero in any open set of any covering of V is a zero g-function. Note also the similarity of this concept with that of differential given in (1; III, B, 6). Their difference lies in the fact that a zero-function is something approaching zero
uniformly while the differential only does that locally.
Definimion II. - Let (X, \mathscr{F}) be a Gauss space and M a sub-set of X and given $\alpha \varepsilon \mathscr{F}$ let us call α_{M} the collection of all sets of α which intersect M. We say that \mathcal{F} is of finite type, relative to M, if given any two coverings α, $\beta \varepsilon \mathscr{F}, \alpha<\beta$, there are two integers $k(\alpha, \beta)$ and $\bar{k}(\alpha, \beta)$, such that no set of α_{M} intersects less than $k(\alpha, \beta)$ sets of β_{M} and no set of α_{M} intersects more than $\bar{k}(\alpha, \beta)$ sets of $\beta_{M}\left(^{1}\right)$.

Definition III. - A Gauss transformation $G: \mathscr{F} \longrightarrow \mathscr{F}^{r}$ for the Gauss spaces (X, \mathfrak{F}) and $\left(Y, \mathscr{F}^{\prime}\right)$, where \mathfrak{F} and $G(\mathscr{F}) \subset \mathfrak{F}$ are of finite type relative to $M \subset X$ and $M^{\prime} \subset Y$ respectively, is called non-increasing (non-decreasing) if

$$
\begin{gathered}
\forall \alpha, \quad \beta \varepsilon \mathscr{F}, \quad \alpha<\beta \Rightarrow k(\alpha, \beta) \geq \bar{k}[G(\alpha), G(\beta)] \\
(\bar{k}(\alpha, \beta) \leq k[G(\alpha), G(\beta)]) .
\end{gathered}
$$

3. As it is well known in classical analysis, the Cauchy problem for ordinary differential equation of first order is the following: given the equation

$$
\begin{equation*}
y^{\prime}=f(x, y) \tag{1}
\end{equation*}
$$

where $f(x, y)$ is defined in some open set L of the plane, and the point $\left(x_{0}, y_{0}\right) \varepsilon L$, to find a function $y(x)$ such that

$$
\left\{\begin{array}{l}
y\left(x_{0}\right)=y_{0} \\
y^{\prime}(x)=f[x, y(x)]
\end{array}\right.
$$

for all x in a certain neighborhood $V\left(x_{0}\right)$ of x_{0}. If such a function $y(x)$ exists it is called a solution of (1) satisfying the initial conditions $y\left(x_{0}\right)=y_{0}$. Conditions for the existence and unicity of solutions are well known and I do not speak about that here. What I have in mind in recalling these classical concepts, is how they can be led to the domain of generalized differential equations in the line of non-determinist mathematics? To be more precise given the g-differential equation

$$
\begin{equation*}
D f=\Phi \circ f \tag{2}
\end{equation*}
$$

(1) In this definition, intersection means that they have common interior points.
where Φ is a given g-field

$$
\Phi:\left(Y, V^{\prime}\right) \rightarrow\left[R, V_{\Phi}\right],
$$

what is an analogous of Cauchy's problem for the class of continuous g functions f

$$
f:(X, V) \rightarrow\left(Y, V^{\prime}\right) ;\left(r: V \rightarrow V^{\prime}\right)
$$

for given families of coverings V and V^{\prime} ?
We have to clarify two things: the meaning of solution» of (2) and the meaning of «initial conditions» in non-determinist terminology.

Let us begin with the concept of solution of (2). Suppose M is some given sub-set of X. We say that f is a solution of (2) in M if

$$
\forall \sigma \varepsilon V, \quad A \varepsilon \sigma_{M} \Rightarrow D_{\sigma} f(A)=\Phi_{\sigma}\left[f_{\sigma}(A)\right], \quad\left(\sigma^{\prime}=r(\sigma)\right) .
$$

Let us give now a set $M \subset X$ and a set $M^{\prime} \subset Y$. We say that a solution of (2) satisfies initial conditions relative to the pair (M, M^{\prime}) if

$$
\forall \sigma \varepsilon V ; \quad \forall A \varepsilon \sigma_{M I} \Rightarrow A^{\prime}=f_{0}(A) \subset M^{\prime} .
$$

Now, the Cauchy problem for g-differential equations can be easily stated, namely, given the g-differential equation

$$
\begin{equation*}
D f=\Phi \circ f \tag{2}
\end{equation*}
$$

for a given g-field Φ and given the pair $\left(M, M^{\prime}\right)$ as before, to find a continuous g-function

$$
f:(X, V) \rightarrow\left(Y, V^{\prime}\right)
$$

which is a solution of equation (2), satisfying initial conditions relative to the pair (M, M^{\prime}).

In this general form I do not know how to solve this problem. So I study the particular case where the g-field Φ is zero, that is

$$
D f=0,
$$

and the pair (M, M^{\prime}) is such that M is arbitrary and M^{\prime} is open. We make this more precise in the existence theorem which follows. I hope that the method used in this particular case can be improved in such a way that we can solve the general case also.
4. Existence theorem. - Suppose (X, \mathscr{F}) and (Y, \mathscr{F}) are Gauss spaces and $\left(M, M^{\prime}\right)$ is a pair with $M \subset X$ arbitrary and $M^{\prime} \subset Y$ open. Let $G: \mathscr{F} \rightarrow \mathscr{F}^{\prime}$
be a non-increasing Gauss transformation with \mathscr{F} and $G(\mathscr{F}) \subset \mathfrak{F}$ of finite type relatively to A and M^{\prime} respectively (${ }^{1}$). Let V and V^{\prime} be two families of open coverings of X and Y respectively and suppose the following conditions are satisfied:
a) V is a sequence $\left\{\sigma_{i}\right\},(i=1,2, \ldots)$ of open coverings such that $i<j \Rightarrow \sigma_{i}<\sigma_{j}$ and any $\sigma_{i} \varepsilon V$ has only a finite number of sets intersecting M;
b) V^{\prime} is cofinal in the set of all coverings of Y;
c) given any open set $H \subset X$, with $H \cap M \neq \emptyset$ and any integer n, there is a covering $\alpha \in \mathcal{F}$ having more than n sets intersecting $H \cap M$.

Then given the g-differential equation

$$
\begin{equation*}
D f=0 \tag{3}
\end{equation*}
$$

there is a continuous g-function f

$$
f:(X, V) \rightarrow\left(Y, V^{\prime}\right)
$$

which is a solution of (3) in M and satisfies initial conditions relative to the pair (M, M^{\prime}).

Proof: Take $\sigma_{1} \varepsilon V$ and consider any $A_{2} \varepsilon \sigma_{1}$ with $A_{1} \cap M \neq \emptyset$. Take $\alpha_{1} \varepsilon \mathcal{E}$ arbitrary and $F^{\prime}{ }_{1} \varepsilon \alpha_{1}^{\prime}=G\left(\alpha_{1}\right)$ such that $F_{1}^{\prime} \cap M^{\prime}$ has a non-empty interior. Take now a $\sigma^{\prime} \varepsilon V^{\prime}$ such that there is $A^{\prime} \varepsilon \sigma^{\prime}$ with $A^{\prime} \subset F^{\prime} \cap M^{\prime}$, which is possible because V^{\prime} is cofinal in the set of all open coverings of Y. Note this particular σ^{\prime} by σ_{1}^{\prime} and A^{\prime} by A_{1}^{\prime}. We have

$$
n\left(A_{1}^{\prime}, \sigma_{1}^{\prime}, \alpha_{1}^{\prime}\right)=1 \quad \text { and } \quad n\left(A_{1}, \sigma_{1}, \alpha_{1}\right) \geq 1
$$

where, according to ($(1) ; \mathrm{II}, 4), n(A, \sigma, \alpha)$ in general means the number of sets of $\alpha \varepsilon \mathscr{F}$ intersecting $A \varepsilon \sigma \varepsilon V$. Now to any other $A \varepsilon \sigma_{1}$ we associate the same A_{1}^{\prime} and also for any $A \varepsilon \sigma_{1}$ we have $n\left(A, \sigma_{1}, \alpha_{1}\right) \geq 1$. Let us study the limit

$$
\varlimsup_{\alpha_{1}<x ; \alpha \in \mathcal{F}} \frac{n\left(A_{1}^{\prime}, \sigma_{2}^{\prime}, x^{\prime}\right)}{n\left(A_{1}, \sigma_{1}, \alpha\right)}
$$

where $\alpha^{\prime}=G(\alpha)$. As G is non-increasing we have for any two $\alpha, \beta \in \mathscr{F}$ with $\beta<\alpha$ and $\alpha^{\prime}=G(\alpha), \beta^{\prime}=G(\beta)$,

$$
\frac{n\left(A_{1}^{\prime}, \sigma_{1}^{\prime}, \beta^{\prime}\right)}{n\left(A_{1}, \sigma_{1}, \beta\right)} \geq \frac{\bar{k}\left(\beta^{\prime}, \alpha^{\prime}\right) n\left(A_{1}^{\prime}, \sigma_{1}^{\prime}, \beta^{\prime}\right)}{k(\beta, \alpha) n\left(A_{1}, \sigma_{1}, \beta\right)} \geq \frac{n\left(A_{1}^{\prime}, \sigma_{1}^{\prime}, \alpha^{\prime}\right)}{n\left(A_{1}, \sigma_{1}, \alpha\right)}
$$

${ }^{(1)} A$ is any arbitraxy set of $\sigma \in V$, below, witt $A \cap M \neq \emptyset$.

Therefore

$$
\varlimsup_{\alpha_{1}<\alpha ; \sigma ⿷ \mathscr{F}} \frac{n\left(A_{1}^{\prime}, \sigma_{1}^{\prime}, \alpha^{\prime}\right)}{n\left(A_{1}, \sigma_{1}, \alpha\right)} \leq 1 .
$$

Now let us define

$$
f_{\sigma_{1}}: \sigma_{1} \rightarrow \sigma_{1}^{\prime}
$$

by

$$
f_{\sigma_{1}}(A)=A_{1}^{\prime}, \quad \text { for any } \quad A \varepsilon \sigma_{1}
$$

and put also $\sigma_{1}^{\prime}=r\left(\sigma_{1}\right)$.
We intend to define

$$
r: V \rightarrow V^{\prime}
$$

and

$$
f_{\sigma_{1}}: \sigma_{i} \rightarrow \sigma_{i}^{\prime}=r\left(\sigma_{i}\right)
$$

for the whole family V. Therefore let us suppose that we have already defined $f_{\sigma_{i}}$ and r and let us see how we define $f_{\sigma_{i+1}}$ and r for $i+1$.

Take any $A_{i+1} \varepsilon \sigma_{i+1}$ with $A_{i+1} \cap M \neq \emptyset$ as before, and $\alpha_{i+1} \varepsilon \mathscr{F}^{\text {F }}$ such that

$$
n\left(A, \sigma_{i+1}, \alpha_{i+1}\right) \geq i+1
$$

for any $A \varepsilon \sigma_{i+1}$, intersecting M, using conditions a) and c) of the theorem. Select $F_{i+1}^{\prime} \varepsilon \alpha_{i+1}^{\prime}=G\left(\alpha_{i+1}\right)$ such that $F_{i+1}^{\prime} \cap A_{i}^{\prime}$ has a nonempty interior and take a $\sigma^{\prime} \varepsilon V^{\prime}$ such that there is $A^{\prime} \varepsilon \sigma^{\prime}$ with $A^{\prime} \subset F_{i+1}^{\prime} \cap A_{i}^{\prime}$ and note this σ^{\prime} by σ_{i+1}^{\prime} and A^{\prime} by A_{i+1}^{\prime}. Now to each $A \varepsilon \sigma_{i+1}$ put

$$
f_{\sigma_{i+1}}(A)=A_{i+1}^{\prime}
$$

and

$$
\sigma_{i+1}^{\prime}=r\left(\sigma_{i+1}\right) .
$$

In this case we have

$$
\frac{n\left(A_{i+1}^{\prime}, \sigma_{i+1}^{\prime}, \alpha_{i+1}^{\prime}\right)}{n\left(A_{i+1}, \sigma_{i+1}, \alpha_{i+1}\right)} \leq \frac{1}{i+1}
$$

Now, reasoning analogously as we did for σ_{1} we conclude that:

$$
\varlimsup_{\alpha_{i+1}<\alpha ; \alpha \varepsilon \mathcal{F}} \frac{n\left(A_{i+1}^{\prime}, \sigma_{i+1}^{\prime}, \alpha^{\prime}\right)}{n\left(A_{i+1}, \sigma_{i+1}, \alpha\right)} \leq \frac{1}{i+1}
$$

In conclusion, we have defined by induction, the following:

1) To each $\sigma_{i} \varepsilon V$ there corresponds $a \sigma_{i}^{\prime} \in V^{\prime}$ and therefore a function

$$
r: V \rightarrow V^{\prime}
$$

2) Given any $\sigma_{i} \varepsilon V$ and any $A \varepsilon \sigma_{i}$ we associated with it the set $A_{i}^{\prime} \in \sigma_{i}^{\prime}$ as defined above and so we have a function:

$$
f_{\sigma_{i}}: \sigma_{i} \rightarrow \sigma_{i}^{\prime}=r\left(\sigma_{i}\right)
$$

given by

$$
f_{\sigma_{i}}(A)=A_{i}^{\prime}
$$

3) With the notation of ((1); II, 4) for g-derivatives we have

$$
D_{\sigma_{i}} f(A)=\left(a_{i}, b_{i}\right), \quad(i=1,2,3, \ldots)
$$

where $\left(a_{i}, b_{i}\right)$ is an interval in the real numbers with

$$
0 \leq a_{i} \leq b_{i} \leq \frac{1}{\bar{i}}
$$

for any $A \varepsilon \sigma_{i}$, with $A \cap M \neq \varnothing$.
In this way we have defined a g-function

$$
f:(X, V) \rightarrow\left(Y, V^{\prime}\right)
$$

and also its g-derivative

$$
D f:(X, V) \rightarrow\left[R, V_{R}\right],
$$

where V_{R} is defined as usual by all collections of sets (a_{i}, b_{i}) for each integer $i \geq 1$.

Now it is easy to see that f satisfies all our requirements. Indeed:

1) f is continuous; this is because for any two $\sigma_{i}, \sigma_{j} \varepsilon V$ with $\sigma_{i}<\sigma_{j}$, by construction we have

$$
\forall A \varepsilon \sigma_{i}, \quad B \varepsilon \sigma_{j}, \quad B \subset A \Rightarrow f_{\sigma_{j}}(B) \subset f_{\sigma_{i}}(A) ;
$$

2) f is a solution of (3) in M, because given any $\varepsilon>0$ we can select an integer i such that $1 / i<\varepsilon$ and so by construction

$$
D_{\sigma_{j}} f(A) \subset[0,1 / i] \subset[0, \varepsilon]
$$

for any $A \varepsilon \sigma_{j}$, with $\sigma_{i}>\sigma_{j}$ and $A \cap M \neq \emptyset$;
3) f satisfies initial conditions relative to the pair (M, M^{\prime}), because $\forall A \varepsilon \sigma_{i}$ and $A \cap M \neq \varnothing \Rightarrow A^{\prime}=f_{\sigma_{i}}(A) \subset M^{\prime}$, for any $\sigma_{i} \varepsilon V$.

The existence theorem is therefore completely proved.
5. I finish this paper with some remarks and outlines of possible further developments. I begin by discussing some typical cases where the existence theorem would have a meaning.
a) Let X and Y be [the real line. Take as \mathscr{F} and \mathscr{F}^{\prime} the canonical standard families (1); II, 7) and as $G: \mathscr{F} \rightarrow \mathscr{F}^{\prime}$ the canonical Gauss transformation; namely, the one which associates to each $\alpha \varepsilon \mathcal{F}$ that $\alpha^{\prime} \varepsilon \mathcal{F}^{\prime}$ whose sets have the same length as those of α. Take as M any bounded subset of X and as M^{\prime} any open set of Y. It is easiiy seen that \mathscr{F} and \mathscr{F} are of finite type relative to M and M^{\prime} respectively and that G is non-increasing. Actually for any $\alpha, \beta \varepsilon \mathcal{F}$, with $\alpha<\beta$ we have $k(\alpha, \beta)=\bar{k}(\alpha, \beta)$ and G is also non-decreasing, so $k(\alpha, \beta)=k[G(\alpha), G(\beta)]=\bar{k}[G(\alpha), G(\beta)]$. Take as V the family of open coverings σ_{i}, where σ_{i} is of order 2 and is made up of open sets of length $1 / 2^{i}$ and such that $i<j$ implies $\sigma_{i}<\sigma_{j}$. Take as V^{\prime} any cofinal family of open coverings in Y. Now it is easily seen that all conditions of the existence theorem are satisfied and therefore the equation

$$
D f=0
$$

has a solution in M satisfying initial conditions relative to the pair (M, M^{\prime}).
b) Let X and Y be metric spaces. Suppose M is any compact sub-set of X and M^{\prime}, any open sub-set of Y with compact closure. As it is known ((1); II, 3, th. 1) X and Y can be supplied with a structure of Gauss space, indicated by ${ }_{k}(X, \mathfrak{F})$ and $\left(Y, \mathscr{F}^{\prime}\right)$. Now given any $\alpha \varepsilon \mathscr{F}$, there is only a finite number of sets of α intersecting M. Indeed, to each $x \in M$ associate a neighborhood $V(x)$ intersecting only a finite number of elements of α ((1); II, 2, Def. I). As we can cover M with only a finite number of $V(x)$ our assertion is proved. So, with our previous notations α_{M} is finite and if we take any two $\alpha, \beta \varepsilon \mathcal{F}$, with $\alpha<\beta$, then, as α_{M} and β_{M} are both finite, the numbers $k(\alpha, \beta)$ and $\bar{k}(\alpha, \beta)$ are well defined and \mathcal{F} is of finite type relative to M. Analogously \mathscr{F}^{\prime} is of finite type relative to M^{\prime}. Take now a finite number of balls of radius 1 covering M and consider ialso the set $X-M$. All these sets together make up a covering σ_{1} of X. Look now to the Lebesgue number λ_{1} of σ_{1} relative to M and consider the covering σ_{2} of X made up of a finite number of balls of radius less than λ_{1} covering M and the set $X-M$. So by induction we define a sequence V of coverings having the conditions given by the existence theorem. Take V^{\prime} any cofinal covering of Y and $G: \mathscr{F} \longrightarrow \mathscr{F}^{\prime}$ any non-increasing Gauss transformation. Finally we have to suppose that condition c) of the existence theorem is true, because, obviously this is not always the case, as we see when X is a finite space. Again the g-differential equation (3) will have a solution satisfying initial conditions relative to the pair (M, M^{\prime}).

Going now to a more general situation, if we know how to handle the equation

$$
D f=g
$$

where g is a given special g-function, we know also how to handle the case

$$
D^{n} f=g \quad(n>1)
$$

Indeed, by definition of g-derivatives of order $n((1)$; II, 7, def. IV) we put

$$
D^{n-1} f=g_{n-1}, \quad D^{n-2} f=g_{n-2} \ldots D f=g_{1}
$$

Now, for initial conditions we must give the pairs $\left(M_{1}, M_{1}^{\prime}\right) \ldots\left(M_{n-1}, M_{n-1}^{\prime}\right)$, where $M_{1}, M_{2} \ldots M_{n-1}$ are subsets of X and $M_{1}^{\prime}, M_{2}{ }^{\prime} \ldots M_{n-1}^{\prime}$ are open subsets of the non-negative real numbers, and also the pair (M, M^{\prime}) is such that M is a subset of X, and M^{\prime} an open subset of Y. After that Cauchy's problem will be to find a solution of $D^{n} f=g$ in M satisfyng the initial conditions
a) $A \varepsilon \sigma$ and $A \cap M \neq \emptyset=>A^{\prime}=f_{0}(A) \subset M^{\prime}$.
b) $A \varepsilon \sigma$ and $A \cap M_{i} \neq \emptyset=>A_{i}^{\prime}=D_{\sigma}^{i} f(A) \subset M_{i}^{\prime}(i=1,2, \ldots, n-1)$.

An important case is the equation

$$
\begin{equation*}
D^{2} f=\Phi \tag{4}
\end{equation*}
$$

where Φ is a uniform g-field, that is,

$$
\Phi:\left(Y, V^{\prime}\right) \longrightarrow\left[R, V_{\Phi}\right]
$$

such that, for every $\sigma^{\prime} \varepsilon V^{\prime}$ the value $\Phi\left(A^{\prime}\right)$ is always the same for all $A^{\prime} \varepsilon \sigma^{\prime}$. If we give initial conditions $\left(M, M^{\prime}\right)$ for f and $\left(M_{1}, M_{1}^{\prime}\right)$ for $D f$, this means physically, that a particle entering the g-field $\Phi((i)$; III, $D, 2$, def. VI) with velocity $D f$, known relative to the pair (M_{1}, M_{1}^{\prime}) and with a position f, known relative to the pair $\left(M, M^{\prime}\right)$, must follow some g-path ((1); III, B, 2, def. V) satisying equation (4) and initial conditions relative to the pairs (M, M^{\prime}) and (M_{1}, M_{1}).

It should be extemely interesting to study the general case

$$
D^{2} f=\Phi \circ f
$$

for a given g-field due to its physical meaning ((1); III, B), but it looks very difficult for me.

Naturally at this point one could ask something about unicity of solutions. It is not easy to introduce such a concept in non-determinist mathematios,
but maybe something can be done, up to some equivalence relation; for instance, do not distinguish two g-functions if they generate the same usual continuous function in compact metric spaces. This leads us to the general question: given a differential equation in the usual sense, is it possible to find a g-differential equation whose solutions generate solutions of the clas. sical equation? This should be a very interesting problem to think about.

Finally we can ask if it is possible to introduce some kind of «integration» process for g-functions in such a way that by this process we could define some g-function g «integral» of some g-function f satisfying $D g=f$?

This should be a «generalized fundamental theorem of calculus» and also very interesting for further research.

REFERENCES

[1] R. G. Lintz, Introduction to General Analysis, Mimeograph notes, Department of Mathematies, McMaster University, Hamilton, Ontario, Canada. To be published elsewhere.

