Cauchy’s problem for generalized differential equations.

R. G. LinTtz (Ontario, Canada)

Summary, « We give here the discussion of Cauchy's problem of exwistence of solution of
differential equation for the case of generalized differential equation and initial
conditions.

1. In my paper [1] I discuss the foundations of a generalized calculus
in abstract spaces and here I solve a question raised there about the Cauchy
problem for g-differential equations. I start from the assumption that the
reader is familiar with the main concepts outlined in my paper refered to
above. More precisely, I intend to study here the equation

Df=0

and «initial conditions » for it. So I begin by discussing some definitions
and concepts needed in what follows. The empty set is indicated by @ and
unless stated any set considered is sapposed to be non-empty.

2. Given a special g-function f, I want to give a meaning to the sta-
tement f=20, i.e., «f is equal to zero».

DeriNiTioN I. - A special g-function
f+ (X, V)—IE, Vg

is equal to zero, written f==0, if for any number ¢ > 0 there is a covering
eV such that

VeV, and o<, Ader, = f{4)CIO, ¢

where [0, ¢) is the set of all real numbers », with 0 << x <.

A special g-function such as in Definition I above will be usually called
a zero g-function. In particular a special g-function which is zero in any
open seft of any covering of V is a zero g-function. Note also the similarity
of this concept with that of differential given in (1; III, B, 6). Their diffe-
rence lies in the fact that a zero-function is something approaching zero
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uniformly while the differential only does that locally.

DeriztrioN II. - Let (X, &) be a Gauss space and M a sub-sef of X and
given aeF let us call ay the collection of all sets of « which intersect M.
We say that & is of finite type, relative fo M, if given any two coverings e,

Be&, a < B, there are two integers X(x, B) and %(x, 38), such that no set of ay
intersects less than Z(a, §) sets of 83 and no set of «y intersects more than

E(x, B) sets of 8 ().

DerFinitioN IIL - A Gauss transformation G:& — & for the Gauss spa-
ces (X, §) and (Y, &), where § and G(§)C & are of finite type relative to
MCX and M’ CY respectively, is called non-increasing (non-decreasing) it

Vo, (e, a<B>ke f) =G, GE)

(kle, B) < k[Gla), G-

3. As it is well known in classical analysis, the Cauchy problem for
ordinary differential equation of first order is the following: given the equation

(1) y =1l y)

where f(x, y) is defined in some open set L of the plane, and the point (x,, yo)eL,
to find a function g(x) such that

{ Y(o) = %o

Y'(ee) =1, ylw)]

for all « in a certain neighborhood V(wx,) of u,. If such a function y(x) exists
it is called a solufion of (1) satisfying the initial conditions y(x,)=y,. Con-
ditions for the existence and unicity of solutions are well known and I do
not speak about that here. What I have in mind in recalling these classical
concepts, is how they can be led to the domain of generalized differential

equations in the line of non-determinist mathematics? To be more precise
given the g-differential equation

(2) Df=®of

{(!) In this definition, intersection means that they have common inferior points.
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where © is a given g-field

D: (Y, V)—[R, Vsl,

what is an analogous of Cauchy’s problem for the class of continuous g-
functions f

foAX, Vi— (Y, V)5 (r: V—V)

for given families of coverings V and V'?

We have fo clarify two things: the meaning of solution» of (2) and
the meaning of «initial conditions» in non-determinist terminology.

Liet us begin with the concept of solution of (2). Suppose M is some
given sub-set of X. We say that f is a solulion of (2) in M if

VoV,  deoy = Dof (4) = @o{f(4)], (o' =1(q)).
Let us give now a set M C X and a set M'C Y. We say that a solution of
(2) satisfies initial conditions relative to the pair (M, M’} if

MoV M deoy=> A =[f{A)CM.

Now, the Cauchy problem for g-differential equations can be easily sta-
ted, namely, given the g-differential equation

(2) Df = @of

for a given g-field @ and given the pair (M, M') as before, to find a conti-
nuous g-function

£ X, V)—(Y, V)

which is a solution of equaftion (2), safisfying initial conditions relative to
the pair (M, M’).

In this general form I do not know how to solve this problem. So I
study the particular case where the g-field ® is zero, that is

Df =0,

and the pair (M, M’) is such that M is arbitrary and M’ is open. We make
this more precise in the existence theorem which follows. I hope that the
method used in this parficular case can be improved in such a way that we
can solve the general case also.

4. EXISTENOE THEOREM. — Suppose (X, &) and (Y, §') are Gauss spaces
and (M, M') is a pair with M C X arbitrary and M'C Y open. Let G: §— &
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be a non-increasing Gauss transformation with § and G(F) C & of finite type
relatively to 4 and M’ respectively {*). Let V and V' be two families of open
coverings of X and Y respectively and suppose the following conditions are
satisfied:

a) V is a sequence jo;}, {i=1, 2,..} of open coverings such that
i <j=>0;<og; and any oV has only a finite naumber of sefs intersecting M;

b) V' is cofinal in the set of all coverings of Y;

¢) given any open set H C X, with HNM == 0 and any integer n, there
is a covering 2eJ having more than » sets intersecting HNM.

Then given the g-differential equation
(3) Df =0
there is a confinuous g-funcfion f
X, Vy—(Y, V)
which is a solution of (3) in M and satisfies initial conditions relative to the
pair (M, M').

Proor: Take 5,6V and consider any A.ec, with A,NM == . Take ;&
arbitrary and I'';ea’; = () such that F';M M’ bas a non-empty interior. Take
now a o'V’ such that there is A'sd” with A’ C F';NM/, which is possible
becaunse V' is cofinal in the set of all open coverings of Y. Note this parti-
cular ¢’ by oy and 4" by 4,. We have

wd'y, oy, &)=1 and n(d,, o,, a)) =1

where, according to ({1); II, 4), n(4, o, «) in general means the number of
sets of xe§ intersecting AeceV. Now to any other Aes, we associate the same
A’y and also for any Aeo; we have #(4, o,, o) =>1. Let us study the limit

= wfdy. ¢y, o)
lim
n<la; o w1, o, %)
where ¢’ = ({a). As G is non-increasing we have for any two «, Be& with
f<aand o = Gla), B = G(),

n{d’y, o, B IZ(ny “i)n(A’l; a'y, @') n(d'y, oy, o)
n(Al} O1, ﬁ) k(ﬁ) Ot)?’t(Al, Oy, @J %(Al’ C1, “) '

(1) A is any arbitrary set of ¢ € V, below, witt 4 M= .
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Therefore
m n(A’I, 0,1, O&')

e —— = 1
on<los as n{Al) C1, ‘7‘)

Now let us define
fo‘; . Op— a’y
by
fold) = 4"y, for any Aeo,
and put also ¢’y == r{oy).
We intend to define
: Ves TV’
and

for 2 03~ &'i = 7(cy)

for the whole family V. Therefore let us suppose that we have already de-
fined f;; and » and let us see how we define foia and r for ¢ 4 1.

Take any Aij.e0iy; with 4, ;N M == @ as before, and «;;.e& such that
WA, Oipy, dig) =441

for any Aeocyy,, intersecting M, using conditions a) and c¢) of the theorem.
Select F'iyieasyy = G(#iy,) such that F'i;NA’; has a nonempty interior and
take a o'eV’ such that there is A'ec” with A" C F'i;,MN A and note this o by
o'iy. and 4" by A'iy,. Now to each Aeoiy, put

Fropald) = Ay
and
i1 = 7(Gi14)-
In this case we have
A ip1y Oiga, @igd) 1
W(diga, Oigry %iga) ~ 0417

Now, reasoning analogously as we did for o, we conclude that:

m Ay, i, o) - 1
a,‘_{_‘}<a;as§§7 %{A{.H, Cie1 s a) i + 1

In conclusion, we have defined by induection, the following:

1) To each a;eV there corresponds a oV’ and therefore a function

r: V—V’';
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2) Given any o;eV and any Aeo; we associated with it the set 4'jed’; as
defined above and so we have a function:

fo; 2 0i— & = 1(q))
given by
fold) = A's.
3) With the notation of ((1); I1I, 4) for g-derivatives we have
D, f(4) = (ai, bi), t=1, 2, 3,..),
where (a;, b;) is an interval in the real numbers with

Oéaigbiéé

for any Adeo;, with ANM £ 0.
In this way we have defined a g-funection
[ (X Vj—(¥, V)
and also its g-derivative
Df: (X, V)—I[E, Vgl,

where Vgp is defined as usual by all collections of sets (a;, b;) for each
integer i = 1.
Now it is easy to see that f satisfies all our requirements. Indeed:

1) f is continuous; this is because for any two o;, gV with o; <gj,
by construction we have

V AEO’;, BEG], B C A % foj(B) C fo;(A);

2) f is a solution of (3) in M, because given any ¢ >0 we can select
an integer i such that 1/i < ¢ and so by construction

Dof(4) 10, 1/]CI0, €]

for any Asg;, with o;> o; and ANM == 0;

3) f satisfies initial conditions relative to the pair (M, M’), because
N Aeg; and ANM &= G= A" = [, (A)C M’, for any ceV.

The existence theorem is therefore completely proved.
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5. I finish this paper with some remarks and outlines of possible farther
developments. I begin by discussing some fypical cases where the existence
theorem would have a meaning.

a) Let X and Y be [the real line. Take as § and &' the canonical
standard families ((1); II, 7) and as G: § — §' the canonical Gauss transfor-
mation; namely, the one which associates to each ae& that «'eF’ whose sets
have the same length as those of «. Take as M any bounded subset of X
and as M’ any open sef of Y. It is easiiy seen that & and &' are of finite
type relative to M and M’ respectively and that G is non-increasing. Actually
for any «, Be&, with o < B we have k(«, B) = k(«, f) and G is also non-decre-
asing, so Kz, B) =k G(«), G(B)]= K G(z), G()]. Take as V the family of open
coverings o;, where o; is of order 2 and is made up of open sets of length
1/2¢ and such that ¢ <j implies o; < o;. Take as V' any cofinal family of
open coverings in Y. Now it is easily seen that all conditions of the existence
theorem are satisfied and therefore the equation

Df=0

has a solution in M saftisfying initial conditions relative to the pair (M, M’).

b) Let X and Y be metric spaces. Suppose M is any compact sub-set
of X andfM’, any open sub-set of Y with compact closure. As it is known
((1); 11, 3, th. 1) X and Y can be supplied with a structure of Gauss space,
indicated by (X, §) and (Y, §'). Now given any «c&, there is. only a finite
number of sets of « intersecting M. Indeed, to each xsM associate a neigh-
borhood V(x) intersecting only a finite number of elements of « ((1); II, 2,
Def. I). As we can cover M with only a finite number of V{x) our assertion
is proved. So, with our previous notations ez is finite and if we take any
two o, fe§, with « <B, then, as ap and B are both finite, the numbers

Ko, B) and Kz, B) are well defined and & is of finite type relative to M.
Analogously &' is of finite type relative to M'. Take now a finite number of
balls of radius 1 covering M and consider ‘also the set X — M. All these
sets together make up a covering o, of X. Look now to the Lebesgue number
A, of o, relative to M and consider the covering o, of X made up of a finite
number of balls of radius less than A, covering M and the set X — M. So by
induction we define a sequence V of coverings having the conditions given
by the existence theorem. Take V' any cofinal covering of Y and G: § — &
any non-increasing Gauss transformation. Finally we have to suppose that
condition c) of the existence theorem is true, because, obviously this is not
always the case, as we see when X is a finite space. Again the g-differential
equation (3) will have a solution satisfying initial conditions relative to the
pair (M, M').
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Going now to a more general situation, if we know how to handle the
equation

Df =g
where g is a given special g-function, we know also how to handle the case
Drf=g {n>1).
Indeed, by definition of g~derivatives of order n((1); II, 7, def. IV) we put
D" =gu., D" f=gu..Df=g,.

Now, for initial conditions we must give the pairs (M,, M) ... (My—s, M's_y),
where M,, M,... M,_, are subsets of X and M, M, ... M',, are open subsets
of the non-negative real numbers, and also the pair (M, M’) is such that M
is a subset of X, and M’ an open subset of Y. After that Cauchy’s problem
will be to find a solution of D*f=g in M satisfyng the initial conditions

a) Aes and ANMF0=> A" ={f(4)CM".
b) dec and AN M;== @=> A= Df(A)C M (i=1, 2, ..., n— 1),

An important case is the equation
4 Df=2ao
where @ is a uniform g-field, that is,
: (Y, V) —[RB, V4]

such that, for every o’e¥’ the value ®(4') is always the same for all A'es'.
If we give initial conditions (M, M’) for f and (M,, M,) for Df, this means
physically, that a particle entering the g-field @ ((4); III, D, 2, def. VI) with
velocity Df, known relative to the pair (M,, M,) and with a position f, known
relative to the pair (M, M’), must follow some g-path ((1); III, B, 2, def. V)
satisying equation (4) and initial conditions relative to the pairs (M, M’} and
(M., M)
It should be extemely interesting to study the gemeral case

D*f = ®of

for a given g-field due to its physical meaning ((1); IIl, B), but it looks very
difficult for me.

Naturally at this point one could ask something about unicity of solutions.
It is not easy to introduce such a concept in non-determinist mathematics,



R. G. Lintz: Cauchy’s problem for generalized differential equations — 277

but maybe something can be done, up to some equivalence relation; for in-
stance, do not distinguish two g-functions if they generate the same usual
continuous function in compact metric spaces. This leads us to the general
question: given a differential equation in the usual semnse, is it possible to
find a g-differential equation whose solutions generate solutions of the clas.
sical equation? This should be a very interesting problem to think about.

Finally we can ask if it is possible to introduce some kind of «integration»
process for g-functions in such a way that by this process we could define
some g-function g «integral» of some g-function f satisfying Dg=1{?

This should be a «generalized fundamental theorem of calculus» and
also very interesting for further research.
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