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Summary. - Existence and uniqueness results are obtained for nonlinear periodic and Dirichlet 
boundary value problems by using results about the corresponding tinearized problems and a 
global inverse ]unction theorem. 

1 . -  In  this paper  we establish existence and uniqueness results about  non- 
linear boundary  value problems using the following global inverse function theorem 

to be found in SOHWAI~TZ [11]. 

PI~OPOSlTIO~ 1.1. - Let  X and 17 be Banach spaces and ~b: X -+ Y a continuously 
Fr6chet  differentiable funct ion and suppose ~b r is invertible (as a linear operator)  
at  every  x e X  and moreover  ] [¢ ' (x)- l ] [~<K<oo uniformly in x. Then ¢ is a 
homeomorphism of X onto i7. 

We shall consider equations of the form 

(1.1) Lu + )~ t  = _N~ 

where L is a linear differential expression, N is a continuously Fr6chet  differentiable 
operator  such tha t  L ÷ N'(u) has a uniformly bounded inverse and F is an operator  
with bounded  range. The plan of the paper  is as follows. In  section 2 we prove a 
version of proposit ion 1.1 where q~ = L d-2V and L is unbounded  since in applica- 
tions we find it  simpler to prove the existence of a uniform bound for L d-N'(,a) 
in spaces where L is unbounded.  In  section ~ we prove  existence and uniqueness 
results for periodic solutions of ordinary differential systems using the abstract  
results of section 2 and some elementary results about  matrices proved in section 3. 
Final ly in section 5 we discuss the application of the results in section 2 to some 
Dirichlet boundary  value problems. 

Several other  papers have been wri t ten about  equat ion (1.1) and about  the related 
equation 

(1.2) (Lu)(x) + g(x, u(x), u'(x)) u(x) = / ( x ,  u(x), ur(x)) 

where Z is a linear second order differential expression, g is bounded away f rom 
the eigenvalues of L and f is bounded.  DOLpI~ [3] studies equations analogous 

(*) Eatrata  in Redazione il 26 luglio 1974. 
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to (1.1), (1.2) in the  form of Hammers te in  integral  equutions. LEACH [9] obtains 
existence and uniqueness theorems for the  periodic solutions of second order systems 
of ordinary differential equations which can be expressed in the  form (1.1). LEACH 
and IJAZEI¢ [8] and LAI~DESI~AN and LAZE~ [7] s tudy  a Dirichlet boundary  value 
problem of the form (1.2) when L is a self adjoint  operator  corresponding to an 
ordinary and part ial  differential expression respectively. W~LIA~S [13] generalises 
these results to the case where L is normal. In  all these papers existence of solutions 
is a consequence of the Schauder fixed point  theorem and the main technical effort 
of the papers is the establishing of a priori bounds to enuble the  Schauder theorem 
to be applied. Similarly, in the examples considered in the present  paper  the main 
difficulty is in proving tha t  [L + 5;'(u)] -~ is uniformly bounded.  

2. - Throughout  this section X and Y will be Banach spaces with norms ][ ]]x 
and ][ ]] y and L will be a linear operator  with domain D(Z) dense in X and range 
contained in Y. ]I ]1 will denote the operator  norm of any  bounded linear operator.  

We recall t ha t  L is closed if {u,,} c D(L), u , - ~  u in X and Lug,-+y in Y im- 
plies t ha t  u~D(L)  and Z u = y .  If  L is closed, it is well known tha t  D(L) is a 

Banach space with respect to the graph norm Ittultl----Hu]lx + IILullr. 

THEOREM 2.1. -- Le t  iV: X - >  Y be continuously Fr6chet  differentiable and let  
there  exist K >  0 such t ha t  115;'(u)I[ < K  for ull u e X .  If  L + 5;'(u) has ~n every-  
where defined inverse for all u e X  and if [L+5;~(u)]-~:  I z - + X  is uniformly 
bounded,  i.e. there exists C > 0 such tha t  [[[L ~- 5;'(u)]-~]I < C for all u e X, then  
L q-5 ;  is a homeomorphism of the Banach space D(L) onto Y. 

P~oor .  - Since 5;: X--> Y is continuously Fr6ehet  differentiable, 5; regarded 
as an operator  from D(L) to Y is also continuously Fr6ehet  differentiable. Since 
the derivutives coincide on D(L), we denote  bo th  by  5;'(u). 

We shall show tha t  [L + 5;'(u)]-~: Y-->D(L) is uniformly bounded in norm with 

respect to u. Le t  ~eo~D(L). Suppose tha t  [L ~- 5;'(uo)]-~y = x. Then 

]]lx[[[= ][[L -~- N'(uo)]-~y]lx + ]IL[L ~- N'(Uo)]-lyllf 

< CllYl[r -~ ]IY[IY + lIN'(uo)[ L + N'(u0)]-ly][f < ( C +  1)][y][y -~- KCl]yll r = c~tlyll Y . 

Hence ]I[L + N1(u)]-l]t < C1 for all u e D(L) and so by  proposit ion 1.1 L + N is an 
homeomorphism of D(L) onto Y. 

The nex t  theorem gives more information about  (L + N)-I :  Y-+D(L).  

THEOREM 2.2. -- Le t  Z and 5; be as in theorem 2.1. (L + 5;)-~: Y ~ D(L) is 
continuously Fr6chet  differentiable and Lipschitz. 

PRooP. - Le t  (Z + 5;)-1 = G. Let  y ~ Y and let Gy = x. We shall prove tha t  G 
is continuously Fr6chet  differentiable by  showing tha t  G'(y)= [L + iV'(x)] -1. 
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Let h e y  and let G ( y + h ) - - = x + k .  Then 

IlIG(y + h) - -  G ( y ) -  [2~ + -Y'(x)]- lhil l  

= Itt[-L + N ' ( x ) ] - ~ {  h - -  [ L  -~- N~(x ) ] [G(y  -F h) - -  G ( y ) ] } l l l  

< C,I[(L + .Y)(x + k ) -  (L + N)(x) -- [L -~ _~'(x)](k)]ly , 

using the bound obtained for [L-F 2W(x)]-~: Y-->D(L) in theorem 2.1, 

= C~il-Y(x ÷ k) - 2 ¢ x -  2v"(x) kllr 

-+0 us iihIIy-~0 since, by 

Hence G'(y) = [L + N'(x)] -~. 
Let y~, y~ e Z. Then 

Hence 

theorem 2.1, llhlI~-+0 implies that  Iliklli-~0. 

1 

G(y~) -- G(y~) : f e ,  (y~ ÷ t(y~ - y~))(y~ -- Y2) tit. 
0 

F 
II In(y1)  - G(y~.)III~j]IG (y~ + t(y~- I[ dtl!y~- Y~]l Y~)) 

0 

1 

=f!l [z + 2V'(x(t))]-~11 dt]ly~- ~..il where x(t) = G(y~ + t(y~-- y~)) 
0 

i.e. G is Lipschitz. 
We can now prove another existence theorem. 

THEOREI~I 2.3. Let L and 2¢ be as in theorem 2.1. H F :  D(L) --> Y is continuous, 
compact and has bounded range, then there exists at least one solution u of 

L(u) + .Y(u) = F(u). 

P~ooF. - Choose K ~  0 such that  l!FUtly<K~ for all uED(L). Henee i fueD(L) ,  

]]](z + N)-IF(u)Fll < lr[(L + N)-IF(u)-  (~ + X)-I(0)I[[ + tI](r + N)-~(o)ItI 

~< Ci'lFU!lr -k K~ by theorem 2.2 

CIK1 + K2 = R .  

Let B~ = (xeD(L):  IIIxl]l<~R}. If T -~  (L-~ N)- I~ ,  it is dear that  T maps B~ 
into B~. Since F :  D(L)-+ Y is compact and continuous and ( L ~ N ) - I :  Y->D(Z)  
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is continuous, T is compac t  and  continuous. By  the  Schauder  fixed point  the-  

orem T has a fixed point  u in B~ and clearly L(~) @ N(u) = F(u).  

3 .  - I n  this section we introduce some no ta t ion  and prove  some simple results 

abou t  matr ices which we shall use in section 4. 
Le t  C n denote the  set of all n-tuples of complex numbers .  I f  x =  (x~, ..., x.) 

and y = (y~, ..., y~), we define an inner p roduc t  on C ~ b y  (x, y ) - - - - ~ x ~  and the  

corresponding norm by II II = Let denote the set of oomplox 
t = l  J i -  

n × n matr ices  and  let [I f/ denote the  na tu ra l  norm on M~ corresponding to the  norm 

lill on C ~, i.e. if A e M ~ ;  IIAli = s u p { i t A x l I : x e C  ~, Hxli = 1 } .  I t  can be shown (see 
Jom~ [5]) t h a t  IIAll = max).~ where )~, )~, ..., ),~ are the  eigenvMues of the posi- 

t ive symmet r i c  ma t r ix  A * A  (A* denotes the adjoint  of A i.e. if A = (a~j), A* = (g;~).) 

LEM-~A 3.1. -- I f  A ffM~ and there exists 5 >  0 such t ha t  l~l > d for all eigen- 

values 2 of A, then  IIA-~[]<d-'I[AI[ ~-~. 

Pl¢OO~. - Le t  /~, . . . , / ~  be the eigenvalues of A * A  and let e~, i = 1 ,  ..., n be 

any  eigenvector corresponding to #~ such tha t  lle~![ = 1. Since ![A*Ae~II = #~ we have  

(3.1) !!A*AII>/~, , i - -~1,2 ,  . . . , n .  

Let  ).1, ..., 2~ be the  eigenvalues of A. B y  considering the characteris t ic  polynomials  

of A * A  and A we have  

(3.2) /z~#~ . . . /~  = det A*A = IdetAl~ = ... I~l  -~ . 

rain u,.. Now I[A-~It ---- [~<k<~min/~]-~ ( JoE~ [5], p. 14). Suppose t h a t / % =  ~<k<~,~ 

by (3.1) and (3.2), 

mllA*All~-~ I & l ~ I & ?  ... I ~ I ~ >  ~ ~ . 

Then, 

Since ilA*ll = llAll, i t  follows tha t  t % >  ~ l l A  I] -2~+~ and so ]IA-~II-<<&']IA]I ~'-1. 
oo 

I f  A e M .  define exp A = ~ A~/n t. 

LEN31A 3.2. -- I f  A e M~, 2 is an eigenvalue of A if and only if exp A is an 

eigenvalue of exp  A. 

PnooF.  - Le t  the  eigenvatues of A be ~ ,  ..., ~ .  There exists an invert ible  

m a t r i x  P such t h a t  P A P - l =  J where J is a J o r d a n  canonical ma t r ix  i.e. J is 
upper  t r iangular  and  diag J----{).1~ .--, 2.,}. Clearly exp J is uppe r  t r iangular  wi th  

diag (exp J )  = {exp J ,  ..., exp 4,} and  so exp J has eigenvalues exp  21, ..., exp 2~. 
Now exp J = P exp A P  -1. Let  # be an eigenvalue of exp A and u a corresponding 



K. J.  B~ow~: Nonlinear boundary value problems, etc. 209 

eigenfunction. Then (exp J ) P u  == P ( e x p A ) u - =  i~Pu and so # is also an eigenvalue 
of exp A. Hence every eigenvalue of exp A is an eigenvalue of exp J and similarly, 
since exp A = P-~ exp JP,  every eigenvalue of exp J is an eigenvalue of exp A. 
Hence the eigenvalues of exp A are exp )~, ..., exp X~. 

LE)~A 3 . 3 . -  Le t  S =  { 2 z n i : i ~ = - - I  and n is an integer}. If  A ¢ M ~  has 
eigenvalues ~ ,  ..., ~ and there exists ~ > 0  such tha t  d is t (~ ,  S ) ~  for i = 1 ,  ..., n~ 
then  there exists C > 0 ,  where C depends only on ~ and IIAII, such t h a t  t/tl>~C 
where # is any  6igenvalue of I - - e x p  A. 

P~ooF. - Let  D =  {),eC: dist(S, ~)>~ and 1~1< IIAll}. D is a compact subset 
of C which contains all the eigenvalues of A. If  ](~) ---- t -- exp 2, I/I is continuous 
on D, has no zeros on D and so at tains a positive minimum on D i.e. there exists 
C > 0 ,  depending only on 5 and IIAI!, such thatl]().)I>C if ~ e D .  If  /~ is an 
eigenvalue of I - - e x p  A~ by lemma 3.2 there exists on eigenvalue 2 of A such tha t  
# = 1 -- exp ~ ---- ]()0. Hence ]#] >~ C. 

4. - In this section we shall s tudy the existence ~n4 uniqueness of solutions 
of the systems of eqs. (4.1), (4.3) and (4.2), (4.3) where 

(4.1) u'(t) = A(t, u(t)) + ](t) 

(4.2) u/(t) = A(t,  u(t)) 4- h(t, u(t)) 

(4.3) u(0) = u(2~) 

~nd u : [ 0 , 2 J r ] ~ ¢ " ~  A : [ 0 , 2 z ] x C - - + C  -, ] : [ 0 , 2 ~ ] - + C ~  ~nd h : [ 0 , 2 z ] x C " ~ C -  
and A, ] and h satisfy the conditions of theorem 4.1. 

We shall use known results about  the following linear periodic systems (4.4), 
(4.3) and (4.5), (4.3). 

(4.4) ur(t) = B(t)u(t) 

(4.5) u'(t) = B(t)u(t) ~- g(t) 

t 1 " _ _ 1  

where B" [0, 2 z ] - ~  M.  and g: [0, 2~]-+ C ~. If  Y ( t ) =  exp [jB(s)ds],  then ~Y(t)isa 

fundamenta l  solution for (4.4) with Y ( 0 ) =  1 (the ident i ty  matrix). HAZT~Ar~ [4] 
p. 407-8 proves the following: 

PzoPosI~oN 4.1. Let  B:  [0, 27~] -~ M~ be continuous. (4.5), (4.3) has a unique 
solution for every continuous g if and only if I - - :Y(2~) is invertible. This solu- 
tion is given by 

2~¢t t 

0 0 

1~ - z f n n a l i  d i  l l l a t e m a t i c a  
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Let C[0, 2z~] = {u: [0, 2x] -+ C ~ and u is continuous}. C[0, 2z] is a Banach space 
with respect to the norm IIull = sup {l]u(x)]l: x e  [0, 2~]}. I f  C~[o, 2~] = {ue  c[o, 2z]: 
u(o) = u(2z)}, c~[o, 2zc] is a closed subspaee of C[0, 2~r] and so is also a Banach 
space. 

We can now state and prove our main theorem. 

THEO]~Em~ 4.2. -- Let  the function (t, m)->A'(t ,  m) be continuous on [0, 2z~]xC" 
where A'(t, mo) denotes the Frhchet derivative of m-->A(t, x) at xo. If  

then 

(1) there exists K >  0 such tha t  tlA'(t, x)H < K  for all x e  C ~ and all t e  [0, 2~r]; 

(2) there exists 3 > 0 such tha t  dist[{2~ni: n is an integer}, {2: 2. is an eigen- 
2 z  

0 

(3) h is continuous with bounded range; 

(a) (4.1), (4.3) has a unique solution for all ]e  C[O, 2zt]; 

(b) (4.2), (4.3) has at  least one solution. 

P~ooF. - Define L:  D(L)-+ C[0, 2z] by  Lu = -  u' where u e D(L) if and only 
if u e C~[0, 2z] and u' is continuous. L is a densely defined operator in C~[0, 2~]. 
I f  {u,,} c])(L)  such tha t  u ~ - + u  in C~[0, 2~] and Lu~ = -  u'~ ~ v in C[O, 2~], then 
by R~]3I~[10] u is differentiable, i.e. u e D ( L ) ,  and u ' = - - v ,  i.e. Lu, - ->Lu .  
Hence L is closed. 

Define iV: C[0, 2z] -+ C[0, 2~] by (Nu)(t) = A(t ,  u(t)). A simple computat ion 
shows that ,  if u, h e  C[0, 2Jr], (N'(u)h)(t) = A'(t,  u(t)) h(t). Hence iV is continuously 
Fr6chet differentiable and it follows easily from (1) tha t  l]~V'(u)I] < K  for all u e C[O, 2z]. 

~¥e now prove tha t  L + ~ r ' ( u )  is invertible and tha t  It[L-F N'(u)]-~ll is uni- 
formly bounded for u e C[0, 2z]. Let  Uo e C[0, 2z] and consider the hnear prob- 
lem (4.7), (4.3). 

(4.7) u'(t) = A'(t,  uo(t)) u(t) -- /( t)  

where / e C[O, 2z]. Clearly u satisfies (4.7), (4.3) if and only if [L -F IY'(Uo)]U = / .  
t r _ _  1 

L~ ,,,I $ 

<expIIA]l for a l i a  eM~,  l]Ir(t)[] <exp2g~r  and H Y-l(t)l] ]lexp -- I1 < 

~<exp 2Kg for 0<t~<2z.  If  V = I - -  Y(2~), ]I VII < i  ~ exp 2Kz. By hypothesis (2) 
and lemma 3.3 there exists C >  0, independent of u0, such tha t  ]#]> C for all eigen- 
values/~ of V. Hence V is invertible and by lemma 3.1. Ii V-111 < C-"[ 1 ~ exp 2K~] "-1. 
Since V is invertible, (4.7), (4.3) has a unique solution by proposition 4.1 
i.e. L ~ N'(uo) has an everywhere defined inverse. Moreover, if [L-[-IY'(uo)]u = / ,  
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by  (4.6) we have 

Hence 

2 n  t 

0 0 

H u(t)If K exp 2Kz[  C-s(1 + exp 2K~) "-~ 27~ exp 2K7~] Ii] !l + 2z  exp 2K7~ Ii/li 

and so ItutI <K~II/I I where K~ depends only on K and C. Therefore tI[L+2V'(u)]-~fl <K~ 
for all u ~ C[0~ 2z]. (a) now follows f rom theorem 2.1. 

Define / ' :  D(L) -+ C[0, 2~r] by  (Fu)(t) = h(t, u(t)). Clearly F has bounded range. 
Le t  {us} be any  bounded sequence in D(L). Since {u~} is bounded in C[0, 2~], {us} 
is equicontinuous and so by  Ascoli's theorem there exists a subsequence {u~} of 
{u~} such tha t  u ~ - > u  in C[0,2~]. Choose M > 0  such tha t  ]]u~tl < M for all m. 
Let  s > 0. Since h is uniformly continuous on the compact  set [0, 2z] ×{x e Cs: 
]lx]l < M } ,  there  exists 6 > 0  such tha t  Ilh(t~, x~)-h(t~,x2)H < s  if ]t~--t~] ~. 
Jr I[x~-x21I~(~. Choose no such tha t  I[u,~--u]l<~ if re>no. Hence,  if m > n o ,  
HFu~-Fu l l  < s. Therefore /~u~-->Fu in C[0, 2~] and so we have proved tha t  F 
is compact.  A similar, bu t  simpler, a rgument  shows tha t  F is continuous. 
(b) now follows immediately from theorem 2.2. 

We shall now discuss two al ternat ive formulations of the ra ther  cumbersome 
condition (2) of theorem 4.2. 

(1) Firs t ly  we s tudy a system of second order equations similar to tha t  studied 
by  LEACH in [9]. Consider 

(4.s) 

(4.9) 

! 
u;(t) + g~(t, ~( t ) )  = hi(t, u~(t), . . . ,  u~(t), u~(t), . . . ,  u'~(t)) 

~(o)  = u~(2~); u~(o) = u~(2~) 

for j = 1, ..., n where uj: [0, 2~] --> R, gj: [0, 27~] × R -~ R and hi: [0, 2~] × R 2" -+ R 
and the  following conditions are satisfied: 

(i) the funct ion (t, x) --~ (~gd~x)(t, x) is continuous;  there exists 3 >  0 and an 
integer mj such that  (m~ ~ ~)~ < (~gd~x)(t, x) < (mj + 1 -- ~)~, for a~ll t ~ [0, 2~] and 
all x e R .  

(ii) hj is continuous and has bounded range. 
f 

If  we let u k ---- v~ and u~ ---- w~, we see tha t  (4.8), (4.9) is equivalent to the system 

(4.1o) u'(t) -= A(t, u(t)) Jr h(t, u(t)) 

u(o) = u(2~) 

where u: [0, 2z] --~R 2~ such tha t  u(t) = (vdt), walt), ..., v~(t), ws(t)), A:  [0, 2z] × 
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x R  ~ - - > R  ~ such tha t  

A(t,  x~, y~, ..., x , ,  y~) = (y~, - -  g(t, x~), ..., y~, -- g(t, x~)) 

and h: [0, 2 ~ ] × R  2" - ~ R  2~ such tha t  h ---- (0, h~ 0, h~ ..., 0, h.). 
I t  is easily verified t ha t  x ~ A ( t , x )  is Fr6chet  differentiable with A ' ( t , x ) =  

---- di~g(B1, B~, ..., B~) where ( o :) 
B j  = _ " 

2 ~  

Hence,  if u e C[0, 2z], fA ' ( s ,  u(s)) ds = diag(C~, ..., C~) where 
0 

2$g 

C j =  0 and  k j = - -  ~ s , v ~ ( s ) ) d s .  

2~  

The eigenvalues of fA ' ( s ,  u(s)) ds ~re & V / - - 2 - ~ j i .  B y  (i) 2z(ms + 6)2< _ kj < 
0 

< 2s (mj -~  1- -6)~ .  Hence  dist [{2sni:  n is an integer}, {2: ~ is an eigenvalue of 
2 ~  

> 

o I t  is now clear t h a t  (4.10) s~tisfies ull the  hypotheses  of theorem 4.2 and so (4.8), 

(4.9) has a t  least  one solution. 

(2) We can replace condition (2) in theorem 4.2 b y  a condition on the num- 

eric~l range of the  Fr6chet  derivat ives of A. 
I f  T E M . ,  the numerical  range of T, denoted b y  0(T), is defined us {(Tu, u): 

u e C  ~' I]uI] = 1 } .  I t  can be shown tha t  O(T) is convex (KAT0 [6]). 

TtIEOl~EI~ 4.3. - I f  O(A'(t ,x))  is contained in a closed convex set K for all 
r _  ~ ~ 

K~ = (2~x: x e K }  for ~11 u e  C[O, 2~]. 

PROOF. -  Le t  u e C [ 0 , 2 z ]  and x e C  ~ with !Ixlt = i .  

2u  

0 

is the l imit  of R iemann  sums of the  fo rm 

n - - 1  

~ = 0  

x) where 0 = so < s~ < ... < s ,  = 2~. 
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Since 
n - - 1  

X (2~)-~(*,+~-  s,) = ~ and (~ ' ( s , ,  ~(,,))~, ~) ~ K for ~ = 0, ..., ~ - -  ~, 
~ = 0  

n- -1  

X (2.>-~(~,+,-,,)(x,(s,, ,(~,))x, ~)+~ i.e. 
~=0  

i=O 

~Tg 

Since K1 is dosed, .I(A'(s, qz(s) )x ,x)dseK1.  
0 

easily be shown tha t  

By  considering l~iemann sums it can 

2g 2z 

0 0 

and this completes the proof. 
Since, for T e M~, O(T) clearly contains all the eigenvalues of T, by  theorem 4.3 

we can replace condition (2) by  

(2') there exists a closed convex set K and ~ > 0 such tha t  O(A'(t, x ) ) c K  
for all t ~ [0, 2~] and all x ~ C ~ and 

dist [K~, (ni: n is an integer)] > ~. 

5 .  - In  this section we shall apply the results of section 2 to obtain existence and 
uniqueness theorems for nonlinear boundary  value problems associated with elliptic 
and ordinary differential expressions. 

Let  I2 be an open subset of /~n with smooth boundary  denoted by  bd(Q). We 
shall consider only linear differential operators generated by the Laplacian, A, but  
it  is easy to see how ore' results can be extended to higher order expressions or to 
elliptic expressions with variable coefficients. We shall apply theorem 2.2 where 
X -  Y = / ~ ( ~ ) - - t h e  set of all real-vMued Lebesgue square integrable functions 
on Q with norm [lUlto={ .Ilu(x)12dx} ½. We shall also require the space C ° ( h ) =  

= (u: ~ - +  R:  u has continuous second order derivatives on .C2 and u(x) = 0 for aLl 
x ~ bd([2)} and the space 2V~(~Q) ---- {u: ~ -+ R:  aLl generalized partial  derivatives of u 
of order < 2  are in Ld/2)} with norm Iiu}i~={ Z itD=uii~} ½" 

Let  L :  D(/~) -+/~(~2) be such tha t  Lu  = -- zJu(x) if- q(x)u(x) where q: Q - + R  is 
measurable and u e D (L )  if and only if u e C~(~) and --Zlu + q u e L d D ) .  In  the 
examples which we shall discuss L is essentially self adjoint with closure/~. Moreover 
we shall have tha t  D(JS) = H°(Q)-- the closure of C°(h) in II ]1~ - a n d  tha t  the graph 
norm on D(L) is equivalent to ]] I[~. In  this case we have as an immediate conse- 
quence of theorem 2.2: 
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THEOICEH 5.1. -- If 

(I) N: L~(~)-->L~(/2) is continuously Fr~chet differentiable and there exists 

K > 0  such tha t  ll~'(u)[]<K for all u~Z..(~9), 

(2) L + N'(u)  has a bounded everywhere defined inverse on L~(t~) and there  
exists 6 >  0 such tha t  ]I[L ~- N'(u)]-~]] 4 ~  for all ueL~(~), 

(3) F :  H°(/2)-+L~(Y2) is compact ,  continuous and has bounded range, then  

there exists at  least one solution of ~,u + Nu = Fu. 

We consider the case where N is a ~Nemytskii operator  i.e. there exists g: R -+ R 
such tha t  (Nu)(x)= g(u(x)). We shall give conditions on ~9 and g to ensure tha t  
the conditions of theorem 5.1 are satisfied. 

Suppose tha t  g has a continuous derivative and tha t  there exists M > 0 such 
t h a t  Ig'(x)I<M for all x e / L  I~et ueL2([2). Then 

I(Yu)(x)l = l g (u (x ) ) l<  lg(u(x))-  g(O)l + Ig(O)l = lu(x)llg'(~)l + Ig(O)l<Mlu(x)l + Ig(0)l • 

Hence, if g ( 0 ) =  0 or if ~ is bounded, N:  L~(/2)->L2(Y2). I t  follows from the Le- 
besgue dominated convergence theorem tha t  N is continuously differentia, ble with 

(~ ' (u)  h)(x) = g'(u(x)) h(x). Hence il N'(u)It < M. 
The following 1emma is useful for verifying tha t  condition (2) is satisfied. 

LEM~A 5.2. Let  A be a densely defined seif-adjoint operator  on L~(Y2) which is 
bounded below. Suppose tha t  there exists a E R such tha t  the essential spectrum 
of A is contained in [a, c~) and A has a finite or infinite number  of eigenvMues 
)~1<)~2< . . .<a .  I f  there exists an integer k, ~ > 0  and p : / 2 - - ~ R  such tha t  
)~k-? 5 < p ( x ) < ~ k + ~ - - 3  for all xE~9, then, if A ~ u = A u - - p u ,  A~ has a bounded 
everywhere defined inverse and ]IA~ 1 ]] 4 6 -~. 

PROOF. - I t  is obvious tha t  A1 is self-adjoint. Le t  F~ be the family of all 
( k -  1) dimensional subspaees of L2(Y2) and, i f /P  e F~, let F ± denote  the orthogonal 
complement of F.  I t  is well known tha t  

Define 

If F ~ F ~ ,  

i ~=  sup inf {(Au, u): ]iuil = ~ ~nd u ~ ± }  
FeY~ 

~ = sup inf {(A,u,  u): iiulI = ~ and u ~ Y ~ } .  

inf {(Alu, u): IIulI = 1 and u~iV±} = inf {(Au, u)--(pu, u): Iluil = 1 and uaFZ}< 

4 i n f  {(Au, u): llu]l = 1 and u ~ F  ±} -- (~  + 3)<~k -- ( ~  + ~) = -- ~. 
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t~[ence 

(5.1) /~ < - ~. 

Let  {w.} be an orthonormal sequence of eigenvectors of A such tha t  Aw~ = ~w~. 
Let  P = [wl, ..., w~] e F~+~. Then 

#~+~>in_f {(A~u, u): flail = 1  and u e P  ±} 

Since inf {(Au, u): Ilu[I = 1  and u e P  ±} = 2~+~, 

(5.2) ~+~> 6. 

H AI has essential spectrum in (-- c~, (~-- e), where s > 0 it is easy to see t ha t  
/~j </~ -- e for all integers j .  Since s is arbitrary,  (5.2) shows tha t  A~ has only eigen- 
values in (-- co: ~) and tha t  the dimension of the subspace spanned by  eigenvectors 
corresponding to these eigenvalues is less than  or equal to k. By  (5.1) there is a 
subspace of dimension k consisting of eigenveetors of A~ corresponding to eigenvalues 
in (-- co, -- ~]. Hence (-- (~, ~) contains no points in the spectrum of A~ and so 0 
is in the resolvent set of A~. Therefore A~ is invertibte and, by  KATO [6], V 3.16, 

lIA11 H = dist[0, spectrum of All ~< ~-1. 

Suppose tha t  ~ is bounded End q is bounded and measurable. The following 
results can be found in AG~o~ [1]. J5 is essentially self-adjoint , / ,  is bounded below 
and the spectrum of L consists only of the eigenvalues ~1~<X2~<~3~< .... The coer- 
civeness inequali ty tlul!s< C(llLullo ÷ llu!lo) implies tha t  D(L) = H°(tg) and tha t  the 
graph norm of L is equivalent to i! il~. 

I f  g: R - + R  has a continuous derivative and there exists an integer k and 
~ >  0 such tha t  ~0 ÷ 5 < -  g'(t)< ).k+~--5 for all t c R it follows from lemma 5.2 
tha t  H[L~-N'(u)]-~[] < ~-~. Hence conditions (1) and (2) are satisfied. 

If  (tZu)(x) = ](x, u(x), u'(x)) where ]: ~2 X R x R -~R is continuous and has bounded 
range, /~:  H~(YJ) -+ L~(~) is continuous by LA~DES~A~ and LAzE~ [7] proposition 3.1. 
Since the embedding from H°(~9) to HI(.Q) is compact and continuous, F :  H°(/2) -+ L~(tg) 
is compact  and continuous. Clearly F has bounded range and so condition (3) is 
satisfied. 

The above results where Y2 is bounded and N and F are Nemytskii  operators 
are a special case of the results of IJANDESI~IAY¢ and LAZER [7]. Because of the general 
nature  of our theorems 2.2 and 5.1, however, we can easily extend our results to 
the case where Y2 is unbounded.  

Consider, for example, the case where .Q = (0, co) and 

(5.3) ( ~ u ) ( x )  = - -  u"(x) - -  ~ u (x )  . 
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We recall that  u ~ D(L) only if u" is continuous and u(0) --~ 0. By  KATO [6], V 4.4 
and S ~ v A ~  [12] L is essentially self-adjoint, D(L)----H~[0, c~] and there exists 
K ~  0 such tha t  the graph norm of L + K I  is equivalent to f[ 1[~. Moreover, the 
spectrum of J~ = {-- 4/n~: n = 1, 2, ...} ~3 [0, c~) and, for each positive integer n, -- 4/n ~ 
is a simple (multiplicity one) eigenvalue. 

Suppose tha t  g: R - +  R has continuous derivative and there exists an integer k 
and 8 > 0 such tha t  

4 4 
(5.4) k~ 4- ~ < g'(t) < (k + 1) ~ for ~11 t e R ;  g(O)= O. 

If ( N u ) ( x ) = -  g ( u ( x ) ) -  Ku(x),  then / , -~  K I  ~nd 2/ satisfy conditions (1) and (2) 
of theorem 5.1. 

Define .F: H°[0, co] -+1~2[0, c~] by (;Fu)(x) -~ a(x)](x, u(x), u'(x)) where ] is con- 
tinuous and has bounded range and a is continuous and 

(5.5) a e L~[O, co] ; lira a(x) = 0 
~- -+  o o  

If  t](x, y, z)l<~M for all x, y, z ~ R  ~nd ueL~[O, co], then lIFulIo< MlIaIlo and so F 
has bounded r~nge. If  T >  0, /~: H°[0, T] -+L2[0, T] is compact and continuous by  
proposition 3.1 of LA~DES~A~ and LAZEI~ [7] as we proved above. Since l i ra  a(x) -= O, 

a simple subsequencc argument, like tha t  in B~ow~ [2] section 10, shows tha t  

~": H°[0, co]-->L2[0, c~] is compact and continuous.  

Hence theorem 5.1 proves tha t  there exists at least one solution of the equation 

( L u ) ( x ) -  g(u(x)) = a(x)t(=, u(x), 

where L is given by (5.3), g has a continuous derivative and satisfies (5.4), a and ] 
are continuous, ] has bounded range and a satisfies (5.5). 
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