Nonlinear Boundary Value Problems
and a Global Inverse Function Theorem (*).

K. J. Brown (Edinburgh)

Summary. ~ Bristence and unigueness resulis are obtained for nonlinear periodic and Dirichlet
boundary value problems by using results about the corresponding linearized problems and o
global inverse function theorem.

1. — In this paper we establish existence and uniqueness resulls about non-
linear boundary value problems using the following global inverse function theorem
to be found in ScEWARTZ [11].

PropogiTIoN 1.1. — Let X and ¥ be Banach spaces and @: X — Y a continuously
Fréchet Jdifferentiable function and suppose @’ is invertible (as & linear operator)
at every xe X and moreover |@'(z)'|<K < oo uniformly in #. Then @ is a
homeomorphism of X onto Y.

‘We shall consider equations of the form

(1.1) Ly Nu=Fuy

where L is a linear differential expression, N is a continuously Fréchet differentiable
operator such that I - N'(u) has a uniformly bounded inverse and ¥ is an operator
with bounded range. The plan of the paper is as follows. In section 2 we prove a
version of proposition 1.1 where @ = L -+ N and L is unbounded since in applica-
tions we find it simpler to prove the existence of a uniform bound for I 4 N'(u)
in gpaces where L is unbounded. In seetion 4 we prove existence and uniqueness
results for periodic solutions of ordinary differential systems wusing the abstract
results of section 2 and some elementary results about matrices proved in section 3.
Finally in section 5 we discuss the application of the results in section 2 to some
Dirichlet boundary value problems.

Several other papers have been written about equation (1.1) and about the related
equation

(1.2) (Lu)(@) + g{@, u(@), w (@) u(w) = f(z, uix), ' (@)

where L is a linear second order differential expression, g is bounded away from
the eigenvalues of L and f is bounded. DorpH [3] studies equations analogous

(*) Entrata in Redazione il 26 luglio 1974.
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to (1.1}, (1.2) in the form of Hammerstein integral equations. LuACH [9] obtlains
existence and uniqueness theorems for the periodic solutions of second order systems
of ordinary differential equations which ean be expressed in the form (1.1). LEeAcH
and LAZER [8] and LANDESMAN and LAZeR [7] study a Dirichlet boundary value
problem of the form (1.2) when L is a self adjoint operator corresponding to an
ordinary and partial differential expression respectively. WILLiams [13] generalises
these results to the case where L is normal. In all these papers existence of solutions
is a consequence of the Schauder fixed point theorem and the main technical effort
of the papers is the establishing of a priori bounds to enable the Schauder theorem
to be applied. Similarly, in the examples considered in the present paper the main
difficulty is in proving that [L 4+ N’'(#)]"* is uniformly bounded.

2. - Throughout this section X and Y will be Banach spaces with norms ||x
and ||y and L will be a linear operator with domain D(L) dense in X and range
contained in ¥. ||| will denote the operator norm of any bounded linear operator.

We recall that L is closed if {u,} c D(L), u, —>u in X and Lu, >y in ¥ im-
plies that we D(L) and Lu=y. If L is closed, it is well known that D(L) is a
Banach space with respect to the graph norm |Jlu|l] = ju]x + |Lul+.

TEEOREM 2.1. — Let N: X — Y be continuously Fréchet differentiable and let
there exist K > 0 such that |[N'(w)]|< K for all weX. If L+ N'(u) has an every-
where defined inverse for all ue X and if [L 4+ ¥N'(u)]*: ¥ -~ X is uniformly
bounded, i.e. there exists € >0 such that |[LZ + N'(u)]"'|<C for all wc X, then
L - N is a homeomorphism of the Banach space D(L) onto Y.

Proor. ~ Since N: X — Y is continuously Fréechet differentiable, N regarded
ag an operator from D(L) to Y is also continuously Fréchet differentiable. Since
the derivatives coincide on D(L}, we denote both by N'(u).

‘We ghall show that [Z -+ N'(u)]*: ¥ — D(L) is uniformly bounded in norm with
respeet to u. Let w,eD(L). Suppose that [L + N'(#4)|"'y = z. Then

laol[| =1L A+ N'(uo) 'y [ x + | ZLL + N (o) y |y
<Olyly + lyly + [N @)L + N'(u) [y |y <(C+ D]yly + KCly|y = Clyly -

Hence ||[L - N'(u)] | < C; for all we D(L) and so by proposition 1.1 L + N is an
homeomorphism of D(L) onto Y.
The next theorem gives more information about (L -+ N)™1: ¥ — D(L).

THEOREM 2.2. — Let L and N be as in theorem 2.1, (L4 N)': ¥ — D(L) is
continnously Fréchet differentiable and Lipschitz.

Proor. — Let (L + N)1=6@G. Let ye Y and let Gy = . We shall prove that G
is continuously Fréchet differentiable by showing that G'(y) = [L 4+ N'(x)]%
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Let heY and let G{y + h) == + k. Then

Gy + k) — Gly) — [L + N'(@)]Al]|
= [[IlL + V'@ {h— [L + N'(@))Gy + h) — Gy
<G+ N)@ + k) — (L + N)(@) — [L + N'(@)](F) ]y,

using the bound obtained for [L + N'(z)}"*: ¥ — D(L) in theorem 2.1,

= G| N (@ + k) — No— N'(@) k],

0 as |h]y —0 since, by theorem 2.1, |hly —0 implies that [|[k|||—0.
Hence G'(y) == [L + N'(x)].

Let y;, 4,€ Y. Then

1

G — G =[G (3 + 1y — 1) s — 30) ..

0

Hence

1
166n) — Gl ll< [ 16/ (3 + 2o — ) | @ — ]
0

1
=[10L + N(@@)] | @l — i where a(t) = G{y, + ts — )
0

<Oty — 9.

i.e. G is Lipschitz.
We can now prove another existence theorem.

THEOREM 2.3. Let L and N be as in theorem 2.1. If F: D{L) — Y is continuous,
compact and has bounded range, then there exists at least one solution u of
L{u) + N{u) = F(u).

PROOF. ~ Choose K, > 0 such that |Fu|, <K, for all we D(L). Hence if u € D(L),
I+ Ny )| < |I[(L + N) 2 F(w) — (L 4 Ny 0)]] + [[|(E -+ M)~ o) ]

< 0| Fu|y + K, by theorem 2.2
<CK +K,=R.

Let By = {we D(L): |||o]||<R}. If T=(L-+ N)F, it is clear that T maps By
into By. Since F: D(L) — Y is compact and continuous and (L + Ny *: ¥ — D(L)
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is continuous, 7 is compact and continuous. By the Schauder fixed point the-
orem 7T has a fixed point u in B, and clearly L{u) + N(u) = F'(u).

3. — In this section we introduce some notation and prove some simple results
about matrices which we shall use in section 4.
Let C» denote the set of all n-tuples of complex numbers. If @ = (2, ..., )

n
and ¥ = (41, ..., Ya), We define an inner product on C* by (z,y)= > x5, and the
n gl
corresponding norm by |z] = {2 [m,-lz}%. Let M, denote the set of all complex
=1
n X n matrices and let ||| denote the natural nerm on 3, corresponding to the nerm
] on Cv ie. if AeM,; |A| =sup{|d2|:2eC |z] =1}. It can be shown (see
JouN [5]) that |A| = max} where 1, A, ..., A, are the eigenvalues of the posi-
tive symmetric matrix A* A (A* denotes the adjoint of 4 i.e. if 4 = (a,), 4* = (@;.).)

Levma 3.1. — If Ae M, and there exists >0 such that |i|> & for all eigen-
values A of A, then |A4A~*|<d"[A[

Proor. — Let ui, ..., y, be the eigenvalues of A4*4 and let ¢, i=1,...,n be
any eigenvector corresponding to u; such that |e;| =1. Since |A*Ae,| = u; we have

(3.1) [A*A|>p, i=1,2..,n.

Let 2, ..., 4, be the eigenvalues of 4. By considering the characteristic polynomials
of 4*¥A and 4 we have

(3.2) Ul oo o = det A¥ A = |det A2 = |4} 42 ... |A.]2.
Now [|[47] == [&lkign pi]™* (JOEN [5], p. 14). Suppose that p, = min g, Then,
by (3.1) and (3.2),
[ A* A2 (B A o |2 ]P> 0%

Since |4*| = [4], it follows that u, > 0% |A[~2"*2 and so A< A4]
It Ae M, define exp A = > A»/n!.
n=0

Levma 3.2, -~ If AeM,, 4 is an eigenvalue of 4 if and only if exp 1 is an
eigenvalue of exp A.

PROOF. — Let the eigenvalues of 4 be 1,,..,4,. There exists an invertible
matrix P such that PAP-1=J where J is a Jordan canonical matrix ie. J i8
upper triangular and diagJ = {4, ..., ,}. Clearly expJ is upper triangular with
diag (expJ) = {exp J, ..., exp 4,} and so expdJ has eigenvalues exp i, ..., exp 4,.
Now expJ = Pexp AP-'. Let u be an eigenvalue of exp A and  a corresponding
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eigenfunction. Then (expJ)Pu = P(exp 4)u = uPu and so p is also an eigenvalue
of exp A. Hence every eigenvalue of exp A4 is an eigenvalue of exp J and similarly,
since exp A = P-lexpJP, every eigenvalue of expdJ is an eigenvalue of exp A.
Hence the eigenvalues of exp 4 are exp Ay, ..., exp 4,.

LeMMA 3.3. — Let 8= {2ané:i*=—1 and » is an integer}. If Ae M, has
eigenvalues 4, ..., 4, and there exists d>>0 such that dist(1,, 8)>6 for i =1, ..., n,
then there exists >0, where C depends only on § and |4, such that ju]|>C
where p is any eigenvalue of I —exp 4.

PrOOF. — Let D= {1€(: dist(§, 1)>6 and |A|< |4]}. D is a compact subset
of ¢ which eontains all the eigenvalues of 4. If f(1) =1-—exp 4, |f| i8 continuous
on D, has no zeros on D and so attains a positive minimum on D i.e. there exigts
C> 0, depending only on ¢ and |4, such that|f(1)|>C if AeD. If u is an
eigenvalue of I — exp A, by lemma 3.2 there exists on eigenvalue 4 of A such that
w=1—expl=f(1). Hence |u|>C.

4. — In this section we shall study the existence and uniqueness of solutions
of the systems of egs. (4.1), (4.3) and (4.2), (4.3) where

(4.1) w'(t) = A(t, u(t)) +
(4.2) w'(t) = A(t, u(?)) +h(z u(t)
(4.3) u(0) = u(2)

and u:[0,2x] — C», A:[0,2a]X 0" — 0 f:]0,2x]}— C* and h: [0, 27} x 0" — O~
and 4, f and b satisfy the conditions of theorem 4.1.

We shall nse known results about the following linear periodic systems (4.4),
(4.3) and (4.5), (4.3).
(4.4) w' () = B{t)u(t)
(4.5) w'(t) = B(t)u(t) + 9(t)

i
where B: [0, 2x] — M, and g¢: {0, 2n] — C=. If Y(t) = exp [ fB(s) ds], then Y(3) is a
0

fundamental solution for (4.4) with Y(0) = I (the identity matrix). HARTMAN [4]
p. 407-8 proves the following:

PropostTioN 4.1. Let B: [0, 2x] — M, be continuous. (4.5), (4.3) has a unique
solution for every continuous ¢ if and only if I— Y(2x) is invertible. This solu-
tion is given by

(4.6) y@) = Y1) {[I_ Y(Zn)]'lTY"l( §)ds + f Y-y )ds}
0

14 —~ dwnnali di Malematica
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Let O[0, 27] = {u: [0, 27] — C" and « is continuous}. C[0, 2z] is a Banach space
with respect to the norm [u| = sup {|u(@)|: € [0, 2z]}. If C,[0, 2n] = {ue O[0, 2x]:
u(0) = w(2m)}, C,[0, 27] is a closed subspace of C[0,2n] and so is also a Banach
space.

We can now state and prove our main theorem.

THEOREM 4.2. — Let the function (I, ) - 4'(, #) be continuous on [0, 27]x O
where A'(t, #,) denotes the Fréchet derivative of » — A(t, x) at xz,. If

{1) there exists K > 0 such that |A'{f, )| < XK for all e C" and all 1[0, 27];
(2) there exists 6> 0 such that dist[{2ymi: n is an integer}, {A: A is an eigen-
2r
value of fA’(s, u(s)) ds}] > § for all we C,[0, 27];
0

(3) h is continuous with bounded range;

then
(#) (4.1), (4.3) has a unique solution for all e C[0, 2a];

(b) (4.2), (4.3) has at least one solution.

Proor. — Define L: D(L) — C[0, 2x] by Lu=—u' where ueD(L) if and only
if ue (0,[0,2x] and ' is continunous. L is a densely defined operator in C,[0, 27].
If {u.} c D(L) such that w,->w in C,[0, 2] and Lu, = —u, —v in C[0, 27], then
by Rupin [10] u is differentiable, ie. we D(L), and %' = —v, ie. ILu,—Lu.
Hence L is closed.

Define N: O[0, 2z] — [0, 27] by (Nu)(t)= A(t, w(t)). A simple computation
shows that, if w, he O[0, 27), (N'(u)h)(t) = A'(t, u(t)) h(t). Henee N is continuously
Fréchet differentiable and it follows easily from (1) that |N'(u)| < K for all € O[0, 2x].

We now prove that I + N'(u) is invertible and that [[L 4 N'(x)1*] is uni-
formly bounded for e O[0, 27]. Let u,e C[0, 27] and consider the linear prob-
lem (4.7), (4.3).

(4.7) w'(t) = A'(t, uo()) u(t) — £(2)

where fe C[0, 2n]. Clearly u satisfies (4.7), (4.3) if and only if [L + N'(u)]u = .
1
Y(@) = exp[ fA’(s, y(3)) ds] is a fundamental matrix for (4.7). Since |expd|<
0 t
<exp|d|forallAeM,, |Y(t)|<exp2Kn and |Y-()| = |exp [———JA'(S, Uo(8)) ds] <
9
<exp 2Hn for 0<t<2n. It V=1-— Y (2x), |V]|<1- exp2Kn. By hypothesis (2)
and lemma 3.3 there exists € > 0, independent of u,, such that |u|> C for all eigen-
values i of V. Henee V is invertible and by lemma 3.1. | V-1 < 0-"[1 -+ exp 2Ex]".

Since V is invertible, (4.7), (4.3) has a unique solution by proposition 4.1
ie. L 4 N'(w,) has an everywhere defined inverse. Moreover, if [L -+ N'(u)lu =71,
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by (4.6) we have

2n 11

ult) = Y(z)[v—l f Y-1(s) f(s) ds — f Y”l(s);f(s)ds} .
1] 4]

Hence

ju(t)| <exp 2Kz C—(1 + exp 2Kn)™ 12z exp 2K=]|f| + 2mwexp 2Kx=|f]

and so [u] < K,|f| where K, depends only on K and C. Therefore |[L+N'(u)1"!| < K,
for all we C[0,2x]. (a) now follows from theorem 2.1.

Define F: D(L) — 00, 2] by (Fu)(t) = h(, u(t)). Clearly F has bounded range.
Let {u,} be any bounded sequence in D(L). Since {u,} is bounded in C[0, 2x], {u,}
is equicontinuous and so by Ascoli’s theorem there exists a subsequence {u,} of
{u,} such that w, —>u in O[O0, 27]. Choose M >0 such that |u,]< M for all m.
Let ¢> 0. Since A is uniformly continuous on the compact set [0, 2x]X{re C:
|#] < M}, there exists 6>0 such that [h(t, @) — hil, @) <e if |f—1t|+
+ @, — x| <d. Choose n, such that |u,—ul<<d if m>n,. Hence, if m>n,,
| P, — Fu|| < e. Therefore Fu, - Fu in C[0, 2x] and so we have proved that F
18 compact. A similar, but simpler, argument shows that F is continuous.

(b) now follows immediately from theorem 2.2.

‘We shall now discuss two alternative formulations of the rather cumbersome
condition (2) of theorem 4.2.

(1) Firstly we study a system of second order equations similar to that studied
by LracH in [9]. Consider

(4.8) w; (8) + g;(t, (1) = hy(ty ug (D), ooy U, )y Ug(E), -ovy Up(E))

(4.9) #4{(0) = u,(2m) ;  w;(0) = wu;(27)

for j=1,..,n where %;: [0, 27] > R, ¢;,: [0,22]1 xR —> R and h;:{0,2a]xR* > R
and the following conditions are satisfied:

{iy the function (f, ) — (0g,/0x){t, z) is continuons; there exists >0 and an
integer m; such that (m; 4 0)2 < (9g,/02)(¢t, ) < (m; + 1~ 8)2, for all 1[0, 2a] and
all zeR.

(ii) h; is continuous and has bounded range.
It we let u, = v, and u;, = w,, we see that (4.8), (4.9) is equivalent to the system

(4.10) w' () = A(t, u(t)) + h(t, u(t))

w{0) = u(27)

where u: [0,2n] — R such that wu(t)= (v.(t), wi(l), ..., va(t), wL(1)), A: [0, 27] x
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X B — R guch that

A(tS wl? yl? ey mﬂ? y’ﬂ) = (y1§ - g(t7 wl)? rr yﬂ? - g(t? a’ln))

and h: [0, 27] X R?" —> R?» such that h = (0, hy, 0, ks, ..., 0, B,,).
It is easily verified that o — A(f ) is Fréchet differentiable with A'(t, @) =
= diag(B;, By, ..., B,) where
0 1

B; = 0g;
""’% (t7 ”a‘(t)) 0

25
Hence, if u e 0[0, 27, fA’(s, u(s)) ds = diag(C,, ..., C,) where
0

2
0 2z 2
O, = (lc,- o ) and &, :—-»f %(s, 0;(8)) ds .
0
2n S,
The eigenvalues of fA’(s, u(s))ds are + V= 2nk;i. By () 2a(m; + 0P <—k; <
0
< 2na(m; +1— 8)%. Hence dist [{2mni: n is an integer}, {A: 1 is an eigenvalue of

27

[A(s, u(s)) ds}] > 2md.

Y Tt is now clear that (4.10) satisfies all the hypotheses of theorem 4.2 and so (4.8),
(4.9) has at least one solution.

(2) We can replace condition (2) in theorem 4.2 by a condition on the num-
erical range of the Fréchet derivatives of 4.
If TeM,, the numerical range of 7, denoted by 6(T), is defined as {(Tu, u):
we O |u] =1}. It can be shown that 6(T) is convex (Karo [6]).

THEOREM 4.3. — If 6(4'(t, @)} is contained in a closed convex set K for all
an

te{0, 27] and all xeCm, then 6[ fA’(s, u(s)) ds} is contained in the convex set
0
K, = {2nx: 2 e K} for all ue C[0, 2x].

Proor. — Let ue 00, 2a] and ze C* with |z = 1.

O’.\g,

A'(s, u(s)) m) ds
is the limit of Riemann sums of the form

a—1
> (Sis1— si)(A’(si, u(s,)) z, w) where 0 = s, <8 < ... <8, == 2m.
i=0
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n—1
Sinee Y (2m) M8:,— 8;) =1 and (A’(s,-, u(s;)) z, w) eK for i=0,..,n—1,

i=0

n—1

> @) (40— 5(4 (55, u(s.) @, @) € K e,

i=0

n—1

S (52— 8)(4(s:)) o, @) € K.

i=0

2n
Since K, is closed, _[(A’(s, u(s)) x, m) dse K,. By considering Riemann sums it can

0
easily be shown that

201

f(A’(s, u(s)) z, m) ds =( TA'(S, u(s)) ds @, w) ek,
g

0

and this completes the proof.
Since, for Te M,, 6(T) clearly contains all the eigenvalues of 7, by theorem 4.3
we can replace condition (2) by

(2') there exists a closed convex set K and 8> 0 such that 6(4'¢, #))c K
for all t€[0, 2r] and all 2e " and

dist [K,, {ni: n is an integer}] >9.

5. — In this section we shall apply the results of section 2 to obtain existence and
uniqueness theorems for nonlinear boundary value problems associated with elliptic
and ordinary differential expressions.

Let £ be an open subset of R* with smooth boundary denoted by bd(£2). We
shall congider only linear differential operators generated by the Laplacian, 4, bub
it is eagy to see how our results can be extended to higher order expressions or to
elliptic expressions with variable coefficients. We shall apply theorem 2.2 where
X = ¥V = L,(Q2)—the set of all real-valued Lebesgue square integrable functions
on £ with norm Huﬂo:{ f{u(m){zdm}%. We shall also require the space Oj(2) =

2

= {u: £ —> R: u has continuous second order derivatives on 2 and u(z) = 0 for all
zebd(£2)} and the space N,(Q)= {u: 2 — R: all generalized partial derivatives of u
of order <2 are in L,(Q)} with norm ﬁfwﬁz:{ > EID%}E%}%

2

Let L: D{L) — L,(2) be such that Lu = — Au{z) + g(®)u(x) where ¢: Q@+ R is
measurable and weD(L) if and only if uwe C3(Q) and — Au + que L,(92). In the
examples which we shall discuss L is essentially self adjoint with closure L. Moreover
we shall have that D(L) = H)(2)—the closure of 03(2) in | |,—and that the graph

norm on D(L) is equivalent to ||.. In this case we have as an immediate conse-
quence of theorem 2.2:
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TaeorEM 5.1, - If

(1) N: Ly(Q) — Ly(2) is continuously Fréchet differentiable and there exists
K >0 such that |N'(u)| <K for all ue Ly(Q),

(2) L + N'(%) has a bounded everywhere defined inverse on L,(£2) and there
exists >0 such that [[L+ N'(u)] 1] <6 for all ueL,(Q),

(3) F: HY (D) — Ly(2) is compact, continuous and has bounded range, then
there exists at least one solution of Lu -+ Nu = Fu.

We consider the case where N is a Nemytskii operator i.e. there exists g: B — R
such that (Nu)(x) = g(u(m)). We shall give conditions on 2 and g to ensure that
the conditions of theorem 5.1 are satisfied.

Suppose that g has a continuous derivative and that there exists M > 0 such
that |g'(x)|< M for all zeR. Let ue L,(Q2). Then

[(Nu)@)| = lg(u(@)) < lg(u(@) — g(0)] + [9(0)] = lu(@)|lg'()] + 9(0)| < M Iu(x)]| + |9(0)] .

Hence, if g(0) =0 or if Q is bounded, N: Ly(Q) — L,(£2). It follows from the Le-
besgue dominated convergence theorem that N is continuously differentiable with
(N'(u)R) (@) = ¢’ (u(2)) hiz). Hence |N'(u)]<M.

The following lemma is useful for verifying that condition (2) is satisfied.

LeMMa 5.2. Let A be a densely defined self-adjoint operator on I,(Q) which is
bounded below. Suppose that there exists a € R such that the essential spectrum
of A is contained in [a, co) and A has a finite or infinite number of eigenvalues
la<<ly<..<a. If there exists an integer %k, >0 and p: Q2 — R such that
A+ 0<plw) < Ay — 6 for all e 2, then, if 4,4 = Au—pu, 4, has a bounded
everywhere defined inverse and |4;'|<d L

Proor. — It is obvious that 4, is self-adjoint. Let F, be the family of all
(k— 1) dimensional subspaces of L,({2) and, if F ¢ F,, let F* denote the orthogonal
complement of F. It is well known that

A= sup inf {(Adu, u): |u| =1 and weFL}
FeFe

Define
i = sup inf {(4,%, u): [u] =1 and ueFL}.
FeFr

If FeF,,

inf {(Ayu, w): Jul =1 and uwe P} = inf {(Au, u) — (pu, w): |u] =1 and we F'}<
<inf {(du, w): ju] =1 and v e F*} — (& + O <l — (b + 8) = — 0.
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Hence

Let {w,} be an orthonormal sequence of eigenvectors of A such that Adw;= A,w;,.
Let P = [w,, ..., w;] € Fryy. Then

P >int {(4,u, v): |u] =1 and we P4}
>inf {(Au, u): [u]| =1 and ue P4} — (A, — 6)

Since inf {(du, u): |u| =1 and we P} = Ay,
(5.2) Prga>0 .

If 4, has essential spectrum in (- oo, d—¢), where &> 0 it is easy to see that
;<< 8 — ¢ for all integers j. Since ¢ iy arbitrary, (5.2) shows that A4, has only eigen-
values in (— oo, §) and that the dimension of the subspace spanned by eigenvectors
corresponding to these eigenvalues is less than or equal to k. By (5.1) there is a
snubspace of dimension % consisting of eigenvectors of A4, corresponding to eigenvalues
in (—oo,— §]. Hence (— 4§, §) contains no points in the spectrum of A4, and so 0
is in the resolvent set of 4,. Therefore A4, is invertible and, by Karo {6}, V 3.16,

1A = dist[0, spectrum of A,]< .

Suppose that £ is bounded and g is bounded and measurable. The following
results can be found in Acmon [1]. L is essentially self-adjoint, L is bounded below
and the spectrum of L consists only of the eigenvalues A, <A;<A;<.... The coer-
civeness inequality |u],< C(|LZu], -+ |ul,) implies that D(L) = H3(2) and that the
graph norm of L is equivalent to |]s,.

If g: R — R has a continuous derivative and there exists an integer % and
6> 0 such that 4, + 6 <—g'()< Aen— 6 for all te R it follows from lemma 5.2
that |[L 4 N'(u)T1] < 6-1. Hence conditions (1) and (2) are satisfied.

If (Fu)(@) = f(x, u(x), u'(»)) where f: 2 X RX R — R is continuous and has bounded
range, F': H () - L,(Q) is continuous by LANDESMAN and LAZER [7] proposition 3.1.
Since the embedding from H(2) to H, (L) is compact and continuous, F': Hy(Q) — Ly(£2)
is compact and continuous. Clearly ¥ has bounded range and so condition (3) is
satisfied.

The above results where 2 is bounded and N and F are Nemytskii operators
are a special cage of the results of LANDESMAN and LAZER [7]. Because of the general
nature of our theorems 2.2 and 5.1, however, we can easily extend our results to
the case where 2 is unbounded.

Consider, for example, the case where {2 = (0, o) and

(5.3) (Lu)(®) = —u" () —j—cu(w) .
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We recall that » € D(L) only if %" is continuous and %(0) = 0. By Karo [6], V 44
and STUART [12] L is essentially self-adjoint, D(L) = HZ[0, oo] and there exists
K >0 such that the graph norm of L -~ KI is equivalent to ||,. Moreover, the
spectrum of I = {—4/n*:n=1,2,..}U [0, o) and, for each positive integer n, — 4/n?
is a simple (multiplicity one) eigenvalue.

Suppose that ¢g: B — R has continuous derivative and there exigts an integer %
and 6> 0 such that

(b.4) ———%—{— d<g'(ty<— d for all teR; g(0)=0.

4
(k412
If (Nu)(@) = — g{u(w)) — Ku(w), then L 4 KI and N satisfy conditions (1) and (2)
of theorem 5.1.

Define F: HJ[0, co] — L,[0, co] by (Fu)@) = a(z)f(2, u(z), w'(¥)) where f is con-
tinuous and has bounded range and ¢ is continuwous and

(6.5) acl,[0,c0]; lima(x)=0

It Ho, 9, 2)|< M for all z, 9,26 R and u € L,[0, oo], then |Ful,< Ma|, and so F
has bounded range. If 7> 0, F: HJ[0, T] — L,[0, T] is compact and continuous by
proposition 3.1 of LAXDESMAN and LAZER [7] as we proved above. Since a}gg alz) =0,

a simple subsequence argument, like that in Brown [2] section 10, shows that
F: HJ[0, co] — L,[0, o] i3 compact and continuous.
Hence theorem 5.1 proves that there exists at least one solution of the equation
(Lu)z) — g(ul@)) = al@)f(z, w(@), v (@)

where L is given by (5.3), ¢ has a continuous derivative and satisfies (5.4), ¢ and f
are continuous, f has bounded range and « satisfies (5.5).
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