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Summary: - See Infroduction

Let I =10, ][0, b] be an interval in the (z, y) — plane and y = a(z)
a strictly monotonic decreasing curve with endpoints (0, b) and (@, 0). We
look for a function wu(z, y), absolutely continuous in I, satisfying the diffe-
rential equation

(1) Uy == f(x} Y U, U, 7’?’7)

almost everywhere in I and taking on prescribed values on the curve, together
with its first derivatives

(2 ufz, ale)) = oifa),

ufx, a(z)) = oufz).

At first, we show that problem (1), (2) is solvable if the given functions
satisfy conditions similar to those of Cararmiopory (cp. introduction of [1])
for the initial value problem

(3} u = g(x} %), ’&6(0} = U%o.

Then we admit linear growth of f with respect to #, u, and u,, reducing
this case to an existence theorem of [1] by means of a priori estimates. Next,
we prove a ftheorem on dependence on parameters for (3). Essentially, it says
that the solution of (3) depends absolutely continuously on the parameter if
the right hand side g has the same property and satisfies a Lrpscuirz condition
with respect to #. Applyng this theorem, we state some conditions sufficient

(*) Entrata in Redazione il 25 novembre 1970.
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for the solution u of problem (1), (2) to have integrable derivatives u.. and
u,,. In case of classical solutions of Darmoux’s problem, Z.e. (1) together with
u(z, 0) =o0(z) and «(0, y)=<(y), the latter question was considered in [b]
and [6].

Let us note that we have chosen the somewhat complicated uniqueness
conditions in Theorem 1, which are the weakest known ones, since it is still
an open question whether (1), (2) has an absolutely continuous solution if, for
example, f is only continuous and bounded. It is well known that these
conditions are not sufficient for the existence of a classical solution, as was
shown in [3].

1. - Let RB? be the p-dimensional, real Euclidean space. A set F of
functions f(z) is called almost uniformly bounded on 4 C R, if to every ¢ >0
there is a set A, C A with p{d— 4,) < e and a constant M, > O such that
|f(x)] < M, for all feF and ze€ 4. denotes the p-dimensional Lrseseur
measure) If 4 C Rr is compact then C(4) denotes the space of all real valued
functions ¢(z) continuous on 4 with norm |¢lo = max [¢(z)|. If 4 is measu-

A

rable then L(4) stands for the space of all functions Lesrseur integrable
over A. In the sequel, we always have I.=[0, @}, I, =1[0, b] and I =1I, X
xI, C R*.

C(I) is the space of all functions u(x, y), defined in I, continuous in z
and measurable in y with

f = [ max (ufe, 7)|dy < oo.
[x
I
Y

C(I) is defined correspondingly.
The inverse function of a(x) is denoted by B(y). ‘Almost everywhere’ and
‘for almost all’ is shortened by a.e. and f.a.a. respectively.

2. - The formal integration of (1), (2) yields

(o, 4) = al8ly) + f o:E)E + f f FE 1, w0, s, ws)dEdn
B(») Bly) al®)
(4) 'uz(ac, y) = 0'2(37) +J-f(x) N, Y1, Uz, “3)d72

a(z)

us(z, y) = oi(B()3 () — o:B(y)E'(Y) + ff E y, wr, uz, us)dg,
k)
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where the arguments of u; in the integrals coincide with the first ones of f,
and (uy, u:, us) stands for (w. wu., u,).

Let BE= C(I)X CjI) X C{I) be normed by |u|=/ui|o |uz|, + |us|..
An element ue E is called a solution of system (4) if it satisfies the first
equation on I, the second one on I, {(f.a.a. z) and the third one on I, (f.a.a. y).
On account of Hiurssarz D in [2], u; is then a solution of Cavcmy’s problem

(), )

Tarorem 1. - Let a(z) be strictly decreasing and absolutely continuous in
I. with «(0) = b and ala) = 0; ai(z) absolutely continuous in I, and o,(z) € L(L);
flz, y, 2) defined in I>< R? wmeasurable in (z, y) and continuous in z with
|flz, ¥, 2)| << M(x, y)e L(I). The equation

¥

vly) = oa(z) + 11_?30 f(z, n, @(n), vln), $u(n))dy

alx)

have (f.a.a.x € I.) at most one solution v(y) continuous in I, if an arbitrary
€ C(L) and an arbitrary sequence (3.(y)) C L(1,), almost uniformly bounded
on L, are fixred. The equation

%

wia)= siBY)E ) — clB)B ) + f FIE v5E), DIE) wiE)dE

B(»x)

have (f.a.a. ye L) al most one solution wiz), continuous on I, if an arbitrary
ve Ol ) and an arbitrary ¢ e L(L) are fized.
Then, system (4) has a solution ue E.

This theorem is a particular case of Theorem 1 in [1, §2}. The condition
(5) (e, y2) | < M (2, y)e L(I)

excludes, for example, linear equations (1). In the following two sections, (5)
is weakened so that the linear case is included.

3. - We start with two propositions that yield a priori estimates for the
solutions of (4).

Provosmrion 1. - (a) If of(z), g(x)e C(L) and M(z)e L(L) are non-negative
and if

) ole) < glo) + f M E)lE)d,
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then there is a constant ¢, > 0 such that
ole) < ¢+ max {g(f): v <E=<al.

(b) Let a(z) be as in Theorem 1; o(z, y), glx, y) € C(I) and M (z, y) € L(I)
non-negaiive;

L =& njel: n<alg)}; Lofz, y) = LN{E el =2 and y =y}
and
x ¥

oz, 9) < glz, 4) + f f ME, o, n)didn for (z, y)€ L.
B(») o(®)

Then there is a constant ¢; > 0 such that e¢lx, yj<<c:+ max {g(& =)
(&’ VI)EIO(%y)?-

Proof. - (a) The function {(zr) = max {¢(§) exp (-—- 2[M(1)dt):xgéga§
£

is decreasing. By (6), we have
olo) = ste) + dio) | 0 exp (2 f B ()05 <= gle) + 5 o) exp 2 f M(E)E).
x ; x
Therefore, $(z) < 2. max {g(f): z < & < a), hence
le) < 2 exp (2 f M(aE)- max [gff): v <E<a).
(b) Can be verified in the same way, using

bie, )= max (o6 ) exp (—2 [ [ 2fs, fasat): & e i, o)
g o) '
instead of ¢(z}.

Provostrion 2. - Let the conditions of Theorem 1 on alz), oifz), osx) and
flx, y, 2) be satisfied; bul, instead of (b), let us assume thot

(7) [f(z, ¥, 2)| < Mo(z, y)+ Mz, y)o1 + Ma(y)22 + Ms(z)2s
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holds with Mz, yye L(I) for i =0, 1, M.ly)e L(L,), M;z)e L(l,) and M;=0
for i==0, ..., 3.

Then there exist a constant Ky > 0 and fanctions K.(z)e L(L), Ksly)e L(L)
such that

(@, )| < Kwple, 9)dle, y), [, y)]| < Kef2)ole, g, y) faa sel)
[us(z, y)| < Kslyle(z, yib(z, y) (La.a. yel)

holds for every solution w of system (4); here,

olz, y) = exp ( sz(i)d& ) and ¢(z, y) = exp (Uy-Kg(vg)dn})

Bl afx)

Proof. - Let u be a solution of (4). By (7), we have

x

ML, 0)lmaE, m) [dEdn +

e, 9)[ =] onlo -+ f o8} dE + f Mot n)didy +
0 7 Bly) olf)

9

Ed

+ f j (M) |, )| -+ M(E) (8, )| )z,

B wlf)

Applying the Lemma of Groxwary for two variables (see {7, 19 III)) in
case = = f(y) and Proposition 1 (b) in case z < B(y), we obtain, since in the
latter case the last integral in (9) is decreasing in (z, y)

x

(o) e gysetd [ [ abnin o)+ M6 i 0)ijdEan
By} a®)

with positive constants ¢; and d,.
From the second equation of (4), we have

sz, 9)] < | oole)| + f Mo, n)dn + \ f M) |l n)ldn‘

a(x)

Y

+[

el

e, 1) e, )]+ Bl ol )| .|

Annali di Matematica 49
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Applying Grovwarr’s Lemma for one variable (see [7, 1 III}) and Propo-
sition 1 (b) respectively, we obtain

J

[ atte, e, 1)1+ 3w, 1) fn,
o{x)

(11) suz(x, Y =< Cz(x) -+ de

with O <cs(z) e L{I,) and d: > 0. By a similar conclusion

(12) sz, )| < esly) -+ dgi f iMl(E, 9) | mE )|+ Mafy)|u-(E, y)!fdﬁl-

()

Substituting |us(, )| and |usE, n)| in (10) by the bounds (8), an easy
calculation yields :

(13) e, o) <o + f Mi(E)E + dy j Ma(m)anlole, 9)b(a, 1).

Thus, from (11) and (12), we obtain the following conditions (14) on Ks(x)
and K{y)

o) +Jonds + i f itnjan + [ aMs(&Jdﬁ)} f Mifz, 1)y + doMife) < Kofo)
(14)

esy) + fords + dud| f sz(n)dn + f aMa,(&)d&)} f aMl(&, Y)AE + dsMaly) < Kofy).

Hence, if we define Ky(z) and Ki(y) by (14) with the sign of equality and
it we take the wavy brackett in (13) for K, Proposition 2 is proved.

4. - As a consequence of the a priori estimates just established, we have
the following extension of Theorem 1.

Turorem 2. - Let all conditions of Theorem 1 be satisfied, with (b) replaced
by (7). Then there exists an absolutely continuous solution of Cavomy’s problem

1), ).
Proof. - Let Kix, y)(é = 1, 2, 3) be the bounds in (8) which are determi-
ned by (13) and (14). Let

c for s<c
os; 0, d)=4{8 7 c<s=d
d” s>ad
and define zfz, y) = olo:;; — Kifz, y), Kfz, y)) for i=1, 2, 3.
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Then, f*z, ¥y, 2) = flz, 9, #(z, y)) satisfies (D). Hence, system (4}, with f*
instead of f, has a solution # (Theorem 1) since both uniqueness conditions
remain valid (cp. Theorem 1 in I, §3]). On account of the a priori estimates,
u is also a solution of the original sysftem {4).

For linear equations (1), we have the following

Cororvary. - Let the conditions on a(z), oi(z) and oifx) in Theorem 1 be
satisfied and let

3
f@, 9, 9) = ade, y) + = aie, yl: wilh afz, y) e L(I),
izl
sup |ax(z, y) € L(L) and sup |as(z, y)| € L(TL).

% ¥
Then problem (1), (2) has an absolutely continuous solution.

Remarks. — (a) If the coefficient as(z, y) or as(z, y) is only integrable
then problem (1), (2) need not have an absolutely continuous solution, as the
following example shows: I=[0, 1] X [0, 1], «(z) = (1 — 2}k, oi(z) = 0, oofz) =
=1, flz, y, 2) = (1 — ) =2; if a solation exists, then u.(x, y) is a solution of
¢ = (1 —2)~"p and ¢((l —2)'k) =1 (f.a.a. z€ L), hence u.zr, y) = exp (y(1 —
— z)~'h — 1) and therefore u., ¢ L(I).

(b) The method applied in the proof of Proposition 2 can also be used
to improve a known existence theorem for Darsoux’s problem (see [2,a (y) =
= 0)), assuming (7) instead of (5).

(c) By means of the estimates (10j-(12), one can verify immediately
that (4) has exactly one solution, if f(r, y, #) satisfies a Lipscmirz condition

(@ 4 =1, 4, 2] <Mz, y)| 21 — 2| + Dofg) |22 — 22| + Mifa) |25 — 2|

with the functions M; from (7): If w is the difference of two solutions of (4)
then we have (10)-(12) with ¢; = 0; for ¢ >> 0, we choose bounds of the form

|wofe, y)| < eKa(z)ole, ylblz, y), |mwile, 9)] < eKslyelz, y)dle, y)

{ep. (8) and we obtain (14} with ¢, =0 for ¢ =1, 2, 3; hence, there is a
constant ¢ > 0 with

max (|#wio, {Waly, [Ws]|s) < c-e le. w=0€kE.

5. — Under the conditions of Theorem 2 there exists a solution u(z, y)
with u., € L(I). Now, we give some conditions sufficient for # to have inte-
grable derivatives .. and u,,. To this end we prove at first a theorem on
dependence on parameters for problem (3).
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Tarorem 3. - Let y(y) be absolulely continuous and wmonotone on I, with
values in I.; oly) absolutely continuous on I,; glz, y, #) defined on I X R,
measurable in x© and absolutely continuous in y with sup {|gdz, y, 2):|2] <
< cje L(I) for every ¢ >0, and g(z, 0, 0)e L(L). Moreover, g satisfy the
Lapscmrrz condition

(15) |9(e, 9, 2 — gle, y, 2] < klz)|s — 2| with k(c) e L(L).
Then, for every ye L,, the initial value problem

(16) u =gz, ¥y, ) ulyly) = oly)

has exactly one solution u(z, y), absolutely continuous in x. Moreover, u(z, yj € C(I)
and u{z, y) is absolutely continuwous in y for every xel. If, in addition,
9,(z, y, 2) is continuous in z then u(x, y) is absolutely continuous on I.

Proof. - Let us assume that y(y) is decreasing. At first, we have

\9(z, 3, 9)| <lg(z, 0, )] +f1gy(x, 7 O)|dn -+ K{z)| 2],

ie: |g(@, ¥, 2)| < M(2)(1 + |#|) with M(x)e L(L). Hence, the first two assertions
of the theorem are valid (cp. the proof of Theorem 4, next sec.). Since

wa, 9) = ofy) + f 9 9, ulE, Y)dE for @, 9)€ ],
(7

it is obvious that u is absolutely continuous in z. Now, let zel, be fixed,
Yo < 91 < ... <y points of I, vi =1v(y:) and o; = ofy:). Then, we have
Yi—1

fule, 1) —ul(z, yia)| |0 — 0| 4 fM{E}(l + ufo)dE +

+f f sup o 7 )1d6dn+Uk )G, o) — ey g )15
T ’ Yo
Therefore, Gronwarr’s Lemma and Proposition 1 (a) yield
Yie1

(e, 9) — u(z, 4is)] < 0]0: — oia] f+?c<1 + [w]o) f MEAE +
i

+cf j swp 1966 7, 2)lddn

Fie]
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for some constant ¢ > 0. Since the functions on the right hand side are
absolutely continuous in y, so is u{r, y). Especially, we have

a

(17) (uz, g scldy) |+ ol +u|dMr(@)y'(@) +c f sup |g,(§, 9, #)| d€ e L(L).

z|=<|ulo

To prove the last assertion, let us note that gz, y, ¢ff)) is absolutely
continnous in ¢ for any absolutely continuous function off), by (15) (see [4,
sec. 38.1]). Hence, if g, is continuous in #z, we obtain

Uy = gol@, Y, uiw, 9)) + g:(v, Y, ulz,ghulz, y) ae. on I
from (16). Thus, u.,€ L(I) follows from (15), (17) and the assumption on g,.

‘ 6. - We use Theorem 3 to prove the following

Tasorem 4. - Let oi(z) and oz) be absolutely continuous on I.; ofz)
strictly decreasing, o'(x) absolulely continuous, «(0) ="b and ofa) =0; f(z, ¥, ?)
defined on I X R?, absolutely continuous in z and y (separately) with

sup {|fim, 9, @) :la] <¢, i=1, 2, 3} e L(I) and

sup {|{fdz, ¥, #)|:]|%|<c)eL(I) for every ¢ > 0;

1, 3, ) — (@ 9, 3| <K, 9)- 3 |2~ al with sup kiz, y)€ L(L)

and sup k(z, y) e L(L).
I}'

Then Cavony’s Problem (1), (2) has exactly one solution which is absolutely
continuous in I and such that w.. and u,, exist a.e. on I and are in L(I).

Proof. - We have

18) [fle, D =170,0, 011+ [ 1760, 01+ [ 15fa,  O)ldn +He, ) 3 1,

ie., [ satisfies an inequality of the form (7). Since the Lipscmmz condition
of the theorem is a particular case of the unigqueness conditions in Theorem
1, every condition of Theorem 2 is satisfied. Hence, problem (1), (2) has exactly
one absolutely continuous solution u(xz, ¢) (cp. remark (¢)).

Moreover, we have f.a.a. yel,

wz, ) = ofy) + f fE o), wE o) w 9) wE 9)dE,
B
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where os(y) = a1(B(y))B'(y) — o=(B(w)B'(y). Since f*E, y, 23) =, y, ul§, y), w.ls, y), 2)
is confinuous in y and measurable in £ and satisfies a Lapscmirz condition
in #3 (with sup k&, y)), the equation

I

Y

wle, 9) = o)+ [ £ 0. wiE, 9
B(»)
has exactly one solution we C(I) which, in addition, is absolutely confinuous
in z(for every y) and coincides with u,z, y) a. e. in I. Let us add that the
continuity of w follows easily from Baxace’s fixed point theorem: Let y

f kl(z)d-;!)

[v(z) | exp(— 2
B0

where kt) = sup k(r, ¥), and the operator T': C(I,) » C{I,), defined by (Tv)(x) =
I

¥

be fixed, consider ve C{I,) with norm |v|, = max

%

¥

= os(y) + ff*(E, y, v())dE; an easy calculation yields |Tw — Tahgélﬂm—az;
B(x)

hence, starting successive approximation with v%z, y) = os(y), all approxima

tions v*(z, y) are in C(I); this implies continuity of the limit function w(z, y),

since

@

|oH(z, §) — (e, B)| <20t — 0o+ exp (2 f kl(t)dc).

Thus, the function u,(z, y) can be redefined on a set of measure zero
such that it becomes continuous on I. The same conclusion holds for u.. Now,
gz, y, %) = f(z, y, wlz, ¥), w.z, y), z;) satisties the conditions of Theorem 3,
which implies the existence of u, a.e. in I and wu, e L(I). Existence and
integrability of u.. are shown correspondingly.

For the linear equation

Uy = 0of2, Y) + arlz, yu + wofe, y)u. + as(z, Yy

our condition on f in Theorem 4 means that the coefficients aiz, y) are

absolutely continumous in x and y (separately), with ;—m ai{z,y) € L(I) and
%ai{x, y)€ L(I). This implies neither continuity nor boundedness of adz, u),
as the example

(oY) exp (—ay—h) for 0 <y =<1
alz, y) = wd O=o=t
0 for y =0

ghows.
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