
Absolutely continuous solutions of Cauchy's problem for 

u ~  = f (x ,  y, u, u~, u~). 

KLAUS DEIMLING (Germania Federale) (*) 

Summaryt - See Introduction 

Let I - - [ 0 ,  b]:><[0, b] be an interval  in the (x, y ) - -  plane and y - - a ( x )  
a strictly monotonic decreasing curve with endpoints (0, b) and (a, 0). We 
look for a funct ion u(x, y), absolutely continuous in I, satisfying the diffe- 
rent ial  equation 

(1} u~y = f(x, y, u, u~, u~) 

almost everywhere in I and taking on prescribed values on the curve, together 
with its first  derivatives 

(2) u(~, ~ ( x ) ) =  el(x), 

u~(x, :¢(~)) = ~2(x). 

u~(x, ~(~))~'(~)= ~1'(~) - ~2(x). 

At first, we show that problem (1), (2) is solvable if the given functions 
satisfy conditions similar  to those of CARATH]~0DORY (cp. introduction of [1]) 
for the initial value problem 

(3) u' = g(x, u), u(O) = Uo. 

Then we admit  l inear  growth of f with respect  to u, u~ and uy, reducing 
this case to an existence theorem of [1] by means  of a priori estimates. Next, 
we prove a theorem on dependence on parameters  for (3}. Essentially, it says 
that the solution of (3) depends absolutely continuously on the parameter  if 
the right hand side g has the same property and satisfies a LzPscHi~z condition 
with respect  to u. ~_pplyng this theorem, we state some conditions sufficient 

(*) Entrata in Redazione il 25 novembre 1970. 
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for the solution u of problem (1), (2) to have integrable derivatives u~x and 
uxy. In  case of classical solutions of DARBOVX'S problem, i.e. (1)together with 
u(x, O)= z{x) and u(0, y) - -z (y) ,  the lat ter  question was considered in [5] 
and [6]. 

Let  us note that we have chosen the somewhat complicated uniqueness  
conditions in Theorem 1, which are the weakest known ones, since it is still 
an open question whether (1)~ (2) has an absolutely continuous solution if, for 
example, f is only continuous and bounded. It is well known that these 
conditions are not sufficient for the existence of a classical solution, as was 
shown in [3]. 

1 . -  Let  Re be the p-dimensional ,  real Eucl idean space. A set F of 
functions f(x) is called almost uniformly bounded on A C RP, if to every ~ > 0 
there is a set A ~ C A  with b t ( A - - A s ) < s  and a constant M s > 0  such that 
If(x) l ~ M~ fer all f e  F and x eA~(~ denotes the p -d imens iona l  LEBESG-UE 
measure) If A C Rp is compact then C(A) denotes the space of all real valued 
functions q~(x) continuous on A with norm [q~lo- max '~(x)l. If  A is measu- 

A 

ruble then L(A) stands for the space of all functions LEBES(~UE integrable 
over A. In  the sequel, we always have L - - f 0 ,  a], I x - - f0 ,  b] and I - - - - L X  
×Iy  C R: . 

C~(I) is the space of all functions u(x, y), defined in /, continuous in x 
and measurable  in y with 

l u t x - - f  max l u(x, ~) l d~ < ~ .  I, 
*y 

Cy(I) is defined correspondingly. 
The inverse function of o~{x) is denoted by ~(y). 'Almost everywhere' and 

'for almost all' is shortened by a.e. and f.a.a, respectively. 

2. - The formal integration of (1), (2) yields 

u~(x, y) -- z~(~(y)) -t- f z2(~)d~ + .  f(~, 
~(y) ~(y) ~(~.) 

~, ul,  u2, u3)d~d~ 

(4) 

Y 

u2(x, y)--~2(x)÷ff~x, ux, u2, ua)a  
a(~) 

x 

u3(x, y) -"  ~'~(~(y))~'(y)- ~2@y))~'(y)-[-.ff(~' y, u~, u2, u3)d~, 
?,(y) 
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where the arguments  of u~ in the integrals coincide with the first ones of f, 
and (ul, u2, u3) stands for (u. u~, uy). 

Let  E - - C ( I )  X Cz(1)X Cx(I) be normed by l u ] - - I U x ] 0 - b ] u 2 I y + l u 3 ] , .  
An element u e  E is called a solution of system (4) if it satisfies the first 
equation on I, the second one on 1 x (f.a.a. x) and the third one on L (f.a.a. y). 
On account  of HiL~ssA~z 5 in [2], u~ is then a solution of CAvc~Y~s problem 
(I), (2). 

T ~ o ~  1. - Let or(x) be strictly decreasing and absolutely continuous in 
L with o~(0) ~ b and :¢(a) -~ 0; a~(x) absolutely continuous in L and a~(x) ~ L(L); 
f(x, y, z) defined in I X  R ~, measurable in (x, y) and continuous in z with 
If(x, y, z) l ~ M (x, y) ~ L(I). The equation 

Y 

v(y) -" o2(x) + lim. , f f(x, ~, ¢~(~), v(vt), %(~))d~ 

have (f.a.a.x e L) at most one solution v(y) continuous in I~,, i f  an arbitrary 
~?e C(Iy) and an arbitrary sequence (%(y)} c L(Iy), almost uniformly bounded 
on Iy, are fixed. The equation 

x 

w(x)= ~4~(y))~'(y)- ~2(~(y))~'(y) + f f(~, y,~(~}, q~(~}, wt~t)d~ 

have (f.a.a. y e Iy) at most one solution w(x), continuous on L ,  i f  an arbitrary 
¢~ E C(I ) and an arbitrary ~ e L(L) are fixed. 

Then, system (4) has a solution u e E. 

This theorem is a par t icular  case of Theorem 1 in [1, §2]. The condition 

(5) If(x, y,z) l ~ 31(x, y) e L(I} 

excludes,  for example, l inear  equat ions (i). In the following two sections, (5) 
is weakened so that tim linear case is included. 

3. - We start  with two proposit ions that yield a priori est imates for the 
solutions of (4). 

PRoPosI~IO~ 1. - (a) / f  ~(x), g(x)e C(L) and M(x)e  L(L) are non-negative 
and i f  

(G) 
a 

 (xl <_g(x) + f M(i) ti) i, 
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then there is a constant c~ ~ 0 such that 

+(,) _< cl • max  {g({): x <:: { ~ a}. 

(b) Let ¢*(x) be as in Theorem 1; ¢~(x, y), g(x, y) ~ C(I) and .M(x, y) e L(I) 
non-negative; 

and 

Io - -  {({, ~) e I: ~ <: ~({)1; Idx, y) --  Io A {({, ~) ~ I: { ~ x and  ~ ~ y} 

~(x, y) ~ g{x, y) 4 7 f  

Y 

f M(~., ~)qa(~, ~)d~d~ for (x, y)~Io.  
(9 

Then there is a constant c2 > 0 such that ~(x, y)<_c~, m a x  tg(~, ~): 
(~, ~) ~ Io(x,y)}. 

a 

~ r o o f ,  - (a)  T h e  f ~ n c ~ i o n  ~ ) ( x ) - - -  m a x  { ~ ( ~ ) e x p  ( - - ~ / _ ~ ( ~ ) d ' ~ ) * * ~  at 
i /  

is decreas ing .  By (6), we have 

a a a 

x ~ x 

Therefore ,  ~(x) ~ 2. m a x  Ig(~): x ~ ~ ~ a}, l lence 

a 

, )  
0 

(b) Can be ver i f ied  in the same way, us ing  

~,x, y)= max I~(~, ~, oxp (--~ f ~ l ( s ,  ,,dsd,): (~, ~,O,o(~, y,, 
~(.~) ~(s) 

ins tead  of ~(x). 

PaoPosivio~¢ 2. - Let the conditions of Theorem I on ~(x), oh(x), ¢~2(x) and 
f(x, y, ~) be satisfied; but, instead of (5), let us assume that 

(7) If(x, y, z) t < Mo(x, y) 47 M~(x, y)z~ q- M2(y)z2 47 M~(x)z3 
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holds with M~(x, y) e L(I) for i --  O, l, M2(y) e L(Iy}, M~(x) e L(L) and M~ ~ 0 
for i = 0, ..., 3. 

Then there exist a constant K~ > 0 and  fanctions K2(x) e L(L), K3(y) e L(Iy) 
such that 

(s) 
t u~(x, Y) I ~ K~T(x, y)~(x, y), j u~(x, y)] ~ K~(x)~(x, y)~p(x, y) (f.a.a. x ~ L) 

l u3(x, y) l<_ K3{y)c~(x, y)~(x, y) (f.a.a. y e 5) 

holds lo t  every solution u of  system (4); here, 

,a( y) 

Y 

Proof. - Let u be a solution of (4). By (7), we have 

o ., ~(y) ) 

(9) 
~ y 

~(y) a(,,) 

Applying the Lemma of GRO~WALL for tWO variables (see [7, 19 III]) in 
case x~[~(y)  and Proposition 1 ib) in case x ~ ~(y), we obtain, since in the 
lat ter  case the last integral  in (9) is decreasing in (x, y) 

(lol 

x 

I ul(x, y)! < e~ + d~ f 
~O') 

Y 

with positive constants c~ and dl. 
From the second equation of (4), we have 

b y 

o a(x) 

Y 

Annal i  di  Matemat i ca  49 
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(14) 

Applying  GR0~WALL'S L e m m a  for one variable (see [7, 1 I I I ] ) and  Propo- 
sit ion 1 (b) respectively,  we obtain 

Y 

o 

with 0 <_c2(x)e L(L) and d2 > O. By a s imilar  conclusion 

x 

Subst i tu t ing  ]u2(~, ~)] and lu3(~., ~)] in (10) by the bounds  (8), an easy 
calculat ion yields 

a b 

(13) IUl( x, Y) t "<{el 31" d1 f l~¢Js(~)d~ -It- d] f.M2(~)d~l~(x , y)+(x, y). 
0 0 

Thus, f rom (11) and (12), we obtain the following condit ions (14) on K2(x) 
and K3(y) 

b a b 

0 0 0 

b a 

0 0 0 

Hence,  if we define K2(x) and K3(y) by (14) with the sign of equal i ty  and 
if we take the wavy braeket t  in (13) for K~, Proposi t ion  2 is proved. 

4. - As a consequence of the a priori  est imates jus t  established, we have 
the fol lowing extens ion  of Theorem i. 

T~EORE~ff 2. -- Let all conditions of Theorem 1 be satisfied, with (5) replaced 
by (7). Then there exists an absolutely continuous solution of CAvc~-z's problem 
(1), (2). 

Proof. - Let Ks(x, y ) ( i -  1, 2, 3) be the bounds in (8) which are determi- 
ned by (13) and (14). Let  

~(s; c, d)  - -  " o <_ s <_ d 

" s > d  

and define z~(x, y) -- ~(~ ; - -  K~(x, y), K:(x, y)) for i - -  1, 2, 3. 
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Then,  f*(x, y, z ) =  f{x, y, z(x, yj) sa t i s f ies  (5). Hence ,  sys tem (4), with f *  
ins tead  of f, has  a so lu t ion  u {Theorem 1) s ince  both  u n i q u e n e s s  condi t ions  
r e m a i n  val id  (ep. Theorem 1 in [1, §3]). On accoun t  of the a pr ior i  es t imates ,  
u is also a so lu t ion  of the  or iginal  sys t em (4). 

Fo r  l inea r  equa t ions  (1), we  have  the fo l lowing 

COROLLA~tY. -- Let the conditions on :¢(x), z~(x) and z2(x) in Theorem i be 
satisfied and let 

3 

f(x, y, z ) ~  Cto(X, y)q-  E as(x, y)zs wilh a~(x, y)~ L(I), 
i...~l 

sup ] a2(x, y)} e L(Iy) and sup t a~(x, Y) t ~ L(L). 
~ xy 

Then problem (1), (2) has an absolutely continuous solution. 

R e m a r k s . -  (a) I f  the coef f ic ien t  a2(x, y) or a3(x, y) is only  in teg rab le  
then p rob lem (1}, (2) need  not have  an abso lu te ly  con t inuous  solut ion,  as the 
fo l lowing example  shows : I - -  [0, 1] X [0, 1], ~(x) = (1 - -  x)~/~, z~(x) -- O, ~2(x) - -  
- -1 ,  f(x, y, z ) - - ( 1 -  x)-~/:z2; if a so lu t ion  exists ,  then u~(x, y) is a so lu t ion  of 
~ 0 ' - - ( 1 -  x)-~/-~ and ~((1 ~ x)~/,) ~ -1  (f.a.a. x ~ I~), hence  u~(x, y ) - -  exp ( y ( 1 -  
- -  x)-~/~ - -  1) and the re fo re  u~y ~ L(I). 

(b) The  me thod  app l i ed  in the proof  of P ropos i t i on  2 can  also be used  
to improve  a k n o w n  ex i s t ence  theorem for DARBOVX'S p rob lem (see [2,g (y)--  
-~ 0]), a s s u m i n g  (7) ins tead  of (5). 

(c) B y  means  of the e s t ima tes  (10)-(12t, one can  ver i fy  immed ia t e ly  
that  (4) has  exac t ly  one solution~ if f(x, y, z) sa t is f ies  a LiPsc~ri~z condi t ion  

I f(z,  y,  z) - -  f ( x ,  y ,  [ l  <- M~(x, Y) I zl - -  zl j + M2(y)]z2 - -  z21 + M3(x) tz3 - -  z-~ l 

with  the func t ions  Mi f rom (7}: I f  w is the d i f f e r ence  of two so lu t ions  of (4) 
tilen we have {10}-{12) with c ~ - - 0 ;  for  ~ > 0, we choose  b o u n d s  of the  fo rm 

I~V2( x' Y) t <- ~K2(x)~(x, y)+(x, y), I w3(x, y)i_< sK3(y)~(x, y)~(x, y) 

(cp. (S)) and we  obta in  (14) wi th  c s - ' 0  for  i - -  1, 2, 3; hence,  there  is a 
cons tan t  e > 0 with 

max  (Irv~}o, lw21z, [w3l~)<_c.s, i.e. w = O e E .  

5. - U n d e r  the condi t ions  of Theo rem 2 there  exis ts  a so lu t ion  u(x, y) 
with  u v e L ( I  }. Now, we give some condi t ions  su f f i c ien t  for u to have  inte- 
grable  de r iva t ives  u~  and uyy. To this end we prove  at f i rs t  a t heo rem on 
d e p e n d e n c e  on p a r a m e t e r s  for  p rob lem (3). 
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T~EORE)~ 3. -- Let ~({y) be absolutely continuous and monotone on Iy with 
values in Ix; a(y) absolutely continuous on Iy; g(x, y, z) defined on f X R 1, 
measurable in x and absolutely continuous in y with sup i lgy(x, y, z ) : l z l <  
_< c}~L(I)  for every c > 0, and g(x, O, O)eL(L).  Moreover, g satisfy the 
LiPscm~z condition 

(15) Ig(x, y, z ) - -g (x ,  y, ~)t < -k ( x ) l z - - z l  with k(x )eL(L) .  

Then, for every y e Iy, the init ial  value problem 

(16) u' -- g(x, y, u) u (y Iy ) ) -  ¢;{y) 

has exactly one solution u(x, y), absolutely continuous in x. Moreover, u(x, y) ~ C(I) 
and u(x, y) is absolutely continuous in y for every x e A .  If ,  in addit ion,  
gy(x, y, z) is continuous in ~ then u(x, y) is absolutely continuous on L 

Proof. - Let us assume that y(y) is decreasing. At first, we have 
b 

z) l <_ t g(x, O, O) l + f I gy(x, ~7, O) I d~ + k(x) t z i, t g(x, Y, 
, 2  

0 

i.e. l g(x, y, z) l<_ M(x)(1 -~- ]zl) with M(x)e  L(I.). Hence, the first two assertions 
of the theorem are valid (cp. the proof of Theorem 4, next see.). Since 

x 

u(x, y ) =  ~{Y) + lg (~ ,  Y, u(~, y))d~ for (x, Y) I, 

it is obvious that  u is absolutely continuous in x. /Now, let x e A  be fixed, 
yo < yl < ... < y, points of Iy, %,~--"/(y~) and z~--c(y~). Then, we have 

iu(x, --u(x, + 
; $  

M(~)(1 + lUIo)d  + 

y~ a x 

Yi--1 0 "~i--1 

Therefore, GaO~WALL'S Lemma and Proposition 1 (a) yield 

lu(x, y~)--u(x,  Y~-l)l <2 C l ( ~ -  (;,--i[ L~ 0 ( 1  2 C l U [ o ) ~  M{~)d(~) + 

y~ a 

- ~ c f  f sup [ gx{~, ~7, z) l d~d~7, 14~l.I0 
Yi--~t o 
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for some cons tan t  c > 0. S ince  the  func t ions  on the  r ight  hand  side are  
absolu te ly  con t inuous  in y, so is u(x, y). Especia l ly ,  we have  

a 

(17) [us(x , Y) I -<- c I ~'(Y) l -t- c(1 + I u [o)M(7(y))y'(y ) + c f  sup 
0 

IgA , y, z L(5). 

To prove the last  asser t ion,  let  us note that  g(x, y, ~(t)) is absolu te ly  
con t inuous  in t for  any absolu te ly  con t inuous  func t ion  ¢p(t), by (15) (see [4, 
sec. 38.1]). Hence ,  if gy is con t inuous  in z, we obta.in 

u~y "--gy(x, y, u(x, y)) 'F g:(x, y, u(x,y))u:(x, y) a.e. on I 

f rom (16). Thus,  u~ye L(I) follows f rom (15), (17) and the assumpt ion  on gy. 

6. - We use Theo rem 3 to prove the fol lowing 

T ~ E o R ~  4. - Let ~i(x) and ~2(x) be absolutely continuous on L;  ~(x) 
strictly decreasing, £(x) absolutely continuous, ~(0)- -b  and :¢(a)---0; /(x, y, z) 
defined on I X R z, absolutely continuous in x and y (separately) with 

sup 1Try(x, y, z) l : lz~l -<  c, i - 1 ,  2, 31 e L ( I ) a n d  

sup {lfy(x, y, z)[: lz~ [ "< c} e L(I) for eve ry  c > 0; 

3 

If(x, y, z ) - - f ( x ,  y, z)l <_ k(x, y) .  ~ [ z~-  ~ [ w i t h  sup k(x, y) eL(Ix) 
i ~ l  1 

26 

and sup k(x, y) ~ L(L). 
iy 

Then CAvo~Y's Problem (1), (2) has exactly one solution which is absolutely 
continuous in I and such that ux~ and uyy exist a.e. on I and are in L(I). 

Proof. - We have  

a / '  b 3 / "  

(is) If(x, y, z)l<lf(o, o, 0, 0)ld +|ifAx, +k(x, y) Lzil, 
. ]  J 1 

0 0 

i.e., f sat isf ies  an inequa l i ty  of the form (7). Since  the LiPse~I~z condi t ion  
of the t heo rem is a pa r t i cu l a r  case of the un iqueness  condi t ions  in T h e o r e m  
1, every  condi t ion  of T h e o r e m  2 is sat isf ied.  Hence ,  p rob lem 11), (2) has exac t ly  
one absolu te ly  con t inuous  solut ion  u(x, y) (cp. r e m a r k  (e)). 

)Joreover ,  we have  f.a.a, y e l y  

uz(x, y)----~3(y)+ i°f(~, y), u(~, y), u~(~, y) uy(~, y))d~, 
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a(x, y )=  

shows. 

where v3(y) = ~(~(y))~'{y) - -  ~;2(~{yJ)~'(y). Since f*(~, Y, z3) -: f(~, Y.~ u(~, y), u~t~, y}, z3} 
is cont inuous in y and measurable  in ~ and satisfies a LIPscm~z condition 
in z~ (with sup k(~, y)), the equat ion  

x 

w(x, y )=  ¢33(y) + f f*(~, y, 
f,* 

~(~, y))d~ 
, J  

has exactly one solution w ~ C(I) which, in addition, is absolutely continuous 
in x(for every y) and coincides with uy(x, y) a. e. in I. Let  us add that the 
continuity of w follows easily from BA~ACE'S fixed point theorem: Let  y 

x 

where k~(~:) = sup k(~, y), and the operator  iv: C(L)~ C{L), defined by (Tv)(x)= 
ly 

x 

f 11 v -, --  _ _  ~ V 1 2  ; ~(y) + f*(~, y, v(1))d~; an easy calculat ion yields [Tv--Tv]2 < ~  

hence, start ing successive approximat ion with v°(x, y ) =  ~3(Y), all approxima 
tions v~(x, y) are in C(I); this implies continuity of the limit function w(x, y), 
since 

a 

0 

Thus, the function uy(x, y) can be redefined on a set of measure  zero 
such that it becomes cont inuous on I. The same conclusion holds for u~. Now, 
g(x, y, z3)= f(x, y, u(x, y), u~(x, y), z3) satisfies the conditions of Theorem 3, 
which implies the existence of uy z a.e. in I and uzz~L(I). Existence and 
integrabil i ty of u~ are shown correspondingly.  

For  the l inear equat ion 

u~ = no(x, y) + a~(x, y)u + a~(x, y)u~ + as(x, y)u~ 

our condition on f in Theorem 4 means that the coefficients adx , y) are 

ai(x,y) ~ L(I) and absoIutely continuous in x and y (separately), w i t h ~  

~-:a~(x, This implies nei ther  continui ty nor boundedness  of a~(x, y}, y) e L(I). 
Y 

as the example 

t (xSy-~)~/: exp (--  xy-~/~) for 0 < y < 1 and 0_< x _< 1 

0 for y ---- 0 
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