Linear Integro-Differential-Boundary-Parameter Problems (*).

Hyman J. ZiMmverBeERG {(New Brunwick, N. J., U.8.A.) (*%)

Summary. — Necessary and sufficient conditions for a linear vector differential system, involving
integral, boundary, and vector parameter terms, to be symmetric (self-adjoint) are developed
and applied to oblain canonical forms for symmetric problems. In addition, the concept of
the equivalence of two such linear problems under nonsingular transformations is examined,
and & relationship between equivalence of a problem with its adjoint and symmelry is oblained.

0. — Introduction.

The recent results of VEIvopa and TvRDY [8] and the author [9] will be extended
to obtain the most general form of symmetric (self-adjoint) problems of vector form

(0.1a)  Ay@)y + [Ao(w) — AB(x)ly + H(z)[ M,y(a) + N,y (d)]
b

+ K@) [P@yds+ Lap=0, »'=0,

1]

b
(0.1b) My(a)+ Ny() + [F&yas=0.

In considering the concept of self-adjointness for problems with general integro-
boundary conditions (0.15), the introduetion of a term invelving a vector parameter p
appears as a natural consequence of the form of the adjoint problem as previously
obtained by CoLr [1], JonEs [2] and VEIVOoDA and TvRpY [8]. Moereover, a reformu-
lation of the integro-boundary conditions yields a simplification of one of the conditions
for self-adjointness deduced by Krarr {4] for problems (0.1a, b) with K(z)=0.
The notation and hypotheses under which the problems are considered will be
noted in Section 1. In Section 2 the problem adjoint to (0.1a, b) will be developed,
and neeessary and sufficient conditions for symmetry (self-adjointness) will be ob-
tained in Section 3, together with canonical forms of symmetric problems. In Section 4
the equivalence of two integro-differential-boundary-parameter problems under
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nongingular transformations will be discussed, and, in particular, the equivalence
of a problem (0.1a, b) with its adjoint. In this connection, the conclusion of Reid
[5, Problem III1.11, no. 5] for two-point boundary problems (i.e., problems (0.1a, b)
with H(w), K(x), L(x) and F(z) as zero matrices) equivalent to their adjoint will be
extended to remove the restriction that the matrix coefficient of the derivative term
be the identity matrix. A generalization of this result then yields a relationship
between the concept of equivalenee of a problem (0.1a, b) with its adjoint under sets
containing a nonsingular skew-Hermitian transformation and that of symmetry.

1. — Notations and hypotheses.

Vector and matrix notation will be employed throughout the paper. Matrices
will be denoted by Roman and Greek capital letters, vectors by lower-case Roman
letters, while lower-case Greek letters will usually be employed as scalars. Vector
operators will be indicated by capitals or lower-case letters in seript type. The g Xp
identity matrix will be represented by I,, and, as is customary, 0 will be used indi-
seriminately to denote either the number zero, a zero veetor or a zero matrix. Further,
the operations of conjugate-transpose and differentiation, applied to both vectors
and matrices, will be indicated by * and ’, respectively. Finally, when row and column
dimensions agree, [M; N] will denote the matrix [M* N*J¥, [M, N; P, Q] will rep-
resent the matrix

M N
P 9

4

and, more generally, [M, N; P,Q; R, 8] will indicate the matrix wherein block
partitioning produces sueccessive row block-matrices [M N], [P @] and {E 8] in
that order. .

For problem (0.1, b) it will be assumed that the elements of the »n X#n matrix
Ay(x) are complex-valued functions eontinuously differentiable on the finite interval
a<w<b, the elements of the n xXn matrices 4,{z) and B(w), the n» Xy matrix H(x)},
the nxm matrix K(z), the n Xz matrix L{x), and the m xn matrix F(x) are all
complex-valued functions continucus on [a, b], and, further, that the » columns of
L(») are linearly independent on [a, b]. Moreover, M, and N, are each » Xn constant
matrices, and M and N are each m Xn constant matrices with 0 <m<2n and such
that the m integro-boundary forms (0.15) are linearly independent forms. The vectors
y and p are, respectively, n- and x»-dimensional vectors, and A is a scalar constant.
In addition, it is to be noted that a necessary and sufficient condition for the linear
independence of the m boundary forms (0.1b) is the linear independence on [a, b]
of the rows of the m X 3n matrix [M N F(x)] (see JoNES [2, Theorem 2.1]).

Now, let D be an m xm nonsingular eonstant matrix such that the m integro-
boundary conditions (0.15), on multiplication on the left by D, reduce to the
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equivalent form

aly) = Moy(a) + Noy(b) —0,
4

(L.10) ATyl = Myyla)+ Fuy®) + [Py e =0,
b

sy] = [Fueyas=o,

of g, 0 and v conditions, respectively, ¢+ ¢+ 7=m, with the {(p 4 o) X2»n matrix
{M,, Ny; My, N,] of rank g0, the o+ 7 rows of [F(E); Fy(§)] linearly inde-

b

pendent on [a,b], and, additionally, such that _fFl(E)Fz(E)dE:O. (This latter
a

orthogonality eondifion can be assured by effecting the replacement of F,(x) by

b b

P (z)— ( f FlF’: d§) ( f FzF: df)“le(w) where the rows of [Fy(x); Fu(»)] are, a priori,
o o

linearly independent on {a, bj) . Moreover, without loss of generality, we may consider

that the » x2n matrix [M, N,} has rank v=2n—p— ¢ with the 2nx2n matrix
[My, No; M,, N;; M,, N,] nonsingular (see, for example, [8, Remark 6.2]), and that
(0.1a) is reduced to the form

(1.1a) Lly; p: Al = Ai(@)y -+ [Ao(w) — AB(@)]y + H(x)[M,y(a) + Noy(b)]

b
+ K@) [Py s+ Lwp=0, p'=0,
where K,{#) is the » X ¢ matrix consisting of the g+ 1, ..., g -+ ¢ columns of K(z) D

2. — The adjoint problem.

With the introduction of new vectors
w = Myy(a) + [Py az,

Uy Esz(é)ydf s

8 = My(a)+ N,y(d),

8y = Myy(a) + Nyy(d),
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problem (1.1a, b} is equivalent to the differential system econsisting of Bn-t+ o+ 7
- % —p) linear differential equations and (2n- 20 27) end-point conditions:

A(@)y + Ao(@)y — Ky(#)s,+ H(x)s, + Liw)p = AB(x)y ,

u, — Fiy(a)y =0,
Uy — Fofm)y =0,
5 =0,
5, =0,
P =V,
(2.1) Moy(a)+ Noy(h) =0,
Myy(a) — uy(@) =0,

Nyy(b) + u(b) =0,

(@) =0,

4 (b) =0,

M,y(a) — s;(a) + Nyy(h) =0,
Myy(a) — si(a) + Noy(b) =0 .

Now, if constant matrices P,, @, (x=0,1,2), of dimensions nxg, nxo and
n X v, respectively, are defined by

(2.2) [Mos Nos Myy Ny; My, No]o[— Poy — Py — Py Qo @15 Qo] = Loy

the differential system adjoint to (2.1) is comprised of (3n -+ o v+ % — g) linear
differential equations together with (4n -+ 2x— 2p) end-point conditions (see, for
example, [5, §3.6]):

—[Aj@)2] + Aj@)z — Fy(@)v,— Fy(2)q = 1B (w)2,

’v; =0,
¢ =0,
—t,— K, (2)2 =0,
—ty+ H*(w)2 =0,
— v+ L' (w)2 =0,
2.3) P?’:Az(a)z(mwz 1 (0)2(b) + P Myv,(a) — Q@ Ny v:(b) — ty(@) = 0,
P} Aj(a)a(a) + QAL (0)2(b) + Py Myvi(a) — Q1 Nyvy(b) — ty(a) = 0,
L) =0,
1,(b) =10,
(@) =0,
(b)
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On eliminating v, v,, t; and 1, it follows from relation (2.2) that the system (2.3)
is equivalent to the integro-differential-boundary-parameter problem:

Mlz; q: Al =— [A](@)2] 4 [A} () — AB" () ]2 —
— Fy(@)[ P Al (a)2(a) -+ Q} A% (b)2(b)]
b

+ Fi@)[Ei§2ds— Fioyg=0,  ¢=0,

b
P} 4}(a)2(a) + Q1 A}(0)2(0) + [H*§)2dE =0,
b

Jr@eas=o,

:2

which will be termed the adjoint to problem (1.1a, b). Further, the adjoint problem

(2.40, b) remains invariant under equivalent reformulations of problem (1.1, b) which
2

adds to (1.1a) a term z J(2)9,[y], J (@) (x=0,1,2) appropriately dimensioned
&=0

matrices with elements continuous functions on [e, 8]. This invariance property is

employed in the next section in obtaining canonical forms.

3. — Symmetric problems.

An integro-differential-boundary-parameter problem (1.1a, b) will be termed sym-
metric if the integro-boundary forms (1.15) and (2.4b) are equivalent forms, and if,
for each value of A, the operators £ and G coincide in the sense that » = 7 and
there exists a 7 X v nonsingular constant matrix 1 such that €{y; p: 4] = M[y; Ip: 2]
for arbitrary vector pairs {y, p}, p constant and y of class C’ on [a, b] and satisfying
(1.15). Inasmuch as the replacement of F,(x) in (1.10) by Y*F,(z), ¥ a 7x 1t non-
singular constant matrix, yields an equivalent set of integral-boundary forms, sym-
metry of a problem (1.1a,5) is synonymous with equivalence of (1.15) and (2.4b)
and the existence of a 7 x T nonsingular constant matrix ¥ such that, after replace-
ment of F,(x) be 1*F,(z), the operators £ and A coincide for sets {y, p, A} with
y of class ¢’ on [a, b] and satisfying (1.18), p a constant vector and 1 a scalar. This
terminology, employed for differential expressions in [5, p. 122], is an extension of
that introduced for the integro-differential-boundary problems in [9].

The initial result of this section provides necessary and sufficient conditions for
the equivalence of the integro-boundary forms of a problem and its adjoint.
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LizvmA 3.1, - For a problem (1.1a, b) the integro-boundary forms (1.1b) and (2.4b)
are equivalent if and only if there exist a T X T nonsingular constant matriz ¥V and a v X n
constant matriz G such that

() p+-o=v=n and T=12x,
(b) [ My, No; My, Ny} diag {— 477 (a), A7 B)} [ M, No; My, N J*=0,
(0) L) =—Fy(m) ¥

(@) H(w) = F}(2)B,+ Fy(x)G

(3.1)

on [a, b],

where BEy=[01,]07" and C=[M,N,}-diag{— AT%(a), AT ()} [M,, Ny; M,, N,T".

Ag the v X2n matrix {P;Af(a,) Q;A;‘(b)] has rank v, equivalence of (1.15) and
{2.4b) necessitates that g+ o=v and that v=zx. Then, as ¢+ ¢ v=2n, con-
dition (3.1a) follows; and, thus, a necessary and sufficient eondition for equivalence
of (1.1b) and (2.4b) is the existence of an (n -+ 7) X (n- 7) nonsingular constant
matrix [E, 0; G, — V], with nonsingular constant matrices E and 7 of dimensions
nxn and X7 respectively, and & of dimension 7 xn, such that

(3.2) [PiA(a) QoAT(b)]= E*[M,, Ny; M,, N1,
(3.3) L) = — V" F(z),

. on [a, b].
(3.4) H*(w) = B*[0; Fy(n)]+ G Fy)

Then, (3.10) follows from (3.2) in view of (2.2); and, hence, O, defined above in the
lemma, is nonsingular as the » rows of [M, N,] are linearly independent of the »
rows of [M,, Ny; M,, N;]. (An alternate proof can be provided by an argument
similar to that employed in [3, p. 445]). On the other hand, with E = "} (3.2)
follows from (3.1b) and relation (2.2). Moreover, relation (3.1d) is equivalent to (3.4)
under the definition H,=[0I,1E, E= C™'.

THREOREM 3.1. — A problem (1.1a, b) is symmetric if and only if there ewist 4 TX T
nonsingular constant matriz ¥ and ¢ o X o constant Hermitian matriz I" such that

() o+o=v=mn and T=1x,

(b) [ My, No; My, N,]-diag {A7"(a), — AT (0)}- [ My, No; My, NI =0,
(0) Ay(m) = — A,(), Ag(@) = Ay(w) — A,(@), B*(z) = B(w),

(@) Liw) =—Fya)?,

(¢) H(x) =Fi(=)B,,

() K@) =Fi@)I'+ $)0]

(3.5)

on {a, bl,
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where E, is defined in Lemma 3.1 and © is a skew-Hermitian matriz given by
(3.6) 0 = B [ M, N,]-diag {47 (a), — A7 (0)} - [ M;; N51E] .

For a problem (1.1a, b) with integro-boundary forms {1.15) and (2.4b) equivalent,
relations (3.5a, b, d) and {3.1d) are immediate from Lemma 3.1, while relations (3.5¢)
follow from the equivalence of the operators £ and 46 for sets { J, p, A} with

——{) 2 arbitrary, and y of class €' on [a, b] satisfying y(a) = y(b f K (Slydé=
—JFZ Yydé =0, a=1,2., Then, under (3.5a, b, c,d) and (3.1d), a necessary and

sufficient condition for (1.1a, d) to be symmetric is that
b
(B.1)  Fia)|(B M+ PLAT@) y(a) + (BN, + Q1 430)y(0) — K1)y de]

b
+ Ey() [ Fo(§)y & + Fi0) 61 M,y(a) + Nyy(h)] =0

on [a, b} for arbitrary vectors y of class (' satisfying (1.14). In particular, for
vectors y of elass O' with y(a)= y(b)=0 condition (3 7) on [a,b] implies that

b

*(w)fo( jydé =0 on [a,b], and consequently, f K}(&)ydé =0 whenever also
b a
fF,,(E)ydi-'- 0, «=1,2. Now, as fF (5) dé =0, an argument similar to that

preceding Theorem 2.1 of [9] assures that K (»)== = (2D, +- Fz(m)CD on {a,bl,
where the o X0 and 7 ><¢7 constant matrices @,, ¢ =1, 2, respectively, are given by

b
= [ fo( df] -1 fF K (§)dé «=1,2. Then, in view of the linear inde-
pendence of the columns of Fy 1(x) and Fz(m) on {a, b], condition (3.7) reduces to the
requirements that
(3.8)  (ByM,+ PiAj(a) — OM,)y(a)+ (B, N, Q1 A(D) — ON,)y(a) =0,
{3.9) (GM;— D, M) y(a) + (GN, — D, N )y(b) =10,

where @ = @, — @], for arbitrary vectors y(a), y(b) satisfying do[y]= M,y(a)+
-+ Noy(b)=0. However, as the n-+o columns of [—P,, —P,;; @Q;,Q,] form a
mazximal set of linearly independent vectors orthogonal to the p rows of [M, N,],
relations (3.8), (3.9) hold for end-values y(a), y(b) satisfying 4[y]= 0 if and only if

[GM,— P, M, GN,— O, N, }'[— P, — Py; Qs Q1= 0;
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and, hence, G =0 and @,= 0, and, as in the derivation of Theorem 2.1 of [9],
O = —PiAj(@) P+ QT A0,
By= P} Aj(a)P,—Q; A1(b)Q, .
The latter relation, however, is an identity in view of the skew-Hermitian character
of A{w) and relation (3.2). Setting FE(%)(®1+@”{), condition (3.5f) holds, and

the theorem then follows by a argument similar to that used in establishing The-
orem 2.1 of [9].

Cororrary 1. — 4 problem (1.1a, b) with K,(z) = 0 on [a, b] is symmetric if and
only if theve exists & T X 7T nonsingular constant matriz ¥ such that relations (3.5a, b,
¢, d, ¢) prevail and 0 =0, 0 given by (3.6) wherein B, is defined in Lemma 3.1.

The above result, which follows from the linear independence of the columns of
Ff(w) on [a, b], provides a simplification of condition (5) of Theorem 3.1 of Krall [4].

COROLLARY 2. — The differential-parameter problem

Ay (@)Y + [Ao(@) — AB(@)]y + Lix)p =0, p'=0,
(3.10) Moyla)+ Noy(d) =0,

b
[Faeyas=o,

is symmetric if and only if there exists a v X T nonsingular constant matriz ¥ such that

6) g=mn and T=1x%,
b) M,A; Ma) M, = N A7} B)N;,

Af(@) = — A,(2), Ay (@) = Ay(2) — Aj(w), B*(») = B(w),
d) Lw)=—Fyx)Y

5

~

(

(

(
on [a,b].

(

COROLLARY 3. — An (n-t)-dimensional symmetric differential-parameter problem
(3.10) ds equivalent to the (m-+27)-dimensional self-adjoint (symmetric) two-point
boundary problem
A(@)y + Ao@)y + Liw)p = AB(@)y ,

Y*u, — Y¢F,(@)y =0,

—¥p' =0,

Moy(a) + Noy(b) =0,
(@) =0,

y(b) =10,

&

under the introduction of wuy(w) szg(S)ydé on [a, b], with ¥ as in Corollary 2 above.

13
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Further, the development of cancnical forms for the symmetric problems con-
sidered in [9] extends to symmetric problems (1.1a,b), and, in particular, the fol-
lowing extension of the Corollary to Theorem 3.1 of [9] obtains.

THEOREM 3.2. — Every (n- 7)-symmetric integro-differential-boundary-parameter
problem (1.1a, b} is reducible to the form

iRy (@)[Ry(@)y] + [By(@) — AB(@)]y + iFy(@)[— M, Ri(a)y(a) + N, B3 (0)y(b)]

&
+ Fia)¥ +id)[ Py @y @t — Fyap=0, p'=0,

Myy(a)+ Nyy(b) —0,
&
My(a)+ Nyy@) + [Fy@yae=o,

b

[Fueryas=o,

a

where on [a, b] By(2), Ri(z) and B(z) are each n X n Hermitian matrices, R (w) is non-
singular with R2(x) = — iA, (%), Ry(@) = A,x)— (})4,(@), the 6 -7 rows of [F,(v);
Fy(z)] are linearly independent, ¥ is a ¢ X o constant Hermitian matriz, the o X Her-
mitian matriz A = (})(— M, Ri(a) M} + N, R2(D)N7),

[M,, N(); Mu Nl]'diag{R;2(a)5 “er(b)}'{Mm N0§ MU N1]*= 0,

and the rows of the n X2n matriz [My, Ny; M,, N,] are orthonormed, in the sense that
M My + NoNy=1,, M, M} + N, N1 =1, and MyM;+ N,N7=0.

For a symmetrie problem (1.1a,b) the matrix — {A,{x) is Hermitian on [a, b]
and, hence, there exist n xXn positive matrices C(z) and D(z), with continuously dif-
ferentiable elements, sueh that —id,{z) = C(x) — D(z) and C(z)D{xr) = Diz)C(z) =0
on [a, b] (see, for example, [7, Section 108]). Then, a solution for E,(») is afforded
by Ri(x) = OPx) + iDP(x), where 0P(») and DP(x) denote the unique positive
gquare roots of O{x) and D(x), respectively. Moreover the continuous differen-
tiability of the elements of C¥(x) and D®(x) and, consequently, of R,(x) on [a, b]
follows, in particular, either from a theorem of Rellich {6, pp. 57-58] or from Reid
[5, Problem F. 1.6, pp. 524-525].
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4. — Equivalent linear integro-differential-boundary-parameter problems.

The concept of equivalence of two differential systems, introduced by REID [5,
Ch. IT1, § 11], can be extended to equivalence of a problem (1.1a, b) with

(#1a)  £w; r: 2] = Al@)w' + [A5(x) — AB(@)Jw + H'(@)[ Mzw(a) + Nyw(®)]

b
+ K@) [P wag + wyr =0, =0,

dolw] = Maw(a) + Njw(b) =0,
1

(4.1b) 0] = M°w(a) 4+ Nw(b) +- j P&y wdE =0,
ab

Aw] = [Frewas=o,

&

with coefficient matrices of the same dimensions, with maximal rank character
and elements of similar continuity and row-independence character, on [a, b] as
pertain to the corresponding matrices without the superseript ?, enumerated in Sect. 1.
Further, let P2, Q% «=0,1,2, satisfy the inverse relation (2.2) with respect to
M), NS, a=0,1,2, wherein the superseript is added to each submatrix in (2.2).
In addition, let the dimensions of the matrix coefficients in (4.1a, b) be designated
by the surperseript ® after the same letters designating the dimensions of the cor-
responding matrices in (1.1a, b); with, however #n°=n and »’=». Thus, H'=x)
is an nx»* matrix, Fi(z) a o’ xn matrix, M a ¢° x»n matrix, ete..

Problem (1.1a, b) will be termed equivalent to {4.1a, b) under the transformations

w= T(x)y for wela,b]l, r=Ilp,

where T{z) is an n Xn nonsingular matrix funetion with elements continuously dif-
ferentiable on [e, b] and [7 is a %X nonsingular constant matrix, if the integral-
boundary forms (1.15) and (4.1b) are equivalent and, for arbitrary A, Lly; p: 1]=0
if and only if £°[w; r: A]= 0 for vector sets {y, p}, p constant and y of class ('
satisfying (1.1b).

Lemma 4.1, ~ For T{x) an n Xn mairiz nonsingular on [a, b], the integro-boundary
forms (1.1b) and (4.1b) are equivalent under w= T(x)y if and only if there exist o
T X T nonsingular constant matriz X, and a ¢ Xt constant matriz A, such that

(@) ¢"=g,06"=0c and °=1,
(0) [M,, No; My, Ni}-diag {— T-Y(a), T-1(0)}-[P3; Q31=0,
(4.2) () [ M, No]-diag {— TY(a), T-(b)}-[P]; @11=0,
(d) Fg(w)T(’O) =2, Fy(z),

b
(6) FYx)T(w) =2, F\(2) -+ A, Fo(w) } on [a,b],

where X7t = [M, N,]-diag {— T-Ya), T-()} -[P?; Q°1.
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Conditions (4.2a) hold from the maximal row ranks of several combinations of
the boundary matrix coefficients, and relations (4.2b-¢) are then synonymous with
the existence of nonsingular constant matrices Z,, « =0, 1,2, of dimensions g X,
o xo and 7 X7, respectively, and constant matrices 4, and A, of dimensions o xpo
and ¢ X 7, respectively, such that #j[w]= 2 J,[y], silwl= Z,4,[y]+ Asdoly]+ 4,5,[y]
and #3[w]= 2,4,[y] under w= T(x)y. Herein, it is to be noted that as the eolumns
of [P%; Q7] form a maximal set of »"=2n— (9 o) linearly independent vectors
orthogonal to the g+ o rows of [M,, Ny; M,, N,]-diag {— T-(a), T-1b)}, and as
the g+ o columns of [Py, PY; Qp, Q7] are linearly independent of the columns of
[P%; @3], then, in view of (4.2¢), 2| is well-defined; and, moreover, there exist a g X g
nongingular matrix 2, and a ¢ X ¢ matrix 4, such that

[MO’ Nﬁ? M17 Nl}'dia‘g {"’" T-Ya), T—l(b)}'[ng P?; Qg» Q({]‘—‘ {Zoa 0; Ao, 2.

Furthermore, as equivalence of integro-boundary forms is a symmetric relation
in that equivalence of (1.1d) to (4.1b) under w = T(x)y, with T(x) nonsingular on
[a, b], holds if and only if (4.1b) is equivalent to (1.15) under y = T-*(x)w, conditions
(4.2b, ¢) may be replaced by the set
(4.20") [M3, No; MY, N3)-diag {— T(a), T(0)} - [Py; Q1= 0,

(4.2¢") [ M5 NQl-diag {— T(a), T(b)}-[Py; @,1=0,

wherein P,, Q,, a=1,2 are determined by relation (2.2).

THEOREM 4.1. — Problem (1.la,b) is equivalent to problem (4.1a,b) under the
transformations w= T(z)y, r=1Ip if and only if T(x) is an n Xn nonsigular con-
tinuously differentiable matriz function on [a, bl, I is a % X x nonsingular constant ma-
trizm, and there exist a T X1 nonsingular constant matriz X, and a o X T constant matriz
4, such that

(@) °=0,0"=0,7"=7 and V=,
(b) [Mgy, No; My, N,]-diag {— T*(a), T-1d)} - [P3; Qz1=0,
(¢) [M, Ny)-diag {— T~(a), T-1)}-[P}; @}1=0,
d) T'(@)— T() A7 (@) do(@) + AT (@) A3(2) T(@) =0,

(6) AV (@)B()T(2) = T(2)A; @) B(#),
@3) (h AT @)L = T@) A7 @) L),
(9) Fiw)T(w) = 2, Fy(z),
() Fi(@)T() =2, F(@) + 4, Fy(w) ,
@) A,@I7 @A @K

=K, (2) 27"+ H(@)[ M, T (a) P} — N, T7'(6)Q31,

() A@) TV (@) AL (@) Hw) = H(@)[— M, T a) P+ N, T (5)9;]

c

-

[4

on [a, b],

where Xy = (— M, T~ (a) P} + N, T7'(5)Q3) "
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For a problem (1.1a,b) equivalent to (4.1a,d) under w = T(x)y, r=IIp, rela-
tions (4.3a, b, ¢, g, k) hold from Lemma 4.1, and for vectors y with continuously

b b
differentiable components and satisfying y(a)=y(b) = fF,(S}ydE: sz(S)yc%: 0
we have that a4 “

[4,(x), 05 0, T1[y; p) -+ [Ag(@) — AB(®), L(x); 0, 01[y; p]=0
for a value 4 if and only if
[A5(®), 05 0, T)[w; 1]+ [4] — AB%@), L(); 0, 01[w; ] =0

for the same value A under [w; 7]= [T(2), 0; 0, [I][y; p]. Consequently, relations
(4.3d, e, f} follow from Theorem 11.1 of REIp [5, Chapter II1]. Then, for arbitrary
A and arbitrary vectors y with continuously differentiable components and satis-
fying (1.18),

(4.4) AN T(@) AT @)Ely; pr A)— Cw; 72 2]
= {4)(2) T () AT (@) [H () M, — Ky (%) M, 117 (a) +
+ Ky (o) M} — H(w) M3 b w(a)
+ {41(@) T'(2) AT (@) [ H (@) Ny — K, (@) N, 1T71(b) +
+ K (@) Ny — H(@) Ny hw(b)

under w= T(z)y, r=IIp. Now, as the 2n—p columns of [— P}, — PJ; @?, Q7]
form a maximal set of vectors orthogonal to the ¢ rows of [M{ N3] it follows from
(4.3b, ¢) that, for each x on [a, b], the right-hand side expression in (4.4) vanishes
for arbitrary vectors w(a), w(b) satisfying #j[w]=0 if and only if relations [4.34, j]
hold; and, the necessity of relations (4.3) are established.

Conversely, if all the relations (4.3) hold for T(») an » X n nonsingular, continuously
differentiable matrix function on [a, b], I and 2, nongingular constant matrices of
dimensions » xX» and 7 X7, respectively, and 4, a ¢ X7 constant matrix, then the
boundary forms (1.15) and (4.1b) are equivalent under w= T(x)y and AY(x) T(x)-
CATN@) Ly pe A =L[Ty, IIp: 2] on [e,b] for arbitrary vectors y of class ¢
satisfying (1.158).

Of special interest is the case in which system (4.1e, b) is the system (2.4a, b),
the adjoint to problem (1.1a, ). In this instance, as the rank of [P; Aj(a) Q5 A7(b)]
is maximal, it follows from relation (4.2a) that g 4 ¢ = » = n and 7= %, and, hence,
that there exist an n X # nonsingular constant matrix V and an n X7 constant matrix
W such that the identifications

(4.5) [0; Pox)] s VE (@) + WL (%),
(M3, NS; MY, N VP A (a) Q5A5(0)]
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may be set. Then, the further identifications

Flo) L),
[M N3] [P}, Qs; Pi, QF1-diag {A}(a), AS(D)}

yield the identities

[Py, PY; 05, Q3] = diag {47 (a), A77'(0)} - [M3; NZ1V1,
[Pg;gz]zdiag{A’;_ (a),A* 1( )} [My, Ng; M17N]

and the identifieation

Hz) [0 —Fi(@)];

and, hence, the following preliminary result.

LEMMA 4.2. — For a problem (1.1la, b) the integro-boundary forms (1.1b) and (2.4b)
are equivalent under z= T(x)y if and only if there ewist an nxn matriv T{x) non-
singular on [a, bl, @ T X1 nonsingular eonstant matriz X, and a o Xt constant matriz
A, such that, with T,(z) = A5(x)T(z) on [a, b],

(a) o+ 0=v=mn and 7=z,

(b) [My, No; My, N,1-diag {— T7 N(a), T7 ()} [My, N3 My, NT=0,
(¢) [01,1V**C[1,; 01=0,

(@) Ti(@) A7 (@) Liw) = Fy@) X5,

" N . on [a,b],
() Ti(x) AT ()H(2) = Fi(2)[0 Z71V* '+ Fy(#)G

where C = [M, N,] diag {— Ty Ya), T:*0)} [ M,, No; My, N1, Zi t=[0 1,1V
010, 1], @5 =V" Yio; 4,1— WZ.), and V and W defined t?waugh the identitifica-
tion (4.5).

It is to be noted that as the nonsingularity of ¢ may be established by an argument
similar to that following Lemma 3.1 in establishing the nonsingularity of C, relation
(4.6¢) and the nonsingularity of V then insure that ZX; is well-defined. Conse-
quently, with

(4.7) B, =101,0"",

17 — dnnals di Matemolbica
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it follows from (4.6¢) and the definition of X, that
“.8) XV =ZXI0LIV (L, 0;0, )0 =210 I 0 = B

and, hence, from Lemma 3.1 with the choices ¥ as — X3, € as 0, B, as , and &
ag in Lemma 4.2 above, we have the next result.

LEMMA 4.3 — For an n Xn nonsingular matriz T(x) with continuously differentiable
components on [a, bl, the integro-boundary forms (1.1b) and (2.4b) of a problem (1.1a, b)
and ts adjoint (2.4a,b) are equivalent under z= T(x)y if and only if the integro-
boundary forms 4,[yl, «a=0,1,2, of the problem T"(x)L[y; p: A1=0, 4,[y]= 0,
x=0,1,2, and those of its related adjoint are equivalent forms.

Now, for the case where the system (4.1a, b) is the adjoint system (2.4a, b) the
following additional identificationg prevail:

Af()

A@) >

B'(z)

Kj(w) >

(4.9) Pi(@) > E7 K (),
L) «»— Fy(#),

(@) ¢>— AT (m),
Ag(w) — AT () |

> B*(x)
(

’
7
it

’

with = a ¢ X ¢ nonsingular constant matrix. Consequently, the next result folows
from Theorem 4.1 and Lemmas 4.2 and 4.3.

THEOREM 4.2. — A problem (1.la, b) is equivalent to its adjoint (2.4a,d) under
2= Ty, q=1IIp if and only if T(x) is an nXn nonsingular continuously diffe-
rentiable matriz function on [a, b, Il is a xX % nonsingular constant matriz, and there
exists a ¢ X o nonsingular constant matriz 5 such that the integro-boundary forms J,[y],
«=0,1,2, of the problem T*(x)C{y; p: A]=0, 4,[y]=0, «=70, 1, 2, and those of its
related adjoint are equivalent, and on [a, bl, for T,(x) EA’;(W)T(JG),

(@) T5(@)— Ag(@) Ay (@) Ty(@) — Ty(2) A7 (@) Ao(#) =0,
() Ty(w) A7 (@) B(w) + B () A7 (@) Ty(w) = 0 ,
(4.10) () T\ (@) A7 (@) Liw) — Fy@) T =0,
() Ty(@) A7 @)~ E\(@) + H(@)[M, N,]-diag {— T7 "(a), T7'(0)}-

‘[ M, Nz]*E*] 1(@ 19
(6) Ty(x) Ay (@) H(@)[M, N,}-diag {— T~ Y(a), T"0)}-[My, No; M, N,]*
=[0 — F;(m)] ’
where E’l is given by (4.7), and X\ and C defined in Lemma 4.2.
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Moreover, in case the transformation matrix T'(») is such that T\(z) is skew-
Hermitian on [a, b] the conditions for equivalence of a problem (1.1a, b) with its
adjoint are reducible. In this connection we first note that the result of Rrrn [5,
Problem III. 11, no. 3] may be extended in that, in the notation of the Problem, the
assumption that A,(1)4,(f) be the identity matrix may be dropped with the skew-
Hermitian property of the result then pertaining to the matrix 7, () = A} (x) 4} (@) T ().
In particular, T(x) may be selected as of the form (11.19) of Reid [5, Chapter III]
with ¢,= cosf -+ ésinf, ¢,= —cosf+ isind, and 0 a real value such that 7'(x)-
T (2) — exp [246]] is nonsingular for some value of # on [a, b].

LeMMA 4.4, — If the two-point differential problem

Lly: Al = Ay(@)y' + Aolw)y — AB(2)y =0,
%lyl = Moy(a) + Noy(b)=0

(4.11)

is equivalent to its adjoint under a nonsingular transformation matriz T'(x), with elements
continuously differentiable on [a, b], then there exists a nonsingular transformation matriz
T(x), with elements continuously differentiable and such that Af(m) T(x) is skew-
Hermitian on [a, b], under which problem (4.11) is equivalent to its adjoint; moreover,
the system T*C[y: A]=0, 4,[y1=0 is self-adjoint.

The above result can be extended to differential-parameter problems (3.10).
More generally, the following result relates the concepts of equivalenee of a problem
(1.1a, b) with its adjoint, under transformation sets {T(x), IT} with Aj(z)7T(x) skew-
Hermitian on [a, b], with that of symmetry.

THEOREM 4.3. - For an integro-differential-boundary-parameter problem
Lly; p: A1=0, 4.[yl=10, a=0, 1, 2, equivalent to its adjoint (2.4a, b) under 2= T{z)y,
q == IIp, with T(x) an n X n nonsingular matriz with elements continuously differentiable
and A5(x)T(x) skew-Hermitian on [a, b], and IT a »Xx nonsingular constant matriz,
the system

(4.12) T*(x)ﬁ{@f;p: M=0, 4yl=0, a=0,1,2,
is symmetric.

It (1.1a,b) is equivalent to its adjoint under z= T(v)y, ¢==IIp, conditions
(8.5a, b) for problem (4.11) follow from Theorem 4.2 and Lemmas 3.1 and 4.2, while
relations (3.5¢) for problem (4.12) follow from the assumption A(z)T(») skew-
Hermitian and relations (4.10a, b) on [a, b]. Further, from (4.10¢), relation (3.5d)
for problem (4.12) holds for the choice ¥'=II; moreover, in this case the matrix
2y in (4.6) is given by Z,= —II*.

Now, as T,(z) = A}(») T(») is skew-Hermitian on [a, b] relation (4.10¢) reduces
to T*(x)H(x)C = [0 Fi(x)] on [a, b]; and, hence, T"(z)H(z)= F;(z)E, on {a, b,
which is relation (3.5¢) for problem (4.12). Moreover, it follows from relation (4.8)
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and the linear independence of the columns of FZ(w) that the matrix G in (4.6¢)is
the zero matrix. Furthermore, relation (4.10d) reduces to

(4.13) T(@) K () = Fi(@)(EX,+ 6) on [a, ],

with @ the analogue of the matrix @ in (3.6) for problem (4.12). However, the iden-
tifications (4.5) and (4.9) imply that

THw) K, (2)E* [0 I,] = T"(2)(H(2) V" + Lix) W) on [a, b],

and, consequently,

on [a, b]. Then, as the columns of F;(x) and Fy(x) are assumed to be linearly inde-
pendent on [a, b] we have that W= 0 and, from (4£.8), that X7 = (§X,+ 6)Z" %,
Now, as O is skew-Hermitian it follows that the matrix (£X,+ (})®@) is Hermitian;
and, hence, from (4.13) we have that relation (3.5f) holds for problem (4.12) with
the choice I'=EX,+ (})0, and the theorem is established.

REFERENCES

[11 R. H. CoLr, General boundary conditions for an ordinary differential system, Trans. Amer.
Math. Soc., 111 (1964), pp. 521-550.

[2] W. R. JonEs, Differential systems with integral boundary conditions, J. Differential Equa-
tions, 3 (1967), pp. 191.202.

[31 A. M. Krarr, Differential-boundary operators, Trans. Amer. Math. Soc., 154 (1971),
pp. 429-458.

[4]1 A. M. Krary, Stieltjes differential-boundary operators, Proc. Amer. Math. Soc., 41 (1973),
Pp. 80-86.

[58] W. T. REp, Ordinary Differential Equations, John Wiley and Sons, New York, 1971.

[61 ¥. ReLricH, Perturbation Theory of Eigenvalue Problems, Lecture Notes, New York Uni-
versity, 1953.

{71 F. Rimsz - B. Sz-Naay, Functional Analysis, Frederick Ungar, New York, 1955, trans-
lated from ZLegons d’Analyse Fonctionells, Budapest, 1952.

[8] O. VEsvopa - M. TvrDY, Euislence of solutions to a linear integro-boundary-differential
equation with additional conditions, Ann. Mat. pura ed appl., ser. 4, 89 (1971}, pp. 169-216.

{91 H.J. ZiMMERBERG, Symmelric integro-differential-boundary problems, Trans. Amer. Math.
Soc., 188 (1974), pp. 407-417.



