Linear Integro-Differential-Boundary-Parameter Problems (*).

Hyman J. Zimmerberg (New Brunwick, N. J., U.S.A.) (**)

Summary. - Necessary and sufficient conditions for a linear vector differential system, involving integral, boundary, and vector parameter terms, to be symmetric (self-adjoint) are developed and applied to obtain canonical forms for symmetric problems. In addition, the concept of the equivalence of two suoh linear problems under nonsingular transformations is examined, and a relationship between equivalence of a problem with its adjoint and symmetry is obtained.

0. - Introduction.

The recent results of VeJvoda and Tvrdí [8] and the author [9] will be extended to obtain the most general form of symmetric (self-adjoint) problems of vector form

$$
\begin{align*}
& A_{1}(x) y^{\prime}+\left[A_{0}(x)-\lambda B(x)\right] y+H(x)\left[M_{2} y(a)+N_{2} y(b)\right] \tag{0.1a}\\
& \quad+K(x) \int_{a}^{b} F(\xi) y d \xi+L(x) p=0, \quad p^{\prime}=0, \\
& M y(a)+N y(b)+\int_{a}^{b} F(\xi) y d \xi=0 .
\end{align*}
$$

In considering the concept of self-adjointness for problems with general integroboundary conditions $(0.1 b)$, the introduction of a term involving a vector parameter p appears as a natural consequence of the form of the adjoint problem as previously obtained by Cole [1], Jones [2] and Vejvoda and Tvrdý [8]. Moreover, a reformulation of the integro-boundary conditions yields a simplification of one of the conditions for self-adjointness deduced by Krall [4] for problems ($0.1 a, b$) with $K(x) \equiv 0$.

The notation and hypotheses under which the problems are considered will be noted in Section 1. In Section 2 the problem adjoint to ($0.1 a, b$) will be developed, and necessary and sufficient conditions for symmetry (self-adjointness) will be obtained in Section 3, together with canonical forms of symmetric problems. In Section 4 the equivalence of two integro-differential-boundary-parameter problems under

[^0]nonsingular transformations will be discussed, and, in particular, the equivalence of a problem $(0.1 a, b)$ with its adjoint. In this connection, the conclusion of Reid [5, Problem III.11, no. 5] for two-point boundary problems (i.e., problems (0.1a, b) with $H(x), K(x), L(x)$ and $F(x)$ as zero matrices) equivalent to their adjoint will be extended to remove the restriction that the matrix coefficient of the derivative term be the identity matrix. A generalization of this result then yields a relationship between the concept of equivalence of a problem ($0.1 a, b$) with its adjoint under sets containing a nonsingular skew-Hermitian transformation and that of symmetry.

1. - Notations and hypotheses.

Vector and matrix notation will be employed throughout the paper. Matrices will be denoted by Roman and Greek capital letters, vectors by lower-case Roman letters, while lower-case Greek letters will usually be employed as scalars. Vector operators will be indicated by capitals or lower-case letters in script type. The $\varrho \times \varrho$ identity matrix will be represented by I_{ϱ}, and, as is customary, 0 will be used indiseriminately to denote either the number zero, a zero vector or a zero matrix. Further, the operations of conjugate-transpose and differentiation, applied to both vectors and matrices, will be indicated by * and ', respectively. Finally, when row and column dimensions agree, $[M ; N]$ will denote the matrix $\left[M^{*} N^{*}\right]^{*},[M, N ; P, Q]$ will represent the matrix

$$
\left[\begin{array}{cc}
M & N \\
P & Q
\end{array}\right]
$$

and, more generally, $[M, N ; P, Q ; R, S]$ will indicate the matrix wherein block partitioning produces successive row block-matrices $[M N],[P Q]$ and $[R S]$ in that order.

For problem $(0.1 a, b)$ it will be assumed that the elements of the $n \times n$ matrix $A_{1}(x)$ are complex-valued functions continuously differentiable on the finite interval $a \leqslant x \leqslant b$, the elements of the $n \times n$ matrices $A_{0}(x)$ and $B(x)$, the $n \times v$ matrix $H(x)$, the $n \times m$ matrix $K(x)$, the $n \times \neq$ matrix $L(x)$, and the $m \times n$ matrix $F(x)$ are all complex-valued functions continuous on $[a, b]$, and, further, that the x columns of $L(x)$ are linearly independent on $[a, b]$. Moreover, M_{2} and N_{2} are each $v \times n$ constant matrices, and M and N are each $m \times n$ constant matrices with $0 \leqslant m \leqslant 2 n$ and such that the m integro-boundary forms ($0.1 b$) are linearly independent forms. The vectors y and p are, respectively, n - and x-dimensional vectors, and λ is a scalar constant. In addition, it is to be noted that a necessary and sufficient condition for the linear independence of the m boundary forms ($0.1 b$) is the linear independence on $[a, b]$ of the rows of the $m \times 3 n$ matrix [$M N F(x)]$ (see Jones [2, Theorem 2.1]).

Now, let D be an $m \times m$ nonsingular constant matrix such that the m integroboundary conditions ($0.1 b$), on multiplication on the left by D, reduce to the
equivalent form

$$
\begin{align*}
& y_{0}[y] \equiv M_{0} y(a)+N_{0} y(b) \\
& y_{1}[y] \equiv M_{1} y(a)+N_{1} y(b)+\int_{a}^{b} F_{1}(\xi) y d \xi=0, \tag{1.1b}\\
& y_{2}[y] \equiv \quad \int_{a}^{b} F_{2}(\xi) y d \xi=0,
\end{align*}
$$

of ϱ, σ and τ conditions, respectively, $\varrho+\sigma+\tau=m$, with the $(~ \varrho+\sigma) \times 2 n$ matrix $\left[M_{0}, N_{0} ; M_{1}, N_{1}\right]$ of rank $\varrho+\sigma$, the $\sigma+\tau$ rows of $\left[F_{1}(\xi) ; F_{2}(\xi)\right]$ linearly independent on $[a, b]$, and, additionally, such that $\int_{a}^{b} F_{1}(\xi) F_{2}^{*}(\xi) d \xi=0$. (This latter orthogonality condition can be assured by effecting the replacement of $F_{1}(x)$ by $F_{1}(x)-\left(\int_{a}^{b} F_{1} F_{2}^{*} d \xi\right)\left(\int_{a}^{b} F_{2} F_{2}^{*} d \xi\right)^{-1} F_{2}(x)$ where the rows of $\left[F_{1}(x) ; F_{2}(x)\right]$ are, a priori, linearly independent on $[a, b]$). Moreover, without loss of generality, we may consider that the $v \times 2 n$ matrix $\left[M_{2} N_{2}\right]$ has rank $\nu=2 n-\varrho-\sigma$ with the $2 n \times 2 n$ matrix [$\left.M_{0}, N_{0} ; M_{1}, N_{1} ; M_{2}, N_{2}\right]$ nonsingular (see, for example, [8, Remark 6.2]), and that (0.1a) is reduced to the form

$$
\begin{align*}
£[y ; p: \lambda] \equiv A_{1}(x) y^{\prime} & +\left[A_{0}(x)-\lambda B(x)\right] y+H(x)\left[M_{2} y(a)+N_{2} y(b)\right] \tag{1.1a}\\
& +K_{1}(x) \int_{a}^{b} F_{1}(\xi) y d \xi+L(x) p=0, \quad p^{\prime}=0
\end{align*}
$$

where $K_{1}(x)$ is the $n \times \sigma$ matrix consisting of the $\varrho+1, \ldots, \varrho+\sigma$ columns of $K(x) D^{-1}$.

2. - The adjoint problem.

With the introduction of new vectors

$$
\begin{aligned}
& u_{1} \equiv M_{1} y(a)+\int_{a}^{x} F_{1}(\xi) y d \xi, \\
& u_{2} \equiv \int_{a}^{x} F_{2}(\xi) y d \xi \\
& s_{1} \equiv M_{1} y(a)+N_{1} y(b), \\
& s_{3} \equiv M_{2} y(a)+N_{2} y(b),
\end{aligned}
$$

problem ($1.1 a, b$) is equivalent to the differential system consisting of ($3 n+\sigma+\tau$ $+x-\varrho)$ linear differential equations and $(2 n+2 \sigma+2 \tau)$ end-point conditions:

$$
\begin{align*}
A_{1}(x) y^{\prime}+A_{0}(x) y-K_{1}(x) s_{1}+H(x) s_{2}+L(x) p & =\lambda B(x) y, \\
& =0, \\
u_{1}^{\prime}-F_{1}(x) y & =0, \\
u_{2}^{\prime}-F_{2}(x) y & =0, \\
s_{1}^{\prime} & =0, \\
s_{2}^{\prime} & =0, \\
p^{\prime} & =0, \tag{2.1}\\
M_{0} y(a)+N_{0} y(b) & =0, \\
M_{1} y(a)-u_{1}(a) & =0, \\
N_{1} y(b)+u_{1}(b) & =0, \\
u_{2}(a) & =0, \\
u_{2}(b) & =0, \\
M_{1} y(a)-s_{1}(a)+N_{1} y(b) & =0, \\
M_{2} y(a)-s_{2}(a)+N_{2} y(b) & =0 .
\end{align*}
$$

Now, if constant matrices $P_{\alpha}, Q_{\alpha}(\alpha=0,1,2)$, of dimensions $n \times \varrho, n \times \sigma$ and $n \times v$, respectively, are defined by

$$
\begin{equation*}
\left[M_{0}, N_{0} ; M_{1}, N_{1} ; M_{2}, N_{2}\right] \cdot\left[-P_{0},-P_{1},-P_{2} ; Q_{0}, Q_{1}, Q_{2}\right]=I_{2 n} \tag{2.2}
\end{equation*}
$$

the differential system adjoint to (2.1) is comprised of ($3 n+\sigma+\tau+x-\varrho$) linear differential equations together with $(4 n+2 \pi-2 \varrho)$ end-point conditions (see, for example, $[5, \S 3.6]$):

$$
\begin{aligned}
-\left[A_{1}^{*}(x) z\right]^{\prime}+A_{0}^{*}(x) z-F_{1}^{*}(x) v_{1}-F_{2}^{*}(x) q & =\lambda B^{*}(x) z, \\
& =0 \\
v_{1}^{\prime} & =0 \\
q^{\prime} & \\
-t_{1}^{\prime}-K_{1}^{*}(x) z & =0 \\
-t_{2}^{\prime}+H^{*}(x) z & =0 \\
-v_{2}^{\prime}+L^{*}(x) z & =0 \\
P_{2}^{*} A_{1}^{*}(a) z(a)+Q_{2}^{*} A_{1}^{*}(b) z(b)+P_{2}^{*} M_{1}^{*} v_{1}(a)-Q_{2}^{*} N_{1}^{*} v_{1}(b)-t_{2}(a) & =0 \\
P_{1}^{*} A_{1}^{*}(a) z(a)+Q_{1}^{*} A_{1}^{*}(b) z(b)+P_{1}^{*} M_{1}^{*} v_{1}(a)-Q_{1}^{*} N_{1}^{*} v_{1}(b)-t_{1}(a) & =0 \\
t_{1}(b) & =0 \\
t_{2}(b) & =0 \\
v_{2}(a) & =0 \\
v_{2}(b) & =0
\end{aligned}
$$

On eliminating v_{1}, v_{2}, t_{1} and t_{2} it follows from relation (2.2) that the system (2.3) is equivalent to the integro-differential-boundary-parameter problem:

$$
\begin{align*}
& (a)\left\{\begin{aligned}
\mathscr{K}[z ; q: \lambda] \equiv-\left[A_{1}^{*}(x) z\right]^{\prime} & +\left[A_{0}^{*}(x)-\lambda B^{*}(x)\right] z- \\
& -F_{1}^{*}(x)\left[P_{1}^{*} A_{1}^{*}(a) z(a)+Q_{1}^{*} A_{1}^{*}(b) z(b)\right] \\
& +F_{1}^{*}(x) \int_{a}^{b} K_{1}^{*}(\xi) z d \xi-F_{2}^{*}(x) q=0, \quad q^{\prime}=0,
\end{aligned}\right. \\
& (b)\left\{\begin{array}{r}
P_{2}^{*} A_{1}^{*}(a) z(a)+Q_{2}^{*} A_{1}^{*}(b) z(b)+\int_{a}^{b} H^{*}(\xi) z d \xi=0, \\
\int_{a}^{b} L^{*}(\xi) z d \xi=0,
\end{array}\right.
\end{align*}
$$

which will be termed the adjoint to problem (1.1a,b). Further, the adjoint problem $(2.4 a, b)$ remains invariant under equivalent reformulations of problem ($1.1 a, b$) which adds to (1.1a) a term $\sum_{\alpha=0}^{2} J_{\alpha}(x) \sigma_{\alpha}[y], J_{\alpha}(x)(\alpha=0,1,2)$ appropriately dimensioned matrices with elements continuous functions on $[a, b]$. This invariance property is employed in the next section in obtaining canonical forms.

3. - Symmetric problems.

An integro-differential-boundary-parameter problem ($1.1 a, b$) will be termed symmetric if the integro-boundary forms (1.1b) and (2.4b) are equivalent forms, and if, for each value of λ, the operators \mathfrak{L} and \mathcal{H} coincide in the sense that $\tau=\tau$ and there exists a $\tau \times \tau$ nonsingular constant matrix $\Upsilon_{\text {such }}$ that $£[y ; p: \lambda] \equiv \mathscr{K}\left[y ; \Upsilon_{p} ; \lambda\right]$ for arbitrary vector pairs $\{y, p\}, p$ constant and y of class C^{\prime} on $[a, b]$ and satisfying (1.1b). Inasmuch as the replacement of $F_{2}(x)$ in (1.1b) by $Y^{*} F_{2}(x), Y$ a $\tau \times \tau$ nonsingular constant matrix, yields an equivalent set of integral-boundary forms, symmetry of a problem (1.1a,b) is synonymous with equivalence of (1.1b) and (2.4b) and the existence of a $\tau \times \tau$ nonsingular constant matrix r such that, after replacement of $F_{2}(x)$ be $Y^{*} F_{2}(x)$, the operators \mathcal{L} and \mathcal{H} coincide for sets $\{y, p, \lambda\}$ with y of class C^{\prime} on $[a, b]$ and satisfying (1.1b), p a constant vector and λ a scalar. This terminology, employed for differential expressions in [5, p. 122], is an extension of that introduced for the integro-differential-boundary problems in [9].

The initial result of this section provides necessary and sufficient conditions for the equivalence of the integro-boundary forms of a problem and its adjoint.

Lemma 3.1. - For a problem (1.1a,b) the integro-boundary forms (1.1b) and (2.4b) are equivalent if and only if there exist a $\tau \times \tau$ nonsingular constant matrix Y and $a \tau \times n$ constant matrix G such that
(a) $\varrho+\sigma=v=n$ and $\tau=\chi$,
(b) $\left[M_{0}, N_{0} ; M_{1}, N_{1}\right] \cdot \operatorname{diag}\left\{-A_{1}^{*-1}(a), A_{1}^{*-1}(b)\right\} \cdot\left[M_{0}, N_{0} ; M_{1}, N_{1}\right]^{*}=0$,
(c) $L(x) \equiv-F_{2}^{*}(x) T$
(d) $H(x) \equiv F_{1}^{*}(x) E_{1}+F_{2}^{*}(x) G$ on $[a, b]$,
where $E_{1} \equiv\left[0 I_{\sigma}\right] C^{-1}$ and $C \equiv\left[M_{2} N_{2}\right] \cdot \operatorname{diag}\left\{-A_{1}^{-1}(a), A_{1}^{-1}(b)\right\} \cdot\left[M_{0}, N_{0} ; M_{1}, N_{1}\right]^{*}$.
As the $v \times 2 n$ matrix $\left[P_{2}^{*} A_{1}^{*}(a) Q_{2}^{*} A_{1}^{*}(b)\right]$ has rank v, equivalence of (1.1b) and (2.4b) necessitates that $\varrho+\sigma=y$ and that $\tau=\psi$. Then, as $\varrho+\sigma+v=2 n$, condition (3.1a) follows; and, thus, a necessary and sufficient condition for equivalence of (1.1b) and (2.4b) is the existence of an $(n+\tau) \times(n+\tau)$ nonsingular constant matrix $[E, 0 ; G,-Y]$, with nonsingular constant matrices E and Y of dimensions $n \times n$ and $\tau \times \tau$ respectively, and G of dimension $\tau \times n$, such that

$$
\left.\begin{array}{l}
{\left[P_{2}^{*} A_{1}^{*}(a) Q_{2}^{*} A_{1}^{*}(b)\right]=E^{*}\left[M_{0}, N_{0} ; M_{1}, N_{1}\right]} \\
L^{*}(x) \equiv-Y^{*} F_{2}(x), \tag{3.3}\\
H^{*}(x) \equiv E^{*}\left[0 ; F_{1}(x)\right]+G^{*} F_{2}(x)
\end{array}\right\} \text { on }[a, b]
$$

Then, (3.1b) follows from (3.2) in view of (2.2); and, hence, C, defined above in the lemma, is nonsingular as the n rows of $\left[M_{2} N_{2}\right.$] are linearly independent of the n rows of $\left[M_{0}, N_{0} ; M_{1}, N_{1}\right]$. (An alternate proof can be provided by an argument similar to that employed in [3, p. 445]). On the other hand, with $E \equiv C^{-1}$, (3.2) follows from (3.1b) and relation (2.2). Moreover, relation (3.1d) is equivalent to (3.4) under the definition $E_{1} \equiv\left[0 I_{\sigma}\right] E, E=C^{-1}$.

Theorem 3.1. - A problem $(1.1 a, b)$ is symmetrio if and only if there exist a $\tau \times \tau$ nonsingular constant matrix Y and $a \sigma \times \sigma$ constant Hermitian matrix T such that
(a) $\varrho+\sigma=v=n$ and $\tau=\kappa$,
(b) $\left[M_{0}, N_{0} ; M_{1}, N_{1}\right] \cdot \operatorname{diag}\left\{A_{1}^{-1}(a),-A_{1}^{-1}(b)\right\} \cdot\left[M_{0}, N_{0} ; M_{1}, N_{1}\right]^{*}=0$,
(c) $A_{1}^{*}(x) \equiv-A_{1}(x), A_{0}^{*}(x) \equiv A_{0}(x)-A_{1}^{\prime}(x), B^{*}(x) \equiv B(x)$,
(d) $L(x) \equiv-F_{2}^{*}(x) \Upsilon$,
(e) $H(x) \equiv F_{1}^{*}(x) E_{1}$,
(f) $K_{1}(x) \equiv F_{1}^{*}(x)\left[\Gamma+\left(\frac{1}{2}\right) \Theta\right]$
where E_{1} is defined in Lemma 3.1 and Θ is a skew-Hermitian matrix given by

$$
\begin{equation*}
\Theta \equiv E_{1}\left[M_{2} N_{2}\right] \cdot \operatorname{diag}\left\{A_{1}^{-1}(a),-A_{1}^{-1}(b)\right\} \cdot\left[M_{2}^{*} ; N_{2}^{*}\right] E_{1}^{*} . \tag{3.6}
\end{equation*}
$$

For a problem (1.1a,b) with integro-boundary forms (1.1b) and (2.4b) equivalent, relations ($3.5 a, b, d$) and (3.1d) are immediate from Lemma 3.1, while relations (3.5c) follow from the equivalence of the operators \mathfrak{C} and \mathcal{M} for sets $\{y, p, \lambda\}$ with $p=0, \lambda$ arbitrary, and y of class C^{\prime} on $[a, b]$ satisfying $y(a)=y(b)=\int_{a}^{b} K_{1}^{*}(\xi) y d \xi=$ $=\int_{a}^{b} F_{\alpha}(\xi) y d \xi=0, \alpha=1,2$. Then, under (3.5a,b,c,d) and (3.1d), a necessary and sufficient condition for ($1.1 a, b$) to be symmetric is that

$$
\begin{gather*}
F_{1}^{*}(x)\left[\left(E_{1} M_{2}+P_{1}^{*} A_{1}^{*}(a)\right) y(a)+\left(E_{1} N_{2}+Q_{1}^{*} A_{1}^{*}(b)\right) y(b)-\int_{a}^{b} K_{1}^{*}(\xi) y d \xi\right] \tag{3.7}\\
+K_{1}(x) \int_{a}^{b} F_{1}(\xi) y d \xi+F_{2}^{*}(x) G\left[M_{2} y(a)+N_{2} y(b)\right] \equiv 0
\end{gather*}
$$

on $[a, b]$ for arbitrary vectors y of class C^{\prime} satisfying (1.1b). In particular, for vectors y of class C^{\prime} with $y(a)=y(b)=0$ condition (3.7) on $[a, b]$ implies that $F_{1}^{*}(x) \int_{a}^{b} K_{1}^{*}(\xi) y d \xi \equiv 0$ on $[a, b]$, and, consequently, $\int_{a}^{b} K_{1}^{*}(\xi) y d \xi=0$ whenever also $\int_{a}^{b} F_{\alpha}(\xi) y d \xi=0, \alpha=1,2$. Now, as $\int_{a}^{b} F_{1}(\xi) F_{2}^{*}(\xi) d \xi=0$, an argument similar to that preceding Theorem 2.1 of [9] assures that $K_{1}(x) \equiv F_{1}^{*}(x) \Phi_{1}+F_{2}^{*}(x) \Phi_{2}$ on $[a, b]$, where the $\sigma \times \sigma$ and $\tau \times \sigma$ constant matrices $\Phi_{\alpha}, \alpha=1,2$, respectively, are given by $\Phi_{\alpha} \equiv\left[\int_{d}^{b} F_{\alpha}(\xi) F_{\alpha}^{*}(\xi) d \xi\right]^{-1} \int_{\sigma}^{b} F_{\alpha}(\xi) K_{1}(\xi) d \xi, \alpha=1,2$. Then, in view of the linear independence of the columns of $F_{1}^{*}(x)$ and $F_{2}^{*}(x)$ on $[a, b]$, condition (3.7) reduces to the requirements that

$$
\begin{array}{r}
\left(E_{1} M_{2}+P_{1}^{*} A_{1}^{*}(a)-\Theta M_{1}\right) y(a)+\left(E_{1} N_{2}+Q_{1}^{*} A_{1}^{*}(b)-\Theta N_{1}\right) y(a)=0, \\
\left(G M_{2}-\Phi_{2} M_{1}\right) y(a)+\left(G N_{2}-\Phi_{2} N_{1}\right) y(b)=0, \tag{3.9}
\end{array}
$$

where $\Theta \equiv \Phi_{1}-\Phi_{1}^{*}$, for arbitrary vectors $y(a), y(b)$ satisfying $\delta_{0}[y] \equiv M_{0} y(a)+$ $+N_{0} y(b)=0$. However, as the $n+\sigma$ columns of $\left[-P_{1},-P_{2} ; Q_{1}, Q_{2}\right]$ form a maximal set of linearly independent vectors orthogonal to the ϱ rows of $\left[M_{0} N_{0}\right]$, relations (3.8), (3.9) hold for end-values $y(a), y(b)$ satisfying $z_{0}[y]=0$ if and only if

$$
\left[G M_{2}-\Phi_{2} M_{1} G N_{2}-\Phi_{2} N_{1}\right] \cdot\left[-P_{1},-P_{2} ; Q_{1}, Q_{2}\right]=0 ;
$$

and, hence, $G=0$ and $\Phi_{2}=0$, and, as in the derivation of Theorem 2.1 of [9],

$$
\begin{aligned}
& \Theta=-P_{1}^{*} A_{1}^{*}(a) P_{1}+Q_{1}^{*} A_{1}^{*}(b) Q_{1} \\
& E_{1}=P_{1}^{*} A_{1}^{*}(a) P_{2}-Q_{1}^{*} A_{1}^{*}(b) Q_{2}
\end{aligned}
$$

The latter relation, however, is an identity in view of the skew-Hermitian character of $A_{1}(x)$ and relation (3.2). Setting $\Gamma \equiv\left(\frac{1}{2}\right)\left(\Phi_{1}+\Phi_{1}^{*}\right)$, condition (3.5f) holds, and the theorem then follows by a argument similar to that used in establishing Theorem 2.1 of [9].

Corollary 1. - A problem $(1.1 a, b)$ with $K_{1}(x) \equiv 0$ on $[a, b]$ is symmetric if and only if there exists a $\tau \times \tau$ nonsingular constant matrix T such that relations (3.5a, b, $c, d, e)$ prevail and $\theta=0, \theta$ given by (3.6) wherein E_{1} is defined in Lemma 3.1.

The above result, which follows from the linear independence of the columns of $F_{1}^{*}(x)$ on [a,b], provides a simplification of condition (5) of Theorem 3.1 of Krall [4].

Corollary 2. - The differential-parameter problem

$$
\begin{align*}
A_{1}(x) y^{\prime}+\left[A_{0}(x)-\lambda B(x)\right] y+L(x) p & =0, \quad p^{\prime}=0 \\
M_{0} y(a)+N_{0} y(b) & =0 \tag{3.10}\\
\int_{0}^{b} F_{2}(\xi) y d \xi & =0
\end{align*}
$$

is symmetric if and only if there exists a $\tau \times \tau$ nonsingular constant matrix Y such that
(a) $Q=n$ and $\tau=x$,
(b) $\quad M_{0} A_{1}^{*-1}(a) M_{0}^{*}=N_{0} A_{1}^{*-1}(b) N_{0}^{*}$,
$\left.\begin{array}{l}\text { (c) } \quad A_{1}^{*}(x) \equiv-A_{1}(x), A_{0}^{*}(x) \equiv A_{0}(x)-A_{1}^{\prime}(x), B^{*}(x) \equiv B(x), \\ \text { (d) } \quad L(x) \equiv-F_{2}^{*}(x) r\end{array}\right\} o n[a, b]$.
Corollary 3. - An $(n+\tau)$-dimensional symmetrio differential-parameter problem (3.10) is equivalent to the $(n+2 \tau)$-dimensional self-adjoint (symmetric) two-point boundary problem

$$
\begin{aligned}
A_{1}(x) y^{\prime}+A_{0}(x) y+L(x) p & =\lambda B(x) y \\
r^{*} u_{2}^{\prime}-Y^{*} F_{2}(x) y & =0 \\
-\Upsilon p^{\prime} & =0 \\
M_{0} y(a)+N_{0} y(b) & =0 \\
u_{2}(a) & =0 \\
u_{2}(b) & =0
\end{aligned}
$$

under the introduction of $u_{2}(x) \equiv \int_{a}^{x} F_{2}(\xi) y d \xi$ on $[a, b]$, with Y as in Corollary 2 above.

Further, the development of canonical forms for the symmetric problems considered in [9] extends to symmetric problems (1.1a,b), and, in particular, the following extension of the Corollary to Theorem 3.1 of [9] obtains.

Theorem 3.2. - Every $(n+\tau)$-symmetric integro-differential-boundary-parameter problem $(1.1 a, b)$ is reduwible to the form

$$
\begin{gathered}
i R_{1}(x)\left[R_{1}(x) y\right]^{\prime}+\left[R_{0}(x)-\lambda B(x)\right] y+i F_{1}^{*}(x)\left[-M_{1} R_{1}^{2}(a) y(a)+N_{1} R_{1}^{2}(b) y(b)\right] \\
+F_{1}^{*}(x)[\Psi+i A] \int_{a}^{b} F_{1}(\xi) y d \xi-F_{2}^{*}(x) p=0, \quad p^{\prime}=0 \\
M_{0} y(a)+N_{0} y(b) \quad=0, \\
M_{1} y(a)+N_{1} y(b)+\int_{a}^{b} F_{1}(\xi) y d \xi=0, \\
\int_{a}^{b} F_{2}(\xi) y d \xi=0
\end{gathered}
$$

where on $[a, b] R_{0}(x), R_{1}^{2}(x)$ and $B(x)$ are each $n \times n$ Hermitian matrices, $R_{1}(x)$ is nonsingular with $R_{1}^{2}(x) \equiv-i A_{1}(x), R_{0}(x) \equiv A_{0}(x)-\left(\frac{1}{2}\right) A_{1}^{\prime}(x)$, the $\sigma+\tau$ rows of $\left[F_{1}(x)\right.$; $\left.F_{2}(x)\right]$ are linearly independent, Ψ is a $\sigma \times \sigma$ constant Hermitian matrix, the $\sigma \times \sigma$ Hermitian matrix $\Lambda \equiv\left(\frac{1}{2}\right)\left(-M_{1} R_{1}^{2}(a) M_{1}^{*}+N_{1} R_{1}^{2}(b) N_{1}^{*}\right)$,

$$
\left[M_{0}, N_{0} ; M_{1}, N_{1}\right] \cdot \operatorname{diag}\left\{R_{1}^{-2}(a),-R_{1}^{-2}(b)\right\} \cdot\left[M_{0}, N_{0} ; M_{1}, N_{1}\right]^{*}=0
$$

and the rows of the $n \times 2 n$ matrix $\left[M_{0}, N_{0}, M_{1}, N_{1}\right]$ are orthonormed, in the sense that $M_{0} M_{0}^{*}+N_{0} N_{0}^{*}=I_{e}, M_{1} M_{1}^{*}+N_{1} N_{1}^{*}=I_{\sigma}$ and $M_{0} M_{1}^{*}+N_{0} N_{1}^{*}=0$.

For a symmetric problem $(1.1 a, b)$ the matrix $-i A_{1}(x)$ is Hermitian on $[a, b]$ and, hence, there exist $n \times n$ positive matrices $C(x)$ and $D(x)$, with continuously differentiable elements, such that $-i A_{1}(x) \equiv C(x)-D(x)$ and $C(x) D(x) \equiv D(x) C(x) \equiv 0$ on $[a, b]$ (see, for example, [7, Section 108]). Then, a solution for $R_{1}(x)$ is afforded by $R_{1}(x) \equiv=C^{\left(\frac{1}{2}\right)}(x)+i D^{\left(\frac{1}{3}\right)}(x)$, where $C^{\left(\frac{1}{2}\right)}(x)$ and $D^{\left(\frac{1}{2}\right)}(x)$ denote the unique positive square roots of $O(x)$ and $D(x)$, respectively. Moreover the continuous differentiability of the elements of $O^{\left(\frac{1}{)}\right.}(x)$ and $D^{\left(\frac{1}{2}\right)}(x)$ and, consequently, of $R_{1}(x)$ on $[a, b]$ follows, in particular, either from a theorem of Rellich [6, pp. 57-58] or from Reid [5, Problem F. 1.6, pp. 524-525].

4. - Equivalent linear integro-differential-boundary-parameter problems.

The concept of equivalence of two differential systems, introduced by Reid [b, Ch. III, § 11], can be extended to equivalence of a problem (1.1a,b) with

$$
\begin{align*}
& \mathfrak{C}^{0}[w ; r: \lambda] \equiv A_{1}^{0}(x) w^{\prime}+\left[A_{0}^{0}(x)-\lambda B^{0}(x)\right] w+H^{0}(x)\left[M_{2}^{0} w(a)+N_{2}^{0} w(b)\right] \tag{4.1a}\\
& +K_{1}^{0}(x) \int_{a}^{b} F_{1}^{0}(\xi) w d \xi+L^{0}(x) r=0, \quad r^{\prime}=0, \\
& \partial_{0}^{0}[w] \equiv M_{0}^{0} w(a)+N_{0}^{0} w(b)=0, \\
& \partial_{1}^{0}[w] \equiv M_{1}^{0} w(a)+N_{1}^{0} w(b)+\int_{a}^{b} F_{1}^{0}(\xi) w d \xi=0, \tag{4.1b}\\
& \sigma_{2}^{0}[w] \equiv \quad \int_{a}^{b} F_{2}^{0}(\xi) w d \xi=0,
\end{align*}
$$

with coefficient matrices of the same dimensions, with maximal rank character and elements of similar continuity and row-independence character, on $[a, b]$ as pertain to the corresponding matrices without the superscript ${ }^{0}$, enumerated in Sect. 1. Further, let $P_{\alpha}^{0}, Q_{x}^{0}, \alpha=0,1,2$, satisfy the inverse relation (2.2) with respect to $M_{\alpha}^{0}, N_{\alpha}^{0}, \alpha=0,1,2$, wherein the superscript is added to each submatrix in (2.2). In addition, let the dimensions of the matrix coefficients in $(4.1 a, b)$ be designated by the surperscript ${ }^{0}$ after the same letters designating the dimensions of the corresponding matrices in (1.1a,b); with, however $n^{0}=n$ and $\chi^{0}=\varkappa$. Thus, $H^{0}(x)$ is an $n \times v^{0}$ matrix, $F_{1}^{0}(x)$ a $\sigma^{0} \times n$ matrix, M_{0}^{0} a $\varrho^{0} \times n$ matrix, ete..

Problem (1.1a,b) will be termed equivalent to (4.1a,b) under the transformations

$$
w=T(x) y \text { for } x \in[a, b], \quad r=\Pi p
$$

where $T(x)$ is an $n \times n$ nonsingular matrix function with elements continuously differentiable on $[a, b]$ and $I T$ is a $x \times x$ nonsingular constant matrix, if the integralboundary forms (1.1b) and (4.1b) are equivalent and, for arbitrary $\lambda, \mathfrak{E}[y ; p: \lambda]=0$ if and only if $\mathcal{L}^{0}[w ; r: \lambda]=0$ for vector sets $\{y, p\}, p$ constant and y of class O^{\prime} satisfying (1.1b).

Lemma 4.1. - For $T(x)$ an $n \times n$ matrix nonsingular on $[a, b]$, the integro-boundary forms (1.1b) and (4.1b) are equivalent under $w=T(x) y$ if and only if there exist a $\tau \times \tau$ nonsingular constant matrix Σ_{2} and a $\sigma \times \tau$ constant matrix Δ_{2} such that
(a) $\varrho^{0}=\varrho, \sigma^{0}=\sigma$ and $\tau^{0}=\tau$,
(b) $\left[M_{0}, N_{0} ; M_{1}, N_{1}\right] \cdot \operatorname{diag}\left\{-T^{-1}(a), T^{-1}(b)\right\} \cdot\left[P_{2}^{0} ; Q_{2}^{0}\right]=0$,
(c) $\quad\left[M_{0} N_{0}\right] \cdot \operatorname{diag}\left\{-T^{-1}(a), T^{-1}(b)\right\} \cdot\left[P_{1}^{0} ; Q_{1}^{0}\right]=0$,
(d) $\quad F_{2}^{0}(x) T(x) \equiv \Sigma_{2} F_{2}(x)$,
(e) $\quad F_{1}^{0}(x) T(x) \equiv \Sigma_{1} F_{1}(x)+A_{2} F_{2}(x)$
$\}$ on $[a, b]$,
where $\Sigma_{1}^{-1} \equiv\left[M_{1} N_{1}\right] \cdot \operatorname{diag}\left\{-T^{-1}(a), T^{-1}(b)\right\} \cdot\left[P_{1}^{0} ; Q_{1}^{0}\right]$.

Conditions (4.2a) hold from the maximal row ranks of several combinations of the boundary matrix coefficients, and relations ($4.2 b-e$) are then synonymous with the existence of nonsingular constant matrices $\Sigma_{\alpha}, \alpha=0,1,2$, of dimensions $\varrho \times \varrho$, $\sigma \times \sigma$ and $\tau \times \tau$, respectively, and constant matrices Δ_{0} and Δ_{2} of dimensions $\sigma \times \varrho$ and $\sigma \times \tau$, respectively, such that $刀_{0}^{0}[w]=\Sigma_{0} y_{0}[y], s_{1}^{0}[w]=\Sigma_{1} y_{1}[y]+\Delta_{0} y_{0}[y]+A_{2} y_{2}[y]$ and $\delta_{2}^{0}[w]=\Sigma_{2} \sigma_{2}[y]$ under $w=T(x) y$. Herein, it is to be noted that as the columns of $\left[P_{0}^{2} ; Q_{0}^{2}\right]$ form a maximal set of $v^{0}=2 n-(\varrho+\sigma)$ linearly independent vectors orthogonal to the $e+\sigma$ rows of $\left[M_{0}, N_{0} ; M_{1}, N_{1}\right] \cdot \operatorname{diag}\left\{-T^{-1}(a), T^{-1}(b)\right\}$, and as the $\varrho+\sigma$ columns of $\left[P_{0}^{0}, P_{1}^{0} ; Q_{0}^{0}, Q_{1}^{0}\right]$ are linearly independent of the columns of $\left[P_{0}^{2} ; Q_{0}^{2}\right]$, then, in view of $(4.2 c), \Sigma_{1}$ is well-defined; and, moreover, there exist a $\varrho \times \varrho$ nonsingular matrix Σ_{0} and a $\sigma \times \varrho$ matrix Λ_{0} such that

$$
\left[M_{0}, N_{0} ; M_{1}, N_{1}\right] \cdot \operatorname{diag}\left\{-T^{-1}(a), T^{-1}(b)\right\} \cdot\left[P_{0}^{0}, P_{1}^{0} ; Q_{0}^{0}, Q_{1}^{0}\right]=\left[\Sigma_{0}, 0 ; \Delta_{0}, \Sigma_{1}\right]^{-1}
$$

Furthermore, as equivalence of integro-boundary forms is a symmetric relation in that equivalence of (1.1b) to (4.1b) under $w=T(x) y$, with $T(x)$ nonsingular on $[a, b]$, holds if and only if (4.1b) is equivalent to (1.1b) under $y=T^{-1}(x) w$, conditions $(4.2 b, c)$ may be replaced by the set

$$
\begin{array}{r}
{\left[M_{0}^{0}, N_{0}^{0} ; M_{1}^{0}, N_{1}^{0}\right] \cdot \operatorname{diag}\{-T(a), T(b)\} \cdot\left[P_{2} ; Q_{2}\right]=0,} \\
{\left[M_{0}^{0} N_{0}^{0}\right] \cdot \operatorname{diag}\{-T(a), T(b)\} \cdot\left[P_{1} ; Q_{1}\right]=0,}
\end{array}
$$

wherein $P_{\alpha}, Q_{\alpha}, \alpha=1,2$ are determined by relation (2.2).
Theorem 4.1. - Problem (1.1a,b) is equivalent to problem (4.1a,b) under the transformations $w=T(x) y, r=\Pi p$ if and only if $T(x)$ is an $n \times n$ nonsigular continuously differentiable matrix function on $[a, b], \Pi$ is $a \varkappa \times \varkappa$ nonsingular constant matrix, and there exist a $\tau \times \tau$ nonsingular constant matrix Σ_{2} and $a \sigma \times \tau$ constant matrix Δ_{2} such that
(a) $\varrho^{0}=\varrho, \sigma^{0}=\sigma, \tau^{0}=\tau$ and $\nu^{0}=v$,
(b) $\left[M_{0}, N_{0} ; M_{1}, N_{1}\right] \cdot \operatorname{diag}\left\{-T^{-1}(a), T^{-1}(b)\right\} \cdot\left[P_{2}^{0} ; Q_{2}^{0}\right]=0$,
(c) $\quad\left[M_{0} N_{0}\right] \cdot \operatorname{diag}\left\{-T^{-1}(a), T^{-1}(b)\right\} \cdot\left[P_{1}^{0} ; Q_{1}^{0}\right]=0$,
(d) $\quad T^{\prime}(x)-T(x) A_{1}^{-1}(x) A_{0}(x)+A_{1}^{0^{-x}}(x) A_{0}^{0}(x) T(x) \equiv 0$,
(e) $A_{1}^{0^{-1}}(x) B(x) T(x) \equiv T(x) A_{1}^{-1}(x) B(x)$,
(4.3) (f) $\quad A_{1}^{0^{-1}}(x) L^{0}(x) \Pi=T(x) A_{1}^{-1}(x) L(x)$,
(g) $\quad F_{2}^{0}(x) T(x) \quad \equiv \Sigma_{2} F_{2}(x)$,
(h) $\quad F_{1}^{0}(x) T(x) \quad \equiv \Sigma_{1} F_{1}(x)+A_{2} F_{2}(x)$,
(i) $\quad A_{1}(x) T^{-1}(x) A_{1}^{0^{-1}}(x) K_{1}^{0}(x)$

$$
\equiv K_{1}(x) \Sigma_{1}^{-1}+H(x)\left[M_{2} T^{-1}(a) P_{1}^{0}-N_{2} T^{-1}(b) Q_{1}^{0}\right]
$$

(j)

$$
\left.A_{1}(x) T^{-1}(x) A_{1}^{0^{-1}}(x) H^{0}(x) \equiv H(x)\left[-M_{2} T^{-1}(a) P_{2}^{0}+N_{2} T^{-1}(b) Q_{2}^{0}\right]\right]
$$

where $\Sigma_{1} \equiv\left(-M_{1} T^{-1}(a) P_{1}^{0}+N_{1} T^{-1}(b) Q_{1}^{0}\right)^{-1}$.

For a problem (1.1a,b) equivalent to (4.1a, b) under $w=T(x) y, r=\Pi p$, relations ($4.3 a, b, c, g, h$) hold from Lemma 4.1 , and for vectors y with continuously differentiable components and satisfying $y(a)=y(b)=\int_{a}^{b} F_{1}(\xi) y d \xi=\int_{a}^{b} F_{2}(\xi) y d \xi=0$ we have that

$$
\left[A_{1}(x), 0 ; 0, I\right][y ; p]^{\prime}+\left[A_{0}(x)-\lambda B(x), L(x) ; 0,0\right][y ; p]=0
$$

for a value λ if and only if

$$
\left[A_{0}^{1}(x), 0 ; 0, I\right][w ; r]^{\prime}+\left[A_{0}^{0}-\lambda B^{0}(x), L^{0}(x) ; 0,0\right][w ; r]=0
$$

for the same value λ under $[w ; r]=[T(x), 0 ; 0, \Pi T][y ; p]$. Consequently, relations ($4.3 a$, e, f) follow from Theorem 11.1 of Rem [5 , Chapter III]. Then, for arbitrary λ and arbitrary vectors y with continuously differentiable components and satisfying (1.1b),

$$
\begin{align*}
A_{1}^{0}(x) T(x) A_{1}^{-1}(x) \subseteq[y ; p: \lambda]- & \perp^{0}[w ; r: \lambda] \tag{4.4}\\
\equiv\left\{A_{1}^{0}(x) T(x) A_{1}^{-1}(x)\right. & {\left[H(x) M_{2}-K_{1}(x) M_{1}\right] T^{-1}(a)+} \\
+ & {\left.\left[K_{1}^{0}(x) M_{1}^{0}-H^{0}(x) M_{2}^{0}\right]\right\} w(a) } \\
& +\left\{A_{1}^{0}(x) T(x) A_{1}^{-1}(x)\left[H(x) N_{2}-K_{1}(x) N_{1}\right] T^{-1}(b)+\right. \\
& \left.+\left[K_{1}^{0}(x) N_{1}^{0}-H^{0}(x) N_{2}^{0}\right]\right\} w(b)
\end{align*}
$$

under $w=T(x) y, r=\pi p$. Now, as the $2 n-\varrho$ columns of $\left[-P_{1}^{0},-P_{2}^{0} ; Q_{1}^{0}, Q_{2}^{0}\right]$ form a maximal set of vectors orthogonal to the ϱ rows of $\left[M_{0}^{0} N_{0}^{0}\right]$ it follows from (4.3b,c) that, for each x on $[a, b]$, the right-hand side expression in (4.4) vanishes for arbitrary vectors $w(a), w(b)$ satisfying $\hat{c}_{0}^{0}[w]=0$ if and only if relations $[4.3 i, j]$ hold; and, the necessity of relations (4.3) are established.

Conversely, if all the relations (4.3) hold for $T(x)$ an $n \times n$ nonsingular, continuously differentiable matrix function on $[a, b], \Pi$ and Σ_{2} nonsingular constant matrices of dimensions $* \times x$ and $\tau \times \tau$, respectively, and Δ_{2} a $\sigma \times \tau$ constant matrix, then the boundary forms (1.1b) and (4.1b) are equivalent under $w=T(x) y$ and $A_{1}^{0}(x) T(x)$. - $A_{1}^{-1}(x) \mathcal{L}[y ; p: \lambda] \equiv \mathcal{L}^{0}[T y, \Pi p: \lambda]$ on $[a, b]$ for arbitrary vectors y of class G^{\prime} satisfying ($1.1 b$).

Of special interest is the case in which system (4.1a,b) is the system (2.4a,b), the adjoint to problem (1.1a, b). In this instance, as the rank of $\left[P_{2}^{*} A_{1}^{*}(a) Q_{2}^{*} A_{1}^{*}(b)\right]$ is maximal, it follows from relation (4.2a) that $\varrho+\sigma=\nu=n$ and $\tau=x$, and, hence, that there exist an $n \times n$ nonsingular constant matrix V and an $n \times \tau$ constant matrix W such that the identifications

$$
\begin{align*}
{\left[0 ; F_{1}^{0}(x)\right] } & \leftrightarrow V H^{*}(x)+W L^{*}(x) \tag{4.5}\\
{\left[M_{0}^{0}, N_{0}^{0} ; M_{1}^{0}, N_{1}^{0}\right] } & \leftrightarrow V\left[P_{2}^{*} A_{1}^{*}(a) Q_{2}^{*} A_{1}^{*}(b)\right]
\end{align*}
$$

may be set. Then, the further identifications

$$
\begin{aligned}
& F_{2}^{0}(x) \leftrightarrow L^{*}(x), \\
& {\left[M_{2}^{0} N_{2}^{0}\right] \leftrightarrow\left[P_{0}^{*}, Q_{0}^{*} ; P_{1}^{*}, Q_{1}^{*}\right] \cdot \operatorname{diag}\left\{A_{1}^{*}(a), A_{1}^{*}(b)\right\}}
\end{aligned}
$$

yield the identities

$$
\begin{aligned}
{\left[P_{0}^{0}, P_{1}^{0} ; Q_{0}^{0}, Q_{1}^{0}\right] } & \equiv \operatorname{diag}\left\{A_{1}^{*-1}(a), A_{1}^{*-1}(b)\right\} \cdot\left[M_{2}^{*} ; N_{2}^{*}\right] V^{-1} \\
{\left[P_{2}^{0} ; Q_{2}^{0}\right] } & \equiv \operatorname{diag}\left\{A_{1}^{*-1}(a), A_{1}^{*-1}(b)\right\} \cdot\left[M_{0}, N_{0} ; M_{1}, N_{1}\right]^{*}
\end{aligned}
$$

and the identification

$$
H^{0}(x) \leftrightarrow\left[0-I_{1}^{*}(x)\right]
$$

and, hence, the following preliminary result.
Lemma 4.2. - For a problem (1.1a,b) the integro-boundary forms (1.1b) and (2.4b) are equivalent under $z=T(x) y$ if and only if there exist an $n \times n$ matrix $T(x)$ nonsingular on $[a, b]$, a $\tau \times \tau$ nonsingular constant matrix Σ_{a} and a $\sigma \times \tau$ constant matrix Δ_{2} such that, with $T_{1}(x) \equiv A_{1}^{*}(x) T(x)$ on $[a, b]$,
(a) $\varrho+\sigma=\nu=n$ and $\tau=\varkappa$,
(b) $\left[M_{0}, N_{0} ; M_{1}, N_{1}\right] \cdot \operatorname{diag}\left\{-T_{1}^{-1}(a), T_{1}^{-1}(b)\right\} \cdot\left[M_{0}, N_{0} ; M_{1}, N_{1}\right]^{*}=0$,
(c) $\left[0 I_{\sigma}\right] V^{*-1} \tilde{C}\left[I_{e} ; 0\right]=0$,
(d) $T_{1}^{*}(x) A_{1}^{-1}(x) L(x) \equiv F_{2}^{*}(x) \Sigma_{2}^{*}$,
(e) $\left.T_{1}^{*}(x) A_{1}^{-1}(x) H(x) \equiv I_{1}^{*}(x)\left[0 \Sigma_{1}^{*}\right] V^{*-1}+F_{2}^{*}(x) G\right\}$ on $[a, b]$,
where $\widehat{C} \equiv\left[M_{2} N_{2}\right] \cdot \operatorname{diag}\left\{-T_{1}^{*-1}(a), T_{1}^{*-1}(b)\right\} \cdot\left[M_{0}, N_{0} ; M_{1}, N_{1}\right]^{*}, \Sigma_{1}^{*-1} \equiv\left[0 I_{\sigma}\right] V^{*-1}$. $\cdot \tilde{C}\left[0 ; I_{\sigma}\right], G^{*}=V^{-1}\left(\left[0 ; \Delta_{2}\right]-W \Sigma_{2}\right)$, and V and W defined ihrough the identitifieation (4.5).

It is to be noted that as the nonsingularity of \tilde{C} may be established by an argument similar to that following Lemma 3.1 in establishing the nonsingularity of C, relation (4.6c) and the nonsingularity of V then insure that Σ_{1} is well-defined. Consequently, with

$$
\begin{equation*}
\tilde{E}_{1} \equiv\left[0 I_{\sigma}\right] \tilde{C}^{-1} \tag{4.7}
\end{equation*}
$$

17 - Annal di Matematica
it follows from (4.6c) and the definition of Σ_{1} that

$$
\begin{equation*}
\left[0 \Sigma_{1}^{*}\right] V^{*-1}=\Sigma_{1}^{*}\left[0 I_{\sigma}\right] V^{*-1} \tilde{C}\left[I_{Q}, 0 ; 0, I_{\sigma}\right] \tilde{C}^{-1}=\Sigma_{1}^{*}\left[0 \Sigma_{1}^{*-1}\right] \tilde{C}^{-1}=\tilde{E}_{1} \tag{4.8}
\end{equation*}
$$

and, hence, from Lemma 3.1 with the choices Y as $-\Sigma_{2}^{*}, C$ as \tilde{C}, E_{1} as \tilde{E}_{1} and G as in Lemma 4.2 above, we have the next result.

Lempa $4.3-$ For an $n \times n$ nonsingular matrix $T(x)$ with continuously differentiable components on $[a, b]$, the integro-boundary forms $(1.1 b)$ and (2.4b) of a problem (1.1a, b) and its adjoint (2.4a,b) are equivalent under $z=T(x) y$ if and only if the integroboundary forms $\delta_{\alpha}[y], \alpha=0,1,2$, of the problem $T^{*}(x) \mathcal{L}[y ; p: \lambda]=0, \delta_{\alpha}[y]=0$, $\alpha=0,1,2$, and those of its related adjoint are equivalent forms.

Now, for the case where the system $(4.1 a, b)$ is the adjoint system $(2.4 a, b)$ the following additional identifications prevail:

$$
\begin{align*}
& A_{1}^{0}(x) \leftrightarrow-A_{1}^{*}(x) \\
& A_{0}^{0}(x) \leftrightarrow A_{0}^{*}(x)-A_{1}^{* \prime}(x) \\
& B^{0}(x) \leftrightarrow B^{*}(x) \\
& \Pi_{1}^{0}(x) \leftrightarrow F_{1}^{*}(x) \Xi \\
& F_{1}^{0}(x) \leftrightarrow \Xi^{-1} K_{1}^{*}(x) \tag{4.9}\\
& L^{0}(x) \leftrightarrow-F_{2}^{*}(x)
\end{align*}
$$

with Ξ a $\sigma \times \sigma$ nonsingular constant matrix. Consequently, the next result follows from Theorem 4.1 and Lemmas 4.2 and 4.3.

THEOREM 4.2. - A problem (1.1a,b) is equivalent to its adjoint (2.4a,b) under $z=T(x) y, q=\Pi p$ if and only if $T(x)$ is an $n \times n$ nonsingular continuously differentiable matrix function on $[a, b], \Pi$ is $a x \times x$ nonsingular constant matrix, and there exists a $\sigma \times \sigma$ nonsingular constant matrix Ξ such that the integro-boundary forms $\delta_{\alpha}[y]$, $\alpha=0,1,2$, of the problem $T^{*}(x) \mathcal{L}[y ; p: \lambda]=0, \eta_{\alpha}[y]=0, \alpha=\overline{0}, 1,2$, and those of its related adjoint are equivalent, and on $[a, b]$, for $T_{1}(x) \equiv A_{1}^{*}(x) T(x)$,
(a) $T_{1}^{\prime}(x)-A_{0}^{*}(x) A_{1}^{*-1}(x) T_{1}(x)-T_{1}(x) A_{1}^{-1}(x) A_{0}(x) \equiv 0$,

$$
\begin{equation*}
(c) \quad T_{1}(x) A_{1}^{-1}(x) L(x)-F_{2}^{*}(x) \Pi \equiv 0 \tag{b}
\end{equation*}
$$

$$
\begin{equation*}
\text { (d) } T_{1}(x) A_{1}^{-1}(x)\left[-K_{1}(x)+H(x)\left[M_{2} N_{2}\right] \cdot \operatorname{diag}\left\{-T_{1}^{-1}(a), T_{1}^{-1}(b)\right\}\right. \tag{4.10}
\end{equation*}
$$

$$
\left.\left[M_{2} N_{2}\right]^{*} \tilde{E}_{1}^{*}\right] \equiv F_{1}^{*}(x) \Xi \Sigma_{1}
$$

(e) $\quad T_{1}(x) A_{1}^{-1}(x) H(x)\left[M_{2} N_{2}\right] \cdot \operatorname{diag}\left\{-T^{-1}(a), T^{-1}(b)\right\} \cdot\left[M_{0}, N_{0} ; M_{1}, N_{1}\right]^{*}$ $\equiv\left[0-F_{1}^{*}(x)\right]$,
where \tilde{E}_{1} is given by (4.7), and Σ_{1} and \tilde{C} defined in Lemma 4.2.

Moreover, in case the transformation matrix $T(x)$ is such that $T_{1}(x)$ is skewHermitian on $[a, b]$ the conditions for equivalence of a problem (1.1a,b) with its adjoint are reducible. In this connection we first note that the result of Rerd [5, Problem III. 11, no. 5] may be extended in that, in the notation of the Problem, the assumption that $A_{1}(t) A_{2}(t)$ be the identity matrix may be dropped with the skewHermitian property of the result then pertaining to the matrix $\widehat{T}_{1}(x) \equiv A_{2}^{*}(x) A_{1}^{*}(x) \widehat{T}(x)$. In particular, $\widehat{T}(x)$ may be selected as of the form (11.19) of Reid [5, Chapter III] with $c_{1}=\cos \theta+i \sin \theta, e_{2}=-\cos \theta+i \sin \theta$, and θ a real value such that $\widehat{T}_{1}^{*}(x)$. $\cdot \widehat{T}_{1}^{-1}(x)-\exp [2 i \theta] I$ is nonsingular for some value of x on $[a, b]$.

Lemma 4.4. - If the two-point differential problem

$$
\begin{align*}
\mathcal{L}[y: \lambda] & \equiv A_{1}(x) y^{\prime}+A_{0}(x) y-\lambda B(x) y=0, \\
\mathscr{o}_{0}[y] & \equiv M_{0} y(a)+N_{0} y(b)=0 \tag{4.11}
\end{align*}
$$

is equivalent to its adjoint under a nonsingular transformation matrix $T(x)$, with elements continuously differentiable on $[a, b]$, then there exists a nonsingular transformation matrix $\widehat{T}(x)$, with elements continuously differentiable and such that $A_{1}^{*}(x) \hat{T}(x)$ is skew. Hermitian on $[a, b]$, under which problem (4.11) is equivalent to its adjoint; moreover, the system $T^{*} \mathbb{L}[y: \lambda]=0, \delta_{0}[y]=0$ is self-adjoint.

The above result can be extended to differential-parameter problems (3.10). More generally, the following result relates the concepts of equivalence of a problem $(1.1 a, b)$ with its adjoint, under transformation sets $\{T(x), \Pi\}$ with $A_{1}^{*}(x) T(x)$ skewHermitian on $[a, b]$, with that of symmetry.

Theorem 4.3. - For an integro-differential-boundary-parameter problem $£[y ; p: \lambda]=0, b_{\alpha}[y]=0, \alpha=0,1,2$, equivalent to its adjoint $(2.4 a, b)$ under $z=T(x) y$, $q=\Pi p$, with $T(x)$ an $n \times n$ nonsingular matrix with elements continuously differentiable and $A_{1}^{*}(x) T(x)$ skew-Hermitian on $[a, b]$, and Π a $\varkappa \times x$ nonsingular constant matrix, the system

$$
\begin{equation*}
T^{*}(x) \mathcal{L}[y ; p: \lambda]=0, \quad 夕_{\alpha}[y]=0, \quad \alpha=0,1,2, \tag{4.12}
\end{equation*}
$$

is symmetric.
If ($1.1 a, b$) is equivalent to its adjoint under $z=T(x) y, q=\Pi p$, conditions (3.5a,b) for problem (4.11) follow from Theorem 4.2 and Lemmas 3.1 and 4.2, while relations (3.5c) for problem (4.12) follow from the assumption $A_{1}^{*}(x) T(x)$ skewHermitian and relations ($4.10 a, b$) on $[a, b]$. Further, from (4.10c), relation (3.5d) for problem (4.12) holds for the choice $Y=\Pi$; moreover, in this case the matrix Σ_{2} in (4.6) is given by $\Sigma_{2}=-\Pi^{*}$.

Now, as $T_{1}(x) \equiv A_{1}^{*}(x) T(x)$ is skew-Hermitian on $[a, b]$ relation (4.10e) reduces to $T^{*}(x) H(x) \tilde{C} \equiv\left[0 F_{1}^{*}(x)\right]$ on $[a, b]$; and, hence, $T^{*}(x) H(x) \equiv F_{1}^{*}(x) \widetilde{E}_{1}$ on $[a, b]$, which is relation (3.5e) for problem (4.12). Moreover, it follows from relation (4.8)
and the linear independence of the columns of $F_{2}^{*}(x)$ that the matrix G in (4.6e) is the zero matrix. Furthermore, relation (4.10d) reduces to

$$
\begin{equation*}
T^{*}(x) K_{1}(x) \equiv F_{1}^{*}(x)\left(\Xi \Sigma_{1}+\tilde{\Theta}\right) \text { on }[a, b] \tag{4.13}
\end{equation*}
$$

with $\tilde{\Theta}$ the analogue of the matrix Θ in (3.6) for problem (4.12). However, the identifications (4.5) and (4.9) imply that

$$
T^{*}(x) K_{1}(x) \Xi^{*-1}\left[0 I_{\sigma}\right] \equiv T^{*}(x)\left(H(x) V^{*}+L(x) W^{*}\right) \text { on }[a, b],
$$

and, consequently,

$$
F_{1}^{*}(x)\left\{\widetilde{E}_{1} V^{*}-\left(\Xi \Sigma_{1}+\tilde{\Theta}\right) \Xi^{*-1}\left[0 I_{\sigma}\right]\right\}-F_{2}^{*}(x) \Pi W^{*}=0
$$

on $[a, b]$. Then, as the columns of $F_{1}^{*}(x)$ and $F_{2}^{*}(x)$ are assumed to be linearly independent on $[a, b]$ we have that $W=0$ and, from (4.8), that $\Sigma_{1}^{*}=\left(\Xi \Sigma_{1}+\tilde{\Theta}\right) \Xi^{*-1}$. Now, as $\tilde{\Theta}$ is skew-Hermitian it follows that the matrix $\left(\Xi \Sigma_{1}+\left(\frac{1}{2}\right) \tilde{\Theta}\right)$ is Hermitian; and, hence, from (4.13) we have that relation (3.5f) holds for problem (4.12) with the choice $\Gamma \equiv \Xi \Sigma_{1}+\left(\frac{1}{2}\right) \tilde{\Theta}$, and the theorem is established.

REFERENCES

[1] R. H. Cole, General boundary conditions for an ordinary differential system, Trans. Amer. Math. Soc., 111 (1964), pp. 521-550.
[2] W. R. Jones, Differential systems with integral boundary conditions, J. Differential Equations, 3 (1967), pp. 191-202.
[3] A. M. Krall, Difjerential-boundary operators, Trans. Amer. Math. Soc., 154 (1971), pp. 429-458.
[4] A. M. Krall, Stieltjes differential-boundary operators, Proc. Amer. Math. Soc., 41 (1973), pp. 80-86.
[5] W. T. Retd, Ordinary Differential Equations, John Wiley and Sons, New York, 1971.
[6] F. Reluch, Periurbation Theory of Eigenvalue Problems, Lecture Notes, New York University, 1953.
[7] F. Riesz - B. Sz-Nagy, Funetional Analysis, Frederick Ungar, New York, 1955, translated from Legons d'Analyse Fonctionelle, Budapest, 1952.
[8] 0. Vesvoda - M. Tvrdỳ, Existence of solutions to a linear integro-boundary-difierential equation with additional conditions, Ann. Mat. pura ed appl., ser. 4, 89 (1971), pp. 169-216.
[9] H. J. Znmerberg, Symmetric integro-differential-boundary problems, Trans. Amer. Math. Soc., 188 (1974), pp. 407-417.

[^0]: (*) Entrata in Redazione il 5 dicembre 1973.
 (**) Address: Department of Mathematics, Rutgers, The State University, New Brunswick, New Jersey, 08903, U.S.A.

