
Linear Integro-Differential-Boundary.Parameter Problems (*). 

H ¥ ~ - ~  J. ZI~ME~BE~G (New Brunwick, N. J.,  U.S.A.) (**) 

S u m m a r y .  - Necessary and su]]ieient conditions ]or a linear vector di//erential system, involving 
integral, boundary, and vector parameter terms, to be symmetric (self-adjoint) are developed 
and applied to obtain canonical ]orms ]or symmetric problems. In addition, the concept o] 
the equivalence o] two such linear problems under nonsinffular trans/ormations is examined, 
and a relationship between equivalence o] a problem with its adjoint and symmetry is obtained. 

O. - I n t r o d u c t i o n .  

The recent results of VEJVODA and TVRD~ [8] and the author [9] will be extended 
to obtain the most general form of symmetric (self-adjoint) problems of vector form 

(0.1a) Al(x)y'--~ [Ao(x) -- )~B(x)]y -~ H(x)[M~y(a) -~ ~y(b) ]  

b 

+ g(x)f~(~lya~ + ~(x)p = o, 
f t  

b 

(0.1b) My(a) -~ 5"y(b) + f F( )yd  = o . 
a 

p ' = O ,  

In considering the concept o5 self-adjointness for problems with general integro- 
boundary conditions (0.1b), the introduction of a term involving a, vector parameter p 
appears as a natural consequence of the form of the adjoint problem as previously 
obtained by CoLE [1], Jo~ns [2] and V~voI)A and TVRI)~" [8]. Moreover, a reformu- 
lation of the integro-boundary conditions yields a simplification of one of the conditions 
for self-adjointness deduced by K~ALL [4] for problems (0.1a, b) with K(x) ~-- O. 

The notation and hypotheses under which the problems are considered will be 
noted in Section 1. In Section 2 the problem ~djoint to (0.1a, b) will be developed, 
and necessary and sufficient conditions for symmetry (sclf-adjointness) wilt be ob- 
tained in Section 3, together with canonical forms of symmetric problems. In Section 4 
the equivalence of two integro-differential-bound~ry-parameter problems under 
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nonsingular transformations will be discussed, and, in particular, the equivalence 
of a problem (0.1a, b) with its adjoint. In this connection, the conclusion of Reid 
[5, Problem III.11, no. 5] for two-point boundary problems (i.e., problems (0.1a, b) 
with H(x), K(x), L(x) and H(x) as zero matrices) equivalent to their adjoint will be 
extended to remove the restriction that the matrix coefficient of the derivative term 
be the identity matrix. A generalization of this result then yields a relationship 
between the concept of equivalence of a problem (0.1a~ b) with its adjoint under sets 
containing a nonsingular skew-Hermitian transformation and that  of symmetry. 

1. - Notat ions  and hypotheses .  

Vector and matrix notation will be employed throughout the paper. ]~L~trices 
will be denoted by Roman and Greek capital letters, vectors by lower-case Roman 
letters, while lower-ease Greek letters will usually be employed as scalars. Vector 
operators will be indicated by capitals or lower-case letters in script type. The ~ × 
identity matrix will be represented by ~ ,  and, as is customary, 0 will be used indi- 
scriminately to denote either the number zero, a zero vector or a zero matrix. Further, 
the operations of conjugate-transpose and differentiation, applied to both vectors 
and matrices, will be indicated by * and ', respectively. Finally, when row and column 
dimensions agree, [M; N] will denote the matrix [M* N*]*, [M, N; P, Q] will rep- 
resent the matrix 

and, more generally, [M, N; P,Q; R, S] will indicate the matrix wherein block 
partitioning produces successive row block-matrices [M N], [P Q] and [R S] in 
that  order. 

For problem (0.1a, b) it will be assumed that  the elements of the n ×n  matrix 
Al(x) are complex-valued functions continuously differentiable on the finite interval 
a<x4b,  the elements of the n×n matrices Ao(x) and B(x), the n × v  matrix H(x), 
the n Xm matrix K(x), the n × ~  matrix L(x), and the m xn  matrix F(x) are all 
complex-valued functions continuous on [a, b], and, further, that  the n columns of 
L(x) are linearly independent on [a, b]. Moreover, M2 and N~ are each v x n constant 
matrices, and M and N are each m Xn constant matrices with 0 < m < 2 n  and such 
that  the m integro-boundary forms (0.1b) are linearly independent forms. The vectors 
y and p are, respectively, n- and n-dimensional vectors, and ~ is a scalar constant. 
In addition, it is to be noted that  a necessary and sufficient condition for the linear 
independence of the m boundary forms (0.1b) is the linear independence on [a, b] 
of the rows of the m ×3n matrix [M N F(x)] (see Jo~Es [2, Theorem 2.1]). 

Now, let D be an m × m nonsingular constant matrix such that the m integro- 
boundary conditions (0.1b), on multiplication on the left by D, reduce to the 
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equivalent form 

(1.1b) 

Jo[Y] = Moy(a) + Noy(b) =: O, 

b 

dl[y] =: Mly(a) -k Nly(b) + fFl(~)y4~ = o,  
a 

b 

a 

of Q, a and v conditions, respectively, ~o+ a t  T~- m, with the (~-k a) ×2n matrix 
[3/0, N0; M1, 2/1] of rank ~ -  a, the ~-~- • rows of [/;~(~); Fs(~)] linearly inde- 

b 

pendent on [a, b], and, additionally, such that fF~(~)l?*~(~)d~= O. (This latter 

orthogonality condition can be assured by  effecting the replacement of F~(x) by  
b b 

where the  rows are, a priori, 
a 

linearly independent on [a, b]). Moreover, without loss of generality, we m~y consider 
thut the v×2n  matrix [MsN2] has r~nk v = 2 n - - ~ - - a  with the 2 n × 2 n  mutrix 
[M0, No; ]/1, iV1; M~, Ns] nonsingular (see, for example, [8, l~emark 6.2]), and that 
(0.1a) is reduced to the form 

(1.1a) E[y; p: ~] - - A l ( x ) y ' +  [Ao(x)- ~B(x)jy + H(x)[M2y(a) + Nsy(b)] 

b 

+ K~(x)f~'~(~)yd~ + L(x)p = O, p ' =  O, 
a 

where K~(x) is the n × a mutrix consisting of the ~ + 1, ..., ~ -k a columns of K(x)D -1. 

2. - The  adjoint  problem.  

With the introduction of new vectors 

x 

ul =-- M~y(a) ~-fF~(~)yd~ , 
a 

x 

us ~fFs(~) y d~ , 

sl ~ M~y(a) + N~y(b) , 

s~ = Msy(a) -~ Nsy(b) , 
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problem (1.1a, b) is equivalent to the differential system consisting of (3n + a + T 
+ ~¢-- ~) linear differential equations and (2n + 2a + 2T) end-point conditions: 

(2.1) 

A ~ ( x ) y ' +  A o ( x ) y -  Kx(x ) s~+ H(x)s2 + L ( x ) p  -~ 2 B ( x ) y ,  
t 

u 1 - - F l ( x ) y  = O , 
r 

u. - -  F J x ) y  = 0 , 
! 

S 1 = O , 

S 2 = 0 

p'  = O ,  

Moy(a) + Noy(b) = O, 

M~y(a) --  u~(a) = O, 

Nxy(b) + uJb)  = 0 ,  

u~(a) = 0 , 

u2(b) = 0 , 

M~y(a) --  s~(a) + N~y(b) = 0 ,  

i ~ y ( a )  - -  s j a )  + N~y(b) -~ O. 

~ow, if constant  matrices P~, Q~ (c¢-= 0, 1, 2), of dimensions n x ~ ,  n x a  and 
n x v, respectively, are defined by 

(2.2) [Mo, No; M ~ , N ~ ;  M 2 , . ~ 2 ] . [ - - P o , - - . P 1 , - - P ~ ;  Qo,Q~,Q~]=-:I~, ,  

the differential system adjoint  to (2.1) is comprised of (3n + a + T +4- z - -  ~) linear 
differential equations together with (4n + 2~-- 2~) end-point conditions (see, for 
example, [5, § 3.6]): 

- -  [A*~(x)z]' + A*o(X)Z-- F*~(x)vl-- F*2(x)q ~- 2B*(x)z  , 
f 

V 1 :=0 
r 

q ~ O ,  
f 

- - t  1 -  g ~ ( x ) z  = O ,  
r 

- t 2 + H * ( x ) z  = 0 ,  
r 

- % -4- L * ( x ) z  = 0 ,  
* * * * * * * * 

P~ A 1 (a)z(a) + = P~ M 1 v~(a) 0 92 A~ (b)z(b) + --  Qz N~ vl(b) --  t~(a) , 
(2.3) , , , , , , , .~, 

P~ A~ (a)z(a) + Q~ A~(b)z(b) + P~ i l  v~(a) --  Q~ ~1 v~(b) - -  t j a )  =: O, 

O, 

O, 

O, 

O. 

tl(b) = 

t2(b) -~ 

v,(a) = 

v:(b) ~- 



It .  J .  Z ~ E ~ ] ~ 6 :  Linear integro-di]]erential-boundary-parameter problems 245 

On eliminating v~ v~, t~ and t~ it follows from relation (2.2) tha t  the system (2.3) 
is equivalent t.o the integro-differential-boundary-parameter problem: 

(~.4) 

(a) 

J~Ez; q: 2] ~ - -  [A*~(x)z]'-b [A*(x) - -  ~B*(x)]z- 

--~(xl[P~A~(a)z(a) ~- g~ A~(b )z(b ) ] 
b 

, f ,  + r~(~/ K~(~/zd~--r~(x)q= o, 

(b) 
I J t)2A~(a)z(a) -~ Q*A*(b)z(b) -~ H*(~)zd~ ~- O, 

a 

which will be terme4 the adjoint to problem (1.1a~ b). Further~ the adjoint  problem 
(2.4a, b) remains invariant  under equivalent reformulations of problem (1.1a, b) which 

2 

adds to (1.1a) a t e rm ~ J~(x)J~[y]~ J~(x) (~----0~ 1, 2) appropriately dimensioned 
~ = 0  

matrices with elements continuous functiolls on [a, b]. This invariance property is 
employed in the next  section in obtaining canonical forms. 

3. - Symmetr ic  problems. 

An integro-differential-boundary-parameter problem (1.1a, b) will be termed sym- 
metric if the integro-boundary forms (i . lb) and (2.4b) are equivalent forms, and if, 
for each value of 2, the operators £ and ~(~ coincide in the sense tha t  z----r and 
there exists a r × r nonsingular constant  matr ix  iV such tha t  ~[y; p : ~] ~= ~ [ y ;  Yp: 2] 
for a rb i t ra ry  vector pairs {y, p}~ p constant  and y of class C' on [a, b] and satisfying 
(1.1b). Inasmuch as the replacement of F~(x) in (1.1b) by  Y*F~(x), Y a r × r non- 
singular constant  matrix~ yields an equivalent set of integral-boundary forms, sym- 
me t ry  of a problem (1.1a, b) is synonymous with equivalence of (1.1b) and (2.4b) 
and the existence of a r × r nonsingular constant  matr ix  Y such that~ after replace- 
ment  of F2(x) be Y*F~(x), the operators fi and zig coincide for sets {y,p,  2} with 
y of class C' on [am b] and satisfying (1.1b), p a constant  vector and 2~ a scalar. This 
terminology, employed for differential expressions in [5, p. 122], is an extension of 
tha t  introduced for the integro-differential-boundary problems in [9]. 

The initial result of this section provides necessaxy and sufficient conditions for 
the equivalence of the integro-boundary forms of a problem and its adjoint.  
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LEN~A 3.1. - For a problem (1.1a, b) the integro-boundary ]o~'ms (1.1b) and (2.4b) 
are equivalent ij  and only iJ there exist a ~ × v nonsingular constant matrix Y and a ~ × n 
constant matrix G such that 

(3.~) 

(a) O - ~ a = v = n  and ~ = z ,  

(b) [Me, ~o; M~, ~].diag(--A~-~(a), A*~-~(b)}.[Mo, No; M1, ~1]*= 0, 

(e) L(x) -- -- ~*~(x) f ] 

(d) H(x) =_ F*~(x)E~ ÷ F~(x)G t on In, b] , 

where E~ -~ [0 I , ]C -~ and C ~ [M e N2]'diag{--A~-l(a),  A~l(b)} .[Mo,  No; M 1, N1]*. 
$ $ $ $ 

As the v ×2n  matr ix  [P2Al(a) Q2AI(b)] has rank v, equivalence of (1.1b) and 
(2.4b) necessitates t ha t  ~ + a -~  v and tha t  • = u. Then, as ~ ~ a -~  v = 2n, con- 
dition (3.1a) follows; and, thus, a necessary and sufficient condition for equivalence 
of (1.1b) and (2.4b) is the existence of an ( n +  ~ )× (n~-~ )  nonsingnlar constant  
matr ix  [E, 0; G, -- :~], with nonsingular constant  matrices E and :~ of dimensions 
n × n and ~ × ~ respectively, and G of dimension ~ × n, such tha t  

(3.2) 

(3.3) 

(3.4) 

Q2AI(b)]= N0; M1, , [P2 A1 (a) E*[Mo, N1] 

L*(x)  ~ - -  T*F~(x )  , 1 

f 
o n  [a, b]. 

H*(x) ~ E*[0; Fl(x  )] ~- G*F~(x) 

Then, (3.1b) follows from (3.2) in view of (2.2); and, hence, C, defined above in the 
lemma, is nonsingular as the n rows of [M~ N~] are linearly independent of the n 
rows of [Me, No; MI~ N1]. (An al ternate proof can be provided by  an argument  
similar to tha t  employed in [3, p. 445]). On the other hand,  with E ~ C -~, (3.2) 
follows from (3.1b) and relation (2.2). Moreover, relation (3.1d) is equivalent to (3.4) 
under the definition E 1 ~ [0 I , ]E ,  E =  C -1. 

THEORE~ 3.1. -- A problem (1.1a, b) is symmetric i] and only i] there exist a v × ~: 

nonsingular constant matrix Y and a a × a constant Hermitian matrix I '  such that 

(3.5) 

(a) 

(b) 

(e) 
(d) 

(e) 
(]) 

~ - ( ~ = v = n  and ~ u ,  

[Me, 2v~o; M1, £V1].diag { A ' ~ I ( a ) , - - A - ~ ( b ) } . [ i o ,  5To; M~, N1]*= 0 ,  

A*~(x) ~ -- A~(x), A*o(x) ~ Ao(x) -- A'I(x), B*(x) ~ B(x), 

L(x) _~ -- F*~(x) Y ,  
on [a, b] , 

H(x) ~- F*~(x)EI , 

Kl(x) ~ F~(x)[/~-~ (½)0] 
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where E~ is de]ined in Lemma 3.1 and 0 is a skew-Hermitian matrix given by 

(3.6) O -- E~[M~ ~ ] - d i a g  {A~-l(a), -- A-(~(b)}.[i2 ; ~ ] E ~ .  

For a problem (1.1a, b) with integro-boundary forms (1.1b) and (2.4b) equivalent,  
relations (3.5a, b, d) and (3.1d) are immedia te  from Lemma 3.1, while relations (3.5c) 
follow from the equivalence of the  operators C_ and ~ for sets {y, p, 2} with 

b 

p -~ 0, )~ arbi trary,  and y of class C' on [a, b] satisfying y(a) = y(b) =fK*~(})yd~----- 
b a 

=fFA$)yd}= 0, ~ =  1, 2. Then, under (3.5a, b, c, d) and (3.1d), a necessary and 
a 

sufficient condit ion for (1.1a, b) to be symmetr ic  is tha t  

(3.7) 
b 

(~ 

b 

-~- KI(X ) Fl(~)yd~ ~- F2(x)G[M2y(a ) ~- .tVuy(b)] ~ 0 

on [a, b] for arbi t rary  vectors y of class C' satisfying (1.1b). In  particular, for 
vectors y of class C' with y(a)= y(b)= 0 condition (3.7) on [a, b] implies tha t  

b b 

F*~(x)fg~(~)yd~O on [a,b],  and, consequently,  fK*~(Qyd~=O whenever also 
b a b a 

fF~.(~)yd~= O, ~= 1, 2. Now, as fF~(~)-,Y*2(~)@----0, an argument similar to that  
a ($ 

preceding Theorem 2.1 of [9]  assures tha t  Kl(X)~F~(x)¢ l -~*z(x)qb  2 on [a,b], 
where the a × a  and v × a  constant  matrices ~ ,  e = 1, 2, respectively,  are given by  

b b 

~ [fF~(~)F*~(~)@]-~ffA~)K~(Qd~, ~ =  1, 2. Then, in view of the linear inde- 
g f~ 

pendenee of the  columns of F~(x) and F~(x) on [a, b], condition (3.7) reduces to the 
requirements  tha t  

(3.8) (EIM~-~ P~A*~(a) -- OM1)y(a ) + (El.Y2+ Q*~A*~(b) --ON1)y(a ) = O, 

(3.9) (GM2 -- ¢~M1)y(a) + (GN2 -- qS~N~)y(b) = 0 ,  

where 0 - -  q)l--  q)l, for arbi t rary  vectors y(a), y(b) satisfying ~o[Y] ~ Moy(a) 
~ 2 Q y ( b ) = O .  However ,  as the  n ~ a  columns of [ - P 1 , - P ~ ; Q I , Q ~ ]  form a 
maximal  set of linearly independent  vectors orthogonal to the ~ rows of [M0 No], 
relations (3.8), (3.9) hold for end-values y(a), y(b) satisfying 60[y]---- 0 if and only if 

[GM2 -- q~2M~ GN~ -- q~N~]" [-- P~, - -P~;  Q~, Q~] -= o; 
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and, hence, G ~ O and q~-~ 0, and, as in the derivation of Theorem 2.1 of [9], 

=- -- P1AI(a)P1 + QIA~(b)Q~ , 
$ * $ $ 

- -  Q1AI(b)Q2 E 1 = P1AI(a)P2 

The lat ter  relation, however, is an ident i ty  in view of the skew-Hermitian character 
of Al(x) and relation (3.2). Setting F--= (½)(q)l+q~), condition (3.5]) holds, and 
the theorem then follows by a argument  similar to tha t  used in establishing The- 
orem 2.1 of [9]. 

COROLLARY 1. -- A problem (1.1a, b) with K~(x) ~ 0 on [a, b] is symmetric i] and 
only i] there exists a ~ × ~ nonsingular constant matrix ~" such that relations (3.5a, b, 
e, d, e) prevail and 0 = O, 0 given by (3.6) wherein E~ is de]ined in Lemma 3.1. 

The above result, which follows from the linear independence of the columns of 
F~(x) on [a, b], provides a simplification of condition (5) of Theorem 3.1 of Krall  [4]. 

COROLLARY 2. - The di]]erential-parameter problem 

A~(x)y '+ [Ao(x) -- ),B(x)]y 4-, L(x)p = O, p~=- O , 

(3.10) Moy(a) + Noy(b) = O, 
b 

f F~(~lyd~ : O, 
a 

is symmetric i/ and only i] there exists a ~ × ~ nonsinguIar constant matrix 1 z such that 

(a) q - ~ n  and v : n ,  

(b) MoA I (a) M o--- ~oA1 (b)2¢ o, 

(~) A~(x)  ~ - A~(x) ,  A~(x)  ~ Ao(x)  --  A~(x),  B*(x )  _=. B ( x )  , 
on [a, b] .  

(d) L(x) =-- -- F~(x) Y 

COt~OLLA~Y 3. - An (n+ v)-dimensional symmetric diMerential-parameter problem 
(3.10) is equivalent to the (n-t-,T)-dtmenstonal sel]-adjoint (symmetric) two-point 
bounda~'y problem. 

A~(x)y' ~- Ao(x)y + L(x)p = )~B(x)y , 
$ f 

Y % -- Y*F2(x)y-= O, 

- Y p '  ..... O,  

Moy(a) ÷ ~oy(b) = O, 

under the introduction o] u~(x) ~ f t~2(~)yd~ 

uAa) = O, 

u s ( b )  : 0 , 

on [a, b], with Y as in Corollary 2 above. 
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Further, the development of canonical forms for the symmetric problems con- 

sidered in [9] extends to symmetric problems (1.1a, b), and, in particular, the fol- 

lowing extension of the Corollary to Theorem 3.1 of [9] obtains. 

THEOREM 3.2. -- Every (n + z)-symmetric integro-di]]erential-boundary-parameter 

problem (1.1a, b) is reducible to the ]orm 

iR~(x)[R~(x)y]' + [Ro(X ) -- ~B(x)]y + iF~(x)[-- M~R~(a)y(a) + 2~R~(b)y(b)] 

b 

+ FT(x)[T+ iA]fPI( )y = 0, p ' = 0  
a 

MoY(a) + Noy(b) = 0,  

b 

M~y(a) @ N~y(b) + f ~ ( ~ ) y d ~  = 0 ,  
a 

b 

f f d ~ l y d ~  = o ,  

where on [a, b] Ro(x), R~(x) and B(x) are each n ×n  Hermitian matrices, Rl(x  ) is non- 
f 

singular with R~(x) ~ -- iAl(X) , Ro(x) -- Ao(x) -- (½)Al(x), the ~ + z rows o/ [Fl(x); 

/V~(x)] are linearly independent, T is a a ×o constant Hermitian matrix, the ¢ × a Her- 
. ,) * 

mitian matrix A :-- (½)(-- M~R~(a) M~ + N~R~(b)N1) , 

[Mo, No; M1, N1]. diag {R~-2(a), -- R~-2(b)} • [Mo, No; M 1, N1]* = 0 ,  

and the rows o] the n x 2 n  matrix [Mo, No; ]/1, 2V1] are orthonormed, in the sense that 

M o M  o + NoN* o = I~, M~M~ + N~N* 1 ~- I~ and MoM* ~ -+- NoN ~ ~-- O. 

For a symmetric problem (1.1a, b) the matrix --iAl(x) is Hermitian on [a, b] 

and, hence, there exist n × n positive matrices C(x) and D(x), with continuously dif- 

ferentiable elements, such that  -- iAl(x)  ~ C(x) -- D(x) and C(x)D(x) ~ D(x) C{x) ~ 0 

on [a, b] (see, for example, [7, Section 108]). Then, a solution for Rl(x) is afforded 
by  R ~ ( x ) ~  C(½)(x)+iD(½)(x), where C(½)(x) and D(~-)(x) denote the unique positive 

square roots of C(x) and D(x), respectively. Moreover the continuous differen- 
tiability of the elements of C(i)(x) and D(½)(x) and, consequently, of R~(x) on [a, b] 

follows, in particular, either from a theorem of Rellich [6, pp. 57-58] or from Reid 

[57 Problem F. 1.6, pp. 524-525]. 
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4. - Equivalent linear integro-differential-boundary-parameter problems. 

Tile concept of equivalence of two differential systems, introduced by  REID [5~ 
Ch. I I I , §  11], can be extended to equivalence of a problem (1.1a, b) with 

(4.1a) ~°[w; r: 2] ~ A°(x)w'-+ - [Ao°(x)- 2B°(x)]w + H°(x)[M°w(a) ~- N~w(b)] 
b 

f r r = 0  + g°(x) P°(~)wd~ + L° ( x ) r =  O , 
a 

~o[w] ~ M°w(a) -~ N°w(b) = O, 
b 

(4.1b) ~°[w] -~ M°w(a) + N°w(b)-~-lF°(~)wd~ : O, 
a 

b 

~°[w] -- ~F°(~)u , d~ = O, 

with coefficient matrices of the same dimensions, with maximal  rank character 
and elements of similar continui ty and row-independence character, on [a, b] as 
pertain to the corresponding matrices without  the superscript o enumerated  in Sect. 1. 
Fm~ther, let  /~ ,  QO, :¢= o, 1, 2, sat isfy the inverse relation (2.2) with respect  to 
M °, N°~, ~ =  O, 1, 2, wherein the superscript is added to e~ch submatr ix  in (2.2). 
In  addition, let the dimensions of the matr ix  coefficients in (4.1a, b) be designated 
by  the surperscript o after  the same letters designating the dimensions of the cor- 
responding matrices in (1.1a, b) ; with, however n o = n and z ° - -  ~. Thus, H°(x) 
is an n × v  ° m~trix, F°(x) a a°×n matrix,  Mo o a ¢ ° × n  matrix,  etc. .  

Problem (1.1a, b) will be te rmed equivalent to (4.1a, b) under the trans/ormations 

w =  T(x)y for x e  [a, hi ,  r = H p ,  

where T(x) is an n × n nonsingul~r matr ix function with elements continuously dif- 
ferentiable on [a, b] and H is ~ ~ × z nonsingular constant  matrix,  if the integral- 
boundary  forms (lAb) and (4.1b) are equivalent  and, for arbi t rary  2, £[y; p :  2] ---- 0 
if and only if £°[w; r: 2 ] =  0 for vector sets {y,p}, p constant  and y of class C' 
satisfying (1.1b). 

LEIvr~rA 4.1. - For T(x) an n × n matrix nonsingular on [a, b], the integro-boundary 
]orms (lAb) and (4.1b) are equivalent under w = T(x)y  i /  and only i] there exist a 

× ~ nonsingular constant matrix Z~ and a a × T constant matrix A2 such that 

(4.~ o) 
(b) [Mo, No; M~, N~] .d iag(- -  T-~(a), T-l(b)}.[P°;  o G ] =  O, 

(c) [Mo No].diag {-- / ' - l (a) ,  T-~(b)} . [pO; QO] = 0 ,  

(d) F°(x)r(x) ~2~G(x), | 
(e) F°(x)T(x) ~ GFdx) + A~G(x) ~ on [a, hi ,  

where S 1 1  ~ [M1 N1].diag {-- T-l(a), T-~(b)} . [po; QO]. 
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Conditions (4.2a) hold from the maximal  row ranks of several combinations of 
the  boundary  mat r ix  coefficients, and relations (4.2b-e) are then synonymous with 
the  existence of nonsingular constant  matrices X~, a----0, 1, 2, of dimensions ~ × ~, 
a × a  and ~ × ~, respectively,  and constant  matrices z]o and A~ of dimensions a × ~o 
and a × ~, respectively,  such tha t  ~°[w] = Xodo[y], s~[w] ---- Z1Jl[y ] + AoJo[y ] ~ A~J2[y ] 
and ~[w] = X2d2[y] under w = T(x)y.  Herein,  it is to be noted tha t  as the  columns 
of [P~; Q~] form a maximal  set of vo= 2 n - ( ~ +  a) l inearly independent  vectors 
orthogonal to the  ~ - ~ a  rows of [Mo, 2~; M1, N , ] -d iag{- -T- l ( a ) ,  T-~(b)}, and as 
the  Q + a  columns of [pO, plo; o o Qo, Q~] are linearly independent  of the columns of 
[Po2; Q~], then,  in view of (4.2c), Z 1 is well-defined; and, moreover,  there exist a ~o × 
nonsingular mat r ix  Z o and a a × Q matr ix  A o such tha t  

[Mo, No; M~, N~].diag {-- T-~(a), T-*(b)} .[Po °, PI°; Q], QO] = [Z,o, o; Ao, Z1] -~ . 

Fur thermore,  as equivalence of integro-boundary forms is a symmetr ic  relation 
in tha t  equivalence of (lAb) to (4.tb) under  w - - T ( x ) y ,  with T(x) nonsingular on 
[a, b], holds if and only if (4.1b) is equivalent  to (1.1b) under y = T-~(x)w, conditions 
(4.2b, c) may  be replaced by  the set 

(4.2b') [Mo °, No °; M °, N°] • diag {-- T(a), T(b)} • [P~; Q2] = 0 ,  

(4.2e') [Mo o N~]. diag {-- T(a), T(b)}.[P~; Q~] = O, 

wherein P~, Q~, ~ =  1, 2 ~re determined b y  relation (2.2). 

THEOREM 4.1. -- Problem (1.1a, b) is equivalent to problem (4.1a, b) under the 
trans]ormations w = T(x)y,  r = H p  if  and only i] T(x) is an n × n nonsigular con- 
tinuously di]]erentiable matrix ]unction on [a, b ], I I  is a ~ × ~ nonsingular constant ma- 
trix, and there exist a ~ × ~: nonsingular constant matrix Z2 and a a × ~ constant matrix 
z]~ such that 

(a) ~o= Q, ao._ a, T°=  ~ and ~,o= v,  

(b) [Mo, 2Vo; M~, 2V~].diag{-- T-~(a), T-~(b)}.[P2°; QO]= o ,  

(c) [M o No].diag { -  Y-~(a), T-~(b)}.[P°; QO] = o ,  

(d) T'(x)  --  T(x)A~I(x)Ao(x)  -~- A°- ' (x)A°(x)T(x)  ~ 0 ,  

(e) A°- ' (x)B(x)T(x)  ~ T(x)A[~(x)B(x)  , 

(4.3) (]) A°-~(x)L°(x)lI -= T(x)A~X(x)L(x)  , 

(g) F°(x)T(x)  ~ Z2F2(x) , on [a, b] , 

(h) .~°(x)T(x) ~ Z l~ i (x )  -4- ~2~2(X) , 

(i) A~(x)T-~(x)A°-~(x)K°(x) 

~ Kx (X)~ l  ~ ~- H(x ) [M2T- i (a )P° - -  2VuT-~(b)Q°] , 
1 0 ~ 0 1 0 1 0 (i) A~(x )T-  (x)A~- (x)H (x) ~ H ( x ) [ - -  M e T -  (a)P~-~ hrz/ ' -  (b)Qe] 

where ~ ~ (-- M~T-~(a)P  ° + ~iT-~(b)Q°)  -~. 
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For a problem (1A G b) equivalent to (4.1a, b) under w = T(x)y,  r = l l p ,  rela- 
tions (4.3a, b, c, g~ h) hold from Lemma 4.1, and for vectors y with continuously 

b b 

differentiable components and satisfying y(a) = y(b) = fF~(~)y d~-= f ~ ( ~ ) y  d~ = 0 
we have that ~ 

[A~(x), 0; 0, I ] [y ;  p ] ' +  [Ao(x) -- ).B(x), L(x); 0, 0][y; p] = 0 

for a value ~ if and only if 

[Al(x), 0; 0, I ] [w;  r ] ' +  [A]--  ~B°(x), L°(x); 0, 0][w; r ] =  0 

for the same value ~ under [w; r]----IT(x), 0 ;0 ,  H] [y; p]. Consequently, relations 
(4.3d, e~ ]) follow from Theorem 11.1 of I~EID [5, Chapter I I I ] .  Then, for arbi t rary  

and arbi t rary vectors y with continuously differentiable components and satis- 
fying (1.1b), 

(4.4) A°(x)T(x)A~l(x)~[y;  p:  2 . ] -  ~°[w; r: )~] 

==--- {A°(x) T(x) A-~l(x)EH(x) M~ -- Kl(X ) M1] T-l(a) -~- 

+ [K°(~)M~ - -  H ° ( x ) / ° ] } w ( a )  

+ {A°(x) T(x)A~I(x)[H(x)N~ -- g~(x)N~]T-l(b)  -~ 

+ [g°(x)lV ° -  ~O(x)N°]}w(b) 

under w = T ( x ) y ,  r = l l p .  Now, as the 2n--~o columns of [ - i p ° , - p ° ; Q ° , Q  °] 
form a maximal  set of vectors orthogonal to the ~ rows of [Mo o N °] it follows from 
(4.3b, c) tha t ,  for each x on [a, b], the r ight-hand side expression in (4.4) vanishes 
for arbi t rary  vectors w{a), w(b) satisfying p°[w]----0 if and only if relations [4.3i, j] 
hold; and, the necessity of relations (4.3) are established. 

Conversely, if all the relations (4.3) hold for T(x) an ~ × n nonsingular, continuously 
differentiabte matr ix  function on [a, b], I I  and X~ nonsingular constant  matrices of 
dimensions z ×~ and w x w, respectively, and A2 a ~ × r constant  matrix,  then  the 
boundary  forms (1.1b) and (4.1b) are equivalent under w : T(x)y and A°(x) T(x).  
• A~l(x)C[y; p: 4] ~ £°[Ty, Hp:  4] on [a,b] for arbi t rary  vectors y of class C' 
satisfying (1.1b). 

Of special interest  is the case in which system (4.1a, b) is the system (2.4a, b), 
$ $ $ $ 

the ~djoint to problem (1.1a, b). In  this instance, as the rank of [PoAl(a ) QeAI(b)] 
is maximal,  it  follows from relation (4.2a) tha t  ~ q- a -~ v ~ n and r ~ z, and, hence, 
t ha t  there exist an n × n nonsingular constant  matr ix  V and an n × v constant  matr ix  
W such tha t  the identifications 

(4.5) [o; F°(x)] ~ v~*(x) + WL*(z), 
[Mo °, N°; M °, N °] +-+ V[P2AI(a ) Q2AI(b)] 
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may be set. Then, the further identifications 

F°(x) ~L*(x), 

[M ° N~] ~-+ [Po, Qo; P~, Q1]'dmg{Al(a),  A~(b)} 

yield the identities 

leo o, rio; qoo, QO] • ~ A 1 (b)}'[M2; A ¥ 2 ] V  - 1  ~d lag{A 1- (a), *-1 * 

[po; QO] _= diag {A~-l(a), A~-l(b)} • [Mo, No; M1, ~Vx]* 

and the identification 

H ° ( x ) ~ [ 0  --F~(x)]; 

and, hence, the following preliminary result. 

L E ~ A  4.2. - For a problem (1.1a, b) the integro-boundary ]orms (lAb) and (2.4b) 
are equivalent under z :  T(x)y i/ and only i] there exist an n ×n  matrix T(x) non- 
singular on [a, b], a ~ × ~ nonsingular constant matrix Z~ and a a × ~ constant matrix 
A~ such that, with Tl(x ) ~ A*l(x)T(x ) on [a, b], 

(a) ~ + a = = ~ : n  and v = n ,  

(b) [Mo, No; M1, N1].aiag{-- T;l(a),  T;~(b)}.[Mo, ~Vo; M1, NI l*= 0,  

(c) [oz~,]v*-~C[zo; o] = o ,  

(d) T*l(X)A-~t(x)L(x) ~ ~ ( x )  X~ , ! 

! o n  [a, b], 
(e) T~(x)A-~l(x)H(x) ~ F~(x)[0 Z~] V *-14- F*~(x)G 

where C ~- [M2 N22. diag {-- ~ - l(a), T~ - l(b)}. [~o ,  No; i l ,  Nt ]*, Z; -1 = [0 Zo] V* -1. 
• 0[0; I~], G * :  V-l([0; A.~]--WZ2) , and V and W de]ined through the identitifica- 
tion (4.5). 

I t  is to be noted that  as the nonsingularity of 0 may be established by an argument 
similar to that  following Lemma 3.1 in establishing the nonsingularity of C, relation 
(4.6e) and the nonsingularity of V then insure that  271 is well-defined. Conse- 
quently, with 

(4.7) ~ ~ [o I~]~ -1 , 

17 - Annal~ d i  Malemat iea  
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i t  follows from (4.6c) and the definition of Z~ tha t  

(4.8) [o z*dO lo]V*-lC[i , o; o, so]C-l= z*do 

and, hence, f rom Lemma 3.1 wi th  the choices :Y as -- Z2, C as C, E1 as /~  and G 
as in Lemma 4.2 above, we have the next  result. 

LEM)IA 4.3 -- .For an n x n nonsingular matrix T(x) with continuously diiierentiable 
components on [a, b], the integro-boundary ]orms (1.1b) and (2.4b) o] a problem (1.1a, b) 
and its ad]oint (2.4a, b) are equivalent under z~- T(x)y i] and only i/ the integro- 
boundary ]orms G[Y], ~----0, 1, 2, o/ the problem T*(x)~[y; p: 2]---- 0, G[Y] = 0, 
~ 0, 1, 2, and those o1 its related ad]oint are equivalent forms. 

Z~ow, for the case where the system (4.1a, b) is the adjoint  system (2Aa, b) the 
following additional identifications prevail: 

(4.9) 

A°(x)  , 

A°(x) <-+Ao(x) -- AI'(X) , 

B°(x)  B* (x) , 

, 

L°(x)  F (x) , 

with 3 a a × a nonsingular constant  matrix.  Consequently, the next  result follows 
from Theorem 4.1 and Lemmas 4.2 and 4.3. 

THEOREM 4.2. - A problem (1.1a, b) is equivalent to its ad~oint (2.4a, b) under 
z-~ T(x)y, q ~ - I I p  i/ and only i I T(x) is an n × n  nonsingular continuously di]1e- 
rentiable matrix 1unction on [a, b ], I I  is a z X ~ nonsingular constant matrix, and there 
exists a a × a nonsingular constant matrix Z such that the integro-boundary ]orms G[Y], 
a~-  O, 1, 2, o] the problem T*(x)~[y; p:  )~] = 0, G[Y] = 0, a = 0, 1, 2~ and those o] its 
related ad]oint are equivalent, and on [a, b], ]or Tl(x  ) ~--A*l(x)T(x) , 

(a) * *-1 -- Ao(x)A 1 (x) T I ( x ) -  TI(x)A-ZI(x)Ao(x) ~-z O, 

(b) Ti(x)Axl(x)B(x)-~- B*(x)A~-I(x)TI(x  ) = O, 

(4.10) (c) Tdx)A~l (x)L(x)  -- F~(x)II  ~ O, 

(d) T~(x)All(X)[ - Kl(x) q- H(x)[M 2 N2]'diag { -  T~-l(a), T~-~(b)} • 

(e) TI(x)A-~(x)H(x)[M2 N2].diag { -  T-~(a), T-~(b)}.[Mo, No; M1, N~]* 

[o - 

where )~1 is given by (4.7), and Z 1 and 0 delined in Lemma 4.2. 
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Moreover, in case the  t ransformat ion mat r ix  T(x) is such tha t  T~(x) is skew- 
t Ie rmi t ian  on [a, b] the conditions for equivalence of a problem (1. l a ,  b) with its 
adjoint  are reducible. In  this connection we first note tha t  the result  of I~EID [5, 
Problem I I I .  11, no. 5] may  be extended in tha t ,  in the notat ion of the Problem, the 
assumption tha t  A~(t)A2(t) be the ident i ty  m~trix m a y  be dropped with the skew- 
t t e rmi t ian  proper ty  of the result then pertaining to the matr ix  T~(x) ~ A 2 (x)A ~ (x) T(x). 
In  particular,  T(x) m a y  be selected as of the form (11.19) of Reid [5, Chapter I I I ]  
with c~-~ eos0-~ isinO, e2-~ -- cos0-k isinO, and 0 a real value such tha t  ~ ( x ) .  
• T ; l ( x ) -  exp [2i0]I is nonsingular for some value of x on [a, b]. 

LEM~A 4.4. -- I] the two-point di]ferential problem 

(4.11) 
£[y: ),] ~ A~(x)y'-~ Ao(x)y -- )~B(x)y ---- 0 ,  

~o[Y] ~ Moy(a) -~ 5~y(b) ---- 0 

is equivalent to its adjoint under a nonsinguIar transformation matrix T(x), with elements 
continuously di]]erentiable on [a, b ], then there exists a nonsinguIar trans]ormation matrix 
~(x),  with elements continuously di]ferentiable and such that A*l(x)T(x ) is skew- 
Itermitian on [a~ b], under which problem (4.11) is equivalent to its adjoint; moreover, 
the system ~*£[y: ~]----0, ~0[Y] = 0 is sel]-adjoint. 

The above result can be extended to differential-parameter problems (3.10). 
5iore generally, the following result relates the concepts of equivalence of a problem 
(1.1a, b) wi th  its adjoint ,  under  t ransformat ion sets (T(x) , / /}  with A*l(x ) T(x) skew- 
t Iermi t ian  on [a, b], with tha t  of symmetry .  

TtIEORE]~ 4.3. - _For an integro-di]]erential-boundary-parameter problem 
£[y; p :  4] ~ 0, ~[y]  ~ 0, ~ ~ 07 1, 2, equivalent to its ad~oint (2.4a, b) under z---- T(x)y, 
q ~ IIp,  with T(x) an n × n nonsingular matrix with elements continuously di/]erentiable 
and Al(X)T(x) skew-Hermitian on [a, b], and 11 a ~ ×~¢ nonsingular constant matrix, 
the system 

(4.12) T*(x)£[y;p:  4 ] = 0 ,  6~[y] = 0 ,  ~ = 0 , 1 , 2 ,  

is symmetric. 

If  (1.1a, b) is equivalent  to its adjoint  under z :  T(x)y, q----IIp, conditions 
(3.5a, b) for problem (4.11) follow from Theorem 4.2 and Lemmas 3.1 and 4.2, while 
relations (3.5c) for problem (4.12) follow from the assumption Al(X)T(x  ) skew- 
Hermi t ian  and relations (4.10a, b) on [a, b]. Further ,  from (4.10e), relation (3.5d) 
for problem (4.12) holds for the choice Y : / / ;  moreover, in this c~se the matr ix  
27~ in (4.6) is given by X 2 = - - H * .  

:Now, ~s Tl (x )~A*l (x )T(x )  is skew-Hermit ian on [a, b] relation (4.10e)reduces 
to T*(x)H(x)~---- [0_F~(x)] on [a, b]; and, hence, T*(x)H(x) ~ F*l(x)~ on [a, b], 
which is relation (3.5e) for problem (4.12). Moreover, it follows from relation (4.8) 
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and the l inear independence of the columns of F*2(x ) t ha t  the ma t r ix  G in (4.6e)is 
the  zero matr ix .  Fur thermore ,  relat ion (4.10d) reduces to 

(4.13) T*(x)Ki(x) ~ F*i(x)(Z~l-~ O) on [a, b] ,  

with O the  analogue of the  ma t r ix  O in (3.6) for problem (4.12). However ,  the  iden- 
tifications (4.5) and (4.9) imply t h a t  

T*(x)KI(x).~*-~[O Io] -~ T*(x)(H(x) V* + L(x) W*) on [a, b] ,  

and, consequently,  

~ll(X){~l V$ -- ( ~ 1  ~- 0)"~$-1[ 0 Ia]} -- ~2(X) IT[W $ ~ 0 

on [a, b]. Then,  as the  columns of F~(x) and F~(x) are assumed to be l inearly inde- 
O)S*-i. pendent  on [a, b] we have tha t  W---- 0 and, f rom (4.8), t ha t  X~ ~ (~.Zl-~ 

Now, as 0 is skew-Hermit ian it  follows tha t  the  ma t r ix  ( S Z  i ~ (~,i -) (~) is Hermi t ian ;  
and, hence, fl~om (4.13) we have tha t  relat ion (3.5]) holds for problem (4.12) with 
the choice / ' ~  3271~-(½)(~, and the theorem is established. 
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