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S u m m a r y .  - Let E be a Banach space and consider the initial value problem ( . )  u'(t) = An(t)  ~- 
q -B( t ,u ( t ) ) ,  t>0 ,  u (0 )=z ;  where A is the generator o] a linear contraction semigroup 
and B: [0, c ~ ) X E - + E  is eont4a~uous. The main results o] this paper deal with criteria 
insuring that a closed subset [2 o] E is invariant ]or ( . ) - - tha t  is, z E ~ implies that a 
solution u to ( , )  satis]ies q~(t)~ ~ ]or all t > O. 

1 .  - I n t r o d u c t i o n .  

Le t  E be a real  or complex Banach  space with norm I" I, and let  {T(t): t > 0 }  be 
a strongly continuous semigroup of l inear contract ions  on E.  Now suppose t h a t  Y2 
is a closed subset of E with the  p rope r ty  t h a t  if x e 9 then  T ( t ) x  ~ Q for all t >0 .  
I n  this paper  we consider the  existence of a solution u wi th  values in 9 to the  inte- 

gral equat ion 

t 

(I1~) u(t) = ~(t) z + f T ( t -  3) B(~, ~,(~)) & ,  z e 9 ,  
0 

where B is a continuous funct ion from [0, oo) × Q into E. I f  A is the infinitesimal 
genera tor  of T,  t hen  solutions to  (IE) ma~y be regarded as generalized or mild solu- 
t ions to the abs t rac t  Cauchy problem 

(AOF) u'( t )  ~- A u ( t )  + B( t ,  ~t(t)), u(O) = z e D ( A )  n Q .  

I n  par t icular ,  if u is a solution to (ACP) then  u is a solution to (IE),  and if a solu- 
t ion to  (I]]) is differentiable,  thenu( t )  E D ( A ) n 9  for all t > 0  and u is a solution 

to (ACP). 
In  § 2 we use the  techniques of ~VEBB [11] to set up approximate  sohltions to (IE),  

and cr i ter ia  for the existence of solutions is given in § 3. Some examples i l lustrating 
these techniques are indicated in § 4. 

(*) Entrata in Redazione fl 5 d ieembre  1973. 
(**) This work was supported by the U.S. Army Research Office, Durham, N.C. 

1 5  - A n n a l  z d i  M a t e m a t i c a  
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2. - Approximate  so lut ions .  

Let  /'-----{T(t): t~>0} be a strongly continuous semigroup of linear contractions 
on the Banach space E (i.e., T ( 0 ) =  I ,  where I is the ident i ty  mapping on E;  
T ( t + s ) = T ( t ) Y ( s )  for all t , s > 0 ;  ]T(t)xI<]x I for all ( t ,x )e[0 ,  cx))×E; and t 
-~ T(t) x is continuous on [0, co) for each x e E). Also let A be the  infinitesimal gene- 
ra tor  of T (i.e., Ax = t~olim+ t-~(T(t)x--x),  with D(A) the set of all x for which this 

l imit  exists). Recall tha t  D(A) is dense in E. Throughout this paper we assume the 
[ 

following conditions hold: 

(C1) $2 is a closed subset of /i7. 

(C2) If  x e t o  then  T( t )xe to  for all t > 0 .  

(C3) D ( A ) ~  to is dense in to. 

Note tha t  is many  cases condition (C2) implies condition (C3). In particular,  
if to is the closure of an open set in E or if to is convex, then (C2) implies (C3). 

For  each y ~ E  let d(y; Y2)= inf{]y--xl :  xe~9}. In  addit ion to (C1)-(C3) we fre- 
quently assume the following conditions hold: 

(C4) Ao  t9 and B is a continuous function from [0, c o ) × A i n t o E .  

(C5) lira inf d(x + hB(t, x) ; to)/h = 0 for all (t, x) ~ [0, co) × to .  
h ~ 0 ÷  

To employ our techniques we need the following result concerning the uniformess 
of the l imit  in (C5). 

L~)~IA :l. - I f  conditions (C4) and (C5) are fulfilled then  

lira d(x + hB(t, xto)) ; /h = 0 for all (t, x) • [0, co) × to ,  
h-*O + 

and this l imit  is uniform on compact subsets of [0, ~ )  × tO. 

P~ooF. - Le t  ~ be a compact  subset of to and let fi, s > 0. By  [7, Theorem 2], 
we have for each t e [0, fi] a 5(t, s ) > 0  such tha t  

d(x+hB( t ,x ) ; to )<hs /2  for all (h,x)E[O,(5(t,s)]×K. 

Let  ~ >  0 be such tha t  IB(t, x)--B(s ,  x)I<s/2 if x e K  and t, s~[0,  fl] with It-- s I<~,  
and let (t~}~ be a par t i t ion  of [0, fi] such tha t  t~--t~_l<~ for i = l , . . . , n .  Set 

= min{8(t~, s) : i = 0 , . . . ,  n}. I f  h e [0, (~] and (t, x) • [t~, t~+l] × K,  then 

d(x+ hB(t, x); to) < d ( x  + hB(t~, x); to) + h]B(t, x) - -B(t , ,  x)l 

< he~2 + he~2 = he, 

and the assertion of Lemma 1 follows. 
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Under the conditions (C1)-(C5) we consider the existence of (~ approximate solu- 
tions ~> to the integral  equat ion (IE). So assume t h a t  (C1)-(C5) hold and z e f2. Now 
choose positive numbers R, M, ~ and fi such tha t  the following is satisfied: 

(D1) I f  (t,x)~[O, fl]×A with Ix--zl<~R then  !B(t ,x)t<M. 

(D2) I f  [x--z]<~ v and [y[<~fl(M-[-2) then IT( t )x+y--z[<~R for all te[O, fi]. 
Z co (D3) { ~}~ is a sequence in D ( A ) n f 2  such tha t  Iz.~--z[<~ and l i m z ~ = z .  

~---> oo 

l#ote t ha t  one is assured from (C1)-(C5) t ha t  such numbers R, M, ~ and fl can be found 
so t h a t  (D1)-(D3) hold. Our fundamenta l  result on approximate solutions is the 
following: 

PROPOSITIO-~ 1. - Suppose t ha t  (C1)-(Ch) and (D1)-(D3) are fulfilled and tha t  
{e.} 1 is a sequence in (0, 1] with l im s, = 0. Then for each positive integer n there 

is an s~-approximate solution u~: [0, fi] -->D(A) to (IE) in the following sense: there 
= {t~}~= o of [0, fl] wi th  t i+l-- tn<s ~ is a positive integer 2V ~V(n) and a par t i t ion  ~ ~ ~ 

such tha t  

(i) u,,(O) ---- z~, u,(t~) ~ f2 with [%(t~) - - z  t ~<R, and if t e [t~, t~+~) then  

u',(t) = Au~(t) + B(t~, u~(t~)) 

and 
t 

u~, ( t )  = f ( t - t r )  %(tD + f T(t-- ~) B( t~', uAtD ) a,~ ; 
t~ 

(ii) u~ is continuous on [t~,, t~+l) , u~(t~+~--) exists, 

and if t e [t}, t~+ 1) then  d(u~(t); f2) <~ (t-- t~) s,; 

(iii) if yn: [0, fi] -+ (t~ ~} is defined by y~(fi) = fl and y~(t) =- t$ whenever t e  ItS, t$+l) , 
then  

t 

0 

whenever t e  ItS, t~+l); and 

(iv) if (t, y) ~ [t~, t~+~] x A  with 

tY --u,(t~)] < (t~+ 1--t~)(M -4- 1) ~- max{I (T(h) -- I)u~(t~)l} 0 < b < t~+ 1 --  t~}, 

then  IB(t, y) - -  B(t~, %(t~))t<s, and I( T(t-- t~)--  I) u~(t~)l<e,. 
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The construction of the approximate solution u~ is pa t te rned  very  closely to 
t ha t  of V~*E]3s [11, Proposition (3.1)], and we only indicate i t  here. In  par t icular  
we use Webb's construction in the interval  [t~, t~+ ~) and, as opposed to defining u,(tn+ ~) 
so t ha t  u~ is continuous at  t" ~+~, we define u,(t~+~) so tha t  it  is in D(A) (3 ~. This is 
reflected by the jump discontinui ty of u ,  in par t  (ii). Before indicating the construc- 
t ion of u~ we first establish the following result:  

LE~IA 2. - Let  the suppositions of Proposition 1 be fulfilled, let K ff Y) be com- 
pact,  and let e > 0. Then there is a ~ = ~(s, K)> 0 such tha t  

t+h  

-- ~)B(t, x)dT:; ~) <he 

for all x e K, t, t -~- h e [0, fl], and h e [0, 5]M 

P~ooF. - By  cont inui ty  there is a 5~> 0 such tha t  

tB(t,T(hl)x)--T(h2)B(t,x)I<~s/2 for te[O, fl], h~,h2e[O,~], and x e K .  

(Recall T(t)xe[2 by (C2)). Therefore, 

t + h  

for all he [0 ,  6t], r e [0 ,  fi] and xeK .  Also, by  Lemma 1, there is a (~ e (0, ~1] such 
tha t  

d(T(h)x-+- hB(t, T(h)x); Y2)<he/2 for t e [0 ,  fl], he [0 ,  ~], and x e g .  

Consequently, if t e [0, fi], h E [0, 8] and x e  K then  

t + h  

t 
t + h  

+ f T ( t +  h--~)B(t,x)dT:--hB(t, T(h)x) <he, 
t 

and She proof of Lemma 2 is complete. 
We now indicate the construction of u~, which is by  induction. Define t~----0 

and u~(t~)----z~, and assume tha t  u.  is constructed on [0, t~]. I f  t~ < fl choose the 
number  ~ as follows: 

(1) 6~ e [0, e.] and t~ -~ ~ <fl ,  
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(2) if (t, y )e  It?, t{-V ~] xz'l and 

l y - u (tF)t <  p(M + 1) + m x{I (T(h) - x) u.(tT)l} 0 < h < 

then  IB(t, y)--B(t~,  u~(t~) ) t < s,. and l( T ( t - -  t~) --  I) u~(t~) l< e~ ; 
r, 

t~+~ 

t: 

for all he[O, hi] , and 

(4) ~ is the largest  number  such tha t  (1)-(3) hold. 

Using the cont inu i ty  of T and B and Lem m a  2, we see tha t  5~ > 0. Le t  t~+~ 
- ~ t ~  5~ and for each te[t~,t~+l) define 

t 

u~(t) = T(t--t~)u,(t~) ~- f T(t-- ~)B(t~, u~,(t~)) dr .  
t~ 

I t  follows f rom the  construct ion of u~ a~nd the  induct ion hypothesis  t h a t  the pro- 
perties listed in Proposi t ion 1 are fulfilled on [0, t~+~). By  (3) we h~ve tha t  

.e) < - t';)/2, 

and since D(A) (3 ~ is dense in ~Q there  is a w e D(A) ~ $2 with l~n(t~+l - - )  - -  W} < 
<s~(t~+l--t~). I t  then  follows t h a t  [ w - - z l < R  and if we define u,(t~+~)= w, the 
propert ies  of u~ are valid on [0, t~+~]. We now show tha t  t~v = / / f o r  some positive 
integer  h r. Assume, for  contradic t ion,  t h a t  t~ < fl for all i and let  s o -= l im t~. Again 

i - - ~ v o  

us ng the techniques of WEB~ [11, Proposi t ion (3.1)], i t  follows tha t  w = lira u~(t n) 
also exists, and t ha t  w e f2 since ~Q is closed. Thus K = {w}~d {u~(t~), u~(t~), ...} is 
compact .  The cont inui ty  of T and B and Lem m a  2 shows tha t  (2) and (3) hold with ~ 
replaced by  s o - -  t~ for all large i. Since (~ < s o - -  t~ we have a contradic t ion to (4). 
Thus t~v = fi for  some posit ive integer N and the  indicat ion of the proof of Propo-  
sition 1 is complete.  

PROPOSITION 2. -- Le t  the suppositions of Proposi t ion 1 be fulfilled and let  {u~}~ ° 
be as constructed in Proposi t ion 1. I f  u(t) = l im  u~(t) exists uniformly for t e [0, fl], 

then  u is a continuous funct ion f rom [0, fi] into D and u is a solution to (IN) on [0, fl]. 

PROOF. - I f  t e [0,/~] we have from (ii) of Proposi t ion 1 tha t  

d(u(t); [2) ---- lira d(udt); Y2) < l im ~n~ = 0 ,  
~----> o o  n - ~ -  o o  
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so u maps [0, fl] into D. I f  y~ is as in (iii) of Proposi t ion 1 and 

t 

w~(t) = T(t)z.+ f T ( t -  ~)B(),.(~)) d~ 
0 

for t e [0, fl], 

then  ]w,~(t) - -  %(t) l <<. fie,, and so w,-> u as n -> co mliformly. Since each w~ is con- 
tinuous, it  follows t ha t  u is continuous. Also, if t e ItS, t~+~) then  

(2.1) I%(t)--u,(y,(t)) 1 
t 

n t~ 

~<e~-t- (t--t~') M<e~(1 -~- M ) ,  

and we have tha t  O,.(t), u~(y~(t)))--> (t, u(t)) as n--> oo uniformly on [0, fi]. Since 
{(t, u(t)): tE[O, fl]} is compact ,  we see t h a t  BO~(t), u~(~.~(t)))-+B(t, u(t)) as n ~ o o  
uniformly on [0,/~]. Thus, by  (iii) of Proposi t ion 1, 

I u ( t ) - / ' ( t )  

t 

0 
t 

0 

for all t e [0, ill, and the proof of Proposi t ion 2 is complete. 

I~E3'IARK 1. - -  Proposit ion 1 and 2 ma y  be regarded as extension of Webb's  tech- 
niques [11] for the case t ha t  ~9 = E and as extensions of the techniques in 3~ARTIN [6] 
for  the  case t h a t  T(t)= I for  all t>~0. The condit ion (C5) on B goes back to  NA- 
Gv~o [8]. In  the  ease t ha t  T(t)----I for  all t>~0 and ~9 = E, set t ing up  this t ype  
of approx imate  solution is done in C~RTA~ [3, Theorem 1.3.1]. For  higher order  

equations,  see PAVE~ [9]. 

3.  - E x i s t e n c e  c r i t e r i a .  

In  this section we place conditions on B which insures the existence of solutions 
to (IE).  The first result  is of a classical na tu re  and employs Lipsehitz and compact-  
ness c r i te r ia  on B. 

THEOR]~ 1. -- I n  addi t ion to the suppositions and notat ions  of Proposi t ion 1, 
suppose t ha t  B(t, x) = Bl(t, x) ~ B2(t, x) for all (t, x) e [0, oo) ×/2,  where B1 and B2 

satisfy 
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(a) there is an L > O  such tha t  fBdt, x) - -B~(t ,y)]<LIx--y]  for all (t,x), 
(t, y )e [0 ,  D]xt9 with Ix--zl, l y - - z l<R;  and 

(b) there is a compact subset K of E such tha t  Bdt, x) e K for all (t, x) e [0, fl] × ~9 
wi th  Ix--zI<R. 

Then (IE) has a solution u on [0, fi] with values in /2. 

Pt~oor. - Le t  y .  be as in (iii) of Proposition 1 and define %(t) = (y.(t), u.(y.(t))) 
for all t e [ 0 ,  fl] and n > l .  Also let 

t 

w.(t) -- f T ( t -  ~) B~ v,,('c) dr 
0 

for all t e [0 ,  fl] and n > l .  

By  assumption (b) and the cont inui ty  of T we have tha t  

K, =- {T(s) Bdt , x): s, t e [0, fl], x e f2 and Ix --  z I < R} 

is relatively compact,  so if K~ is the closed convex hull of K1 ~nd l f~--={t$:  (t, x) 
e[0,  fi]×K~}, then  /G is compact. I t  then  follows routinely t h a t  v . ( t ) e K ,  for all 
te[0~fl] and n > l .  Moreover, if O<s<t<fl  then  

8 

0 
8 

< l t -  s i m s +  f l [ ~ ( t - -  s) - z] T(s - ~) B~v.(r) I d~,  
0 

where M~ = max{Iy]: Y e K}. Since {T(z) x: (r, x) E [0, fl] ×K}  is compact, we see 
t ha t  ( ,~}i is equicontinuous. Hence {~o}~ has a uniformly convergent subsequenee 
by  Ascoli's theorem. Relabeling if necessary we m a y  assume tha t  {%}~ is uniformly 
convergent. I f  g: [0, fl] - > E  we write ]iglI = sup{Ig(t)l: t e [0, fi]}. Now for each n > l  
and t E [0, fl] define 

t 

w,(t) = T(t) z~ + I T ( t - -  r) B~ v.(~) dr + ~dt)  • 
0 

I t  follows from (iii) of Proposition 1 t ha t  I]w,, -- u, n <fle.. Moreover, if n and m are 
positive integers and p~,,~(t) = lw~(t) --w~(t)l for all t e [0, fi], we have from assump- 
t ion (a) t ha t  

t 

p,..~(t)< IT(t)z.-- T(t)z~ I + l f T ( t - -  r)[B1%(r)--B~%(~)]dr + l~f,,(t)--~.~(t)l 
0 

t 

0 
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Also, by (2.1) in the proof of Proposition 2 i t  follows tha t  

+ - 

<p..~(T) + Ilw~- u~ II + ~ ( i  + i) + ilw~-- ~ Ii + ~ , , ( / +  1) 

<p,,.~(r) + (s,,-F s~)(fi H- MH- 1).  

Thus 

t 

p...~(t) < a..~. + fLp.,,~(r) d~ 
0 

for all t e  [0, fl], 

where 5 ..... = lzn-- z,~I -~- IIv2,- %~ II + 2Lfi(e,~+ s~)(fl --F M -t- 1). 
GronwalFs inequal i ty t h a t  

I t  now follows from 

and since ~. .~-*0 as n, m-> c~ we have t h a t  {w.}~ is uniformly Cauchy. The 
U co inequal i ty  ]lw.--u.]I <fie.  shows tha t  { .}1 is also uniformly Cauehy, and Theo- 

rem 1 follows from Proposition 2. 

RE~AEE 2. -- I f  the function B2 in Theorem 1 is the zero hmetion,  then the solu- 
t ion u to (IE) on [0, fl] is easily seen to be unique. 

Now we place a dissipative type  condition on B to insure the existence and 
uniqueness of solutions to (IE). Again our techniques follow WEBB [11]. I f  x, y ~ E 
define 

re_Ix, y ] - -h l im  (Ix + h y j -  ]xi)/h and m+[x, y]---- h-~olim+ (Ix ÷ h y ] -  jx])/h. 

I t  follows tha t  if x, y, z ~ E then 

ra_[x, y + z] <m+[x, y] + m_[x, z] < IYl ~ m_[x, z] . 

Moreover, if u: [0, b] - > E  has a derivative at  s s ( 0 ,  b) and p(t) ---- iu(t)i for all t 
e[0,  b], then p has a left derivative at  s and p'_(s)----m[u(s), u'(s)]. Also, if A is 
as in § 2, then  

m+[x, A x ] < 0  for all x e D ( A ) .  

We use the  above properties of m_ and m+ frequently and wi thout  comment in our 
proofs. 
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THEORE~ 2. - -  In  addit ion to the suppositions and notat ions of Proposit ion 1, 
suppose t ha t  A~  ( x e E :  I x - - z I < R }  and there  is an L ~ 0  such tha t  

(3.1) m _ [ x - - y , B ( t ~ x ) - - B ( t , y ) ] < L ] x - - y ]  for all ( t ,x ) , ( t ,y )e[O,  f i ]×E 

with I x - z l ,  ] y - - z l ~ R .  

Then (IE) has a unique solution u on [0, fl] with  values in $9. 

PaOOF. -- Let  n and m be posi t ive integers ~nd define p( t )=  Iu~(t)--u~(t)t for 
all t e [0, fl]. I f  i end j ere  posit ive integers and t e (t~, t~+~)n (t~, t ~ ) ,  then it fol- 
lows from (3.1) ~nd pe r t  (if) of Proposi t ion 1 tha t  

p'_ (t) = m_ [u.(t) - -  urn(t), Au.t) --  Au.~(t) ÷ B(t~, u.(t~)) - -  B(t?, u~(t~'))] 

m + [u~(t)--u.~(t),A(u.(t)--%~(t))] ÷ m_[u.(t)--u.~(t), B(t~, u.(t~i!))-- B(t~ ~, u,~(t,~)] 

B ~ n - -  rr~ <Lp(t)  ÷ I (t,, u,~(ti) ) --  B(t, u~(t)) I ÷ tB(t, u~(t)) B(t~ , u~(t~')) i 

<Lp(t) + e~+ ~,~, 

where the last  inequal i ty  follows from (iv) of Proposi t ion 1 and the fact  tha t  u.(t) 
u,~(t) cA .  Solving this differential inequal i ty we have tha t  

(3.2) p(t)<[(e,÷s~,)L-~÷ ~ ]p(s)--p(s--)]]exp[Lt] for all t~[O, fl]. 
se[o.t] 

(See L e m m a  2 of [6]). Using (if) of Proposi t ion 1 it follows tha t  

]~ [p(s)--p(s--)l< ~ lu~(t~)--%(t~--)l + ~ l%~(t~.)-- uAt~--)l 
se[O,fl] k = 1 k = 1 

~ = 1  k = l  

= f l ( e . ÷  ~ J .  

Subst i tu t ing this es t imate  into (3.2) shows tha t  

lu.(t) - u~(t) j = p(t)< (e~ + ~m)(L- l+  fl) exp [Lt] for all t ¢ [O, fi]. 

Thus {%}~ is uniformly Cauchy on [0, fi] and the existence of a solution to (IE) fol- 
lows from Proposi t ion 2. The uniqueness assertion follows easily f rom the techniques 
used in the proof of Theorem 3 below, and is omit ted.  
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THEORE){ 3. -- Suppose tha t  conditions (C1)-(C5) are fulfilled, the set A in (C4) 
is open, and there is a continuous real valued function ~ on [0, ~z) such tha t  

m_[x- -y ,B ( t , x ) - -B( t , y ) ]<~( t ) i x - - y  I for all ( t ,x) , ( t ,y)E[O,c~)×A.  

Then for each z in [2 there is a unique noncontinuable solution u~ to (IE) on [0, b~). 
Also, if a, w E/2 then  

t 

(3.3) ]u~(t)--u,~(t)t~ !z--w l exp ( f~(v)dr )  for all t e  [O, bz)n [O, bw). 
0 

P~ooF. - Since A is open, local existence of solutions follows from Theorem 2, 
so let u be a solution to (IE) and let v be a solution to (IE) with z replaced by w, 
and let fl > 0 be such tha t  u and v are defined on [0, fl]. We use the techniques of 
WE]3]~ [11, Proposition (3.6)] to establish (3.3) on [0, fl]. For  each positive integer n 

n n n be {t~} o be the par t i t ion  of [O, fl] such tha t  t~--t~_l=fi/n for i----1,..., n, and 
define Yn: [0, fi] -> {t~}~ by y~(fl) -~ fi and y~(t) ~ t~ ~ if t E [t~, t~+~). Now let {z~} 7 and 
{w~}~ ° be sequences in D(A)¢~ f2 such tha t  l im z~-----z and lira w ~ :  w. For each 

t e  [0, fl] define 

t 

~.(t) .... r ( t )  z. + fr( t --  ~)B(~.)v), d~ a n d  

o 

t 

v.(t)-- T ( t )w~-  jT( t - -v)B(y~(v) ,  v(~]n(T)))  d 7~ . 

o 

I t  follows easily tha t  u~-->u and v~-->v tmiformly as n-->c~. Thus u,,(t),v~(t)~A 
when n is sufficiently large. ~oreover ,  if t ¢ (t~}~ then 

u,:(t) = Au,~(t)~- B(~,.(t), u(y.(t))) and v'~(t)-- A%(t)~- B(yn(t), v(y.(t))) ; 

so if p,,(t)= tu.(t)--v~(t)I i t  follows tha t  

( , ) -  A.o(t)-  

< m_[u(t)- ~.(t), B(t, u.(t))- B(t, ~.(t))] 
+ B(7.( t ) ,u(y .( t ) ))--B(t ,u . ( t ) )]+ B(t,v.(t))--B(~'.(t),v(7.(t))) 

~(t)p~(t) "Jr s~ , 

where 
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Since e , -~  0 as n - >  c~z we conclude from the above differential  inequal i ty  tha t  

t 

lo- 
0 

for all t e [0, fl]. The inequal i ty  (3.3) now follows immedia te ly  and the uniqueness 
assertion is evident  by  set t ing z = w in (3.3). This completes the proof of Theorem 3. 

REd, AUK 3. - I f  the suppositions of Theorem 3 are fulfilled with A = E,  then  
the results of LOVEL~DY [5] show tha t  each of the noncont inuable  solutions u~ to (IE) 
is defined on [0, co). In  this case Theorem 3 ma y  be regarded as a cr i ter ia  for the 

invar iance  of £2. 
I n  [11] Webb gives an example of a solution to (IE) tha t  is in D(A) init ially,  bu t  

no t  in D(A) for any  t ime t > 0. A convenient  c r i te r ia  which assures t h a t  a solution Ct 
to (IE) is also a solution to the  Cauchy problem (ACP) is given by  SEGAL [10, Theo- 
rem 3, L e m m a  3.1], and we record it  here  for fu ture  reference:  

P~oPosn ' Io~  3 (SEGAL [10]). -- In  addi t ion to the  suppositions of Theorem 3 
suppose t h a t  B is cont inuously differentiable on (0, c~) ×A.  Then for each z e D(A) 
(~ f2, the solution u, to (IE) is differentiable on [0, b~), ~t, maps  [0, b,) into D(A) (~ [2, 
and u:(t)= Au~(t)+ B(t, ~t,(t)) for all t e l 0 ,  b~). 

If ,  in Theorem 3, the funct ion B is independent  of t e [0, co), then  one m a y  use 
Webb 's  techiques in [11] to  show tha t  the noncont inuable  solutions u~ to (IE) exists 
on [0~ c<)). Since this leads to some ia teres t ing results on semigroups of nonlinear 
operators  and existence results for nonlinear  operator  equations, we indicate  these 
ideas here.  A family U =- {U(t): t>~0} of functions each mapping  [2 into ~ is s~id 
to  be a semigroup o/type ~ on ~ if :¢ is a real  number  and each of the  following is 
fulfilled: (a) U(O)x=x for all x e t g ;  (b) U ( t + s ) x =  U(t) U(s)x for all x e g ,  t, 
s > 0; (c) t-+ U(t)x is cont inuous on [0, co) for  each x e ~ ;  ~nd (d) IU(t)x-- U(t)Yl < 
< I x -  Y t exp [~t] for  all x, y e zQ, t > 0. The generator of U is the  funct ion G defined 
by  Gx = l im t-~(U(t)x--x), with the domain  D(G) being the set of all x e f2 for which 

t-->O 

this l imit  exists. 
Now we assume tha t  (C1)-(C3) are valid and each of the  following conditions 

hold: 

(C4)' A is an open subset of E, .Q c A~ and C is a continuous function from A into E. 

(C5)' l i m i n f d ( x +  hCx; .Q)/h= 0 for each xe~Q. 
h - > O +  

(C6y there  is a real  number  ~ such tha t  re_Ix--y, Cx-- Cy]<~Ix--y 1 for all ~, 
y e A .  

Under  these assumptions we consider the existence of solutions to the autonomous 

in tegral  equat ion 
t 

u(t)= T( t ) z+ [T(t--'c)Cu.(~)dv, z e ~ ,  t~O. (AIE) 
0 
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Our fundamenta l  result  is the following extension of Theorem I in WEBB [ i i ] :  

TKEOBE~ 4. -- Suppose tha t  conditions (C1)-(C3) and (C4)'-(C6)' are fulfilled. 
Then for each z ~ .(2 (AIE) has a unique solution u~ on [0~ cx~) with values in 9 .  Also, 
if U(t)z= u~(t) for all ( t~z)~[0, co )x tP ,  then  U is a semigroup of type  ~ on ~9 
and A-~  C wi th  D(A ~ C) = D(A) 53 ~ is the  generator  of U. 

Using Theorem 3~ the  proof follows t h a t  of WEB]3 [11, Proposi t ion (3.6), (3.9)~ 
and (3.10)] and is omitted.  Concerning the  existence of a crit ical point  to (AIE) and 
its asymptot ic  stabil i ty,  we have the following result:  

THEOBE~f 5. -- In  addi t ion to  the  suppositions of Theorem 4~ suppose tha t  ~ < 0. 
Then there  is a unique point  x * ~ D ( A ) n  f2 such t h a t  Ax*~-Cx*---O. Moreover, 
since U(t)x*=x* for all t > 0 ,  we have t h a t  ]U(t)z--x*t<~!z--x*Iexp[~ct ] for all 
(t, z) ~ [0, oo) x 9 .  

The proof of Theorem 5 follows in a s tandard  manner  f rom Theorem 4 (see, e.g., 
[11, Proposit ion (3.15)]). In  the case tha t  t)  is convex, we can establish considerable 
in format ion  on the resolvent  of A-4- C. 

THEOBE)[ 6. -- Suppose tha t  (C1)-(C3) and (C4)'-(C6) r are valid and t h a t  z9 is 
convex. For  each h >  0 such t h a t  h ~ <  1 define 

:K(I-- h(A + C)) = (x - -  h(Ax + Cx): x e D(A) n ~ } .  

Then I - - h ( A  ~ C) is inject ive on D(A) 53 ~(2, 3~(I--h(A ~- C)) D zP, and 

[[I--h(A -[- C)]-~x - [ I - -h (A  + C)]-~yl< (1 --ha)-~lx--yl  

for all x, y e L). 

P~OOF. - I t  follows easily f rom (C6) r t ha t  

i [ I - - h ( A +  C ) ] x - - [ I - - h ( A +  C)y]]>(1- -h~) lx - -y  I for all x, ye.Q. 

Thus, to complete the proof, we show tha t  3~(I-- h(A ~ C)) D zP. Le t  w ~ t9 and 
define C*x == h C x - - x ~  w for all x E A. I t  follows t h a t  C* is continuous and 

m [x--y ,  C ' x - -  C'y] -= m_[x-- y, hCx-- hCy]-- Ix--yl <<. (h~-- l )Ix--yl 

for all x, y E A .  Also (see the proof of Theorem 6 in [6]), 

lira inf d(x ~ hC*x; D)/h = 0 
h-->O + 

for all x e t ~ .  

If  Tt~(t)x = T(ht)x for all (t, x) e [0, cx3) × E ,  then  T~ is a semigroup of linear, con- 
t ract ions,  hA is the genera tor  of Th, and if x ~ D  then  Th(t)x = T (h t ) xeD for all 
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t ~ 0 .  Thus, wi th  T replaced by  /'h, C by  C*, and a by  ( h a - - 1 ) ,  the  suppositions 
of Theorem 5 are fulfilled. Hence there  is an x*~ D(hA)(h ~2 ==D(A)(h ~Q such 
t h a t  hAx*-F C'x* ---- 0. I t  follows t h a t  x- -  h(Ax + Cx) = w and the proof of Theo- 
r em 6 is complete.  

RE~[ARK 4. - Excep t  in Theorem 1, we used ve ry  heavi ly  in our proofs t h a t  z is 
an in ter ior  poin t  of A. I t  is the case t h a t  if we replace m_ by  m+, then Theorems 2-6 
are val id when A ---- ~Q (and this modification is not  needed when ~Q is convex- -see  
[6~ Theorems 5 and 6]). In  the  ease t h t  E has a uni formly convex duM sace, the  proofs 
are not  difficult, since the  mapping (x, y) --> Ixlm+[x, y] is uni formly continuous on 
bounded subsets of E x E. However ,  in the  general  case, the  proofs are ve ry  tedious, 
~nd use the  fac t  t ha t  the mapping  (x, y)--> ]xlm+[x , y] is upper  semieontinuous on 
E x E (see the  proof of Theorem 3 in [6] for the  case t h a t  T(t)----I for all t >7 0). 

REMARK 5. - -  In  the case t h a t  ~ is convex, we m a y  use Theorem 6, a resul t  of 
CRANDALL and LIGGETT [4]~ and the techniques of WEBB [11, Proposi t ion (3.18)] 
to show tha t  U is as in Theorem 4, then  U(t)z= Jim [I--tn-l(A-F B)] -~z for all 

z~  ~ ,  t~>0. Also, for .Q = E and a = 0, BAlCBU [1] shows ~ ( I - -  (A -F C)) is E when 
A is a nonlinear (multivMued) m-dissipative operator .  

4 . -  Examples. 

In  this section we indicate some si tuations where these techniques ma y  be applied 
Throughout  this section we assume t h a t  J is a closed number  in terval  and E is a 
Banach  space wi th  no rm denoted If" [l. Also, i t  is assumed t h a t  V is a nonempty  
open subset of _~ and ] is a cont inuous funct ion f rom J x V into E,  and/17 is a non- 
empty ,  closed subset of E such t h a t  ~ c V. :Now let  5"n(J, V) be the  vector  space 
of all funct ion f rom J into F.  We suppose t h a t  E is a Banach  subspace of 5~n(J, E) 
(with the no rm on E denoted 1' 1), t ha t  T is a semigroup of l inear contract ions on 
E wi th  generator  A, and t ha t  conditions (C1)-(3) are fulfilled with 

(4.1) ~ =  (x~E: x(s)~IC for all s e J } .  

Set A = {x~E: x(s)e V for all s e J }  and define the mapping  C from A into 
~n(J, F)  by  

(4.2) [Cx](s)---](s,x(s)) for all ( s , x ) ~ J x A .  

Throughout  this section i t  is assumed t h a t  ] has the  following proper t ies :  

(P1) There  is a number  a such t h a t  if h > 0  and ( s ,~) , ( s ,~)~JxV then 

I I ~ -  ~ - -  h[ l (s ,  ~) - 1(8, ~ ) ]  II > (1 - -  h ~ ) t l ~ - -  ~ II • 
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(P2) If d~(~, ~:)= inf{ll$--V]l: ~]eK} for e~eh ~ e F ,  then  

l'm~i+nf d~(~ + hi(s, v/); K)/h = 0 for all ( s , ~ ) ~ J × K .  

We now consider various Banach spaces E in ~n(J,  F) as well as fu r the r  condi- 
t ions on ] which insure t h a t  C satisfies conti t ions (C4)'-(C6)' in §3. These results then  
lead to the existence of solutions of abs t rac t  par t i a l  differential  equations of the form 

(4.3) 
{ ~,(t, s) = [Av(t, .)] (s) + ](s,  ~.(t, s)) (t, s) e [o, co) × J 

qJ(O,s)=z(s), where z e D ( A ) ~ f 2  

I f  u is a solution to  the autonomous integral  equat ion (AIE) in § 3, t h e n  the  funct ion 
~(t, s )=  [u(t)](s) for all (t, 8)E[0, o o ) × J  is called ~ mild solution to (4.3). We re- 
mark  here  t ha t  m a n y  of our results apply equally well when ] is t ime d e p e n d e n t - -  
/:  [0, co) × J  × V - . I ~  is continuous and [B(t, x)](8) = ](t, s, x(s)) for all (t, s, x) e 
e [0, c o ) × J  ×A. However,  for simplicity, we res t r ic t  our a t tent ion to the t ime inde- 
pendent  case. Before establishing our results, note  tha t  (P2) and Le mma  I imply t h a t  

(P2)' l i m d l ( u  + hf(s, V); K) /h= O, uni formly  for (8, ~) in a compact  subset of J × g .  

I f  J is a. compact  in terva l  then  C(J, F)  is the Banach  space of all cont inuous 
functions x: J - * F  wi th  lxl = max{[[x(s)II: 8eJ}.  

PRoPOSITIO_W 4. - Suppose t h a t  J is compac t ,  K is convex,  and  E = C(J, F).  
Then A is open, ~ is closed, convex, and nonempty ,  and the opera tor  C defined of A 
by  (4.2) satisfies conditions (C4)'-(C6)'. 

PgooF. - I t  is immedia te  tha t  A is open, .(2 is closed, convex and nonempty ,  and 
tha t  C is continuous. If  x, y e A  then  

llx~ - h > 0 ,  ~8~--y(s)--h[1~s,x(8)~--fls, y(8)~]II>~(~--h~)llx(s)--~(8)ll~, ~ , ,~,, ,, ,, for all s ~ J  

by (P1). Taking the max imum over s of each side of this inequal i ty  shows t h a t  
l x - - y - -h[Cx- -Cy] l>(1- -h~) lx - -y l ,  and this  is easily seen to imply t h a t  (C6)' 
Now let  x e ~9 and let  s >  0. By  (P2)'  there  is an h e (0, e) and a fami ly  {tt(s): s e J}  
of members  of K such t ha t  

i[x(s) -~ hi(s, x(s)) -- #(8)1[ < he/7 for all s e J .  

For  nota t ional  convenience set z(8) = x(s) + hi(s, x(8)) for all s e J .  By  uniform con- 
t inu i ty  there  is a 6 > 0 such t ha t  !iz(s) -- z(t)[l <~he/7 whenever  i s - - t < 6 .  Let  {8i} g 
be a par t i t ion  of J with Is~--s~_ll<6 for i=- :1 , . . . ,  n and define y: J - , F  by 
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whenever  s e[s~_~, s~] and i = 1, . . . ,  n. Then y is continuous and y(s)~ K for all 
s e J since K is convex.  Thus y e t9 and 

d(x + hCx; P. ) < Ix+ hCx--y] < he/7 -~ sup (I!#(s)--y(s) il : s e J}. 

However ,  if s ~ [s~_~, s~] then  

[ l#(s)  - -  y(s) [ l  < H#(s) - -#(s ,_~)] l  + []#(s,_~) - -  y(s)[ l  

< II~(s)-~(s,-~)II + H#(s,)-~(s,_~)]I 

< 2  sup{H~(s)--/~(s~_l)]l : s e  [s~_~, s~]} .  

Since [s~ - -  s~_~ I < 5, we have f rom the choice of and # tha t  if s e [s~_~, s~] then 

t t a ( 8 ) -  ~(s,_~)H < lla(s) - z(s)ii + liz(s) - z(s,_~)iI + IIz(s,-~) - ~(s,_~)II 

< he/7 + he~7 + hs/7 = 3hs/7. 

Thus tttt(s)--y(s)tl<6he/7 for all s e J and we have t h a t  d(x+ hCx, ~Q)<hs. This 
shows t ha t  (C5)' holds and the proof of Proposi t ion 4 is complete. 

REMARK 6 .  - -  The proof techniques of Proposi t ion 4 ma y  be applied to various 
Banach  subspaces of C(J~ F)  with no essential  changes. I f  J = [a~ b] the follow- 
ing assertions are easily seen to be t rue :  (a) if E =  {xe C(J, F) :  x(a)=x(b)} and 
](a, ~) = ](b, ~) for  all ~ ~ V, then  (C4)'-(C6)' are  val id;  (b) if E -~ (x~ C(J, E):  x(a) = 
=x(b) : 0 } ,  OeK,  and ](a, O) = ](b, O), then  (C4)'-(C6)' are valid;  and ( c ) i f  E :  
= {xeC(J,  F) :  x(a)~= 0}, OeK,  and ](a, 0 ) =  0, then (C4)'-(C6)' are valid. To esta- 
blish (a)~ for example,  one may  choose the family  # is the  proof of Proposi t ion 4 
so t ha t  / t ( a )= / t (b ) .  Then  if y is as const ructed in the proof, we have tha t  y(a)-~ 
= y(b) and hence y e Q. 

REhIARK 7. -- The assumption t h a t  K is convex in Proposi t ion 4 can be relaxed 
somewhat.  Note  t h a t  the convex i ty  of K was used in order  to be able to (( connect  )) 
the  points  {/t(s~): i-----0, ..., n} in an appropr ia te  manner .  Ins tead  of assuming /i: 
is convex~ one could assume t h a t  there  are numbers  M, fi > 0 with  the  p rope r ty  
t ha t  if ~, ~ e K with I ~ -  ~] <fl, there  is a continuous funct ion ~: [0, 1 ] - ->K such 
t ha t  ~ ( 0 ) =  ~, ~ ( 1 ) =  ~, and Iy~(s)--~(O)l<Mt~--~?t for all s e [0, 1]. This p ro p e r t y  
is valid,  for example,  if 0 <  r~<~r2 and 

K =  {~eE:rl.~II~ll<r~} or K =  { ~ e F : r l ~  tl~I!}. 

I f  p e [1, c~) we le t  £~(J, F) denote  the space of all measurable  flmctions x: J-->E 
such t h a t  ]xl= [fI[xI]~ds]l/~< c~. In  the case t h a t  E is infinite dimensional,  the  

J 



236 I~O~ERT H. MA~TI~, JR. : Invariant sets for perturbed semigroups, etc. 

integral  is t ha t  of Bochner.  Of course, in £v(J, F), we ident i fy  functions equal almost  
everywhere  on J .  

PROPOSITION 5. - Suppose t h a t  p e[1,  co), V = F, and there  is a continuous 
[unction V: J - +  [0, c~) and a number  N >  0 such tha t  

(4.4) fV(s)~& < c¢ 
J 

for all (8, $ ) e J x F  and 

If  J is not  compact ,  assume also t h a t  O~K. Then,  with E =  f.v(J, F), the  map- 
ping C defined on A = E by  (4.2) satisfies conditions (C4)'-(C6)', and ~ is nonempty .  

P ~ o o F .  - Assumption (4.4) is easily seen to  imply t h a t  C maps  E into E and is 
continuous. I f  x, y e E and h > 0 is such t h a t  h~ < t ,  then  we have f rom (P1) t h a t  

llx(s)--y(s)--h[](s,x(s))--](s,y(s))] ]]~>(1--hzc)~]tx(s)--y(s)i]~ for all s e J ,  

and in tegra t ing  each side of this inequal i ty  over J shows t h a t  condit ion (C6)' holds. 
I t  is also easy to see t ha t  f2 is nonempty  and closed. ~Tow let x E ~2 and let ~ > 0. 

Define w(s)=](s,x(s))  for all s e J .  Since fllwltvds<oo, there  is a compact  inter-  
J 

val J o c J  such t h a t  f IIwIIvds<<.¢~/3. Also, b y  absolute cont inui ty ,  there  is a 6 > 0 
J - J o  

such tha t  if S c Jo is measurable  and re(S)<5 (where m is Lebesgue measure),  then 
f!iwl]~ds<<.e~/3. By Lusin's  Theorem there  is a measurable  (open) subset J~ of Jo 

such tha t  m(J~)<~ and x is continuous on J o - - J x .  Set J 2 =  Jo--J~. Since J~ 
is compact  and x]J2 is continuous we have t h a t  {x(s): s e J2} is compact.  By  (P2) '  
the re  is an h c (0, ~) and a family  (#(s): s ~ J~} of members  of K such t h a t  

]Ix(s) ÷ hi(s, x(s)) - -  #(s)[[ < hs2-~3--~/~(1 ÷ re(J2)) -~/~ for s e J2. 

) Ioreover ,  if z(s) = x(s) + hi(s, x(s)) for all seJ~; the re  is a mutual ly  disjoint  col- 
lection {S~}~ of measurable  subsets of J2 and an s, e S~ for i = 1, ..., n such t h a t  

n 

U Si = '/2 and 
,=1 f l]z__at],ds<hvsv2-,3-~/, ' 

G 

where a: J2 --> F is defined by  a(s) = z(s~) if s e S~. Hence if e: J2 -+ K is defined by  
e(s) =#(s~) whenever  s e S i ,  then  e is measurable and 

J~ J~ J~ 

< m(J~) 1/~ sup{lta(s) - e(s) ll: s e J~} ÷ hs2-13 -I/~ 

< he2 -13-x/~ = hs3-~/~. 
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Therefore, 

f fix + hCx-- ~ 1[ ~ ds.< hvev/3. 
J~ 

Thus if y(s)=x(s)  if s e J - - J ,  and y ( s ) =  ~(s) if seJ~,  then  y e D  and 

d(x + hCx, ~2)~ < f ltx + hCx--yli~ ds 
J 

= f h ilC l?ds+ ftlx+ hCx--Q? s 
J - -  J .  J~ 

< f h, llwlI e  + fh, Ilwll,es + 
J - -  J0 Jx 

<~ h~e~/3 @ h~e~/3 @ h~e~/3 = h~e ~ . 

This shows tha t  (C5)' holds and the proof of Proposit ion 5 is complete. 
As a specific i l lustration of these reslflts let J = [0, 2~] and suppose tha t  E is 

~([0,  2~], 2') where p e [1, c~) or E is the space of all x e C([0, 2u], F)  such t h a t  
x(0) = x(2~). Le t  

D(A)---= ( x e E :  x ,x '  are absolutely continuous, 

x'~eE, x(0) = x(2z), and x'(0) = x '(2z)},  

and define Ax = x" for all x eD(A) .  Then A is the generator of a semigroup of 
l inear contractions T on E (see BUTZE~ and BER~Z~S [2, pp. 59-64]). 3/[oreover, 
if x e E  and ~ > 0  then  

(4.5) [ ( I - -  ~A)-Ix] (s) ---- for all s E [0, 2z] ,  
0 

where r(2, • ) is the 2~-periodic function on (--c~,  c~) defined by 

r(~, t) = ~ / ~ [ c o s h  V/2(~ --  ~)][sinh V/~ ]  -1 for ~ e [0, 2~].  

l~ecall t ha t  if x e/~ and t >~0 then  

[T(t)x](s) -~ l im [ ( I - -  n-ltA)-.x](s) 
/b-~> (xa 

for s ~ [0,2~]. 

Noting t h a t  r(A,~)>~O and ( 2 z ) - l f r ( A , ~ ) d v = l ,  i t  follows easily t h a t  conditions 
0 

(C1)-(C3) are fulfilled if K has any of the following forms: (a) K is a closed cone in F 
(b) K is a closed ball in F wi th  center 0; (x) K is the intersection of a closed cone 

16 - Anna t i  d i  Matematica 
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wi~h a closed b~ll of center  0; or (d) P is a closed cone in F ,  ~ e P ,  and K = { ~ e ~ :  
- - ~  ~ P}. In  par t icular ,  these results give existence and uniqueness cr i ter ia  for mild 

solutions with values in K to the  equat ion 

(~.6) 

~,(t, s) = %,(t,  s) + / ( s ,  ~(t, s)) for (t, s) e [0, oo) x [0, 2x] 

q~(O,s)=z(s) for se[O, 2z],  z e / 2  

q~(t, O) ----- q~(t, 2~) and ~t(t, O) = ~v,(r, 2z)  for t>O. 

I ~ E ~ K  8. -- :Note t h a t  if ~ <: 0 then  by  Theorem 5 there  is ~ unique K-va lued  
solution x* to the  periodic equat ion x'(s)-~ ](s, x(s))= 0 for all s e [0, 2u], x(0)----- 
= x(2~) and x'(0) = x'(2g),  lV[oreover, each solution ~ to (4.6) satisfies lira ~(t, s) 

~ - - > c o  

-~ x*(s), with convergence in the E norm. 

R,:E~:A~,.K 9. - In  the  case t h a t  K is convex assumption (P2) ma y  be expressed in 
terms of hyperplanes.  In  par t icular ,  (P2) holds only in case for each ~ e OK and 
each ~*~F*  such t h a t  ~*(~)= ~ > ~  and l~e[~*(~])]K0 for all ~ e K,  i t  follows t h a t  
Re[~*(](s, ~))] < 0 for all s e J .  Note  also t h a t  if F is the space R ~, ](s, ~) ---= (]~(s, ~))~n= 1 
for all (s, ~) e J ×  V, and /i: = ((~)~: ~ > 0  for i = 1, ..., n}, then  (P2) holds only in 
case / j ( s ,~ )>0  whenever  ~ = (~.~)~eK and ~ =  0. 

:Now we consider a boundary  value problem on the r ight  half  line. Le t  E be ei ther  
the space £'([0, co), E) or the  space C°([0, c~), F)  consisting of all continuous func- 
t ions x: [0, c o ) - ~ F  wi th  x(0) = O, Jim x(s) = O, and txl = max{l]x(s)lI: s>0}.  Le t  

D(A) = {xeE:  x, x' are absolutely continuous,  x ( 0 ) =  0 and xHe E} 

and define A x = x  'r for  all xeD (A) .  

LEPTA 3. - Le t  E,  D(A) and A be as in the above paragraph.  Then D(A) is dense 
in E ,  the  resolvent  set of A contains (0, c~), and if ~ > O, y ~ E, and ~ ~-,/2 

(4.7) 
c o  

[ ( i -  ~A)-'V] (s) = (V/2)f [exp [e(8--  3)] - -  exp [-- V(s + 3)]] U(~)ar 
8 

8 

+ (~/2)j" [exp [,~(~ - s)] - exp [ -  ~ (s +o ] ]  y(,) ,~ 
O 

for all s > 0 .  Also, [ ( I - -  ~A)-lyI< ]y] for all ~ > 0 and y e E. (The proof follows 
rout ine  y and is omit ted. )  

Lemma  3 shows t ha t  A is the generator  of a semigronp T of l inear contract ions 
on E,  and hence 

[T(t)x](s)= lira [(I--t~n-lA)-~x](s) for x e E  and t, s > 0 .  
~ - - > o o  
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U s i n g  (4.7) a nd  t he  f a c t  t h a t  

[exp [~(s - -  z)] - -  exp [-- ~7(s + T)]] , [exp [e(w --s)]--  exp [--~(s + ~)]] >0 

for  all s, ~ > 0, 

i t  follows t h a t  (01)-(C3) are  fulfilled if K has  a n y  of the  fo l lowing fo rms :  (a) K is a 

closed cone in  _F; (b) K is the  closed bal l  of cen te r  0 and  r ad ius  ~; or  (c) K is t he  in ter -  

sec t ion  of a closed cone wi th  the  closed bal l  of cen te r  0 and  rad ius  ~. Thus  our  resul ts  

a, p p l y  t o  t he  e q u a t i o n  

~,(t,s) = ~ ( t , s ) +  I(s,~(t,s)) lot t , s > 0 ,  

~o(0, s) =z ( s )  for 8 > 0 ,  z e ~ ,  q~(t,O)=O, 

(4.8) a, nd  e i ther  
co  

for t > O  or ti[~(t,s)ds<oo for t > o .  
oo d 

0 

I~E~ABK 10. -- Aga in  no te  t h a t  if ~ < 0 we h a v e  f r o m  T h e o r e m  5 t h a t  is a un ique  

K - v a l u e d  solut ion x* to  the  equa t ion  x"(s) ~- ](s, x(s)) = 0 for  all s ~ [0, oo) such 
Go 

t h a t  x(0) = 0 and  e i ther  l ira x(s) = 0 or  f Hx(s)]l ds < Go. Noreove r ,  each so lu t ion  
8--> GO 

0 

to  (4.8) satisfies l im ~(t, s ) =  x*(s), wi th  convergence  in the  E norm.  
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