Invariant Sets for Perturbed Semigroups of Linear Operators (*) (**).

Robert H. Martin, Jr. (Raleigh, North Carolina, U.S.A.)

Summary, - Let E be a Banaeh space and consider the initial value problem $(*) u^{\prime}(t)=A u(t)+$ $+B(t, u(t)), t \geqslant 0, u(0)=z$; where A is the generator of a linear contraction semigroup and $B:[0, \infty) \times E \rightarrow E$ is continuous. The main results of this paper deal with criteria insuring that a closed subset Ω of E is invariant for (*)-that is, $z \in \Omega$ implies that a solution u to $(*)$ satisfies $u(t) \in \Omega$ for all $t \geqslant 0$.

1. - Introduction.

Let E be a real or complex Banach space with norm $|\cdot|$, and let $\{T(t): t \geqslant 0\}$ be a strongly continuous semigroup of linear contractions on E. Now suppose that Ω is a closed subset of E with the property that if $x \in \Omega$ then $T(t) x \in \Omega$ for all $t \geqslant 0$. In this paper we consider the existence of a solution u with values in Ω to the integral equation

$$
\begin{equation*}
u(t)=T(t) z+\int_{0}^{t} T(t-\tau) B(\tau, u(\tau)) d \tau, \quad z \in \Omega \tag{IE}
\end{equation*}
$$

where B is a continuous function from $[0, \infty) \times \Omega$ into E. If A is the infinitesimal generator of T, then solutions to (IE) may be regarded as generalized or mild solutions to the abstract Cauchy problem

$$
\begin{equation*}
u^{\prime}(t)=A u(t)+B(t, u(t)), \quad u(0)=z \in D(A) \cap \Omega \tag{AOP}
\end{equation*}
$$

In particular, if u is a solution to (ACP) then u is a solution to (IE), and if a solution to (IE) is differentiable, then $u(t) \in D(A) \cap \Omega$ for all $t \geqslant 0$ and u is a solution to (ACP).

In $\S 2$ we use the techniques of WEBB [11] to set up approximate solutions to (IE), and criteria for the existence of solutions is given in §3. Some examples illustrating these techniques are indicated in $\$ 4$.

[^0]
2. - Approximate solutions.

Let $T=\{T(t): t \geqslant 0\}$ be a strongly continuous semigroup of linear contractions on the Banach space E (i.e., $T(0)=I$, where I is the identity mapping on E; $T(t+s)=T(t) T(s)$ for all $t, s \geqslant 0 ;|T(t) x| \leqslant|x|$ for all $(t, x) \in[0, \infty) \times E ;$ and t $\rightarrow T(t) x$ is continuous on $[0, \infty)$ for each $x \in E)$. Also let A be the infinitesimal generator of T (i.e., $A x=\lim _{t \rightarrow 0+} t^{-1}(T(t) x-x)$, with $D(A)$ the set of all x for which this limit exists). Recall that $D(A)$ is dense in E. Throughout this paper we assume the following conditions hold:
(C1) Ω is a closed subset of E.
(C2) If $x \in \Omega$ then $T(t) x \in \Omega$ for all $t \geqslant 0$.
(O3) $D(A) \cap \Omega$ is dense in Ω.
Note that is many cases condition (O2) implies condition (C3). In particular, if Ω is the closure of an open set in D or if Ω is convex, then (C2) implies (C3).

For each $y \in E$ let $d(y ; \Omega)=\inf \{|y-x|: x \in \Omega\}$. In addition to (C1)-(C3) we frequently assume the following conditions hold:
(C4) $\Lambda \supset \Omega$ and B is a continuous function from $[0, \infty) \times A$ into E.
(C5) $\liminf _{h \rightarrow 0+} d(x+h B(t, x) ; \Omega) / h=0$ for all $(t, x) \in[0, \infty) \times \Omega$.
To employ our techniques we need the following result concerning the uniformess of the limit in (C5).

Lemma 1. - If conditions (O4) and (O5) are fulfilled then

$$
\lim _{h \rightarrow 0+} d(x+h B(t, x \Omega)) ; / h=0 \quad \text { for all }(t, x) \in[0, \infty) \times \Omega
$$

and this limit is uniform on compact subsets of $[0, \infty) \times \Omega$.
Proof. - Let K be a compact subset of Ω and let $\beta, \varepsilon>0$. By [7, Theorem 2], we have for each $t \in[0, \beta]$ a $\delta(t, \varepsilon)>0$ such that

$$
d(x+h B(t, x) ; \Omega) \leqslant h \varepsilon / 2 \quad \text { for all }(h, x) \in[0, \delta(t, \varepsilon)] \times K
$$

Let $\eta>0$ be such that $|B(t, x)-B(s, x)| \leqslant \varepsilon / 2$ if $x \in K$ and $t, s \in[0, \beta]$ with $|t-s| \leqslant \eta$, and let $\left\{t_{i}\right\}_{0}^{n}$ be a partition of $[0, \beta]$ such that $t_{i}-t_{i-1} \leqslant \eta$ for $i=1, \ldots, n$. Set $\delta=\min \left\{\delta\left(t_{i}, \varepsilon\right): i=0, \ldots, n\right\}$. If $h \in[0, \delta]$ and $(t, x) \in\left[t_{i}, t_{i+1}\right] \times K$, then

$$
\begin{aligned}
d(x+h B(t, x) ; \Omega) & \leqslant d\left(x+h B\left(t_{i}, x\right) ; \Omega\right)+h\left|B(t, x)-B\left(t_{i}, x\right)\right| \\
& \leqslant h \varepsilon / 2+h \varepsilon / 2=h \varepsilon
\end{aligned}
$$

and the assertion of Lemma 1 follows.

Under the conditions (O1)-(C5) we consider the existence of «approximate solutions» to the integral equation (IE). So assume that (O1)-(C5) hold and $z \in \Omega$. Now choose positive numbers R, M, η and β such that the following is satisfied:
(D1) If $(t, x) \in[0, \beta] \times \Lambda$ with $|x-z| \leqslant R$ then $|B(t, x)| \leqslant M$.
(D2) If $|x-z| \leqslant \eta$ and $|y| \leqslant \beta(M+2)$ then $|T(t) x+y-z| \leqslant R$ for all $t \in[0, \beta]$.
(D3) $\left\{z_{n}\right\}_{1}^{\infty}$ is a sequence in $D(A) \cap \Omega$ such that $\left|z_{n}-z\right| \leqslant \eta$ and $\lim _{n \rightarrow \infty} z_{n}=z$.
Note that one is assured from (C1)-(C5) that such numbers R, M, η and β can be found so that (D1)-(D3) hold. Our fundamental result on approximate solutions is the following:

Proposimion 1. - Suppose that (C1)-(C5) and (D1)-(D3) are fulfilled and that $\left\{\varepsilon_{n}\right\}_{1}^{\infty}$ is a sequence in $(0,1]$ with $\lim _{n \rightarrow \infty} \varepsilon_{n}=0$. Then for each positive integer n there is an ε_{n}-approximate solution $u_{n}:[0, \beta] \rightarrow D(A)$ to (TE) in the following sense: there is a positive integer $N=N(n)$ and a partition $\left\{t_{i}^{n}\right\}_{i=0}^{N}$ of $[0, \beta]$ with $t_{i+1}^{n}-t_{n}^{i} \leqslant \varepsilon_{n}$ such that
(i) $u_{n i}(0)=z_{n}, u_{n}\left(t_{i}^{n}\right) \in \Omega$ with $\left|u_{n}\left(t_{i}^{n}\right)-z\right| \leqslant R$, and if $t \in\left[t_{i}^{n}, t_{i+1}^{n}\right)$ then

$$
u_{n}^{\prime}(t)=A u_{n}(t)+B\left(t_{i}^{n}, u_{n}\left(t_{i}^{n}\right)\right)
$$

and

$$
u_{n}(t)=T\left(t-t_{i}^{n}\right) u_{n}\left(t_{i}^{n}\right)+\int_{i_{i}^{n}}^{t} T(t-\tau) B\left(t_{i}^{n}, u_{n}\left(t_{i}^{n}\right)\right) d \tau
$$

(ii) u_{n} is continuous on $\left[t_{n}^{i}, t_{i+1}^{n}\right), u_{n}\left(t_{i+1}^{n}-\right)$ exists,

$$
\left|u_{n}\left(t_{i+1}^{n}-\right)-u_{n}\left(t_{i+1}^{n}\right)\right| \leqslant \varepsilon_{n}\left(t_{i+1}^{n}-t_{i}^{n}\right),
$$

and if $t \in\left[t_{i}^{n}, t_{i+1}^{n}\right)$ then $d\left(u_{n}(t) ; \Omega\right) \leqslant\left(t-t_{i}^{n}\right) \varepsilon_{n} ;$
(iii) if $y_{n}:[0, \beta] \rightarrow\left\{t_{i}^{n}\right\}$ is defined by $\gamma_{n}(\beta)=\beta$ and $\gamma_{n}(t)=t_{i}^{n}$ whenever $\mathrm{t} \in\left[t_{i}^{n}, t_{i+1}^{n}\right)$, then

$$
\left|u_{n}(t)-T(t) z_{n}-\int_{0}^{t} T(t-\tau) B\left(\gamma_{n}(\tau), u_{n}\left(\gamma_{n}(\tau)\right)\right) d \tau\right| \leqslant t_{i}^{n} \varepsilon_{n}
$$

whenever $t \in\left[t_{i}^{n}, t_{i+1}^{n}\right)$; and
(iv) if $(t, y) \in\left[t_{i}^{n}, t_{i+1}^{n}\right] \times \Lambda$ with

$$
\begin{aligned}
& \left.\left|y-u_{n}\left(t_{i}^{n}\right)\right| \leqslant\left(t_{i+1}^{n}-t_{i}^{n}\right)(M+1)+\max \left\{\left|(T(h)-I) u_{n}\left(t_{i}^{n}\right)\right|\right\} 0 \leqslant b \leqslant t_{i+1}^{n}-t_{i}^{n}\right\}, \\
& \text { then }\left|B(t, y)-B\left(t_{i}^{n}, u_{n}\left(t_{i}^{n}\right)\right)\right| \leqslant \varepsilon_{n} \text { and }\left|\left(T\left(t-t_{i}^{n}\right)-I\right) u_{n}\left(t_{i}^{n}\right)\right| \leqslant \varepsilon_{n}
\end{aligned}
$$

The construction of the approximate solution u_{n} is patterned very closely to that of Webs [11, Proposition (3.1)], and we only indicate it here. In particular we use Webb's construction in the interval $\left[t_{i}^{n}, t_{i+1}^{n}\right)$ and, as opposed to defining $u_{n}\left(t_{i+1}^{n}\right)$ so that u_{n} is continuous at t_{i+1}^{n}, we define $u_{n}\left(t_{i+1}^{n}\right)$ so that it is in $D(A) \cap \Omega$. This is reflected by the jump discontinuity of u_{n} in part (ii). Before indicating the construction of u_{n} we first establish the following result:

Lemma 2. - Let the suppositions of Proposition 1 be fulfilled, let $K \subset \Omega$ be compact, and let $\varepsilon>0$. Then there is a $\delta=\delta(\varepsilon, K)>0$ such that

$$
d\left(T(h) x+\int_{i}^{l+h} T(t+h-\tau) B(t, x) d \tau ; \Omega\right) \leqslant h \varepsilon
$$

for all $x \in K, t, t+h \in[0, \beta]$, and $h \in[0, \delta] M$
Proof. - By continuity there is a $\delta_{1}>0$ such that

$$
\left|B\left(t, T\left(h_{1}\right) x\right)-T\left(h_{2}\right) B(t, x)\right| \leqslant \varepsilon / 2 \quad \text { for } t \in[0, \beta], h_{2}, h_{2} \in\left[0, \delta_{1}\right], \text { and } x \in K .
$$

(Recall $T(t) x \in \Omega$ by (C2)). Therefore,

$$
\left|h B(t, T(h) x)-\int_{i}^{t+\hbar} T(t+h-\tau) B(t, x) d \tau\right| \leqslant h \varepsilon / 2
$$

for all $h \in\left[0, \delta_{1}\right], t \in[0, \beta]$ and $x \in K$. Also, by Lemma 1 , there is a $\delta \in\left(0, \delta_{1}\right]$ such that

$$
d(T(h) x+h B(t, T(h) x) ; \Omega) \leqslant h \varepsilon / 2 \quad \text { for } t \in[0, \beta], h \in[0, \delta], \text { and } x \in K
$$

Consequently, if $t \in[0, \beta], h \in[0, \delta]$ and $x \in K$ then

$$
\begin{aligned}
d\left(T(h) x+\int_{i}^{t+h} T(t+h-\tau) B(t, x) d \tau ; \Omega\right) & \leqslant d(T(h) x+h B(t, T(h) x) ; \Omega) \\
& +\left|\int_{i}^{t+h} T(t+h-\tau) B(t, x) d \tau-h B(t, T(h) x)\right| \leqslant h \varepsilon
\end{aligned}
$$

and the proof of Lemma 2 is complete.
We now indicate the construction of u_{n}, which is by induction. Define $t_{0}^{n}=0$ and $u_{n}\left(t_{0}^{n}\right)=z_{n}$, and assume that u_{n} is constructed on [0, $\left.t_{i}^{n}\right]$. If $t_{i}^{n}<\beta$ choose the number δ_{i}^{n} as follows:
(1) $\delta_{i}^{n} \in\left[0, \varepsilon_{n}\right]$ and $t_{i}^{n}+\delta_{i}^{n} \leqslant \beta$;
(2) if $(t, y) \in\left[t_{i}^{n}, t_{i}^{n}+\delta_{i}^{n}\right] \times \Lambda$ and

$$
\left.\left|y-u_{n}\left(t_{i}^{n}\right)\right| \leqslant \delta_{i}^{n}(M+1)+\max \left\{\left|(T(h)-I) u_{n}\left(t_{i}^{m}\right)\right|\right\} 0 \leqslant h \leqslant \delta_{i}^{n}\right\}
$$

then $\left|\boldsymbol{B}(t, y)-B\left(t_{i}^{n}, u_{n}\left(t_{i}^{n}\right)\right)\right| \leqslant \varepsilon_{n}$ and $\left|\left(T\left(t-t_{i}^{n}\right)-I\right) u_{n}\left(t_{i}^{n}\right)\right| \leqslant \varepsilon_{n} ;$
(3) $d\left(T(h) u_{n}\left(t_{i}^{n}\right)+\int_{t_{i}^{n}}^{t_{i+n}^{n}} T\left(t_{i}^{n}+h-\tau\right) B\left(t_{i}^{n}, u_{n}\left(t_{i}^{n}\right)\right) d \tau ; \Omega\right) \leqslant h \varepsilon_{n} / 2$
for all $h \in\left[0, \delta_{i}^{n}\right]$; and
(4) δ_{i}^{n} is the largest number such that (1)-(3) hold.

Using the continuity of T and B and Lemma 2, we see that $\delta_{i}^{n}>0$. Let $t_{i+1}^{n}=$ $=t_{i}^{n}+\delta_{i}^{n}$ and for each $t \in\left[t_{i}^{n}, t_{i+1}^{n}\right)$ define

$$
u_{n}(t)=T\left(t-t_{i}^{n}\right) u_{n}\left(t_{i}^{n}\right)+\int_{i_{i}^{n}}^{t} T(t-\tau) B\left(t_{i}^{n}, u_{n}\left(t_{i}^{n}\right)\right) d \tau
$$

It follows from the construction of u_{n} and the induction hypothesis that the properties listed in Proposition 1 are fulfilled on $\left[0, t_{i+1}^{n}\right)$. By (3) we have that

$$
d\left(u_{n}\left(t_{i+1}^{n}-\right) ; \Omega\right) \leqslant \varepsilon_{n}\left(t_{i+1}^{n}-t_{i}^{n}\right) / 2,
$$

and since $D(A) \cap \Omega$ is dense in Ω there is a $w \in D(A) \cap \Omega$ with $\left|u_{n}\left(t_{i+1}^{n}-\right)-w\right| \leqslant$ $\leqslant \varepsilon_{n}\left(t_{i+1}^{n}-t_{i}^{n}\right)$. It then follows that $|w-z| \leqslant R$ and if we define $u_{n}\left(t_{i+1}^{n}\right)=w$, the properties of u_{n} are valid on $\left[0, t_{i+1}^{n}\right]$. We now show that $t_{N}^{n}=\beta$ for some positive integer N. Assume, for contradiction, that $t_{i}^{n}<\beta$ for all i and let $s_{0}=\lim _{i \rightarrow \infty} t_{i}^{n}$. Again us ng the techniques of Webs [11, Proposition (3.1)], it follows that $w=\lim _{i \rightarrow \infty} u_{n}\left(t_{i}^{n}\right)$ also exists, and that $w \in \Omega$ since Ω is closed. Thus $K=\{w\} \cup\left\{u_{n}\left(t_{0}^{n}\right), u_{n}\left(t_{1}^{n}\right), \ldots\right\}$ is compact. The continuity of T and B and Lemma 2 shows that (2) and (3) hold with δ_{i}^{n} replaced by $s_{0}-t_{i}^{n}$ for all large i. Since $\delta_{i}^{n}<s_{0}-t_{i}^{n}$ we have a contradiction to (4). Thus $t_{N}^{m}=\beta$ for some positive integer N and the indication of the proof of Proposition 1 is complete.

Proposition 2. - Let the suppositions of Proposition 1 be fulfilled and let $\left\{u_{n}\right\}_{1}^{\infty}$ be as constructed in Proposition 1. If $u(t)=\lim _{n \rightarrow \infty} u_{n}(t)$ exists uniformly for $t \in[0, \beta]$, then u is a continuous function from $[0, \beta]$ into Ω and u is a solution to (IE) on $[0, \beta]$.

Proof. - If $t \in[0, \beta]$ we have from (ii) of Proposition 1 that

$$
d(u(t) ; \Omega)=\lim _{n \rightarrow \infty} d\left(u_{n}(t) ; \Omega\right) \leqslant \lim _{n \rightarrow \infty} \varepsilon_{n}^{2}=0,
$$

so u maps $[0, \beta]$ into Ω. If γ_{n} is as in (iii) of Proposition 1 and

$$
w_{n}(t)=T(t) z_{n}+\int_{0}^{t} T(t-\tau) B\left(\gamma_{n}(\tau)\right) d \tau \quad \text { for } t \in[0, \beta]
$$

then $\left|w_{n}(t)-u_{n}(t)\right| \leqslant \beta \varepsilon_{n}$, and so $w_{n} \rightarrow u$ as $n \rightarrow \infty$ uniformly. Since each w_{n} is continuous, it follows that u is continuous. Also, if $t \in\left[t_{i}^{n}, t_{i+1}^{n}\right)$ then

$$
\begin{align*}
\left|u_{n}(t)-u_{n}\left(\gamma_{n}(t)\right)\right| & =\left|\left(T\left(t-t_{i}^{n}\right)-I\right) u_{n}\left(t_{i}^{n}\right)+\int_{i_{i}^{n}}^{t} T(t-\tau) B\left(\gamma_{n}(\tau), u_{n}\left(\gamma_{n}(\tau)\right)\right) d \tau\right| \tag{2.1}\\
& \leqslant \varepsilon_{n}+\left(t-t_{i}^{n}\right) M \leqslant \varepsilon_{n}(1+M)
\end{align*}
$$

and we have that $\left(\gamma_{n}(t), u_{n}\left(\gamma_{n}(t)\right)\right) \rightarrow(t, u(t))$ as $n \rightarrow \infty$ uniformly on [0, β]. Since $\{(t, u(t)): t \in[0, \beta]\}$ is compact, we see that $B\left(\gamma_{n}(t), u_{n}\left(\gamma_{n}(t)\right)\right) \rightarrow B(t, u(t))$ as $n \rightarrow \infty$ uniformly on $[0, \beta]$. Thus, by (iii) of Proposition 1,

$$
\begin{aligned}
\mid u(t)-T(t) z- & \int_{0}^{t} T(t-\tau) B(\tau, u(\tau)) d \tau \mid \\
& =\lim _{n \rightarrow \infty} \mid u_{n}(t)-T(t) z_{n}-\int_{0}^{t} T(t-\tau) B\left(\left(\gamma_{n}(\tau), u_{n}\left(\gamma_{n}(\tau)\right)\right) d \tau \mid \leqslant \lim _{n \rightarrow \infty} \beta \varepsilon_{n}=0\right.
\end{aligned}
$$

for all $t \in[0, \beta]$, and the proof of Proposition 2 is complete.
Remark 1. - Proposition 1 and 2 may be regarded as extension of Webb's techniques [11] for the case that $\Omega=E$ and as extensions of the techniques in Mantin [6] for the case that $T(t)=I$ for all $t \geqslant 0$. The condition (C5) on B goes back to NaGumo [8]. In the case that $T(t)=I$ for all $t \geqslant 0$ and $\Omega=E$, setting up this type of approximate solution is done in Cartan [3, Theorem 1.3.1]. For higher order equations, see Pavel [9].

3. - Existence criteria.

In this section we place conditions on B which insures the existence of solutions to (IE). The first result is of a classical nature and employs Lipschitz and compactness criteria on B.

Theorma 1. - In addition to the suppositions and notations of Proposition 1, suppose that $B(t, x)=B_{1}(t, x)+B_{2}(t, x)$ for all $(t, x) \in[0, \infty) \times \Omega$, where B_{1} and B_{2} satisfy
(a) there is an $L>0$ such that $\left|B_{1}(t, x)-B_{1}(t, y)\right| \leqslant L|x-y|$ for all (t, x), $(t, y) \in[0, \beta] \times \Omega$ with $|x-z|,|y-z| \leqslant R ;$ and
(b) there is a compact subset K of E such that $B_{2}(t, x) \in K$ for all $(t, x) \in[0, \beta] \times \Omega$ with $|x-z| \leqslant R$.

Then (IE) has a solution u on $[0, \beta]$ with values in Ω.
Proof. - Let γ_{n} be as in (iii) of Proposition 1 and define $v_{n}(t)=\left(\gamma_{n}(t), u_{n}\left(\gamma_{n}(t)\right)\right)$ for all $t \in[0, \beta]$ and $n \geqslant 1$. Also let

$$
\psi_{n}(t)=\int_{0}^{t} T(t-\tau) B_{2} v_{n}(\tau) d \tau \quad \text { for all } t \in[0, \beta] \text { and } n \geqslant 1
$$

By assumption (b) and the continuity of T we have that

$$
K_{1}=\left\{T(s) B_{2}(t, x): s, t \in[0, \beta], x \in \Omega \text { and }|x-z| \leqslant R\right\}
$$

is relatively compact, so if K_{2} is the closed convex hull of K_{1} and $K_{3} \equiv=\{t x:(t, x)$ $\left.\in[0, \beta] \times K_{2}\right\}$, then K_{3} is compact. It then follows routinely that $\psi_{n}(t) \in K_{3}$ for all $t \in[0, \beta]$ and $n>1$. Moreover, if $0 \leqslant s \leqslant t \leqslant \beta$ then

$$
\begin{aligned}
\left|\psi_{n}(t)-\psi_{n}(s)\right| & \leqslant\left|\int_{s}^{t} T(t-\tau) B_{2} v_{n}(\tau) d \tau\right|+\left|\int_{0}^{s}[T(t-\tau)-T(s-\tau)] B_{2} v_{n}(\tau) d \tau\right| \\
& \leqslant|t-s| M_{2}+\int_{0}^{s}\left|[T(t-s)-I] T(s-\tau) B_{2} v_{n}(\tau)\right| d \tau
\end{aligned}
$$

where $M_{2}=\max \{|y|: y \in K\}$. Since $\{T(\tau) x:(\tau, x) \in[0, \beta] \times K\}$ is compact, we see that $\left\{\psi_{n}\right\}_{1}^{\infty}$ is equicontinuous. Hence $\left\{\psi_{n}\right\}_{1}^{\infty}$ has a uniformly convergent subsequence by Ascoli's theorem. Relabeling if necessary we may assume that $\left\{\psi_{n}\right\}_{1}^{\infty}$ is uniformly convergent. If $g:[0, \beta] \rightarrow E$ we write $\|g\|=\sup \{|g(t)|: t \in[0, \beta]\}$. Now for each $n \geqslant 1$ and $t \in[0, \beta]$ define

$$
w_{n}(t)=T(t) z_{n}+\int_{0}^{t} T(t-\tau) B_{1} v_{n}(\tau) d \tau+\psi_{n}(t)
$$

It follows from (iii) of Proposition 1 that $\left\|w_{n}-u_{n}\right\| \leqslant \beta \varepsilon_{n}$. Moreover, if n and m are positive integers and $p_{n, m}(t)=\left|w_{n}(t)-v_{m}(t)\right|$ for all $t \in[0, \beta]$, we have from assumption (a) that

$$
\begin{aligned}
p_{n, m}(t) & \leqslant\left|T(t) z_{n}-T(t) z_{m}\right|+\left|\int_{0}^{t} T(t-\tau)\left[B_{1} v_{m}(\tau)-\mathcal{B}_{1} v_{m}(\tau)\right] d \tau\right|+\left|\psi_{n}(t)-\psi_{m}(t)\right| \\
& \leqslant\left|z_{n}-z_{m}\right|+\| \psi_{n}-\psi_{m}\left|+\int_{0}^{t} L\right| u_{n}\left(\gamma_{n}(\tau)\right)-u_{m}\left(\gamma_{m}(\tau)\right) \mid d \tau+\beta\left(\varepsilon_{n}+\varepsilon_{m}\right)
\end{aligned}
$$

Also, by (2.1) in the proof of Proposition 2 it follows that

$$
\begin{aligned}
\left|u_{n}\left(\gamma_{n}(\tau)\right)-u_{m}\left(\gamma_{m}(\tau)\right)\right| & \leqslant p_{n, m}(\tau)+\left|w_{n}(\tau)-u_{n}\left(\gamma_{n}(\tau)\right)\right|+\left|w_{m}(\tau)-u_{m}\left(\gamma_{m}(\tau)\right)\right| \\
& \leqslant p_{n, m}(\tau)+\left\|w_{n}-u_{n}\right\|+\varepsilon_{n}(M+1)+\left\|w_{m}-u_{m}\right\|+\varepsilon_{n}(M+1) \\
& \leqslant p_{n, m}(\tau)+\left(\varepsilon_{n}+\varepsilon_{m}\right)(\beta+M+1)
\end{aligned}
$$

Thus

$$
p_{n, m}(t) \leqslant \delta_{n, m}+\int_{0}^{t} L p_{n, m}(\tau) d \tau \quad \text { for all } t \in[0, \beta]
$$

where $\delta_{n, m}=\left|z_{n}-z_{m}\right|+\left\|\psi_{n}-\psi_{m}\right\|+2 L \beta\left(\varepsilon_{n}+\varepsilon_{m}\right)(\beta+M+1)$. It now follows from Gronwall's inequality that

$$
\left\|w_{n}-w_{m}\right\|=\left\|p_{n, m}\right\| \leqslant \delta_{n, m} \exp [L \beta]
$$

and since $\delta_{n, m} \rightarrow 0$ as $n, m \rightarrow \infty$ we have that $\left\{w_{n}\right\}_{1}^{\infty}$ is uniformly Oauchy. The inequality $\left\|w_{n}-u_{n}\right\| \leqslant \beta \varepsilon_{n}$ shows that $\left\{u_{n}\right\}_{1}^{\infty}$ is also uniformly Cauchy, and Theorem 1 follows from Proposition 2.

Remark 2. - If the function B_{2} in Theorem 1 is the zero function, then the solution u to (IE) on $[0, \beta]$ is easily seen to be unique.

Now we place a dissipative type condition on B to insure the existence and uniqueness of solutions to (IE). Again our techniques follow Webs [11]. If $x, y \in E$ define

$$
m_{-}[x, y]=\lim _{h \rightarrow 0^{-}}(|x+h y|-|x|) / h \quad \text { and } \quad m_{+}[x, y]=\lim _{h \rightarrow 0+}(|x+h y|-|x|) / h
$$

It follows that if $x, y, z \in E$ then

$$
m_{-}[x, y+z] \leqslant m_{+}[x, y]+m_{-}[x, z] \leqslant|y|+m_{-}[x, z] .
$$

Moreover, if $u:[0, b] \rightarrow E$ has a derivative at $s \in(0, b)$ and $p(t)=|u(t)|$ for all $t \in$ $\in[0, b]$, then p has a left derivative at s and $p_{-}^{\prime}(s)=m_{-}\left[u(s), u^{\prime}(s)\right]$. Also, if A is as in $\S 2$, then

$$
m_{+}[x, A x] \leqslant 0 \quad \text { for all } x \in D(A) .
$$

We use the above properties of m_{-}and m_{+}frequently and without comment in our proofs.

Theorem 2. - In addition to the suppositions and notations of Proposition 1, suppose that $A \supset\{x \in E:|x-z| \leqslant R\}$ and there is an $L>0$ such that

$$
\begin{array}{r}
m_{-}[x-y, B(t, x)-B(t, y)] \leqslant L|x-y| \quad \text { for all }(t, x),(t, y) \in[0, \beta] \times E \tag{3.1}\\
\text { with }|x-z|,|y-z| \leqslant R
\end{array}
$$

Then (IE) has a unique solution u on $[0, \beta]$ with values in Ω.
Proof. - Let n and m be positive integers and define $p(t)=\left|u_{n}(t)-u_{m}(t)\right|$ for all $t \in[0, \beta]$. If i and j are positive integers and $t \in\left(t_{i}^{n}, t_{i+1}^{n}\right) \cap\left(t_{i}^{n}, t_{j+1}^{n}\right)$, then it follows from (3.1) and part (ii) of Proposition 1 that

$$
\begin{aligned}
p_{-}^{\prime}(t) & \left.=m_{-}\left[u_{n}(t)-u_{m}(t), A u_{m} t\right)-A u_{m}(t)+B\left(t_{i}^{n}, u_{n}\left(t_{i}^{n}\right)\right)-B\left(t_{j}^{m}, u_{m}\left(t_{j}^{m}\right)\right)\right] \\
& \leqslant m_{+}\left[u_{n}(t)-u_{m}(t), A\left(u_{m}(t)-u_{m}(t)\right)\right]+m_{-}\left[u_{n}(t)-u_{m}(t), B\left(t_{i}^{n}, u_{n}\left(t_{i}^{n}\right)\right]-B\left(t_{j}^{m}, u_{m}\left(t_{j}^{m}\right)\right]\right. \\
& \leqslant L p(t)+\left|B\left(t_{i}^{n}, u_{n}\left(t_{i}^{n}\right)\right)-B\left(t, u_{n}(t)\right)\right|+\left|B\left(t, u_{m}(t)\right)-B\left(t_{j}^{m}, u_{m}\left(t_{j}^{m}\right)\right)\right| \\
& \leqslant L p(t)+\varepsilon_{n}+\varepsilon_{m},
\end{aligned}
$$

where the last inequality follows from (iv) of Proposition 1 and the fact that $u_{n}(t)$ $u_{m}(t) \in A$. Solving this differential inequality we have that

$$
\begin{equation*}
p(t) \leqslant\left[\left(\varepsilon_{n}+\varepsilon_{m}\right) L^{-1}+\sum_{s \in[0, t]}|p(s)-p(s-)|\right] \exp [L t] \quad \text { for all } t \in[0, \beta] \tag{3.2}
\end{equation*}
$$

(See Lemma 2 of [6]). Using (ii) of Proposition 1 it follows that

$$
\begin{aligned}
\sum_{s \in[0, \beta]}|p(s)-p(s-)| & \leqslant \sum_{k=1}^{N(n)}\left|u_{n}\left(t_{k}^{n}\right)-u_{n}\left(t_{k}^{n}-\right)\right|+\sum_{k=1}^{N(m)}\left|u_{m}\left(t_{k}^{m}\right)-u_{m ;}\left(t_{k}^{m}-\right)\right| \\
& \leqslant \sum_{k=1}^{N(n)} \varepsilon_{n}\left(t_{k}^{n}-t_{k-1}^{n}\right)+\sum_{k=1}^{N(m)} \varepsilon_{m}\left(t_{k}^{m}-t_{k-1}^{m}\right) \\
& =\beta\left(\varepsilon_{n}+\varepsilon_{m}\right)
\end{aligned}
$$

Substituting this estimate into (3.2) shows that

$$
\left|u_{n}(t)-u_{m}(t)\right|=p(t) \leqslant\left(\varepsilon_{n}+\varepsilon_{m}\right)\left(L^{-1}+\beta\right) \exp [L t] \quad \text { for all } t \in[0, \beta]
$$

Thus $\left\{u_{n}\right\}_{1}^{\infty}$ is uniformly Cauchy on $[0, \beta]$ and the existence of a solution to (IE) follows from Proposition 2. The uniqueness assertion follows easily from the techniques used in the proof of Theorem 3 below, and is omitted.

Theorem 3. - Suppose that conditions (C1)-(C5) are fulfilled, the set A in (C4) is open, and there is a continuous real valued function ϱ on $[0, \infty)$ such that

$$
m_{-}[x-y, B(t, x)-B(t, y)] \leqslant \varrho(t)\{x-y \mid \quad \text { for all }(t, x),(t, y) \in[0, \infty) \times A .
$$

Then for each z in Ω there is a unique noncontinuable solution u_{z} to (IE) on $\left[0, b_{z}\right.$). Also, if $a, w \in \Omega$ then

$$
\begin{equation*}
\left|u_{z}(t)-u_{w}(t)\right| \leqslant|z-w| \exp \left(\int_{0}^{t} \varrho(\tau) d \tau\right) \quad \text { for all } t \in\left[0, b_{z}\right) \cap\left[0, b_{w}\right) \tag{3.3}
\end{equation*}
$$

Proof. - Since Λ is open, local existence of solutions follows from Theorem 2 , so let u be a solution to (IE) and let v be a solution to (IE) with z replaced by w, and let $\beta>0$ be such that u and v are defined on $[0, \beta]$. We use the techniques of Webr [11, Proposition (3.6)] to establish (3.3) on [0, β]. For each positive integer n be $\left\{t_{i}^{n}\right\}_{0}^{n}$ be the partition of $[0, \beta]$ such that $t_{i}^{n}-t_{i-1}^{n}=\beta / n$ for $i=1, \ldots, n$, and define $\gamma_{n}:[0, \beta] \rightarrow\left\{t_{i}^{n}\right\}_{0}^{n}$ by $\gamma_{n}(\beta)=\beta$ and $\gamma_{n}(t)=t_{i}^{n}$ if $t \in\left[t_{i}^{n}, t_{i+1}^{n}\right)$. Now let $\left\{z_{n}\right\}_{1}^{\infty}$ and $\left\{w_{n}\right\}_{1}^{\infty}$ be sequences in $D(A) \cap \Omega$ such that $\lim _{n \rightarrow \infty} z_{n}=z$ and $\lim _{n \rightarrow \infty} w_{n}=w$. For each $t \in[0, \beta]$ define

$$
\begin{aligned}
& \left.u_{n}(t)=T(t) z_{n}+\int_{0}^{t} T(t-\tau) B\left(\gamma_{n}\right) \tau\right), u\left(\gamma_{n}(\tau)\right) d \tau \quad \text { and } \\
& v_{n}(t)=T(t) w_{n}+\int_{0}^{t} T(t-\tau) B\left(\gamma_{n}(\tau), v\left(\gamma_{n}(\tau)\right)\right) d \tau
\end{aligned}
$$

It follows easily that $u_{n} \rightarrow u$ and $v_{n} \rightarrow v$ uniformly as $n \rightarrow \infty$. Thus $u_{n}(t), v_{n}(t) \in \Lambda$ when n is sufficiently large. Moreover, if $t \notin\left\{t_{i}^{n}\right\}_{1}^{n}$ then

$$
u_{n}^{\prime}(t)=A u_{n}(t)+B\left(\gamma_{n}(t), u\left(\gamma_{n}(t)\right)\right) \quad \text { and } \quad v_{n}^{\prime}(t)=A v_{n}(t)+B\left(\gamma_{n}(t), v\left(\gamma_{n}(t)\right)\right) ;
$$

so if $p_{n}(t)=\left|u_{n}(t)-v_{n}(t)\right|$ it follows that

$$
\begin{aligned}
\left(p_{n}\right)_{-}^{\prime}(t) & =m_{-}\left[u_{n}(t)-v_{n}(t), A u_{n}(t)-A v_{n}(t)+B\left(\gamma_{n}(t), u\left(\gamma_{n}(t)\right)-B\left(\gamma_{n}(t)\right)\right)\right] \\
& \leqslant m_{-}\left[u(t)-v_{n}(t), B\left(t, u_{n}(t)\right)-B\left(t, v_{n}(t)\right)\right] \\
& +\left|B\left(\gamma_{n}(t), u\left(\gamma_{n}(t)\right)\right)-B\left(t, u_{n}(t)\right)\right|+\left|B\left(t, v_{n}(t)\right)-B\left(\gamma_{n}(t), v\left(\gamma_{n}(t)\right)\right)\right| \\
& \leqslant \varrho(t) p_{n}(t)+\varepsilon_{n},
\end{aligned}
$$

where

$$
\varepsilon_{n}=\sup \left\{\mid B\left(\gamma_{n}(t), u\left(\gamma_{n}(t)\right)-B\left(t, u_{n}(t)\right)\left|+\left|B\left(t, v_{n}(t)\right)-B\left(\gamma_{n}(t), v\left(\gamma_{n}(t)\right)\right)\right|: t \in[0, \beta]\right\}\right.\right.
$$

Since $\varepsilon_{n} \rightarrow 0$ as $n \rightarrow \infty$ we conclude from the above differential inequality that

$$
|u(t)-v(t)|=\lim _{n \rightarrow \infty} p_{n}(t) \leqslant|z-w| \exp \left(\int_{0}^{t} \varrho(\tau) d \tau\right)
$$

for all $t \in[0, \beta]$. The inequality (3.3) now follows immediately and the uniqueness assertion is evident by setting $z=w$ in (3.3). This completes the proof of Theorem 3 .

Remark 3. - If the suppositions of Theorem 3 are fulfilled with $A=E$, then the results of Lovelady [5] show that each of the noncontinuable solutions u_{z} to (IE) is defined on $[0, \infty)$. In this case Theorem 3 may be regarded as a criteria for the invariance of Ω.

In [11] Webb gives an example of a solution to (IE) that is in $D(A)$ initially, but not in $D(A)$ for any time $t>0$. A convenient criteria which assures that a solution u to (IE) is also a solution to the Cauchy problem (ACP) is given by SEgAL [10, Theorem 3, Lemma 3.1], and we record it here for future reference:

Proposimton 3 (SEgal [10]). - In addition to the suppositions of Theorem 3 suppose that B is continuously differentiable on $(0, \infty) \times A$. Then for each $z \in D(A) \cap$ $\cap \Omega$, the solution u_{z} to (IE) is differentiable on $\left[0, b_{z}\right), u_{z} \operatorname{maps}\left[0, b_{z}\right)$ into $D(A) \cap \Omega$, and $u_{z}^{\prime}(t)=A u_{z}(t)+B\left(t, u_{z}(t)\right)$ for all $t \in\left[0, b_{z}\right)$.

If, in Theorem 3, the function B is independent of $t \in[0, \infty)$, then one may use Webb's techiques in [11] to show that the noncontinuable solutions u_{z} to (IE) exists on $[0, \infty)$. Since this leads to some interesting results on semigroups of nonlinear operators and existence results for nonlinear operator equations, we indicate these ideas here. A family $U=\{U(t): t \geqslant 0\}$ of functions each mapping Ω into Ω is said to be a semigroup of type α on Ω if α is a real number and each of the following is fulfilled: (a) $U(0) x=x$ for all $x \in \Omega$; (b) $U(t+s) x=U(t) U(s) x$ for all $x \in \Omega$, t, $s \geqslant 0 ;(c) t \rightarrow U(t) x$ is continuous on $[0, \infty)$ for each $x \in \Omega$; and $(d)|U(t) x-U(t) y| \leqslant$ $\leqslant|x-y| \exp [\alpha t]$ for all $x, y \in \Omega, t \geqslant 0$. The generator of U is the function G defined by $G x=\lim _{t \rightarrow 0+} t^{-1}(U(t) x-x)$, with the domain $D(G)$ being the set of all $x \in \Omega$ for which this limit exists.

Now we assume that (C1)-(C3) are valid and each of the following conditions hold:
$(\mathrm{C} 4)^{\prime} \Lambda$ is an open subset of $E, \Omega \subset A$, and C is a continuous function from A into E.
$(\mathrm{C} 5)^{\prime} \quad \liminf _{h \rightarrow 0+} d(x+h C x ; \Omega) / h=0$ for each $x \in \Omega$.
$(C 6)^{\prime}$ there is a real number α such that $m \ldots[x-y, C x-C y] \leqslant \alpha|x-y|$ for all x, $y \in \Lambda$.
Under these assumptions we consider the existence of solutions to the autonomous integral equation
(AIE)

$$
u(t)=T(t) z+\int_{0}^{t} T(t-\tau) C u(\tau) d \tau, \quad z \in \Omega, t \geqslant 0
$$

Our fundamental result is the following extension of Theorem I in Werb [11]:
Theorem 4. - Suppose that conditions (C1)-(C3) and (C4)'-(C6)' are fulfilled. Then for each $z \in \Omega$ (AIE) has a unique solution u_{z} on $[0, \infty)$ with values in Ω. Also, if $U(t) z=u_{z}(t)$ for all $(t, z) \in[0, \infty) \times \Omega$, then U is a semigroup of type α on Ω and $A+C$ with $D(A+C)=D(A) \cap \Omega$ is the generator of U.

Using Theorem 3, the proof follows that of Webb [11, Proposition (3.6), (3.9), and (3.10)] and is omitted. Concerning the existence of a critical point to (AIE) and its asymptotic stability, we have the following result:

Theorem 5. - In addition to the suppositions of Theorem 4, suppose that $\alpha<0$. Then there is a unique point $x^{*} \in D(A) \cap \Omega$ such that $A x^{*}+C x^{*}=\theta$. Moreover, since $U(t) x^{*}=x^{*}$ for all $t \geqslant 0$, we have that $\left|U(t) z-x^{*}\right| \leqslant\left|z-x^{*}\right| \exp [\alpha t]$ for all $(t, z) \in[0, \infty) \times \Omega$.

The proof of Theorem 5 follows in a standard manner from Theorem 4 (see, e.g., [11, Proposition (3.15)]). In the case that Ω is convex, we can establish considerable information on the resolvent of $A+C$.

Theorem 6. - Suppose that (C1)-(C3) and (C4) $-(\mathrm{C} 6)^{\prime}$ are valid and that Ω is convex. For each $h>0$ such that $h \alpha<1$ define

$$
\mathfrak{R}(I-h(A+C))=\{x-h(A x+C x): x \in D(A) \cap \Omega\}
$$

Then $I-h(A+C)$ is injective on $D(A) \cap \Omega, \mathcal{R}(I-h(A+C)) \supset \Omega$, and

$$
\left|[I-h(A+O)]^{-1} x-[I-h(A+C)]^{-1} y\right| \leqslant(1-h a)^{-1}|x-y|
$$

for all $x, y \in \Omega$.
Proof. - It follows easily from (06)' that

$$
|[I-h(A+C)] x-[I-h(A+C) y]| \geqslant(1-h \alpha)|x-y| \quad \text { for all } x, y \in \Omega
$$

Thus, to complete the proof, we show that $R(I-h(A+C)) \supset \Omega$. Let $w \in \Omega$ and define $C^{*} x=h C x-x+w$ for all $x \in A$. It follows that C^{*} is continuous and

$$
m_{-}\left[x-y, C^{*} x-C^{*} y\right]=m_{-}[x-y, h C x-h C y]-|x-y| \leqslant(h \alpha-1)|x-y|
$$

for all $x, y \in A$. Also (see the proof of Theorem 6 in $[6]$),

$$
\liminf _{h \rightarrow 0+} d\left(x+h C^{*} x ; \Omega\right) / h=0 \quad \text { for all } x \in \Omega
$$

If $T_{h}(t) x=T(h t) x$ for all $(t, x) \in[0, \infty) \times E$, then T_{h} is a semigroup of linear. contractions, $h A$ is the generator of T_{h}, and if $x \in \Omega$ then $T_{h}(t) x=T(h t) x \in \Omega$ for all
$t \geqslant 0$. Thus, with T replaced by T_{h}, C by 0^{*}, and α by ($h \alpha-1$), the suppositions of Theorem 5 are fulfilled. Hence there is an $x^{*} \in D(\hbar A) \cap \Omega=D(A) \cap \Omega$ such that $h A x^{*}+C^{*} x^{*}=\theta$. It follows that $x-h(A x+C x)=w$ and the proof of Theorem 6 is complete.

Remark 4. - Except in Theorem 1, we used very heavily in our proofs that z is an interior point of A. It is the case that if we replace m_{-}by m_{+}, then Theorems $2-6$ are valid when $A=\Omega$ (and this modification is not needed when Ω is convex-see [6, Theorems 5 and 6]). In the case tht E has a uniformly convex dual sace, the proofs are not difficult, since the mapping $(x, y) \rightarrow|x| m_{+}[x, y]$ is uniformly continuous on bounded subsets of $E \times E$. However, in the general case, the proofs are very tedious, and use the fact that the mapping $(x, y) \rightarrow|x| m_{+}[x, y]$ is upper semicontinuous on $E \times E$ (see the proof of Theorem 3 in [6] for the case that $T(t)=I$ for all $t \geqslant 0$).

Remark 5. - In the case that Ω is convex, we may use Theorem 6 , a result of Crandall and Liggett [4], and the techniques of Webb [11, Proposition (3.18)] to show that U is as in Theorem 4, then $U(t) z=\lim _{n \rightarrow \infty}\left[I-t n^{-1}(A+B)\right]^{-n} z$ for all $z \in \Omega, t \geqslant 0$. Also, for $\Omega=E$ and $\alpha=0$, Barbu [1] shows $R(I-(A+C))$ is E when A is a nonlinear (multivalued) m-dissipative operator.

4. - Examples.

In this section we indicate some situations where these techniques may be applied Throughout this section we assume that J is a closed number interval and F is a Banach space with norm denoted $\|\cdot\|$. Also, it is assumed that V is a nonempty open subset of F and f is a continuous function from $J \times V$ into F, and K is a nonempty, closed subset of F such that $K \subset V$. Now let $\mathcal{F} n(J, F)$ be the vector space of all function from J into F. We suppose that E is a Banach subspace of $\mathcal{F} n(J, F)$ (with the norm on E denoted $|\cdot|$), that T is a semigroup of linear contractions on E with generator A, and that conditions (C1)-(3) are fulfilled with

$$
\begin{equation*}
\Omega=\{x \in E: x(s) \in K \text { for all } s \in J\} \tag{4.1}
\end{equation*}
$$

Set $A=\{x \in E: x(s) \in V$ for all $s \in J\}$ and define the mapping C from Λ into $\mathcal{F} n(J, F)$ by

$$
\begin{equation*}
[C x](s)=f(s, x(s)) \quad \text { for all }(s, x) \in J \times A \tag{4.2}
\end{equation*}
$$

Throughout this section it is assumed that f has the following properties:
(P1) There is a number \propto such that if $h>0$ and $(s, \xi),(s, \eta) \in J \times V$ then

$$
\|\xi-\eta-h[f(s, \xi)-f(s, \eta)]\| \geqslant(1-h \alpha)\|\xi-\eta\| .
$$

(P2) If $d_{1}(\xi, K)=\inf \{\|\xi-\eta\|: \eta \in K\}$ for each $\xi \in F$, then

$$
\liminf _{h \rightarrow 0+} d_{1}(\eta+h f(s, \eta) ; K) / h=0 \quad \text { for all }(s, \eta) \in J \times K
$$

We now consider various Banach spaces E in $\mathfrak{F} n(J, F)$ as well as further conditions on f which insure that C satisfies contitions (C4)'-(C6) in $\S 3$. These results then lead to the existence of solutions of abstract partial differential equations of the form

$$
\left\{\begin{array}{l}
\varphi_{t}(t, s)=[A \varphi(t, \cdot)](s)+f(s, \varphi(t, s)) \quad(t, s) \in[0, \infty) \times J \tag{4.3}\\
\varphi(0, s)=z(s), \quad \text { where } z \in D(A) \cap \Omega
\end{array}\right.
$$

If u is a solution to the autonomous integral equation (AIE) in $\S 3$, then the function $\varphi(t, s)=[u(t)](s)$ for all $(t, s) \in[0, \infty) \times J$ is called a mild solution to (4.3). We remark here that many of our results apply equally well when f is time dependent$f:[0, \infty) \times J \times V \rightarrow F$ is continuous and $[B(t, x)](s)=f(t, s, x(s))$ for all $(t, s, x) \in$ $\in[0, \infty) \times J \times \Lambda$. However, for simplicity, we restrict our attention to the time independent case. Before establishing our results, note that (P2) and Lemma 1 imply that
(P2)' $\lim _{h \rightarrow 0+} d_{1}(\eta+h f(s, \eta) ; K) / h=0$, uniformly for (s, η) in a compact subset of $J \times K$.
If J is a compact interval then $\mathrm{C}(J, F)$ is the Banach space of all continuous functions $x: J \rightarrow F$ with $|x|=\max \{\|x(s)\|: s \in J\}$.

Proposition 4. - Suppose that J is compact, K is convex, and $E=\mathcal{C}(J, F)$. Then A is open, Ω is closed, convex, and nonempty, and the operator \mathcal{C} defined of A by (4.2) satisfies conditions (C4)'-(C6)'.

Proof. - It is immediate that Λ is open, Ω is closed, convex and nonempty, and that C is continuous. If $x, y \in A$ then

$$
\|x(s)-y(s)-h[f(s, x(s))-f(s, y(s))]\| \geqslant(1-h \alpha)\|x(s)-y(s)\| \quad \text { for all } h>0, s \in J
$$

by (P1). Taking the maximum over s of each side of this inequality shows that $|x-y-h[C x-C y]| \geqslant(1-h \alpha)|x-y|$, and this is easily seen to imply that (C6)' Now let $x \in \Omega$ and let $\varepsilon>0$. By (P2) there is an $h \in(0, \varepsilon)$ and a family $\{\mu(s): s \in J\}$ of members of K such that

$$
\|x(s)+h f(s, x(s))-\mu(s)\| \leqslant h_{\varepsilon} / \tau \quad \text { for all } s \in J .
$$

For notational convenience set $z(s)=x(s)+h f(s, x(s))$ for all $s \in J$. By uniform continuity there is a $\delta>0$ such that $\|z(s)-z(t)\| \leqslant h \varepsilon / 7$ whenever $\mid s-t \leqslant \delta$. Let $\left\{s_{i}\right\}_{0}^{n}$ be a partition of J with $\left|s_{i}-s_{i-1}\right| \leqslant \delta$ for $i=1, \ldots, n$ and define $y: J \rightarrow F$ by

$$
y(s)=\mu\left(s_{i-1}\right)+\left(s-s_{i-1}\right)\left[\mu\left(s_{i}\right)-\mu\left(s_{i-1}\right)\right] /\left(s_{i}-s_{i-1}\right)
$$

whenever $s \in\left[s_{i-1}, s_{i}\right]$ and $i=1, \ldots, n$. Then y is continuous and $y(s) \in K$ for all $s \in J$ since K is convex. Thus $y \in \Omega$ and

$$
a(x+h C x ; \Omega) \leqslant|x+h C x-y| \leqslant h \varepsilon / 7+\sup \{\|\mu(s)-y(s)\|: s \in J\}
$$

However, if $s \in\left[s_{i-1}, s_{i}\right]$ then

$$
\begin{aligned}
\|\mu(s)-y(s)\| & \leqslant\left\|\mu(s)-\mu\left(s_{i-1}\right)\right\|+\left\|\mu\left(s_{i-1}\right)-y(s)\right\| \\
& \leqslant\left\|\mu(s)-\mu\left(s_{i-1}\right)\right\|+\left\|\mu\left(s_{i}\right)-\mu\left(s_{i-1}\right)\right\| \\
& \leqslant 2 \sup \left\{\left\|\mu(s)-\mu\left(s_{i-1}\right)\right\|: s \in\left[s_{i-1}, s_{i}\right]\right\} .
\end{aligned}
$$

Since $\left|s_{i}-s_{i-1}\right| \leqslant \delta$, we have from the choice of and μ that if $s \in\left[s_{i-1}, s_{i}\right]$ then

$$
\begin{aligned}
\left\|\mu(s)-\mu\left(s_{i-1}\right)\right\| & \leqslant\|\mu(s)-z(s)\|+\left\|z(s)-z\left(s_{i-1}\right)\right\|+\left\|z\left(s_{i-1}\right)-\mu\left(s_{i-1}\right)\right\| \\
& \leqslant h \varepsilon / 7+h \varepsilon / 7+h \varepsilon / 7=3 h \varepsilon / 7
\end{aligned}
$$

Thus $\|\mu(s)-y(s)\| \leqslant 6 h \varepsilon / 7$ for all $s \in J$ and we have that $d(x+h O x, \Omega) \leqslant h \varepsilon$. This shows that (C5) holds and the proof of Proposition 4 is complete.

Remark 6. - The proof techniques of Proposition 4 may be applied to various Banach subspaces of $\mathrm{C}(J, F)$ with no essential changes. If $J=[a, b]$ the following assertions are easily seen to be true: (a) if $E=\{x \in \mathcal{C}(J, F): x(a)=x(b)\}$ and $f(a, \xi)=f(b, \xi)$ for all $\xi \in V$, then $(\mathrm{C} 4)^{\prime}-(\mathrm{C} 6)^{\prime}$ are valid; (b) if $E=\{x \in \mathrm{C}(J, F): x(a)=$ $=x(b)=\theta\}, \theta \in K$, and $f(a, \theta)=f(b, \theta)$, then $(\mathrm{C} 4)^{\prime}-(\mathrm{C} 6)^{\prime}$ are valid; and (c) if $E=$ $=\{x \in \mathrm{C}(J, F): x(a)=\theta\}, \theta \in K$, and $f(a, \theta)=\theta$, then $(\mathrm{C} 4)^{\prime}-(\mathrm{C} 6)^{\prime}$ are valid. To establish (a), for example, one may choose the family μ is the proof of Proposition 4 so that $\mu(a)=\mu(b)$. Then if y is as constructed in the proof, we have that $y(a)=$ $=y(b)$ and hence $y \in \Omega$.

Remark 7. - The assumption that K is convex in Proposition 4 can be relaxed somewhat. Note that the convexity of K was used in order to be able to "connect" the points $\left\{\mu\left(s_{i}\right): i=0, \ldots, n\right\}$ in an appropriate manner. Instead of assuming K is convex, one could assume that there are numbers $M, \beta>0$ with the property that if $\xi, \eta \in K$ with $|\xi-\eta| \leqslant \beta$, there is a continuous function $\psi:[0,1] \rightarrow K$ such that $\psi(0)=\xi, \psi(1)=\eta$, and $|\psi(s)-\psi(0)| \leqslant M|\xi-\eta|$ for all $s \in[0,1]$. This property is valid, for example, if $0<r_{1} \leqslant r_{2}$ and

$$
K=\left\{\xi \in F: r_{1} \leqslant\|\xi\| \leqslant r_{2}\right\} \quad \text { or } \quad K=\left\{\xi \in F: r_{1} \leqslant\|\xi\|\right\}
$$

If $p \in[1, \infty)$ we let $\mathfrak{L}^{p}(J, F)$ denote the space of all measurable functions $x: J \rightarrow F$ such that $|x|=\left[\int_{J}\|x\|^{p} d s\right]^{1 / p}<\infty$. In the case that F is infinite dimensional, the
integral is that of Bochner. Of course, in $\mathcal{L}^{p}(J, F)$, we identify functions equal almost everywhere on J.

Propostition 5. - Suppose that $p \in[1, \infty), V=F$, and there is a continuous function $\psi: J \rightarrow[0, \infty)$ and a number $N>0$ such that

$$
\left\{\begin{array}{l}
\|f(s, \xi)\| \leqslant N\|\xi\|+\psi(s) \quad \text { for all }(s, \xi) \in J \times F \text { and } \tag{4.4}\\
\int_{J} \psi(s)^{p} d s<\infty
\end{array}\right.
$$

If J is not compact, assume also that $\theta \in K$. Then, with $E=\mathfrak{L}^{p}(J, F)$, the mapping C defined on $\Lambda=E$ by (4.2) satisfies conditions (C4)'(C 6$)^{\prime}$, and Ω is nonempty.

Proof. - Assumption (4.4) is easily seen to imply that C maps E into E and is continuous. If $x, y \in E$ and $h>0$ is such that $h \alpha<1$, then we have from (P1) that

$$
\|x(s)-y(s)-h[f(s, x(s))-f(s, y(s))]\|^{p} \geqslant(1-h \alpha)^{p}\|x(s)-y(s)\|^{p} \quad \text { for all } s \in J,
$$

and integrating each side of this inequality over J shows that condition (06) holds. It is also easy to see that Ω is nonempty and closed. Now let $x \in \Omega$ and let $\varepsilon>0$. Define $w(s)=f(s, x(s))$ for all $s \in J$. Since $\int_{J}\|w\|^{p} d s<\infty$, there is a compact interval $J_{0} \subset J$ such that $\int_{J-J_{0}}\|w\|^{p} d s \leqslant \varepsilon^{p} / 3$. Also, by absolute continuity, there is a $\delta>0$ such that if $S \subset J_{0}$ is measurable and $m(S) \leqslant \delta$ (where m is Lebesgue measure), then $\int_{S}\|w\|^{p} d s \leqslant \varepsilon^{p} / 3$. By Lusin's Theorem there is a measurable (open) subset J_{1} of J_{0} such that $m\left(J_{1}\right) \leqslant \delta$ and x is continuous on $J_{0}-J_{1}$. Set $J_{2}=J_{0}-J_{1}$. Since J_{2} is compact and $x \mid J_{2}$ is continuous we have that $\left\{x(s): s \in J_{2}\right\}$ is compact. By $(P 2)^{\prime}$ there is an $h \in(0, \epsilon)$ and a family $\left\{\mu(s): s \in J_{2}\right\}$ of members of K such that

$$
\|x(s)+h f(s, x(s))-\mu(s)\| \leqslant h \varepsilon^{2^{-1}} 3^{-1 / p}\left(1+m\left(J_{2}\right)\right)^{-1 / p} \quad \text { for } s \in J_{2}
$$

Moreover, if $\approx(s)=x(s)+h f(s, x(s))$ for all $s \in J_{2}$; there is a mutually disjoint collection $\left\{S_{i}\right\}_{1}^{n}$ of measurable subsets of J_{2} and an $s_{i} \in S_{i}$ for $i=1, \ldots, n$ such that $\bigcup_{i=1}^{n} S_{i}=J_{2}$ and

$$
\int_{J_{3}}\|z-\sigma\|^{p} d s \leqslant h^{p} \varepsilon^{p} 2^{-x} 3^{-2 / p}
$$

where $\sigma: J_{2} \rightarrow F$ is defined by $\sigma(s)=z\left(s_{i}\right)$ if $s \in S_{i}$. Hence if $\varrho: J_{2} \rightarrow K$ is defined by $\varrho(s)=\mu\left(s_{i}\right)$ whenever $s \in S_{i}$, then ϱ is measurable and

$$
\begin{aligned}
{\left[\int_{J_{2}}\|z-\varrho\|^{p} d s\right]^{1 / p} } & \leqslant\left[\int_{J_{2}}\|\sigma-\varrho\|^{p} d s\right]^{1 / p}+\left[\int_{J_{2}}\|z-\sigma\|^{p} d s\right]^{1 / p} \\
& \leqslant m\left(J_{2}\right)^{1 / p} \sup \left\{\|\sigma(s)-\varrho(s)\|: s \in J_{2}\right\}+h \varepsilon 2^{-1} 3^{-1 / p} \\
& \leqslant h \varepsilon 2^{-1} 3^{-1 / p}=h \varepsilon 3^{-1 / p}
\end{aligned}
$$

Therefore,

$$
\int_{J_{z}}\|x+h C x-\varrho\|^{p} d s \leqslant h^{p} \mathcal{E}^{p} / 3
$$

Thus if $y(s)=x(s)$ if $s \in J-J_{2}$ and $y(s)=\varrho(s)$ if $s \in J_{2}$, then $y \in \Omega$ and

$$
\begin{aligned}
d(x+h C x, \Omega)^{p} & \leqslant \int_{J}\|x+h O x-y\|^{p} d s \\
& =\int_{J-J_{2}} h^{p}\|O x\|^{p} d s+\int_{J_{2}}\|x+h O x-\varrho\|^{p} d s \\
& \leqslant \int_{J-J_{0}} h^{p}\|w\|^{p} d s+\int_{J_{1}} h^{p}\|w\|^{p} d s+h^{p} \varepsilon^{p} / 3 \\
& \leqslant h^{p} \varepsilon^{p} / 3+h^{p} \varepsilon^{p} / 3+h^{p} \varepsilon^{p} / 3=h^{p} \varepsilon^{p} .
\end{aligned}
$$

This shows that (C5) holds and the proof of Proposition 5 is complete.
As a specific illustration of these results let $J=[0,2 \pi]$ and suppose that E is $\mathfrak{L}^{p}([0,2 \pi], F)$ where $p \in[1, \infty)$ or E is the space of all $x \in \mathbb{C}([0,2 \pi], F)$ such that $x(0)=x(2 \pi)$. Let
$D(A)=\left\{x \in E: x, x^{\prime}\right.$ are absolutely continuous,

$$
\left.x^{\prime \prime} \in E, x(0)=x(2 \pi), \text { and } x^{\prime}(0)=x^{\prime}(2 \pi)\right\},
$$

and define $A x=x^{\prime \prime}$ for all $x \in D(A)$. Then A is the generator of a semigroup of linear contractions T on E (see Butzer and Berens [2, pp. 59-64]). Moreover, if $x \in E$ and $\lambda>0$ then

$$
\begin{equation*}
\left[(I-\lambda A)^{-1} x\right](s)=(2 \pi)^{-1} \int_{0}^{2 \pi} r(\lambda ; s-r) x(\tau) d \tau \quad \text { for all } s \in[0,2 \pi] \tag{4.5}
\end{equation*}
$$

where $r(\lambda, \cdot)$ is the 2π-periodic function on $(-\infty, \infty)$ defined by

$$
r(\lambda, t)=\pi \sqrt{\lambda}[\cosh \sqrt{\lambda}(\tau-\pi)][\sinh \sqrt{\lambda} \pi]^{-1} \quad \text { for } \tau \in[0,2 \pi]
$$

Recall that if $x \in E$ and $t \geqslant 0$ then

$$
[T(t) x](s)=\lim _{n \rightarrow \infty}\left[\left(I-n^{-1} t A\right)^{-n} x\right](s) \quad \text { for } s \in[0,2 \pi]
$$

Noting that $r(\lambda, \tau) \geqslant 0$ and $(2 \pi)^{-1} \int_{0}^{2 \pi} r(\lambda, \tau) d \tau=1$, it follows easily that conditions (C1)-(C3) are fulfilled if K has any of the following forms: $(a) K$ is a closed cone in F (b) K is a closed ball in F with center $\theta ;(x) K$ is the intersection of a closed cone
with a closed ball of center θ; or (d) P is a closed cone in $F, \eta \in P$, and $K=\{\xi \in F$: $\xi-\eta \in P\}$. In particular, these results give existence and uniqueness criteria for mild solutions with values in K to the equation

$$
\left\{\begin{array}{l}
\varphi_{t}(t, s)=\varphi_{s s}(t, s)+f(s, \varphi(t, s)) \quad \text { for }(t, s) \in[0, \infty) \times[0,2 \pi] \tag{4.6}\\
\varphi(0, s)=z(s) \quad \text { for } s \in[0,2 \pi], z \in \Omega \\
\varphi(t, 0)=\varphi(t, 2 \pi) \quad \text { and } \quad \varphi_{t}(t, 0)=\varphi_{t}(r, 2 \pi) \quad \text { for } t \geqslant 0
\end{array}\right.
$$

Remark 8. - Note that if $\alpha<0$ then by Theorem δ there is a unique K-valued solution x^{*} to the periodic equation $x^{\prime \prime}(s)+f(s, x(s))=\theta$ for all $s \in[0,2 \pi], x(0)=$ $=x(2 \pi)$ and $x^{\prime}(0)=x^{\prime}(2 \pi)$. Moreover, each solution φ to (4.6) satisfies $\lim _{i \rightarrow \infty} \varphi(t, s)=$ $=x^{*}(s)$, with convergence in the E norm.

Remark 9. - In the case that K is convex assumption (P2) may be expressed in terms of hyperplanes. In particular, (P 2) holds only in case for each $\xi \in \partial K$ and each $\xi^{*} \in F^{*}$ such that $\xi^{*}(\xi)=\varrho \geqslant \varrho$ and $\operatorname{Re}\left[\xi^{*}(\eta)\right] \leqslant 0$ for all $\eta \in K$, it follows that $\operatorname{Re}\left[\xi^{*}(f(s, \xi))\right] \leqslant 0$ for all $s \in J$. Note also that if F is the space $\mathbb{R}^{n}, f(s, \xi)=\left(f_{i}(s, \xi)\right)_{i=1}^{n}$ for all $(s, \xi) \in J \times V$, and $K=\left\{\left(\xi_{i}\right)_{1}^{n}: \xi_{i} \geqslant 0\right.$ for $\left.i=1, \ldots, n\right\}$, then (P 2) holds only in case $f_{j}(\delta, \xi) \geqslant 0$ whenever $\xi=\left(\xi_{i}\right)_{1}^{n} \in K$ and $\xi_{j}=0$.

Now we consider a boundary value problem on the right half line. Let E be either the space $\mathcal{L}^{1}([0, \infty), F)$ or the space $\mathcal{C}_{0}^{0}([0, \infty), F)$ consisting of all continuous functions $x:[0, \infty) \rightarrow F$ with $x(0)=\theta, \lim _{s \rightarrow \infty} x(s)=\theta$, and $|x|=\max \{\|x(s)\|: s \geqslant 0\}$. Let

$$
D(A)=\left\{x \in E: x, x^{\prime} \text { are absolutely continuous, } x(0)=\theta \text { and } x^{\prime \prime} \in E\right\}
$$

and define $A x=x^{\prime \prime}$ for all $x \in D(A)$.
Lemma 3. - Let $D, D(A)$ and A be as in the above paragraph. Then $D(A)$ is dense in E, the resolvent set of Λ contains $(0, \infty)$, and if $\lambda>0, y \in E$, and $\eta=\lambda^{-1 / 2}$,

$$
\begin{align*}
& {\left[(I-\lambda A)^{-1} y\right](s)=(\eta / 2) \int_{s}^{\infty} } {[\exp [\epsilon(s-\tau)]-\exp [-\eta(s+\tau)]] y(\tau) d \tau } \tag{4.7}\\
&+(\eta / 2) \int_{0}^{s}[\exp [\eta(\tau-s)]-\exp [-\eta(s+\tau)]] y(\tau) d \tau
\end{align*}
$$

for all $s \geqslant 0$. Also, $\left|(I-\lambda A)^{-1} y\right| \leqslant|y|$ for all $\lambda>0$ and $y \in E$. (The proof follows routine y and is omitted.)

Lemma 3 shows that A is the generator of a semigroup T of linear contractions on E, and hence

$$
[T(t) x](s)=\lim _{n \rightarrow \infty}\left[\left(I-t n^{-1} A\right)^{-n} x\right](s) \quad \text { for } x \in E \text { and } t, s \geqslant 0
$$

Using (4.7) and the fact that

$$
[\exp [\eta(s-\tau)]-\exp [-\eta(s+\tau)]], \quad[\exp [\epsilon(\tau-s)]-\exp [-\eta(s+\tau)]] \geqslant 0
$$

it follows that (C1)-(C3) are fulfilled if K has any of the following forms: (a) K is a closed cone in $F ;(b) K$ is the closed ball of center θ and radius ϱ; or (c) K is the intersection of a closed cone with the closed ball of center θ and radius ϱ. Thus our results apply to the equation

$$
\left\{\begin{array}{l}
\varphi_{t}(t, s)=\varphi_{s s}(t, s)+f(s, \varphi(t, s)) \quad \text { for } t, s \geqslant 0 \tag{4.8}\\
\varphi(0, s)=z(s) \quad \text { for } s \geqslant 0, z \in \Omega, \varphi(t, 0)=0 \\
\text { and either } \\
\lim _{s \rightarrow \infty} \varphi(t, s)=\theta \quad \text { for } t>0 \quad \text { or } \quad \int_{0}^{\infty} \| \varphi(t, s) d s<\infty \quad \text { for } t>0 .
\end{array}\right.
$$

Remark 10. - Again note that if $\alpha<0$ we have from Theorem 5 that is a unique K-valued solution x^{*} to the equation $x^{\prime \prime}(s)+f(s, x(s))=\theta$ for all $s \in[0, \infty)$ such that $x(0)=\theta$ and either $\lim _{s \rightarrow \infty} x(s)=\theta$ or $\int_{0}^{\infty}\|x(s)\| d s<\infty$. Moreover, each solution φ to (4.8) satisfies $\lim _{t \rightarrow \infty} \varphi(t, s)=x^{*}(s)$, with convergence in the E norm.

REFERENCES

[1] V. Barbu, Continuous perturbations of nonlinear m-accretive operators in Banach spaces, Boll. Un. Mat. Italiana, 6 (1972), pp. 270-278.
[2] P. L. Butzer - H. Berens, Semi-Groups of Operators and Approximation, SpringerVerlag, New York, 1967.
[3] H. Cartan, Caleul Differeniial, Paris, 1967.
[4] M. G. Crandall - T. Liggett, Generation of semi-groups of nonlinear transformations on general Banach spaces, Amer. J. Math., 113 (1971), pp. 265-298.
[5] D. L. Lovelady, A Hammerstein-Volterra integral equation with a linear semigroup convolution lernal, Indiana Univ. Math. J. (to appear).
[6] R. H. Martin Jr., Differential equations on closed subsets of a Banach space, Trans. Amer. Math. Soc., 179 (1973), pp. 399-414.
[7] R. H. Martin Jr., Approximation and existence of solutions to ordinary differential equations in Banach space, Funk. Ekvac., 16 (1973), pp. 195-211.
[8] M. Nagumo, Über die Laga der Integralkuruen gewohnlicher Differentialglerchugen, Proc. Phys.-Math. Soc. Japan, 24 (1942), pp. 551-559.
[9] N. Pavel, Approximate solutions of Cauchy problems for some differential equations on Banach spaces (to appear).
[10] I. Segal, Nonlinear semi-groups, Ann. of Math., 78 (1963), pp. 339-364.
[11] G. F. Webb, Continuous nonlinear perturbations of linear acoretive operators in Banach spaces, J. Funct. Anal., 10 (1972), pp. 191-203.

[^0]: (*) Entrata in Redazione il 5 dicembre 1973.
 (**) This work was supported by the U.S. Army Research Office, Durham, N. C.

 15 - Annali ai Matematica

