Invariant Sets for Perturhed Semigroups
of Linear Operators (*) (+*).

RoBERT H. MARTIN, JR. (Raleigh, North Carelina, U.8.A.)

Semmary. — Let E be a Banach space and consider the initial value problem (%) w'(1)= Au(l) -
+ B(t, w(t)), 10, w(0)=2; where A is the generator of a linear contraction semigroup
and B: [0, o)X B~ F is continuous. The main results of this paper deal with criterin
insuring that a closed subset Q of E is invariant for (sk)—Lthat is, z & Q implies that o
solution w to (%) satisfies w{t)c Q for all t>0.

1. — Introduction.

Let E be a real or complex Banach space with norm |-|, and let {T'(?):¢{>0} be
a strongly continuous semigroup of linear contractions on E. Now suppose that Q2
is a closed subset of F with the property that if z ¢ Q then T(t)x e 2 for all >0,
In this paper we consider the existence of a solution # with values in £ to the inte-
gral equation

£
(IE) u(t) = T(t)z+ f T(t—7)B(r,u(x))dr, 2€Q,
(i}

where B is a continuous function from [0, co) X 2 into E. If A is the infinitesimal
generator of T, then solutions to (IE) may be regarded as generalized or mild solu-
tions to the abstract Cauchy problem

(ACP) u'(t) = Au(t) -+ B(t, (), w(0)=2eD(A)NQ.

In particular, if % is a solution to (ACP) then « is a solution fo (IE), and if a solu-
tion to (IE) is differentiable, then u{t)e D(4) N Q2 for all >0 and » is a solution
to (ACP).

In § 2 we use the techniques of WEBB [11] to set up approximate solutions to (IE),
and criteria for the existence of solutions is given in § 3. Some examples illustrating
these technigues are indicated in § 4.

(*) Entrata in Redazione il 5 dicembre 1973,
(**) This work was supported by the U. 8. Army Research Office, Durham, N. C.
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2. — Approximate solutions.

Let T = {T(t):1>0} be a strongly continuous semigroup of linear contractions
on the Banach space E (i.e., T(0)=1I, where I is the identity mapping on E;
T+ s)=T@H)T(s) for all 1,s>0; [THx|<|w| for all (¢, x)e[0, co)xH; and ¢
- T'(t)z is continuous on [0, co) for each x € E). Also let A be the infinitesimal gene-
rator of 7 (i.e., Ap = }l}gﬁ Y T(tyw—x), with D(A) the set of all # for which this
limit exists). Recall that D(4) is dense in E. Throughout this paper we assume the
following conditions hold:

(C1) Q is a closed subset of E.
(C2) If 2eQ then T(H)axc Q2 for all 1>0.
(C8) D(A)N 2 is dense in L.

Note that is many cases condition (C2) implies condition (C3). In particular,
if £ is the closure of an open set in F or if £ is convex, then (C2) implies (C3).

For each ye B let d(y; Q) = inf{ly —x|: € Q}. In addition to (C1)-(C3) we fre-
quently assame the following conditions hold:

(C4) A5 0 and B is a continuous function from [0, co) x Ainto H.
(05) I%{?Oiffd(w"f' hB(t, z); 2)fh=0 for all (t,z)e[0, co) x 2.

To employ our techniques we need the following result concerning the uniformess
of the limit in (C5).

Lemma 1. - If conditions (C4) and (C5) are fulfilled then
Jim d(z + WB(t, 22)); [h=0  for all (t,»)€[0, c0)x 2,
and this limit is uniform on compact subsets of [0, co) X 2.

Proor. — Let K be a compact subset of {2 and let 8, e > 0. By [7, Theorem 2],
we have for each 1€[0,f] a d({, &) >0 such that

d(w -+ kB(t, x); 2)<he/2  for all (b, w)e[0, 0(t, )] X K .
Let > 0 be such that |B(#, ) — B(s, )| <¢/2 if e K and {, 5[0, 8] with {t—s|<#,
and let {t}; be a partition of [0, ] such that ¢,—t,,<n for i=1,...,n Set
d=min{d(t;, &): 1 =0,...,n}. If he[0,d] and (3, 2) €[, t:1:] X K, then

d(x + hB(t, z); 2)<d(x -+ hB(,, ); 2) + k|B(i, 2) — B(l;, z)]
<he/2 4 he/2 = he,

and the assertion of Lemma 1 follows.
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Under the conditions {C1)-(CH) we consider the existence of « approximate solu-
tions » to the integral equation (IE). So assume that (C1)-(C5) hold and ze€ 2. Now
choose positive numbers B, M, 5 and £ such that the following is satisfied:

(D1) If (t,2)el0, ]l x4 with | —2z]<R then |B{, 2)|< M.
(D2) If |z—2|<n and |y|<p(M -+ 2) then |T(t)o -y —z|< R for all te[0, gl
(D3) {z.)7 is a sequence in D(A)N 2 such that |2,—2|<n and ’%irg 2, = 2.

Note that one is agsured from (C1)-(C5) that such numbers B, M, 5 and § can be found
so that (D1)-(D3) hold. Our fundamental result on approximate solutions is the
following:

ProrosrrioN 1. — Suppose that (C1)-(C5) and (D1)-(D3) are fulfilled and that
{e.}" is a sequence in (0, 1] with lim &, = 0. Then for each positive integer n there
is an eg,-approximate solution w,: [0, 81— D(4) to (IE) in the following senge: there
is a positive integer N = N(n) and a partition {t“ Y, of [0,8] with #,, —# <e,
such that

(i) #,(0)==z,, (") e Q with |u () —2|<R, and if te[t}, ], ,) then

u;z(i) = Aun(t) + ( i n(tn})
and
¢

w,(t) = T(E— ), (8) + [T—7) B8, u, (&) dr ;
A
(ii) u, is continuous on [t}, . ,), «, (i}, , —) exists,
[ (i —) — (B )| <& (o — )
and if ¢e[t}, ¢, ) then d(u,(t); Q) <(E—1})e,;

(iii) if y,: [0, B1— {t!} is defined by y,(8) =B and y,(t) =t whenever te[ff, 1], ,),
then

i
[#,(8)— TW)2,— [ T(t—7) B(p(1), w,(r,(0)) dr| <tie,
[}
whenever te[t}, 17, ,); and
(iv) if (¢, ) e, XA with
Y — U, ()] < (8, — 1) (M + 1) + max{|(T(h) — I) w, @) }0 <<t — 5},

then |B(t, y)— B(#, u,(f})|<e, and |(T(t—1)—I) (&) <e,-



224  RoserRT H. MARTIN, JR.: Invariant sets for perturbed semigroups, ete.

The construction of the approximate solution u, is patterned very clogely to
that of WEBB [11, Proposition {3.1)}, and we only indicate it here. In particular
we use Webb’s construction in the interval [#}, 7, ;) and, as opposed to defining u,(#, ;)
so that u, is continuous at #f,,, we define 4,(¢7 ,) so that it is in D(4) N Q. This is
reflected by the jump discontinuity of u, in part (ii). Before indicating the construc-
tion of %, we first establish the following result:

LzmmaA 2. — Let the suppositions of Proposition 1 be fulfilled, let K ¢ 2 be com-
pact, and let £>0. Then there is a ¢ = d(g, K)> 0 such that

t+h

d(T(h)w—{— f_T(t+ h—17)B(t, @) dv; Q) <he
{

for all we K, ¢, t+ he[0, 8], and he{0, 1M

Proor. — By continuity there is a d,> 0 such that
| B(t, T(hy)x) — T(h,) B(t, z)|<e/2  for te[0,f], hy, k[0, 4,], and ze K .

(Recall T(t)ze 2 by (C2)). Therefore,

t+h

lhB(t, T(h)e) — [T+ h—1) B(t, 2) dr| <he/2
¢

for all Bel0, 4,], t€[0, 5] and ze K. Also, by Lemma 1, there is a d € (0, 6,] such
that

A(T(h)o + hB(t, T(h)w); Q) <he/2  for t€[0, ], he[0,5], and e K .

Consequently, if ¢€[0, §1, he[0, 6] and zc A then

t+h

d(fl’(h)w + f T+ h— ) B(t, 2)dr; Q) <d(T(hyz -+ hB(t, T(h)); 2)
£

t+h

T ] [T+ b —7)B(t, @) ax — 1B, T(h)w)l<he,
i

and the proof of Lemma 2 is complete.

We now indicate the construction of w,, which is by induction. Define £ =0
and () =2,, and assume that «, is constructed on [0,#;]. If ¢’ < f choose the
number 4§} as follows:

(1) 67 [0, ¢,] and # 4 67 <B;
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(2) if (¢, y)elt], &+ 71 x A and
|y — ()| < 7(M + 1) + max{ [(T(h) — 1) u,(#) [} 0 <h< 67}

then [B(t,y)— B(f, u,(])) |<e, and [(T(t—)—I)u,(f)]<e,;

;+B

3) d(T( () +fT - h— ) B, u, (&) dt;,Q)<hen/2

for all hel0, 1-}; and

(4) 67 is the largest number such that (1)-(3) hold.

Using the continuity of T and B and Lemma 2, we see that 67 > 0. Let £ ; =
=={ - 07 and for each te[t}, 1], ) define

¢
(1) = T(— ) u, () + [ T(t— 1) BE u,(8) dr .

"

It follows from the construction of u, and the induction hypothesis that the pro-
perties listed in Proposition 1 are fulifilled on [0,¢ ;). By (3) we have that

Yot —); 2) <e,lfi —1)/2,

and sinee D(A) N £ is dense in £ there is a we D(A) N £ with |u, (., —) — w|<
<ég,(tf,; —17). It then follows that jw—2|<R and if we define u,(# ;) = w, the
properties of u, are valid on [0,% ,]. We now show that i}, = § for some positive
integer N. Assume, for contradiction, that 7 < f for all ¢ and let s, = lim #. Again
us ng the techniques of WegBe {11, Proposition (3.1)], it follows that w = lim «, W (1)
also exists, and that we Q since Q is elosed. Thus K = {w}yU {u,(}), », t;*), .} is
compact. The econtinuity of 7 and B and Lemma 2 shows that (2) and (3) hold with 67
replaced by s, — & for all large i. Since 67 <¢ s, — 1 we have a contradiction to (4).
Thus $y = f for some positive integer N and the indication of the proof of Propo-
gition 1 is complete.

PROPOSITION 2. ~ Let the suppositions of Proposition 1 be fulfilled and let {u,};
be as constructed in Proposition 1. If u(t) = %an}o u,(t) exists uniformly for ¢ [0, f],

then u is a continuous function from [0, 8] into £ and # is a solution to (IE) on [0, §].

Proor. - If te[0, f] we have from (ii) of Proposition 1 that

d(u(t); 2) = lim d(u,(t); 2)<lime =0,

n—>oa 700
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so % maps [0, §] into 2. If v, i3 as in (iii) of Proposition 1 and
i

w,(t) = ()2, + [T(t—7) By,(m)) v for 1[0, fl,
0

then |uw,(t) — u,(t)| <fe,, and so w,~>u as »—oo uniformly. Since each w, is con-

tinuous, it follows that « is continuous. Also, if te[f}, 7, ,) then

s

(21) {%n(t) - uﬂ(?n(t}) 1 = }(T(t_ tf) - I) y’n(i?) + fT(t_ ‘E) B(yn(r)ﬁ %n(yn(z})) dl’{

5

<e,+ (t— 1) M <e,(1+ M),

and we have that (yn(t), un(y,,(t))) ->(t, u(t)) as ®» —oo uniformly on [0, 3]. Since
{(t, u(t)): te 0, ﬂ]} is compact, we see that B(yn(t),un(yn(t))) ->B(t, u(t)) as n — oo
uniformly on [0, 8]. Thus, by (iii) of Proposition 1,

w(t)— T(t)z— tT(t— 7)B(z, u(z)) dr
| ] |

]
¢

Un(t) — T{t) 20— fT(i - I)B((Vn(f)y un(?ﬂ(r))) d’() < ggg fen=10,

0

n—->co

for all te {0, 8], and the proof of Proposition 2 is complete.

REMARK 1. — Proposition 1 and 2 may be regarded as extension of Webb’s tech-
niques [11] for the case that £ = F and as extensions of the techniques in MARTIN [6]
for the case that T{¢) = I for all {>0. The condition (C5) on B goes back to Na-
gumo [8]. In the case that T(f) =1 for all >0 and £ = F, setting up this type
of approximate solution is done in CARTAN [3, Theorem 1.3.1]. For higher order
equations, see PAVEL [9].

3. — Existence criteria.

In this section we place conditions on B which insures the existence of solutions
o (IE). The first result is of a classical nature and employs Lipschitz and compact-
ness criteria on B.

TarorEM 1. — In addition to the suppositions and notations of Proposition 1,
suppose that B(t, z) = By(t, )+ B,(t, #) for all (¢, x)€[0, c0) X £2, where B, and B,
satisfy
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(a) there is an L >0 such that [B,(t,2)— B¢, y)|<Ljx—y| for all (z,x),
(¢, ) el0, f1x 2 with [z—2z2|, ly—2|<R; and

(b) thereis a compact subset K of ¥ such that B,(¢, ) K for all ({, )& [0, f1x Q
with |2 —z|<R.

Then (IE) has a solution » on [0, 8] with values in Q.

Proor. — Let y, be as in (ili) of Proposition 1 and define v,(f) = (yn(t), u,,(y,,(t)))
for all te[0, ] and n>1. Also let

[

palt) :jT(t—«-—r)B2 po(v)dr  for all te0, f] and n>1.

[
By assumption (b) and the continuity of 7' we have that
K,= {I(s)B,(t, #):5,t€[0,8l,2€ Q and |z—z|<R}
is relatively compact, so if K, is the closed convex hull of K; and K== {iw: (1, »)

€[0, f1x K,}, then K, is compact. It then follows routinely that v,(t) € K, for all
te[0, 8] and »>1. Moreover, if 0<s<{<p then

[a() — pa(s)| <

i ]
fT(tw 7) B, v.(7) drl + I f[T(t— ) — T(s— )] Bywa(v) dr
8 o
<]t—s]M2+f|[T(t—s)_I] T(s — 7) Byva(v)| d7
1]

where M,=max{|y|:ye K}. Since {T(r)x: (7,x)e[0, 5] XK} is compact, we see
that {y,};" is equicontinuous. Hence {y,};° has a uniformly convergent subsequence
by Ascoli’s theorem. Relabeling if necessary we may assume that {9,};” is uniformly
convergent. If g:[0, 8] — B we write |g| = sup{|g(t)|: t€[0, 51} Now for each n>1
and 1[0, f] define

11
wa(t) = T(1) 2, + f T(t—7) Byo.(r) dv + p,(t) .
4]

It follows from (iii) of Proposition 1 that |w, — w,| <fe.. Moreover, if n and m are
positive integers and p, (1) = |[w,(t) —w,(8)] for all t e [0, 8], we have from assump-
tion (a) that

t
DamBY<|T () 20— T(t) 2| -+ I f T(t— ) [B19a(7) — Bitu(T)]d7| -+ 190.{8) — 9. (?)]
0

t
<|en—2m| 4 ¥ —vu] + ffxiua(yn(f)) — e ym(0)) | AT + Blen + £m) -
0
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Algo, by (2.1) in the proof of Proposition 2 it follows that

a(Pn(7)) = (Y (1)) [ P () + [0(T) — Un(y(T)) |+ [10(T) — Unn(y ()]
<Pon(T) A 00— 0| - enl M A1) - [0 — 10, | + (M + 1)
<Ponl®) F (Ent o) B+ M+ 1)

Thus

4
pn,m(t)gén,m—l—ffjp,,,m(r)dr for all te{0, 87,
0

where 0, = |2 2|+ [¥n— ¥nl -+ 2Lp(c,+ &.)(f+ M+ 1). It now follows from
Gronwall’s inequality that

20, — W, ” = ‘gfpnm H < 0ym €XP [L81,

and since d8,.,—>0 as n, m —oco we have that {w,};° is uniformly Cauchy. The
inequality |w,— u,]<pfe. shows that {u,};” is also uniformly Cauchy, and Theo-
rem 1 follows from Proposition 2.

REMARK 2, ~ If the function B, in Theorem 1 is the zero function, then the solu-
tion « to (IE) on [0, 5] is easily seen to be unique.

Now we place a dissipative type condition on B to insure the existence and
uniqueness of solutions to (IE). Again our techniques follow Wess [11]. If2,yc E
define

m_fa, yl= 1im (o+ hy|—[z)/h  and  onfe, y]= lm (jo-+ hy|— jol)h

It follows that if «,y, 2 e F then
m_[z,y -+ 2]<m.[x, y]+ m_[x, 2]1<|y| + m_[x, 2] .

Moreover, if %: {0, b] —F has a derivative at s&(0,b) and p(t) = |u(?)| for all te
€[0, b], then p has a left derivative at s and p_(s) = m_[u(s), u'(s)]. Also, if 4 is
as in §2, then

m [x, Ax]<0 for all xeD(4).

We use the above properties of m_ and m, frequently and without comment in our
proofs.
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THEOREM 2. — In addition to the suppositions and notations of Proposition 1,
suppose that A> {xe E: |v —2z|<R} and there is an L >0 such that

(3.1) m_[v—y, B(t,»)— B, y)l<Liz—y| for all (t,), (!, y)e[0,FIXE
with jz—2|, ly—z2|<R.

Then (IE) has a unique solution # on [0, 8] with values in Q.

Proor. — Let » and m be positive integers and define p(f) = |u,{t) — u, ()] for
all t€[0,8]. If ¢ and j are positive integers and fe (t], ¢, ;) N (], ¢.,), then it fol-
lows from (3.1) and part (ii) of Proposition 1 that

Pty = m_ [, () — (1), Aut)— Au,,(8) + B(EF, u, (1)) — Bty w,(t))]
< o, () — 0 (0), A (20,00) — 0, (0)] 1 [0, (1) 20, (0, B, 9, (8)) — B w0, (8]
<Ip(t) + B8, w, (1)) — B(t, 4, (0)) |+ B, u, (1) — Bt ,(8"))]
<Lp()+e,+ e,

where the last inequality follows from (iv) of Proposition 1 and the fact that u,(¢)
un(t)€A. Solving this differential inequality we have that

(3:2)  pO<|@nte) I+ 3 p(s)—p(s—)|| exp[Lt]  for all teo, 6]

sel0.1]

(See Lemma 2 of [6]). Using (ii) of Proposition 1 it follows that

Nin} N{m)

Z kp(s) _17(3 —") I <k§1!un(t2) - %(tz —”) l +k§11“m(t;f) — Uy tIT "'")1

5€[0,5]

N(n) N{m)
< z En(iz - tz—l) + z ‘C’m(tz® - tzl—l)
=1 k=1

= fle,+ &) -
Substituting this estimate into (3.2) shows that
[ () — ()] = P(t) < (€n+ €n) (L4 B) exp [Lt]  for all te [0, f].

Thus {«,};” is uniformly Cauchy on [0, f] and the existence of a solution o (IE) fol-
lows from Proposition 2. The uniqueness assertion follows easily from the techniques
used in the proof of Theorem 3 below, and is omitted.
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THEOREM 3. — Suppose that conditions (C1)-(C5) are fulfilled, the set A in ((4)
is open, and there is a continnous real valued funetion p on [0, co) such that

m-«[w —Y B(ty w) - B(ta y)]<9(t);m " yi for all (ty w)v (t9 ’J/) & [05 oo) XA-

Then for each # in @ there is a unique noncontinuable solution u, to (IE) on[0,5,).
Also, if a, we 2 then
£
(3.3) lu ()~ u, (1) < |2 —w]| exp (jg(r)dr) for all te[0,b,)N[0,b,).
i

Proor. - Since /A is open, local existence of solutions follows from Theorem 2,
80 let # be a solution to (IE) and let » be a solution to (IE) with z replaced by ww,
and let #> 0 be such that « and v are defined on [0, 5]. We use the techniques of
WeBB [11, Proposition (3.6)] to establish (3.3) on [0, 8]. For each positive integer n
be {if}; be the partition of [0, 5] such that # —# , =f/n for i=1,...,n, and
define y,: [0, 81— {!1s by 7,(8)=p and y,(0) =16 if te [}, 4. ). Now let {2,};" and
{w,}7° be sequences in D(4) N such that lim z,=¢ and lim w,=w. For each
te [0, 5] define

i
(1) = T'(t) zn+J.T(t~—r)B(yn)r), u(y.(t))dv and
0

12
oalt) = T(t) w0, + f T(t— ) B(ya(v), o(ya(2))) dr -
7 0

It follows easily that u,—>u and ¢,->v uniformly as # —>co. Thus w,{t),v,(f}e4
when #» is sufficiently large. Moreover, if t¢ {i7}; then

up(t) = Au,(t) + By, (1), u(r,(8)))  and v () = Ao, (1) + B(r,(1), o(yu(0)) 5
so if p,(t) = |u,(t) —v,(t)] it follows that
(P (1) = m_{alt)— wa(t), Aua(t) — A0a(t) + Bya(0), u(ralt))) — B(ya(0))]
<m_[u(t) — (1), Bt, wa(t)) — Blts 0(0)]

1 (ra0: 0(0) — B a0+ [ Bt 0a(0) — Bpal), o30)|
<o) pa(l) + €,

where

£ = SUD ﬂB( (0, uly.(0)) — B(t, un(t))i + gB(t, 0(8) — B(ya(t), o(a0))]: 110, ﬁ‘]} :
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Since e,->0 as #n —co we conclude from the above differential inequality that

t
[u(t) — o(t)| = Lim p, (1) < fp— ] exp ( [o(r) dr)
4]

for all te[0, 8]. The inequality (3.3) now follows immediately and the uniqueness
assertion is evident by setting 2 = w in (3.3). This completes the proof of Theorem 3.

REMARK 3. — If the suppositions of Theorem 3 are fulfilled with A = F, then
the results of LoveELADY [5] show that each of the noncontinuable solutions «, to (IE)
is defined on [0, co). In this case Theorem 3 may be regarded as a criteria for the
invariance of 2.

In {11] Webb gives an example of a solution to (IE) that is in D{4) initially, but
not in D(A) for any time § > 0. A convenient eriteria which assures that a solution %
to (IR) is also a solution to the Cauchy problem (ACP) is given by SE6AL [10, Theo-
rem 3, Lemma 3.1], and we record it here for future reference:

PrOPOSITION 3 (SEGAL [10]). — In addition to the suppositions of Theorem 3
suppose that B is continuously differentiable on (0, oo) X A. Then for each z e D(4) N
N Q, the solution u, to (IE) is differentiable on [0, b,), », maps [0, b,) into D{4) N 2,
and u,(t) = Au,(t) -+ B(t, u.(2)) for all $€(0,D,).

If, in Theorem 3, the function B is independent of &[0, co), then one may use
Webb’s teehiques in [11] to show that the noncontinuable solutions %, to (IE) exists
on [0, co). Sinece this leads to some interesting results on semigroups of nonlinear
operators and existence results for nonlinear operator equations, we indicate these
ideas here. A family U = {U(}): £>0} of functions each mapping 2 into £ is said
to be a semigroup of type « on Q if « is a real number and each of the following is
fulfilled: (a) U(0)z =« for all zeQ; (b) U4 s)xz = U{t) U(s)x for all we 2, ¢,
§>0; (¢) t— U(f)z is continuous on [0, co) for each z € 2; and (d) [U{t)e— U(t)y|<
< |w—y| exp [t} for all #,ye R, t>0. The generator of U is the function & defined
by G = Jim t~Y(U(t)2 — ), with the domain D(G) being the set of all x € £ for which
this limit exists.

Now we assume that (C1)-(C3) are valid and each of the following conditions
hold:

(C4)’ A is an open subset of H, 2 c A, and O is a continuous function from A into E.
(C5)’ thgsiff d(z -+ hCx; £2)/h =0 for each ze .

(C6) there is a real number « such that m_[z— y, Oz — Cyi<ajr —y| for all #,
. i
yed.

Under these assumptions we consider the existence of solutions to the autonomous
integral equation

t
(AIE) () = T(t)z -+ f T(t—7) Cu(r)dr, ze, i>0.
1}
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Our fundamental result is the following extension of Theorem I in WEBSB [11]:

THEOREM 4. — Suppose that conditions (C1)-(C3) and (C4)'-(C6)" are fulfilled.
Then for each 2 € £2 (AIE) has a unique solution %, on [0, co) with values in £2. Also,
if U(t)s = u,(t) for all (t,2)e[0, c0)x 2, then U is a semigroup of type « on 02
and A+ C with D(4+ C)=D(4)N Q2 is the generator of U.

Using Theorem 3, the proof follows that of WEns {11, Proposition (3.6), (3.9},
and (3.10)] and is omiftted. Concerning the existence of a critical point to (AIE) and
its asymptotic stability, we have the following result:

TarorREM 5. — In addition fto the suppositions of Theorem 4, suppose that «<0.
Then there is a unique point z*e D(A) N 2 such that As* -+ Cr*=0§. Moreover,
since U(t)a* = o* for all 1>0, we have that |U(f)z —a*|<|z—a*| exp [af] for all
(t,2)€[0, 00) X Q.

The proof of Theorem 5 follows in a standard manner from Theorem 4 (see, e.g.,
[11, Proposition (3.13)]). In the case that 2 is convex, we can establish considerable
information on the resolvent of 44 C.

THEOREM 6. — Suppose that (C1)-(C3) and {C4)-(C8)" are valid and that £ is
convex. For each 2> 0 such that ha<<1 define

RI—MA+ 0)) = {z—hdAr+ Ox): ze D(A)N 2} .
Then I —h(A4 4 C) is injective on D(A) N Q, R(I—Wd -+ €))> 2, and
I—hA+ O o—[I—HA+ O y|< (L —ha) |z —y]
for all z, ye 2.
Proor. - It follows easily from (C6)’ that
I —hA+CO)Vlo—[I—hA+ C)yll>(1—ha)jw—y| for all z,yel.

Thus, to complete the proof, we show that R(I—h(4 + C))> 2. Let we 2 and
define C*x = hCx—ax -+ w for all x e A. It follows that C* i continuous and

m_[z—y, C*a— Oyl = m_[s—y, hOz—hOy] — |z —y| < (hoe — 1} |0 —y|
for all z,yeA. Also (see the proof of Theorem 6 in [6]),

h,ffloi?f d{m -+ hC*x; 2)[h =0 for all ze Q.

I T.(t)e = T(ht)z for all (i, 2)e [0, co) X E, then T, is a semigroup of linear con-
tractions, h4d is the generator of T, and if ze {2 then T,(t)x = T'(ht)zec 2 for all
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t>0. Thus, with T replaced by 7, ¢ by C*, and « by (ha— 1), the suppositions
of Theorem 5 are fulfilled. Hence there is an 2% ¢ D(hA) N Q= D(A)N 2 such
that hdx* 4+ C*x* =408, It follows that o —h{dx -+ Oz) = w and the proof of Theo-
rem 6 is complete.

REMARK 4. — Except in Theorem 1, we used very heavily in our proofs that 2 is
an interior point of A. It is the case that if we replace m_ by m_, then Theorems 2-6
are valid when 4 = 2 (and this modification is not needed when £ is convex—see
[6, Theorems 5 and 6]). In the case tht ¥ has a uniformly convex dual sace, the proofs
are not difficult, since the mapping (2, y) — |z|m [z, y] is uniformly eontinuous on
bounded subsets of £ x E. However, in the general case, the proofs are very tedious,
and use the fact that the mapping (z, y) — |v|m, [z, y] is upper semicontinuous on
E X E (see the proof of Theorem 3 in [6] for the case that T(t)=I for all {>0).

REMARK 5. — In the case that Q2 is convex, we may use Theorem 6, a result of
OranpALL and LiGGETT [4], and the techniques of WEsBB [11, Proposition (3.18)]
to show that U is as in Theorem 4, then U(t)z::}bi_;g [I—tn"(A + B)]"# for all
z€ Q,1>0. Also, for Q = E and « = 0, BARBU [1] shows R(I — (4 + ()) is F when
A is a nonlinear {multivalued) m-dissipative operator.

4. — Examples.

In this section we indicate some situations where these techniques may be applied
Throughout this section we assume that J is a closed number interval and F is a
Banach space with norm denoted |-[. Also, it is assumed that V is a nonempty
open subset of F and f is a continuous function from J x V into F, and K is a non-
empty, closed subset of F such that K c V. Now let Fn(J, F) be the vector space
of all function from J into F. We suppose that F is a Banach subspace of Fn(J, F')
(with the norm on E denoted |-|), that 7' is a semigroup of linear contractions on
E with generator 4, and that conditions (C1)-(3) are fulfilled with

(4.1) Q= {reh:xs)c K for all seJ}.

Set A= {xcB:2(s)eV for all seJ} and define the mapping C from A into
Fn{J, F) by

4.2) [Cz](s)=f(s,(s)) for all (s,m)ed xA.

Throughout this section it is assumed that f has the following properties:

(P1) 'There is a number « such that if >0 and (s, &), (8,9)eJ XV then

| —n—Rif(s, &) —fl&,n)]] > (1 —ha)[E—17] .
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(P2) If (¢, K) =inf{|§—y|: ne K} for each £€F, then

Hm inf dy(n + kf(s, 7); K)fh=0  for all (s,n)eJ XK.

We now congider various Banach spaces F in Fn(J, F) as well as further condi-
tions on f which insure that € satisfies contitions (C4)'-(C8)" in §3. These results then
lead to the existence of solutions of abstract partial differential equations of the form

w3) { @ulty 8) = [Ag(t, 1)+ f(s, 9(t, 8)) (2, 8)€[0, 00) XJ

(0, 8) =2(s), Where zeD(A)N L2

If u is a solution to the autonomous integral equation (AIE) in § 3, then the function
p(t, 8) = [u(t)](s) for all (¢, s)€[0, oo} xJ is called a mild solution to (4.3). We re-
mark here that many of our results apply equally well when f is time dependent—
f: [0, 00) Xd X V —F is continuous and [B(t, z)](s) = f(t, 5, ®(s)) for all (¢, ¢,2)€
€0, co) XdJ xA. However, for simplicity, we restrict our attention to the time inde-
pendent case. Before establishing our results, note that (P2) and Lemma 1 imply that

(P2) hl_i,f)ridl(n -+ hf(s,n); K)[h=0, uniformly for (s, %) in a compact subset of J x K.

If J is a compact interval then C(J, ¥) is the Banach space of all continuous
funetions #: J —F with || =max{|a(s)]: seJ}.

ProrosiTIioN 4. — Suppose that J is compact, K is convex, and F = C(J, F).
Then A is open, 2 is closed, convex, and nonempty, and the operator C defined of A
by (4.2) satisfies conditions (C4)'-(C6)".

Proor. ~ It is immediate that A is open, 2 is closed, convex and nonempty, and
that C is continuous. If @, y€/ then

la(s) — y(s) — h[f(s, 2(s)) — f(3, 9()] | > (1 —ha)w(s) —y(s)|  for all k>0, seJ
by (P1). Taking the maximum over s of each side of this inequality shows that
le—y—h[Cx— Cyll>(1 —ha)lz—yl|, and this is easily seen to imply that (C6)’
Now let w e 2 and let ¢>0. By (P2)' there is an k€ (0, ¢) and a family {u(s):seJ}
of members of K such that

lao(s) + hf(s, x(s)) —u(s)| <he/T for all sed .

For notational convenience set z(s) = x(s) -+ hf(s, 2(s)) for all s € J. By uniform con-
tinuity there is a 6 > 0 such that |e(s) — 2(#)|| <he/7 whenever [s —t< 5. Let {5;};
be a partition of J with |s,—s,]<d for i==1,...,n and define y:J —-F by

Y{(8) = p(8i1) -+ (s —8. 1) [pi(8s) — p(8:0)1/(8:—8,41)
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whenever s€[s;,,8] and i=1,...,n. Then y is continuous and y(s)e K for all
sed since K is convex. Thus y&Q and

@+ h0z; Q)< |w -+ hCx —y|<he/T 4 sup{|u(s) —y(s)|: s eJ}.

However, if se[s;,, 8] then

AN

[1e(s) — plsi-n) | 4 [w(sim0) — 9 (8) |
< Juls) — p(8sa) | + [p(s:) — pa(s5) |
<2 sup{|p(s) —p(s:ia)l|: s€sim1, 841} -

[u(s)—y(s)]

Since |s; — $,.4]<0, we have from the choice of and u that if s € [s,.,, s,] then

”;“(s)“”‘!"(gi—l)” < () —2(s) I ll2(s) —2(s:-1) |+ l2(8:) — p(841) |
< he|T+ he[T - he|T = 3he/T .

Thus |u(s) —y(s)] <6he/7 for all seJ and we have that d(z-+ hCz, Q)<he. This
shows that (C5)" holds and the proof of Proposition 4 is complete.

REMARK 6. — The proof techniques of Proposition 4 may be applied to various
Banach subspaces of C(J, F) with no essential changes. If J =[a,b] the follow-
ing assertions are easily seen to be true: (e) if B = {we C(J, F): #(a) = 2(b)} and
fla, & = f(b, &) for all £ V, then (C4)'-(C6) are valid; (b) if E = {ze C(J, F): w(a) =
= x(b) =0}, O K, and f(a, 0) =f(b, 0), then (C4)-(C6)" are valid; and (c) if E =
= {we C(J, F): ®(a) = 0}, 6 K, and f(a, ) = 0, then (C4)'-(C6)" are valid. To esta-
blish (a), for example, one may choose the family u is the proof of Proposition 4
so that p(a)= u(b). Then if y is as construeted in the proof, we have that y(a) ==
= y({b) and hence ye Q.

REMARK 7. — The assumption that K is convex in Proposition 4 ean be relaxed
somewhat. Note that the convexity of K was used in order to be able to « connect »
the points {u(s;): ¢=0,...,n} in an appropriate manner. Instead of assuming K
is convex, one could assume that there are numbers M, 8> 0 with the property
that if & 5 € K with |£ —#5|<p, there is a continuous function p:[0,1]—>K such
that p(0) =&, p(1) =y, and |y(s)—y(0)|< M|&—n| for all s €[0,1]. This property
ig valid, for example, if 0 <y <7, and

K= {ecF:r<|E|<r} o K={EeP:rn<|]}.

If pe[l, co) we let £2(J, F) denote the space of all measurable functions «: J—F

such that |o| = [f []m”f’ds] Ur < 0o, In the case that F is infinite dimensional, the
J
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integral is that of Bochner. Of course, in £2(J, I'), we identify functions equal almost
everywhere on .

ProPosITION 5. — Suppose th»at pell, oo0), V=P, and there is a continuous
function p:J —[0, oo) and a number N >0 such that

11(s, )] <N +-w(s) for all (s, §)ed X F and

(4.4) fw(s)f’ds < 00

7

If J is not compact, assume also that §e K. Then, with & = £#(J, F'), the map-
ping C defined on A= E by (4.2)satisfies conditions (C4)’-(C6)’, and 2 is nonempty.

Proor. — Assumption (4.4) is easily seen to imply that ¢ maps ¥ into F and is
continuous. If x, y € B and k> 0 is such that ke << 1, then we have from (P1) that

Ja(s) —(s) — h[f(s, 2()) — (s, 9(8))] 7> (1 — e jac(s) —y(s)]»  for all sed

and integrating each side of this inequality over J shows that condition (C6)" holds.
It is also eagy to see that £ is nonempty and closed. Now let ¢ Q and let ¢ > 0.
Define w(s) = f(s, z(s)) for all seJ. Since f\{wl{pd3<oo, there is a compact inter-

J
val J,cJ such that f |w]*ds <e?/3. Also, by absolute continuity, there is a 6 > 0
J—dg -
such that if 8 cJ, is measurable and m(8)<d (where m is Lebesgue measure), then

f lw]?ds<e?/3. By Lusin’s Theorem there is a measurable (open) subset J; of J,
3
such that m(J,)<d and « is continwous on J,—J,. Set J,=J,—J,. Since J,

is compact and »|J, is continuous we have that {#(s): s € J,} is compact. By (P2)’
there is an he (0,¢€) and a family {u(s): s€J,} of members of K such that

leo(s) + RBf(s, 2(s)) — u(s) | <he213-V2(1 4 m(J,))~Y»  for sed,.

Moreover, if z(s) = z(s) + hf(s, #(s)) for all sedJ,; there is a mutually disjoint col-
lection {8,}] of measurable subsets of J, and an s,ef§; for i=1,...,n such that
kg
US,=J, and
i=1 [le—olras <heerz-s3-2s,
Fs
where o: J,->F is defined by o(s) = 2(s,;) if s€8,. Hence if p: J,—> K is defined by
o{8) = u(s,) whenever sc8,, then p is measurable and

[ [1z—elpas]e<] [lo—eleas] o= [ [jz—oas]

A
<m{J)? sup{|a(s)—o(s)|: sed,} + he2-13-1/?

<he2~13-1p = he3-7
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Therefore,

f | 4 hOw — o|»ds <773 .

Je
Thus if y(s) =x(s) if seJ —J, and y{s) = p{s) if seJ,, then yc 2 and

d(z+ b0z, Q)?<fﬂm—§— Oz —yllzds
J
= fkw;goxgzwds+fg;m+ WOz —o|»ds
T~ J,

< [ wlwlpas +thpnwﬂpds + heef3

J—Jy

<h?e?|3 -+ hoer[3 + IPev[3 = hvev .

This shows that (C5)' holds and the proof of Proposition b is complete.

As a specifie illustration of these results let J = [0, 2] and suppose that F is
£2([o, 2n], F) where pe(l, c0) or E is the space of all ze C([0, 2x], F) such that
#(0) = x(27). Let
D(A) = {we B:z,a' are absolutely continuous,

x"€ B, 2(0) = z(2n), and 2'(0) = 2'(27)},
and define Az = x" for all ze D(4). Then A is the generator of a semigroup of

linear contractions 7 on ¥ (see BUuTrzER and BERENS [2, pp. 59-64]). Moreover,
if ze H and A>0 then

27
(4.5) [(I—24)z] (s) = (Zn)—ljr(}.; s—r)z(t)dr for all s&[0, 2n],

0

where #(4, -) is the 2z-periodie function on (— oo, oo} defined by
(4, 1) = mv/Alcosh VA(t —#)|[sinh AV Ax]"*  for Te[0,2n].
Recall that if xe F and ¢>0 then

[T()xz](s) = %_Ig [(I —n1tA)"w](s) for se[0,2n].

2n
Noting that »(4, 7)>0 and (2r)* f?'{)s,, 7)dr =1, it follows easily that conditions
0

(C1)-(C3) are fulfilled if K has any of the following forms: (a) X is a closed cone in ¥
{b) K is a closed ball in F with center 0; (z) K is the intersection of a elosed cone

18 ~ Annali di Malematica
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with a closed ball of center 0; or (d) P is a closed cone in F, ne P, and K = {{eF:
&—ne P}. In particular, these results give existence and uniqueness criteria for mild
solutions with values in K to the equation

@ity 8) = @..(8, 8) + f(s, @(t, 8))  for (¢, s)e[0, co) X [0, 27]
(4.6) (0, 8y ==2(s) for se[0,2xn], 22
o(t, 0y =@, 27) and ¢t 0)=qg(r,2m) for t>0.

REMARK 8. — Note that if « < 0 then by Theorem 5 there is a unique K-valued
solution #* to the periodic equation z(s)- f(s, #(s)) = 6 for all se[0, 2n], #(0) =
= z(2x) and #'(0) = &'(27). Moreover, each solution ¢ to (4.6) satisfies lim (t, s) =
= g*(s), with convergence in the E norm.

REMARK 9. - In the case that K is convex assumption (P2) may be expressed in
terms of hyperplanes. In partieular, (P2) holds only in case for each £ ¢ 0K and
each £* e F* guch that £(&) = p>p and Re[&f*(n)]<0 for all ye K, it follows that
Re[é*(f(s, 5))] <0 for all seJ. Note also that if F is the space R, f(s, &) = (f;(s, &))7-,
for all (s, &)e xV, and K = {(§)7: £,>0 for i=1, ..., n}, then (P2) holds only in
case f;(s, &) >0 whenever &= (§)}eK and £,=0.

Now we consider a boundary value problem on the right half line. Let ¥ be either
the space £1([0, co), F') or the space C3([0, co), F) consisting of all continuous func-
tions @: [0, co) —F with ®(0)=0, lim x(s) =6, and lo| = max{|z(s)[: s>0}. Let

D(A)= {we B: 2, are absolutely continuous, #(0) =6 and 2" € B}

and define Az =2" for all xe D(4).

Levma 3. — Let F, D(4) and A be as in the above paragraph. Then D(A) is dense
in E, the resolvent set of A contains (0, co), and if 1> 0, y € B, and 5 = A~V

oo

@D [(I—24)7916) = (/2) [[exp [e(s— 1] —exp | — (s + 7)]] y(r) de

8
8

+ (1/2)] [exp [n(r —8)1 —exp [—n(s -+ )] y(x) v

[

for all s>0. Also, [(I—14)|<|y| for all A>0 and ye E. (The proof follows
routine y and is omitted.)

Lemma 3 shows that 4 is the generator of a semigroup 7 of linear contractions
on E, and hence

[T(xl(s)= f}lni [{I—tn Ay rz](s) for xc¢ ¥ and t,8>0.
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Using (4.7) and the fact that

[exp[n(s— )1 —exp[—n(s+ )],  [exple(r —s)]—exp—7y(s + 7)]] >0

for all s, 7>0,

it follows that (C1)-(C3) are fulfilled if K has any of the following forms: (a) K is a
closed cone in F'; (b) K is the closed ball of center § and radius g; or (¢) K is the inter-
section of a closed cone with the closed ball of center # and radius p. Thus our results
apply to the equation

@ity §) = @l 8) + f(&‘, o(t, S)) for t,s>0,
@(0,8) ==z(8) for >0, ze 2, ¢(t,0)=10,
(4.8) and either
E,m‘P(t’ 8)=10 for t>0 or fi\cp(t, s)ds<< oo for i>0.
0

REMARX 10. ~ Again note that if & << 0 we have from Theorem 5 that is a unique
K-valued solution a* to the equation #"(s)+ f(s, #(s)) = 6 for all se [0, c0) such

that #(0) = 6 and either lim x(s) =0 or f}]m(s) [ ds << co. Moreover, each solution ¢
0
to (4.8) satisfies 11}33 @l(t, s) = 2*(s), with eonvergence in the E norm.
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